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Abstract

The devastating winds, torrential rainfalls, and storm surges associated with tropical cy-
clones (TCs) frequently claim numerous fatalities and inflict extensive and costly dam-
ages. Planning evacuations and taking precautionary measures requires accurate fore-
casts of TC activity with as much lead time as possible. Past efforts have mostly focused
on predicting either individual TCs several days ahead or the activity of an entire sea-
son. This separation is primarily due to the subseasonal predictability gap (beyond 2
weeks but less than 3 months), and is also reflected in the fact that different modeling
approaches are predominantly used for each of the two forecast ranges. Medium-range
predictions (up to 2 weeks) are heavily based on numerical weather prediction (NWP;
also referred to as ’dynamical’) models, whereas statistical models are usually trained to
issue seasonal (3-6 months) outlooks. While previous research on subseasonal TC activ-
ity has mostly focused on either the validation of NWP models, or the development of
statistical models trained on past data, the present thesis combines both approaches to a
statistical–dynamical (or ’hybrid’) model for probabilistic forecasts in the North Atlantic
basin. This dissertation aims to identify and examine NWP-based predictors relevant for
subseasonal TC activity forecasting, to develop and validate a statistical-dynamical fore-
casting model, and to systematically compare its predictive performance with a variety
of distinct forecasting approaches.

Although state-of-the-art NWP models were shown to lack predictive skill with re-
gard to subseasonal weekly TC activity, they may predict the environmental conditions
sufficiently well to generate predictors for a statistical model. Therefore, based on a
literature review and physical considerations, an extensive predictor set is generated in-
cluding predictor groups representing climatological and seasonal information, oceanic,
and tropical conditions, tropical wave modes, as well as extratropical influences. The
assumption that these predictors provide exploitable predictive skill at subseasonal lead
times is considered to be valid, as for each week-four predictor significant correlations
with TC occurrence are found between 0.1 and 0.5.

A statistical-dynamical (or hybrid) model is developed for predicting TC occurrence
probability and the predictive distribution of accumulated cyclone energy (ACE) for lead
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times up to week five, using logistic regression and a two-part model, respectively. To
contrast differences between subregions, separate models are trained and validated for
the Gulf of Mexico and the central Main Development Region (MDR), respectively. For
each forecast week and subregion, an automated procedure selects only relevant predic-
tors from the predictor pool, before the statistical model component is applied in forecast
mode at every grid point separately. Even though regularisation is imposed to prevent
the model from over- and underfitting, most predictors are still selected during this pro-
cedure, attesting their utility for the hybrid approach. A variety of original and optimized
models, including climatological models, purely dynamical models, and purely statistical
models provide a comprehensive set of benchmarks. Beyond the purpose of facilitating a
strong and thus honest competition for model validation, it also allows to assess predictive
performance for a hierarchy of modelling approaches.

This variety of models is systematically cross-validated on the 1979–2018 period
for predictions in the Gulf of Mexico and central MDR subregions, respectively. The
verification of probabilistic forecasts combines established tools with newly developed
techniques to assess the calibration of models, their potential and actual predictive skills,
and the expected long-term costs for a user when taking action based on each model.
The climatological and NWP-based models are found to systematically underforecast
both target variables, which can be corrected in the latter case of model type by sta-
tistical post-processing. In contrast, the purely statistical and the statistical-dynamical
models produce overall well calibrated forecasts. The NWP models perform best at week
one but quickly lose skill within the first two weeks due to the chaotic nature of the at-
mosphere blurring the valuable information contained in the initial conditions. Even in
case of recalibration, the NWP models are outperformed by the climatological models
on subseasonal lead times. Seasonal variations reflected in a climatological model are
particularly useful in the central MDR, which is subject to a more pronounced seasonal
cycle. In contrast, an optimization of how much information from adjacent days in the
year is used to compile a probabilistic climatological distribution seems to pay off most
in the Gulf of Mexico, because more instances are required to obtain a robust distribu-
tion. The purely statistical models increase skill over the climatological models only
slightly, suggesting that past information does not contain much of exploitable predic-
tive skill. The statistical-dynamical approach achieves considerable skill improvements
in predicting TC occurrence up to week five for both subregions. The vast majority of
the additional subseasonal skill in the hybrid model, relative to the climatological model,
can be attributed to the tropical conditions in the Gulf of Mexico, and to the oceanic con-
ditions in the central MDR. For the predictive distribution of ACE, skill improvements
are qualitatively similar but disappear beyond week three in the Gulf of Mexico. Train-
ing the ACE model while withholding the climatological base predictor demonstrates the
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occurrence factor to be of much greater importance than the intensity factor. Applying
a cost-loss decision model to the TC occurrence predictions broadly suggests that, to
reduce overall economic costs, the most valuable information is provided by the NWP
model on the medium range, and by the statistical-dynamical model on the subseasonal
range.
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Kurzfassung

Die zerstörerischen Winde, sintflutartigen Regenfälle und Sturmfluten, die mit tropis-
chen Wirbelstürmen (TCs) einhergehen, fordern häufig zahlreiche Todesopfer und verur-
sachen großflächige und kostenintensive Schäden. Die Planung von Evakuierungen und
Vorsichtsmaßnahmen erfordert genaue Vorhersagen der TC-Aktivität mit einer möglichst
großen Vorlaufzeit. Vergangene Bemühungen haben zumeist darauf abgezielt entweder
einzelne TCs mit einer Vorlaufzeit von mehreren Tagen oder die Aktivität einer ganzen
Saison vorherzusagen. Diese Trennung ist in erster Linie auf die subsaisonale Vorher-
sagbarkeitslücke (mehr als 2 Wochen aber weniger als 3 Monate) zurückzuführen, und
spiegelt sich auch in der Tatsache wider, dass für jeden der beiden Vorhersagebere-
iche vorwiegend unterschiedliche Modellierungs-ansätze zur Anwendung kommen. Mit-
telfristige Vorhersagen (bis zu 2 Wochen) basieren in hohem Maße auf numerischen
Wettervorhersagemodellen (NWP-Modell; auch als ’dynamisches Modell’ bezeichnet),
während statistische Modelle in der Regel für saisonale Vorhersagen (3-6 Monate) trainiert
werden. Während frühere Forschung zur sub-saisonalen TC-Aktivität sich überweigend
entweder auf die Validierung von NWP-Modellen oder auf die Entwicklung statistischer
Modelle, trainiert auf vergangenen Daten, konzentriert hat, kombiniert die vorliegende
Arbeit beide Ansätze zu einem statistisch-dynamischen (oder hybriden) Modell für prob-
abilistische Vorhersagen im nordatlantischen Ozean. Diese Dissertation zielt darauf ab,
NWP-basierte Prädiktoren, die für die Vorhersage subsaisonaler TC-Aktivität relevant
sind, zu identifizieren und zu bewerten, ein statistisch-dynamisches Vorhersagemodell
zu entwickeln und zu validieren und dessen Vorhersageleistung systematisch mit einer
Vielzahl von unterschiedlichen Vorhersageansätzen zu vergleichen.

Obwohl es modernen NWP-Modellen nachweislich an der Fähigkeit zur Vorhersage
subsaisonaler, wöchentlicher TC-Aktivität mangelt, könnten sie in der Lage sein die
Umgebungsbedingungen ausreichend gut vorherzusagen, um daraus Prädiktoren für ein
statistisches Modell zu erzeugen. Daher wird auf Grundlage einer Literaturrecherche und
physikalischen Überlegungen ein umfangreicher Satz and Prädiktoren generiert, welcher
Prädiktorgruppen umfasst, die klimatologische und saisonale Informationen, ozeanis-
che und tropische Bedingungen, tropische Wellenmoden sowie außertropische Einflüsse
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repräsentieren. Die Annahme, dass diese Prädiktoren für subsaisonale Vorlaufzeiten
nutzbare Vorhersagefähigkeiten aufweisen, wird als zutreffend erachtet, da für jeden
Prädiktor der Vorhersagewoche vier signifikante Korrelationen mit dem Auftreten von
TCs zwischen 0.1 und 0.5 zu finden sind.

Ein statistisch-dynamisches (oder Hybrid-) Modell wird für die Vorhersage der Auf-
tretenswahrscheinlichkeit von TCs sowie für die Accumulated Cyclone Energy (ACE)
mit Vorlaufzeiten bis zur Woche fünf entwickelt, wobei eine logistische Regression bzw.
ein zweiteiliges Modell verwendet wird. Um Unterschiede zwischen den Teilregionen
vergleichen zu können, werden separate Modelle für den Golf von Mexiko bzw. die zen-
trale Main Development Region (MDR) trainiert und validiert. Für jede Vorhersagewoche
und Teilregion wählt ein automatisiertes Verfahren lediglich die relevanten Prädiktoren
aus dem Prädiktorenpool aus, bevor die statistische Modellkomponente im Vorhersage-
modus auf jeden einzelnen Gitterpunkt separat angewendet wird. Obwohl eine Regular-
isierung vorgenommen wird, um eine Über- oder Unteranpassung des Modells zu verhin-
dern, werden dennoch die meisten Prädiktoren während dieses Verfahrens ausgewählt,
was deren Nützlichkeit für den hybriden Ansatz belegt. Eine Vielfalt an originären
und weiterverbesserten Modellen, darunter klimatologische Modelle, rein dynamische
Modelle und rein statistische Modelle, bieten eine umfassende Auswahl an Benchmarks.
Neben dem Zweck, einen starken und somit fairen Wettbewerb während der Modellva-
lidierung zu ermöglichen, erlaubt dies auch die Bewertung der Vorhersageleistung einer
Hierarchie an Modellierungsansätzen.

Diese Vielfalt an Modellen wird systematisch für Vorhersagen in den Teilregionen
Golf von Mexiko bzw. zentrale MDR über den Zeitraum 1979–2018 kreuzvalidiert.
Die Verifikation der probabilistischen Vorhersagen kombiniert etablierte Methoden mit
neu entwickelten Techniken, um die Kalibrierung der Modelle und ihre potenzielle und
tatsächliche Vorhersagefähigkeit auszuwerten, sowie die langfristig zu erwartenden Kosten
für einen Nutzer abzuschätzen, der auf Grundlage des jeweiligen Modelles Maßnahmen
ergreifen würde. Es zeigt sich, dass die klimatologischen und NWP-basierten Modelle
beide Zielvariablen systematisch unterschätzen, was im letzteren Fall an Modelltyp durch
statistisches Postprocessing korrigiert werden kann. Im Gegensatz dazu liefern die rein
statistischen und die statistisch-dynamischen Modelle insgesamt gut kalibrierte Vorher-
sagen. Die NWP-Modelle schneiden in der ersten Woche am besten ab, verlieren aber
innerhalb der ersten zwei Wochen schnell ihre Vorhersagefähigkeit, da die chaotische
Natur der Atmosphäre die in den Anfangsbedingungen enthaltenen wertvollen Informa-
tionen unscharf werden lässt. Selbst im Falle einer Rekalibrierung werden die NWP-
Modelle von den klimatologischen Modellen für subsaisonale Vorlaufzeiten übertroffen.
Saisonale Schwankungen, die sich in einem klimatologischen Modell widerspiegeln, sind
besonders in der zentralen MDR nützlich, die einem ausgeprägteren saisonalen Zyk-
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lus unterliegt. Im Gegensatz dazu scheint sich eine Optimierung, wie viele Informa-
tionen von benachbarten Tagen im Jahr verwendet werden, um eine probabilistische
klimatologische Verteilung zu erstellen, im Golf von Mexiko am meisten auszuzahlen,
da mehr Instanzen erforderlich sind, um eine robuste Verteilung zu erhalten. Die rein
statistischen Modelle erhöhen die Vorhersagefähigkeit gegenüber den klimatologischen
Modellen nur geringfügig, was darauf hindeutet, dass Informationen aus der Vergangen-
heit nicht viel an nutzbarer Vorhersagefähigkeit enthalten. Der statistisch-dynamische
Ansatz erzielt erhebliche Verbesserungen bei der Vorhersage des Auftretens von TCs
bis zur Woche fünf für beide Teilregionen. Der überwiegende Teil der zusätzlichen
subsaisonalen Fähigkeit des Hybridmodells im Vergleich zum klimatologischen Mod-
ell kann den tropischen Bedingungen im Golf von Mexiko bzw. den ozeanischen Be-
dinungen in der zentralen MDR zugeschrieben werden. Die Vorhersageverbesserungen
für die Verteilung von ACE sind qualitativ ähnlich, verschwinden aber nach der drit-
ten Woche im Golf von Mexiko. Das Training des ACE-Modells unter Zurückhaltung
des klimatologischen Basisprädiktors zeigt, dass der Auftretensfaktor von wesentlich
größerer Bedeutung ist als der Intensitätsfaktor. Die Anwendung eines Kosten-Verlust-
Entscheidungsmodells auf die Vorhersagen des Auftretens von TCs deutet weitgehend
darauf hin, dass, zur Senkung der wirtschaftlichen Gesamtkosten, die wertvollsten Infor-
mationen das NWP-Modell für den mittelfristigen und das statistisch-dynamische Modell
für den subsaisonalen Bereich liefert.
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1. Introduction

Tropical cyclones (TCs) are among the most impressive weather phenomena on our
planet, as they are characterized by extreme deviations from the mean atmospheric state.
The characteristic deviations of this phenomenon manifest in various meteorological and
oceanic variables (e.g., in atmospheric pressure, wind speed, precipitation, or ocean wave
height), occasionally leading to new record values. In part, it is certainly due to this fas-
cinating extreme nature that TCs generally receive such great attention in the public and
the media. However, interest in TCs is many times greater in countries whose popula-
tions, economies and infrastructures are regularly affected by the associated hazards and
damage. In the US, for instance, TCs were accountable for most fatalities and economic
losses associated with billion-dollar catastrophic events between 1980 and 2022 among
all types of natural disasters (NOAA NCEI, 2022). The 6, 864 deaths and total costs of
$1, 194.4 billion (consumer price index adjusted) attributed to the impact of TCs during
this 43-years period give every reason to further invest in the development of early warn-
ing systems, to expand information campaigns for populations along affected coastlines,
and to continuously evaluate and improve evacuation concepts of decision-makers.

The main contribution of the meteorological discipline to mitigate TC-related impacts
concerns the early warning systems, with the aim of providing and updating forecasts, in-
cluding their uncertainty, as early as possible. All efforts undertaken can be broadly
divided into two fields of activity. On the one hand, research on TCs and the associated
limits of predictability is essential to gain a better understanding of this phenomenon as
well as to provide a sound knowledge base for the development and implementation of
forecast models. On the other hand, weather services operationally run, evaluate and
continuously improve their models, to eventually disseminate various forecast products
for a wide range of users in graphical and textual form. Forecasts for individual TCs are
typically issued for the next few days (e.g., up to five days ahead by the National Hurri-
cane Center) and heavily based on the output from numerical weather prediction (NWP;
alternatively referred to as dynamical) models. In contrast, seasonally integrated TC ac-
tivity is predicted by different institutional groups and mostly builds on statistical models
(Camargo et al., 2007). This coexistence of distinct lead times and model approaches is
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due to the subseasonal predictability gap (Vitart et al., 2012; Robertson et al., 2020), a
period of lead times – beyond 2 weeks but less than 3 months – at the lower end of the
transition between weather and climate time scales for which predictability is generally
reduced.

Because weather phenomena such as TCs stand out for their extreme deviations,
they are often associated with low predictability, so that their prediction on subseasonal
timescales poses an even greater challenge. Several studies have evaluated NWP models
in terms of their subseasonal predictive skill for various TC activity measures (e.g., Lee
et al., 2018, 2020; Gregory et al., 2019). Examining predictions for TC occurrence from
different operational forecast centers, Lee et al. (2018) conclude that dynamical models
generally have little to zero skill from week two on in all basins relative to climatological
forecasts. For the North Atlantic, they even state that actual and potential model skill is
very close, suggesting that hardly any improvement can be achieved with current NWP
models. However, the growing understanding of various modes of subseasonal and in-
terannual variability, such as the Madden-Julian Oscillation (MJO; Madden and Julian,
1971, 1972) and the El Niño Southern Oscillation (ENSO; Wang et al., 2017), and their
potential role as sources for subseasonal TC predictability has led to an increased research
focus (Camargo et al., 2019). With dynamical models nowadays often integrated to sub-
seasonal or seasonal forecast horizons, these atmospheric modes of variability have been
shown to influence subseasonal forecasts for TC activity in many oceans (e.g., Vitart,
2009; Belanger et al., 2010; Camp et al., 2018).

Even though partly living on shorter time scales, tropical wave modes and extratrop-
ical Rossby wave breaking carry longer-lived predictive signals that can be exploited as
additional sources of subseasonal predictability (Janiga et al., 2018; Frank and Roundy,
2006; Papin et al., 2020). All this suggests that NWP models, although lacking skill when
directly predicting subseasonal TC activity, may be able to predict the environmental con-
ditions favourable for TC genesis with sufficient skill, so that predictors can be generated
and fed into statistical models. The present study intends to assess the expected predictive
value of such a combined statistical-dynamical (or hybrid) forecasting approach for sub-
regional TC activity in the North Atlantic. For this purpose, a variety of climatological,
oceanic, tropical, and extratropical predictors is generated, which are known to precon-
dition and modulate environments to become favourable for TCs. Models are developed
for two target variables – one for TC occurrence and the second for an intensity-related
measure of TC activity. A well-founded assessment of the hybrid model performance
requires a validation in comparison to a number of distinct benchmark models, including
climatological, purely dynamical, and purely statistical approaches. Accordingly, this
dissertation focuses on the following three overarching research aims:
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• to identify and examine NWP-based predictors relevant for subseasonal TC
activity forecasting,

• to develop and validate a statistical-dynamical forecasting model,

• to systematically compare its predictive performance with a variety of dis-
tinct forecasting approaches.

In the beginning of this thesis, Chapter 2 provides the theoretical background on TCs,
on the subseasonal predictability gap, as well as on the basic concepts of dynamical, sta-
tistical, and statistical-dynamical modelling, along with current applications in TC fore-
casting. Based on the overarching research aims stated above, Chapter 3 then motivates
and formulates a set of concrete research questions that shall be answered. Following
this, Chapter 4 describes the data and methods used to develop and validate models,
before a pool of relevant predictors for the development of the statistical models is elabo-
rated on the basis of existing literature and physical considerations in Chapter 5. Chapter
6 provides a detailed description of generated benchmark models, and statistical models
developed for TC occurrence prediction, followed by a systematic validation. Chapter 7
follows the same structure for the model development and validation for forecasting the
intensity-related measure of TC activity. At the end of this thesis, the lessons learned and
potential for future work is discussed in the conclusions in Chapter 8 and in the outlook
in Chapter 9, respectively.
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2. Theoretical background

2.1 Tropical cyclones

2.1.1 Characteristics, impact, and variability

In the North Atlantic and East Pacific, TCs are also referred to as ’hurricanes’, while
other regional names are used in other oceans. TCs are axisymmetric low-pressure sys-
tems with exceptionally high radial gradients, reaching minimum central pressure values
up to less than 900 hPa. To a first approximation, their horizontal (or primary) circulation
results from gradient wind balance between pressure gradient force, horizontal centrifu-
gal force, and Coriolis force. Friction in the boundary layer reduces the latter two forces
and creates an inflow layer, in which air parcels spin up along cyclonic trajectories due
to conservation of absolute angular momentum. The resulting convergence leads to up-
drafts in the inner-core region, followed by anticyclonic outflow in the upper troposphere,
and weak compensating subsidence, completing the vertical (or secondary) circulation.
Because TCs occur over relatively warm oceans, the inflowing air parcels acquire high
entropy from surface heat and moisture fluxes before rising in deep cumulus convection
organized in an annular eyewall typically few decakilometers in diameter. While adia-
batically expanding in the updrafts, the air parcels release their latent heat, fostering the
development and intensification of an upper-level warm-core. This thermal characteris-
tic in combination with the non-frontal structure set TCs apart from their extratropical
and subtropical counterparts, which feature an upper-level cold-core and/or exhibit some
asymmetric frontal structure.

The heating of the core reduces the central pressure, which in turn increases the pres-
sure gradients, further driving the circulation. Therefore, the minimum central pressure
at sea-level usually serves as a good measure for TC intensity. Another commonly used
indicator is maximum sustained winds at 10-m height, which typically reaches peak val-
ues at the top of the atmospheric boundary layer within the eyewall. Unlike wind gust
variables, this measure does not express instantaneous values but is averaged over a cer-
tain time period. While the World Meteorological Organization (WMO) recommends to
use a 10-minute averaging period (Harper et al., 2010), it is common practice at the US
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National Weather Service to use a 1-minute period for the North Atlantic and Eastern
Pacific. Based on this deviating convention, a TC is called a ’tropical depression’ if its
intensity does not exceed 33 kt, whereas it is rated as a ’tropical storm’ for maximum
sustained winds between 34 kt and 63 kt. For higher intensities, the Saffir–Simpson hur-
ricane wind scale (SSHWS; Simpson, 1974) distinguishes 5 categories, beginning with
Category 1 at an exceedance of 64 kt, followed by Category 2, 3, 4, and 5 when 83, 96,
113, 137 kt are reached, respectively. A TC classified as Category 3 or higher is also
referred to as a ’major hurricane’.

When considering the overall potential impact of a TC, however, it is not only max-
imum wind speed that matters, but also the spatial extent of the wind field. Using an
empirical regression model for economic loss and keeping maximum winds constant,
Zhai and Jiang (2014) found that costs associated with the landfall of Hurricane Sandy
in 2012 would have been lower by a factor of 20 if the TC had been three times smaller
in radius, and thus of average extent. Moreover, a very intense TC with highly localized
extreme winds may cause less overall damage than a weaker TC with a broader wind
field. The radius of a TC can vary largely from case to case, as shown by the record
values for 34-kt winds, which range from about 20 km for Tropical Storm Marco in 2008
(Knapp et al., 2018) to over 1000 km for Typhoon Tip in 1979 (Dunnavan and Diercks,
1980). Therefore, various quantities, such as the radius of maximum winds, or quadrant-
specific values for the radial extent of certain wind speeds (e.g., 34, 50, or 64 kt) were
specified to address this problem. Beyond all considerations of the spatial extent of a TC,
a frequently raised criticism of the SSHWS definition is that it merely considers intensity
and completely disregards other relevant aspects of impact, such as heavy rainfall, storm
surge, and cyclone movement. For example, the landfall of Hurricane Harvey in 2017
led to enormous inland flooding in Baytown, Texas, as the stationary TC brought total
rainfall amounts of more than 1000 mm accumulated over 3 days (Van Oldenborgh et al.,
2017).

Even though all considerations about the intensity of TCs, their spatial extent, and the
relevance of different impact-related variables have their justification, they presuppose
the existence of a TC. On average, around 80 TCs occur per year in all global basins
combined. Over the past decades, numerous field campaigns and idealized simulations
have led to different theoretical concepts and a gernally growing understanding of TC
genesis (Tang et al., 2020), but a holistic theory that could explain this global frequency
of TC occurrence does not exist to date (Sobel et al., 2021). Because of the complexity of
their structure and circulation, and the interplay of the associated dynamic and thermody-
namic processes described above, TCs are not a mere result of environmental conditions.
In fact, there is a wide range of potential interactions with different types of atmospheric
and oceanic features during the various stages of a TC’s life cycle. If not isolated from the
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Figure 2.1: Frequency statistics of named TCs per year between 1968 and 2017, stratified
into season (blue) and off-season (orange). The inset in the top-right corner
presents the mean, the standard deviation, and the total number of all seasons
in this 50-year period.

ambient flow with a high degree of self-sustainment, a TC not just interacts with ocean
and land, but also with tropical waves (e.g., Frank and Roundy, 2006), other TCs (Fu-
jiwhara, 1923, 1931), the stratosphere (e.g., Gray, 1984), or the mid-latitude flow (e.g.,
Evans et al., 2017; Keller et al., 2019; Davis and Bosart, 2003, 2004). A more detailed lit-
erature review of environmental factors influencing TC occurrence is provided in Chapter
5.

In the North Atlantic, TCs are officially named by the US National Hurricane Center
(NHC) if they reach at least tropical storm strength (34 kt) during their lifetime. Since
these systems largely occur in this ocean in boreal summer and autumn, an official period
for the hurricane season was established in 1965, running from 1 June to 30 November.
11.64 named TCs occur during an average season, as shown by the frequency statistics
of named TCs for 1968 to 2017 in Figure 2.1, whereas there are only 0.40 in the off-
season (value not shown). The large standard deviation of 4.48 named TCs indicates
that North Atlantic TC occurrence is influenced by atmospheric modes of interannual
variability, such as ENSO. From the average number of named TCs, 6.28 and 2.50 TCs
reach hurricane and major hurricane stage, respectively (values not shown). With 81 % of
all named TCs occurring in the months August to October, and a peak in early Septem-
ber, the intraseasonal variability follows a marked seasonal cycle. This seasonal cycle
results from varying oceanic and atmospheric conditions in the so-called Main Develop-
ment Region (MDR), which spans from the Caribbean Sea to the eastern tropical Atlantic
(80°W–20°W and 10°N–20°N). As most North Atlantic TCs originate from initial west-
ward moving vortices, usually embedded in African Easterly Waves (AEWs), they enter
this region where – under favourable conditions – a supplying air-sea interaction devel-
ops, convection becomes organized, and hence intensity increases. Apart from this classi-
cal AEW-type of North Atlantic TC genesis, McTaggart-Cowan et al. (2008) identify five
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additional development pathways, based on two metrics assessing upper- and lower-level
baroclinicity in a climatological study. In the analysed 1948–2004 period, the low-level-
baroclinic (AEW-type) and non-baroclinic categories combine 53 % of all TCs, and are
characterised by a genesis location in the MDR. The remaining 47 % primarily develop
north of the MDR, and are typically influenced by strong quasigeostrophic forcing for
ascent in the upper-levels. This large fraction of baroclinic influences during TC genesis
leads to a prominent position of the North Atlantic compared to other basins (McTaggart-
Cowan et al., 2013), and thus certainly involves more influencing factors relevant to TC
forecasting.

2.1.2 Integrated tropical cyclone activity measures

Although steady progress has been made in the development of TC forecasting models
over the past decades, predictions of individual TCs remain challenging. Track errors in
offical NHC forecasts have decreased to such an extent that the question arose whether the
inherent limit of predictability has mostly been reached (Landsea and Cangialosi, 2018).
In contrast, because improvements in TC intensity forecasts are much more difficult to
achieve, the US National Oceanic and Atmospheric Administration (NOAA) hast estab-
lished long-term programs, such as the Hurricane Forecast Improvement Project (HFIP;
Gall et al., 2013) or the Hurricane Intensity Forecasting Experiment (IFEX; Rogers et al.,
2006, 2013), to unify resources and to tackle this challenge in a coordinated manner. De-
spite all efforts, predictive skill for individual TCs reaches its limits after a few days. To
overcome this limitation and to reach longer lead times, various integrated metrics for TC
activity have been developed by using integral approaches.

Gray et al. (1992) defined the Hurricane Destruction Potential (HDP) index, which
sums up six-hourly instances of maximum sustained 10-m wind speed squared during
the lifetime of a hurricane. By lowering the intensity threshold to tropical storm strength,
Bell et al. (2000) modified the HDP index to define the Accumulated Cyclone Energy
(ACE) index, given as

ACE = 10−4∑V 2
max, (2.1)

where Vmax is the maximum sustained 10-m wind speed. Due to the squaring of Vmax, the
calculated index is proportional to storm kinetic energy. By convention, the aggregated
sum is multiplied by 10−4 to obtain smaller values, and is usually presented without units
(in 104kt2). The ACE index can be calculated for a single storm but also for all storms
occurring in a given season and ocean basin. The seasonal integration of ACE yields a
measure that is predicted by several institutions for seasonal outlooks of TC activity, col-
lectively presented under https://seasonalhurricanepredictions.bsc.es. Using

https://seasonalhurricanepredictions.bsc.es
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seasonal integration, Drews (2007) decompose ACE into multiplicative factors for num-
ber of storms per season, seasonally averaged duration, and seasonally averaged intensity,
respectively. Applied to the North Atlantic 1851-2006 period, he finds that interannual
changes in TC activity are dominated by the change in number of storms, and not so
much by changes in the other two factors.

Replacing the exponent of Vmax in Eq. 2.1 by N yields a generalized formulation
that can be seen as a template for the definition of other integrated TC activity indices
in the literature. For N = 3, the obtained measure is referred to as Power Dissipation
Index (PDI; Emanuel, 2005). This formulation goes back to the approach of deriving TC
power dissipation by spatial integration over the dissipation rate (Emanuel, 1999), which
is proportional to V 3

max and mostly confined to the surface layer (Bister and Emanuel,
1998). As V 3

max is also approximately proportional to monetary loss (Emanuel, 2005), the
PDI is a measure particularly useful for the insurance sector. For N = 0, the generalized
version of Eq. 2.1 reduces to a plain summation of storm days, a measure for the duration
of TC activity.

2.2 Dynamical modelling

2.2.1 Basic concept

Dynamical models attempt to describe the time-dependent behaviour of a system trough
simplified representation. The underlying processes, generating observable variables,
are usually governed by differential equations. When modelling the atmosphere, the
following fundamental set of governing equations is borrowed from the field of fluid
dynamics (e.g., Doms and Baldauf, 2021). The first equation, referred to as Navier-
Stokes equation, is given by

ρ
d~v

dt
= −ρ~∇φG − ~∇p− ~∇ ·Ψ (2.2)

where ρ is the air density, ~v is the wind vector, t is time, φG is the gravitational potential,
p is the air pressure, and Ψ is the stress tensor due to viscosity. Equation 2.2 results from
Newton’s second and third axioms, namely that a force acting on a body can be written
as the time derivative of its momentum, which equals zero when summed over all forces,
thus expressing conservation of momentum. The forces considered in meteorological
models are due to gravity, pressure, and friction.

Another type of equation in this set is the so-called continuity equation. It generally
states that the change of an intensive (i.e., non-mass proportional) quantity a within a
given volume is determined by the flux of a (~Ia) through the volume’s surface and by the
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generation or loss of a (σa) in the interior.

ρ
da

dt
= −∇ · ~Ia + σa (2.3)

For a = 1, the second term on the right-hand side vanishes since mass is conserved, and
Eq. 2.3 can be written as

dρ

dt
= −ρ∇ · ~v. (2.4)

The atmosphere is as a multicomponent system, and usually modelled consisting of
dry air (d) and water in form of vapour (v), liquid (l), and ice (i). Each of these compo-
nents c = {d, v, l, i} can be expressed as a mass fraction xc = ρc/ρ, resulting in intensive
quantities, for which Eq. 2.3 yields four additional equations.

ρ
dxc
dt

= −∇ · ~Ixc + σxc (2.5)

According to the first law of thermodynamics, formulated for a closed, homogeneous
system, energy is conserved. This constitutes the foundation for the last prognostic differ-
ential equation used to model atmospheric flow. Using the formulation based on specific
enthalpy h, expanding the h = h(T, p, xc), where T is the air temperature, and finally
substituting dp/dt by the pressure tendency equation, one finally yields the following
heat equation

ρcv
dT

dt
= −p∇ · ~v +Qh +Qm, (2.6)

where cv is the specific heat at constant volume. Qh and Qm are production terms asso-
ciated with diabatic heating and moist processes, respectively, which consider influences
from heat and diffusion fluxes, phase transitions and radiation fluxes.

To close the set of equations for ~v, ρ, xv, xl, xi, T and, p, the equation of state is used
with the assumption that dry air and water vapour are ideal gases whereas liquid water
and ice are incompressible. This provides a diagnostic equation for p of the following
form

p = ρ (Rdxd +Rvxv)T, (2.7)

where Rd and Rv are the specific gas constants for dry air and water vapour, respectively.

As the earth rotates at an angular speed of 7.292× 10−5 rad/s, so does the atmo-
sphere. An earth-relative formulation of the equations of motion therefore necessitates
a transformation to a non-inertial, uniformly rotating frame of reference. As a conse-
quence, in addition to the term of earth-relative acceleration, two additional terms appear
in the momentum equation, the Coriolis force and the centrifugal force. These are fic-
titious forces, which only appear due to the chosen frame of reference, and thus do not
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have independent influence on a body of mass. As described in Section 2.1.1, these two
forces are part of the gradient wind balance that determines the primary circulation of
a TC. In other words, TCs would not occur on a non-rotating earth. In addition to the
earth-relative formulation, the set of equations is transformed to a spherical coordinate
system to allow for a more intuitive definition and convenient use of the model.

Because analytical solutions do not exist, numerical integration methods are required
to solve the set of equations. To achieve this, the original continuous formulation of the
partial differential equations needs an appropriate discretization in time and space, in a
way that solutions are stable. In the course of discretization, most NWP models introduce
a certain type of grid for the horizontal dimensions, and a terrain-following coordinate
in the vertical. Alternatively, some models solve the set of equations in spectral space.
Depending on the chosen grid spacing, physical processes that cannot be resolved must
be parameterized, so that the influence of those subgrid-scale processes can feed back
to the predicted variables at the defined grid points. Common parameterization schemes
exist for convection, radiation, clouds, precipitation, turbulence, surface layer, soil, sea-
ice, and others (e.g., Doms et al., 2021).

The model domain is bounded at the bottom by the land and sea surface, while a
maximum height is usually defined at the top. While limited area models rely on infor-
mation at the lateral boundaries, such a dependency does not exist for global models,
however, solutions must be periodically identical in a circumglobal sense (e.g., Schättler
and Blahak, 2021). The integration of the differential equations further necessitates initial
conditions for all variables at each model gridpoint. This part of the modelling process is
computationally very expensive, since observations are inhomogeneously spread in time
and space, and sometimes even do not measure the predicted variables directly. Data
assimilation techniques are therefore required to determine the atmospheric state at the
time of forecast initialization (e.g., Schraff and Hess, 2021). The underlying concep-
tual approach in these techniques is that the initial state of the atmosphere is estimated
through interpolation between the observations and a first guess of the model state, which
is usually obtained from previous forecasts.

Due to errors associated with observations, parameterization schemes for unresolved
processes, numerical methods, and other model-related sources, forecast errors typically
increase with lead time. Even in case of a perfect deterministic model and any small
errors in initial conditions, the chaotic nature of the atmosphere would inevitably lead
to forecast errors that limit predictability. Since the very beginning of the operational
use of NWP models, single deterministic forecasts were issued per initialization time,
before a new concept of forecast production began to prevail about three decades ago.
Nowadays, an ensemble of forecasts is usually computed, with each member starting
from slightly, but reasonably perturbed initial conditions (Leutbecher and Palmer, 2008).
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With the assumption that all members are statistically consistent, i.e. they behave like
independent random realisations of the variables to be predicted, the sample distribution
allows to infer statistical properties of the underlying predicted distribution. Based on
the dispersion of the ensemble forecast, usually measured be standard deviation, forecast
uncertainty can be quantified.

2.2.2 Tropical cyclone forecasting

Until recently, grid spacing in global NWP models was too coarse to resolve and re-
alistically predict TCs. Based on a sensitivity study, in which forecast experiments of
Hurricane Ivan (2004) were run for a range of grid spacing values (8 to 1 km), Gen-
try and Lackmann (2010) showed that distinct eyewall segments with localized updrafts
and more pronounced spiral bands were resolved beginning at about 4-km grid spacing.
When going to even smaller grid spacing, finer structures related to convective processes
in the eyewall were found to be better resolved, leading to their suggestion that a grid
spacing of 3 km or less is required for operational purposes of TC forecasting.

Since such high resolution forecasts are not produced operationally in global NWP
models to date, TC-following nests with grid spacing finer than for the outer domain
have been developed to allow for high resolution modelling in the TC environment. An
example for this approach, which became operational in 2007, is the Hurricane Weather
Research and Forecast (HWRF) model developed by the National Centers for Environ-
mental Prediction. A key advantage of this configuration is that airborne in-situ obser-
vations (e.g., dropsondes, flight-level measurements, tail-Doppler radar) from reconnais-
sance flights can be assimilated by means of tailored data assimilation techniques. This
allows to replace the vortex of the global model with a TC initialised with a more re-
alistic structure and intensity. Further improvements through such a nesting approach
can be achieved by ocean initialisation and coupling, and refinement of parameterization
schemes (e.g., Doyle et al., 2014).

Due to steady improvements in model development and recent advances in comput-
ing, the current generation of global models is able to treat convection explicitly (i.e., grid
spacing is about 5 km or less), and hence to resolve TCs (Judt et al., 2021). This ability
raises the prospect of a new stage in short- to medium-range TC modelling, particularly
with respect to intensity prediction, although the long-standing problem of rapid intensi-
fication may in some cases require exceeding the 1-km mark for grid spacing (Fox and
Judt, 2018).
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2.3 Statistical modelling

2.3.1 Basic concept, terminology, and assumptions

As an alternative to dynamical models run in ensemble mode for an assessment of fore-
cast uncertainty, statistical (or stochastic) models can be used to predict the outcome of
random variables in the form of probability distributions. The modelling of the data-
generation process is based on link functions that mathematically describe the relation-
ship between the random variable(s) to be predicted and some non-random variables.
This way, statistical models can be developed even if knowledge about the underlying
physical processes is lacking or too limited. In case of quantitative variables, the vari-
able type can be either discrete or continuous. Depending on the field of application,
independent variables are also referred to as predictors, features, explanatory variables,
or covariates, whereas dependent variables are also called predictands, target variables,
or explained variables. In the context of forecasting, we hereafter mainly use ’predictors’
and ’target variable’, while instances of the latter are also referred to as ’observations’.

The formulation of the link function requires choices and assumptions to be made
to model the relationship between predictor and target variables. A model is referred to
as ’univariate’ if only one predictor is used, whereas a ’mulitvariate’ model depends on
more than one predictor. An assumption often made, but not always justified, is that the
variance of the target variable is independent of the value of one or more predictors. In
this case the model is called ’homoscedastic’, and ’heteroscedastic’ otherwise. Another
important choice is whether a parametric or nonparametric model should be used. Con-
trary to what the name suggests, nonparametric models also have parameters, but these
are determined implicitly from data and are not fixed a priori. By contrast, a paramet-
ric model prescribes a finite number of parameters that shapes a theoretical distribution
to best fit the distribution of the target variable. However, in case the underlying data-
generating process is not really understood, there is no way to readily determine which
theoretical distribution is most appropriate. Although a number of candidate distribu-
tions can often be narrowed down from the wide range of theoretical distributions that
exists in the literature (Krishnamoorthy, 2006) through preliminary considerations, the
choice remains subjective and can only be conclusively evaluated through validation of
the model’s predictive performance. A good and commonly practiced strategy for se-
lection is to test heuristic approaches and keep the model as simple as possible, i.e., to
minimize the number of model parameters.

Once choices and assumptions are made, model parameters need to be determined by
fitting the link function to a dataset, which consists of a finite number of instances for
the predictor and target variables. Because the statistical population of any atmospheric
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variable is generally unknown, samples are drawn to represent the underlying population
in statistical analysis and modelling. Technically, these sample datasets are constructed
from observations, i.e., from past realisations of the variables. Using these data, the set
of model parameters can then be estimated by a solver through minimization of a loss
function. From that point on, the model is determined and it can be used to predict the
target variable based on values provided for the predictors.

Apart from being deployed as stand-alone forecast models, statistical models are also
used to correct for systematic errors in predictions of dynamical models, which is re-
ferred to as ’statistical post-processing’. Nowadays, there is a wide range of techniques
for this purpose that continues to grow due to new areas of research and the big data-
driven demand of many applications (e.g., Vannitsem et al., 2021). Due to the diversity
of target variables and the form in which they are provided (i.e., point forecasts, predictive
distribution, etc.), the field of meteorological forecasting contributes significantly to the
improvement of existing and the development of new statistical post-processing methods.

2.3.2 Tropical cyclone forecasting

As discussed in 2.1.2 and 2.3.1, predictions for TCs are challenging in general, but es-
pecially with regard to their intensity. Therefore, statistical models have been developed
over the past decades to compensate for the deficiencies of dynamical models in TC in-
tensity forecasting. An example that was made operational in 1990 is the Statistical Hur-
ricane Intensity Prediction Scheme (SHIPS; DeMaria and Kaplan, 1994; DeMaria et al.,
2005) model, which predicts maximum sustained winds, at that time, using climatologi-
cal, atmospheric, and oceanic information along with persistence to generate predictors.
Other applications for individual TCs that use statistical models have been developed,
e.g., for predicting the probability of rapid intensification (Kaplan et al., 2010), for TC
tracks (e.g., Hall and Jewson, 2007), and changes in TC structure, as well as for the
eyewall replacement cycle (Kossin and Sitkowski, 2012).

Shifting the perspective from individual TCs to integrated TC activity of entire sea-
sons, statistical models have long been the only means for producing seasonal outlooks
(Klotzbach et al., 2017). The basis of their development is the identification of statis-
tical correlations between TC activity and different modes of atmospheric and oceanic
variability. Once significant correlations are found, predictors can be created to forecast
various measures of TC activity, with predictions often categorized into above-normal,
normal, or below-normal.

For subseasonal leadtimes, inspired by the example of numerous seasonal models,
Leroy and Wheeler (2008) developed a logistic regression model based on past data to
produce probabilistic forecasts of weekly TC genesis and occurrence in four zones of
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the Southern Hemisphere up to seven weeks in advance. Comparing against forecasts
from the European Centre for Medium-Range Weather Forecasts (ECMWF) model, Vi-
tart et al. (2010) identified the statistical approach from Leroy and Wheeler (2008) to
perform better from week two on. They also compared against a simple bias-corrected
version of the ECMWF forecasts, as well as against the average of predictions from the
statistical and the bias-corrected ECMWF models, which further improved skill. For the
North Atlantic, Henderson and Maloney (2013) used the successful approach from Leroy
and Wheeler (2008) as a blueprint and generated basin-wide forecasts on the basis of a
predictor set adopted to that ocean basin. Although using the same statistical approach,
the predictor sets used in Leroy and Wheeler (2008), Vitart et al. (2010), and Henderson
and Maloney (2013) slightly differ. While all have in common that they provide a clima-
tological seasonal cycle, and the two Real-time Multivariate MJO (RMM; Wheeler and
Hendon, 2004) indices for model training, they vary in which and how the oceanic modes
of variability are represented.

2.4 The subseasonal predictability gap

As forecast skill of dynamical models is limited to a couple of days, and statistical mod-
els have demonstrated value especially for seasonal predictions, the development of these
two distinct approaches proceeded in parallel for decades. This coexistence is due to the
subseasonal predictability gap (Vitart et al., 2012; Robertson et al., 2020), which has
raised broad attention and efforts to bridge only in recent years. While dynamical mod-
els obtain their predictive power from the initial conditions of the atmosphere, seasonal
outlooks exploit information from boundary conditions, primarily from sea surface tem-
peratures (SSTs). The gap in predictability between the medium-range and the seasonal
regimes is a long-standing problem in weather forecasting and also affects TC predic-
tions.

The recent progress in high-performance computing not only enables to run forecasts
at high resolution, but also to extend the forecast range to several months. To provide a
common database of such extended NWP forecasts that are produced by different opera-
tional centers, and to create a platform that facilitates the coordination of research efforts
for this time horizon, the Subseasonal-to-Seasonal (S2S; Vitart et al., 2017) project was
initiated. The S2S database consists of extended forecasts from 11 forecast centers with
lead times up to 62 days. The models differ in their configuration, e.g. resolution (about
0.25°–2°), ensemble size (4 to 51 members), initialisation frequency (daily to weekly),
and whether they are coupled to an ocean and/or sea-ice model. In addition to opera-
tional forecasts, smaller ensembles of reforecasts for up to 32 years are also provided,
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allowing for forecast evaluation over longer time periods. Although the S2S project is
motivated by a range of scientific questions, two key goals are to evaluate forecast skill
and to identify potential sources of predictability for the subseasonal timescale.

An overview of potential sources of subseasonal predictability is given by Vitart et al.
(2012), who list the MJO, soil moisture, snow cover, stratosphere-troposphere interaction,
and ocean conditions. For the latter source, influence can either be local or remote via
atmospheric teleconnections, as is the case for the prominent example of ENSO. With the
growing understanding of intraseasonal to interannual atmospheric and oceanic modes of
variability, the MJO and ENSO were found to have modulating influence on subseasonal
TC activity (Camargo et al., 2019). The MJO and ENSO and their impact on TC activity
is discussed in more detail in Chapter 5. The influence of the MJO has not only been
identified in observational data but also shown in subseasonal NWP forecasts for TC
activity in many oceans (e.g., Vitart, 2009; Belanger et al., 2010; Camp et al., 2018).
Since the MJO can be predicted up to 5 weeks in advance (Kim et al., 2018), expectations
are high that subseasonal TC predictions benefit from this skill.

In rare cases, forecasts for genesis and intensity of individual TCs proved to be cor-
rect up to about one week ahead. For the Severe Cyclone Nargis in the North Indian
Ocean in 2008, for example, it was possible to predict its formation 8 days and its hurri-
cane intensity 6 days in advance (Belanger et al., 2012). However, despite the ability of
dynamical models to skillfully forecast the MJO up to subseasonal leadtimes, predictive
skill of the occurrence of individual TCs largely vanishes after forecast week 1 compared
to climatological predictions (Lee et al., 2018). Evaluating subseasonal reforecasts from
six of the eleven S2S models in terms of weekly TC occurrence, Lee et al. (2018) find
that the ECMWF model performs best overall. In the North Atlantic, basin-wide proba-
bilistic forecasts from this model slightly exceed predictions based on a monthly varying
climatology up to week five. By using each reforecast ensemble member once as an
observation for verification of the remaining ensemble, and then averaging results, Lee
et al. (2018) aim to assess potential predictability (Buizza, 1997), a measure that gives an
indication of room for improvement in dynamical modelling. Based on this method, the
actual predictive skill of the ECMWF model for North Atlantic weekly TC occurrence
has almost reached its limits. This suggests that no major improvements can be expected
for subseasonal TC occurrence prediction with the current generation of NWP models.
In a follow-up study, Lee et al. (2020) evaluate TC occurrence within gridded 20°×15°
regional boxes instead of the previous basin-wide approach. Due to these spatially more
confined evaluation regions, the ECMWF predictive skill already drops below the per-
formance of climatological predictions after week one, which confirms the challenge to
predict TCs at subseasonal leadtimes.



2.5. Statistical-dynamical modelling 17

2.5 Statistical-dynamical modelling

The information contained in the initial conditions, which is the fundamental source of
predictability in dynamical modelling, becomes blurred as lead time increases. An ap-
proach that is considered promising for extending predictive skill beyond the limits of
dynamical modelling is statistical-dynamical (or hybrid) modelling. The conceptual idea
behind this is to use the predictive skill contained in dynamical forecasts to generate pre-
dictors that are then used in a statistical model. The way of how this is technically realised
differs strongly on the application, and ranges from man-made specifically developed pre-
dictors to machine-learned hidden representations of the underlying data. Although the
hybrid approach has been used for TC forecasting in several applications, the vast ma-
jority of models target either medium-range or seasonal lead times, so that the potential
value of this approach for subseasonal TC predictions has remained virtually unexplored.

An example of hybrid forecasting on the medium-range is given by the SHIPS model
(see Section 2.3.2), which predicts TC intensity up to 5 days ahead. Originally devel-
oped as a purely statistical model, additional NWP-based predictors were incorporated
as of 1997 (CIRA RAMMB, 2022), changing it from a purely statistical to a statistical-
dynamical model. On the seasonal range, statistical-dynamical models can nowadays
also be developed for outlooks of TC activity due to the availability of NWP forecasts
integrated up to several months, thus offering an alternative approach to the purely statis-
tical models so far. While the seasonal hybrid models differ in the dynamical predictors
used and how the statistical model is defined, most of them have in common that predic-
tions are basin-wide and seasonally integrated, e.g. for TC frequency and landfall (Mu-
rakami et al., 2016; Zhang et al., 2017b), or ACE (Villarini et al., 2019; Klotzbach et al.,
2020). The ability of the hybrid approach to improve seasonal forecasts of TC counts
for lead times up to 7 months has been demonstrated by comparison to direct predictions
from the underlying dynamical model (Murakami et al., 2016; Zhang et al., 2017b). For
seasonal North Atlantic ACE, the statistical-dynamical model developed by Klotzbach
et al. (2020) showed skill when combined with predictions from their pre-existing statis-
tical model. A detailed overview of the various seasonal forecast models and differences
in their approaches, target variables, and ocean basins is presented in Klotzbach et al.
(2019). Finally, it is worth to note that hybrid modelling has also been successfully ap-
plied in the context of multi-annual predictions of ACE (Caron et al., 2015).
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3. Research questions

The previous chapter provided an overview of different types of modelling approaches
and reviewed how they are used in several applications for TC forecasting. Since with
the current generation of NWP models only minor improvements are expected for sub-
seasonal TC activity forecasts in the North Atlantic (Lee et al., 2018), any improvements
in predictive performance through a statistical-dynamical approach can be more clearly
attributed to the value of adding a statistical component. Therefore, the development of
a hybrid model and its systematic comparison against other approaches will be confined
to selected subregions of the North Atlantic basin. While different measures are defined
and used in the literature to describe TC activity, the focus in this thesis is on two widely
considered target variables that cover key forecasting aspects. The first target variable is
concerned with the occurrence of TCs. Building on this foundation, the integrated mea-
sure of TC activity, ACE, is addressed as the second target variable, which incorporates
the additional aspect of TC intensity. The overarching research aims outlined in Chapter
1 guide the design of this study and the formulation of specific research questions mo-
tivated in the remainder of this chapter. The first part is dedicated to the identification
of subseasonally relevant predictors to be generated from NWP forecasts, according to
the hybrid approach. Using these predictors, models for TC occurrence and ACE are
developed and validated in the second and third part of this study, respectively.

The introduction section of scientific articles addressing TC formation often begins
with a reference to some early studies that set out to deduce necessary environmental
conditions (e.g., Palmen, 1948; Gray, 1968). Although there is a certain consensus in the
TC research community regarding the list of such conditions, the necessity of some of
these conditions is still under debate and alternative factors are occasionally proposed.
To date, such studies are mostly based on observational or (re)analysis data, which is
why these genesis factors represent a direct physical influence, both temporally and spa-
tially. With the aim of predicting at subseasonal leadtimes, the question arises whether
(all) these commonly accepted environmental factors can be practically used as predic-
tors when generating from dynamical forecasts of the underlying variables. For remote
influences, such as from ENSO, it is also unclear which forecast time of the dynamical
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component is best to choose for predictor generation. Because the hybrid approach is
fundamentally based on the assumption that these influencing factors are predicted suf-
ficiently well, this needs to be verified first. Although some studies suggest that subsea-
sonal TC forecasts would benefit from predictions of atmospheric modes of variability,
e.g. from tropical waves or the MJO (Janiga et al., 2018; Frank and Roundy, 2006), no
analysis has yet provided an overview of the subseasonal relevance of a wide range of
factors to TC prediction. Chapter 5 therefore conducts such a comparison study to verify
the above assumption. This part of the study will present a literature review and physi-
cal motivation of relevant predictors to provide an extensive predictor pool from which
the statistical model component can then select an optimal subset in Chapters 6 and 7.
In addition to the predictors used in previous studies (Leroy and Wheeler, 2008; Vitart
et al., 2010; Henderson and Maloney, 2013), further potentially relevant predictors, re-
lated to the genesis potential index (GPI), tropical waves, and extratropical dynamics,
will be included. Using a subseasonal lead time, Chapter 5 finally analyzes patterns of
correlation with TC occurrence to discuss in which subregions predictors are most useful.
The subseasonal relevance of predictors is therefore addressed by the following research
questions:

RQ 1a What factors influencing TC occurrence are known in the literature, and are
they likewise relevant when corresponding predictors are generated from
subseasonal NWP forecasts? (Chapter 5)

RQ 1b What are the key predictors selected by the hybrid model at each forecast
week when predicting TC occurrence and ACE, respectively? (Chapters
6+7)

RQ 1c How much does each predictor group contribute to the predictive skill of the
hybrid model? (Chapter 6)

To convey information on forecast uncertainty, all models used in this thesis produce
probabilistic forecasts. While a single probability is output for TC occurrence, the full
predictive distribution is modelled for ACE. For both target variables, weekly forecasts
are issued for the first five consecutive weeks. Instead of basin-wide predictions, as is
usually done in seasonal forecasts, a gridded framework is deployed to gain insight into
subregional differences. Beyond the development of the hybrid approach, an important
contribution of this dissertation is to compare a variety of different model types in terms
of predictive skill in a systematic way. For TC occurrence models (Fig. 3.1), the climato-
logical seasonal cycle of TC occurrence probability (gray) constitutes the first benchmark,
which is further optimized by a suitable smoothing method, resulting in a second bench-
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Figure 3.1: Schematic overview of probabilistic models forecasting TC occurrence. Bench-
mark models are enclosed by the gray dashed contour.

mark (black). A fundamentally different approach is taken by deriving TC occurrence
from S2S ensemble forecasts (light blue). As NWP predictions can suffer from biases,
statistical post-processing is used to create a calibrated model version of it (dark blue).
Following the idea of Leroy and Wheeler (2008), namely to generate relevant predictors
from past data, the performance of this purely statistical approach (yellow) is compared
to the other benchmark models first. Using the same predictor types but generated from
NWP predictions, the utility of a statistical-dynamical approach (red) is examined in a fi-
nal step. Models developed and compared for ACE are analogous to their TC occurrence
counterparts in the underlying approach (Fig. 3.2), but they differ in that the predic-
tive distribution modelled requires an adapted formulation. In addition, a trivial model
predicting TC non-occurrence with certainty is included as another benchmark (green).
Detailed descriptions of how each individual model is set up are presented in Chapters 6
and 7, respectively.

As reviewed in the Chapter 2, previous studies have typically developed and validated
individual of these distinct modeling approaches for subseasonal forecasting. But only
rarely have they been directly compared with each other. A major problem is that uniform
standards regarding formulation of target variables, lead times, and verification metrics do
not exist, making it virtually impossible to compare models from different studies and in-
stitutional groups (Camargo et al., 2019). Vitart et al. (2010) evaluate forecasts of a clima-
tological and a dynamical model with the purely statistical model of Leroy and Wheeler
(2008) for the Southern Hemisphere, but they neither optimize the climatology used as
the basis for the statistical model nor consider a hybrid approach. The present study is the
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Figure 3.2: Same as Fig. 3.1, but for probabilistic models forecasting the predictive distribu-
tion of ACE.

first to develop and systematically validate subregional forecasts for North Atlantic TC
activity out to week five of i) a statistical–dynamical approach, ii) a purely statistical ap-
proach (as in Henderson and Maloney, 2013), iii) different climatological models, as well
as iv) (un)calibrated dynamical models at once. The probabilistic forecasts for the two
target variables require different verification approaches, which are described in detail in
Section 4.4. The single probability forecasted for TC occurrence poses a binary problem
in terms of forecast evaluation, whereas the predictive distribution of ACE requires more
complex approaches. Model validation in this study is conducted in two subregions of
the North Atlantic: the Gulf of Mexico (represented by 20°N–30°N, 100°W–80°W), and
the central MDR (represented by 10°N–20°N, 60°W–40°W). The two subregions differ
especially in that TC activity in the central MDR is subject to a stronger seasonal cycle.
While TCs in the Gulf of Mexico are frequently exposed to strong upper-tropospheric
baroclinicity associated with the mid-latitude flow, TCs occurring in the central MDR of-
ten interact with AEWs, thereby experiencing low-level baroclinicity (McTaggart-Cowan
et al., 2008, see their Fig. 12). The validation performed evaluates various forecasting
aspects to gain a comprehensive assessment. Forecast models are examined in terms of
reliability as well as of potential and actual predictive skill. Furthermore, decomposition
of evaluation scores and analysis of model’s economic value provide deeper insight into
forecast quality and allow to identify model weaknesses and limitations. For the two
target variables and two subregions, the following research questions addressed are:
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RQ 2a How well can each model discriminate between TC occurrence and non-
occurrence1, and are their forecasts calibrated?

RQ 2b How does the dynamical model perform over the five forecast weeks consid-
ered, and can statistical post-processing help improve the predictive perfor-
mance?

RQ 2c In comparison, at which forecast week does the climatological model be-
come more skillful, and is it worth optimizing its representation?

RQ 2d Can the purely statistical modelling approach, using past data to generate
predictors, exceed the skill of the climatological model at subseasonal lead
times?

RQ 2e Does the statistical-dynamical approach, i.e. generating the same predictors
from NWP forecasts, actually yield the putative subseasonal improvements?

RQ 2f Which model provides the highest value for economic decision making at
each forecast week?1

1Note that this question is only addressed in the context of TC occurrence modeling (Chapter 6), as the
underlying validation concepts are not applicable to non-binary target variables.
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4. Data and methods

4.1 Data and derived products

4.1.1 Target variables

All models developed and evaluated in this thesis forecast one of two variables considered
(hereafter referred to as target variables), namely either TC occurrence or ACE. Both
variables are derived from the International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp et al., 2010, 2018) dataset version 4. Since the IBTrACS dataset is
compiled from many sources, tracks may vary between agencies and TC positions are
therefore labelled as either ’main’ or ’spurs’. The latter are omitted to avoid biases caused
by multiple representations of TC tracks. A track in this dataset can cover a range of
phases during a cyclone’s lifetime, and because this study focuses on tropical cyclones,
only track portions are used to generate the target variables, for which the cyclone fulfills
two requirements. Firstly, the cyclone is required to be tropical in nature, and secondly,
it’s intensity has to reach at least tropical storm strength (≥ 34 kt). Although the IBTrACS
dataset comes with a 3-hourly temporal resolution, only 0000 UTC instances of cyclone
track positions are taken into account to allow for a systematic comparison with the lowest
temporally resolved dataset, the TC tracks in the S2S model (cf. Section 4.1.3). Figure
4.1a shows the North Atlantic cyclone positions, that fulfill the stated criteria, for the
periods used for model validation, training of the statistical models, and for generating
the climatological models, respectively. The majority of TC positions is found over the
oceanic regions between 10°N–50°N, and 100°W–20°W, with highest densities occurring
in the western part of the North Atlantic.

An evaluation area of some size is needed to create a regularly gridded dataset for each
target variable from the set of irregularly distributed TC positions. The choice of a coarser
spatio-temporal evaluation is further reasonable to account for the lower predictability on
subseasonal timescales. The target variables at a given gridpoint are therefore defined by
evaluating the TC positions in a circular area of radius 7.5° centered on the that gridpoint
(Fig. 4.1b), and within each forecast week. Different radii of the evaluation circle were
tested, but 7.5° was chosen as a good compromise between including more TC positions
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Figure 4.1: (a) 1968-1997 (orange dots) and 1998-2017 (blue dots) IBTrACS TC positions
at 0000 UTC during the North Atlantic hurricane season (June-November) for
intensities of at least tropical storm strength. Reprinted from Maier-Gerber et al.
(2021). © 2021, American Meteorological Society. Used with permission. (b)
Illustration of the 7.5°-radial TC evaluation, used to generate the target variables,
at an example grid point in the Gulf of Mexico. This technique is applied at every
grid point of the 1.5° × 1.5° regular grid (gray dots).

(i.e., using a larger radius) to obtain less extreme target variables, and minimizing spatial
uncertainty about the exact TC position (i.e., using a smaller radius). This evaluation
is done at every gridpoint of a 1.5° × 1.5° regular grid, which is used to compare with
forecasts from the coarsest spatially resolved dataset, the TC tracks in the S2S model
(cf. Section 4.1.3). Hence, each evaluation circle overlaps with the nearest gridpoints
by about 87% of its area, resulting in a high local consistency for the target variables
between neighbouring gridpoints.

The first target variable, TC occurrence, applies this evaluation strategy and assigns
a 1 (i.e., TC occurrence) to a particular gridpoint, if at least one TC occurs within the
corresponding circular area over the forecast week considered. Otherwise, the gridpoint
is assigned a 0 (i.e., TC non-occurrence). Based on this binary target variable, Figure
4.2a presents a map of relative frequencies of TC occurrence. The overall pattern natu-
rally resembles the density of TC positions that can be visually assessed in Fig. 4.1a. A
pronounced maximum of high relative frequencies above 15% occurs in the Gulf of Mex-
ico, with values slowly decreasing in two bands towards Europe and southwest Africa,
respectively. Given the extreme nature of TCs, the ratio of TC occurrence and TC non-
occurrence instances should not be too imbalanced for statistical models to be properly
trained. Except for northeastern part, North Atlantic TC occurrence appears with a frac-
tion of more than 1% during the hurricane season, as indicated by the red contour in Fig.
4.1a. For the Gulf of Mexico and central MDR subregions, which are defined for model
validation (cf. Section 4.3), the gridpoint-averaged relative frequency of TC occurrence
is even 13.3% and 11.8%, respectively. Thus, this target variable is not so imbalanced
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Figure 4.2: (a) Relative frequency of TC occurrence (%) calculated for the 1998-2017 hur-
ricane seasons (see text for details on how TC occurrence is defined). Note that
interval boundaries are not equidistant. The red contour encloses the area where
TCs occur at a rate of more than 1%. Orange boxes enclose the subregions used
for model validation. Reprinted from Maier-Gerber et al. (2021). © 2021, Amer-
ican Meteorological Society. Used with permission. (b) Histogram of ACE > 0
(in 104kt2) for the 1998-2017 hurricane seasons and gridpoints pooled within the
central Main Development Region subregion.

that statistical models would have too few instances of TC occurrence to learn from.

The second target variable generated, ACE, differs from its original definition in three
ways (cf. 2.1.2). The first deviation is that instead of the usual basin-wide aggregation,
the above described gridded framework for TC evaluation is applied to allow for model
development, validation and comparison in different North Atlantic subregions. Unlike
the binary evaluation perspective of TC occurrence, ACE sums the maximum wind speed
squared at all TC positions of all TCs occurring within the spatio-temporal evaluation
domain, divided by the conventional factor of 104. The application of the gridded frame-
work is further corroborated by the fact that days with two or more TCs in the North
Atlantic basin only occurred on 4 % of all days during the 1968-2017 hurricane seasons.
A basin-wide evaluation is thus too coarse on most days anyway. A second deviation
from the original approach of calculating ACE is that only daily (0000 UTC) values
are aggregated, instead of the conventional six-hourly values. This is necessary to con-
sistently compare with ACE calculated from TC tracks in the S2S model. To correct
for the larger aggregation interval and to approximate typical values, the daily aggre-
gated ACE is multiplied by a factor of 4. While the annual mean (standard deviation) of
the 1968–2017 North Atlantic 6-hourly aggregated basin-wide ACE is 99.42× 104 kt2

(59.93× 104 kt2), it is 99.26× 104 kt2 (59.97× 104 kt2) using the calculation approach
applied here. The high agreement between the numbers indicates that the conventional
ACE can be well approximated by the 0000 UTC instances. The third deviation from
the original approach is that subtropical phases are not considered for the aggregation, to
allow for a consistent calculation of ACE among all models in this thesis. Using the de-
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scribed approximation for ACE, the annual mean (standard deviation) of the 1968–2017
aggregated basin-wide ACE for tropical stages only is 96.76× 104 kt2 (60.50× 104 kt2).
The marginal deviations from the values above suggest that the main statistical properties
of the approximated ACE are very close to the original ones, so that aggregating tropical
phases only is well justified.

As mentioned earlier, the central MDR gridpoints exhibit an averaged relative fre-
quency of TC occurrence of 11.8%. For this fraction of cases, Figure 4.2b shows the
distribution of ACE, with high probability densities for very low ACE values and a pro-
nounced decline with increasing ACE. A key challenge for models in predicting this
target variable hence is to forecast distributions, which strongly resemble the described
shape on average. Due to the required tropical storm strength, ACE takes on 0 or val-
ues ≥ 4 × 10−4 × (34 kt)2 = 0.4624× 104 kt2, resulting in a small gap that must be
considered when developing statistical models.

4.1.2 Predictor variables for the statistical models

The difference between the statistical-dynamical approach and the purely statistical ap-
proach lies in the underlying data, from which predictors are generated. The purely
statistical model is trained on ERA5 reanalysis data (Hersbach et al., 2020), whereas pre-
dictors for the statistical-dynamical model are generated from S2S ECMWF ensemble
reforecasts. For the latter, we use model version dates from the 2018 North Atlantic hur-
ricane season, which means that the corresponding reforecasts belong to the 1998–2017
seasons. While the ERA5 dataset was produced using model version Cy41r2 of the Inte-
grated Forecasting System (IFS) – ECMWF’s atmospheric model and data assimilation
system – the S2S reforecasts were based on Cy45r1. Despite some changes (e.g., in data
assimilation, atmosphere–ocean coupling, and parametrization schemes), the horizontal
and vertical resolution of the IFS model remained unchanged between the two cycles, and
the fact, that both datasets are based on the IFS model, allows to more clearly attribute
differences in skill to differences in model approaches.

The S2S reforecasts are produced twice per week (Mondays and Thursdays) with one
control plus 10 perturbed forecasts, running to 46 days ahead. Originally calculated with
a horizontal grid spacing of 16 km for the first 15 days and 31 km afterwards, S2S model
output is archived with daily values at 0000 UTC on a regular 1.5° × 1.5° grid, which is
considerably coarser compared to ERA5. For the sake of consistency, both datasets are
therefore used with this coarser grid spacing and temporal resolution. Since only basic
fields are available from the S2S dataset, potential vorticity (PV) was calculated from the
available pressure levels 50, 100, 200, 300, 500, 700, 850, 925, and 1000 hPa, using the
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approximation from Bluestein (1993).

PV = −g
(
∂u

∂p

∂θ

∂y
− ∂v

∂p

∂θ

∂x
+ ∂θ

∂p
(ζ + f)

)
(4.1)

where g is the gravitational acceleration, u and v the horizontal wind components, p the
pressure, θ the potential temperature, ζ the relative vorticity, and f the Coriolis parameter.
Even though intervals between pressure levels are rather large in the S2S dataset, affecting
the calculation of vertical derivatives and thus PV, they are yet thought to be sufficient for
generating predictors, as this work primarily seeks to represent the integral effect of PV
rather than finding an optimal representation of PV objects.

To ensure that the S2S-based predictors are not subject to biases, a mean bias cor-
rection is applied to all variables, from which predictors are directly generated. Using
the S2S reforecasts of the 1998-2017 seasons, mean biases are calculated with respect
to the temporally corresponding ERA5 data, as a function of day of year, forecast time,
and location. Since the basic assumption for a forecast ensemble is the independence and
interchangeability of the individual members, biases are not regarded to be a function of
the ensemble member. Undesirable fluctuations in the seasonal cycle of the biases are
smoothed out by applying a 31-day moving average.

4.1.3 Tropical cyclones in S2S data

Tropical cyclone tracks and intensities identified in the S2S data are publicly available
for download under ftp://s2sidx:s2sidx@acquisition.ecmwf.int/TCYC and are
based on the TC detection algorithm described in Vitart and Stockdale (2001). Accord-
ingly, a candidate cyclone position is defined by the location of the closest local minimum
in mean sea-level pressure surrounding a local maximum (> 0.35 s−1) in 850-hPa relative
vorticity. This position is considered to represent a TC, if local maxima in 200–500-hPa
layer-averaged temperature and in 200–1000-hPa thickness occur within a radial distance
of 2°. From these maxima, temperature and thickness are further required to decline to
all sides by at least 0.5 K and 50 m over 8°, respectively. Vitart and Stockdale (2001) also
present details on how precision of TC locations, identified in the relatively coarse S2S
model output, is further increased. The 0000 UTC TC locations are finally composed to
tracks by applying ECMWF’s tracking technique presented in Van der Grijn et al. (2005).
Since TCs are analyzed in the S2S reforecasts, temporal resolution, number of ensemble
members, and forecast range are consistent with the original model output (see Section
4.1.2).

ftp://s2sidx:s2sidx@acquisition.ecmwf.int/TCYC
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4.1.4 Tropical wave filtering
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Figure 4.3: Illustration of how time series, filtered for tropical waves in real-time mode, are
composed by different datasets, and how those are weighted over time in (a)
the statistical-dynamical, and (b) the purely statistical approach, respectively.
Reprinted from Maier-Gerber et al. (2021). © 2021, American Meteorological
Society. Used with permission.

Since tropical waves are characterized by their propagating nature in space and time,
there is no unique approach to identify and analyze those in a given dataset, although
plenty methods have been proposed, each having its pros and cons. Wheeler and Kiladis
(1999) suggest a filtering method, which applies a two-dimensional fast Fourier transform
(FFT) along time and longitude. Comparing filtered observational data with theoretical
solutions of the shallow water equations, Wheeler and Kiladis (1999) elaborate a set of
filter windows in wavenumber–frequency domain, one window for each wave type. By
setting to zero all signals outside of a certain window, and then passing it through an
inverse FFT, the method yields the original variable filtered for a particular wave type.
But since ringing artifacts typically occur at the edges of finite time series filtered in this
way, Wheeler and Weickmann (2001) suggest to pad an array of zeros at the end of the
time series to allow for real-time application of this method.

To create predictors representing tropical waves, the current study follows the con-
cept of Janiga et al. (2018), who apply the wave filtering of Wheeler and Kiladis (1999)
to a time series composed of reanalysis data and S2S reforecasts, with the zero-padding
strategy of Wheeler and Weickmann (2001) used at the end. The time series to be fil-
tered have a total length of four years – two years of reanalysis data, and two years for
S2S reforecast data plus zeros (Fig. 4.3a). Wave-related predictors derived for the purely
statistical approach are derived from the same time series but with the S2S reforecasts
replaced by zeros (Fig. 4.3b). To more specifically evaluate subseasonal signals dur-
ing filtering, the first four harmonics of the 1979–2018 annual cycle are calculated from
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Table 4.1: Ranges of wave periods p and zonal wave numbers k used to filter for specific
tropical wave modes. The definition is based on Janiga et al. (2018).

Wave type Abbrev. p [days] k
Low-frequency LF > 100 −10 : 10
Madden-Julian Oscillation MJO 20 : 100 0 : 9
Equatorial Rossby ER 10 : 100 −10 : −1
Kelvin Kelvin 2.5 : 20 1 : 14
Mixed Rossby-gravity/
Tropical depression MRG/TD 2.5 : 10 −20 : 0

ERA5 and subtracted from all non-zero portions of the composed time series. As illus-
trated in Figure 4.3, the first and last years of the four-year time series are tapered to zero
using a split-cosine-bell to mitigate that filtering results suffer from spectral leakage.

The filtering method is applied to horizontal wind divergence at 200 and 850 hPa for
each latitude and ensemble member separately, to filter in frequency–wavenumber do-
main for the five wave types listed in Table 4.1. The filter windows used are identical
to the ones proposed in Janiga et al. (2018) and are larger than those applied in many
climatological studies (e.g., Wheeler and Kiladis, 1999) to take into account that wave
propagation characteristics predicted by the S2S model may differ from their real-world
counterparts, especially on subseasonal timescales. Although these windows were de-
fined for solutions of the shallow water equations with the equator as the waveguide, the
latitude-specific filtering is performed up to the midlatitudes for pragmatic reasons.

4.2 Isotonic distributional regression

Statistical post-processing is required to correct for systematic errors in TC predictions
of the dynamical S2S model. Usually, this is done by fitting distributional regression
models where the parameters of the predictive distribution are estimated from training
data. A non-parametric alternative for statistical post-processing is based on IDR (Henzi
et al., 2021). Based on the pool adjacent violators (PAV) algorithm, an approach to itera-
tively solve monotonic regression problems, IDR learns cumulative distribution functions
(CDFs) conditioned on a set of covariances provided. During learning, the only constraint
imposed is that the CDFs are isotonic (i.e., monotonically increasing) on the covariate
space, which is realized by choosing and applying a partial order. Applying IDR requires
the specification of a partial order on the covariate space. In this study, the S2S ensemble
members are used as covariates which can be considered exchangeable. As discussed in
Henzi et al. (2021), the increasing convex order is a suitable choice of partial order for
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IDR in this setting for groups of exchangeable, real-valued covariates. A strength of the
IDR method is evident from the fact that predicted distributions are already calibrated.

4.3 Validation strategy

A systematic comparison of different model approaches requires an appropriate strategy
for validation. While forecasts from a climatological model can in principle be issued
for any lead time outside the period used to generate the climatology, predictions of the
target variables derived directly from the S2S-ECMWF model and the generation of S2S-
based predictors for statistical-dynamical models depend on the twice-weekly produced
reforecasts, thus posing the strongest constraint to a potential validation dataset in this
study. Starting from each of the S2S reforecast initialization dates, for every model to be
validated, forecasts are generated for the first five consecutive weeks, i.e. days 0–6, 7–13,
14–20, 21–27, 28–34. However, forecasts are only considered for validation if the middle
of the respective forecast week falls into the North Atlantic hurricane season. This yields
a total of 1040 validation instances (52 reforecasts per season × 20 seasons), for which
S2S ECMWF reforecasts are available.

In contrast to the S2S-based model, the statistical models require a training dataset
that is independent of the validation dataset. To fully exploit the relatively small number
of S2S reforecasts for training and validation, a 20-fold cross-validation (CV) is applied,
so that every season can be successively validated, while the statistical models are being
trained on the remaining 19 seasons of each fold. The validation results are then averaged
over all folds if not stated otherwise. Although forecasts are generated for every gridpoint
and forecast week separately, the gridpoints within each of the two subregions are pooled
to allow more solid conclusions to be drawn during model validation.

4.4 Forecast verification for tropical cyclone occurrence

Since all TC occurrence model output probabilities, predictions cannot be readily distin-
guished in right or wrong, as in the case of deterministic forecasts. Forecast verification
therefore must assess the joint distributions of the binary target variable and the predicted
probabilities. Focusing on different aspects of model validation, a variety of diagnostic
concepts and tools have been developed in the literature to extract information from these
high-dimensional joint distributions in a summarizing manner. To conduct a thorough
validation of the TC occurrence models, we follow the usual strategy of applying several
of these diagnostics (e.g., Gneiting and Vogel, 2019), and analyze a model’s calibra-
tion, its potential and actual predictive skill, and the long-term expected costs for a user
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Figure 4.4: Reliability diagrams for different characteristic types of calibration curves. See
text for a discussion.

when taking action based on a particular model. The individual tools and metrics used to
address these aspects are introduced in the following.

4.4.1 Reliability diagram

A critical requirement for probabilistic forecasts is calibration. According to Gneiting
et al. (2007), forecasts are calibrated if they are statistically consistent with their corre-
sponding observations. We here follow the notion of probabilistic calibration (hereafter
only referred to as ’calibration’ for simplicity) introduced by Gneiting et al. (2007), and
think of a set of N forecasts as being calibrated if the observed predictive distribution
matches the forecast one for limN→∞. In case of probability forecasts for binary target
variables, a common visual tool to assess calibration is the reliability diagram (Sanders,
1963; Wilks, 2011), which displays the joint distribution factorized into model reliability
(calibration curve) and refinement (histogram). Calibration curves are obtained by condi-
tioning the observed relative frequency on the forecast probability, and allow to identify
unconditional and/or conditional biases. Miscalibration can thus be visually examined
through deviations of the calibration curves from the diagonal. A model is said to be cal-
ibrated (or reliable) if the forecast probabilities match the observed relative frequencies.
For example, if we issue 100 probability forecasts of 20%, the predicted event should
occur 20 times.
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Figure 4.4 illustrates characteristic calibration curves, some of which exhibit certain
types of miscalibration. A model predicting a constant value yields a single point in the
diagram, which is located on the diagonal in case of climatological forecasts (Fig. 4.4a).
If the climatology allows for seasonal variations, the resultant calibration curve should
follow the diagonal as climatological forecasts are expected to be well-calibrated, unless
the climatology is subject to long-term trends. Unconditional biases are present if the
calibration curve consistently deviates from the diagonal in one direction. A model has
an underforecasting (overforecasting) bias if it generally predicts an event too seldom
(often, Fig. 4.4c). In contrast, conditional biases are characterized by inconsistent devia-
tions of the calibration curve from the diagonal. While an overconfident model tends to
underforecast low probabilities and overforecast high probabilities (Fig. 4.4d), an under-
confident model behaves the other way round (Fig. 4.4b). In case of rare events, forecast
probabilities are generally rather low and the corresponding calibration curve may not
span the full range of possible forecast probabilities (Fig. 4.4e). Another characteristic
behaviour is an unstable calibration curve (Fig. 4.4f), which typically results from too
few samples populating bins or a validation dataset being generally too small.

To reduce the dimensionality of the joint distribution, forecast-observation pairs are
often grouped into and averaged within equally sized, uniformly distributed, or quantile-
based bins, based on the forecast probability. However, the resulting calibration curve
can be highly sensitive to the choice of the number of bins. Dimitriadis et al. (2021)
solved this problem and proposed the so-called CORP approach, which has the advan-
tage, among others, of providing optimally binned and readily reproducible diagrams.
This optimal binning is achieved through the PAV algorithm. Here, we use the approach
to avoid that a subjective choice for the number of bins may impact model validation.

4.4.2 Receiver operating characteristic curve

Receiver operating characteristic (ROC; Fawcett, 2006) curves are graphical tools for as-
sessing the predictive ability of probabilistic forecasts in binary classification problems.
Originally proposed in signal detection theory (Egan et al., 1961), ROC curves were first
used for meteorological applications by Mason (1982), before they became increasingly
popular from the late 1980s on (e.g., Swets, 1988). Using a threshold x, the probability
forecast can be transformed into a hard classifier, by predicting an event if the probability
forecast is > x and no event if probability forecast is <= x. For any choice of thresh-
old a two-by-two confusion matrix can be computed, defined in Table 4.2. From these
elementary numbers, the hit rate (H) and false alarm rate (F) are calculated as follows:

H = a

a+ c
and F = b

b+ d
. (4.2)
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Table 4.2: Binary confusion matrix containing the relative frequencies a, b, c, and d of the
four possible scenarios. Note that a + b + c + d = 1.

Predicted class
Actual class

Positive Negative

Positive
True Positive

a
False Positive

b

Negative
False Negative

c
True Negative

d

The ROC curve plots H against F for all possible thresholds in the interval [0, 1]
where linear interpolation yields the final piecewise linear curve. A scalar measure that
is widely used in conjunction with ROC curves is the area under the ROC curve (AUC),
which expresses the model’s predictive performance in terms of class separability. If
a model is able to perfectly distinguish between classes for all probability thresholds,
the ROC curve will connect the points (0,0), (0,1), and (1,1), and the AUC equals 1.
In contrast, if a model outputs useless forecasts, the ROC curve follows the diagonal
from (0,0) to (1,1), resulting in an AUC of 0.5. In this case, H and F are identical for
all probability thresholds, meaning that the probability for true positive is the same as
the probability for false positive. ROC curves running below the diagonal (AUC <

0.5) indicate that a model has skill but distinguishes classes in reverse manner, which,
however, can potentially be exploited.

Properties of ROC curves, and hence of AUC, are that they are invariant under changes
in proportions of the actual classes (Fawcett, 2006), and under strictly monotonic trans-
formations applied to the forecast probabilities (Gneiting and Vogel, 2018). Given the
definition of IDR (cf. Section 4.2), this second property implies that an IDR-based cali-
bration does not alter the ROC curve of a model. Furthermore, ROC curves are insensitive
to miscalibrated forecasts (Jolliffe and Stephenson, 2012; Wilks, 2011), and therefore
should be used in concert with reliability diagrams for a comprehensive evaluation of
model performance. This inability to reflect conditional and unconditional biases limits
the use of AUC as it can merely assess a model’s potential predictive skill. For final
conclusions in terms of predictive skill, however, additional measures are needed.
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4.4.3 Brier (skill) score and its decomposition

A performance measure that can assess calibration is the mean Brier score (BS; Brier,
1950). For a set of N forecast-observation pairs, it is defined as

BS = 1
N

N∑
i=1

(yi − p̂i)2, (4.3)

where yi is the observation (either 0 or 1), and p̂i the forecast probability (between 0 and
1) of the i-th instance. Summing over quadratic forecast errors, the BS takes on values
from 0 to 1, and is negatively oriented (i.e., lower is better). A perfect forecast thus yields
a BS of 0, whereas a forecast predicting the opposite event results in a BS of 1. The BS
is a strictly proper scoring rule, meaning that the expected score is uniquely minimized
by the true underlying distribution of the observation (Gneiting and Raftery, 2007). This
useful property guarantees that models with an honest assessment are rewarded, or to
put differently, that miscalibrated models are penalized and thus cannot achieve the best
score.

The reliability-refinement factorization of the joint probabilities, used to construct
reliability diagrams (cf. Section 4.4.1), allows to decompose the BS into three compo-
nents (Sanders, 1963; Murphy, 1973), assessing forecast reliability (REL), and resolution
(RES), as well as the uncertainty of the target variable (UNC):

BS = 1
N

K∑
k=1

Nk(¯̂pk − ȳk)2

︸ ︷︷ ︸
=REL

− 1
N

K∑
k=1

Nk(ȳk − ȳ)2

︸ ︷︷ ︸
=RES

+ ȳ(1 + ȳ)︸ ︷︷ ︸
=UNC

, (4.4)

where K is the number of bins used to represent the range of forecast probabilities, and
Nk is the number of forecasts populating the k-th bin. ¯̂pk and ȳk are the within-bin

averaged forecast probabilities and observations, respectively, and ȳ = 1
N
yi is the obser-

vational sample climatology. Stephenson et al. (2008) note that, when different forecast
probabilities are unified within bins, the decomposition in Eq. (4.4) requires two addi-
tional terms for within-bin variance and within-bin covariance, respectively (not shown).
Because this frequently used decomposition strongly depends on the chosen binning strat-
egy, and therefore cannot provide stable results, Dimitriadis et al. (2021) suggest a robust
alternative. Based on the optimal binning generated by their CORP approach, the BS can
be decomposed into terms for miscalibration (MCB), discrimination (DSC), and uncer-
tainty (UNC):

BS = (BS −BScal)︸ ︷︷ ︸
=MCB

− (BSclim −BScal)︸ ︷︷ ︸
=DSC

+BSclim︸ ︷︷ ︸
=UNC

. (4.5)
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The two basic components of this decomposition are

BScal = 1
N

N∑
i=1

(yi − ˜̂pi)2 and BSclim = 1
N

N∑
i=1

(yi − ȳ)2, (4.6)

which measure the BS for a (re)calibrated version of the forecasts ˜̂pi, and for a reference
forecast predicting the observational sample climatology ȳ, respectively. Thus, the MCB
term represents a measure for forecast miscalibration, whereas the DSC term assesses the
ability of the (re)calibrated forecasts to discriminate between events better than a model
forecasting the sample climatology. As opposed to MCB and DSC terms, UNC does not
depend on forecast probabilities p̂i, but on yi only, and is hence the same for all models
and forecast weeks. With the BS being negatively oriented, and all three terms taking on
values ≥ 0, according to Eq. (4.5), a good BS is achieved by a small contribution of the
MCB term, and large contributions of the DSC term.

While the BS evaluates the performance of an individual model, the Brier skill score
(BSS) provides information about skill gain relative to a reference model. This measure
builds on the BS and puts into relation the score of the model to be validated (BS) with
the score of a perfect model (BSperf = 0), both as improvements from the score of a
reference model BSref , in the following chosen as the mean seasonal climatology (MSC,
see Section 6.1.1)

BSS = BSref −BS
BSref −BSperf

= BSMSC −BS
BSMSC − 0 = 1− BS

BSMSC

. (4.7)

Using the MSC in this context has the advantage that the BS of the reference model
is constant, and therefore allows a BSS-based comparison of models across lead times.
Unlike the BS, the BSS is positively oriented, ranging from −∞ to 1, but it is not strictly
proper. A model to be validated has better, no, or less skill compared to the MSC model
if the BSS becomes greater, equal, or less than zero, respectively.

4.4.4 Economic value

As informative as AUC and BS are for evaluating a model’s predictive skill, they do not
express how useful predictions are for a user in terms of actual costs. For this purpose,
simple cost-loss decision models have been proposed in the meteorological literature
(e.g., Ångström, 1922; Murphy, 1977), with the aim to assess economic value of forecast
models for binary target variables. We here follow the approach of Richardson (2000,
2003), who define a value measure relative to a perfect forecast model. The basis for its
derivation is laid by a decision model, which describes scenarios of costs C and losses
L to a user, when acting based on a deterministic forecast. The scenarios result from
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Table 4.3: Table of costs (C) and losses (L) associated with the four scenarios in Tab. 4.2,
based on the cost-loss decision model described in the text.

Predicted class
Actual class

Positive Negative

Positive C C
Negative L 0

the four possible combinations of predicted and actual classes (Tab. 4.3). In case of a
positive prediction of the event, the user is thought to invest C to prevent from paying L,
independent whether the event actually happens or not. In case of a negative prediction
of the event, no action is taken by the user, and L will be lost if the event occurs, and 0
if not. The applicability of this decision model is subject to the assumption that C and L
can be quantified, and that a user is interested in minimizing them in the long term, i.e.
to consider average expenses.

For the construction of their relative measure, Richardson (2000, 2003) defines two
reference forecasts. As the first reference, he considers expenses of a user, who has no
short-term forecast at hand but acts on climatological information. The only possible
reduction in climatological expenses results from the choice of either always investing
C, or accepting to pay L in ȳ of the cases:

Eclim = min(C, ȳL). (4.8)

The second reference describes a user, who always makes the right decision, resulting in
perfectly minimized expenses. This absolute limit of minimal expenses can be achieved
by investing C only before the event actually occurs, i.e. in ȳ of the cases:

Eperf = ȳC. (4.9)

The expenses for a deterministic forecast to be evaluated are obtained by multiplying
the elements of the confusion matrix (Tab. 4.2) with the corresponding elements of the
cost-loss table (Tab. 4.3), and adding them up:

Edet = (a+ b)C + cL. (4.10)

Combining these elementary scenarios of expenses, the economic value is defined as

V = Eclim − Edet
Eclim − Eperf

= min(C/L, ȳ)− (a+ b)C/L− c
min(C/L, ȳ)− ȳC/L . (4.11)



4.4. Forecast verification for tropical cyclone occurrence 39

Figure 4.5: Economic value curves of an example ensemble prediction model for a set of
probability thresholds (thin lines) and their envelope (thick solid line). Reprinted
from Richardson (2000). © 2000 John Wiley & Sons, Inc. Used with permission.

Note that the right-hand side of the second equation is expanded by 1/L, to formulate
V as a function of the cost-loss ratio C/L. By subtracting Edet and Eperf from Eclim,
respectively, the numerator and denominator become savings with respect to the climato-
logical expenses. The economic value therefore expresses the fraction of the maximum
achievable savings that can be obtained with a given deterministic model. V is positively
oriented, i.e. higher is better, and usually plotted for values between 0 and 1, as this range
indicates an economic benefit of the deterministic forecast information over the climato-
logical information. Moreover, since for a user the investment of C is only profitable if
C/L < 1, C/L is typically considered over the range from 0 to 1. For each model, its
maximum value of Vmax = H−F is achieved for a cost-loss ratio of C/L = ȳ (Richard-
son, 2003). Setting into ratio the economic values of any two models yields a ratio of
their numerators and thus of the absolute savings that can be achieved with these models.

Since the TC occurrence models used in this thesis forecast probabilities, the elements
of the confusion matrix, a, b, c and d, depend on the choice of a probability threshold
pthres. Once chosen, it turns a probabilistic forecast into a deterministic one. Because
a, b and c are included in Eq. (4.11), the economic value curve also depends on pthres, as
illustrated in Fig. 4.5. Given a calibrated forecast model, however, Richardson (2000)
states that its maximum economic value is reached when setting pthres = C/L, i.e. using
the user’s cost-loss ratio. By applying this choice for a range of C/L-values, an envelope
can be constructed, representing the overall maximum economic value achievable for the
probabilistic forecast model being evaluated (Fig. 4.5).
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Figure 4.6: Illustration of typical (u)PIT histograms in case of an (a) overconfident, (b) un-
derconfident, (c) underforecasting, and (d) overforecasting model, respectively.
The dashed line highlights uniformity, which would characterize a calibrated
model.

4.5 Forecast verification for accumulated cyclone energy

In contrast to the probability forecasts for TC occurrence, the models considered in the
second part of this study output a full predictive distribution for the target variable ACE.
Moreover, the target variable is no longer binary but real-valued. This leads to a much
more complex situation in terms of forecast verification, and therefore fewer concepts
and tools for model validation are available in the literature. Nevertheless, and in analogy
to the tools used for validating the TC occurrence models, there are tools to examine
and assess a model’s calibration, as well as its potential and actual predictive skill. The
individual tools and metrics used to address these aspects are introduced in the following
subsections.

4.5.1 Unified probability integral transform histograms

While predicting full distributions allows for an assessment of forecast uncertainty in the
first place, it raises the question of how statistical consistency with observations (i.e.,
calibration) should be conceived when verifying distributions. A useful tool that allows
to visually analyze model calibration builds on the probability integral transform (PIT)
theorem, which states that if the CDF of any random variable is in turn considered as
another random variable, the resulting distribution is standard uniform. Let Y denote the
observational continuous random variable, and P̂ is the forecast CDF. Then the set of
N forecasts is calibrated if the corresponding PIT values P̂ (Y ) are standard uniformly
distributed. Because the probability of observing no ACE is typically greater than zero,
P̂ shows a discontinuity at ACE = 0 and exhibits further discontinuities for ACE > 0
when the CDF is expressed nonparametrically, as is the case with the IDR method, for
example. Therefore, the PIT value at each discontinuity is P̂ (Y−)+V (P̂ (Y )− P̂ (Y−)),
using a standard uniform distribution V to randomly draw a value between the left-hand
and right-hand limits.
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When a set of PIT values is plotted in a histogram, usually referred to as PIT his-
togram (e.g, Gneiting et al., 2005), any type of deviation from the expected uniformity
(i.e., from a flat histogram) indicates a certain type of miscalibration. An U-shaped PIT
histogram reveals an overconfident forecast distribution, i.e. the observations material-
ize too often beyond the predicted extremes (Fig. 4.6a). In contrast, an inverse U-shape
hints at an underconfident forecast distribution, where the observed values are usually
less extreme than expressed by the predicted uncertainty (Fig. 4.6b). In addition to the
identification of confidence biases resulting from misrepresented forecast uncertainty, a
PIT histogram also conveys information about unconditional biases. If a PIT histogram is
skewed to the left, the median is greater than the mean, characterizing an underforecast-
ing bias (Fig. 4.6c). Consequently, the opposite case is referred to as an overforecasting
bias (Fig. 4.6d).

In case the forecast distribution is composed of a finite number of forecast values,
e.g. from ensemble members or past observations, rank histograms (Anderson, 1996;
Talagrand et al., 1997; Hamill and Colucci, 1997) are the analogon for such an analysis.
Given a set of m forecast values fij for the i-th forecast instance, j = 1, . . . ,m, the
verification rank ri indicates the rank of the observed value yi with respect to the sorted
set of fij , taking on values between 1 and m + 1. In case the observation is tied with
some forecast values, the rank is determined as a random draw between the smallest and
largest possible ranks.

Since rank histograms can be interpreted in the same way as PIT histograms (Hamill,
2001), Vogel et al. (2018) suggest to unify both types, allowing for a comparison between
continuous and discrete forecast distributions. To achieve this, unified PIT (uPIT) values
are chosen to be equivalent to conventional PIT values in case of continuous distributions,
while the verification ranks are transformed into uPIT values in the discrete case by (ri−
1+U)/(m+1), whereU is a standard uniform distribution. In this thesis, uPIT histograms
are analyzed to assess calibration of the ACE models, due to the fact that both continuous
and discrete predictive distributions are compared. As in Vogel et al. (2018), a fixed
number of 20 equally sized bins is used to display uPIT histograms in a consistent manner.

4.5.2 Universal ROC curve and coefficient of predictive ability

A considerable limitation of the concept of ROC curves is that it is only applicable to
binary target variables (cf. Section 4.4.2), such as TC occurrence, and thus cannot be
readily used for ACE as the target variable. For real-valued point forecasts, however,
Gneiting and Walz (2019) propose universal ROC curves (UROC) as a generalization to
real-valued target variables. Given a validation dataset of N forecast-observation pairs,
the distinct real-valued realizations of the target variable are referred to as classes of
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which there is a finite number m 6 N . By successively thresholding the target variable
at each class value, m − 1 binary classification problems are obtained, on which a clas-
sical ROC curve can be computed. A UROC curve combines the m − 1 corresponding
individual ROC curves in form of a weighted average

UROC =
m−1∑
c=1

wcROCc, c = 1, . . . ,m− 1, (4.12)

where ROCc is the ROC curve, and wc the corresponding weight of class c, respectively.
The class-specific weights are defined as follows, based on the numbers of instances ni
and nj populating the consecutive classes i and j, respectively.

wc =
 c∑
i=1

ni
m∑

i=c+1
ni

/m−1∑
i=1

m∑
j=i+1

(j − i)ninj

 , (4.13)

The major advantage of UROC curves is that they represent an evaluation of the entire
set of individual ROC curves as a whole, and therefore no choice of any threshold with
respect to the target variable is required. To provide a measure for potential predictive
skill, Gneiting and Walz (2019) also derive a real-valued equivalent to the binary-case
AUC, which is referred to as coefficient of predictive ability (CPA), given by

CPA =
m−1∑
c=1

wcAUCc. (4.14)

Like UROC curves, CPA is designed in form of a weighted average over the individual
class-specific AUC values, and is equivalent to the area under the UROC curve. For this
reason, its interpretation in terms of predictive power is analogous to the one of AUC
for the binary case (cf. Section 4.4.2). Because ROC curves are invariant under strictly
monotonic transformations, so is the UROC curve and associated CPA, which further
implies that an IDR-based statistical post-processing will not affect UROC analysis.

4.5.3 Continuous ranked probability (skill) score

Since the forecast model output for ACE takes the form of a predictive cumulative dis-
tribution function, a score is needed that considers the following two aspects, stated in
Gneiting et al. (2007), when assessing predictive performance. Firstly, the score should
inform about how well a model is calibrated. And secondly, the score should measure
the sharpness of the predictive distribution. To achieve this, the mean BS, used to assess
calibration in case of two-category variables, can be extended to the contiguous multi-
category case, resulting in the so-called mean ranked probability score (RPS; Epstein,
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Figure 4.7: Examples of (a) probability density functions and observation, and (b) corre-
sponding CDFs. The gray shaded area highlights the deviation of one of the
predicted CDFs (solid blue) from the observational CDF (black), which is mea-
sured by the CRPS.

1969; Murphy, 1971).

RPS = 1
N

N∑
i=1

 M∑
j=1

(
Yij − P̂ij

)2
 , (4.15)

where N is the number of forecast-observation pairs, M is the number of categories,
and Yij and P̂ij contain the observational and forecast cumulative probabilities of the i-th
instance, respectively. Because ACE is a continuous target variable, the multi-category
case needs to be further extended to the continuous case to be applicable in the context of
this thesis. The required infinitesimal extension turns the formulation of the mean RPS
into the mean continuous ranked probability score (CRPS; Matheson and Winkler, 1976;
Hersbach, 2000).

CRPS = 1
N

N∑
i=1

(∫ ∞
−∞

(
P̂i(x)− 1{x ≥ yi}

)2
dx
)
, (4.16)

where P̂i is the predicted cumulative distribution function of the i-th instance, and yi the
corresponding observation.

A visual depiction of what Eq. (4.16) measures is provided by Figure 4.7. For a
given forecast probability distribution (Fig. 4.7a), the CRPS integrates over the area
between the corresponding cumulative distribution function and the step function located
at the observation (Fig. 4.7b). Therefore, a forecast distribution should resemble the
step function as close as possible, i.e. the probabilities should be concentrated (sharpness
aspect) around the observed value (calibration aspect). From this it can be deduced that
the CRPS is negatively oriented with values ranging from 0 to∞. The CRPS has the unit
of the underlying random variable, which in the case of ACE is 104kt2, and is sensitive to
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distance. Like the BS, the CRPS is a strictly proper scoring rule (Matheson and Winkler,
1976), i.e. in expectation the lowest score is achieved by predicting the true underlying
distribution (Gneiting and Raftery, 2007). In case of a deterministic forecast, the CRPS
reduces to the mean absolute error, which allows to directly compare with probabilistic
forecasts.

As for the BS, a skill score can also be calculated for the CRPS to compare predic-
tive performance between models. Following the usual definition of a skill score, i.e.
setting into relation the score of the model to be validated (CRPS) with the score of a
perfect model (CRPSperf = 0), both as deviations from the score of a reference model
(CRPSref ), the continuous ranked probability skill score (CRPSS) is defined as

CRPSS = CRPSref − CRPS
CRPSref − CRPSperf

= 1− CRPS

CRPSFSPC
. (4.17)

Note that the right-hand side of the second equation results from using the full-season
probabilistic climatology (FSPC, see Section 7.1.2) as the reference model. The FSPC
is chosen here to be consistent with the MSC model used for the BS, as they are united
in their approach of considering past observations from the entire hurricane season to
compose the underlying climatology. Since forecasts of the FSPC model are independent
of the forecast week, so are its corresponding CRPS values. Hence, CRPSS values for
a model to be validated can be readily compared across lead times. As opposed to the
CRPS, the CRPSS is positively oriented with values ranging from −∞ to 1, but it is not
strictly proper. A model to be validated has better, no, or less skill compared to the FSPC
model if the CRPSS becomes greater, equal, or less than zero, respectively.
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5. Predictor development and analysis

Because training of statistical models requires a set of relevant predictors, this section
presents an expert selection of predictors from different categories. To contrast the two
statistical approaches, predictor generation is motivated and described for the statistical–
dynamical approach, followed by a description of how an equivalent set is constructed for
the purely statistical approach. The selection of predictors is neither meant to be complete
nor the most sophisticated way of how predictors can be generated, but constitutes a solid
foundation for statistical model development.

5.1 Statistical-dynamical predictors

Since S2S ECMWF reforecasts are run in ensemble mode, we want to make use of the
valuable information on forecast uncertainty. For each S2S-based predictor variable, we
therefore calculate the mean and standard deviation to represent the first and second sta-
tistical moments of the ensemble’s distribution. When these are provided as separate
predictors, the statistical models should learn primarily from the predictive signals as-
sociated with the ensemble means, as long as ensemble uncertainties remain sufficiently
low. However, the standard deviation predictors become increasingly important when
they exceed the standard deviation of the ensemble means of all training instances, since
the information from the ensemble mean predictors becomes less relevant in such cases.

Predictors are constructed from the fields forecasted by the S2S model in two ways,
based on whether they represent an immediate (local predictor) or potentially lagged (re-
mote predictor) influence. For a local predictor, at every grid point, the corresponding
S2S forecast field is averaged over the same week used for the target variable, and within
a radius of 7.5◦, to be consistent with the integral perspective on weekly TC occurrence
motivated in Section 4.1.1. In contrast, when constructing remote predictors, using the
same forecast week for the S2S forecast fields as for the target variable does not neces-
sarily yield the optimal link. For instance, a week-three TC occurrence forecast could
also be more strongly correlated with predictors constructed from S2S fields of week one
or two, respectively. The optimal link is essentially a trade-off between reduced S2S



46 5.1. Statistical-dynamical predictors

forecast errors (when the chosen predictor week is closer to the initialization of the S2S
forecast), and smaller time lags (when the chosen predictor week is closer to the target
forecast week), to more directly link the physical relationship. For each remote predictor
of the ensemble mean, we determined the optimal S2S forecast week by maximizing the
Pearson correlation with the target forecast week. To more easily discuss the mapping
in the following presentation of the constructed remote predictors, the correlations calcu-
lated at every gridpoint were averaged across the basin, before being applied to every grid
point again. The results for each remote predictor of the ensemble mean were likewise
applied to the corresponding predictor of the ensemble standard deviation.

5.1.1 Oceanic predictors

The local SSTs play a crucial role for TC genesis (Palmen, 1948) by providing the energy
resource for the intensification and maintenance of the convectively driven secondary cir-
culation (Gray, 1968) through wind-induced surface heat exchange (WISHE; Emanuel,
1986). Since SST data is not available over land, predictors for mean and standard devi-
ation of local SST are only calculated and considered at grid points, where at least one
SST value is given within the 7.5◦ radius. Figure 5.1a shows positive Pearson correlations
for the mean predictor covering most of the North Atlantic basin, with a maximum at the
northern edge of the central MDR.

Because most North Atlantic TCs form in the MDR, SSTs in this region are known
to modulate basin-wide interannual TC activity (Shapiro, 1982; Goldenberg and Shapiro,
1996). Besides the immediate importance of local SST predictors, we therefore generate
and include mean and standard deviation predictors of the SSTs averaged in the MDR.
Since these predictors represent remote influences at all grid points outside the MDR, a
pre-analysis was conducted to determine the optimal S2S predictor forecast week for each
target forecast week. It turned out that spatio-temporal immediacy weighs more heavily
than possible S2S model errors, since correlations are highest when the forecast week of
SST and the target forecast week are the same. The identified correlation pattern reflects
that higher MDR SSTs lead to an increased probability in TC occurrence for the vast
majority of the grid points (Fig. 5.1b). The area with the highest correlations of greater
than 0.3 is found just northwest of the central MDR, which likely reflects the intensifying
effect of high MDR SSTs on TC precursors originating over or close to West Africa.

Beyond basin-internal predictors, remote effects of SST via teleconnections are also
well known. In contrast to MDR SSTs, eastern equatorial Pacific SSTs associated with
ENSO are typically anticorrelated with North Atlantic TC activity (Goldenberg and Shapiro,
1996). We analyzed SST predictors for the commonly defined Niño 1+2, Niño 3, and
Niño 3.4 regions, but since the predictor–target Pearson correlations for Niño 1+2 were
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discernibly higher than for Niño 3 and Niño 3.4, respectively, Niño 1+2 was used to rep-
resent the ENSO state in this study. Although a time lag for the choice of the optimal
predictor forecast weeks is expectable due to the remote influence, a pre-analysis for this
region revealed that predictor and target are most strongly correlated when forecast weeks
are the same. Apart from generally weaker correlations and the opposite sign, the close
resemblance of the correlation patterns for the mean Niño 1+2 predictor (Fig. 5.1c) and
mean MDR SST (Fig. 5.1b) underpins the ENSO teleconnection effect on MDR environ-
mental conditions, identified by Gray (1984), and thus the potential value for including
this remote predictor type.
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Figure 5.1: Predictor–target Pearson correlation coefficient for ensemble mean (a) local SST,
(b) MDR SST, and (c) Niño1+2 SST at week four. Values are only displayed
where correlations are statistically significant at a significance level of 5%. The
thick black line highlights the MDR. Note the varying ranges of different color
bars. Reprinted from Maier-Gerber et al. (2021). © 2021, American Meteoro-
logical Society. Used with permission.
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5.1.2 Tropical predictors

In addition to the oceanic predictors, TC occurrence responds to a variety of atmospheric
factors, which are known to be necessary for preconditioning the environment, in which
a TC is likely to form and self-organize. Because the (GPI; Emanuel and Nolan, 2004)
was designed to assess near-storm environmental conditions, we created local predictors
based on the terms contributing to the GPI, viz. 850-hPa absolute vorticity, 700-hPa
relative humidity, 200-hPa to 850-hPa vertical shear, and potential intensity. The latter,
however, could not be calculated from the S2S database.

Because a TC is characterized by a local absolute vorticity maximum, a zonal band
of significant positive Pearson correlations for the week-four mean absolute vorticity pre-
dictor spans from the West African coast to the Gulf of Mexico, along the classical track
of TCs initiated by African Easterly waves (Fig. 5.2a). This band is connected with an
extension into the northeast Atlantic. Even though the correlation structure for the mean
relative humidity predictor is similar to the one for absolute vorticity, variability within
the zonal band is larger, with a local maximum in the western Gulf of Mexico and a pro-
nounced maximum west of the West African coast (Fig. 5.2b). The latter is likely to be
partly associated with the dryness of the Saharan Air Layer (SAL), which was found to
impede TC genesis and intensification primarily over the eastern North Atlantic by facil-
itating convection-suppressing downdrafts (Dunion and Velden, 2004). As expected and
unlike the previous two GPI components, the detrimental effect of vertical wind shear
results in anti-correlation, with highest absolute values in the MDR and the western Gulf
of Mexico (Fig. 5.2c).

Furthermore, tropical waves have been shown to impact TC genesis by modulating
their environmental conditions (e.g.; Frank and Roundy, 2006). Frank and Roundy
(2006) identified significant contributions of tropical waves up to one month prior to
TC genesis, and highlighted the potential of these waves for statistical modeling. There-
fore, we want to exploit this potential and filter for tropical wave modes as described in
Section 4.1.4. Although tropical waves are tied to the equator, their influence can be at-
tributed to TC formation at latitudes beyond 30°N (Schreck III et al., 2012, see their Fig.
7). Given this remote link in the context of the fact that tropical waves and TCs are typi-
cally non-stationary, which makes it difficult to design predictors, we follow a pragmatic
approach by generating local predictors from the latitude-wise filtered 200-hPa diver-
gence squared. The squaring yields an activity measure, which proved to be more skillful
compared to providing the phase information (non-squared). The 200-hPa level was pre-
ferred over 850 hPa due to higher correlation coefficients. The resulting predictor–target
correlation coefficients are predominantly negative for most wave types (Fig. 5.3a-d),
meaning that a reduced upper-level wave activity facilitates TC occurrence. The positive
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Figure 5.2: As Fig. 5.1, but for ensemble mean (a) 850-hPa absolute vorticity, (b) 700-hPa
relative humidity, and (c) 200-hPa to 850-hPa wind shear at week four. Note
the varying ranges of different color bars. Reprinted from Maier-Gerber et al.
(2021). © 2021, American Meteorological Society. Used with permission.

correlations associated with Mixed Rossby-gravity/tropical depression (MRG/TD) waves
(Fig. 5.3e) can be partly explained by the fact that TCs project onto the filtering window
used to define this wave type (Schreck III et al., 2011, see their Fig. 6).

The MJO is known to modulate North Atlantic TC activity (Maloney and Hartmann,
2000), and thus has been used in purely statistical models for subseasonal TC occur-
rence before (e.g., Leroy and Wheeler, 2008; Henderson and Maloney, 2013). As an
alternative to the MJO-filtered local predictors, S2S ECMWF ensemble reforecasts of
the more commonly used RMM indices were downloaded1 to define MJO remote predic-
tors. RMM indices are often used to distinguish between eight circumglobal phases of

1ftp://s2sidx:s2sidx@acquisition.ecmwf.int/RMMS
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Figure 5.3: As Fig. 5.1, but for ensemble mean 200-hPa divergence squared at week four
filtered for the wave types listed in Table 4.1. Note the varying ranges of differ-
ent color bars. Reprinted from Maier-Gerber et al. (2021). © 2021, American
Meteorological Society. Used with permission.

MJO-related convective activity, of which phase 2 (6+7) leads to significantly enhanced
(reduced) North Atlantic TC activity (Klotzbach, 2014; Camargo et al., 2009). However,
an additional inclusion of the RMM predictors in the statistical-dynamical approach for
testing purposes did not yield any further notable skill increase. Therefore, the MJO-
filtered local predictors were used for statistical model development in the following, but
not the RMM indices. Note that the lack of additional improvements does not contradict
the modulation of TC activity by the RMM indices, which was previously documented in
the ECMWF S2S model (Vitart, 2009; Lee et al., 2018, 2020). Rather, it likely indicates
that the predictive skill is covered by the local predictors already, which are modulated
by the MJO through teleconnections.
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5.1.3 Extratropical predictors

In recent years, a link between extratropical Rossby wave breaking (RWB) and North
Atlantic TC activity has been revealed and accounted for another source to alter vertical
shear and moisture, especially in the MDR (Zhang et al., 2016, 2017a; Wang et al., 2020).
RWB events typically yield a PV streamer, which often penetrates into the (sub)tropical
regions. Papin et al. (2020) calculated a climatology for North Atlantic PV streamers,
and found that a measure for climatologically standardized PV anomalies, integrating
over frequency and area of the identified PV streamers, correlates better with TC activity
than the individual measures alone. Even though not considering individual PV streamer
objects, but gridpoint-wise averages within a 7.5° radius, we build on this finding of
a stronger link when using an integral perspective, and generate local mean and stan-
dard deviation predictors for 200-hPa to 500-hPa layer-averaged PV. These predictors
are meant as a proxy for the integral effect of the presence of upper-level PV features
that can influence TC occurrence in two ways. Due to their narrow shape, PV streamers
typically feature high PV gradients, and hence high vertical shear, posing a detrimen-
tal environment for TC occurrence. On the other side, the PV streamer can spawn a
low-level baroclinic precursor disturbance, which can undergo tropical transition once
the upper-level PV gets diabatically redistributed (Davis and Bosart, 2003; Maier-Gerber
et al., 2019). However, because in this scenario TC occurrence takes place only after
the vertical wind shear associated with the PV streamer is reduced to a sufficient degree
(Davis and Bosart, 2004), the adverse character of high PV is prevailing over the preced-
ing supporting effect. This is confirmed by the negative correlations in Fig. 5.4, which
are strongest in the northeastern edge of the MDR and along the US east coast, consis-
tent with the stronger negative correlations found for the western basin by Zhang et al.
(2017a).
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Figure 5.4: As Fig. 5.1, but for ensemble mean 200-hPa to 500-hPa layer-averaged PV
at week four. Reprinted from Maier-Gerber et al. (2021). © 2021, American
Meteorological Society. Used with permission.
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5.2 Statistical predictors

As opposed to the S2S-based predictors used for the statistical-dynamical approach, anal-
ogous ERA5-based predictors are generated for the purely statistical approach. This
means that the S2S ensemble mean and standard deviation predictors are replaced by
single predictors derived from ERA5 data. Since NWP forecasts are not considered in
this approach, the mean bias corrections as well as the pre-analyses for determining op-
timal predictor weeks are no longer required. Instead, predictor fields are averaged over
the week before the date on which the S2S reforecast was initialized.
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6. Subseasonal forecasting of tropical
cyclone occurrence

6.1 Benchmark models

An integral part of model development is to compare a newly generated model with those
that are well-established and/or different in their approach. To justify the application of a
new model, it should perform better than the models chosen to serve as benchmark. With
climatological and NWP models, two distinct types of benchmark models are employed
in the following, to put into relation the performance of the statistical models developed.

6.1.1 Climatological forecasts

Climatological models are used as the first type of benchmark to allow for a comparison
with predictions based on long-term statistics of TC occurrence, i.e. on its climatol-
ogy. Because those statistics are calculated over a set of past realizations drawn from
the underlying distribution of the target variable, climatological forecasts are inherently
independent of the current state of the atmosphere. Moreover, they are unbiased if trends
and/or regime changes are negligible. If so, there are no restrictions regarding lead time,
and forecasts are thus independent of forecast week. The climatological models used
here are derived from the IBTrACS dataset for the period 1968–2017 (see Fig. 4.1a, or-
ange dots). Because a complete and consistent TC monitoring was only possible since
the beginning of the satellite era, seasons earlier than 1968 are not considered for cal-
culating the climatologies. The simplest approach to generate a climatological statistic
is to average TC occurrence over the 50 North Atlantic hurricane seasons considered.
This approach yields a mean seasonal climatology (MSC), where constant forecasts are
predicted throughout the season. A more adaptive strategy to take into account seasonal
variations is to average over years for every day of year separately, resulting in a clima-
tological seasonal cycle (CSC). Because the climatological models share the underlying
dataset with the target variable, the CV strategy necessitates the climatologies to be cal-
culated separately for every fold, leaving out the data of the season to be forecast.
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Figure 6.1: Climatological seasonal cycle (CSC) at 25°N and 90°W exemplarily smoothed
with uniform kernels of window length 1 (blue), 51 (orange), 183 (green), and
365 (red) days, respectively. At this grid point, the CSC smoothed with a win-
dow length of 51 days was identified to best correlate with the target variable.
Reprinted from Maier-Gerber et al. (2021). © 2021, American Meteorological
Society. Used with permission.

Seasonal fluctuations evident from the CSC example in Fig. 6.1 indicate that the
50-year period is not sufficient to generate a robust climatology, since one would expect
the observed relative frequency to not vary much for neighboring days in the year. To
mitigate the adverse effect of too small sample sizes, a smoother and more representative
CSC (hereafter referred to as CSCopt) was constructed by applying a moving average.
The optimal window length at every grid point was identified by maximizing the Pear-
son correlation with the target variable. Various commonly used weighting kernels were
tested, but a simple uniform weighting turned out to yield the highest correlations overall.
When averaged over the gridpoints within the respective validation subregion, the opti-
mal window length in the Gulf of Mexico turns out to be 48 days, whereas it is 24 days
in the central MDR, thus differing by a factor of two. This indicates that more climato-
logical data is needed in the Gulf of Mexico to build a robust climatological model that
best represents the seasonal variations.

Given the chaotic nature of the atmosphere, the skill of any model should converge
to the skill of the best performing climatological model for long enough lead times. For
this reason, the CSCopt model is not only deployed as a benchmark model, but also
constitutes the base predictor for the statistical models. This ensures that they are able
to at least exploit information from intraseasonal variations as sort of a ”fail-safe”, in
case they cannot gain any skill from the data of the NWP-based predictors during model
training, due to insufficient signal-to-noise ratios on subseasonal lead times (Scheuerer
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Figure 6.2: Predictor–target Pearson correlation coefficient for the locally optimized clima-
tology. Values are only displayed where correlations are statistically significant at
a significance level of 5%. The thick black line highlights the MDR. Reprinted
from Maier-Gerber et al. (2021). © 2021, American Meteorological Society. Used
with permission.

et al., 2020). Any positive differences in skill relative to the CSCopt can thus be attributed
to the added value of the NWP-based predictors.

Figure 6.2 presents the Pearson correlation coefficient ρ between the CSCopt predic-
tor and the target variable, calculated from all forecast–observation pairs of the 1998-
2017 seasons, separately for every grid point. Since the predictor and the target variable
have the underlying dataset in common, the season to be forecast is left out when gen-
erating the CSCopt predictor. Correlations are found to be positive throughout the entire
basin, and significant for almost all grid points, where forecast models are developed (cf.
Fig. 4.1, red contour). Peak correlation values of up to 0.5 are located slightly north of
the center of the MDR, slowly decaying towards the US east coast. Because this predic-
tor is independent of the forecast week, the described correlation patterns are valid for
all forecast weeks considered. Given these correlations, the CSCopt predictor is a good
starting point for the predictor pool.

6.1.2 Dynamical forecasts

To compare with predictions directly obtained from a state-of-the-art NWP model, a sec-
ond type of benchmark is created by calculating probabilities for TC occurrence from
0000 UTC instances of the TC tracks identified in the S2S ECMWF 1998-2017 ensem-
ble reforecasts (hereafter referred to as S2STC). However, Lee et al. (2018) point out that
the combination of the inability of all S2S models to sufficiently resolve the TC inner-core
thermodynamics, and the coarse resolution used for archiving the model output results in
a systematic underestimation of the peak TC intensities. To take account of this intensity
bias, they make a quantile-based comparison of the maximum intensities reached during
the TCs’ lifetimes between observed and forecasted storms. For the S2S ECMWF model,
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they propose a lowered threshold of 24 kn instead of 34 kn to define the lower limit for
tropical storm strength. Although earlier model version dates are used in Lee et al. (2018)
than in the present study, a similar analysis for the reforecasts used here confirms this al-
ternative threshold, and it is thus used to define TC occurrence for all S2S benchmark
models.

Since S2STC forecasts are frequently not calibrated, we have tested different tech-
niques to correct for potential miscalibration. The IDR method introduced in Section
4.2 turned out to perform best for that purpose. Based on the natural assumption that
a higher forecast probability is associated with a higher event frequency, IDR learns a
step-function that is used to transform the S2STC forecasts to calibrated probability fore-
casts.1 To increase robustness, forecasts from all grid points of a given validation subre-
gion are pooled for training the isotonic regression, which is then applied to every grid
point separately. For a quality assessment, the calibrated forecasts (hereafter referred to
as S2STCcal) will be assessed in Section 6.3.1.

6.2 Statistical model development

6.2.1 Logistic regression

If the target variable is binary, being either one or zero (i.e., TC occurrence or non-
occurrence), logistic regression models (Hastie et al., 2009) are commonly trained to map
linear combinations of continuous predictor variables to a probability via the so-called
logit function. Given the training data (xi, yi), i = 1, . . . , N , where xi = (xi1, . . . , xiP )T

contains the values of the P predictors and yi is the corresponding observation for a given
instance i, the logistic regression model is formulated as

p̂i (β0,β) = logit−1
(
β0 + xTi β

)
= 1

1 + exp (−β0 − xTi β) , (6.1)

where p̂i is the estimated probability of the target variable instance yi being one, β0 is the
intercept, and β = (β1, . . . , βP )T the vector including the regression coefficients of the
predictors. Using the LIBLINEAR solver (Fan et al., 2008), we estimate the coefficients
based on the following problem:

min
β0,β

1
2β

Tβ −
N∑
i=1

(yi log (p̂i) + (1− yi) log (1− p̂i)) . (6.2)

1In the application on probability forecasts, IDR is equivalent to isotonic regression, a common ap-
proach for calibration of probabilities in the machine learning literature (e.g., in Guo et al., 2017).
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ENS mean ENS stddev
Locally optimized climatological seasonal cycle local ✓ ✓
Local SST local ● ● ●
MDR SST remote ● ● ●
Nino1+2 SST remote ● ● ●
850-hPa absolute vorticity local ● ● ●
700-hPa relative humidity local ● ● ●
200-850-hPa vertical shear local ● ● ●
LF-filtered 200-hPa divergence squared local ● ● ●
MJO-filtered 200-hPa divergence squared local ● ● ●
ER-filtered 200-hPa divergence squared local ● ● ●
Kelvin-filtered 200-hPa divergence squared local ● ● ●
MRG/TD-filtered 200-hPa divergence squared local ● ● ●
200-500-hPa layer-averaged PV local ● ● ●
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Figure 6.3: Overview schematic showing the set of predictors, from which the stepwise pre-
dictor selection chooses an optimal predictor set for every gridpoint and forecast
week. Red and purple symbols indicate predictors provided to the statistical-
dynamical and the purely statistical model, respectively. While dots denote pre-
dictors that can be chosen by the sequential predictor selection, ticks signify
fixed predictors. Reprinted from Maier-Gerber et al. (2021). © 2021, American
Meteorological Society. Used with permission.

The second term corresponds to maximum likelihood estimation, the first to an l2-penalty,
which keeps the coefficients of the predictors small and thus prevents the model from
overfitting. The minimization is stopped, if either the difference between the losses of
two consecutive iterations drops below a tolerance of 10−4 , or a maximum number of 100
iterations is reached. To support faster convergence of solutions for model coefficients,
predictors are standardized on the respective training set.

6.2.2 Sequential predictor selection

Training a logistic regression model on the full variety of predictors developed and mo-
tivated in Chapter 5 does not necessarily lead to the best predictive performance. Op-
timal predictor subsets for the statistical-dynamical and purely statistical approach, re-
spectively, are therefore determined using a sequential forward predictor selection. This
selection process is conducted separately for the Gulf of Mexico and central MDR sub-
regions, and gridpoints are pooled within each subregion to make predictor selection and
model training more robust. An overview of the potential predictor pools, from which
the two approaches can choose, is presented in Fig. 6.3. To guarantee that the logistic
regression models do not perform worse than the climatological benchmark models, the
CSCopt predictor is kept fixed, a priori. This initial minimal subset is then extended by
the one predictor that minimizes the average Akaike information criterion (AIC; Hastie
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et al., 2009; Akaike, 1974) of a fivefold CV on the training period. For a logistic regres-
sion model with P predictors, the AIC is defined as

AIC = −2LL
N

+ 2P
N
, (6.3)

where LL is the binomial log-likelihood based on N forecasts and corresponding ob-
servations. We chose AIC as our scoring metric since it reduces overfitting by penalizing
larger numbers of predictors, in addition to the term for the model’s performance. The
extension of the subset is repeated until all candidate predictors are integrated. Then, the
optimal subset of predictors is finally identified by the lowest AIC achieved. This forward
selection is preferred over a backward selection (i.e., successively removing predictors)
to keep the number of optimal predictors as small as possible but as large as necessary.
Similar to Leroy and Wheeler (2008) and Henderson and Maloney (2013), we first had
performed a BS-based predictor selection in a pre-analysis on the full dataset. But since
predictors should not be selected based on the data the models are validated on, the selec-
tion scheme was instead integrated in the 20-fold CV, such that predictors are chosen on
the training data alone. Due to this change, the skill of the statistical models drastically
decreased, but could be restored by pooling the gridpoints for each subregion and iden-
tifying optimal subsets based on the AIC. Hence, 20 predictor subsets are obtained that
are found to be highly consistent, being in complete agreement for the central MDR, and
differing in only one predictor at week two for the Gulf of Mexico.

Figure 6.4 shows the results of the sequential predictor selection applied to the statistical-
dynamical approach. From the pool of 25 predictors provided to the statistical-dynamical
approach, 15, 11, 10, 6, and 6 predictors were selected in the Gulf of Mexico for forecast
week 1, 2, 3, 4, and 5, respectively (Fig. 6.4a). In analogy, the optimal subsets identified
for the central MDR are comprised by 12, 6, 6, 7, and 8 predictors (Fig. 6.4b), thus using
less predictors for the first three forecast weeks. In addition to the climatological sea-
sonal cycle, predictors selected at all forecast weeks are mean 850-hPa absolute vorticity
and mean 200-850-hPa vertical wind shear in the central MDR, and standard deviation
of 850-hPa absolute vorticity in the Gulf of Mexico. In contrast, predictors that were not
picked at all are standard deviation of low-frequency modes, mean MJO modes, stan-
dard deviation of MRG/TD waves, and mean Nino12 SST for both subregions, as well
as mean low-frequency modes, standard deviations of ER waves, 200-500-hPa PV, and
MDR SST, and mean Nino12 SST in the central MDR.

A comparison of the subsets over lead time reveals for the Gulf of Mexico that the
majority of tropical wave, GPI, and extratropical predictors is primarily selected up to
forecast week three, but no longer beyond (Fig. 6.4a), except for standard deviations
of Kelvin waves and 850-hPa absolute vorticity, and mean and standard deviation of
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Figure 6.4: Subsets selected by the sequential predictor selection scheme for the statistical-
dynamical approach for week one to five in (a) the Gulf of Mexico, and (b) the
central MDR, respectively. Colors indicate the rank of the selected predictor
averaged over the 20 folds of the cross-validation. If no circle is plotted, the pre-
dictor was not chosen. Reprinted from Maier-Gerber et al. (2021), supplementary
material. © 2021, American Meteorological Society. Used with permission.

700-hPa relative humidity. In the central MDR, a striking transition is found within the
oceanic predictor group between forecast week two and three (Fig. 6.4b). Mean MDR
SST is chosen as the second predictor from week three on, whereas the mean and standard
deviation of local SST were used on the medium range. Furthermore, a shift from higher-
frequency (Kelvin and MRG/TD) to lower-frequency tropical wave modes (MJO and ER)
occurs with increasing leadtime for the selected subsets in the central MDR.

Selection results for the purely statistical approach presented in Fig. 6.5 show that
the optimal subsets in the central MDR are comprised by an equal or higher number of
predictors compared to the Gulf of Mexico. From the pool of 13 predictors provided, 6,
4, 2, 3, and 3 (8, 4, 4, 4, and 3) predictors were selected in the Gulf of Mexico (central
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Figure 6.5: As in Fig. 6.4, but for the purely statistical approach. Reprinted from Maier-
Gerber et al. (2021), supplementary material. © 2021, American Meteorological
Society. Used with permission.

MDR) for forecast week 1, 2, 3, 4, and 5, respectively (Fig. 6.5a,b). Except for the
climatological seasonal cycle, there was no predictor selected at all five forecast weeks in
either subregion. However, consistency over leadtime appears by the non-consideration
of all oceanic predictors and the Kelvin waves in the Gulf of Mexico, and of the ER waves
and 700-hPa relative humidity predictors in the central MDR. When comparing results
over the forecast week, only tropical wave predictors were chosen in the Gulf of Mexico
beyond week three, whereas GPI and oceanic predictors are still included in the central
MDR at week four and five, respectively.

6.3 Model comparison

6.3.1 Calibration

Figure 6.6 shows CORP reliability diagrams for the Gulf of Mexico and central MDR
week-four forecasts to represent the subseasonal time scale. Biases, however, are quali-
tatively similar for the other forecast weeks. For both subregions and all models, forecast
probabilities tend to be generally very low, consistent with the extreme nature of TCs,
leading to low relative frequencies of TC occurrence in the target variable (cf. Fig. 4.1b).
Thus, the model predictions can be made only with low confidence as the forecast prob-
abilities are distributed mainly around the mean relative frequency of the target variable.
Since the rareness of TC occurrence is given by nature, the only remedy would be to
increase the evaluation radius beyond 7.5°, which, however, would inevitably lead to an
also undesirable larger uncertainty in spatial interpretation. However, it can be stated that
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Figure 6.6: CORP reliability diagram for (a) Gulf of Mexico and (b) central MDR week-
four forecasts, respectively. While forecast probability distributions are visualized
by means of histograms for the S2STC and S2STCcal models, a kernel density
estimation is applied to generate continuous curves for the other models. The
dashed vertical line indicates the mean relative frequency of the target variable.
Reprinted from Maier-Gerber et al. (2021). © 2021, American Meteorological
Society. Used with permission.

the logistic regression models can predict with slightly higher confidence compared to
the benchmark models.

The first thing to notice is that all models are more reliable for low forecast probabil-
ities than for higher ones, which is consistent with the refinement distributions discussed
before. The underforecasting situation (TC non-occurrence bias) of the CSCopt model
is likely to result from a reduced TC occurrence in the 1968-1997 period, which was
used to extend the 1998-2017 validation period for calculating more robust climatologies.
However, since the CSCopt is also a base predictor for the logistic regression models, it
has no competitive disadvantage when evaluating model skill. The S2STC model simi-
larly underforecasts the low forecast probabilities, but overforecasts the few high forecast
probabilities, which results in a general overconfidence. To correct for this conditional
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bias, this particular NWP-based model is calibrated using the IDR method described in
Section 4.2. The S2STCcal follows the diagonal quite well for low forecast probabilities,
and thus generates much more reliable forecasts. Since logistic regression is known to
yield well-calibrated forecasts, the calibration curves for the two approaches of logistic
regression models are well-aligned with the diagonal for low forecast probabilities. The
increasing deviations with higher forecast probabilities are likely due to the few samples,
which are obviously insufficient for generalization. Overall, subseasonal forecasts of the
logistic regression models, with a slightly better calibrated statistical-dynamical approach
for higher forecast probabilities, are more reliable than the benchmark forecasts.

6.3.2 Potential predictive skill

Potential skill of the TC occurrence models is assessed by means of ROC curves, which
are displayed for forecast week one and four in Fig. 6.7. ROC curves for the remaining
forecast weeks can be found in the appendix (Fig. A.1.5). Note that because of the in-
variance of ROC analysis under strictly monotonic transformation, ROC curves and AUC
values for the IDR-calibrated S2STCcal model are identical to those for the S2STC model
and are therefore not discussed separately. For both weeks and subregions presented, it is
apparent that all models perform better than a random classifier model, as all AUC values
are well above 0.5.

At week one, the statistical-dynamical model outperforms all other models, reaching
an AUC of 0.83 in the Gulf of Mexico and 0.87 in the central MDR (Fig. 6.7a+b). Al-
though the AUC value of the S2STC model is only 0.05 worse in both subregions, its
potential predictive skill is comparable to the one of the CSCopt and purely statistical
models in the central MDR, while it still exceeds them by about +0.1 in the Gulf of Mex-
ico. This highlights that TC occurrence prediction for week one in subregions with a less
pronounced seasonal cycle (here represented by the Gulf of Mexico) should either use a
dynamical or statistical-dynamical modelling approach, with a slight preference for the
latter. The purely statistical model virtually behaves like the CSCopt model for both sub-
regions and forecast weeks. A comparison of AUC values for the CSCopt model between
the two subregions, which is independent of the forecast week, reveals that climatologi-
cal information has a much greater potential for predicting TC occurrence in the central
MDR than in the Gulf of Mexico (0.83 vs. 0.68).

Using this model as reference, a decrease in skill is found for the S2STC and the
statistical-dynamical models from week one to four. While the S2STC ROC curve clearly
drops below the ones of the other models, by ≥ 0.7 in the Gulf of Mexico and ≥ 0.9 in
the central MDR, respectively, the statistical-dynamical ROC curve merely falls back to
CSCopt model (Fig. 6.7c+d). From visual congruence of ROC curves, but also from
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Figure 6.7: ROC curves for week-one (a+b) and week-four (c+d) forecasts of the CSCopt
(black), the S2STC (lightblue), the purely statistical (orange), and the statistical–
dynamical (red) model, respectively, in the Gulf of Mexico (a+c) and central
MDR (b+d) subregions. The numbers in the legend of each panel show the
model-specific area under the curve (AUC) averaged over the 20 folds.

corresponding AUC values, it appears that the CSCopt, the purely statistical, and the
statistical-dynamical models perform comparably on subseasonal time scale. Therefore,
from a practical point of view, one could argue that the CSCopt model is the preferred
model type for this purpose, since it is the least complex model among these three and
predictions can be reused without any effort after its one-time generation.
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6.3.3 Actual predictive skill

Taking into account the aspect of calibration when validating models, Figure 6.8 shows
the BSS as a function of forecast week validated in the Gulf of Mexico and central MDR
subregions, allowing for comparison of actual predictive skill between models. Since
climatological forecasts are independent of the forecast week, their BSS also does not
change with lead time. Considering that the MSC is used as reference, the positive BSS
for the CSC and CSCopt models indicate that the ability to simulate seasonal variations
is rewarded. The improvement in skill, however, exhibits remarkable subregional differ-
ences, as can be seen by the CSC BSS being three times higher (about 15 % vs. less than
5 %) for the central MDR compared to the Gulf of Mexico. This is due to the fact that TC
occurrence in the MDR is often associated with African Easterly Waves, which are sub-
ject to a more distinct seasonal cycle (Thorncroft and Hodges, 2001). CSC skill is further
enhanced when correcting for the undersampling problem of the CSC model through a
locally optimized smoothing (see Section 6.1.1 for details). The relative enhancement is
found to be much stronger for the Gulf of Mexico than the central MDR subregion, which
can be explained by the more variable seasonal cycle. An optimal window length that is
twice as large (48 vs. 24 days) is thus required for smoothing when averaged over the
gridpoints within the subregion, leading to a more substantially modified CSCopt model,
and hence a greater potential for improvement in BSS. This explanation is also found for
other subregions (not shown).

In terms of the NWP-based benchmark models, IDR-calibration helps increase S2STC
BSS by adding 3 % to 6 % and 1 % to 2 % for the Gulf of Mexico and the central MDR,
respectively, over the forecast weeks considered. For forecast week one, the S2STCcal
model by far exceeds the CSCopt model, but rapidly loses most of its skill over the first
two forecast weeks, i.e. on the medium range, eventually leveling off thereafter on sub-
seasonal timescales. While the CSCopt model outperforms the S2STCcal model from
week three on in the central MDR, the CSCopt model takes the lead only beyond forecast
week three in the Gulf of Mexico. Apart from these minor subregional differences, this
considerable drop in model skill around week two to three is in accordance with previous
findings for forecasts of basin-wide TC occurrence (Lee et al., 2018), emphasizing the
potential of climatological forecasts for subseasonal timescales.

Expanding the climatological model by including predictors generated from past data,
the purely statistical approach improves the CSCopt skill at all five forecast weeks. While
3 % are added in the Gulf of Mexico at week one, improvements reduce to less than 0.7 %
beyond medium range (Fig. 6.8a). In comparison, a maximum of 2 % is added to the
CSCopt BSS in the central MDR, but this level of improved skill drops to about 0.7 %
only after week three (Fig. 6.8b). Considerable improvements can also be identified in
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Figure 6.8: BSS (%) as a function of forecast week for the CSC (gray), CSCopt (black),
S2STC (lightblue), S2STCcal (darkblue), purely statistical (orange), and
statistical–dynamical (red) model, respectively, relative to the MSC model, and
validated in the Gulf of Mexico (left) and central MDR (right) subregions.
Reprinted from Maier-Gerber et al. (2021). © 2021, American Meteorological
Society. Used with permission.

subregions defined for the Caribbean Sea, and slightly north of the MDR (not shown),
suggesting that subseasonal forecasts of weekly TC occurrence mainly for the MDR and
adjacent subregions downstream can benefit from adding past data predictors.

Replacing the past data with the S2S ensemble mean and standard deviations for
each predictor, the statistical–dynamical approach further raises the BSSs at all forecast
weeks. The gain in skill is greatest for week one, and continuously decreases with longer
lead times, except for minor subseasonal variations in the central MDR. For the Gulf of
Mexico, the improvement in skill from the purely statistical to the statistical–dynamical
model is 4.5 to 6.5 (0.4 to 3.2) times greater on the medium (subseasonal) range than
the improvement from the CSCopt model to the purely statistical model. For the central
MDR, the ratio of improvements is 1.8 to 5.2 (0.2 to 3.8) on the medium (subseasonal)
range. Even though both logistic regression models are beaten by the S2STCcal model at
week one, they outperform all benchmark models from week three (two) on in the Gulf of
Mexico (central MDR). Note that a simple approach to obtain equivalent skill for week
one and two would be to include the S2STCcal forecasts as a predictor to the logistic
regression models.

A final comparison between the above findings for potential (measured by the AUC)
and actual predictive skill (measured by the BSS) corroborates the advantage of combin-
ing the two perspectives for validation. The S2STC(cal) model clearly beats the hybrid
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model in terms of BSS in both subregions at week one, but lacks potential skill with re-
gard to the AUC measure. This means that a scale-based validation (here based on the
BSS) favors the dynamical model approach, whereas a rank-based validation (here based
on the AUC) assesses the hybrid model approach to yield better results for week-one fore-
casts. On the subseasonal time scale, the dynamical model performs worse than the other
model types regardless of whether potential or actual predictive skill is concerned. In the
course of the ROC analysis, it has been concluded that the CSCopt model is the better
choice given the high agreement of its ROC curve with those of the statistical-dynamical,
the purely statistical models. This, however, cannot be confirmed in terms of actual pre-
dictive skill as the scale-based validation demonstrates the benefit of using NWP-based
predictors in the hybrid model approach on subseasonal lead times.

6.3.4 Skill decomposition

As described in Section 4.4.3, the BS can be decomposed into three additive contribu-
tions, namely miscalibration (MCB), uncertainty (UNC), and discrimination (DSC), the
latter entering with a negative sign. When plotting these components as stacked bars (Fig.
6.9), the models can be examined with respect to their degree of miscalibration (MCB) as
well as their ability to discriminate between TC occurrence and non-occurrence (DSC).
The UNC component is solely determined by the sample climatology, i.e. by the ob-
servations in the validation dataset, and hence independent of model and forecast week.
The discussion will hence primarily focus on MCB and DSC components. Note that a
perfect model would be able to compensate for the UNC component and a possible mis-
calibration by an equally large DSC component, resulting in BS=0. In the following, BS
decomposition results are discussed for the central MDR, in particular to elucidate which
component is crucial for the subseasonal skill of the statistical-dynamical model (i.e. re-
duced MCB or increased DSC). Results for model predictions in the Gulf of Mexico can
be found in the appendix (Fig. A.1.6). The UNC component is slightly smaller in the
central MDR than in the Gulf of Mexico (0.103 vs. 0.111), indicating that the TC occur-
rence prediction problem in the central MDR is the inherently easier one among the two
subregions.

For the central MDR (Fig. 6.9), the first thing to note is that the DSC component is
larger than the MCB component for all models and forecast weeks, which yields a BS less
than the UNC component. As for the models based on the climatological seasonal cycle
(Fig. 6.9a+b), the version applying the locally optimized smoothing leads to stronger
miscalibration, but it overcompensates for this with an even stronger ability to discrimi-
nate between TC occurrence and non-occurrence, resulting in a better BS for the CSCopt
model. The marked decline in BS of the dynamical models with increasing forecast week
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Figure 6.9: BS decomposition as a function of forecast week for the (a) CSC, (b) CSCopt, (c)
S2STC, (d) S2STCcal, (e) purely statistical, and (f) statistical–dynamical model,
respectively, validated in the central MDR. The BS (black line) for each week is
obtained by summing up the respective uncertainty (UNC; gray), miscalibration
(MCB; blue), and discrimination (DSC; red) components. Note that the DSC
term has a negative sign. For more details on BS decomposition, see Section
4.4.3.
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is not primarily due to an increase in miscalibration but to a decrease in discrimination
(Fig. 6.9c+d). This is the reason why the IDR-based calibration cannot prevent the sharp
drop in BS despite the noticeable improvement in the MCB component. Even though the
S2STCcal model is the best calibrated at all leadtimes, its subseasonal predictions are less
skillful compared to the purely statistical and the statistical-dynamical models, which can
be attributed to its generally smaller DSC components. When compared to the CSCopt
model, the decomposition patterns for the purely statistical approach are fairly similar
results, whereas the dynamical model component in the hybrid approach clearly leads
to a generally reduced miscalibration but also to a better discrimination on the medium
range.

6.3.5 Relevance of predictor groups

While a detailed analysis of predictor relevance is beyond the scope of this study, a simple
approach elucidates the main sources for the predictive power of the statistical–dynamical
model. Figure 6.10 provides insight into incremental improvements when successively
including the predictor categories, summarized in Fig. 6.3, to the potential predictor set,
from which the sequential predictor selection can choose the optimal subsets. Note that
the inclusion of additional predictors may increase the degree of multicollinearity in the
predictor set, which hence does not allow any conclusions to be drawn about potential
deficiencies in predictive skill for the added category. In contrast, if an added predictor
group improves skill, the improvement can clearly be attributed to the predictive skill
inherent in the newly added group, regardless of whether multicollinearity is increased.

Adding the GPI predictors to the CSCopt base predictor in the Gulf of Mexico already
outperforms the purely statistical approach, which chooses from the full set of past data
predictors, at all lead times (Fig. 6.10a). In the central MDR, the oceanic predictors are
included as the first group, which yields model skill that exceeds the purely statistical
approach on the subseasonal timescale, and is almost comparable on the medium range
(Fig. 6.10b). The majority of the subseasonal skill in the statistical-dynamical approach
can be vastly attributed to the GPI (oceanic) predictor group for the Gulf of Mexico
(central MDR). The inclusion of the GPI predictors as the second group in the central
MDR leads to further improvements on the medium range, whereas skill increase by
oceanic predictors added for the Gulf of Mexico is negligible. On the medium range,
another substantial fraction of the skill in both subregions results from adding information
on tropical wave modes.
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Figure 6.10: As in Fig. 6.8, but only the CSCopt, purely statistical, and statistical–dynamical
models are shown in black, orange, and red lines, respectively, relative to the
MSC model. For the latter, improvements in BSS, when successively including
the predictor categories (see Fig. 6.3) to the sequential predictor selection, are
illustrated by grayish shadings. Note that (a) and (b) differ in that the order of
inclusion is reversed for the first two predictor groups. For better visualization,
different y-axis ranges were used. Reprinted from Maier-Gerber et al. (2021).
© 2021, American Meteorological Society. Used with permission.

6.3.6 Economic value

As described in Section 4.4.4, the choice of pthres = C/L results in the maximum achiev-
able economic value only if the corresponding probabilistic forecast model is calibrated.
Therefore, in accordance with the results presented in Section 6.3.1, the uncalibrated
S2STC model cannot be considered in the following discussion of the envelope curves
constructed for the economic values of each model. As climatological models are deemed
to be calibrated by definition, the CSCopt model is not rejected for this analysis, although
it has a tendency to underforecast TC occurrence for forecast probabilities exceeding the
mean observed relative frequency of the respective subregion (cf. Fig. 6.6).

The overall maximum economic value Vmax is achieved for a user with the cost-
loss ratio of C/L = ȳ, and thus for 0.133 in the Gulf of Mexico and 0.118 in the cen-
tral MDR, respectively, independent of the model and forecast week (Fig. 6.11). For
week-1 forecasts and C/L ' 0.1, the S2STCcal model has the highest economic value
in both subregions, followed by the statistical-dynamical, the purely statistical, and the
CSCopt models in descending order (Figs. 6.11a+b), respectively. While the purely
statistical model closely resembles the curve of the CSCopt model with an extension be-
tween C/L ' 0.2−0.5, the dynamical predictors used in the statistical-dynamical model
lead to differences in V up to about 0.3 (0.2) in the Gulf of Mexico (central MDR). Be-
cause the S2STCcal envelope curve quickly drops below zero for C/L < ȳ, users located
in this range will have greatest benefits when making decisions based on the statistical-
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dynamical models.
For week two, the economic value associated with the S2STCcal model still slightly

exceeds the one of the statistical-dynamical model in the Gulf of Mexico, but it is out-
performed already in the central MDR, in particular for C/L > 0.2 (Figs. 6.11c+d).
Another difference between the two subregions at week two is that Vmax is almost equal
for all models in the central MDR, whereas the S2STCcal and CSCopt models still differ
in Vmax by more than 0.1. With further increasing lead time, the S2STCcal forecasts
lose their economic value, and eventually fall below the climatological envelope curves
at week four (Figs. 6.11e+f), which is independent of the forecast week.

What stands out at week four is that no forecast model exhibits an economic value to
users with a cost-loss ratio greater than 0.3 in the Gulf of Mexico and 0.5 in the central
MDR, respectively. Becoming more and more congruent with the CSCopt model for
greater lead time, the purely statistical and statistical-dynamical models are only useful
for users with C/L located at the right-side tail of the CSCopt envelope curve, with
the greatest benefit from the statistical-dynamical model in the central MDR. Figures
showing results for the remaining weeks three and five can be found in the appendix (Fig.
A.1.7).
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Figure 6.11: Economic value as a function of cost-loss ratio for the CSCopt (black),
S2STCcal (darkblue), purely statistical (orange), and statistical–dynamical (red)
models, respectively, calculated for (a+b) week-1, (c+d) week-2, and (e+f)
week-4 forecasts in (a+c+e) the Gulf of Mexico, and (b+d+f) the central
MDR subregions.
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7. Subseasonal forecasting of
accumulated cyclone energy

7.1 Benchmark models

As in Section 6.1, a set of benchmark models is created for the ACE target variable
to compare the predictive performance of the newly developed models with appropriate
references. With climatological models on the one hand, and NWP models on the other,
two fundamentally distinct approaches are considered for that purpose, and these are
described in the following in their original and optimized versions. In addition, a trivial
model is deployed to provide a reference for clarifying to what extent climatological
information is valuable when predicting the ACE distribution.

7.1.1 Trivial model

Probably the most trivial approach to generate a predictive probabilistic distribution for
ACE is to define a model by a PDF of the form

p̂(ACE) =

1, ACE = 0

0, ACE > 0.
(7.1)

This model, hereafter referred to as ZEROS model, assumes certainty regarding its pre-
diction of ACE = 0, and is thus equivalent to a deterministic forecast. Because its
formulation does not consider any information other than the stated assumption, i.e. that
no TC occurs, it serves as reference to assess how rare ACE > 0 actually is in the target
variable, and hence how other models containing more information perform compared to
this trivial approach.
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7.1.2 Climatological forecasts

Under the assumption of stationarity, i.e., that the distribution of the target variable is not
subject to long-term changes, climatological information can be used to define bench-
mark models, especially for longer lead times. The empirical CDF predicted by a clima-
tological model is composed of past observations, and is thus independent of the target
forecast week. For the present application, all climatological models are based on the
1968–2017 period of the IBTrACS dataset. In analogy to the definition of the MSC
model for TC occurrence, a very simple approach to create a climatological reference
model for ACE is to use all observations of the 50 North Atlantic hurricane seasons con-
sidered. Because this way the same probability distribution is predicted throughout the
season, this climatological model will hence be referred to as full-season probabilistic
climatology (FSPC). To allow for seasonal variations in the composition of the empirical
distribution, a second climatological model combines observations from the reference
period for a given day of year, and is hereafter referred to as probabilistic climatology
(PC).

As was shown in the previous chapter for the CSC model, the 50-year reference period
used to build the climatological models is not sufficient to obtain physically reasonable
variability over the season. Because of the problem of sparse observations that are typi-
cally available for such climatological models, but with a focus on tropical rainfall, Vogel
et al. (2018) and Walz et al. (2021) suggest to add past observations of ±x days relative
to the day of year of interest. This inclusion of data from adjacent days is thought to
make the resultant empirical climatological distribution more robust, and the approach
is therefore applied as a third climatological benchmark, with the corresponding model
being referred to as extended probabilistic climatology (EPC) of window length x. While
EPCs with small window lengths suffer from the same problem as the PC, EPCs with
larger window length increasingly loose the ability to represent seasonal variability. The
optimal window length for an EPC is identified by minimizing the CRPS for each subre-
gion separately. The best performing EPC (hereafter are referred to as EPCopt) is found
for a window length of ±21 days in the Gulf of Mexico, and of ±9 days in the central
MDR (Fig. 7.1). The larger window length in the Gulf of Mexico indicates that the
empirical distribution composed by the EPC approach requires more data to become ro-
bust, i.e. to more closely resemble the underlying climatological distribution of ACE. In
contrast, good resemblance seems to be achieved with less data necessary in the central
MDR, which is likely to be due to the more pronounced seasonal cycle. These results
are in qualitative agreement with those obtained for the smoothing of the CSC (see Sec-
tion 6.1.1), where the optimal window length was also found to be twice as large in the
Gulf of Mexico. Since all models in this study are validated in a CV mode with 20 folds
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Figure 7.1: CRPS (104kt2) of the EPC model for a range of window lengths for (a) the Gulf
of Mexico, and (b) the central MDR, respectively. The red dot indicates the
minimized CRPS and thus the optimal window length determined.

(see Section 4.3), and climatological models are constructed from observations, the ob-
servations of the particular CV-fold must be excluded. This results in 20 versions of the
climatological model, but differences in the composition of the probability distributions
are negligible (not shown).

7.1.3 Dynamical forecasts

In addition to climatological models, S2S ensemble reforecasts are used to provide NWP-
based benchmarks as a second type of reference. For these type of models, an empirical
distribution of ACE is composed of the 10 perturbed forecasts and the one control fore-
cast, i.e. from 11 members in total. As mentioned in the previous chapter, TCs identified
in the S2S dataset suffer from a systematic underestimation of their intensity. While this
issue could be easily fixed through a lowered threshold for tropical storm strength in case
of TC occurrence prediction in Section 6.1.2, a bias correction of ACE derived from S2S
forecasts requires to adujst the full TC intensity distribution. Like in Lee et al. (2018),
this is achieved in the present study by applying a quantile mapping between the life-
time maximum intensity (LMI) of the 1998–2017 TCs predicted in the S2S and observed
in the IBTrACS dataset, respectively. Since S2S forecasts range out to 46 days, and the
longest lifetime of a North Atlantic TC recorded was 27.75 days (AOML, 2021), the fore-
casts should be long enough to capture a TC’s LMI. Because the S2S ensemble members
are exchangeable and therefore indistinguishable, the forecasted LMIs are pooled across
the ensemble dimension before calculating the mapping. Figure 7.2 shows that, for any
quantile, the S2S model predicts TCs to be considerably weaker than observed, with the
CDF reaching 100% at 96 kt, whereas the largest value in the observed CDF is 160 kt.

Results of the window length optimization used for the EPC benchmark model re-
vealed that an inclusion of additional data around a given day of year increases the pre-
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Figure 7.2: CDF (%) of the observed (black) and S2S-predicted (green) LMI, respectively.
The gray dotted lines indicate the quantile-based mapping that corresponds to an
observed intensity of 34 kt, i.e. the minimum intensity for a cyclone to contribute
to ACE.

dictive performance, due to a more robust representation of the climatological proba-
bilistic distribution. Since the S2S reforecasts come with an 11-member ensemble, the
question arises whether this ensemble size is sufficient to resemble the underlying distri-
bution of the target variable. To answer this question, subsets are generated consisting
of npert perturbed members randomly drawn from the original 10 perturbed members
without replacement, plus the one control forecast. With npert ranging from 0 (i.e. the
control reforecast only) to 10 members (i.e. the full S2S reforecast ensemble), the effect
of the ensemble size on the performance can be assessed (Fig. 7.3). In both subregions,
the CRPS improves significantly over the control forecast with the addition of the first
perturbed forecasts, but degressively thereafter. Because the S2S ensemble size is limited
and the behavior for npert > 10 hence cannot be determined, the indication of converging
CRPS curves in Figure 7.3 suggests that the 11-member ensemble should be sufficient to
compose a robust empirical distribution for ACE (hereafter referred to as S2SACE).

A priori, it cannot be ruled out that predictions of the S2SACE model do not suffer
from systematic errors. Therefore, a second version of this model is generated, here-
after referred to as S2SACE-SPP, statistically post-processing the original S2S ensemble
forecasts. The post-processing is implemented in form of IDR, where all 11 forecast
members are treated as individual covariates. Because IDR usually performs better on
larger datasets, gridpoints are pooled for model training within each of the two subre-
gions, like it is done during calibration of the predicted probabilities of the S2STC model
in the previous chapter. However, the pooling strategy is dropped for the prediction mode,
so that forecasts are generated by the statistical post-processing model at every gridpoint
separately. To apply the full set of forecast verification tools introduced in Section 4.5,
the predictive distribution, which is given in form of a piecewise constant CDF, is repre-
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Figure 7.3: CRPS (104kt2) for different sets of randomly drawn S2S sub-ensemble reforecasts
(see text for details).

sented by a sample of size 1000 for pragmatic reasons. The sampling units of the unkown
PDF are generated through inverse transform sampling, a method in which random draws
from a standard uniform distribution are used as input for the inverse CDF of the predic-
tive distribution.

7.2 Statistical model development

7.2.1 Two-part modelling approach

As pointed out in Section 4.1.1, the key challenge for statistical models in predicting
the probability distribution of the target variable ACE is to accurately forecast the large
point mass at zero along with the quickly dropping distribution for ACE > 0. Due to
the discontinuity at ACE = 0 and the gap resulting from the required minimum TC
intensity (≥ 34 kt), we split the modelling of the distribution of ACE into two parts.
Since logistic regression models have been developed in the previous chapter already, it
stands to reason that they are reused for the first part to predict the probability for TC
occurrence p̂TCocc. As described in detail in the Section 7.2.2, the second part is then
concerned with modelling the distribution for ACE > 0 using a truncated regression –
an approach often used for censored target variables (e.g., Cragg, 1971; Tobin, 1958).

Similar to the S2SACE-SPP model, the predictive distribution of the two-part model
is represented through a finite sample of size 1000 for validation purposes. This sample
size is sufficient for representation, since deviations in validation results are negligible
for larger sample sizes, and interpretations remain unchanged. Technically, the sample
consists of 1000 × (1 − bp̂TCocce) sampling units for ACE = 0, and 1000 × bp̂TCocce
samples for ACE > 0. The latter are obtained through inverse transform sampling, as is
done in case of the S2SACE-SPP model (cf. Section 7.1.3).
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7.2.2 Truncated logistic distribution regression

As motivated in Section 2.3.1, carefully selecting the type of distribution is a key ele-
ment for parametric modelling. Although ACE is used in many studies, rarely an at-
tempt is made to model its distribution. Villarini and Vecchi (2012) though test gamma,
Gumbel, lognormal, and Weibull distributions (Krishnamoorthy, 2006) when develop-
ing a statistical-dynamical model for seasonally aggregated basinwide ACE, and find the
gamma distribution to perform best. However, our gridded framework with a 7.5°-radius
for TC evaluation and the aggregation over individual forecast weeks yields a distribu-
tion for ACE that certainly differs from the one modelled by Villarini and Vecchi (2012).
While seasonal ACE usually takes values greater than zero, as it is climatologically very
likely that at least some TCs occur during the hurricane season, the probability distri-
bution for weekly ACE is characterized by a large point mass at zero. But since we do
not consider ACE = 0 for the second part of the model, weekly ACE is rendered into a
positive target variable and we hence fit a logistic distribution left-truncated at zero. The
logistic nature is chosen as the definition of ACE is tightly coupled to wind speed, and the
truncated logistic distribution has turned out to be advantageous to other predictive distri-
butions when post-processing ensemble forecasts for wind speed (Scheuerer and Möller,
2015). But because wind speed is used squared in the definition of ACE, the distribution
of ACE is more skewed and has a higher kurtosis compared to the distribution of wind
speed. The fact that ACE sums over multiple instances, however, somewhat mitigates
these deviations, so that it is reasonable to choose the truncated logistic distribution for
modelling weekly ACE as well. A truncated normal distribution has also been tested
but was no longer pursued due to frequently raised convergence issues occurring in the
boosting process, which is described in Section 7.2.3.

The PDF of the logistic distribution is defined as

p̂(y, µ, σ) = e−(y−µ)/σ

σ (1 + e−(y−µ)/σ)2 , y ∈ R, (7.2)

and the corresponding CDF as

P̂ (y, µ, σ) =
(
1 + e−(y−µ)/σ

)−1
, (7.3)

where µ and σ are the location and scale parameters, respectively, thus constituting a two-
parametric model. Following the guideline of keeping the model as simple as possible
(cf. Section 2.3.1) and in view of the lower predictability on subseasonal time scales,
accurate modelling of these two parameters, representing the first and second statistical
moments, is considered sufficient.
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When ACE is truncated at zero, the corresponding left-truncated PDF is obtained by
modifying Eq. (7.2) as follows

p̂trunc(y, µ, σ) = p̂(y, µ, σ)
1− P̂ (0, µ, σ)

, y > 0, (7.4)

where y is the ACE. As with the development of the logistic regression models for TC
occurrence in Chapter 6, and thus the first part of the two-part model, the difference
between the statistical-dynamical and purely statistical approach in the second part also
lies in the predictor set that is used to define the link functions. Using the predictors
developed in Chapter 5, the location parameter µ is modelled as

µ = xTα = α0 + x1α1 + · · ·+ xPαP , (7.5)

where x = (1, x1, . . . , xP )T contains an intercept term and the values xi, i = 1, . . . , P ,
of the P predictors, and α = (α0, α1, . . . , αP )T is the vector including the intercept α0

and the regression coefficients αi, i = 1, . . . , P , of the predictors.

Since there is no reason to assume the uncertainty in the ACE distribution modeled
by the scale parameter σ to be constant, a heteroscedastic model is defined, i.e., σ also
depends on various predictors. In ensemble model output statistics (EMOS; Gneiting
et al., 2005), the usual approach is to include the ensemble standard deviation of the fore-
cast variable as a predictor. We want to be less restrictive a priori in terms of potentially
relevant predictor variables and define a scale model that uses the full set of developed
predictors.

log(σ) = xTγ = γ0 + x1γ1 + · · ·+ xPγP , (7.6)

where γ = (γ0, γ1, . . . , γP )T is the vector including the intercept γ0 and the regression
coefficients γi, i = 1, . . . , P , of the predictors. Note that a logarithm transformation is
used in Eq. (7.6) to ensure that σ > 0. While maximum likelihood estimation was applied
to fit the logistic regression model for TC occurrence in Chapter 6, the CRPS is used to
formulate the loss function when estimating the parameters defined in Eqs. (7.5) and
(7.6). Maximum likelihood estimation was also tested but resulted in either comparable
or less skillful models than those for which the CRPS was minimized.

7.2.3 Solver-integrated predictor selection

Although the optimization of the loss function could be performed with a variety of
solvers, the nonhomogeneous gradient boosting algorithm proposed by Messner et al.
(2017) is deployed here for the following reason. Equations (7.5) and (7.6) are formu-
lated such that all developed predictors are included in the model for the location and
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scale parameter, respectively. To avoid including too many predictors, which is prone to
overfitting, a strategy is needed to automatically select only relevant predictors. While for
the statistical TC occurrence models in Chapter 6 relevant predictors are determined by
using sequential predictor selection, we refrain from applying this time-consuming opti-
mization scheme when selecting predictors for the truncated logistic distribution model
for ACE. Using the nonhomogeneous gradient boosting algorithm has the advantage that
only the most relevant predictors are included in the model during the iterative optimiza-
tion of the loss function, although the entire predictor pool is provided to the algorithm.

Initially, regression coefficients in α and γ are set to zero, and then only the coeffi-
cient of the currently most relevant predictor is adjusted in each iteration. The relevance
of each predictor is determined through calculating the correlation of its value with the
negative partial derivative of the loss function with respect to either µ or σ, depending on
whether the predictor is included in Eqs. (7.5) or (7.6). For each of these equations, the
predictor with the highest correlation is considered to be most relevant. The correspond-
ing coefficient is then modified by adding to the current value the correlation coefficient
multiplied by a factor for the step size ν. Bühlmann and Hothorn (2007) suggest to use
ν = 0.1 for the step size, but ν = 0.05 has proven to be more suitable for the current ap-
plication, as a reduced boosting increment makes the convergence more stable. Note that
all predictors and the target variable are standardized beforehand based on the training
data, since only then the gradient can be linearly approximated by using the correlation
coefficient. In the final step of each iteration, it is examined whether either the modi-
fication of the best predictor from the location model or the scale model yields a lower
CRPS, and thus only the regression coefficient of the overall best-performing predictor is
actually updated.

This process is repeated a predefined maximum number of iterations mstopmax. In
contrast to Bühlmann and Hothorn (2007), we perform the boosting with a three times
larger mstopmax = 300 for the statistical-dynamical model to compensate for the halved
step size ν, and thus for the reduced boosting increments. Because the number of pre-
dictors in the predictor pool of the purely statistical model is only half as large as for
the statistical-dynamical model, mstopmax = 150 is used for the purely statistical model
to achieve a roughly comparable degree of maximum boosting. Once the boosting algo-
rithm is stopped aftermstopmax iterations, we determine the optimal number of iterations
mstopopt by the iteration with the lowest AIC. Ideally, it represents a good balance be-
tween too few predictors selected (resulting in a model lacking skill by running too few
iterations), and too many predictors selected (resulting in overfitting by running too many
iterations). Using the AIC as the stopping criterion complements the CRPS-based loss
function, as this adds the aspects of model performance and prevention of overfitting to
the aspects of improving calibration and sharpness during model selection.
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The remainder of this subsection presents and discusses the resulting standardized
coefficients averaged over the 20-folds of the CV. Although the full predictor pools are
provided to the location model, for both subregions and model approaches, none of them
is selected to enter Eq. (7.5) with a non-zero coefficient. Even the probability for TC
occurrence is not selected for the location model when provided as an additional predictor
(not shown), which highlights the challenge of predicting weekly ACE. The location
model hence degenerates to the intercept, µ = α0, where α0 takes the value −39.89
(−41.41) in the Gulf of Mexico (central MDR), not varying with forecast week or model
approach. The location model being independent of the predictors developed together
with the fact that several predictors are selected as relevant for the scale model (as will be
discussed in the following) proves that the prior assumption of heteroscedasticity is not
just well founded but essential for appropriate modelling of the probability distribution
of ACE.

While an l2-regularization term is used for the logistic regression model for TC oc-
currence (see Section 6.2.1), the nonhomogeneous gradient boosting algorithm applied
in this chapter more closely resembles the behaviour of an l1-regularization (Hastie et al.,
2009). In the case of multicollinearity between predictors, this results in one of every two
strongly correlated predictors being chosen in preference to the other. For this reason,
it is important to point out that the relevance of the selected predictors discussed below
cannot be understood as conclusively causal, but only as their importance for optimizing
the statistical model developed. A more in-depth analysis would be necessary to reveal
causal relationships, but this is beyond the scope of this study. On the one hand, predictor
coefficients close to zero may indicate a lack of relevance, but on the other, it is also pos-
sible that some coefficients of the 20 folds have opposite sign, thus cancelling out when
their regression coefficients are averaged across folds. The discussion will hence focus
on predictors, for which the absolute amount of the standardized coefficients exceeds 0.1,
and only mention their averaged sign if negative.

Figure 7.4 shows the results of the solver-integrated predictor selection for the scale
model of the statistical-dynamical approach. The intercept γ0 (not shown) for week 1,
2, 3, 4, and 5 is 0.77, 0.96, 0.99, 0.99, and 0.97 in the Gulf of Mexico, whereas it is
0.57, 0.59, 0.47, 0.48, and 0.50 in the central MDR, respectively. Except for the mean
Kelvin wave predictor in the Gulf of Mexico, every predictor has been selected at least
once in any of the five forecast weeks considered.

In the Gulf of Mexico (Fig. 7.4a), the mean MDR SST is found to be the most relevant
predictor throughout all forecast weeks, with standardized coefficients ≥ 0.2 at week 1
and ≥ 0.3 beyond. At week 3 and 4, the corresponding predictor of the ensemble stan-
dard deviation also contributes more strongly. In terms of the tropical wave predictors,
coefficients are mostly positive. Greater relevance appears to be for the MRG/TD wave
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Figure 7.4: Predictor relevance in the scale model determined by the solver-integrated selec-
tion for the statistical-dynamical approach for week one to five in (a) the Gulf
of Mexico, and (b) the central MDR, respectively. Colors indicate the standard-
ized regression coefficient of the selected predictor averaged over the 20 folds of
the cross-validation. The area of each circle is proportional to the number of
folds having selected the predictor, with the diameter spanning the width of gray
square if all folds have it. If no circle is plotted, the predictor was not chosen in
any of the folds. Note that the intercept coefficient is not shown but stated in
the text.

mean predictor in week 1, probably due to the imprint of the TCs forecast by the S2S
model, which themselves project onto this wave type. However, beside standard devi-
ation of low-frequency modes at week 2 and mean ER waves at week 5, no prominent
relevance can be attributed to tropical waves in this subregion otherwise. Furthermore,
the standard deviation of 850-hPa absolute vorticity contributes with higher coefficients
in week 5, and the mean 200-500-hPa PV with negative coefficients on the medium range.

In the central MDR (Fig. 7.4b), coefficients for the mean MDR SST predictor are
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Figure 7.5: As in Fig. 7.4, but for the purely statistical approach.

also strikingly high, but with greater relevance only after week 2 as opposed to the Gulf
of Mexico. The relevance of the mean MDR SST predictor on the subseasonal time scale
is accompanied by the mean local SST predictor, as well as negative coefficients for the
mean Nino12 SST predictor. Thus, the oceanic predictor group turns out to be crucial
for accurately predicting the uncertainty of the ACE distribution in the central MDR.
While the climatological seasonal cycle is selected from all 20 folds in each week, it is
considered relevant by only one fold in each week in the Gulf of Mexico. This suggests
that the more pronounced climatological seasonal cycle of TC occurrence in the central
MDR not only provides a better base predictor for TC occurrence compared to the Gulf of
Mexico (shown by the larger difference in BSS between the MSC and CSCopt models in
Fig. 6.8), but that the associated predictive potential translates to the prediction of ACE
as an aggregate variable. Furthermore, the mean low-frequency modes predictor (with
negative coefficients) is selected in all weeks except week four. The mean MRG/TD
wave at week 1 is the only relevant tropical wave predictor. As for the GPI predictors,
standard deviation of 200-850-hPa vertical wind shear at week 3, as well as 850-hPa
absolute vorticity (mean & stddev) at week 1 and 2, respectively, are associated with
more relevance for the scale parameter.

The determined relevance of predictors included in the scale model for the purely
statistical approach is shown in Fig. 7.5. The intercept γ0 (not shown) for week 1,
2, 3, 4, and 5, is 0.99, 1.02, 1.04, 1.06, and 1.05 in the Gulf of Mexico, whereas it is
0.68, 0.69, 0.74, 0.73, and 0.74 in the central MDR, respectively. In the Gulf of Mex-
ico, the local SST predictor is the only one that is assessed to be consistently irrelevant,
whereas such non-consideration occurs only for the 200-850-hPa vertical wind shear in
the central MDR. Like in the statistical-dynamical approach, the most outstanding pre-
dictor relevance in the Gulf of Mexico, with standardized coefficients (≥ 0.3) throughout
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Figure 7.6: uPIT histograms for (a) PC, (b) EPCopt, (c) S2SACE, (d) S2SACE-SPP, (e)
purely statistical, and (f) statistical-dynamical forecasts at week four in the Gulf
of Mexico. The dashed line in each panel highlights a standard uniform distribu-
tion and thus serves as visual reference to assess miscalibration.

all forecast weeks, can be attributed to the MDR SST. The second largest (negative) co-
efficients are for 200-500-hPa PV at week 3 and 4, but there are no salient contributions
beyond that. Although the MDR SST plays a special role in the central MDR as well,
its relevance decreases with increasing forecast time. Another predictor in this subregion
that is of great importance for all forecast weeks is again the climatological seasonal cy-
cle. Compared to the statistical-dynamical approach, the Nino12 SST predictor retains its
attributed relevance, but the local SST receives lower coefficients. Apart from these con-
sistently relevant predictors, a higher coefficient is determined at week 3 for the MRG/TD
wave.

7.3 Model comparison

7.3.1 Calibration

All models forecasting the distribution of ACE are first assessed in terms of their cal-
ibration before the validation is concerned with their predictive skill. As described in
Section 4.5.1, this is carried out by calculating PIT values and analyzing their distribu-
tion on the unit interval. Figure 7.6 depicts uPIT histograms for week-four forecasts in
the Gulf of Mexico. Week four has been chosen to examine calibration on a subseasonal
lead time, but results are qualitatively consistent for the other forecast weeks considered
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(not shown). Comparing with the shape for a perfectly calibrated model, which is in-
dicated by the dashed line, the distributions of the displayed histograms (Fig. 7.6a-c)
reveal an underforecasting by the probabilistic climatologies (PC and EPCopt) and the
non-post-processed S2S forecasts (S2SACE). The reason that strong deviations only oc-
cur for bins & 0.8, and not over the entire unit interval (as in Fig. 4.6) is that there is
generally a high number of forecast instances where the observation and a large portion
of the sample units are tied, in which case the PIT values are drawn randomly (see Sec-
tion 4.5.1 for details). While the miscalibration of the S2SACE model is not surprising,
since NWP predictions are frequently uncalibrated and hence must be corrected by sta-
tistical post-processing, climatological models should be calibrated by definition, as they
are obtained from past observations of the target variable. As was speculated for the un-
derforecasting bias of the CSCopt model when predicting TC occurrence (cf. reliability
diagrams in Fig. 6.6), the miscalibration can probably be explained by a positive climato-
logical trend between the extension (1968-1997) and the validation (1998-2017) period.
Applying IDR-based statistical post-processing to the uncalibrated S2SACE model in-
deed yields a well-calibrated S2SACE-SPP model (Fig. 7.6c+d). The uPIT histograms
for the purely statistical and statistical-dynamical approach (Fig. 7.6e+f) indicate that the
two-part model developed produces well-calibrated predictive distributions for ACE, due
to the fact that the optimization of the loss function is based on the CRPS. The distribu-
tions of the uPIT histograms for the central MDR (Fig. 7.7) are overall consistent with
the results for the Gulf of Mexico, and so is their interpretation. The most notable dif-
ference is in the degree of miscalibration, as the two probabilistic climatologies and the
S2SACE model exhibit smaller deviations in the rightmost bins of the uPIT histograms
(Fig. 7.7a-c) compared to the distributions for the Gulf of Mexico.

7.3.2 Potential predictive skill

The predictive skill of the competing models shall first be assessed in terms of potential
skill using UROC curves. Although the UROC curve concept generalizes from the binary
to the real-valued case, it is only applicable to single values but not to full distributions as
predicted for ACE in this study. UROC curves are hence constructed for the mean, i.e. the
first statistical moment, of the forecast distribution in the following, to realize a first-order
validation, keeping in mind that statements regarding potential predictive skill cannot
be conclusive. Figure 7.8 provides UROC curves and corresponding CPA values for
four distinct models at week one and four in the two validation subregions, respectively.
Results for the remaining forecast weeks can be found in the appendix (Fig. A.2.3).
Note that results for the S2SACE-SPP model are not presented and discussed separately
as uROC curves, and thus CPA, are invariant under strictly monotonic transformation
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Figure 7.7: As in Fig. 7.6, but for the central MDR.

(Gneiting and Walz, 2019), which consequently applies to IDR-based post-processing
(Henzi et al., 2021). Thus, all results discussed for the S2SACE model are likewise valid
for the S2SACE-SPP model.

All models displayed have skill clearly better than random prediction, as indicated
by the fact that all the curves are above the diagonal and therefore CPA values well are
above 0.5. At forecast week 1 (Fig. 7.8a+b), the statistical-dynamical model reaches the
highest CPA value among all models in the Gulf of Mexico (0.85) and the central MDR
(0.87). While the S2SACE model is only 0.01 and 0.02 worse, respectively, there is a
substantial difference between the subregions in terms of how much worse the EPCopt
model performs. The difference in CPA values between the statistical-dynamical and the
EPCopt model is 0.16 in the Gulf of Mexico and 0.03 in the central MDR, highlighting
a greater potential in the Gulf of Mexico at shorter lead times for improving forecast
skill over a climatological model by exploiting S2S-based predictors. Despite minor
differences in CPA values, the statistical-dynamical and the S2SACE model differ in the
shape of their UROC curves, in that the S2SACE model performs better for false positive
rates . 0.2 whereas the statistical-dynamical is better for & 0.2. For the most part,
the UROC curve of the purely statistical model is nearly congruent with the curve of the
EPCopt model, except for some deviations at very low and high false positive rates. Thus,
the hybrid approach clearly has greater potential predictive skill than the purely statistical
approach on shorter time scales.

Because the EPCopt model, and thus its CPA, is independent of the forecast week, it
serves as a helpful visual reference for the assessment of how much the UROC curves of



7.3. Model comparison 87

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

a) Gulf of Mexico (week 1)

EPCopt                0.69
S2SACE                0.84
Purely statistical    0.69
Statistical-dynamical 0.85

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

b) Central MDR (week 1)

EPCopt                0.84
S2SACE                0.85
Purely statistical    0.82
Statistical-dynamical 0.87

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

c) Gulf of Mexico (week 4)
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Figure 7.8: UROC curves for the forecast mean of the EPCopt (black), the S2SACE (light-
blue), the purely statistical (orange), and the statistical–dynamical (red) model,
respectively, at week one (a+b) and week four (c+d) in the Gulf of Mexico (a+c)
and central MDR (b+d) subregion. The numbers in the legend of each panel
show the model-specific coefficients of predictive ability (CPA) averaged over the
20 folds.

the other three models presented degenerate from week one to four. At week four (Fig.
7.8c+d), the curve for the S2SACE model drops well below the EPCopt curve, reaching
a CPA of only 0.63 in the Gulf of Mexico and 0.76 in the central MDR. Although the po-
tential skill of the statistical-dynamical and the purely statistical models is also noticeably
reduced in week four, their UROC curves only fall back to the EPCopt model, with the
climatological model still performing slightly better for high false positive rates. Both
statistical models only reach a CPA of 0.68 in the Gulf of Mexico and 0.82 in central
MDR, and are slightly worse (by 1 − 2%) compared to the EPCopt model. Comparing
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the week-four CPA values across the two subregions suggests that there is greater subsea-
sonal potential predictive skill for predicting the forecast mean of the ACE distribution in
the central MDR than in the Gulf of Mexico.

7.3.3 Actual predictive skill

As opposed to UROC curves, which can only be applied to a single value (such as the
forecast mean), the CRPS assesses the predictive performance of the full distribution,
while taking into account a model’s calibration and sharpness. Figure 7.9 shows a com-
parison of the CRPSS with respect to the FSPC model as a function of forecast week for
the different model types validated in the Gulf of Mexico and central MDR subregion, re-
spectively. How difficult it is to forecast ACE > 0 in general can be seen by the ZEROS
model, which assumes a CDF in form of a step function (equivalent to a deterministic
forecast) at 0 as a trivial approach, only performing 5 − 6% worse than the FSPC refer-
ence model. It shows that TC occurrence, and thus ACE > 0, is so rare that predicting
ACE = 0 with certainty is a reasonable trivial starting point. When climatological in-
formation is available, composing the predictive distribution with respect to the seasonal
cycle (as in the PC and EPCopt models) leads to better skill than based on past observa-
tions of the full season (as in the FSPC model). Although these improvements are found
for both subregions, with a greater benefit appearing in the central MDR than in the Gulf
of Mexico (plus 7−8% vs. 1−3%) due to the more distinct seasonal cycle, they are over-
all weaker compared to the improvements found when considering the seasonal cycle for
TC occurrence prediction (cf. Fig. 6.8). This suggests that modelling the seasonal cycle
is more relevant for the aspect of TC occurrence than for the additional intensity-related
aspect inherent in ACE. As is speculated for their equivalent TC occurrence models (CSC
and CSCopt in Chapter 6), the reason that the relative improvement between the PC and
the EPCopt models is considerably larger in the Gulf of Mexico is likely due to the larger
window length found to be optimal (21 vs 9 days) when composing the EPC for this
subregion, resulting in a greater relative skill improvements.

Concerning the S2SACE model, the IDR-based statistical post-processing enhances
the actual predictive skill by adding 2.0 % to 4.5 % in the Gulf of Mexico and 0.6 %
to 3.1 % in the central MDR. As one would expect in terms of the performance of a
dynamical model, the two versions of the S2S model clearly outperform all climatolog-
ical models at week one, with the S2SACE-SPP model reaching a CRPSS of 31% and
25% in the Gulf of Mexico and central MDR, respectively. However, their skill quickly
drops within the medium range forecast horizon, and the best performing climatological
(EPCopt) model already exhibits better skill than the statistically post-processed NWP
(S2SACE) model beyond forecast week two. This transition in the lead after about two
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Figure 7.9: CRPSS (%) as a function of forecast week for the ZEROS (green), PC (gray),
EPCopt (black), S2SACE (lightblue), S2SACE-SPP (darkblue), and purely sta-
tistical (orange) models, as well as for the statistical–dynamical model with (red
solid) and without the CSCopt predictor (red dotted), relative to the FSPC model,
and validated in (a) the Gulf of Mexico, and (b) the central MDR subregion, re-
spectively.

weeks is consistent with, and hence likely determined by, the regime change that was
described for TC occurrence prediction in Chapter 6.

The two-part model used in the purely statistical mode, with predictors generated
from the ERA5 dataset as described in Chapter 5, overall barely improves skill over the
EPCopt model. In the Gulf of Mexico, it yields a maximum of additional 1.8% at week
one, but from week two on, there are no considerable deviations from the CRPSS values
of the EPCopt model anymore. Although a maximum of only 1.1% is added in the central
MDR, this approach performs slightly better than the EPCopt model up to week three and
drops below only afterwards. While the purely statistical model proposed by Leroy and
Wheeler (2008) and Henderson and Maloney (2013) in the context of TC occurrence
prediction provided improvements at all five forecast weeks considered, its application
to predict the distribution of ACE proves to be of little use. It should be noted, however,
that unlike the previous chapter in which the CSCopt model was used as a base predictor,
the EPCopt model does not enter the two-part model as a predictor because itself has the
form of a full distribution.

If predictors are derived from S2S forecasts, thus constituting the statistical-dynamical
approach (red solid lines in Fig. 7.9), striking improvements in skill can be achieved com-
pared to the purely statistical approach. As can be seen from Fig. 7.9, the gain in skill
decreases with the forecast week in both subregions as the valuable information con-
tained in the initial conditions of the dynamical model becomes increasingly blurred. In
comparison to the EPCopt model, the difference in the CRPSS decreases from +17.2% at
week one to +1.1% at week three and vanishes thereafter in the Gulf of Mexico, whereas
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it steadily decreases from +9.2% in week one but still exceeds the EPCopt model by
+1.1% in week five. With the predictor pool only representing S2S-based predictions
of the necessary environmental conditions for TC activity, but not including direct S2S
predictions of ACE, the hybrid model approach is clearly worse than the S2SACE(-SPP)
model at week one. But it outperforms all other approaches in the third week in the Gulf
of Mexico, and from the second week on in the central MDR.

To assess the role of climatological information on TC occurrence, especially regard-
ing its seasonal cycle, in comparison to the S2S-based predictors, a second version of the
statistical-dynamical model is trained and validated without using the CSCopt predictor
(red dotted lines in Fig. 7.9). Over the five forecast weeks considered, the CRPSS for
this model version is decreased by only 0.3 % to 0.7 % in the Gulf of Mexico, whereas
the reduction is in the range of 1.6 % to 2.3 % in the central MDR. From this different
degree of drop in skill when removing the CSCopt predictor, it can be concluded that
the hybrid model heavily builds on the enhanced predictability that is associated with
the more pronounced seasonal cycle in the central MDR, which is also confirmed by the
higher regression coefficients for the CSCopt predictor identified in that subregion (see
Figs. 7.4b and 7.5b). Nevertheless, even without this valuable climatological information
on TC occurrence, the information contained in the NWP-based predictors is sufficient
to exceed the skill of all the other model approaches at week three in the Gulf of Mexico
and week three and four in the central MDR, underpinning the great utility of the hybrid
approach.
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8. Conclusions

The typically extreme weather associated with TCs poses a particular threat to human
life and infrastructure along affected coastlines. Early warnings are therefore necessary
so that public decision-makers can take timely action and inform the population about
evacuation plans. Operational forecasts typically focus on either short-to-medium range
warnings or address seasonal predictions of integrated TC activity. Presumably due to
lack of predictive skill in numerical forecast models, the subseasonal predictability gap
has received increasing attention only in recent years. To contribute to closing the pre-
dictability gap with regard to TC activity, the aim of this dissertation was to identify and
examine NWP-based predictors relevant for subseasonal TC activity forecasting, to de-
velop and validate a statistical-dynamical forecasting model, and to systematically com-
pare its predictive performance with a variety of distinct forecasting approaches. Fol-
lowing a review of commonly used modelling approaches for TC forecasting in Chapter
2, a hybrid model was developed for TC occurrence and ACE in Chapter 6 and Chapter
7, respectively, based on an extensive set of predictors that was developed and analysed
in Chapter 5. This chapter summarizes the findings and answers the research questions
posed in Chapter 3.

Ambient conditions supporting TC occurrence have been studied in detail for many
decades, resulting in a commonly accepted list of environmental factors. However, it
has not been analysed to date whether each of these factors remains relevant to subsea-
sonal TC predictions when extracted from dynamical forecasts. On the other hand, only
some studies set out to reveal potential links between different modes of oceanic and
atmospheric variability, and subseasonal TC activity, inspired by statistical approaches
commonly used for seasonal TC prediction. Chapter 5 aimed at combining the two ap-
proaches, namely to consider predictors representing ambient conditions as well as mod-
ulating effects from atmospheric modes of variability. Based on a literature review and
physical considerations, an extensive predictor pool was generated comprising oceanic,
tropical, and extratropical predictor groups. Predictor selection schemes were used for
both target variables to extract predictor subsets for each forecast week and subregion,
and the corresponding results allowed to assess relative predictor relevance. For TC oc-
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currence, the successive inclusion of additional predictor groups provided further insight
into how model skill builds up, which enabled the main part of the model skill to be at-
tributed to individual predictor groups. Results of these investigations led to the following
findings for research questions RQ1a-c:

RQ 1a What factors influencing TC occurrence are known in the literature, and
are they likewise relevant when corresponding predictors are generated
from subseasonal NWP forecasts?
Previous approaches to develop subseasonal TC occurrence models used
the seasonal cycle of TC occurrence probability as a base predictor (Leroy
and Wheeler, 2008; Henderson and Maloney, 2013). Although North At-
lantic SSTs closely follow this seasonal behavior, numerous studies point
out the importance of local SSTs due to air-sea interactions (e.g., Palmen,
1948; Emanuel, 1986), as well as the circulation-altering role of remote SST
patterns in the MDR or Niño regions (e.g., Shapiro, 1982; Goldenberg and
Shapiro, 1996). The interplay of conducive ambient conditions is often as-
sessed by indices such as the GPI (Emanuel and Nolan, 2004), whereas its
components were used in this study to better link the target variables to phys-
ical drivers. While some studies have examined the modulating effects of
tropical waves modes (e.g., Frank and Roundy, 2006), including the MJO
(Maloney and Hartmann, 2000), on the TC environments, their relevance
for subseasonal TC predictions needs further investigation. In recent years,
increasing attention has been given in the literature to the identified link be-
tween the extratropical Rossby-wave breaking, represented by upper-level
PV in this dissertation, and TC activity (e.g., Zhang et al., 2017a; Wang
et al., 2020).
Using forecast week four to represent subseasonal timescales, an analysis
of predictor-target correlation corroborated the basin-wide relevance of the
climatological seasonal cycle. Local and MDR SSTs are similarly relevant
with maximum positive correlations along the northern edge of the MDR re-
gion. In comparison, ENSO-related SSTs in the tropical Pacific are weaker
correlated with a negative sign, with the Niño 1+2 region achieving the high-
est absolute correlations among all Niño regions. Significant correlations for
the GPI components span from the West African coast to the Gulf of Mex-
ico, along the classical track of TCs initiated by African Easterly waves,
with a separate maximum in the western Gulf of Mexico. The sign of this
correlation pattern is positive for 850-hPa absolute vorticity and 700-hPa rel-
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ative humidity, and negative for 200-850-hPa vertical wind shear, which is
thus consistent with the definition of the GPI. Tropical wave-filtered 200-hPa
divergence squared yielded an activity measure for each wave type, which
mostly correlates with a negative sign, except for a pronounced positive max-
imum at the northern edge of the central MDR. The upper-level PV predic-
tor shows strong negative correlations in the northeastern edge of the MDR
and in the western North Atlantic north of the MDR. Because each NWP-
based predictor features significant correlation patterns with maximum val-
ues greater than 0.1 at week four, the assumption that they provide predictive
subseasonal signals, useful as input for hybrid models, is verified.

RQ 1b What are the key predictors selected by the hybrid model at each forecast
week when predicting TC occurrence and ACE, respectively?
TC occurrence: Since the CSCopt base predictor was treated as fixed, it
hence got the highest ranking in importance among all predictors by defi-
nition. Key predictors identified by the sequential predictor selection to be
relevant at most lead times in the Gulf of Mexico are standard deviation of
850-hPa absolute vorticity and mean 700-hPa relative humidity. A striking
transition occurs from week three to four, where the majority of tropical
wave, GPI, and extratropical predictors is not selected at all. In the central
MDR, mean 850-hPa absolute vorticity and mean 200-850-hPa vertical wind
shear are found to be important predictors at all lead times. A noticeable
transition occurs after week two, where local SST information and higher-
frequency tropical wave modes (Kelvin and MRG/TD) become replaced by
MDR SST and lower-frequency wave modes (MJO and ER), respectively.
ACE: In both subregions, no predictors were selected for the location model
by the solver-integrated predictor selection, highlighting the challenge of
predicting the distribution of weekly ACE and the need for a heteroscedastic
model. For the scale model, mean MDR SST is found to be the overall most
relevant predictor in both subregions, with an outstanding prominence in the
Gulf of Mexico. In this subregion, apart from mean 200-500-hPa PV on the
medium range and standard deviation of MDR SST at week three and four,
no consistent patterns of higher absolute coefficients are identified over lead
time. In the central MDR, mean Nino12 SST and mean local SST predictors
contribute with higher absolute coefficients at subseasonal lead times. As
in the TC occurrence model, the CSCopt predictor is found to play an im-
portant role at all lead times, due to the pronounced climatological seasonal
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cycle of TC occurrence. While only a few single predictors were selected
from the GPI and tropical wave groups, the mean low-frequency modes pre-
dictor appears to provide additional information that can be exploited for
skill.

RQ 1c How much does each predictor group contribute to the predictive skill of
the hybrid model?
TC occurrence: When repeating the sequential predictor selection and
training of the statistical–dynamical approach for CSCopt and GPI predic-
tors only, the model is found to already perform better than the full predic-
tor set provided to the purely statistical approach. A similar exceedance in
skill occurs in the central MDR for the subseasonal lead times, when adding
oceanic predictors first. Furthermore, the majority of the additional subsea-
sonal skill stems from the GPI predictors in the Gulf of Mexico, and from
the oceanic predictors in the central MDR. Tropical wave modes are found
to have their strongest skill contribution at medium range.

Since the initial assumption that the environmental conditions are still useful when
generating subseasonal predictors was verified, the second aim of this dissertation could
be realized, namely the development of the statistical-dynamical hybrid model. The
statistical component of the hybrid approach was implemented by a logistic regression
model for TC occurrence and a two-part model model for the predictive distribution
of ACE, respectively. Optimal subsets of predictors were determined for every fore-
cast week and subregion by running predictor selection procedures, before the statistical
models were used in forecast mode at every grid point separately. The fact that most pre-
dictors were actually selected during this procedure confirms their utility for the hybrid
approach.

The third aim of this thesis was a systematic validation and comparison of the prob-
abilistic forecasts from the different model types. While in the statistical–dynamical ap-
proach each predictor type was represented by the ensemble mean and standard deviation
of S2S ECMWF reforecasts, an analogous set of predictors was derived from ERA5 data
to train a purely statistical approach. The latter approach, already applied in previous
studies (Leroy and Wheeler, 2008; Henderson and Maloney, 2013), served as reference
to address the question whether extracting predictors from dynamical forecasts leads to
better forecasting results. A comprehensive set of various benchmark models was created
from climatologies and S2S ECMWF ensemble forecasts, which were further improved
through optimization and calibration, respectively. The full set of model types has been
validated for the Gulf of Mexico and the central MDR subregions separately, with the
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following findings obtained regarding RQ2a-f. Note that results are valid for both target
variables if not stated otherwise.

RQ 2a How well can each model discriminate between TC occurrence and non-
occurrence, and are their forecasts calibrated?
TC occurrence: Reliability diagrams indicate generally good calibrated
models for forecast probabilities smaller than the mean relative frequency
of the target variable, and increasing miscalibration at higher forecast prob-
abilities. The calibration curve of the CSCopt model indicates an underfore-
casting bias, although climatological models should be calibrated by defi-
nition, as they are derived from past realizations of the observational dis-
tribution. Thus, this bias is most likely a result of non-stationarity, i.e., a
trend between the full climatological reference and validation periods. Mi-
nor miscalibration is found for the statistical approaches, whereas the clear
underforecasting bias present in the S2STC model can be corrected by IDR-
based post-processing.
As diagnosed by means of BSS decomposition, the optimisation of the CSC
model increases miscalibration but also leads to an even better discrimina-
tion between TC occurrence and non-occurrence. The best discrimination is
given by the S2STC(cal) model at week one, but it quickly loses this abil-
ity over the medium range, discriminating worse than all the other model
types on the subseasonal timescale. A comparison of the two statistical ap-
proaches further reveals that it is the NWP-based component of the hybrid
model that improves both calibration and discrimination, particularly on the
medium range.
ACE: Analogous to the results for TC occurrence prediction, analysis of
uPIT histograms shows an underforecasting bias for the climatological and
S2SACE models, which in case of the latter is corrected through IDR-based
post-processing, while the two statistical approaches are already well cali-
brated.

RQ 2b How does the dynamical model perform over the five forecast weeks con-
sidered, and can statistical post-processing help improve the predictive per-
formance?
While the S2S ECMWF model predicts best at week one, it quickly drops
in skill thereafter due to the chaotic nature of the atmosphere blurring the
valuable information contained in the initial conditions. This considerable
subseasonal loss in skill confirms the findings of previous studies (e.g., Lee
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et al., 2018). For both target variables, the application of an IDR-based post-
processing helps to raise skill at all lead times. However, the calibrated S2S
model predictions do not exceed climatological and statistical models on
subseasonal time scales.

RQ 2c In comparison, at which forecast week does the climatological model be-
come more skillful, and is it worth optimizing its representation?
Taking seasonality into account when building climatological models results
in considerable improvements in predictive skill, in particular for the cen-
tral MDR, which is subject to a more pronounced seasonal cycle in TC ac-
tivity. On the other hand, larger skill improvements are found in the Gulf
of Mexico when the seasonal cycle is optimized by incorporating climato-
logical information from the right number of adjacent days. This suggests
that using extension methods to populate the climatological data basis is
particularly beneficial for subregions, where variations are less dominated
by the seasonal cycle, and climatological models hence suffer from under-
sampling. The optimized climatological model already outperforms post-
processed S2S forecasts from week three to four on. It therefore constitutes
a good base predictor for the development of statistical models in the context
of TC occurrence prediction.

RQ 2d Can the purely statistical modelling approach, using past data to generate
predictors, exceed the skill of the climatological model at subseasonal lead
times
TC occurrence: The purely statistical approach from (Leroy and Wheeler,
2008; Henderson and Maloney, 2013), with logistic regression models
trained on past data predictors, improves skill over the CSCopt model in
both subregions up to week five. This demonstrates the ability of statistical
models to add to the subseasonal skill present in climatological models if
past data contain predictable, longer-lived signals.
ACE: In contrast, the purely statistical approach used in the context of
the two-part model can only achieve slight improvements over the ECPopt
model up to forecast week two to three. For subseasonal forecasting, this im-
plies that data from before initialisation is not useful for the intensity-related
predictive distribution of ACE, while it may provide a limited source of skill
for TC occurrence prediction.
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RQ 2e Does the statistical-dynamical approach, i.e., generating the same predic-
tors from NWP forecasts, actually yield the putative subseasonal improve-
ments?
TC occurrence: With the statistical–dynamical approach, an even greater
increase in model skill was found over the CSCopt model at all lead times
considered, but especially on the medium range. Though this approach is
still worse than the S2STCcal for week one, despite a significant increase in
skill over the purely statistical approach, it outperforms all other models in
the Gulf of Mexico from week three and in the central MDR from week two
on. In both subregions, the subseasonal skill improvement from the purely
statistical to the statistical–dynamical approach is up to about 4 times larger
than the one from the CSCopt to the purely statistical approach. In view
of the generally lower CSCopt skill in the Gulf of Mexico, such a relative
improvement becomes even more remarkable, highlighting the value of this
approach for subregions that are less subject to a seasonal cycle.
ACE: The benefit of using NWP-based predictors leads to an outstanding
17% increase in CRPSS compared to the EPCopt model at week one in the
Gulf of Mexico, followed by a marked drop in improvements at week two,
and completely vanishes from week four on. Although the week-one in-
crease is smaller in the central MDR (up to 9%), clear improvements are
gained at all lead times from the statistical-dynamical approach. The hybrid
model is superior to all other models in the Gulf of Mexico at week three,
and in the central MDR from week two on. An experiment withholding the
CSCopt predictor resulted in a substantial decrease in skill at all lead times,
demonstrating its major importance for the central MDR due to the inherent
predictive information.

RQ 2f Which model provides the highest value for economic decision making at
each forecast week?
TC occurrence: The economic value of each calibrated model as function
of a user’s cost-loss ratio was determined based on the cost-loss decision
model introduced by Richardson (2000, 2003). Regardless of the model or
lead time considered, the maximum economic value that can be achieved is
for users at a cost-loss ratio of 0.133 in the Gulf of Mexico and 0.118 in the
central MDR. Generally speaking, a user at a cost-loss ratio of > 0.1 should
consult S2STCcal predictions at week one and two in the Gulf of Mexico and
at week one in the central MDR. For any other forecast week, the statistical-



98

dynamical hybrid model provides the most valuable information to reduce
overall economic costs, as it mainly extends the value of climatological pre-
dictions at larger cost-loss ratios.

While the statistical-dynamical model approach has been used in other contexts be-
fore, its application for TC prediction has focused on either seasonal timescales (Klotzbach
et al., 2019) or on prediction of subseasonal anomalies from climatology (Qian et al.,
2020). The model development in the present dissertation is the first attempt to bridge the
subseasonal predictability gap by a hybrid model that directly links dynamical predictors
to weekly TC occurrence and the predictive distribution of ACE, respectively. Beyond
the mere development of another - though well-founded - model approach, the strength of
the study lies in the subsequent systematic and comprehensive validation of a hierarchy
of distinct model approaches. Starting from original approaches, such as a plain mean
climatology or raw S2S model output, more sophisticated models were developed and
added to the set of benchmark models, e.g. by representing the seasonal cycle, optimiz-
ing the population strategy of the climate data basis, or statistical post-processing. The
demonstrated value of the efforts made to improve the benchmark models is two-fold. It
puts the newly developed hybrid model into strong and thus honest competition, and on
the other hand provides a more solid basis for validation, which strengthens findings and
conclusions. Methodically, established forecast verification tools were complemented by
newly developed techniques (see Sections 4.4 and 4.5), that either solved long-standing
problems (e.g. CORP approach providing optimal bins) or generalized concepts for new
fields of application (e.g. UROC curve).

The systematic comparison of original and derived model types presented has demon-
strated the great potential of statistical–dynamical modeling for a specific application of
extreme events on the subseasonal forecast horizon. Exploiting S2S forecasts to develop
a hybrid model proved to be the best strategy - at present - for probabilistic forecasting of
subregional North Atlantic TC occurrence and the predictive distribution of ACE beyond
week one to two, respectively, and may be a promising strategy for other (sub)basins and
forecasting applications as well. Despite the identified improvements in forecast skill,
predicting TC activity remains highly challenging, especially on subseasonal lead times.
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9. Outlook

To provide warnings of TC-related hazards beyond the usual operational forecast lead
times, a statistical-dynamical hybrid model was created to forecast TC occurrence and
ACE, and validated against a hierarchy of models. Despite the effort that went into model
development and forecast evaluation, some approaches and ideas, that were beyond the
scope of this dissertation, as well as limitations are presented in the following and are left
for further research.

With the spatio-temporal aggregation used to define the two target variables, the for-
mulation of the forecasting problem is beyond the level of individual TCs, but more
restricted compared to the basin-wide evaluation typically used for seasonal outlooks.
Instead of a large set of target variables, the focus was laid on a comprehensive and sys-
tematic model validation that enabled the assessment of a hierarchy of different forecast-
ing approaches. It should be noted, however, that the findings in terms of relative model
performance cannot bet readily transferred to differing target variable definitions. A clear
consensus in the TC research and forecasting community, about which variables to look
at and how they should be defined, does not exist yet (Camargo et al., 2019). Therefore,
numerous distinct approaches have been considered for this model comparison, to bridge
the time until such a consensus is hopefully reached, and new studies can more directly
build on previous results.

As necessary as conventions are, they yet can pose man-made problems that do not
necessarily occur in nature. Following a commonly accepted convention, cyclones were
only considered if they exceeded tropical storm strength (≥ 34 kt). Although this thresh-
old may be well justified empirically, it introduces an artificial separation between occur-
rence and non-occurrence, whereas nature produces cyclones on a continuous scale and
does not care about any separation. The introduction of such a threshold thus renders the
original continuous problem into a binary one, which then necessitates probabilistic fore-
casts to bring back continuity between the two classes. A better approach to formulate
the problem would be to avoid any threshold and use a continuous target variable instead.
However, this would require an observational dataset that does not yet exist, including
the parts of the tracks where the cyclones are weaker than tropical storm strength.
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The models were developed for use throughout the full hurricane season. Even though
a predictor was provided to represent the seasonal cycle, it may be worth to tailor the
statistical models to predict for specific sub-periods (e.g., early, peak, and late season).
That way, characteristic intraseasonal variations inherent in predictor variables could be
better exploited, in particular in subregions with a less pronounced seasonal cycle, such as
the Gulf of Mexico. A larger dataset than the one available in this thesis would certainly
be necessary for this approach, which is why it was not applied here.

When predicting on subseasonal timescales, the question quickly arises at what lead
time statistical models trained on slow-varying predictors are more skillful than dynam-
ical models. However, the systematic comparison of approaches highlighted the great
potential of climatological models that, in the author’s opinion, are often underrated. The
fact that a plain climatological model performed better than a statistically post-processed
state-of-the-art NWP model is remarkable, and this approach should hence be consid-
ered for other subseasonal prediction tasks as well. Before making the effort to design
any statistical or statistical-dynamical model for subseasonal predictions, it may be worth
creating and further optimizing climatological models, since they need to be computed
only once and with orders of magnitude lower computational costs.

The statistical-dynamical hybrid approach developed in this dissertation for TC oc-
currence and ACE distribution was superior in terms of subseasonal predictive skill com-
pared to all other models. Even though the utility of this approach has been clearly
demonstrated for TC forecasting, improvements and further developments can be made
to various parts and at different levels. The highest level would be to separate between
changes in the dynamical and the statistical component, which - either alone or in com-
bination - can be refined or even replaced by more sophisticated approaches to further
leverage predictive power. Regarding the dynamical model part, more predictor types and
variables could be added to the pool, and/or their ensemble distribution could be repre-
sented in ways other than by its mean and standard deviation. Moreover, predictors could
be constructed from other S2S models, and/or with potentially higher spatio-temporal
resolution if available in the future. The mean bias correction applied to the underlying
variables of the NWP-based predictors could be replaced by quantile mapping, because
forecast errors are probably different from the mean bias if extreme values are predicted.

As for the statistical component, the logistic regression and two-part models could
be replaced by other parametric, but also nonparametric, modelling approaches. Because
TC occurrence is associated with several nonlinear processes (e.g., convection, tropi-
cal wave interaction, or extratropical Rossby-wave breaking), a considerable part of the
work leading to this dissertation was dedicated to also test the predictive performance
of deep learning approaches (LeCun et al., 2015), that were expected to be able to skil-
fully model such nonlinear dependencies. Having tested different neural network (NN)
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architectures, choices for hyperparameters, and sub-regional pooling of data to increase
training datasets, NN approaches turned out to not perform any better than the logistic
regression models for TC occurrence. This is despite the fact that quite some effort has
been made in terms of model regularization, i.e., to prevent models from over- and under-
fitting. Due to the data-driven learning and the concomitant limitations for exploration
of decision making, definite conclusions as to why the NNs were unable to further lever-
age skill could not be drawn. However, it seems that the low signal-to-noise ratio in the
subseasonal ensemble forecasts and the generally low relative frequency of TC occur-
rence prevent the NNs from unfolding their capability of modelling nonlinearities. To
test whether deep learning can identify synoptic-to-planetary scale patterns as additional
source of subseasonal information, convolutional NNs (Dhillon and Verma, 2020) were
trained on the underlying dynamical forecast fields directly, thereby incorporating pre-
dictor generation into the modelling process. This approach, however, did not gain any
improvements over the logistic regression approach either. At this stage, it remains un-
clear whether deep learning models have the potential to improve subseasonal forecasts
for TC activity. A thorough investigation of deep learning models was beyond the scope
of this dissertation, and thus future research would be needed in this direction.

With its focus on the North Atlantic, this thesis validated the hierarchy of models for
a basin, in which actual and potential NWP model skill for predicting TC occurrence are
close together (Lee et al., 2018). While this fact had some advantages when drawing con-
clusions about relative improvements in skill, the question whether the hybrid approach
can lead to even higher relative improvements in other basins, where NWP models have
still great potential for improvement (e.g., the southern Indian Ocean), remains open. Fur-
ther research is needed to improve the utility of the statistical-dynamical hybrid approach
and test it for other oceans. Confirming the finding of Vitart et al. (2010), first promis-
ing results have shown that averaging methods can yield further slight improvements, as
combining predictions from different model types typically reduces variance.
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A. Appendix

A.1 Model comparison for TC occurrence
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Figure A.1.1: Same as Fig. 6.6, but calculated for week 1.
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b) Central Main Development Region (week 2)
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Figure A.1.2: Same as Fig. 6.6, but calculated for week 2.
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b) Central Main Development Region (week 3)
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Figure A.1.3: Same as Fig. 6.6, but calculated for week 3.
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Figure A.1.4: Same as Fig. 6.6, but calculated for week 5.
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Figure A.1.5: Same as Fig. 6.7, but calculated for (a+b) week 2, (c+d) week 3, and (e+f)
week 5.
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Figure A.1.6: Same as Fig. 6.9, but for the Gulf of Mexico subregion.
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Figure A.1.7: Same as Fig. 6.11, but calculated for (a+b) week 3, and (c+d) week 5.
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Figure A.2.1: Same as Fig. 7.6, but for (a,e,i,m) S2SACE, (b,f,j,n) S2SACE-SPP, (c,g,k,o)
purely statistical, (d,h,l,p) statistical-dynamical forecasts at week (a-d) one,
(e-h) two, (i-l) three, and (m-p) five.
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Figure A.2.2: As in Fig. 7.7, but for (a,e,i,m) S2SACE, (b,f,j,n) S2SACE-SPP, (c,g,k,o)
purely statistical, (d,h,l,p) statistical-dynamical forecasts at week (a-d) one,
(e-h) two, (i-l) three, and (m-p) five.
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Figure A.2.3: Same as Fig. 7.8, but calculated for (a+b) week 2, (c+d) week 3, and (e+f)
week 5.
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