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Abstract

Understanding the microstuctural evolution during the sintering
process is of high relevance as it is a key part in many industrial man-
ufacturing processes. Simulations are one avenue to achieve this un-
derstanding, especially field-resolved methods such as the phase-field
method. Recent papers have shown several weaknesses in the most
common phase-field model of sintering, which the present paper aims
to ameliorate. The observed weaknesses are shortly recounted, fol-
lowed by presenting model variations aiming to remove these deficien-
cies. The models are tested in the classical two-particle geometry, with
the most promising model being run on large-scale three-dimensional
packings to determine representative volume elements. A densifica-
tion that is strongly dependent on the packing size is observed, which
suggests that the model requires further improvement.

1 Introduction

Sintering is an important processing step in the manufacturing of not only
common goods such as coffee cups but also more specialized applications
such as spark plugs in cars as well as the manufacturing of solar cells. Fur-
thermore, it is a natural process occurring on glaciers and thus plays a role
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in predicting avalanches as well as the evolution of the Earth’s ice caps. Dur-
ing sintering, the coupled processes of grain growth and densification take
place. The focus of this paper will rest on the latter. Early theoretical mod-
els for densification concentrated on the geometric evolution of two particles
evolving under diffusive conditions, which was then extrapolated to the en-
tire sintering process. This was found not to represent experimental data
and thus separate models for the other stages — in total initial, intermediate
and final — were developed. While these captured the qualitative aspects
of the sintering process quite well, for accurate quantitative predictions their
model parameters often need to be fitted to experimental results. Thus field-
resolved methods such as the Monte-Carlo method or the phase-field (PF)
method are adapted to model the sintering process, in which only simple
material parameters enter. These evolve the microstructure as a separate
field, which allows for a 4D investigation of the process and eliminates the
need for any geometric assumptions. Recently it has been shown [1] that PF
models of solid-state sintering need to include advective terms in order to
reduce size effects on densification. However, several problems of the most
common method to calculate advective velocities [2] were shown in the same
publication. Furthermore, the most common energy functional employed for
the process was found to spontaneously generate voids on multi-grain junc-
tions [3]. Thus the goal of the present paper is to present a model reducing or
outright eliminating these defects and apply it to find representative volume
elements for sintering. First, the model and its improvements will be de-
tailed. Following this, the model is investigated by running simulations and
testing whether the problems found in prior simulations are eliminated. Fi-
nally, large-scale three-dimensional simulations are conducted in order to find
representative volume elements for sintering, in particular the densification
of particle compacts.

2 Modeling & Methods

In this section, the general phase-field (PF) model and its improvements will
be described. Furthermore, the employed analysis techniques will be detailed.

2.1 General phase-field model formulation

The PF model in the following is based on [4], but extended with advection
terms, which were found to be necessary to have almost constant densification
as the green body size is varied [1]. The PF model will be derived similarly
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to [4, 5], starting with the free energy functional

F =

∫
V

εa(φ(~x),∇φ(~x)) +
1

ε
w(φ(~x)) + ψ(φ(~x), µ(~x), T (~x))dV (1)

which describes the free energy within a volume V as a function of several
spatial fields. The spatial dependence of the fields will be dropped in the
following for conciseness. The phase-field tuple φ collects the N phase-fields
φα, wherein α is used to index the tuple. Each phase-field φα corresponds to
a phase with distinct properties. For the case of solid-state sintering at least
two kinds of phases need to be distinguished, viz. the surrounding vapor or
vacuum phase α = 0 = V and the solid grains of arbitrary orientation α ≥ 1.
This allows the distinction between not only these bulk phases, but also their
interfaces, i.e. surfaces and grain boundaries. The width of these interfaces is
related to the parameter ε. The local equilibrium assumption is employed to
enforce the same chemical potential between all phases at a spatial coordinate
~x. This allows the reduction of the N ×K phase-specific chemical potentials
to the chemical potential tuple µ collecting the K chemical potentials µi of
each species. The chemical potential is related to the concentration as will
be shown later. The temperature T is assumed to be constant.

The term a represents the gradient energy density, widening the interface
and the term w represents the potential energy density, herein an obstacle
potential, narrowing the interface. For the exact form of these terms, please
refer to [4]. The combination of these terms describes the one-dimensional
equilibrium interface profile φeq between any two phases and accounts for
capillary effects in higher dimensions. The driving force between the phases
is described with the term ψ which represents the grand potential density,
interpolated with the weighting function hα from the phase-specific grand
potential densities ψα:

ψ(φ, µ, T ) =
N∑
α=0

ψα(µ, T )hα(φ) (2)

hα(φ) = φ2
α

(
N∑
β=0

φ2
β

)−1

(3)

following [6].
A non-conservative variational ansatz is employed for the evolution of
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each φα yielding N equations of the form

∂φα
∂t

+∇ · (~vα(x)φα) =
1

τ(φ)ε

[
− ε
(
∂a(φ,∇φ)

∂φα
−∇ · ∂a(φ,∇φ)

∂∇φα

)
(4)

− 1

ε

∂w(φ)

∂φα
−

N∑
β=0

ψβ(µ, T )
∂hβ(φ)

∂φα

]
− λ,

in which the relaxational timescale is controlled by τ(φ)ε. A Lagrange mul-
tiplier λ accounts for the condition that

∑N
α=0 φα = 1. Furthermore, an

advective term is added to model the effects of densification.
In order to account for species conservation, additional equations need to

be derived. The derivation assumes that the conjugate variables (c, µ) are
vectors in the component space RK which gets rid of any indices w.r.t. a spe-
cific component i. The evolution of the species concentration c is calculated
indirectly by taking the chemical potential µ to be the independent variable.
Thus the concentration is linked to the functional by another variation [5]

c = −δF
δµ

(5)

c = −∂ψ(φ, µ, T )

∂µ
(6)

c = −
N∑
α=0

∂ψα(µ, T )

∂µ
hα(φ) (7)

c =
N∑
α=0

cα(µ, T )hα(φ) (8)

in which the thermodynamical relation cα = −∂ψα
∂µ

is exploited to arrive

at the phase-specific concentration cα(µ, T ). Taking the time derivative of
eq. (8) yields

∂c

∂t
=

N∑
α=0

∂hα(φ)

∂t
cα(µ, T ) +

N∑
α=0

hα(φ)
∂cα(µ, T )

∂t
(9)

=
N∑
α=0

∂hα(φ)

∂t
cα(µ, T ) +

N∑
α=0

hα(φ)
∂cα(µ, T )

∂µ

∂µ

∂t
. (10)
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Next, species conservation is assumed to hold with

∂c

∂t
= ∇ · (M(φ, µ)∇µ− ~v(x)c) (11)

in which the form of M(φ, µ) is such that it reduces to Fick’s law away from
interfaces; for details, see [4]. Now equate eq. (11) to eq. (10) and solve for
the time evolution of the chemical potential:

∂µ

∂t
=

[
N∑
α=0

hα(φ)

(
∂cα(µ, T )

∂µ

)]−1

(12)(
∇ ·
(
M(φ, µ)∇µ− ~v(x)c

)
−

N∑
α=0

cα(µ, T )
∂hα(φ)

∂t

)
.

The divergence represents the transport by diffusive and advective fluxes,
with the reaction term accounting for a change in chemical potential due to
a phase change. The frontmost term is a generalized susceptibility [5] which
effectivly converts the change in concentration into an equivalent change in
chemical potential. For the present paper, two species (K = 2) are consid-
ered, namely copper and vacancies, with copper taken to be the independent
species and thus c is the atomic fraction of copper atoms in the following.

Further details of the model terms and how the parameters affect the
evolution equations are described in [4], hence in the following only the mod-
ifications will be detailed. First, as mentioned above, the chemical system
now consists of copper and vacancies. The free energy of solid copper (s,
α ≥ 1) and the surrounding vapor (V, α = 0) are modelled with the stan-
dard parabolic approach

GV(c, T ) = AV(T )(c− cV(T ))2 (13)

Gs(c, T ) = As(T )(c− cs(T ))2 (14)

but with an assumption of stoichiometry, i.e. AV,s(T ) = AV,s = 50 with the
value being sufficiently high as to reduce the spontaneous shrinkage of grains
within the phase-field context [7]. The grand chemical potential ψ for each
phase can then be obtained with a Legendre transform of G. The equilib-
rium concentrations are arbitrarily assumed to be cs = 0.98 and cV = 0.02.
Combining this with setting the initial concentrations within the phases to be
their equilibrium concentration, volume conservation between the two phases
is largely achieved. Furthermore, due to the equilibrium being independent
of temperature and the flat equilibrium values being set initially, curvature
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becomes the main driving force, as expected from sintering. The absolute
level of the concentrations does not play a significant role.

The advection-free model can be shown to recover the Gibbs-Thomson
condition via a thin-interface analysis [8], with the chemical driving force
being decoupled from the surface energy [5]. As these are decoupled, spon-
taneous void formation requires that the chemical driving force, represented
by the grand potentials, imply void formation. Considering the free energies
above, this is only possible if the vacancy concentration is severely increased
at multi-grain junctions. However, the present model excludes the possibil-
ity of vacancy enrichment at grain boundaries (GBs) as there is no driving
force for this. Thus the model should be free of the spontaneous void forma-
tion observed by [3]. Reproducing the test case of [3] indeed showed neither
vacancy enrichment at GBs nor spontaneous void formation.

The interfacial diffusivities take into account the physical (δi) and phase-
field (W ) interface widths by scaling these values as to match the diffusivity
in the physical case:∫ δi/2

−δi/2
Dreal
i dx =

∫ W/2

−W/2
I(φα, φβ)Dsim

i dx (15)

→ Dsim
i = Dreal

i

32δi
επ2

(16)

which is equivalent to [9] except for the parametrization of the interface
width. The subscript i serves as an indicator for an interfacial diffusivity, i.e.
either grain boundary or surface diffusion and the corresponding physical
interface width. The function I(φα, φβ) = φαφβ interpolates the interfacial
diffusion across the variable phase-field. The input values as listed in Table 2
always describe Dreal

i and are transformed to Dsim
i on simulation start.

The calculation of the grain velocities is based on the model outlined by
Wang [2], but with a few modifications in order to account for the problems
observed in [1], which will be detailed in section 2.2. Grain boundaries are
assumed to act as vacancy sinks and sources. When active, these induce a
force density ~dFα on their neighboring grains due to vacancy absorption or
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generation, which following [2] can be reduced to the resultant force ~Fα:

~dFα = κ̃
∑
β 6=α

(c− cgb)g(α, β)(∇φα −∇φβ), (17)

~Fα =

∫
V

~dFαdV (18)

g(α, β) =

{
1, φαφβ ≥ φminαβ

0, else
. (19)

The factors within the formulas are a stiffness κ̃, a grain boundary concen-
tration cgb, the switching function g(α, β), which identifies grain boundaries,
and the phase-field gradients ∇φα. The gradient construction ensures that
action and reaction are balanced, thus satisfying conservation of momentum.
The force is then assumed to result in an instantaneous velocity ~vα via

Vα =

∫
V

φαdV (20)

~vα = mt

~Fα
Vα

(21)

with the volume V accounting for particle size and the factor mt representing
a translational mobility. A torque would be generated by an asymmetric
distribution of ~dFα across grain boundaries w.r.t. the center of mass, but
since these were shown not to have an influence of densification [10] these
terms are dropped. Since the factors κ̃ and mt only appear together, they
are melded to a single factor κ = κ̃mt, which will henceforth be called the
effective stiffness. Finally, the phase velocities ~vα are interpolated using local
phase-fields:

~vα(x) = ~vαφα(x) (22)

~v(x) =
∑

~vα(x), (23)

with ~vα(x) being used to locally advect each grain phase-field α. The velocity
~v(x) is used to advect the surrounding vapor as well as the concentration.

2.2 Model improvements

The first improvement concerns the factor cgb in eq. (17). In [1] it was
observed that if cgb deviates from the “true” equilibrium concentration ceqgb
on a grain boundary, then two problems can occur: First is the problem of
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“unsintering”, i.e. the system densifies up to a certain point after which the
grain velocities force it apart, which also increases the system’s free energy.
This happens if cgb is chosen to be smaller than ceqgb, which depends on the
simulation state via the particle’s curvatures. Second, any choice of cgb which
deviates from ceqgb will lead to a different dihedral angle being observed. This is
due to the advective fluxes not vanishing when the dihedral angle as predicted
by Young’s law is achieved. Thus the choice of cgb is indeed critical. In
essence, cgb needs to be chosen to be consistent with the equilibrium state
defined by the energy functional — otherwise, a minimization of free energy
is no longer guaranteed and the supposed equilibrium properties of the model
without advection need not hold. Both problems vanish if cgb = cgb(S) = ceqgb
is achieved for the entire simulation run given that the simulation state S
allows the calculation of ceqgb. Two methods for approximating this will be
explored in the present paper.

Both methods are based on the relationship

ceqgb = cα(µeq + ∆µ, T ) (24)

which assumes that ceqgb is equivalent to the bulk concentration of an α grain
plus a deviation in the chemical potential ∆µ. The function cα(µ, T ) is

thermodynamically defined via cα(µ, T ) = −∂ψα(µ,T )
∂µ

. The methods then
only differ in how ∆µ is estimated. The first method is based on the Gibbs-
Thomson equation

∆µ = γκ, (25)

which describes the change of chemical potential ∆µ from a planar surface to
a curved surface, employing the surface energy γ and the curvature κ. While
γ is known as the input parameter, the curvature κ needs to be estimated
from the current simulation state. This can be done with a shape assumption,
i.e. a circle (2D) or a sphere (3D), based on which an estimate for the radius
of curvature can be easily obtained:

∆µ2D = γ(
Vα
π

)−1/2 (26)

∆µ3D = γ(
3Vα
4π

)−1/3. (27)

Alternatively the discrete curvature κ = ∇·~n could be calculated and then
input into eq. (25). However, this necessarily includes some cut-off, as the
curvature is not well-defined close to the bulk regions [11]. This problem can
be avoided, while still accounting for the curvature, by observing the chemical
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potential on the surface. Assume that the average chemical potential

µ̂α =

∫
µφαφVdV∫
φαφVdV

(28)

on a particle’s surface gives an approximation to the chemical potential in
equilibrium including the effect of eq. (25). Then the deviation from a planar
surface ∆µ is equivalent to µ̂α. If the equilibrium chemical potential µeq of a
plane surface is nonzero, subtract it from µ̂α. This also naturally includes the
effects of variable surface energies between interfaces. Grains which do not
have an interface with the vapor are assumed to have ∆µα = 0. This ensures
that a grain boundary at equilibrium will not be moved out of equilibrium
with advection. In both cases, this yields estimates for ∆µα for each grain
phase α. The value employed within an αβ grain boundary will then simply
be the average of both.

The second improvement concerns the interpolation of velocities, which
might not seem significant at first, but it can in fact lead to rarefaction and
shocks on the interface. These can change the profile significantly and thus
the effective surface energy. Consider the classical interpolation described
above eq. (22), and only the advection part of the phase-field equation,

~vα(x) = ~vαφα(x) (29)

∂φα
∂t

= −∇ · (~vα(x)φα(x)) (30)

= −∇ · (~vαφα(x)2) (31)

i.e. the flux due to “advection” is now quadratic in the advected variable.
However, this is precisely the inviscid Burgers equation up to a multiplicative
constant ~vα and thus rarefaction and shocks will naturally occur. Since there
is no physical reason for either during sintering, this type of equation needs
to be avoided. A simple way of avoiding this effect is to always advect the
grains with their actual rigid-body velocity ~vα. However, the surrounding
vapor as well as the concentration field still need to be advected. For these,
a formulation which largely avoids this problem is

~vc(x) =

∑
α!=V ~vαφα(x)∑
α!=V φα(x)

(32)

which yields a jump function across a grain-vapor interface for an obstacle-
type potential. This avoids rarefaction to a large extent, as a constant ve-
locity is seen on grain-vapor interfaces right up to the bulk region of vapor.
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Shocks can possibly form on the transition from the interface to bulk vapor,
but since this is concentrated on a small part of the interface, the effect is
negligible. Across a grain-grain interface the concentration equation still has
more of a Burgers like character. However, the actual flux is small as the
concentrations are close to each other, with no rarefaction or shocks being
observed across grain-grain interfaces in the simulations. It is noted that [12]
employed a similar strategy in order to “boost the numerical convergence of
the model”, though without explicitly identifying the Burgers-like character
of the original equations.

Finally, the force density d~Fα of eq. (17) is weighted by the grain boundary
“phase”

∑
β 4φαφβ with β /∈ {α,V}, and later divided by the integral of the

same quantity. This makes the jumps in velocity as observed in [1] less
egregious, but has little qualitative influence on the results.

2.3 Computational aspects

The solver for the model is implemented with finite differences within the
Pace3D framework [13], based on the massively parallel and high-performance
implementation of [14]. The problem of the degrees of freedom increasing
with the number of phase-fields N is solved as in [14] by employing the lo-
cally reduced order parameter approach and only saving 8 phases at most per
computational point. A WENO-5 scheme [15] is employed for the calculation
of the advection updates in order to reduce numerical diffusion.

The employed nondimensionalization scales are listed in Table 1 and the
material parameters in Table 2. The grid spacing ∆x will be repeatedly
varied and thus will be mentioned for each set of simulations. The time
step is calculated by estimating the stable time step in the explicit time
integration scheme as well as the Courant-Friedrichs-Lewy (CFL) condition,
with a safety factor of 0.3:

∆t = 0.3 min(∆tφ,c,∆tCFL)

∆tφ,c =
∆x2

2 max(Dφ, Dc)

∆tCFL =
[∑

i

max(|vi|)
∆xi

]−1

with the effective phase-field diffusivity Dφ = 2max(γ)
min(τ)

with the respective
maximum and minimum values of γ and τ , the highest diffusivity employed
for the concentration equation Dc, i going over the spatial dimensions and
max(|vi|) being the largest velocity per dimension. Typically though the
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phase-field step is the limiting factor for stable time integration.
The values of the interfacial energies are based on estimates for pure

copper at 700 K, resulting in a dihedral angle of 151°. The grain boundary
diffusion value is based on [16], with the surface diffusion value being based
on [17]. The bulk diffusion within the grains and vapor will be varied, and
thus be mentioned for each simulation set. When employing [17], bulk Cu
diffusion would be on the order of 1× 10−20 m2/s for 700 K, effectively freez-
ing the diffusion field within the bulk relative to the interfacial diffusivities.
Instead of using this tiny value, larger values will be used in order for allow
a reasonable amount of relaxation within the grains; this should not signifi-
cantly influence the qualitative results if faster diffusion mechanisms (grain
boundary, surface) are active at the same time. The kinetic coefficient of the
surfaces τvα is chosen such that the phase-field always relaxes more quickly
than the chemical potential, which ensures that the process is controlled by
diffusion. Grain growth, if thermodynamically possibly, is largely suppressed
by taking the kinetic coefficient between grains to be 100τvα. The effective
stiffness κ is chosen based on the observations in [10], such that the simula-
tion results become independent of its choice: The advective velocity tends
to increase as κ is increased until a plateau is reached. This plateau is deter-
mined in a pre-study and found to start at 800, with κ = 3200 employed in
the simulations to ensure that the results are independent of κ. The resulting
data and evaluation of this pre-study is available within the Supplementary
Material.

This pre-study as well as the small scale validation in section 3.1 are
calculated on a local machine using GNU parallel [18] for effective job man-
agement. The later large scale simulations are calculated on the Hawk su-
percomputer at the HLRS.

Table 1: nondimensionalization parameters

scale value
length l0 1× 10−8 m
diffusivity D0 1× 10−12 m2/s
time t0 1× 10−4 s
velocity v0 1× 10−4 m/s
temperature T0 700 K
surface energy Es,0 1 J/m2

energy density Er,0 1× 108 J/m3

molar volume Vm,0 7.1× 10−6 m3/mol
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Table 2: Employed physical and numerical parameters for the simulations.

parameter nondim. value physical value
Numerical parameters

interface parameter ε 4∆x variable
interface width W 10∆x variable
grain boundary cutoff φminαβ 0.14 -

Physical parameters
surface energy γVα 2 2 J/m2

grain boundary energy γαβ 1 1 J/m2

grain boundary diffusion Dgb 55 5.5× 10−11 m2/s
surface diffusion Ds 169 1.69× 10−10 m2/s
physical interface width δi 0.02 2× 10−10 m
surface kinetic coefficient τvα 0.08 8× 1010 Js/m4

grain boundary kinetic coefficient ταβ 100 τvα 8× 1012 Js/m4

stiffness κ 3200 -

2.4 Data evaluation

The primary variables of interest in the present paper are the following:

• neck size X between two particles

• dihedral angle θ between two particles

• total free energy F of the system

• linear shrinkage e between two particles

• density ρ of a packing

The neck size X between two particles is assumed to be half the length
of the grain boundary joining them. The volume of the grain boundary is
obtainable from the phase-field, but must be corrected by an interface profile
dependent factor in order to obtain the grain boundary area:

Vgb =

∫
V

4φαφβdV (33)

Agb =
Vgb∫

4φαφβdx
(34)

Essentially, the volume needs to be divided by the amount of grain boundary
“phase” 4φαφβ which occurs along the profile. This is in general dependent
on the local simulation state, as high driving forces can distort the interface.
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However, in the present paper the profile should always be near equilibrium as
only capillary forces and advection take place. Thus the equilibrium solution
for the profile can be employed, in which case

∫
4φαφβdx = π2ε

8
. In two

dimensions, the grain boundary “area” calculated thus is actually the grain
boundary length and no further geometric assumptions need to be employed.

The neck size is used in geometrical models of early stage sintering as a
variable of interest [19]. These models generally predict a power law behavior
X/R = At1/n with the initial particle radius R, the time t and some con-
stants A, n. While A depends on the material and geometrical properties,
the constant n should only depend on the dominant diffusion mechanism,
with n ∈ {4, 5} in the case of bulk diffusion [19]. Furthermore, the time
evolution of properties such as the neck size should follow Herring’s scaling
law [20]. In effect, it says that if time is rescaled as t/RZ , then relative prop-
erties such as the relative neck size should map back onto a master curve
independent of particle size R. The constant Z depends on the dominant
diffusion mechanism, with Z = 3 for bulk diffusion.

The dihedral angle θ is calculated by fitting circles to parts of the 0.5 iso-
line of both particles. The angle formed by the circles at their intersection,
close to the triple point, is the dihedral angle. After calculating the intersec-
tion point, the circles’ individual angles are calculated via their slopes and
subtracted from each other, yielding the total angle. The relevant part of the
isoline is that which contains the surrounding vapor, but does not contain
the other particle i.e. excluding the flat grain boundary.

The linear strain between two particles is calculated by tracking the
barycenters of the particles. The linear strain follows as e = L(t)−L(0)

L(0)
, with

L(t) describing the distance between the barycenters of the first and last par-
ticle as a function of time t. This strain is also predicted to follow a power law
e = Bt2/n = Bt1/m [19], with the exponent following from the neck growth
law and B being a different agglomeration of materials and geometrical pa-
rameters. The strain will in general be negative (sample shortens) and as to
allow easy fitting of the power law, the absolute value of this strain will be
employed. Based on the equilibrium dihedral angle θ and some geometric as-
sumptions, [21] derived an expression for the equilibrium strain of an infinite
chain of cylinders |eeq| = |1 − R(θ)cos(θ/2)| with the equilibrium radius R.
For the parameters employed in this study θ = 151° and thus |eeq| = 0.555.

The density of a packing is determined by building a convex hull C around
the packing, employing the particles’ barycenters as the point set to bound.

The density is then given by ρ =
∫
C φα≥1dV∫
C φαdV

, i.e. the ratio of solid phase-

fraction within C relative to the total volume of C. A full sampling of the
inner hull as well as a Monte Carlo (MC) approach similar to [22] are tested.
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The present MC approach uses the Gaussian Stopping Rule of [23], with a
confidence level of p = 95% and a confidence interval width of δabs = 0.005
on the density. The full sampling and the MC approach are compared for
the smallest packings and found to have no large difference. Since the MC
sampling approach is faster, it will be employed henceforth. It is noted
that the convex hull includes significant amounts of space around the green
body if the green body itself isn’t convex yet; this is effectively the problem
of the caliper measurement mentioned in [22]. This can lead to seemingly
unphysical drops in density, since if any of the outermost particles move
outwards, the convex hull gains a comparatively large amount of “open”
porosity which is actually outside the green body proper. Future work will
consider employing concave hulls in order to sidestep this problem, but the
convex hull approach suffices for the present.

3 Results & Discussion

In this section the model without the improvements as well as the models
with improvements will be compared. The first simulation setup for this
purpose is the venerable two-particle model, as it suffices to clarify whether
the problems observed in [1] are fixed by the improvements or not. The
second setup concerns the scaling of the advective velocity with the green
body size. In [1] a small but persistent slowing of the densification speed with
the green body size was observed, even with advective terms included. This
is explored by employing the most promising model from the two-particle
setup in a three-dimensional packing and comparing it to a purely diffusive
model.

3.1 Equilibria and dynamics for two particles

Two particles of equal radius R are set symmetrically in a simulation box
with no-flux conditions on all boundaries. The box size is taken to be 4R+9ε
in the direction where the particles touch, ensuring that the phase-field does
not initially touch the boundary. Directions perpendicular to this direction
are of size 4R, which is sufficient to ensure that the equilibrium states’ phase-
fields will not touch the boundary. All phases are set to their equilibrium
concentrations initially.

The following models will be considered for the present investigation: A
diffusion-only (DO) model, whose advective velocity is always zero. Three
models including advective terms (ADV), with the following variations:

14



• a constant ceqgb = 0.99 slightly above the equilibrium bulk concentration
(C)

• estimating ceqgb with the particle size (V) eq. (26)

• estimating ceqgb with the average chemical potential on the surface (µ)
eq. (28)

The DO model serves as a reliable baseline for the equilibrium shape, which
the ADV models should match if they are consistent with the energy func-
tional. The ADV (ADV-C, ADV-V, ADV-µ) models are expected to have
faster neck growth and densification, with differences in their individual dy-
namics and possibly equilibrium states. For simplicity of presentation, only
the case of bulk diffusion will be considered, i.e. the coefficients for grain
boundary and surface diffusion are set to zero. The Cu diffusion in the grain
is arbitrarily set to Db = 1× 10−12 m2/s, with a value of Dv = Db/1000
being used for the diffusion in the vapor. The equilibrium properties will be
independent of these choices for the DO model, while for the ADV models
it will depend on whether they are consistent with the energy functional. If
these are not, then the choice of diffusion constants will influence the equilib-
rium. The dynamic evolution will of course differ if the diffusion coefficient
is changed, but the scaling with time will be the same. Thus the qualita-
tive aspects should readily transfer to cases with grain boundary or surface
diffusion active as well as arbitrary non-zero choices of diffusion constants.

The first investigation is conducted at a constant particle size of R =
25 nm, resolved with r = 25 cells at ∆x = 0.1. An approximation for the
chemical potential in equilibrium is given by µeq = ∆µ = γsκ and assuming
κ = 1/R0 with the initial radius R0 = 25∆x = 2.5, which yields ∆µ = 0.8.
This can be translated into a bulk concentration by cα(µ) = cs + ∂cα

∂µ
∆µ =

0.98 + 0.8
100

= 0.988.
The simulations are continued until a state close to equilibrium is reached,

with the obtained equilibrium shapes shown in Fig. 1. While models except
for ADV-C show more or less similar equilibrium shapes, the shape of ADV-
C is much more oblong due to its severe violation of minimization of free
energy. The free energy as well as dihedral angle will thus serve as tests
on the consistency with the free energy functional. The change in free en-
ergy is shown in Fig. 2(a), relative to t = 0.0075 in order to exclude the
initial large jump from a sharp to a diffuse interface. It is observed that the
models except for ADV-C and ADV-V show a monotonic reduction in free
energy. For model ADV-V the non-monotonicity is short-lived and handily
overshadowed by the other symbols, but simple forward differences showed
that it also contains a non-monotonic reduction in free energy. The observed
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DO ADV-C

ADV-µ ADV-V

Figure 1: Obtained equilibrium shapes represented by the Cu concentration
field, with yellow indicating the solid grains, blue the surrounding vapor and
reddish-orange their interface. Note that model ADV-C results in a much
more oblong shape, with remaining models showing similar shapes.

equilibrium concentration (model DO) within the particles is about 0.9868,
which compares reasonably with the above simple approximation. The re-
maining difference is easily explained, as multiple interfaces with different
interface energies exist, which the estimate for ∆µ doesn’t take into account.

Although ceqgb = 0.99 lies above this equilibrium concentration as suggested
by [1], an increase in free energy is observed. As shown in [1], the force density
within the grain boundary region defined by φαφβ > 0.14 has repulsive (grain
boundary) and attractive (triple point) regions. During transient growth
of the neck, the advective flux tends to decrease itself by lengthening the
repelling grain boundary until it matches the diffusive flux. Given that the
diffusive flux acts densifying for dihedral angles below the equilibrium value,
this implies that the advective flux has to increase the grain boundary length
and thus dihedral angle beyond their equilibrium values in order to match the
diffusive flux. Models ADV-µ and ADV-V can potentially avoid this problem
by decreasing the advective flux not by a grain boundary lengthening, but
by decreasing the force density within the grain boundary. The difference in
free energies in equilibrium between models DO and ADV-µ are due to the
spatially variable chemical potential field for ADV-µ. There is a finite, but
small velocity remaining even for ADV-µ which balances out the diffusive
flux within the grain boundary.

The dihedral angle θ is shown in Fig. 2(b). The DO and ADV-µ models
achieve the same equilibrium dihedral angle θ = 150.4°, missing the theoret-
ical value by 0.6°. However, both ADV-V and ADV-C increase the dihedral
angle to about 166°. As previously observed in [1], the equilibrium dihedral
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Figure 2: The models ADV-C and ADV-V show a non-monotonic evolution
of the free energy, whereas models ADV-µ and DO show a monotonic drop in
free energy. The theoretical dihedral angle is closely approximated by ADV-
µ and DO as well, while models ADV-V and ADV-C significantly increase
the angle.

angle is modified by a constant ceqgb and thus this was to be expected. At first
glance, model ADV-V increasing the dihedral angle would seem odd, given
that the simulation state is employed for estimating ceqgb. However, the model
for predicting ∆µ assumed constant γ for the interfaces, whereas in the sim-
ulation the surface and grain boundary energy are different. This leads to a
different equilibrium, which in the present case by happenstance is close to
the ADV-C equilibrium. It is likely that model ADV-V would perform much
better for equal surface and grain boundary energy, but it seldom happens
that these are equal. In total, the only advective model that is observed to
be consistent with the free energy functional is ADV-µ.

All models will also be tested for adherence to Herring’s scaling law. For
this, the radius R will be varied by increasing the number of cells employed to
resolve the particle r as well as by changing the grid spacing ∆x. This is done
as to verify that size effects have been fully included. If the physical size R =
r∆xl0, with the nondimensionalization length l0, is the same between two
simulations with differing ∆x, then similar curves should be obtained, with
the difference entirely attributable to the discretization error. The number
of cells employed to resolve the particle r is in the set {25, 50, 100}, with two
grid spacings ∆x ∈ {0.1, 0.2} being used. Thus a range of physical particle
radii R from 25 nm to 200 nm are resolved, with 50 nm and 100 nm being
represented by two different combinations of cells and ∆x.

The time evolution of the relative neck radius X/R, scaled according to
Herring’s scaling law, is shown in Fig. 3. The data is filtered such that a
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Figure 3: Neck size evolution up to X/R = 0.5, with the time scaled follow-
ing Herring’s scaling law. The ADV models’ exponent 1/n clusters in the
expected range of 4-5, but the DO model shows an unexpected value of 6. All
models except for ADV-C scatter closely and randomly around their master
curve and thus follow Herring’s scaling law. Model ADV-C tends to scatter
upwards as particle size is increased.

parabolic profile in the chemical potential is present within the grain bound-
ary and for X/R < 0.5. The former ensures that the simulation matches the
theoretical expectation and that the interface is well-developed. The latter
excludes the approach to equilibrium, which the scaling laws do not represent
and thus there is no sense in including that regime. The regime is taken to be
larger than the usual X/R < 0.3, as [24] still observed quite close matching
up to X/R = 0.5 for a similar dihedral angle. As expected, the DO model
shows the slowest evolution, whereas ADV-C shows the quickest evolution.
There is little difference in the evolution between the ADV-V and ADV-µ
models, though as seen earlier, different equilibria will be obtained. Models
excluding ADV-C show mostly random scattering around their respective
master curve, regardless of the chosen particle radius R. For model ADV-C,
the line tends to move upwards as the particle size is increased. Thus a fixed
choice of ceqgb might not follow Herring’s scaling law, though the present set of
simulations allows no conclusive decision. Furthermore, the slopes of curves
differ from the classical two-particle model expectation of 1/5 [19]. The de-
viation is of similar magnitude as observed by other phase-field models of
sintering [2, 25]. Interestingly, the present DO model seems to replicate the
observed n ∼ 1/6 of [2] rather closely, whereas the models including advec-
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Figure 4: Absolute strain |e| up to X/R = 0.5. The expectation that 1/m =
2/n for the strain is roughly observed, with the strain values for the DO
model probably being too small to allow for a trustworthy evaluation. The
upwards drift of model ADV-C with increasing particle size is observed again.

tion hit much closer to the expected n = 1/5. It might be that the factors
employed by [2] led to an evolution which was more dominated by diffusion
rather than advection.

The effect of a change of ∆x while keeping the physical radius R constant
is that the curve is moved upwards, especially for shorter simulation times.
Excepting model ADV-C, these simulations approach each other for larger
times and thus the size dependence should be completely included.

The absolute strain |e| is shown in Fig. 4. The expectation that the
observed exponent is half that of the neck growth law is roughly confirmed
for the models with advection. A similar deviation from Herring’s scaling
law is observed for model ADV-C. Model DO tends to scatter strongly, likely
due to its small amount of strain in the first place, so the value of the fitted
exponent is likely wrong. The equilibrium strain ( 0.333 for models DO
and ADV-µ, 0.366 for ADV-V and 0.429 for ADV-C) could be observed for
the simulations from the first study. This is below the strain predicted by
Kellet [21] for an infinite chain of cylinders, as also observed in [1], and is
likely explainable by finite size effects.

In total, the model ADV-µ seems to produce the most sensible results
and thus will be employed in the next study.
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3.2 Large-scale three-dimensional simulations

In [1] a small but persistent decrease in densification rate is observed as
the number of particles in a chain is increased. Since the chain geometry is
quite restricted in its movement and does not contain porosity to fill, a small
number of large-scale 3D simulations will be conducted to probe this effect
further. The initial conditions are generated by employing [26] as a discrete
element simulation tool. A periodic box of fixed size is filled with spheres
of uniform size with a random velocity distribution, followed by letting the
system evolve in an NVE ensemble while accounting for the translational
and rotational degrees of freedom of the three-dimensional particles. The
particle interaction is described with a Hertzian contact law. The resulting
packing is then sliced to various extents, with larger slices always containing
the smaller slices as subdomains. The cuboid slices will be of size c3 with
c ∈ {200, 400, 800}nm, which with ∆x = 0.1 corresponds to domain sizes
of 2003, 4003 and 8003 cells respectively. The simulation volume c3 will
henceforth be used directly as a simulation label. The individual particles
are resolved with a radius of 12 cells (R = 12 nm), ensuring that there are
bulk cells for each particle while allowing a large number of particles to be
contained within the simulation domain. A particle is only voxelized into the
domain if its outer edge is at least 15 cells from the global boundary in order
to exclude boundary effects from the phase-field. This results in 263, 3446,
and 34460 particles for the 2003, 4003, and 8003 domains respectively. No-
flux conditions are applied on all boundaries for all fields. Each simulation
is preprocessed by running the DO model for 5000 steps with equal bulk
and vapor diffusivities of D = 1× 10−12 m2/s. This is done to ensure that
interfaces have already been established, as to reduce the influence of the
grain boundary filtering function g on the initial evolution. After this step,
all simulations are run with the parameters listed in Table 2 for at least
an initial run of 300 000 time steps, with more depending on the observed
evolution. Grain growth is mostly suppressed by the choice of a small grain
boundary mobility. For the longest-running simulation, the mean grain size
changed from 11.84 nm to 13.95 nm, with less change for simulations running
for a shorter time. Given the small change in grain size, its effect on the
density evolution should be negligible compared to other effects present.

Exemplarily, the surface of the structure at simulation start and sim-
ulation end for the 4003 domain is shown in Fig. 5 along with 2D slices
through the domain showing the grain structure. While there is significant
neck growth, barely any movement inwards is observed. Furthermore, the 2D
slices reveal that the inner part of the green body densifies much less quickly
than the outer parts. It should be noted that the entire green body stays
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Figure 5: The 3D green body as well as 2D slices of the 4003 domain cal-
culated with model ADV-µ close to simulation start and at simulation end
are shown. The slice positions are indicated with the transparent planes.
Within the 2D slices, the surrounding vapor is depicted as white, any in-
terfaces as black and the grain number with a colormap without physical
meaning. While initially the structure is homogeneous, as time progresses
the outer edges become denser than the inner part of the green body.

connected during the process; videos of complete scans through the green
body are deposited with the Supplementary Material.

The density evolution observed for this study is shown in Fig. 6. It can
easily be seen that the DO model has a strong dependence of its densification
on the green body size. Furthermore, while the ADV-µ model does densify
more quickly, it also has a strong dependence on the green body size.

Thus the hypothesis stated in [1] is confirmed, in that the model for
calculating advection velocities is lacking a part which eliminates this depen-
dence. The most relevant quantity to observe here is the spatial distribution
of velocities. Densification in principle means the reduction of occupied vol-
ume. In the language of continuum mechanics, this is nothing more than
demanding that the dilatation δ = ∆V

V0
= tr(e) is negative, with the trace of

the strain tensor e. Differentiating this by time yields the same property for
the strain rate tensor and its trace tr(ė) = ∇ · v which ought to be negative
for densification to take place. Thus for any control volume to densify, its
∇·v needs to be negative. Note that this should hold for macroscopic control
volumes containing multiple particles. It does not need to hold on a local
basis, as e.g. ∇ · v is zero everywhere within the bulk of the particles due to
the rigid body assumption.

Thus in order for a body to densify uniformly, its strain rate needs to
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Figure 6: Density of the green bodies over time, for models DO and ADV-µ
and various packing sizes. While model ADV-µ does densify more quickly
than model DO, its densification rate is also strongly dependent on the system
size.

be homogeneous, suggesting that its velocity is a linear function of position.
Of course, if a green body were nonhomogeneous in its vacancy absorption
rate, this need no longer hold. In the present case however all properties are
isotropic and homogeneous to the extent that the structure is homogeneous;
thus there is little reason for a deviation from linearity. The velocity com-
ponents are depicted over their particle’s spatial coordinates in Fig. 7 within
the 8003 domain, for every 10th particle. Given the above discussion of the
relationship between densification and velocity distribution, it is obvious that
the present model will preferentially densify the outer edges, with the inner
part showing almost no densification. This is indeed observed as shown in
Fig. 5. Due to this non-uniform densification, no RVE can be found for this
model, as the controlling parameter for the density evolution is now the ratio
of inner particles to outer particles, which will not converge for finite domain
sizes.

It should be noted that this conclusion is independent of how ceqgb is deter-
mined, as the particle velocity will still only depend on local interactions. A
similar thought experiment as [1] conducted, for why a diffusion-only model
fails to scale correctly with the number of particles in a chain, shows this eas-
ily: Consider a control volume of sufficient size to be considered homogeneous
on the inside of the packing: Since only local interactions are taken into ac-
count and it is homogeneous, neighboring control volumes will have a similar
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Figure 7: Particle velocities over their respective barycenters for the 8003 do-
main and model ADV-µ for two times. The outer particles have significantly
larger velocities, whereas any correlation between position and velocity is lost
within the green body proper. This decorrelation becomes more pronounced
as the simulation progresses, with local interactions causing high individual
particle velocities.

magnitude and sign of the velocity. Thus for neighboring control volumes
there is little to no velocity gradient, which implies little to no densification
as per the above discussion. Now consider a control volume on the edge of a
packing: Since the particles there have missing neighbours, they will have a
significant nonzero velocity gradient to any control volume only containing
inner particles and thus can densify w.r.t the inner control volumes. What
this implies is that the outer particles are implicitly treated differently from
the inner particles, which is the origin of the nonhomogeneous densification.
The only feature of the model necessary to arrive at this conclusion is that
only local interactions enter the velocity calculation for a fixed time, and
thus the precise value of ceqgb is irrelevant.

4 Conclusion

In the present paper, a previously published phase-field model of sintering
is extended with advective terms in order to better represent densification
during sintering. Several key insights of a recent work on the calculation of
rigid body velocities for sintering were incorporated as to ensure consistency
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with the free energy functional, resulting in multiple potential models. The
new models are compared by testing the free energy evolution, the equilib-
rium state, as well as their dynamic evolution. It is observed that among the
advective models, only ADV-µ, which estimates the grain boundary equilib-
rium density by averaging the surface chemical potential, is consistent with
the free energy functional. All advective models roughly reproduces the ex-
pected scaling laws of the neck size with time, both in terms of the time and
particle size dependence. Furthermore, the approach of centers as quantified
by the strain is observed to also reproduce the expected scalings. Based on
these results, the most promising model ADV-µ is employed in order to simu-
late large scale 3D structures in order to seek representative volume elements.
However, it is observed that even this model shows a strong dependence of
the densification on the green body size and thus no RVEs could be identi-
fied. The spatial distribution of the velocity is identified as the likely origin
of this dependence. Future work will focus on eliminating this dependence as
to allow identification of RVEs and produce a quantitative phase-field model
of sintering.

Supplementary Material

The Supplementary Material of this paper is available at https://doi.org/
10.5281/zenodo.7755462.
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