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Abstract
OpenStreetMap (OSM) data are geographical data that are easy and open to access and therefore used for a large set of
applications including travel demand modeling. However, often there is a limited awareness about the shortcomings of volun-
teered geographic information data, such as OSM. One important issue for the application in travel demand modeling is the
completeness of OSM elements, particularly points of interest (POI), since it directly influences the predictions of trip distri-
butions. This might cause unreliable model sensitivities and end up in wrong predictions leading to expensive misinterpreta-
tions of the effects of policy measures. Because of a lack of large-scale real-world data, a detailed assessment of the quality of
POI from OSM has not been done yet. Therefore, in this work, we assess the quality of POI from OSM for use within travel
demand models using surveyed real-world data from 49 areas in Germany. We perform a descriptive and a model-based anal-
ysis using spatial, demographic, and intrinsic indicators for two common trip purpose categories used in travel demand mod-
eling. We show that the completeness of POI data in OSM depends on the category of POI. We further show that intrinsic
indicators and indicators calculated based on data from other sources (e.g., land use or census data) are able to detect quality
deficiencies of OSM data.
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Travel demand models are essential tools to estimate the
impacts of transport policy and infrastructure measures,
since they are capable of simulating and assessing differ-
ent scenarios. The results form the basis of extensive and
usually costly decisions. The models must therefore be as
accurate as possible in their forecasts. Therefore, they
aim to simulate the travel behavior of people on the basis
of several decisions: which activities are conducted, where
the activities take place, and which means of transport
and which routes are used on the trips. Choosing the des-
tination of a trip is based on locations, where activities
can be carried out: for example, supermarkets for grocery
shopping, sports facilities for recreation, or train stations
to pick up or drop off friends or relatives, to name a few.

Consequently, the structure of an area with different
offerings contributes significantly to its attractiveness for

a certain activity. Attractiveness is thus a structural para-
meter that forms the basis for modeling destination
choice. This requires the collection of structural data, for
example, retail facilities or cultural offerings. The data
should be as detailed and up-to-date as possible. This
type of data can be laboriously collected manually with
the inclusion of existing surveys and official data. In

1Institute for Transport Studies, Karlsruhe Institute of Technology,

Karlsruhe, Germany
2Institute of Urban and Transport Planning, RWTH Aachen University,

Aachen, Germany
3HeiGIT gGmbH, affiliated Institute at Heidelberg University, Heidelberg,

Germany

Corresponding Author:

Christian Klinkhardt, christian.klinkhardt@kit.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981231169280
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981231169280&domain=pdf&date_stamp=2023-05-13


addition, there are offers from commercial providers,
which sell the data for accessibility analyses and market
analyses, among other things. Accordingly, these offers
cost money and the approach of the providers is not
comprehensible.

At this point, open data offer several advantages. The
data are provided in an open format that is usually well
documented. This significantly reduces the effort for using
the data from a technical perspective. If the data are avail-
able in a uniform format for different areas, any methods,
frameworks, and procedures based on it can be easily trans-
ferred to other regions. Also, because the data are in a
defined format, it can be processed automatically in all
available areas. Furthermore, if the data are updated regu-
larly, all models built on it can also be updated on a regular
base. The public availability of the data also promotes trans-
parency of the respective models. Everyone who knows the
process can reproduce the results. Thus, there is no longer a
‘‘black box’’ as with most commercial data. One of the larg-
est providers of geographical open data is OpenStreetMap
(OSM), which belongs to the field of volunteered geographic
information (VGI). VGI characterizes information collected
by so-called ‘‘mappers’’ in their spare time and made avail-
able on platforms such as OSM.

Haklay points out that ‘‘volunteers.collect informa-
tion of their own accord without top-down coordination
that would ensure systematic coverage’’ (1). This raises
the concern of points of interest (POI) not being equally
complete in all areas, which would distort the destination
choice. To use OSM data for travel demand modeling
without hesitation, it is crucial to ensure comparably
good-quality POI data for the designated areas.

Therefore, investigating whether POI related to certain
activity types are mapped completely in the region of
interest is of high relevance. Because of a lack of open or
surveyed large-scale data from real-world POI, such an
investigation is usually not feasible. However, there exist
several approaches using intrinsic indicators, such as the
historic saturation rate or the number of volunteers in a
certain area. However, these intrinsic methods have also
not been verified with real-world data so far for the same
reasons. Therefore, in our work, we use surveyed data
from real-world POI from 49 survey sites to: 1) perform
an analysis of the completeness of POI data from OSM,
2) assess influences from spatial structures, and 3) evalu-
ate the explanatory power of intrinsic indicators.

The paper is structured as follows. First of all, litera-
ture is reviewed for the present state of knowledge on
POI data quality and requirements. The next section
describes the data sources and the data processing as well
as the calculation of the various indicators. This is fol-
lowed by a section providing insights into the analysis
methods and the results of our analysis. Finally, a sum-
mary of the work and an outlook is provided.

Literature

There are related national guidelines for the setup of
travel demand models, which specify the requirements
for different model aspects and input data. However, the
use of structural data such as POI for different purposes
is only of minor importance. Most of these guidelines—
for example, the Swiss and British guidelines for data
sources of travel demand models—only provide ideas for
the use of POI data, and merely focus on the network
data and related data of transport infrastructure such as
time tables or stations (2, 3).

Nevertheless the use, quality, and application of crowd-
sourced POI data has been subject to a wide range of
research. Depending on the purpose of an analysis, differ-
ent dimensions of data quality are of concern (4). For the
purpose of travel demand estimation, object completeness
and correct classification of POI are of high importance
while for navigation, correctness of topological relations
plays as important role as well. Correctness of the geome-
trical representation (single point or floor area of buildings)
of the object is of lower importance. Yeow et al. compared
various measures and validation methods to assess POI
data quality (5). They considered both intrinsic and extrin-
sic approaches and found positional accuracy to be the
most-studied element of data quality. Thematic accuracy
and completeness were less represented in the studies. As a
measure of completeness, the share of observed POI com-
pared with a reference database was the most popular one,
whereas community activity can serve as an indicator as
well. The completeness of POI data in the application area
in Singapore was found to be weak suggesting ‘‘errors of
commission and omission.’’ Hochmair et al. compares dif-
ferent sources of publicly available POI data of mapping
and social media platforms without a comparison of
ground truth data (6). The data of mapping platforms had
a higher spatial accuracy than social media data. The
authors proposed a closer look at POI contribution pat-
terns and a further investigation of selected test areas.
Touya et al. conducted a completeness and accuracy analy-
sis based on a reference dataset and Flickr photographs,
and highlighted the use of multiple indicators as each of
them revealed strengths and weaknesses when applied to
different POI categories (7).

Going beyond only looking at measures, influences
such as spatial structure, demography, and community
indicators on the data quality are of interest. Yang et al.
analyzed positional accuracy and completeness of
Chinese POI data and explored influencing factors by
applying a geographically weighted regression (8). The
distribution of the contributors was found to be most
important, while population density and per capita GDP
had little influence. Still, with respect to OSM data qual-
ity, many authors reported a tendency for higher data
quality in more densely populated areas (1, 8, 9).
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In general, one can find many approaches and
research on how crowd-sourced POI data already in the
database can be improved. Goodchild and Li describe
approaches from involving local collaborations to geo-
graphical consistency checks integrated in the database
to rely on correction through the crowd (10). Tré et al.
provides a cleansing technique for checking coreferent
POI (11).

Quality assessment of POI is already a popular subject
in the field of geo-information. The approaches still
barely focus on the completeness of POI and, if so, they
focus on intrinsic assessments or the comparison of dif-
ferent sources of VGI. Completeness comparison with
‘‘ground truth data’’ is found only in a few cases and in
geographically and POI type limited applications.
Furthermore, data quality is highly dependent on the
local community, leading to different results in quality
assessment. A large-scale quality assessment with real-
world data can therefore enable further insights into the
usability of VGI data.

To date, no analysis on the completeness of POI in
OSM based on a large-scale reference data set has been
conducted. Therefore, based on surveyed data collected
on various sites all over Germany, we aim to analyze fac-
tors which determine the completeness of OSM POI. To
build the bridge to existing research using intrinsic assess-
ments, we also include intrinsic features in our analysis
to assess based on the extrinsic reference data if they are
able to account for completeness as well.

Data

The aim of this research is to validate the completeness
of POI data mapped in OSM. In this paper, we focus on
POI for the two trip purposes shopping and private busi-
ness since we focused on one activity with highly visible
POI and one activity with rather hidden POI. For this
purpose, relevant POI were extracted from OSM for the
two activities using a tag filter defined in previous work
(12). The extracted POI were then compared with real
POI data from 49 areas, which were surveyed manually
on site. In our analysis, we first compared the two data
sets showing the absolute and relative difference. Then,
we performed a mode-based analysis with the goal to
explore dependencies between the deviation of OSM POI
and external factors. Therefore, various indicators and
features were calculated and engineered for all areas.

We then set up the hypothesis that the small size of
the surveyed area might be too individual to explain cor-
relations. Therefore, indicators and features were also
calculated for the surroundings of the areas for a buffer
of 0.5 km, 1.0 km, and 2.5 km as well as for the municipal
level. The goal is to find out whether some indicators
have an extraordinary influence which would lead to a

structural distortion of the destination choice. In the fol-
lowing subsections, the preparation of the data and the
indicators is described.

Ground Truth Data

To extrinsically validate the OSM data, we manually
located POI in 49 survey areas throughout Germany.
These survey areas are located in 17 mostly larger cities
such as Dresden, Hamburg, or Munich. Nevertheless,
survey areas in smaller cities close to these larger cities
are also part of the ground truth data. However, even
these smaller cities are predominantly located in urban
regions (see Figure 1). The data collection was conducted
as part of the project Cities in Charge, in which charging
infrastructure for electric vehicles is planned, built, and
evaluated. Therefore, the survey areas are located in the
vicinity of the built charging infrastructure and include
different types of neighborhoods from the city center to
the outskirts (see the Descriptive Analysis section). To
maximize the number of observations, cities with multi-
ple charging infrastructures in the project were predomi-
nantly selected for data collection. We catalogued each
externally visible POI into different survey categories in a
census-grid-based near-circular area with a size of 37 ha
surrounding the charging infrastructure. The resulting
buffer has a radius of approx. 350m. In a case where a
POI could be assigned to multiple survey categories, we
catalogued that POI in each assignable category. Data
collection was conducted once per survey area between
October 2019 and September 2021 and took between
20min and 3h for each survey area, depending on the
density of the street network and the number of POI.

Data Preparation

We want to investigate the deviation between the number
of OSM POI and real-world POI: we aim to find interre-
lations to be able to explain the deviation. Therefore, we
first calculate features based on open data which describe
the spatial context of the survey sites (e.g., land use data)
on the one hand and intrinsic OSM data measures on the
other hand.

Since the calculated indicators differ in spatial granu-
larity, we calculated them for different areas surrounding
the survey site to investigate on which granularity each
feature is most significant. Overall, we calculated the fea-
tures for the survey site area, a 0.5 km, 1.0 km, and
2.5 km buffer around the centroid of the survey site as
well as for the municipality the survey site was in.

OSM POI Data. The corresponding state of the OSM data-
base at the time of the survey was extracted by querying
the OSM history database (OSHDB) using the ohsome
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API (https://api.ohsome.org) (13). The result of the
queries is the total number of elements for each retrieved
tag in the survey areas at the point of time of the site visit.
Table 1 shows an example of the tag list used for the
activity ‘‘private business.’’ It shows that many very dif-
ferent POI need to be assigned to a single activity of a
travel demand model. The resulting data set consists of
OSM POI for all areas of investigation for the activities
private business and shopping.

Contributor Indicator. The number of active contributors in
the respective area, the 1 km buffer, and the 2.5 km buf-
fer were used as an intrinsic indicator. We calculated two
variants: the number of all contributors and the number
of contributors who dealt with POI. The hypothesis was

that higher OSM contributor activity is associated with
higher POI completeness.

POI Densities. POI densities per square kilometer for the
most common activities in each area were calculated
based on the OSM taglists developed in Klinkhardt et al.
for all spatial levels (12).

Land Cover Data. Land use and land cover data derived
from the European Copernicus programme—CORINE
Land Cover (CLC)—were used to calculate the shares of
land usage (14). CLC is the best-known European data-
base on land use. It has been in use since 1990 and has
been regularly updated and validated (15). For this
examination, CLC 2018 is used. We aggregated the

Figure 1. Map of the cities where the areas of investigation are located.
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original categories of the CLC data to areas of similar
land use (continuous urban fabric, discontinuous urban
fabric, industrial or commercial units, transport, construc-
tion sites, green urban areas, sport and leisure facilities,
agriculture, forest, nature, other). More details on the
land use categories can be found in the CLC technical
documentation (16). Since the categories continous urban
fabric and discontinous urban fabric were strongly corre-
lated in our data, we aggregated them to a new category
urban fabric.

Official Data. Using official data from the 2011 German
census, we were able to determine the population, dwell-
ings and buildings in the areas of investigation (17). For
this purpose we aggregated the 1 ha information for all
census grids inside the areas of investigation.
Furthermore, we used the 1 km 3 1 km grid level to
determine the number of inhabitants on a higher level
and the age composition of the population. In addition,
the population density was calculated at the level of zip
codes. The Regional Statistical Spatial Typology for
Mobility and Transport Research of the Federal
Ministry of Transport and Digital Infrastructure
Germany was used as additional governmental data.

Manually Created Indicators for Describing the Location. Some
influencing factors could not be calculated, whereas a
qualitative description of the survey areas was conducted.
The distance from the centroid of the survey area to the
nearest city center was measured. Also, the location in
the city was qualitatively assessed using several cate-
gories. In addition, the building structure was classified
into several categories.

Saturation Indicator. OSHDB stores the complete history
of OSM, allowing to follow OSM contributions over
time. The underlying assumption is that, for a specific
category and region, contributions converge against the
number of real-world objects in the area, given a suffi-
cient OSM contributor activity. Saturation curves can be
used to estimate the saturation level which represents an
estimator for the true number of objects in a region.

Monthly counts of POI of the different categories
were extracted from OSM using the ohsome API
(https://api.ohsome.org) to query OSHDB for the time
frame October 8, 2007, until May 29, 2022 (13). The
same filter as in the collection of the POI data was used
(i.e., 1). We followed an approach similar to Brückner
et al. and fitted various limited growth curves to the
OSM history for each survey area and estimated the
completeness level via their saturation parameter (18).
The curves used originate from two families: the three
and four parameter logistic function (Equations 1 and
2), that belong to the sigmoid curve family as well as the
rectangular hyperbola (Equation 3) and the asymptotic
function (Equation 4) that belong to the non-logistic
growth curves family. The family of sigmoid curves is
suitable for a three-phase mapping process as also
described by Barrington-Leigh and Millard-Ball (19).
Curves of the non-logistic growth curves family tend to
represent a mapping process without the initial phase of
slow growth.

y=
Asym

1+ e
tmid�t

scale

ð1Þ

y=Asymlow +
Asym� Asymlow

1+ e
tmid�t

scale

ð2Þ

Table 1. Tag List for the Activity Type Private Business

Key Value

amenity pharmacy, bank, driving_school, language_school, car_rental, car_wash, vehicle_inspection, brothel, love_hotel,
animal_boarding, internet_cafe, funeral_hall, place_of_mourning, studio, post_depot, animal_breeding,
animal_shelter, crematorium, dentist, doctors, clinic, hospital, police, post_office, veterinary, courthouse,
townhall

shop travel_agency, hairdresser, massage, tattoo, bookmaker, copyshop, dry_cleaning, funeral_directors, laundry,
money_lender, storage_rental, jewelry, locksmith, tailor, watches, car_repair

craft basket_maker, cabinet_maker, car_painter, clockmaker, cooper, dressmaker, electronics_repair, embroiderer,
engraver, goldsmith, handicraft, jeweller, joiner, key_cutter, locksmith, musical_instrument, photographer, pottery,
saddler, shoemaker, stonemason, stove_fitter, tailor, tinsmith, turner, watchmaker

healthcare psychotherapist, alternative, audiologist, birthing_center, blood_bank, blood_donation, counselling, dialysis,
laboratory, midwife, nurse, occupational_therapist, physiotherapist, podiatrist, rehabilitation, sample_collection,
speech_therapist, vaccination_centre

office accountant, lawyer, notary, tax_advisor, coworking, financial_advisor, harbour_master, insurance, political_party,
religion, travel_agent, union, advertising_agency, architect, association, charity, company, consulting, courier,
diplomatic, energy_supplier, engineer, estate_agent, financial, forestry, geodesist, graphic_design, guide,
harbour_master, it, logistics, moving_company, newspaper, ngo, property_management, quango, research,
security, surveyor, telecommunication, water_utility
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y=
Asym � t

t1=2 + t
ð3Þ

y=Asym+(y0 � Asym) � e�elrc�t ð4Þ

where

� Asmp = asymptote to which the curve converges,
� Asmplow = lower asymptote,
� t = time at which half the saturation level is

attained,
� tmid = mid point of the logistic curve,
� scale = the steepness of the logistic curve,
� t1=2 = time at 50% saturation,
� y0 = count of OSM contributions at the beginning

of the period,
� rc = rate constant (parameter that determines the

spread of the curve with time), and
� lrc = log of the rate constant.

The curves were fitted separately for each of the POI
categories. The reliability of the estimated asymptotes by
the four functions was checked by several tests. We
checked for an overall decline in growth, which is a fun-
damental criterion to estimate a saturation level as a
proxy for the number of retail stores. Fitted models were
filtered for unrealistic fits where the asymptote was esti-
mated to be lower than the current number of POI of the
category in OSM. To also account for the uncertainty of
the models, we accepted fits with an asymptote at most
2% lower than the actual latest amount. In addition to
the non-linear least square fit we also tested robust meth-
ods for all four types of the saturation curve. We used an
M-estimator for the robust versions. We chose the best-
fitting functional form of all accepted curves for each
spatial unit based on the AIC. The completeness level
was estimated as the quotient of the current number of
retail stores and the asymptote of the estimated satura-
tion curve.

As saturation curves can presumably be estimated
more reliably for larger areas with more real-world
objects, we also applied the saturation estimation for dif-
ferent buffer sizes around the original location polygons:
0.5 km, 1 km, and 2.5 km were explored. While satura-
tion curve fitting can be assumed to be more reliable, this
trades off with representativeness for the survey areas.

The analysis was performed in R, using the packages:
ohsome (https://github.com/GIScience/ohsome-r), robust-
base, sf, geojsonsf, tidyverse, ggplot2, and ggpubr (20–26).

Analysis

Having calculated the features mentioned before, we
then compared the surveyed and the OSM POI data for

the activities shopping and private business. For this, we
used the count of POI, the relative deviation of OSM
POI compared with real-world POI, and the difference
of OSM POI compared with real-world POI as response
variables. In the following, we will first compare the
counted OSM POI descriptively with the surveyed POI.
This is followed by several model-based approaches to
reveal structural influences on POI completeness.

Descriptive Analysis

In total, 1,305 POI of the activity private business were
counted on site in contrast to 292 POI in OSM.
Consequently, only 22% of the locations were mapped,
on average. The situation was better for the activity
shopping. Here, 379 POI were present on site and 277
POI in OSM, which led to a completeness of 73%. These
differences between activities can also be observed in
Figure 2. Based on linear regression, we calculated bal-
ance lines for both graphs. The gradient for shopping
was much steeper and thus much closer to the bisector
on which all points would lie with complete OSM data.
It can also be seen that private business was not only
more incomplete, but also subject to much greater dis-
persion. One reason for this is that POI for shopping are
usually highly visible to the outside to attract walk-in
customers. Also, the volume of customers at POI associ-
ated with shopping is usually higher than at POI associ-
ated with private business. These observations can also
be quantified. As a result of the linear regression, we find
that for every private business POI in OSM there are
4.1786 POI in the real world with a standard error of
0.48 and a p-value of 3.028e-11. For shopping the value is
1.37 with a standard error of 0.05 and a p-value below
2.2e-16. The comparatively good coverage of stores in
OSM even results in nine areas having more stores listed
in OSM than actually exist, in many cases because of
store closures. The COVID-19 pandemic may have
increased this effect. Although the number of POI listed
in OSM only exceeded the number of real-world POI by
a maximum of three stores, this effect must still be taken
into account in the analysis. The use of such data in traf-
fic demand models can significantly overestimate the
traffic demand depending on the importance of the POI.
Because of a lower general completeness of private busi-
ness POI (see Figure 2) and a lower volume of customers,
the removal of closures of these POI from the OSM
database is not as important as the removal of POI asso-
ciated with shopping. Closed POI associated with private
business can be compensated in the study areas by POI
of the same category not listed in OSM. Overestimation
of traffic demand may still occur, but is not as likely.

Therefore, Figure 2 also shows the share of urban
areas in the respective survey area. It shows that most of
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the dense urban areas include a higher number of real-
world POI. Nevertheless, explaining the dispersion based
on the land use urban fabric alone does not seem to be
sufficient.

In a further step, the dependence of the deviation on
the real number of POI was examined (Figure 3). It can
be seen that, for both activities, the more POI there were
in reality, the more POI were missing. In this case, the
correlation was more pronounced for private business,
which is evident from the higher slope of the compensa-
tion line. The graph also shows the relative deviation
based on the coloring. It is noticeable that the largest dif-
ferences tend to lead to smaller relative deviations.

We also graphically evaluated the saturation indicator
in the form of Figure 4. A comparison is made with the
relative deviation that could be observed in reality, since
the saturation factor also tries to reflect this relationship.
The bisector is shown in gray, on which all points would
lie if the indicator had perfect significance. Because of
the lack of a minimum number of OSM elements, no
saturation curve could be estimated for some areas. For
these areas, the saturation indicator is 0. In the graphical
evaluation, there is hardly any correlation between the
relative deviation and the indicator. This is true for both
activities and also for all buffer sizes examined.
Consequently, this intrinsic indicator alone is not suffi-
cient to explain the dispersion of deviations. In the

following, the interaction of different indicators will be
examined.

Model Estimation

To explore dependencies between the features described
above and the absolute and relative deviation of OSM
POI from real-world POI, we used regression models.
Since the number of data points was rather small and we
only performed an analysis and no prediction, we did not
split into test and training data. Therefore, we expect the
model to be overfitted and, consequently, rather focus on
qualitative model analyses. For the model analysis, we
used the pycaret package for python with all its related
packages (27).

We processed the data to be suitable for regression
models. First, we created dummy variables for categori-
cal variables. Second, we checked the data for multicolli-
nearity and applied the built-in function of pycaret to
drop one of two identified features using a threshold of
0.8. Third, we dropped features with low variance, which
met both of the following conditions: either the count of
unique values in a feature divided by the sample size is
smaller than 10% or the count of the most common
value divided by the count of the second most common
value is larger than 20.

Figure 2. Correlation between points of interest (POI) in OpenStreetMap (OSM) and POI in real-world: (a) shopping and (b) private
business.
Note: grey line = the bisector; red line = a straight line from linear regression.
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We first derived the most suitable model type testing
several model types (e.g., random forest, extreme

gradient boosting, naive Bayes) on our data and com-
pared the model scores (e.g., R2, RSME). We focused on

Figure 3. Correlation between deviation and the number of points of interest (POI) in OpenStreetMap (OSM) for (a) shopping and (b)
private business.
Note: red line = a straight line from linear regression.

Figure 4. Correlation between relative deviation and estimated saturation for the surveyed areas, a 1 km buffer, and a 2.5 km buffer for
(a) shopping and (b) private business.
Note: red dot = surveyed areas; purple dots = 1 km buffer; blue dot = 2.5 km buffer.
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non-linear model types since we wanted our model to be
able to capture non-linear effects without any restric-
tions. We found that adaptive boosting (AdaBoost)
regression models performed best on our data (28).
AdaBoost models combine multiple weak learners and
optimize them in an ensemble with boosting (29). In this
case, as base estimator from which the boosted ensemble
is built, simple decision trees with a maximum depth of
three levels are used.

The quantitative metrics for model performance for
the AdaBoost regression models for the activities shop-
ping and private business show a good fit. The R2 are ( R2

shopping: 0.974, R2 private business: 0.902) and the root
mean square error (RSME shopping: 0.059, RSME pri-
vate business: 0.092) better for the model for shopping.
An R2 value higher than 0.9 for both models indicates
overfitting for both models. This is expected, since the
models were trained on all data points with a boosting
algorithm. Because the metrics could consequently only
be calculated on the same data points as well, overfitting
can not be verified. However, since the purpose of the
models is the analysis of the data and not prediction,
possible overfitting causes the findings to be only data-
specific. The reader should keep that in mind for the fol-
lowing of this paper.

Model-Based Analysis

Since AdaBoost models do not provide interpretative
parameters in the way that parametric regression models
do, we need to use other measures to gain insights into
the data. Two popular measures are variable importance
measures (VIM) and partial or feature dependence plots.
As measure for both analyses, we used the Shapley addi-
tive explanations (SHAP) values (30). SHAP values attri-
bute the average feature contribution with respect to the
prediction of the response. The SHAP value can take
positive (positive contribution) and negative (negative
contribution) values. Since VIM usually only show the
overall importance of the independent variable for the
prediction of the dependent variable, we used the abso-
lute SHAP values. For the feature dependence plots, to
further analyze the data and gain more insights, we used
the regular SHAP values with signs. However, these mea-
sures are only capable of providing qualitative insights
(e.g., positive or negative influence). Since the size of the
data set is rather small, quantitative analyses would be
limited anyway.

The choice of the dependent variable is crucial for the
explanatory power of the model. To derive a suitable
dependent variable for model analysis, the following
aspects have to be taken into account. The absolute
deviation between OSM POI and real-world POI
depends on the number of real-world POI—a larger total

number of real-world POI increases the likelihood of
missing POI in OSM. Further, the importance of the
measured difference between OSM POI and real-world
POI decreases significantly as the number of POI
increases (see Figure 3). In that case, the ratio between
OSM POI and real-world POI is a more suitable depen-
dent variable. Nevertheless, when the number of obser-
vations is small, the use of a ratio is problematic because
of a high influence of random interference. Additionally,
the optimal ratio between OSM POI and real-world POI
of unity can lead to problems in the interpretation of the
model results. For ratios larger than unity, a decrease in
the SHAP value indicates a positive influence, whereas it
is the opposite case for ratios smaller than unity.
Therefore, without looking at single data points, it would
be almost impossible to interpret a positive or negative
SHAP value in the feature dependence plots.

Consequently, two main requirements arise that the
dependent variable should satisfy. First, it should
account for the absolute deviation depending on the
total number of real-world POI, which leads to a relative
value. Second, since we need to use a relative value, the
best case is a ratio of 1. Therefore, cases of a ratio larger
or smaller than 1 should be handled equally. These
requirements lead to the calculation of a new dependent
variable v (as shown in Equation 5) to measure the com-
pleteness of OSM POI. While the difference between
real-world POI and OSM POI describes the complete-
ness of the OSM database, the ratio of completeness to
real-world POI allows us to handle different amounts of
POI measured. Moreover, the absolute of the ratio
allows the model to treat negative and positive deviations
equally.

v= j numPOIReal�World � numPOIOSM

numPOIReal�World

j ð5Þ

Variable Importance Measures (VIM). Figure 5 shows the
VIM for the activities shopping and private business. The
SHAP value was used as the measure of variable impor-
tance. Whereas intrinsic OSM features (saturation index,
POI density) and demographic features were the most
important features for the completeness of shopping POI,
land use features were the most important features for
the completeness of private business POI. The important
land use categories for the completeness of shopping POI
described mainly urban context, whereas for the comple-
teness of private business POI, urban (urban fabric, green
urban areas), and non-urban context (other) were ranked
high in the VIM. Taking into account that in data pro-
cessing, strong multicollinearity was eliminated, one can
assume that the various spatial resolutions were not
strongly correlated and could therefore be combined in
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one model, although only focusing on one spatial resolu-
tion in model analysis is insufficient. This theory is also
supported because the features showed no preference for
a specific area size. Some features were even important
for different area sizes. Consequently, in the further anal-
ysis, we focus on the features themselves rather than on
the area size they are calculated for.

Land Use. Figure 6 shows the feature dependencies for
the shares of the land use features urban fabric in the sur-
vey areas and sport and leisure facilities in the 1.0 km buf-
fers, as well as the density of the corresponding POI
densities in the survey areas. Whereas the POI density
increases for both activity types with the share of the
urban fabric areas, this is not the case for the land use
areas for sport and leisure facilities.

This indicates that sport and leisure facilities can be
located both in dense and less dense built environments.
The feature dependence for the respective land use shares
shows that the completeness of shopping POI is influ-
enced by the urban density, which is not the case for pri-
vate business POI. A larger share of urban fabric areas as
well as higher POI densities rather indicates a worse com-
pleteness of private business POI. This could be because
many facilities for the activity private business can hardly
be recognized on passing by, which is important for being
considered in OSM, as previous work indicated (12).
Looking at both land use and POI density the results
indicate that hidden private business POI occur more
often in dense urban environments. However, higher land

use shares for sport and leisure facilities indicate a higher
completeness for both activities, since they are usually
large attractors and therefore might also attract other
POI to settle around.

Historical OSM Data. Figure 7 shows the feature depen-
dencies for the intrinsic OSM features based on the
saturation indicator and the number of persons who
have contributed to OSM in the survey area so far based
on historical data. The indicators on which the analyzed
features are based on have not been evaluated with real-
world data yet, so this is the first time their explanatory
power can be analyzed using extrinsic data. As already
seen in the VIM, the saturation indicator has an impor-
tant influence on the completeness.

The feature dependence plots show that the influence
is as expected for both activities: for a saturation lower
than 100%, the influence on the deviation of the number
of POI is positive, resulting in lower completeness.
Around 100% saturation rate, the influence turns into
negative figures, indicating a higher completeness.
Further, the plots show that the saturation indicator is
not correlated linear with the number of contributors
and therefore has no effect on this dependency.

Current OSM Data. Figure 8 shows the feature dependen-
cies for the intrinsic OSM features based on the density
of OSM POI and the distance from the centroid if the
survey area to the city center is based on current data. It

Figure 5. Variable importance measures (20 highest) of the adaptive boosting (AdaBoost) models for (a) shopping and (b) private business.
Note: OSM = OpenStreetMap; POI = point of interest; SHAP = Shapley additive explanations.
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can be seen that higher POI densities also have a positive
influence on the completeness. However, this effect is
more distinct for shopping than for private business. For
shopping, lower densities might also correlate with the
distance to the city center, whereas this effect is also not
as strong for private business. Further, shows that the
effect does not increase linearly with the POI density, but
is approaching an asymptote and is more or less constant
for densities above 10.

Socio-Demographics. Figure 9 shows the feature dependen-
cies for the demographic indicators based on the number
of inhabitants. For both activities, different spatial
aggregations for the indicators were chosen because of
the screening for multicollinearity in data preprocessing.
We found that with an increasing number of inhabitants

the completeness was influenced positively on different
spatial aggregation levels. For both activities, the num-
ber of inhabitants might also correlate with POI density.
However, the effect was larger for shopping as for POI
densities. Furthermore, the influence of the number of
inhabitants on completeness was also not linear and
seemed to approach an asymptote for more than 5,000
inhabitants per square kilometer for the 1.0 km raster
grid and 20,000 inhabitants for the zip code areas.

Conclusion

In this work, we assessed the quality of POI data from
OSM. We compared POI from OSM with large-scale
real-world data surveyed in 49 areas. These areas are
spread all over Germany and mostly represent urban and
suburban areas. The quality assessment was optimized

Figure 6. Feature dependence plots for land use features urban fabric and sport and leisure facilities for shopping (a, c) and private business
(b, d).
Note: POI = point of interest; SHAP = Shapley additive explanations.
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for the use as demand and supply data for travel demand
models. Therefore, we categorized the POI of common
activities used in travel demand models and chose the
activities shopping and private business as example cate-
gories for this work.

We found that, for both categories, the POI are not
completely mapped in OSM. The deviation of OSM POI
and real-world POI is higher for private business POI,
though. This could be because shops have to attract cus-
tomers and therefore have a higher visibility (e.g., signs
or display windows), whereas private business POI (e.g.,

doctors, small agencies, small craft businesses) often lack
visibility. This finding is in line with our findings from
previous work (12).

We also found for both activities that more dense
urban areas imply a higher completeness of OSM POI,
although this effect is stronger for shopping POI. We
therefore can also confirm previous findings from the lit-
erature (1, 8, 9).

We further found that intrinsic indicators, such as the
saturation index, constitute a good measure to assess the
broad level of completeness. Since surveying real-world

Figure 7. Feature dependence plots for intrinsic OpenStreetMap (OSM) features based on the saturation index and number of OSM
contributors for (a) shopping and (b) private business.
Note: SHAP = Shapley additive explanations.

Figure 8. Feature dependence plots for intrinsic OpenStreetMap (OSM) features based on the number and densities of points of
interest (POI) for (a) shopping and (b) private business.
Note: SHAP = Shapley additive explanations.
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data is very cumbersome, this finding reinforces intrinsic
measures and supports that further research is important
to improve intrinsic quality measures to assess the qual-
ity of OSM data.

However, our work is only based on the data of 49 sur-
vey sites. Therefore, although the locations are spread all
over Germany, the models are expected the be overfitted
on the data from the survey sites. Transferring the results
to whole of Germany, or even Europe or the rest of the
world, should therefore be done with care. However, with
our results being in line with previous findings, we argue
that more general findings can be transferred quite well.

Consequently, for our future work, we will collect
more data by locating additional real-world POI in up to
50 other survey areas, also focusing on more rural areas.
Additional data might allow splitting up the data in
training and validation data and, therefore, allow to
train a model which is able to predict the completeness
of OSM POI. This is important because, for the use in
travel demand models, not only the knowledge about
incomplete POI is relevant, but also the amount of the
deviation to be able to weight the OSM data to derive
realistic input data.
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