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ABSTRACT

The extraction of statistical information from bubbly flow experiments is crucial for numerical studies. Knowledge regarding probability
distributions is particularly relevant in cases where a model relying solely on the use of mean values would lead to inaccurate results. As
such, existing studies have focused on evaluating spatial distributions and local histograms for the void fraction, bubble density, and bubble
size. However, the traditional box-counting method, employed by various studies, results in inconsistencies when deriving these quantities,
especially when the respective two-phase flow features regions with low bubble densities or density gradients. This study demonstrates the
application and benefits of combining Voronoi diagrams with a constrained K-Means clustering algorithm as a method for analyzing bubbly
flows. We conduct three test cases: The first two cases use synthetic snapshots with prescribed characteristics to show the influence of evalua-
tion settings and to critically quantify the errors, and the last test uses snapshot data of a plunging-jet experiment with air entrainment. We,
then, compare the identified entrainment rate and the mean void-fraction distribution with empirical values from the literature. All three test
cases show good agreement with the prescribed field characteristics (synthetic snapshots) and the data from the literature (experiment).
Beyond demonstrating its applicability, we also show how this method can derive local histograms more consistently. The derivation is
robust throughout the domain in comparison with traditional methods. For these reasons, we conclude that this method provides good esti-
mates of spatial distributions.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0145551

I. INTRODUCTION

Bubbly two-phase flows occur during boiling, cavitation, or air
entrainment on free surfaces, among other contexts. To examine the
gaseous phase, various methods have been developed.1,2 Obtaining
local information about the gaseous phase (e.g., with needle probes1)
can be inaccurate if the flow features low bubble counts. This study
investigates these flows through images, or snapshots, of the bubble
distributions, which can be obtained, for instance, from high-speed
cameras3,4 (see Sec. IV) or x-ray scans.5 These snapshots contain infor-
mation about the location and size of the bubbles. The objective of this
study is to extract central information on the dispersed phase, specifi-
cally to evaluate spatial distributions of the mean and standard devia-
tion of the bubble size, bubble density, and void fraction. Furthermore,
we aim to approximate local probability density functions (PDF)
through histograms. Despite the various physics behind bubbles and

bubble formation processes, we seek a general-purpose tool for statisti-
cal bubble evaluations in this study.

Knowledge of the probability distribution is important in numer-
ical simulations,6–10 where a simpler model, for example, one that
exclusively uses mean values, might result in unacceptable errors. This
is the case for models containing non-linear terms, such as the
Rayleigh–Plesset equation11 for cavitating flows, where the stochastic
field method12 (SFM) addresses this issue.7,10 In the inhomogeneous
MUSIG model,6 groups of different bubble sizes are used to model
their non-linear behavior. Developing closure models, like the work of
Liao et al.,13 requires statistical insight into experiments for validation.

The standard image processing technique for deriving the above-
mentioned quantities from particle or bubble distributions is the box-
counting method,14–17 which divides the domain into subdomains
(called windows or boxes) and assigns each bubble/particle to a
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subdomain based on its location. Depending on the experiment, one18

or more16,17 observation boxes are used to study the flow. In these
studies,16–18 approximations of the bubble size PDF are obtained.
Another common application of the box-count method is the analysis
of preferential concentration in particle-laden flows14,15,19 to find par-
ticle swarms. Here, the PDF of the particle density (defined as particles
per box volume)14 is utilized. Researchers have also used Voronoi dia-
grams20,21 to evaluate bubble-density PDFs5,22 in order to find bubble
swarms.

When particle or bubble-density PDFs are approximated through
the box-counting method, only box-averaged quantities can be
assessed. Bubble-density and void-fraction information associated
with single bubble occurrences is lost as a result of this averaging. This
loss of knowledge is problematic, as the bubble occurrence probability
distribution is of interest.

Further difficulties arise when the flow features an inhomoge-
neous bubble distribution due to localized effects, such as cavitation,
boiling on heated surfaces, or air entrainment at jet impact points.
Consequently, some subdomains of the flow may feature high bubble
densities, while others contain almost none. As such, a priori knowl-
edge of the relevant inter-bubble distances in the flow is necessary for
defining suitable box sizes.5,14 This is a key drawback of the box-count
method.

An algorithm, which can be used to automatically decompose the
flow domain, is the Voronoi diagram,20,21 where influence regions (also
called bubble-cells) are calculated around individual bubbles. Using a
“cellular” model for multi-phase flows was first initiated in the early
1950s by Simha,23 who proposed an interaction-with-nearest-neighbors
model to calculate the viscosity of suspensions. In the subsequent deca-
des, models with polyhedral shaped cells were adapted by various
researchers24,25 and applied to study dispersed flow situations. The
term “Voronoi diagram” appeared later, in evaluation methods of both
particle-laden15,26–28 and bubbly5,22 flows. One can refer to Okabe29 for
a comprehensive review of the applications of this method.

Per the definition of our approach, each Voronoi influence region
contains exactly one bubble.29 As a result, the sample size for calculat-
ing a local mean value on a single image is small (i.e., one). Grouping
bubbles improves the significance of the calculated mean value. This
also enables approximating local, instantaneous probability density
functions of bubbles occurrences even on single snapshots (e.g., rele-
vant if very little data are available or for transient flows). A schematic
example application is depicted in Fig. 1. A similar approach is used in
PDF methods for numerical simulations of reacting flows,30 where the
mean value for every point is calculated from approximately the same
sample size. Our study adopts this approach by implementing a con-
strained K-Means clustering algorithm,31 which places the samples
(bubbles) in groups of similar size. The K-Means clustering algorithm,
where K refers to the number of groups, is a simple algorithm that is
commonly used in the field of data analysis31 to create compact groups
of samples. However, the constrained K-Means clustering algorithm,31

which allows for the cluster size to be restricted, has not been applied
to bubbly flows, thus far.

Combining Voronoi diagrams with constrained K-Means clus-
tering is a promising method for evaluating bubbly flows. This method
avoids the above-mentioned drawbacks of the traditional box-count
method and comes with the benefits of a clear definition of the bubble
influence region and clustering in groups with constrained sizes.

This study involves three test cases to confirm the proposed
method’s applicability and potential benefits. The first two test cases
involve generating synthetic snapshots, using prescribed equations for
the bubble distributing process that aim to imitate features of a real
bubble distribution. Errors can be quantified by comparing the results
with the analytical characteristics underlying the true distribution pro-
cess. In the third test, we apply the method to a plunging-jet experi-
ment, which has been previously explored experimentally32–38 and
numerically.3,39–42 In this analysis, we take existing snapshots from an
earlier experiment.4,43

For the synthetic snapshots, we measure the quality of the results
by comparing them to the analytical field. We assess deviations
between the observed and expected values for the bubble size, bubble
density, and void fraction. In addition, we quantify and discuss the
achieved accuracy by assessing the magnitude of the systematic and
statistical errors. For the plunging-jet experiment, we study the void-
fraction distribution by comparing them with other studies.3 In addi-
tion, we compare the calculated air entrainment rate with empirical
correlations33,35–37,44 and the descending bubble cone angle with other
experiments.34

II. METHOD

Section I showed some of the shortcomings of applying the box-
counting approach to bubbly flows. To overcome them, we propose an
advanced method for evaluating instantaneous snapshot data. By
applying ordinary Voronoi diagrams,20,21 combined with a con-
strained K-Means clustering algorithm,31 the shortcomings of the box-
counting approach (see Sec. I) are addressed. The following provides a
detailed description of the proposed method, including its underlying
assumptions.

A. Assumptions

The following assumptions are made in the bubble evaluation
process:

(a) Throughout this work, the shape of the bubbles is assumed to
be spherical. Therefore, bubble sizes are characterized by their
equivalent radii r. This parameter can be extracted from, e.g.,
shadowgraphs4,18,43 by measuring the spatial expansion on the
image.16–18

FIG. 1. Grouped Voronoi cells for a schematic bubble distribution (left) and derived
approximations of local histograms (right).
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(b) Bubbly flows are three-dimensional phenomena; however,
images of these flows are projections onto two-dimensional
planes.3,4,16,17 Analyses of the flows are conducted in two
dimensions for (statistically) rotational symmetric cases or
cases with one (statistically) homogeneous direction. A discus-
sion regarding the applicability of this method for rotational
symmetric flows can be found in the Appendix.

(c) For high-speed camera images taken in two dimensions, we
assume that all bubbles are detected and exclude overlapping
bubbles. This holds for snapshots of flows with low gas con-
tent.3,43 Depending on the gas content, the bubble-capturing
method must be adjusted accordingly. Note that overlapping
bubbles affect neither the Voronoi diagrams nor the clustering
algorithm, thus preserving the method’s robustness.

(d) This work assumes a statistically steady flow. Flows with time-
dependent mean flow characteristics are outside the scope of
this paper, and therefore, are excluded. Note that the proposed
method itself, however, is not limited to steady flows. For an
extension to transient states, time-averaging operations need to
be replaced by ensemble-averaging over repeated experiments.

(e) The images of the flow are not correlated; the time between the
snapshots is long enough to eliminate dependence.4,43 As such,
bubble tracking and bubble trajectories are not considered in
this study.

(f) Discontinuities in the density at the boundary between the gas-
eous and liquid phase are not considered. The gas content for
each bubble is averaged over its influence region [see definition
in Eq. (3)] with the volume V, and expressed by the void frac-
tion a. The value a can be interpreted as the probability that a
point in this region is occupied by the gaseous phase and is cal-
culated as

a ¼ 4
3
pr3V�1: (1)

The local bubble density q is obtained from the inverse of the
individual bubble-cell volume5 V,

q ¼ V�1: (2)

(g) The spatial extent of bubble influence regions that intersect
with the boundaries is cropped by the flow domain. By trim-
ming the regions, we ensure that their volumes are finite.5

Otherwise, Voronoi diagrams would allow for regions of infi-
nite size.29

(h) When constructing influence regions, we only take the location
of the bubble center into consideration. The spatial extent of
the bubbles is ignored for cell construction.5

B. Workflow

The method for evaluating bubbly flows can be divided into five
steps: (1) pre-processing, (2) snapshot superposition, (3) Voronoi
Diagram, (4) constrained K-Means clustering, and (5) post-
processing. The workflow diagram is shown in Fig. 2. The first four
steps are repeated for every snapshot.

In contrast to other methods,5,14,16,18 we jointly apply steps two
to four. We discuss these steps in detail in Secs. IIC–II E.

In the pre-processing step, raw measurement data (e.g., images)
are processed to extract the location and size of each bubble that is,
then, used in the subsequent steps. This is an important step for ensur-
ing high data quality; however, it is not in the scope of this study, as it
strongly depends on the experimental capturing technique.

In the post-processing step, the data from each snapshot are
concatenated and visualized.

C. Snapshot superposition

In experimental data, the bubble count per snapshot is naturally
fluctuating. Figure 3(a) depicts these large variations seen in a
plunging-jet experiment.4,43 The captured distribution reveals many
snapshots with approximately ten bubbles, but also some with more
than 80 bubbles. The captured distribution also demonstrates some of
the challenges that arise from using the experimental data, which are
given as follows:

• A fluctuating bubble count implies a varying bubble density. This
influences the local spatial uncertainty in the domain since it is
small for a high bubble density (locally more bubbles nearby)
and high for a low bubble density (next bubble might be far
away). As such, the spatial uncertainty of the captured snapshots
can significantly fluctuate.

• In the case of a constant low bubble count, single snapshots can
contain too little information to assess local effects and spatial
distributions. In these cases, the spatial uncertainty in each snap-
shot may be too high for further evaluation.

To address these challenges, a snapshot superposition step is
introduced before steps three and four (see Fig. 2), to obtain a con-
stant, and sufficiently high, spatial resolution. This crucial procedure,
needed for experimental data, is depicted in Fig. 3(b). Several snap-
shots (first row) are superpositioned (No. 1þNo. 2 and No. 3þNo. 4
in this example) in bubble sets (second row). From a number of snap-
shots S, we obtain S� bubble sets (quantities marked with an asterisk
refer to bubble sets in Secs. III–VI) after the superposition. Now, the
second row has a higher bubble density (lower spatial uncertainty)

FIG. 2. Workflow of the method.
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with smaller fluctuations (ideally constant number of M� bubbles per
bubble set). In practice, we combine snapshots until a prescribed mini-
mum bubble count M�min in each bubble set is reached. Note that
quantities involving the influence region volume V (i.e., bubble density
q and void fraction a) need to be corrected by the number of images
that were summed in this process step. In case I (Sec. IIIB), we discuss
this step in detail and show its validity by comparing with analytical
data.

D. Voronoi diagram

With Voronoi diagrams, an influence region for every bubble in
a bubble set can be calculated. This decomposes the domain into con-
vex polyhedrons in n-dimensional space, free from overlaps or
gaps.20,21,29 For M� bubbles with the bubble centers x1; x2;…; xM� ,
themth influence region Am for bubble center xm is defined29 as

Am ¼ fx j kx � xmk � kx � xjk for j 6¼ m; j 2 f1; 2;…;M�gg: (3)

This definition of the ordinary Voronoi diagram assigns to each point
the nearest bubble center based on the Euclidean distance. The result-
ing diagram for a random bubble distribution can be found in Fig. 4.

E. Constrained K-Means clustering

In this procedure, K cluster centers are created in the flow
domain. Each bubble in a bubble set is assigned to the closest cluster
center. With an iterative scheme, the original K-Means clustering algo-
rithm minimizes the squared Euclidean distance of the samples to the
cluster centroid. We employ the constrained extension of this algo-
rithm, which allows one to set a minimum and maximum number
(Cmin and Cmax) of bubbles per cluster.

31 We set a target cluster size
Ctrgt and select one of Cmin¼Ctrgt, Cmax ¼ Ctrgt þ 1 OR Cmin

¼ Ctrgt � 1, Cmax¼Ctrgt OR Ctrgt ¼ Cmin ¼ Cmax for each bubble set,
depending on which setting results in more clusters of size Ctrgt. Figure
5 displays an example application of this clustering algorithm for a
bubble distribution in a bounded box. Here, the bubbles are grouped
in clusters with a fixed size (Ctrgt ¼ Cmin ¼ Cmax ¼ 8) and are colored
according to their membership. By applying this algorithm, all M�

bubbles are assigned to exactly one of the K clusters. We introduce
function f CKM, which refers to this assignment,

f CKM : f1; 2;…;M�g ! f1; 2;…;Kg: (4)

The region AC
i of the i-th cluster (where i 2 f1; 2;…;Kg) is the union

of a constrained amount of Voronoi regions Am,

AC
i ¼

[M�
m¼1

Am if f CKMðmÞ ¼ i;

; else:

(
(5)

For an arbitrary volume-averaged quantity / (e.g., a or q), a
weight wm is used for calculating its cluster-averaged value �/. This
weight is interpreted as a contribution of the mth bubble to a point
x 2 AC

i . This weight is calculated from the bubble cell volume Vm

divided by the ith cluster volume VC
i . The weight of the mth bubble

quantity/m becomes

FIG. 3. (a) Statistical distribution of the bubble count per snapshot for a circular plunging-jet experiment.4,43 (b) Schematic visualization of the snapshot superposition step,
where fluctuations in the bubble count per snapshot result in varying spatial resolution of bubble data (first row). Superposition balances these fluctuations and combines them
into bubble sets (second row).

FIG. 4. Example of a Voronoi diagram for the calculation of the influence region of
each bubble based on the nearest bubble center.
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wm ¼
Vm

VC
i

if f CKMðmÞ ¼ i;

0 otherwise:

8><
>: (6)

The cluster-averaged value �/ is, then, calculated from

�/ ¼
XM�
m¼1

wm/m ; 8x 2 AC
i : (7)

At a point x, we obtain one cluster-averaged value �/t for each bubble
set, where t 2 f1; 2;…; S�g. The time-averaged (bubble-set-averaged)
value h�/i is

h�/i ¼ 1
S�
XS�
t¼1

�/t: (8)

After processing S� bubble-sets, we assign a number of bubbles,
S� � ðCtrgt � 1Þ to S� � ðCtrgt þ 1Þ, to each point x. In Secs. III–VI of
the paper, an over-bar (� � �) indicates a cluster-averaged value, and a
value in angular brackets (h� � �i) refers to a bubble-set-averaged (time-
averaged) value. We emphasize that all results of the proposed method
represent volume-averaged data, due to the spatial expansion of both
the clusters and the bubble influence regions.

The void fraction a [see Eq. (1)] depends strongly on the defini-
tion of the influence region [i.e., Eq. (3)]. Therefore, we introduce an
alternative void fraction definition ~a that associates a cluster-averaged
volume (cluster volume divided by cluster size) to each bubble. This
equation for them-th bubble reads

~am ¼
4
3
pr3m

1
VC
i

XM�
m¼1

1 if f CKMðmÞ ¼ i;

0 else;
8Am 2 AC

i :

(
(9)

In the latter equation, the effect of the choice of the influence region
definition decreases with increasing Ctrgt. This is in contrast to Eq. (1)
and clearly shows the relation of ~a to the box-counting definition (if
the box and the cluster contain the same amount of bubbles).

III. CASE I: SYNTHETIC BUBBLE DATA

We use synthetic bubble data for the first stage of test cases, as it
is possible to identify the exact statistical characteristics of such bubble
distributions. The bubble count M is a constant for every generated
snapshot. This simplification is used to test the superposition step of
Sec. II C (refer to Fig. 2). Different settings are applied, and the results
are compared to prescribed values.

A. Description

A two-dimensional bubble distribution with depth H is consid-
ered. Domain length H is chosen to be the characteristic length scale.
For each generated snapshot,M bubbles are distributed in the domain.
The distribution process is governed by a prescribed bubble-density
expectation lqðx; yÞ. We choose lq to have the spatial distribution,

lqðx; yÞ ¼ lMf1ðxÞ � f2ðyÞ

¼ lM
192
71

y
H
� 100

71
y
H

� �3
" #

� 6:0162ffiffiffiffiffi
2p
p exp � 9

2
2
x
H
� 1

� �2
 !" #

: (10)

In Eq. (10), lM represents the expectation of the bubble count M per
snapshot. The distribution of Eq. (10) is shown in Fig. 6.

The mth bubble is distributed in the domain space using the
inverse transform sampling method.45 We define the functions F1ðxÞ
and F2ðyÞ, where

dF1ðxÞ
dx

¼ f1ðxÞ;
dF2ðyÞ
dy

¼ f2ðyÞ; F1ð0Þ ¼ F2ð0Þ ¼ 0;

and

F1ð1Þ ¼ F2ð1Þ ¼ 1: (11)

FIG. 5. 32 randomly distributed bubbles in a bounded box clustered into four clus-
ters of exactly eight bubbles using the constrained K-Means clustering algorithm.31

FIG. 6. Plot of lqðx; yÞ from Eq. (10).
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The functions F1ðxÞ and F2ðyÞ are invertible. Their inverse is subse-
quently referred to as F�11 and F�12 . Now an uniform continuous dis-
tribution in the interval ½0; 1� is used. For the mth bubble, we draw
independently for the variables f1;m and f2;m a sample from that distri-
bution. Location xm is obtained from

xm ¼
F�11 ðf1;mÞ
F�12 ðf2;mÞ

 !
: (12)

At location xm ¼ ð
xm
ym
Þ, the prescribed properties lrðx; yÞ and

rrðx; yÞ are taken into account when generating the bubble radius rm.
The expectation lrðx; yÞ and standard deviation rrðx; yÞ of the bubble
radius are given by

lrðx; yÞ ¼ 0:006þ 0:002
y
H
� 1

� �
(13)

and

rrðx; yÞ ¼ 0:000 95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
H
� 1
2

� �2

þ y
H
� 1

� �2
s

; (14)

respectively. Although the distribution of lrðx; yÞ; rrðx; yÞ, and
lqðx; yÞ is arbitrary, they aim to simulate features of a real bubbly
flow. The standard deviation prescribed by rrðx; yÞ could be inter-
preted as an increase in the bubble size variety due to coalescence,
and breakup, away from an imaginary entrainment point, as seen
in Fig. 8. The plot of lrðx; yÞ is depicted in Fig. 7. The expected
bubble radius decreases with decreasing y/H in the used artificial
data; this could be the result of buoyancy effects when gravity acts
in the negative y-direction. Note that various interpretations
regarding the physical meaning of Figs. 6–8 are possible and that
these distributions do not aim to be in accordance with the experi-
mental results.

In this test case, the generation of rm is governed by a Maxwell
distribution PDF,46

f �ðrÞ ¼
ffiffiffi
2
p

r
r2

C3
2
e
� r2

2C2
2 ; r 2 0;1Þ;½ (15)

where

C2 ¼ rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

3p� 8

r
: (16)

To prescribe lr, we modify f �ðrÞ by shifting the PDF by a parameter
C1 on the r-axis. The shifted PDF f(r) is

f ðrÞ ¼
ffiffiffi
2
p

r
ðr � C1Þ2

C3
2

e
�ðr�C1Þ

2

2C2
2 ; r 2 C1;1Þ;½ (17)

where

C1 ¼ lr � 2C2

ffiffiffi
2
p

r
; C1 > 0: (18)

A typical snapshot resulting from the above equations is shown in
Fig. 9. After distributing the bubbles, we employ the method described
in Sec. II. The results can be compared to the fields prescribed in Eqs.
(10), (13), and (14). In order to compare the calculated mean void
fraction with its expectation, we first need the expected bubble volume
lVr

, obtained from

lVr
¼
ð1
C1

4pr3

3
f ðrÞdr

¼ 4
ffiffiffi
p
p

3C2
2

7
2C4

2 þ 9
ffiffiffi
p
p

C1C
3
2 þ 3 � 23

2C2
1C

2
2 þ

ffiffiffi
p
p

C3
1C2

� �
: (19)

With the expected bubble density lq, we can calculate the expectation
for the void fraction la [refer to Eq. (1)],

la ¼ lqlVr
; (20)

which is shown in Fig. 10.

FIG. 8. Plot of rr ðx; yÞ from Eq. (14).

FIG. 7. Plot of lr ðx; yÞ from Eq. (13).
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In this test case, we generate 256 snapshots, each containing 128
bubbles. For an adequate spatial resolution, we set a requirement of
K¼ 128 clusters for each bubble set. The designed experiment has the
parameters listed in Table I. We repeat the analysis of the snapshots
three times, each time applying one of the three settings. Parameters
vary from setting 1, which does not involve any clustering (cluster size
Ctrgt ¼ Cmin ¼ Cmax ¼ 1) or snapshot superposition (256 bubble-sets)
to setting 3 where 64 snapshots are superpositioned for each bubble set.

B. Results

Figure 11 shows the resulting void-fraction profile at y=H ¼ 0:85
for each setting. All three settings of Table I result in similar profiles,

considering the overall deviations from the analytic profile [see Sec.
IIIA and Eq. (20)]. As per the method, 256 bubbles are assigned to
each point in space after processing the bubble sets (Ctrgt � S�),
regardless of the chosen setting. At the same time, the spatial resolu-
tion is equal for all three settings because K is unchanged. As a result,
we conclude that each setting provides a statistically equal evaluation.

The number of bubbles processed simultaneously increases with
snapshot superposition. Due to the complexity of the evaluation algo-
rithm, the overall runtime required for each bubble set also increases.
We found that our evaluation’s complexity is approximately of the
order OðM�2Þ. If snapshots are superpositioned before the subsequent
steps (see Fig. 2), the total number of bubble sets (for a fixed number
of snapshots) is reduced (refer to the fifth column of Table I). As a
result, the total time required to process all snapshots increases
approximately linearly with the number of bubbles in a set. This
behavior is shown in Fig. 12.

For a consistent quality of results for experimental data, we rec-
ommend conducting the snapshot superposition step prior to the
Voronoi diagram and clustering steps (see Fig. 2). In addition, snap-
shot superposition should be kept to a minimum due to the longer
computation run-time required for evaluations with increasingM�.

IV. CASE II: SYNTHETIC BUBBLE DATA

In the second test case, the bubble countM is fluctuating [similar
to experimental data, refer to Fig. 3(a)] with the distribution for each
synthetically generated snapshot being set to the same as that of Sec.
III. The analytically prescribed fields quantify the method’s error. We,
then, analyze the systematic error, discuss the statistical error, quantify
deviations from the prescribed fields, and finally, extract local
histograms.

FIG. 9. Example of a synthetically generated snapshot of M¼ 128 bubbles, with
properties described in Eqs. (10), (13), and (14).

FIG. 10. Plot of laðx; yÞ from Eq. (20).

TABLE I. Parameter settings for case I.

Name K M�min Ctrgt S�

Setting 1 128 128 1 256
Setting 2 128 1024 8 32
Setting 3 128 8192 64 4

FIG. 11. Void-fraction profiles at y=H ¼ 0:85 for the three settings listed in Table I.
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A. Description

We generate S¼ 150 snapshots for this test calculation. The bub-
ble count per snapshotM for each snapshot is obtained by a Gaussian-
shaped distribution (lM ¼ 1024 andrM ¼ 250). Figure 13 shows the
histogram of the bubble count per snapshot used for this test case. The
cluster size is set as Ctrgt¼ 16. In the snapshot superposition step, we
superposition images until a bubble count of M�min ¼ 16� 128 is
reached.

B. Results

The snapshots are processed according to the workflow described
in Fig. 2. Figure 14 shows the void-fraction field for one bubble set fol-
lowing the Voronoi diagram step. The cluster-averaged void fraction
�a, generated after employing the constrained K-Means clustering algo-
rithm, is shown in Fig. 15.

1. Systematic errors

There are two systematic errors. One source of the error is the
relative distance between the cluster centroid and the mean location of
the bubble centers. The distance between these locations is visualized
by the error vector~eerr in Fig. 16. The true spatial mean location of

information (bubble occurrences) is located at the big red dot (Fig.
16). In contrast, the apparent location of this information is located at
the big green dot as a result of the spatial expansion of the cluster. This
error vector varies for each snapshot and each cluster.

In situations with a bubble-density gradient, the mean error vec-
tor is obtained after averaging multiple snapshots, which causes a spa-
tial mislocation of information. This snapshot-averaged error is shown
in Figs. 17(a) and 17(b). The length [Fig. 17(a)] of the error vector~eerr
grows larger as it nears the domain boundaries and scales with the
cluster size (c). The direction of ~eerr is visualized by the angle
c between ~eerr and the x-axis. Figure 17(b) displays the bubble-set-
averaged angle hci and demonstrates that hci is driven by the direction
of the gradient vector ~rq of the bubble density q.

FIG. 12. Total time required for processing all test case snapshots, normalized by
the time required for setting 1 (refer to Table I).

FIG. 13. Histogram of the bubble count M per snapshot used in test case II.

FIG. 14. Example void fraction a following the Voronoi diagram step for test case II
(see Fig. 2).

FIG. 15. Example cluster-averaged void fraction �a for case II.
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The second systematic error arises from the low spatial resolu-
tion, which implies uncertainty in the location of the information. In
Fig. 18, we show an example cross section at y=H ¼ 0:85 of the clus-
ter- and bubble-set-averaged void fraction h�ai. At nine locations, the
averaged uncertainty in the x-location, obtained from the mean expan-
sion of the clusters, is shown. The spatial uncertainty increases toward
the boundaries of the domain due to lower bubble density.

With the proposed method, volume-averaged values /m (from
the mth Voronoi cell) are derived as approximations of local pre-
scribed quantities l/ðx; yÞ. We define l̂m

/ as the volume-averaged
expectation that is consistently estimated by a Voronoi region Am,

l̂m
/ ¼

1
Vm

ð
Vm

l/ðx; yÞdV : (21)

For every point x, we calculate a cluster-averaged value �/ and a
cluster-averaged expectation l̂/ (see Fig. 16). As a result, the larger

FIG. 16. Visualization of the error vector~eerr (light gray arrow) for an example cluster of 15 bubbles. The error vector connects the cluster centroid (big green dot) based on
the Voronoi centroids (small green dots) with the location of the mean bubble center (big red dot). The bubble centers are represented by small red dots. The clusters are col-
ored based on their cluster-averaged bubble density (on the left).

FIG. 17. Visualization of the averaged systematic errors. (a) Mean length of the error vector~eerr, (b) angle hci between~eerr and the x-axis, and (c) mean equivalent cluster
radius hrCi.

FIG. 18. Profile of cluster- and time-averaged void fraction h�ai at y=H ¼ 0:85 with
nine error bars indicating the time-averaged spatial uncertainty.
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the cluster volume VC, the lower the approximation accuracy of
l/ðx; yÞ. The difference between hl̂/i and l/ðx; yÞ is depicted in
Fig. 19. While the deviation at x=H ¼ 0:5 is negligible, we see a signifi-
cant difference at x=H ¼ 0 and x=H ¼ 1.

We introduce an equivalent, average cluster radius
hrCi ¼ ðhVCip�1Þ0:5 as a measure of the uncertainty. A visualization
of this radius can be found in Fig. 17(c). To reduce the two errors, the
number of clusters K in each bubble set can be increased (i.e., keeping
M�min and decreasing Ctrgt or increasingM�min and keeping Ctrgt).

The systematic nature of these errors could be addressed through
correction algorithms; however, this is beyond the scope of this work.

2. Statistical errors

After processing each bubble set, any given point in the flow
domain is assigned a total of N 2 fS� � ðCtrgt � 1Þ…S� � ðCtrgt þ
1Þg bubbles. The observed mean h�/i of an arbitrary quantity / can be
calculated from the observations /1;/2;…;/N using the weights
w1;w2;…;wN [see Eq. (6)], where

PN
i¼1 wi ¼ 1. The value h�/i is an

estimation of the cluster- and time-averaged expectation of hl̂/i.
According to the law of large numbers,47 the error jh�/i � hl̂/ij
almost surely converges to zero as N approaches infinity. However, for
a finite set of N samples (bubbles), a statistical error remains given that
hl̂/i is in general unknown. With the weights wi and the samples /i,

an interval is calculated, where we suspect the expectation hl̂/i to lay
with a probability ð100%� a%Þ. We obtain this confidence inter-
val48,49 from

h�/i6
ta=2 ; ðN�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

wið/i � h�/iÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ NN

YN

i¼1 wi

� �1=ðN�1Þr : (22)

Here, ta=2 ; ðN�1Þ refers to the t-value of the student-t distribution
with N – 1 degrees of freedom. As seen in Eq. (22), the confidence
interval decreases with increasing sample size N. Figure 20 displays
the confidence interval for the mean void fraction h�ai. The confidence

interval covers the region with 99% confidence andmatches the expec-
tation hl̂ai.

To obtain narrower confidence intervals, one can increase the
number of snapshots S, and thus, the total sample size N per point in
space.

3. Choice of method settings

The magnitude and influences of the local confidence interval
and its spatial uncertainty are discussed in the previous paragraphs.
Based on the resulting uncertainties, a decision on the final method
settings can be made. An unacceptable spatial uncertainty can be
addressed by increasing M�min while admitting a longer runtime (see
Sec. III B). Decreasing Ctrgt has a positive effect on spatial uncertainty,
but decreases the number of assigned bubbles per point in space, and
thus widens the confidence interval. The two parameters are chosen
arbitrary for synthetic bubble data but need to be adjusted iteratively
for experimental data to find an acceptable compromise of computa-
tional cost, spatial uncertainty, and statistical significance.
Recommendations for these parameters are generally challenging to
make, as they strongly depend on the application. Additionally, the
decision on the acceptance of the error compromise is driven by the
purpose of the results. For example, parameters optimized for calculat-
ing higher-order moments where a larger count of samples (bubbles)
per point is required might be inappropriate for evaluating a mean val-
ue’s spatial gradient.

4. Deviations of the fields

Next, we assess the deviation of the calculated approximations
for lrðx; yÞ; rrðx; yÞ, and laðx; yÞ, compared to the analytically pre-
scribed fields (see Sec. IIIA). These deviations in the domain are visu-
alized in Fig. 21. The deviation from lrðx; yÞ is in the range of zero to
five percent and can be viewed as rather small; however, we found
larger deviations up to 15% from rrðx; yÞ. The largest errors are found
in Fig. 21(c), where we compare our results with the prescribed expec-
tation of the void fraction laðx; yÞ. Here, the regions close to the
boundaries exhibit large deviations (>20%) also coinciding with the
regions characterized by high systematic error (see Fig. 17).

FIG. 19. Profile of the cluster- and time-averaged void-fraction expectation hla i at
y=H ¼ 0:85 compared to laðx; yÞ.

FIG. 20. 99% confidence interval (light blue region) for the calculated mean void
fraction h�ai (solid blue line) and the averaged expectation hl̂a i (solid red line).
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5. Local histogram

The proposed method allows local histograms for quantities
related to single bubble occurrences to be generated. These approxima-
tions of local PDFs each have a similar sample size N, independent of
their location in the domain. This important feature is demonstrated
in Fig. 22, where we use the void fraction a to create a local histogram
of the occurrence frequencies of each a-value, using x=H ¼ 0:3 and
y=H ¼ 0:3 as an example location in the domain.

V. CASE III: EXPERIMENTAL BUBBLE DATA

In this section, we examine two-dimensional snapshot data, taken
from an existing experiment,4,43 to investigate a circular plunging-jet
with air entrainment. Case III aims to apply the proposed method to
real experimental data and confirm its results by comparing them to
the literature.3,33–37,44 For that purpose, we extract the void-fraction
distribution and the air entrainment rate. Table II summarizes the rel-
evant parameters of this experimental study.

A. Description

The shadowgraphs obtained from the experiment4,43 are proc-
essed as follows. The schematic setup can be found in Fig. 23; here, the
location of the detection region for the shadowgraphs is visualized.

Raw shadowgraph images (e.g., Fig. 24) are used to extract the bubble
location, equivalent radius, and bubble velocity.43 The circular
plunging-jet bubble distribution is, on a statistical average, a
rotational-symmetric, three-dimensional flow. With shadowgraph
imaging, the results are captured in two dimensions. A correction
method50 (refer to Interferometry51 for an example application) is
applied to the apparent void-fraction field (in 2D) to yield the true
void fraction (as a function of the centerline distance R). The applica-
bility of this method for evaluating void fractions in bubbly flows can
be found in Appendix. During the experiment, 3600 snapshots were
taken, each with an average of 48 bubbles [PDF of the bubbles per
snapshot are found in Fig. 3(a)]. The cluster size is Ctrgt¼ 4, while a
minimum bubble count of M�min ¼ 220� 4 is set for each bubble set.
More detailed information on the experiment has been previously
published.4,43

B. Results

In the following, we discuss the resulting void-fraction distribu-
tion and air entrainment rate.

1. Void-fraction distribution

The results of all of the bubble sets are averaged, allowing the
mean void-fraction field to be calculated from the two-dimensional

FIG. 21. Error plots of (a) the deviation from the expected bubble radius lr, (b) the standard deviation for the bubble radius rr, and (c) the deviation from the expected void
fraction la. All deviations are presented as percentages.

FIG. 22. Normalized histogram of void-fraction occurrences gathered over S¼ 100
snapshots at location x

H ¼ 0:3 and y
H ¼ 0:3.

TABLE II. Parameters for the plunging-jet experiment.43

Description Variable Value Unit

Nozzle diameter d0 6.0 mm
Jet velocity at nozzle v0 1.76 m/s
Jet diameter at impact point d1 4.90 mm
Jet velocity at impact point v1 2.64 m/s
Jet length L 197 mm
Fluid surface tension rFl: 0.0723 N/m
Fluid density qFl: 997.3 kg=m3

Jet fluid volume flux QFl: 0.0497 dm3=s
Dynamic viscosity lFl: 940� 10�6 Pa�s
Jet turbulence level33,43 Tu 1–1.5 %
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bubble data. In Fig. 25, the distribution of h�aiðx; zÞ is displayed. In
this experiment, the void fraction is concentrated at the lower end of
the descending bubble core; this was also found by Qu et al.3 The field
of h�aiðx; zÞ exhibits local minima and maxima in the mean void-
fraction field. Our experience has shown that removing the local
extrema generates better final results. In the presented case, a kernel
smoothing method is used, with the smoothing radius set to 8mm.

At this point, the correction method50 used for Interferometry51

is applied to the smoothed void-fraction profile by using the assump-
tion of a statistically rotational symmetric flow (see study in
Appendix). The correction method calculates the true void fraction
h�ai0ðz;RÞ from the apparent void fraction h�aiðx; zÞ that was obtained
from the shadowgraphs. Figure 26 shows the corrected void-fraction
profiles for five different depths in the pool.

2. Air entrainment rate

We consider the drift of the void am �~vB;m for every bubble influ-
ence region, where~vB;m is the velocity of themth bubble. We calculate
the corrected, bubble-set- and cluster-averaged void drift ha~vBi0ðz;RÞ
analogous to the void fraction as described above. The volumetric void
flux through an imaginary area Acone of the descending bubble cone in
the xy-plane is used to calculate the entrainment rate,

QAir

QFl:
¼ 1

QFl:

ð ð
Acone

ha~vBi0ðz;RÞ~nzdA

¼ 1
QFl:

ðRcone

0
2pRha~vB i0ðz;RÞ~nzdR; (23)

FIG. 24. Unprocessed shadowgraph of a bubble distribution obtained from the
plunging-jet experiment.4,43

FIG. 23. Visualization of the plunging-jet experimental facility.4,43

FIG. 25. Distribution of h�aiðx; zÞ after averaging over snapshots of the plunging-jet
experiment.
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where Rcone is the limit of the descending bubble cone. Our experi-
ment43 exhibits a cone angle of �11	, which matches the angles found
by Ervine and Falvey.34 For z¼ 100mm, we obtain an entrainment rate
of QAir

QFl:
� 0:16. The ratio QAir

QFl:
is slightly lower than the value predicted by

the empirical correlation of El Hammoumi and Davoust,36 which is
based on similar experimental settings. Using their correlation36 gives

QAir

QFl:
¼ 1

QFl:
3:851�5L0:885d0

0:193v0
2:23 � 0:24: (24)

Taking Chanson’s book37 diagram for entrainment rates of circular
plunging jets, we find that the extracted air entrainment rate is under-
estimated. From this empirical diagram, we extract a predicted
entrainment rate of �0:13 for our experiment. The value from Eq.
(23) falls between the values predicted by El Hammoumi and
Davoust36 and Chanson.37 Other correlations33,35,44 overestimated our
extracted air entrainment rate.

VI. CONCLUSIONS

We use Voronoi diagrams to calculate an influence region for
every bubble. Unlike the box-count method (see Sec. I), no a priori
knowledge of the mean bubble distance is needed to define a suitable
box size. This is a significant benefit of using the proposed method.

The constrained K-Means clustering algorithm allows bubbles to
be grouped into clusters with constrained sample sizes. As a result,
each point in the flow domain is assigned a similar number of bubbles,
regardless of its location in the flow domain. In contrast to other meth-
ods, we can create local histograms with approximately constant
amounts of samples. Therefore, we conclude that we can obtain a
robust evaluation of the flow even in regions where the bubble density
is low (sparsely occupied regions). This capability represents a key dif-
ference from other methods that capture only local information of the
gaseous phase (e.g., needle probes).

An advantage of the strict definition of the influence region in
our method is that every bubble has an associated cell volume V. This

means that no box-averaged volume has to be used for the bubble den-
sity q or the void fraction a; therefore, our method achieves a more
consistent derivation of histograms for these values.

Furthermore, we demonstrate that the proposed method achieves
a constant and high spatial resolution by utilizing a snapshot superpo-
sition step. This superposition step is important for experimental data,
as it smooths fluctuations in the bubble count per snapshot. A draw-
back of the superposition is that it prolongs the runtime of the algo-
rithm, as shown in Sec. III B.

The inherent errors of the proposed method are critically
assessed in Sec. IVB. We show that the systematic error can be
reduced by increasing the number of clusters K and that increasing the
number of snapshots S narrows the confidence interval of the statisti-
cal error. Therefore, these errors show this favorable property of con-
vergence as we increase the resolution and amount of information.

The proposedmethod provides good approximations for spatial dis-
tributions of mean values and standard deviations. This was confirmed
by comparing the results to the analytical expectations and standard devi-
ations of the synthetic snapshot data as well as to literature data in Sec.
VB. Now, in subsequent studies, the results obtained from the proposed
method can be used to reveal a wide range of fascinating physics.
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APPENDIX: 3D DATA PROCESSED IN 2D

This section discusses the application of a correction method50

for void-fraction analysis in bubbly flows. This method was used to

FIG. 26. Cross section at various pool depths with corrected mean void-fraction
profiles.
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correct two-dimensional density measurements from a rotational
symmetric flow in the area of Interferometry.51 This method
assumes rings of statistically constant values /0i (see Fig. 27). An
observer (ray in Fig. 27) will measure a weighted mean /. The
weights are given by lengths Li that the ray is passing through the
ith ring. This mean value / is, then, calculated by

/ ¼
X

Li/
0
iX

Li
: (A1)

We carry out a test with a synthetic bubble distribution with
known spatial expectations for the void-fraction field la. The statis-
tically rotational symmetric distribution is generated through the
inverse transform sampling method.45 The domain has the dimen-
sions H � H �H. Here, we generate 40 snapshots with bubbles dis-
tributed in three dimensions. An example snapshot can be seen in
Fig. 28. In each snapshot, the bubble count M is fluctuating, as
described in Sec. IV (lM ¼ 1024; rM ¼ 250). For the test, the bub-
ble snapshots are processed in two- and three-dimensional environ-
ments and the results are compared. For both calculations, a spatial
kernel smoother is used, with a kernel radius of 0:05H.

1. 2D Evaluation

For the two-dimensional evaluation, we project the bubble dis-
tribution of each snapshot onto the xz-plane. The proposed work-
flow (Fig. 2) is, then, applied in two dimensions. The resulting
profile is, then, transformed, using the correction method.50,51 We
select Ctrgt¼ 8,M�min ¼ 128� 8 for this evaluation.

2. 3D Evaluation

The method described in Sec. II has no limitations in terms of
the spatial dimensionality of the bubble data. As such, the proposed
method is directly applied to the three-dimensional snapshots. The
cluster count K is adjusted so that the equivalent mean cluster

radius is the same in two and three dimensions. Here, Ctrgt¼ 2 and
M�min ¼ 966� 2.

Figure 29 compares the void-fraction profiles at z=H ¼ 0:85 as
a function of the centerline distance R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The two- and

three-dimensional analyses with the analytic expectation of la are
depicted. Both evaluations provide a good approximation of la.
While the three-dimensional analysis is more accurate, the two-
dimensional methods exhibit stronger fluctuations around the
expectation la. These stronger fluctuations can be explained by the
accumulation of errors toward the centerline.51
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formes quadratiques. Premier m�emoire. Sur quelques propri�et�es des formes
quadratiques positives parfaites,” J. Reine Angew. Math. 1908, 97–102.

21G. Voronoi, “Nouvelles applications des paramètres continus �a la th�eorie des
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