KIT | KIT-Bibliothek | Impressum | Datenschutz

Measurement Data Recording and Preprocessing for Training Data Generation using ROS

Kazenwadel, Benjamin 1; Becker, Simon 1; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The ongoing development of automated machine control systems amplifies the necessity of large-scale data acquisition and
storage. Data collection and preprocessing have a major impact on the quality of the developed systems and therefore have to be optimized and monitored. Especially for machine learning systems preprocessing is a key factor to assure functionality. Our measurement setups are based on ROS and connect a variety of sensors and data sources to one network. The data collection was thereby automated with a variety of developed software tools that feature a simple graphical user interface for quality monitoring and reducing the effort for the operator during the data collection process. In this paper, we present the developed data collection tools and the preprocessing tools to convert the data into training data for neural networks to help other researchers in their data collection tasks.


Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 10.05.2023
Sprache Englisch
Identifikator ISBN: 978-83-7493-234-9
KITopen-ID: 1000158792
Erschienen in 8th International Conference on Machine Control & Guidance, Online, 17th-18th November 2022. Proceedings
Veranstaltung 8th International Conference on Machine Control & Guidance (2022), Online, 17.11.2022 – 18.11.2022
Verlag Politechnika Wrocławska
Seiten 21-26
Schlagwörter ROS, CAN, Data Collection, Data Processing
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page