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Preface

The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble.

PAUL DIRAC, circa 1929

Motivation

The overarching theme of this work is the efficient computation of large-scale systems. Here we deal
with two types of mathematical challenges, which are quite different at first glance but offer similar
opportunities and challenges upon closer examination.

Physical descriptions of phenomena and their mathematical modeling are performed on diverse scales,
ranging from nano-scale interactions of single atoms to the macroscopic dynamics of the earth’s at-
mosphere. We consider such systems of interacting particles and explore methods to simulate them
efficiently and accurately, with a focus on the kinetic and macroscopic description of interacting particle
systems. Macroscopic governing equations describe the time evolution of a system in time and space,
whereas the more fine-grained kinetic description additionally takes the particle velocity into account.
The study of discretizing kinetic equations that depend on space, time, and velocity variables is a chal-
lenge due to the need to preserve physical solution bounds, e.g. positivity, avoiding spurious artifacts
and computational efficiency. In the pursuit of overcoming the challenge of computability in both kinetic
and multi-scale modeling, a wide variety of approximative methods have been established in the realm
of reduced order and surrogate modeling, and model compression. For kinetic models, this may manifest
in hybrid numerical solvers, that switch between macroscopic and mesoscopic simulation, asymptotic
preserving schemes, that bridge the gap between both physical resolution levels, or surrogate models
that operate on a kinetic level but replace computationally heavy operations of the simulation by fast
approximations.
Thus, for the simulation of kinetic and multi-scale systems with a high spatial resolution and long tem-
poral horizon, the quote by Paul Dirac is as relevant as it was almost a century ago. The first goal of the
dissertation is therefore the development of acceleration strategies for kinetic discretization methods, that
preserve the structure of their governing equations. Particularly, we investigate the use of convex neural
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networks, to accelerate the minimal entropy closure method. Further, we develop a neural network-based
hybrid solver for multi-scale systems, where kinetic and macroscopic methods are chosen based on local
flow conditions.

Furthermore, we deal with the compression and efficient computation of neural networks. In the mean-
time, neural networks are successfully used in different forms in countless scientific works and technical
systems, with well-known applications in image recognition, and computer-aided language translation,
but also as surrogate models for numerical mathematics. Although the first neural networks were al-
ready presented in the 1950s, the scientific discipline has enjoyed increasing popularity mainly during
the last 15 years, since only now sufficient computing capacity is available. Remarkably, the increasing
availability of computing resources is accompanied by a hunger for larger models, fueled by the com-
mon conception of machine learning practitioners and researchers that more trainable parameters equal
higher performance and better generalization capabilities. The increase in model size exceeds the growth
of available computing resources by orders of magnitude. Since 2012, the computational resources used
in the largest neural network models doubled every 3.4 months1, opposed to Moore’s Law that proposes
a 2-year doubling period in available computing power.
To some extent, Dirac’s statement also applies to the recent computational challenges in the machine-
learning community. The desire to evaluate and train on resource-limited devices sparked interest in
model compression, where neural networks are sparsified or factorized, typically after training. The sec-
ond goal of this dissertation is thus a low-rank method, originating from numerical methods for kinetic
equations, to compress neural networks already during training by low-rank factorization.

This dissertation thus considers synergies between kinetic models, neural networks, and numerical meth-
ods in both disciplines to develop time-, memory- and energy-efficient computational methods for both
research areas.

Structure of the Dissertation

The goal of this dissertation is to provide methods for accelerating kinetic and multi-scale simulations
using neural networks, as well as neural network compression using kinetic methods. We aim to pro-
vide a full method development for each project, with a focus on solid theoretical foundations, efficient
numerical methods, and modern open-source software implementation.

After a review of the foundations of kinetic equations, macroscopic discretization methods in §1 and
neural networks in §2, we turn our attention to the KiT-RT C++ framework in §3, which acts as the com-
putational backbone for the research conducted in the subsequent chapters. The parallel code contains
second-order spatial-temporal discretizations of nodal and modal models for the Boltzmann equation and
is excellent for comparing state-of-the-art methods with our newly developed methods.
We focus on the development of neural network-based surrogate models for the minimal entropy closure
of the Boltzmann moment system in §4 and §5, where we make use of fast inference of neural networks
to accelerate the structurally rich but computationally expensive minimal entropy closure method. The
minimal entropy closure is a method to reconstruct the kinetic solution of the Boltzmann equation from
its macroscopic variables, the moments of the equation, thus bridging the macroscopic and kinetic reso-
lution.
In the application of multi-scale and non-equilibrium gas flows, we construct a neural network-based
flow-regime classifier in §6, to develop a state-of-the-art hybrid simulation that operates on the more
accurate kinetic and more efficient macroscopic level, depending on local flow-conditions.

1https://openai.com/blog/ai-and-compute/
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Finally, we turn our attention to neural networks in §7. We use dynamical, rank-adaptive low-rank com-
pression for dynamical systems, a numerical method that emerged from the computational burden of
kinetic and quantum systems and apply it to the gradient flow of neural networks. We develop an ef-
ficient dynamical low-rank training algorithm, that significantly reduces memory and wall-time cost of
neural network training and inference.
Thus, we inspect synergies between the fields of machine learning, i.e. neural networks, and kinetic
modeling, and present multiple opportunities to employ these synergies in the development of efficient
computational systems. On the one hand, we develop neural network based surrogate models for minimal
entropy closures and neural network based hybrid kinetic solvers. On the other hand we develop an effi-
cient low-rank optimization algorithm for neural networks based on low-rank time integration methods
for kinetic equations.
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CHAPTER 1

Numerical Methods for the Boltzmann Equation

In this chapter, we introduce the Boltzmann equation as a mathematical model and provide
basic concepts of its solution theory and structural properties. We review velocity space dis-
cretizations such as discrete ordinates, spherical harmonics, and minimal entropy methods and
compare their advantages and disadvantages.

1.1. The Boltzmann Equation

A large variety of physical models are in their core a description of a system of particles interacting
with each other and a background medium. Depending on the scale of modeling, a model of the particle
system has to provide different values of interest and has different computational requirements.
Most physical simulations contain billions of particles, which have to be simulated. Usually, this renders
a fine-grained computation on an individual particle level infeasible. Examples include neutron trans-
port [163], radiative transport [41], semiconductor physics [180] and rarefied gas dynamics [34].
An abstraction of the system of individual particles are mesoscopic modeling approaches. Here, we
consider the time-evolution of a probability density f (t, x, v). The observer is now interested in the prob-
ability of a particle traveling with velocity v ∈ V ⊂ Rd at time t ≥ 0 and at place x ∈ X ⊂ Rd, where
we have typically d = 1, 2, 3. The underlying assumption is the indistinguishability of a great number of
particles in the observed system.

Partial differential equations for mesoscopic models are often called kinetic equations and their solution f
is called the kinetic density. A well known prototype is the Boltzmann equation

∂t f + v · ∇x f = Q( f ). (1.1)

The advection operatorA = ∂t+v·∇x describes particle transport, of the particle density with velocity v in
the spatial directions. The integral operator Q( f ) models interactions of the particle with the background
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medium and collisions with other particles. If the particles only collide with a background material one
can model this behavior with the linear Boltzmann collision operator

Q( f )(v) =
∫

V
k(v∗, v)

[
f (v∗) − f (v)

]
dv∗, (1.2)

where the collision kernel k(v∗, v) models the strength of collisions at different velocities. If interactions
among particles are considered, the collision operator becomes nonlinear and it reads

Q( f , f )(v) =
∫

V

∫
S2

k(v,w,Ω)
[
f (v∗) f (w∗) − f (v) f (w)

]
dΩ dw. (1.3)

The pre- and post-collision velocities are related by the deflection operator

[v∗,w∗]⊤ = TΩ [v,w]⊤ , (1.4)

where TΩ is a reflection matrix. Well-posedness of Eq. (1.1) requires appropriate initial and boundary
conditions, i.e.,

f (t, x, v) = f0(x, v), t = 0, x ∈ X, v ∈ V (1.5)

f (t, x, v) = fb(t, v), t > 0, x ∈ ∂X, v ∈ Vinc, (1.6)

where

Vinc = {v ∈ V : v · n > 0} (1.7)

are incoming velocity directions and n ∈ Rd is the inward facing normal vector on the boundary of the
spatial domain, ∂X. Since the Boltzmann equation is hyperbolic, only incoming characteristics need to
be specified. The Boltzmann equation is a first-principles model and can be derived from the individual
particle level, for which we refer the reader to [13].

1.1.1. Structural Properties of the Boltzmann Equation

The Boltzmann equation possesses some key structural properties, which are intricately related to the
physical processes and its mathematical existence and uniqueness theory. In the following we assume an
unbounded domain X = Rd and the farfield assumption, i.e. f decreases rapidly,

lim
∥x∥→∞

f (t, x, v) = 0, (1.8)

to simplify the discussion about the equation’s structure. Furthermore, we sometimes use the nota-
tion

⟨·⟩ =

∫
V
· dv (1.9)

to define integrals over velocity space for the sake of readability. We state these properties, where we
follow [7, 160].

In general, a solution f is expected to be non-negative since it is a probability density, and depend-
ing on the application, it has an upper bound, too. The Boltzmann equation obeys the invariance of
range.
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Theorem 1.1 (Invariance of Range [160])
There is an interval B ⊂ [0,∞) representing the physical bounds of f , such that f (t, ·, ·) ∈ B for all t > 0,
if f (0, ·, ·) ∈ B.

The invariant range property is connected to the l1 contractivity of the advection operator A [159] and
the diffusive character of the collision operator Q [160].
The Boltzmann equation is a kinetic model for particle systems and obeys classical conservation laws for
the system. To inspect conserved quantities of the Boltzmann equation, we define the notion of a system
of conservation laws.

Definition 1.2 (System of Conservation Laws [159])
Let g : R+ × Rd → Rn a quantity depending on t and x and Fi : Rn → Rn for i = 1, . . . , d and
F = [F1, . . . , Fd]⊤. Then,

∂tg + ∇x · F(g) = ∂tg +
d∑

i=1

∂xi Fi(g) = 0 (1.10)

is a system of n conservation laws with flux functions Fi and with initial conditions given by gIC = g(t =
0, x). The conserved quantities ∫

X
g dx (1.11)

are time independent, and g is the density of the conserved quantity.

In case of the Boltzmann equation, where the solution f is velocity dependent, a conserved quantity,
e.g., ∫

X

∫
V

f (t, x, v) dv dx, (1.12)

is independent of velocity, too. We expect several conserved quantities in a physical system, e.g. mass,
momentum and energy. The question arises, how to identify conserved quantities of the Boltzmann
equation. We consider the collision operator Q, and observe, that a collision should not change the
total amount of these quantities in the system. Thus they are invariant under the collision operator in a
macroscopic sense.

Definition 1.3 (Collision Invariant)
A quantity ϕ(v) : V→ R is a collision invariant of Q, if∫

V
ϕQ( f , f ) dv = 0 ∀ f ∈ Dom(Q), (1.13)

and we call the linear span of all collision invariants E and the vector of all collision invariants ϕ ∈ Rm.
Here, Dom(Q) denotes the domain of the collision operator Q.

Indeed, each collision invariant has an associated conserved quantity

q(t) =
∫

X

∫
V
ϕ(v) f (t, x, v) dv dx (1.14)
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with

d
dt

q(t) = 0. (1.15)

The statement is straightforward to show by inserting the Boltzmann equation into Eq. (1.14) and using
assumption (1.8). Conserved quantities represent the physical laws of mass, momentum, and energy
conservation during collisions. There are no other conserved quantities except E = span

{
1, v⊤,

∣∣∣v2
∣∣∣ /2}

for non-linear the Boltzmann equation with collision operator Q( f , f ) [25, 160].
The Boltzmann equation is an integro-differential equation, and the advection operator A is a partial
differential operator in time and space for each velocity. Classification of the operator A is of inter-
est to construct suitable numerical methods and to have access to theoretical results and corresponding
numerical methods.

Definition 1.4 (Hyperbolic Conservation Law [159])
Consider a system of conservation laws, see Definition 1.2, with flux functions Fi. Consider the matrices

Ai(g) j,k =
(
∂uk F j

i (g)
)

j,k
. (1.16)

The system is called hyperbolic, if for ai , 0, i = 1, . . . , d, the matrix

A(g, a) =
d∑

i=1

aiAi(g) (1.17)

has only real eigenvalues and is diagonalizable. If the eigenvalues are distinct and real, the system of
conservation laws is called strictly hyperbolic.

Consequently, for each fixed v ∈ V, the advection operator A, yields a scalar hyperbolic conservation
law for t ∈ [0,∞), x ∈ X, i.e.,

∂t f (t, x, ·) + v · ∂x f (t, x, ·) = 0, (1.18)

since scalar conservation laws are always strictly hyperbolic [159]. Thus without particle interaction,
the system dynamics follow a hyperbolic transport law. This implies the existence of shock solutions of
the Boltzmann equation in regions with little to no collisions [159, §3.3], which are not representable by
classical solution theory.
To this end, we introduce weak solutions for conservation laws.

Definition 1.5 (Weak Solution of a Hyperbolic Conservation Law)
Let φ ∈ C∞0 (R+ × Rd) be a differentiable test function. Consider a system of conservation laws, see
Definition 1.2. The weak form of the conservation law is given by∫

R+×Rd
g∂φ +

d∑
i=1

Fi(g)∂xiφ dx dt +
∫
Rd

gICφ(0, x) dx = 0, ∀φ ∈ C∞0 (R+ × Rd). (1.19)

Consequently, a solution does not need to be differentiable in space and time, which is the case in shock
solutions. Unfortunately, weak solutions are generally not unique. The idea of entropy solutions is
introduced to obtain a unique weak solution.
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Definition 1.6 (Entropy/Entropy-Flux Pair [159])
Let D ∈ Rn be convex. Then a convex function h : D → R is called an entropy for the conservation
law (1.10), if there exist d functions ji : D → R, called entropy fluxes, which fulfill the integrability
condition

∇gh(g)∇gFi(g) = ∇g ji(g), i = 1, . . . , d, (1.20)

For smooth solutions, the integrability condition ensures the conservation of entropy. By multipli-
cation of ∇gh(g) from the left to the conservation law (1.10), we get with the integrability condi-
tion (1.20)

∂th(g) + ∇xj(g) = 0. (1.21)

An entropy solution, which is a weak solution obeys the entropy dissipation law∫
R+×Rd

h(g)∂φ +
d∑

i=1

ji(g)∂xiφ dx dt +
∫
Rd

h(gIC)φ(0, x) dx ≤ 0, ∀φ ∈ C∞0 (R+ × Rd). (1.22)

Let us consider again a weak solution in a situation where no classical solution exists, e.g. a shock
and give physical intuition to the entropy dissipation law. To this end, we pick a unique, physically
meaningful solution from the set of weak solution candidates. Physical systems include friction, which
is typically modeled by a diffusion term and yields the so called viscous solution of a conservation
law.

Definition 1.7 (Viscous Solution)
Consider the system of conservation laws (1.10) with a diffusive right-hand side, i.e.,

∂tg(ϵ) + ∇x · F(g(ϵ)) = ϵ∆xg(ϵ) (1.23)

with diffusion coefficient ϵ > 0. The solution g(ϵ) is called viscous solution.

We are interested in the behavior of g(ϵ) as ϵ → 0, i.e., when we return to the hyperbolic balance law.
Indeed, the limit g(ϵ) is provably unique and a weak solution of the conservation law (1.10), see [88]. To
this end, multiply ∇gj(g) to the viscous formulation (1.23), which yields

∂th(g(ϵ)) + ∇x · j(g) = ϵ∇gh(g(ϵ))∆xg(ϵ). (1.24)

With the equality

∇x
(
(∇xg)⊤ ∇gh(g)

)
= (∇xg)⊤ ∆gh(g) (∇xg) + ∇gh(g)∆xg (1.25)

we get the entropy balance equation

∂th(g(ϵ)) + ∇x
(
j(g) − ϵ∇x

(
(∇xg)⊤ ∇gh(g)

))
= −ϵ (∇xg)⊤ ∆gh(g) (∇xg) . (1.26)

The right-hand side is negative due to the convexity of h and positivity of ϵ, thus the viscous solution
dissipates entropy for all ϵ > 0. One can show, that for the limit ϵ → 0, Eq. (1.26) still holds. There,
we arrive at the entropy dissipation law for weak solutions (1.22). Thus, entropy can be seen as a tool to
identify a unique weak solution.
We now identify a suitable entropy/entropy-flux pair for the Boltzmann equation and investigate entropy
dissipation laws. Since the Boltzmann equation is velocity dependent, we start by defining the kinetic
entropy density,

η : D ⊂ R→ R, (1.27)

which we assume to be convex.
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Table 1.1.: Entropy densities and their Legendre duals for the Boltzmann equation [7]

Name D η(y) η′(y) η∗(z) η′∗(z)

Maxwell-Boltzmann [0,∞) y log(y) − y log(y) exp(z) exp(z)
Bose-Einstein [0,∞) (1 + y) log(1 + y) − y log(y) log

(
y

1+y

)
− log(1 − exp(z)) 1

exp(z)−1

Fermi-Dirac [0, 1] (1 − y) log(1 − y) + y log(y) log
(

y
1−y

)
log(1 + exp(z)) 1

exp(z)+1
Quadratic R 1

2 y2 y 1
2 z2 z

Theorem 1.8 (H-Theorem for the Linear Collision Operator)
The linear collision operator of the Boltzmann equation Q with positive collision kernel k > 0 and the
property k(v, v∗) = k(v∗, v) fulfills for a convex entropy density η and a kinetic density f the dissipation
property 〈

η′( f )Q( f )
〉
≤ 0, ∀ f ∈ Dom(Q) s.t. Img( f ) ⊂ D, (1.28)

where Img( f ) denotes the image of f and Dom(Q) denotes the domain of Q.

The proof can be found in §1.5.
Applying the Boltzmann equation to the expression

d
dt

∫
X

∫
V
η( f ) dv dx (1.29)

and leveraging Theorem 1.8 yields the local dissipation law

∂t

∫
V
η( f ) dv + ∇x ·

∫
V

vη( f ) dv ≤ 0, (1.30)

for the entropy h( f ) = ⟨η( f )⟩ and entropy-flux j( f ) = ⟨vη( f )⟩.
The linear collision operator Q( f ) dissipates any convex entropy density, and a variety of choices have
been developed depending on the application case, see Table 1.1. Often, D is consistent with the physical
bounds B of the scenario, i.e., a modeling decision.

We investigate solutions f of the Boltzmann equation, for which the entropy dissipation law yields equal-
ity. Local equilibria of Q are characterized by a vanishing entropy dissipation〈

η′( f )Q( f )
〉
= 0. (1.31)

A consequence of the H-Theorem is the characterization of the equilibrium state of the Boltzmann equa-
tion, where no entropy is dissipated, i.e. ,〈

η′( f )Q( f )
〉
= 0 ⇔ Q( f ) = 0 ⇔ η′( f ) ∈ E.

Lastly, let us consider the collision operator Q and advection operator A of the Boltzmann equation
under translations and rotations in the velocity domain.

Theorem 1.9 (Gallilean Invariance [126])
For a kinetic density f , an orthogonal matrix R ∈ Rd×d and a translation vector w ∈ V in the velocity
domain, a Galilean transformation is given by

GR,w f (t, x, v) = f (t,R(x − tw),R(v − tw)), (1.32)
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1.2. Velocity Space Discretizations for the Boltzmann Equation

and we have for the advection and collision operator of the Boltzmann equation

A(GR,w f ) = GR,wA f , ∀ f ∈ Dom(A), (1.33)

Q(GR,w f ) = GR,wQ f , ∀ f ∈ Dom(Q). (1.34)

We refer for the proof to literature [126]. Consequently, a transformed kinetic density GR,w f of a solution
f to the Boltzmann equation is again a solution. Furthermore, a solution f is invariant under translations
of space x and time t. The commutation relation of Q andA reflects the Galilean invariance of collisions
and transport at a particle level.

1.2. Velocity Space Discretizations for the Boltzmann Equation

The structural richness of the Boltzmann equation is a result of its first principles-based derivation. Al-
though an abstraction and thus a simplification of the individual particle level, the high-dimensional
phase-space X × V of the Boltzmann equation yields tremendous challenges for discretization meth-
ods. A discretization method or surrogate model should therefore have two (often contradictory) goals:
computational efficiency and preservation of the underlying equations’ intrinsic structures. In the fol-
lowing, we review the most relevant models to reduce the phase-space dimensionality of the Boltzmann
equation for this work. We consider the linear Boltzmann equation with Q( f ) and the unit sphere as
directional domain V = S2 ⊂ R3 in slab geometry [162], where the velocity space V is projected onto
R2.

1.2.1. Nodal Discretizations - the SN Method

A popular strategy is to discretize the velocity space in a point-wise manner, following the idea of hy-
perbolicity of the Boltzmann equation at fixed velocities [31, 163, 193] . The discrete ordinates, i.e. SN ,
method [164] employs a nodal discretization for the directional domain. To facilitate the computation
of integral terms that arise due to scattering, the nodal point sets are commonly chosen according to a
quadrature rule. In the application case of radiative transport, the directional domain is assumed to be the
unit sphere S2, thus a suitable parametrization is given by spherical coordinates

S2 =

{[√
1 − µ2 sin(θ),

√
1 − µ2 cos(θ), µ

]⊤
: µ ∈ [−1, 1] , θ ∈ [0, 2π)

}
. (1.35)

Note, that we can allow different particle velocities by scaling the unit sphere with a given maximum
velocity. In the slab geometry setting, lower dimensional velocity spaces are described by a projection
of S2 onto R2 and R, respectively, i.e.,

PR2(S2) =
{[√

1 − µ2 sin(θ),
√

1 − µ2 cos(θ)
]⊤

: µ ∈ [0, 1] , θ ∈ [0, 2π)
}

(1.36)

and

PR(S2) = {µ : µ ∈ [−1, 1]} (1.37)

7



1. Numerical Methods for the Boltzmann Equation

Hence the task is to derive a quadrature formula for the direction of travel. A common approach is the
product quadrature rule. Here, a Gauss quadrature is used for µ and equally weighted and spaced points
for θ, i.e., for Nq points, we have

θi = i∆θ for i = 1, . . . ,Nq and ∆θ =
2π
Nq

. (1.38)

If the Gauss quadrature for µ uses Nq points, then we obtain a total of Q = N2
q possible directions. Denot-

ing the Gauss weights as wG
k with k = 1, . . . ,Nq, we obtain the product quadrature weights

wk·Nq+l =
2πwG

k

Nq

and points

vk·Nq+l =

[√
1 − µ2

k sin(θl),
√

1 − µ2
k cos(θl)

]⊤
. (1.39)

A variety of different quadrature rules have been derived for specialized SN application scenarios. A
comparison of different quadrature sets and their approximation behavior for SN methods can be found
in [32].
Application of the SN method to the Boltzmann equation (1.1) yields a system of evolution equations for
fq(t, x) := f (t, x, vq), i.e.,

∂t fq(t, x) + vq · ∇x fq(t, x) =
Q∑

p=1

wpk(vp, vq)
[
fp(t, x) − fq(t, x)

]
. (1.40)

The hyperbolicity of the Boltzmann equation yields directly that Eq. (1.40) is a system of hyperbolic
conservation laws. The equation system is only coupled via the discretized scattering operator.
The SN method turns out to be computationally highly efficient, although at the cost of a large memory
footprint. For accurate solutions, a high order SN method is necessary and the amount of discretization
points Nq grows quadratically in the quadrature order. Furthermore, the solution can exhibit non-physical
artifacts, known as ray effects [153, 182, 188], which reduce the approximation quality. While methods
to mitigate ray effects exist, see e.g. [3, 31, 75, 154, 221], they commonly require picking problem-
dependent tuning parameters.

1.2.2. Modal Discretizations - The Boltzmann Moment System

Modal, i.e., moment methods encode the velocity dependence of the kinetic density f in a basis m(v) ∈
Rn of V [160] and enjoy broad scientific and application interest [7, 8, 82, 141, 161]. The basis typically
consists of polynomials up to order N and contains the collision invariants ϕ of the Boltzmann Equation.
Common choices for the basis functions are monomials or spherical harmonics, depending on the appli-
cation. In one spatial dimension, usually we have n = N + 1, whereas in higher spatial dimensions n
equals the number of basis functions up to order N. Subsequent integration over V yields the moment
vector u ∈ Rn

u(t, x) =
∫

V
m(v) f (t, x, v) dv. (1.41)

Analogously, testing the Boltzmann equation against m yields the Boltzmann moment system

∂tu(t, x) + ∇x · ⟨v ⊗m(v) f ⟩ = ⟨m(v)Q( f )⟩ , (1.42)
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whose solution is the moment vector u. By construction, the advection and collision operators still
depend on f , and thus the moment system is unclosed. Moment methods aim to find a meaningful
closure relationU for this system [160, 161], i.e.,

fu(t, x, v) ≃ U(u0(t, x), . . . , un(t, x)) . (1.43)

Remark, that the closure of the moment system is a modeling choice and has an impact on the structural
properties of the resulting closed moment system. In the following, we present the well-known MN and
PN closure frequently used in the field of radiation transport.

1.2.3. Bases of the Velocity Space

Application requirements drive the choice of the velocity basis m(v). For radiation transport, we have
V = S2, which we parametrize in spherical coordinates.

Spherical harmonics basis

This particular choice of V motivates the usage of real-valued spherical harmonics as basis functions.
These are defined as

Yk
l (v) =

√
2l + 1

4π
(l − k)!
(l + k)!

eikθPk
l (µ), ∀l ≥ 0 (1.44)

where Pk
l is the associated Legendre polynomial of degree l and order k, where l and k are integers with

0 ≤ k ≤ l. Furthermore, µ and ϕ are the polar coordinates parametrization of S2. The associated Legendre
polynomials can be computed using a recursion relation [167]. Then, the real spherical harmonics are
given as

mk
l (v) =


(−1)k
√

2

(
Yk

l (v) + (−1)kY−k
l (v)

)
, k > 0 ,

Y0
l (v) k = 0 ,

−
(−1)ki
√

2

(
Y−k

l (v) − (−1)kYk
l (v)

)
, k < 0 ,

where i is the imaginary unit, and −l ≤ k ≤ l. Collecting all basis functions up to degree N in a
vector

m(v) =
[
m0

0(v),m−1
1 (v),m0

1(v),m1
1(v), . . . ,mN

N(v)
]T
∈ Rn

yields the spherical harmonics basis of order N, where n = (N + 1)2, see Fig. 1.1. The spherical harmon-
ics yield an orthonormal basis of S2 and possess symmetry and recursion properties, which makes them
an attractive basis choice for applications with bounded velocity domains.

Monomial basis

Monomial and polynomialvelocity bases play an important role in the derivation of macroscopic models
for gas dynamic, where they appear in Grad’s 13 moment system [128, 218] and in the derivation of

9



1. Numerical Methods for the Boltzmann Equation

Figure 1.1.: Real valued spherical harmonics of non-negative order up to degree 4 in 3 velocity dimen-
sions. Blue denotes negative and red positive values of the basis functions.

the Navier-Stokes and Euler equations [14, 15]. Monomial basis functions are defined in a tensorized
manner

mi(v) = ⊗i
k=1v, i = 1, . . . l, (1.45)

m0(v) = 1. (1.46)

Then mi is a d-dimensional l-tensor, containing mixed monomials with multi-index k = (k1, . . . , kl) of
order |k| ≤ l, i.e., for d = 3,

ml(v)k1,...,kl = v
∑

i kiδk,1
1 v

∑
i kiδk,2

2 v
∑

i kiδk,3
3 , (1.47)

10



1.3. Minimal Entropy Closures - the MN Method

where δk,d is the Kronecker delta. By definition, elements of mi with permuted multi-index are equivalent.
Elimination of equivalent entries and flattening of the tensors mi yields

mi(v) =
[
vi

1, v
i
2, v

i
3, v

(i−1)
1 v2, . . . , v

(i−1)
2 v3

]⊤
(1.48)

and concatenation of mi yields the monomial basis in vector form

m(v) =
[
m0(v)⊤, . . . ,mN(v)⊤

]⊤
. (1.49)

1.3. Minimal Entropy Closures - the MN Method

Entropy-based moment closures [60, 162] use the concept of entropy to close the hierarchy of moment
equations. In general, entropy-based moment closures provide a way to accurately capture the macro-
scopic behavior of a gas or other many-particle system, while still taking into account the underlying
microscopic dynamics.
The Boltzmann equation dissipates entropy and fulfills a local entropy dissipation law. Therefore, a
suitable closure can be created by choosing the reconstructed kinetic density fu = fu(·, ·, v) out of the
set

Fm =
{
f ∈ Dom(Q) : Img( f ) ⊂ D and ⟨m f ⟩ < ∞

}
(1.50)

of all possible functions that fulfill

u(t, x) = ⟨mg⟩ , (1.51)

as the one with minimal entropy, with entropy density η (1.27). The minimal entropy closure, dubbed
MN method, can be formulated as a constrained optimization problem for a given vector of moments u,
i.e.,

min
g∈Fm
⟨η(g)⟩ s.t. u = ⟨mg⟩ . (1.52)

We define

h(u) := ⟨η( fu)⟩ , (1.53)

where fu is the minimizer of Eq. (1.52), which we use to close the moment system

∂tu(t, x) + ∇x · ⟨v ⊗m(v) fu⟩ = ⟨m(v)Q( fu)⟩ . (1.54)

The set of all moments corresponding to a kinetic density f with Img( f ) ⊂ D is called the realizable
set

R = {u : ⟨mg⟩ = u, g ∈ Fm} . (1.55)

The realizable set R is only dependent on the domain D of η, V and m, and can be described as the
set of all moments corresponding to kinetic densities f that fulfill the invariant range condition of the
Boltzmann equation. The realizable set R of the minimal entropy closure has been thoroughly analyzed
for the monomial basis [52, 187].
We derive an analytic expression for the minimizer of Eq. (1.52) by considering its dual optimization
problem, which we construct through the Legendre transform.
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Definition 1.10 (Legendre transform)
Let g : Rn → R be a convex function. Its Legendre transform g∗ : Rn → R is defined as,

g∗(y) = sup
z∈Rn
{y · z − g(z)} . (1.56)

The Legendre transform has the properties

(g∗)∗ = g and g′∗ = (g′)−1. (1.57)

Theorem 1.11 (Dual minimal entropy closure [160])
The dual of the minimal entropy closure optimization problem 1.52 is itself a convex optimization problem
and is given by

max
α∈Rn

ϕ(α; u), (1.58)

ϕ(α; u) = α · u − ⟨η∗(α ·m)⟩ , (1.59)

for a moment vector u. The Legendre dual of the entropy density η is denoted by η∗. The maximizer

αu = argmax
α∈Rn

ϕ(α; u) (1.60)

is the Lagrange multiplier for moment u. At the optimal point, we have

h(u) = ϕ(αu; u). (1.61)

The proof is provided in §1.5. There does not always exists a solution for the minimal entropy prob-
lem [100]. However, if a solution exists for u ∈ R, it is unique and of the form

fu(v) = η′∗(αu ·m(v)). (1.62)

The optimality and uniqueness of the primal solution fu in (1.62) is then confirmed by using the strong
duality of (1.52) and (1.58). In particular, the first-order optimality condition of (1.58) leads to

u =
〈
mη′∗(αu ·m)

〉
, (1.63)

which yields the inverse of the solution map u 7→ αu of the dual optimization problem. Furthermore, the
derivative of h recovers the optimal Lagrange multipliers of Eq. (1.58), i.e.,

∇uh(u) = αu, (1.64)

and the Hessian of the dual objective function ϕ with respect to α is given by

H(α) = −
〈
m ⊗mη′′∗ (α ·m)

〉
. (1.65)

Additionally we introduce Hn(α) = −H(α).
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1.3. Minimal Entropy Closures - the MN Method

Structural Properties of the Minimal Entropy Closure

The main advantage of the MN method as a closure for the Boltzmann moment system is its preservation
property of the intrinsic structure of the Boltzmann equation itself. The structural properties have been
proven in [160, 161], and we review them in the following.
The range of the reconstructed entropy density fu is a consequence of the ansatz, see Eq. (1.62) and thus
directly connected to the domain D of the entropy density η, see Table 1.1. In terms of the feasibility of
the moment constraint, the invariance of the range of fu is equivalent to the realizability of u. Formally,
we expect, that u ∈ R for all t > 0, if u(t0) ∈ R. Furthermore, if B = D, the physical bounds of the
problem are consistent with the bounds of the reconstructed kinetic density.

We look at conservation properties of the moment system.

Corollary 1.12
Let a basis function mi ∈ E be a collision invariant, then by Eq. (1.13), the i-th component of the moment
system (1.42), i.e.,

∂tui + ∇x ⟨miv fu⟩ = 0 (1.66)

is a conservation law.

The proof follows directly using Definition 1.3. Consequently, the choice of the basis m determines, if
Eq. (1.42) is a system of conservation laws.

Hyperbolicity of the moment system was originally shown in [160].

Theorem 1.13 (Hyperbolicity of the Moment System [160])
The advection operator of the moment system with minimal entropy closure (1.54) is hyperbolic.

The proof is provided in §1.5. Remark, that the crucial ingredient of the proof is the convexity of the
minimal entropy functional.

Consider again a Galilean transformation GR,w defined in Eq. (1.32) and a moment basis m. We define
the inherited Galilean transform as

TR,wu =
〈
mGR,w fu

〉
(1.67)

Theorem 1.14 (Galilean Invariance of the Moment System [126])
The Boltzmann moment system (1.42) is invariant under the inherited transform if the moment basis m
is invariant under GR,w.

The proof is provided by [126]. Specifically, this implies the need for an orthonormal basis m of the ve-
locity space V. The spherical harmonics basis is an example for an orthonormal basis.

Lastly, we discuss the inheritance of entropy-dissipation for the Boltzmann moment system
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(a) M3 simulation (b) P3 simulation (c) S8 simulation

Figure 1.2.: Simulation of the Linesource test case using different velocity space, but the same spatial-
temporal discretizations. The plot shows the scalar flux, i.e., u0. Black cells are zero-valued
and white cells denote negative values. Notice the ray effects of the S8 method, and the
negative solution of the P3 method.

Theorem 1.15 (Entropy Dissipation of the Moment System)
The objective functional of the minimal entropy closure h(u), see (1.53) and the function

j(u) = [ j(u)1, . . . , j(u)d]⊤, with j(u)i = ⟨viη( fu)⟩ (1.68)

is a suitable entropy/entropy-flux pair for the Boltzmann moment system with minimal entropy closure.
For a solution u of the moment system, the entropy dissipation law

∂th(u) + ∇u · j(u) ≤ 0 (1.69)

holds.

The proof is provided in §1.5. Note, that the convexity of h is a core ingredient for the proof.
We compare Theorem 1.15 with the H-Theorem 1.8 and the entropy dissipation law for the Boltzmann
equation (1.30) and identify the minimum of the entropy closure (1.53) with the entropy of the Boltzmann
equation.

The H-theorem for the Boltzmann equation can be used to show the equivalence of the statements

αu(u) · ⟨mQ( fu)⟩ = 0 ⇔ Q( fu) = 0 ⇔ αu ·m ∈ E. (1.70)

Here, E denotes the span of collision invariants. Overall, the MN method preserves the positivity
of particle distributions while yielding accurate results with little spurious oscillations and is struc-
turally rich. However, the need to solve a possibly ill-posed optimization problem in every spatial
cell and time step results in increased computational costs. While analytic solutions to the optimiza-
tion problems are available at small truncation orders, they cannot capture all physical effects accu-
rately.

1.4. Spherical Harmonics Closure - the PN Method

A commonly used closureU(u0(t, x), · · · , un(t, x)) is the so-called PN closure [33]. In terms of minimal
entropy closures, the PN closure denotes the special case of a quadratic entropy density η(y) = y2 and the
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spherical harmonics basis on the unit sphere S2. The reconstruction formula of Eq. (1.62)

fu(v) = η′∗(αu ·m) = αu ·m (1.71)

and the definition of the moment vector u yield the simplification

u = ⟨mαu ·m⟩ ⇒ αu = ⟨m ⊗m⟩−1 u. (1.72)

Orthonormality of the spherical harmonics basis results in ⟨m ⊗m⟩ = I and we get αu = u. Thus the PN

method expands the solution by spherical harmonics, i.e.,

fu(v) = u ·m(v) (1.73)

where u ∈ R(N+1)2
collects all moments according to u =

(
u0

0, u
−1
1 , u0

1, u
1
1, · · · , u

N
N

)T
∈ R(N+1)2

.
Then, the moment equations read

∂tu(t, x) + A · ∇xu(t, x) = Gu(t, x) (1.74)

where G is the discretization of the linear collision operator Q, where we use the fact that the spherical
harmonics are the eigenfunctions of Q. Further, the advection operator is given by

A · ∇x := A1∂x1 + A2∂x2 + A3∂x3 (1.75)

with the flux Jacobians Ai given by

Ai := ⟨m ⊗mvi⟩ . (1.76)

This expression can be implemented efficiently using the recursion relation of the spherical harmon-
ics

viml = ai
lml−1 + ai

l+1ml+1 (1.77)

with the submatrices ai
l ∈ R

(2l−1)×(2l+1) and ml−1 ∈ R
(2l−1). The submatrices ai

l are given by

vmk
l =

1
2


(1 − δk,−1)

(
c̃|k|−1

l−1 mk−
l−1 − d̃|k|−1

l+1 mk−
l+1

)
− ẽ|k|+1

l+1 mk+
l−1 + f̃ |k|+1

l+1 mk+
l+1

sign(k)
(
(1 − δk,1)

(
−c̃|k|−1

l−1 m−k−
l−1 + d̃|k|−1

l+1 m−k−
l+1

)
− ẽ|k|+1

l−1 m−k+
l−1 + f̃ |k|+1

l+1 m−k+
l+1

)
2
(
ak

l−1mk
l−1 + bk

l+1mk
l+1

)
 , (1.78)

where we modify the sign notation such that sign(0) = 1 holds. With k± = k±sign(k), and the coefficients
are

c̃k
l =


0, k < 0,
√

2ck
l , k = 0,

ck
l , k > 0,

, d̃k
l =


0, k < 0,
√

2dk
l , k = 0,

dk
l , k > 0,

(1.79)

ẽk
l =


√

2ek
l , k = 1,

ek
l , k > 1,

, f̃ k
l =


√

2 f k
l , k = 1,

f k
l , k > 1,

(1.80)
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and

ak
l =

√
(l − k + 1)(l + k + 1)

(2l + 3)(2l + 1)
, bk

l =

√
(l − k)(l + k)

(2l + 1)(2l − 1)
, (1.81)

ck
l =

√
(l + k + 1)(l + k + 2)

(2l + 3)(2l + 1)
, dk

l =

√
(l − k)(l − k − 1)
(2l + 1)(2l − 1)

, (1.82)

ek
l =

√
(l − k + 1)(l − k + 2)

(2l + 3)(2l + 1)
, f k

l =

√
(l + k)(l + k − 1)
(2l + 1)(2l − 1)

. (1.83)

Furthermore, one can use the fact that the spherical harmonics are the eigenfunctions of the scattering
part of the linear collision operator. Thus the right-hand side of the moment system can be expressed by
a matrix multiplication with Gu consisting of the eigenvalues of the spherical harmonics basis.
Then, the moment equations at degree l become

∂tul(t, x) +
3∑

i=1

∂xi

(
ai

lul−1(t, x) + ai
l+1ul+1(t, x)

)
= Gul(t, x) (1.84)

ul = 0, ∀l > (N + 1)2 . (1.85)

Note that the equations for degree l depend on the moments of degree l+1, and according to the minimal
entropy closure with quadratic entropy, higher-order moments are simply truncated.
While PN is a computationally efficient method (especially for scattering terms), it does not preserve
positivity. One can see this by considering the domain D of the quadratic entropy density η, which is
R, see Table 1.1. Therefore, negative densities are feasible for the minimal entropy closure with this
choice of entropy. This leads to simulation artifacts like spurious oscillations and even results in negative
particle concentrations, especially in regimes with few collisions [30].
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1.5. Additional Material

In the following, we prove the stated theorems and lemmas of this chapter.

Statements of Section 1.1

Proof: (Theorem 1.8) If η is convex, then η′ is non-decreasing. Consequently, we have

〈
η′(F)Q( f )

〉
=

∫
V

∫
V
η′( f (v))k(v∗, v)( f (v∗) − f (v)) dv∗ dv

=

∫
V

∫
V
η′( f (v∗))k(v, v∗)( f (v) − f (v∗)) dv dv∗

=
1
2

∫
V

∫
V

(η′( f (v)) − η′( f (v∗))k(v, v∗)( f (v∗) − f (v)) dv dv∗ ≤ 0,

(1.86)

where we use the positiviy of the collision kernel k, as well as k(v, v∗) = k(v∗, v). □

Statements of Section 1.3

Proof: (Theorem 1.11) We find the dual of (1.52) by consideration of the Lagrangian

L(g,α) = ⟨η(g)⟩ + α · (u − ⟨mg⟩) . (1.87)

Formally minimizing L over g yields

min
g

L(g,α) =min
g
{⟨η(g)⟩ + α · (u − ⟨mg⟩)}

=min
g
{⟨η(g) − α ·mg⟩} + α · u

= − ⟨η∗(α ·m)⟩ + α · u (Legendre duality)

=ϕ(α; u).

(1.88)

By strong duality, the maximum of (1.58) equals the minimum of (1.52), so we have

h(u) = ϕ(αu; u), (1.89)

where αu is the maximizer of the dual problem. □

Proof: (Theorem 1.13) Consider the flux functions of the Boltzmann moment system (1.42) in the sense
of Definition 1.2, i.e.,

Fi(u) =
〈
vimη′∗(αu ·m)

〉
, i = 1, . . . , d. (1.90)

We define the function ji,∗(α) = ⟨viη∗(α ·m)⟩ and notice that ∇α ji,∗(αu) = Fi(u). Furthermore, we have

∇αuu = Hn(αu), (1.91)
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by definition of the Hessian of the dual entropy functional and optimality conditions. Thus, by the chain
rule, we can reformulate Eq. (1.54) to

∂tu +
d∑

i=1

JiH−1
n ∂xiu = 0, (1.92)

with

Ji = j′′i,∗(αu) =
〈
vim ⊗mη′′∗ (αu ·m)

〉
. (1.93)

We show, that JiH−1
n is diagonalizable with real eigenvalues. First, we note, that Hn is symmetric and

positive definite since it is the hessian of −ϕ, which is convex. Thus we can write H1/2
n H1/2

n = Hn and
we have

JH−1
n = H1/2

n H−1/2
n JH−1/2

n H−1/2
n . (1.94)

Consequently, H−1/2
n JH−1/2

n is similar to JH−1
n , i.e., it has the same eigenvalues. Since H−1/2

n JH−1/2
n is

symmetric, JH−1
n , is diagonalizable with real eigenvalues.

Then,

d∑
i=1

aiJiH−1
n , i = 1, . . . , d, (1.95)

with ai , 0 is similar to a sum of symmetric matrices and thus is diagonalizable with real eigenvalues.
By definition 1.4 the system is then hyperbolic. □

Proof: (Theorem 1.15) The entropy h(u) is convex by the construction of the minimal entropy closure.
We show the integrability condition for each element of the flux function of the moment system (1.54).
Consider the entropy-flux

j(u)i = ⟨viη( fu)⟩ =
〈
viη(η′∗(αu ·m))

〉
, (1.96)

where we use the ansatz (1.62) for the reconstruction of fu. We have

∇u j(u)i = ∇u ⟨viη( fu)⟩

=
〈
η′(η′∗(αu ·m))vimη′′∗ (αu ·m)∇uαu

〉
=

〈
αuvim ⊗mη′′∗ (αu ·m)∇uαu

〉
(Legendre duality)

= ∇uh(u)
〈
vim ⊗mη′′∗ (αu ·m)∇uαu

〉
(Equation (1.64))

= ∇uh(u)∇uFi(u)

(1.97)

We multiply Eq. (1.54) with ∇uh(u), i.e.,

∇uh(u)∂tu(t, x) + ∇uh(u)∇x · F(u) = ∇uh(u) ⟨m(v)Q( fu)⟩

= αu ⟨m(v)Q( fu)⟩ (Equation (1.64))

= ⟨αum(v)Q( fu)⟩

=
〈
η′(η′∗(αu ·m))Q(η′∗(αu ·m))

〉
(Legendre duality)

≤ 0. (Theorem 1.8)

(1.98)

The integrability condition above concludes the proof. □
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CHAPTER 2

Neural Network-Based Machine Learning

In this chapter, we provide a comprehensive overview of the fundamental concepts of su-
pervised machine learning using neural networks. We explain the principles and mechanics
of training parametrized models, including a discussion of gradient-based optimization tech-
niques as applied to neural network training. Furthermore, we examine recent advancements
in over-parametrized neural networks, and their implications for memory footprint and com-
putational expense. These insights serve to contextualize the subsequent chapters of this dis-
sertation.

2.1. Supervised Machine Learning

Machine learning is generally a function approximation task where a parametrized map fθ, called a
model, aims to approximate a target function f ∗. The target function f ∗ is often not explicitly stated,
but rather given implicitly by a (training) data set XT = {(x, y)i}i∈T with size T of independent x and
dependent y variables. This scenario is called supervised machine learning. If no dependent variable y
is given, but we have access to a residual, the task is called unsupervised learning. An example is the
approximation of the solution of a differential equation by minimizing its residual formulation.
A machine learning task consists of four parts, all equally important to successfully develop a working
approximation, i.e.,

• the representation of the target function, called hypothesis space,

• the evaluation metric, i.e. the objective or loss function,

• the optimization method to minimize the loss function,

• the structure and preparation of the training data.

The hypothesis space denotes the set of candidate functions for the model fθ. In classical numerical
analysis, this is often the space of polynomials or piecewise polynomials. Neural networks are another
choice of hypothesis space.
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2. Neural Network-Based Machine Learning

Definition 2.1 (Neural Network)
We define a neural network as a function Nθ : Rn → Rm of the form

Nθ(x) = zM. (2.1)

zk = σk(Wkzk−1 + bk), k = 1, . . . ,M (2.2)

z0 = x. (2.3)

The non-linear and differentiable activation function σk : Rnk → Rnk is defined in a point-wise manner,
i.e.,

σk(zk) =
[
σk(zk,1), . . . , σk(zk,nk )

]⊤ . (2.4)

The network is a concatenation of M layers. The layer output is denoted by zk. The set of weight matrices
Wk ∈ R

nk×nk−1 , and biases bk ∈ R
nk of all layers yield the set of trainable parameters θ.

In practice, this definition is often modified, e.g. to convolutions, but at its core, most neural network
architectures consist of non-linearities applied to affine linear maps. The hypothesis space is then spanned
by all possibly obtainable trainable parameters θ and the given network architecture. The architectural
parameters of the hypothesis space are called hyperparameters. Examples of hyperparameters are the
number of layers M or the layer dimensions nk, or the maximum degree of a polynomial model.
The next step in solving the supervised learning task is to choose a loss function to measure the distance
of the current approximation fθ to the target function f ∗, which we denote as L (XT ; fθ) for the data set
XT . For the sake of simplicity, we use the Mean Squared Error (MSE) as the choice of L for the rest of
this chapter, i.e.,

L (XT ; fθ) =
1
T

∑
i∈T

∥ fθ(xi) − (yi)∥22 . (2.5)

Furthermore, the optimization algorithm has to be chosen to change the trainable parameters θ to ap-
proximate f ∗. In neural network-based supervised machine learning, gradient descent methods are used
frequently amongst which are stochastic gradient descent (SGD) [131], ADAM [135] or RMSProp [225].
Gradient-free methods, such as particle-swarm optimization [73] are also possible.
The last ingredient is the preprocessing of the data set XT . Sometimes, XT is finite and given; in machine
learning-based surrogate modeling, one can often produce more data by evaluating the (often computa-
tionally expensive) governing equations of a physical system. Often, the raw data is not as useful for
training the model with the chosen optimizer and has to be normalized, centered, and features have to
be selected by dimension reduction techniques. Also, parts of the data have to be held back to test the
developed model as an estimate for its performance on unseen data. We formalize the machine learning
task in the following.

Definition 2.2 (Training, test and generalization error in supervised learning [62])
Consider a model fθ, a target function f ∗, and a training data set XT . Then, the training error of the
model is defined by

T ( fθ) = L (XT ; fθ) =
1
T

∑
i∈T

∥ fθ(xi) − (yi)∥22 . (2.6)

Let Px be the (real-world) distribution of the independent variable x of the data set. The generalization
error of the model fθ is defined by

G( fθ, f ∗) = Ex∼Px

(∥∥∥ fθ(x) − f ∗(x)
∥∥∥2

2

)
. (2.7)
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2.2. Stochastic Gradient Descent

We call the estimate of G on a finite test data set Xtest, which we assume to be sampled from Px, and f ∗(x)
and to be disjoint from the training data set XT , the test error

T̃ ( fθ) = L (Xtest; fθ, ) . (2.8)

Thus, the machine learning task, given XT , is to find the minimizer fθ∗ of G( fθ∗ , f ∗). Due to the unavail-
ability of a direct evaluation of G( fθ∗ , f ∗), the task is reformulated as follows. Give XT , choose a hypoth-
esis space, hyperparameters, an evaluation method, an optimization algorithm, and a data-processing
pipeline. Then compute

fθ∗ = argmin
fθ
L (XT ; fθ) , (2.9)

such that T̃ ( fθ∗ , f ∗) is minimal. Note, that the test-error must not be involved in the training (2.9) directly
or indirectly for hyperparameter tuning. If it was, we would not be able to use Xtest as a measure for
the performance of the model on unseen data and thus it T̃ would not be a good approximation or
G.

2.2. Stochastic Gradient Descent

In this work, we mainly use neural networks Nθ as parametrized models fθ. Thus, we give an overview
of the neural network training techniques used in this dissertation, i.e., how to solve the optimization
problem (2.9). Gradient descent based optimizers to solve (2.9) read as

θt+1 = θt − η∇θL(XT ; Nθ), t = 1, 2, . . . (2.10)

where λt > 0 is the learning rate. For the a layer-based definition of a neural network, see Definition 2.1,
the gradient descent step of iteration t is given by

W t+1
k = W t

k − η∇WkL(XT ; Nθ(·; W t
1, . . . ,W

t
M,b

t
1, . . . ,b

t
M)), k = 1, . . . ,M (2.11)

bt+1
k = bt

k − η∇bkL(XT ; Nθ(·; W t
1, . . . ,W

t
M,b

t
1, . . . ,b

t
M)), k = 1, . . . ,M (2.12)

Remark, that from the non-linearity of neural networks, it is clear that the optimization problem (2.9) is
not convex, and that we cannot hope to find its global minimum using gradient descent. Thus, many ex-
tensions like momentum-based gradient descent methods such as ADAM [135] or RMSProp [225] have
been developed to mitigate the issue of the optimizer getting stuck in a local minimum. Furthermore,
computing the global minimizer of (2.9) does not necessarily translate to finding the global minimizer of
T̃ (Nθ∗ , f ∗) let alone G(Nθ∗ , f ∗), since test data is not available to the optimizer. Nevertheless, gradient-
based methods are most commonly used for neural network training.
Note that the gradient evaluation of modern neural network implementations, like PyTorch and Tensor-
flow, is mostly carried out using reverse mode automatic differentiation. For an introduction to the topic,
we refer to [91].

Consider the gradient computation

∇θL(XT ; Nθ) =
1
T

∑
i∈T

∇θ

∥∥∥Nθ(xi) − f ∗(xi)
∥∥∥2

2 , (2.13)

whose evaluation requires averaging of the gradient evaluations for all samples of the training data set
XT . This is prohibitively expensive in practice since the XT is often by orders of magnitude bigger than

21



2. Neural Network-Based Machine Learning

Algorithm 2.1: Stochastic gradient descent training of neural networks

Input: θ0: Weight initialization
Nθ: Neural network architecture
XT =

⋃
t XB,t: Training data

λ: Learning rate
epoch: number of training iterations over XT

iter: number of mini-batch evaluations per epoch

Result: Nθ∗ : Trained network

for each epoch do
for t = 0 to t =iter do

Load mini-batch XB,t

Register θ for gradient tape /* Start of automatic differentiation */
zM,i ← Nθ (xi) , ∀i ∈ B /* Forward pass, vectorized */

L ← 1
B
∑

i∈B

∥∥∥zM,i − f ∗(xi)
∥∥∥2

2 /* Batch loss evaluation */

Evaluate ∇θL /* Evaluation of the gradient tape */
θt+1 ← θt − λ∇θL /* Gradient descent step */

the available memory of the computation device. Motivated by this practical challenge, one relies on
mini-batch training, i.e., approximating the gradient

∇θL(XBi ; Nθ) ≈ ∇θL(XT ; Nθ), (2.14)

where the training data set is partitioned into mini-batches XBi , s.t. XT =
⋃

i XBi [217]. Then, stochastic
gradient-based neural network training can be summarized in Algorithm 1.

Besides the practical aspects, stochastic gradient descent has beneficial regularization properties, which
are explored for linear inverse problems [123]. Furthermore, it has been investigated that the stochastic
noise introduced by the SGD optimizer acts as an additional loss term that flattens the high dimensional
solution landscape when training over-parametrized neural networks [244]. This is beneficial to avoid
local minima in the training process.

2.3. Over-Parametrized Neural Networks

Let us consider a parametrized model fθ with finite variance. The generalization error (2.7) can be
rewritten to

G( fθ, f ∗) = Ex∼Px

(∥∥∥ fθ(x) − f ∗(x)
∥∥∥2

2

)
= Ex∼Px

(∥∥∥ fθ(x) − f ∗(x)
∥∥∥

2

)2
+ Varx∼Px (fθ(x)) , (2.15)

where the first term of the right-hand side is the squared bias, and the second is the variance of the model.
If there is white noise in the training data set, a third term, specifying the standard deviation of the noise,
is added to the generalization error.
Classical statistical learning theory considers the bias-variance trade-off [99]. Here, the squared bias of
the model can be thought of as the error induced by simplifying assumptions built into the model, e.g.,
a linear approximation of a high-order polynomial. The variance of the model specifies how much fθ
moves around its mean. The idea of the bias-variance trade-off is that models with higher complexity,

22



2.3. Over-Parametrized Neural Networks
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Figure 2.1.: Parameter count of popular network architectures (left) and computational cost for a single
training run in Peta FLOP/S-days (right). The computational cost of large models increase
by an order of magnitude each year.

have lower bias but a higher variance in their prediction. Generally, the number of trainable param-
eters of the model does not have a direct influence on its complexity. As an example, consider the
model

fθ={a,b}(x) = a sin(bx), (2.16)

which can approximate any number of points with a high enough frequency, resulting in a high-bias,
high-variance model with only two parameters.

In neural network-based machine learning, the consensus is traditionally, that the variance of a model
increases with its parameter count |θ|, whereas its bias decreases [84]. Consider a neural network with
p = |θ| degrees of freedom, and a training process on a dataset with d = |XT | data points. Three regimes
of neural network training are denoted, i.e.,

• the under-parametrized regime for p ≪ d,

• the critical regime for p ≈ d with the interpolation threshold p = d,

• the over-parametrization regime for p ≫ d.

The test error of a neural network tends to increase in the critical regime. Different regularization tech-
niques [216, 47] are used to mitigate this variance increase. However, newer works give empirical
evidence [191] and theoretical reasoning [46, 61] that (unregularized) neural networks generalize well
in the over-parametrization regime. This challenges the classical assumption as the variance does not
increase with a high parameter count.

Further, over-parametrized neural networks became popular in applied aspects of machine learning, due
to their effectiveness in the training phase. Thus, in recent years massively over-parametrized neural
network models have been proposed and won several competitions for machine learning. Examples are
illustrated in Fig. 2.1, which shows a trend of the exponential increase of trainable parameters. Since the
majority of trainable parameters are given by weight matrices W of large dimension, the corresponding
computational expense to train and evaluate the networks increases by approximately an order of mag-
nitude per year. Consequently, training and inference of modern neural network architectures become
increasingly capital, energy, and time-consuming.
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2. Neural Network-Based Machine Learning

The prohibitive computational cost motivates neural network compression methods with the goal to
identify sparse substructures within a neural network that approximately resemble the accuracy of the
original model. A multitude of compression methods have been developed in the last decade, which
can be partitioned into (a) data-free methods that only consider the original (trained) network but no
training data, (b) data-efficient methods that subsequently re-train and compress a trained network, and
(c) methods that compress a network using the full training data-sets [150]. The memory footprint can
be reduced by the identification of sparse sub-matrices, factorization of the weight matrices, or reduction
of their floating point accuracy.
We investigate this matter and propose a low-rank factorization to compress a neural network during
training in §7.
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CHAPTER 3

KiT-RT: A Modular Simulation Toolkit for Kinetic Transport

In this chapter, we present KiT-RT (Kinetic Transport Solver for Radiation Therapy), an open-
source C++ framework for solving kinetic equations in radiation therapy applications. This
framework aims to provide a collection of classical deterministic solvers for unstructured
meshes that allow for easy extendability. KiT-RT is a convenient base to test new numer-
ical methods in various applications and compare them against convenotional solvers. The
implementation includes spherical harmonics, minimal entropy, neural minimal entropy, and
discrete ordinates methods. Solution characteristics and efficiency are presented through sev-
eral test cases ranging from radiation transport to electron radiation therapy. Due to the variety
of included numerical methods and extendability, the presented open-source code is attractive
for both developers, who want a basis to build their numerical solvers, and users or application
engineers, who want to gain experimental insights without directly interfering with the code-
base.

3.1. Introduction

High-fidelity numerical simulation of radiation transport enabled on workstation computers is crucial
for both scientific prototyping and hands-on applications like treatment planning in radiation oncology.
Besides the aim to ensure sufficient accuracy, such simulations are required to run on limited compu-
tational resources such as workstation PCs. An open-source framework increases trustworthiness for
crucial applications such as medicine or industrial radiation transport as well as enables extension by
methodological and application engineers, mathematicians, and scientists.

3.1.1. Related Work on Radiation Oncology Planning

Although the solver can be used and modified for other applications, it is primarily tailored to simulate
dose distributions for radiation treatment planning. Personalized medicine in radiation oncology has
been an important research topic in the last decades to generate automated optimal treatment plans. To
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3. KiT-RT: A Modular Simulation Toolkit for Kinetic Transport

allow for accurate, reliable, and efficient treatment planning tailored toward individual patient needs,
there is a growing desire to undertake direct numerical simulation for radiation therapy.
Traditional methods to predict dose distributions in radiation oncology largely rely on simplified models,
such as pencil beam models based on the Fermi-Eyges theory [67]. While such models are computa-
tionally efficient, they often lack the required accuracy, especially in cases including air cavities or other
inhomogeneities [109, 140]. On the other hand, Monte Carlo (MC) algorithms, which simulate indi-
vidual interacting particles, achieve a satisfactory accuracy [10]. However, despite ongoing research to
accelerate MC methods, their high computational costs currently render them impractical for clinical
usage [74, 122]. In [143], the modal PN method has been employed to derive a macroscopic model
for radiation treatment planning. While it does not preserve the positivity of the solution and can po-
tentially yield oscillatory approximations, it allows for an efficient numerical treatment of scattering
terms.

3.1.2. Novelty and Scientific Contribution

The variety of different methods allows for individual method choices tailored to different settings. The
comparability of different methods in a uniform framework is not only interesting for clinical usage, but
also for future research in computational radiation therapy. Our goal for the open-source C++ Kinetic
Transport for Radiation Therapy (KiT-RT) framework is therefore to provide a collection of available
deterministic methods. Special focus is put on extendability by the use of polymorphism to simplify the
implementation of novel solution methods. The methods provided by our framework are optimized for
an application on workstation PCs. This meets the typical requirements in radiation therapy applications:
for clinical usage, the computational resources are often limited and the time between recording the CT
image and the actual treatment must not exceed a certain time. Hence, radiation therapy codes that are
applicable for clinical use should run efficiently on workstation PCs. Moreover, conventional codes often
require structured grids [82, 141, 199, 211, 236], leading to inaccurate representations of structures on
CT images. While accuracy in practice is also limited by the CT density values which are given on
a structured grid, these are often down-sampled to a lower resolution for dose computations. Further,
a re-computation of the CT values for unstructured grids is feasible if it improves the quality of dose
computations. Therefore, our framework provides functionalities for both unstructured meshes which
preserve organ outlines on CT images, as well as standard rectangular grids.
This is a collaborative work with Jonas Kusch, Pia Stammer, Jannick Wolters, and Tianbai Xiao. This
chapter focuses on the author’s contribution to the project and the full paper can be found at [147]. The
code is available on Github1 and extended details of the methods and documentation of the code can be
found on ReadTheDocs2.

3.1.3. The Chapter in Context of the Dissertation

This Chapter serves two purposes for the dissertation. First, we demonstrate the open-source software
KiT-RT, which serves as the computational backbone for the computations of §4,§5 and §6. Secondly,
we review the spatial-temporal discretizations given by second-order finite volume methods for un-
structured grids, which lay the numerical base for all velocity space discretizations of this disserta-
tion.

1https://github.com/CSMMLab/KiT-RT
2https://kit-rt.readthedocs.io
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3.2. The Boltzmann Equation for Dose Computation

3.1.4. Organization of the Chapter

This chapter aims at presenting the developed framework and its functionality while providing the nec-
essary mathematical and physical background on the principles the software is based on. In §3.2.1
we provide the underlying physical model as well as its reformulation as a time-dependent partial dif-
ferential equation. §3.3 and §3.5 focus on the used discretizations and software architecture, respec-
tively. Lastly, we validate our implementations and analyze their performance for different test cases in
§3.7.

3.2. The Boltzmann Equation for Dose Computation

The KiT-RT solver’s main purpose is to solve linear, time-dependent kinetic equations and steady state,
linear, energy-dependent kinetic equations with continuous slowing down approximation. Specimen for
the former is the linear Boltzmann equation, i.e.,

∂t f (t, x, v) + v · ∇x f = Q( f ) (3.1)

where the collision operator is given as

Q( f ) =
∫

V
k(t, x, v, v∗)

[
f (v∗) − f (v)

]
dv∗ (3.2)

with a specifiable collision kernel k(t, x, v, v∗) with space, velocity and time dependence. Examples are
given in §3.7.

3.2.1. Continuous Slowing Down Approximation

The second type of equations that are solvable by the KiT-RT solver suite is energy-dependent kinetic
equations with continuous slowing down approximation. They can be seen as an extension of the linear
Boltzmann model, and have their application in computational radiotherapy treatment planning. Here
we model radiation transport with a single particle speed, thus we choose the velocity basis as the unit
sphere, i.e., V = S2. For radiotherapy treatment planning, one is generally interested in the computation
of the radiation dose distribution

D(x) =
1
ρ(x)

∫ ∞

0

∫
S2

S (E, x) f (E, x, v) dv dE , (3.3)

that results from a given treatment plan. Here, E ∈ R+ is the energy, x ∈ X ⊂ R3 denotes the spatial
domain, and v ∈ S2 is the flight direction of particles. Moreover, ρ : R3 → R models the space-
dependent patient tissue density. The stopping power S : R+ × R3 → R models the continuous energy
loss of particles due to scattering with tissue and is defined as

S (E, x) =
∫ ∞

0
E′

∫ 1

−1
σ(E, E′, x, µ) dµ dE′ (3.4)

with the scattering cross-section σs : R+ × R+ × R3 × [−1, 1] → R. The radiation flux density, which
describes the probability of finding a particle at a certain region in phase space, can be computed from
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3. KiT-RT: A Modular Simulation Toolkit for Kinetic Transport

the continuous slowing down (CSD) approximation [151] of the energy-dependent linear Boltzmann
equation, i.e.,

− ∂E (S (E, x) f (E, x, v)) + v · ∇x f (E, x, v)

=

∫
S2
σs(E, x, v · v′) f (E, x, v′) dv′ − σt(E, x) f (E, x, v) .

(3.5)

This model assumes a continuous energy loss of particles traveling through a background material, which
is modeled using the stopping power S . For clarity of exposition, we decompose the collision kernel into
the scattering σs and total cross-section σt. The scattering cross-section σs(E, x, v · v′) denotes the
probability of particles at position x with energy E changing their flight direction from v′ to v due to a
collision with the patient tissue. The total cross-section σt is given by

σt(E, x) = σs,0(E, x) = 2π
∫ 1

−1
σs(E, x, µ) dµ . (3.6)

KiT-RT is capable of constructing custom stopping powers, scattering, and total cross-sections specified
by physics-databases [90] and specific material properties [143, 193, 237], for which we refer to the full
paper [147].
Having defined the prerequisites of our physical model, we can focus on bringing it into a form that
allows for computing numerical approximations efficiently. It turns out that the energy variable in (3.5)
can be treated as a pseudo-time, which facilitates solving the CSD equation. For a given maximal energy
Emax let us define the transformed energy as

Ẽ(E) :=
∫ Emax

0

1
S (E′)

dE′ −
∫ E

0

1
S (E′)

dE′ (3.7)

and the transformed particle density as

f̃ (Ẽ, x, v) := S (E)ρ(x) f (E(Ẽ), x, v) . (3.8)

Then, multiplying Eq. (3.5) with S (E) and plugging in the defined transformation gives

∂Ẽ f̃ (Ẽ, x, v) + v · ∇x
f̃ (Ẽ, x, v)
ρ(x)

+ σ̃t(Ẽ) f̃ (Ẽ, x, v) =
∫
S2
σ̃s(Ẽ, v · v′) f̃ (Ẽ, x, v′) dv′ , (3.9)

where we define σ̃t(Ẽ) := σt(E(Ẽ)) and σ̃s(Ẽ, v · v′) := σs(E(Ẽ), v · v′). Dropping the tilde notation
and treating Ẽ as a pseudo-time t gives a slightly modified version of the classical linear Boltzmann
equation

∂t f (t, x, v) + v · ∇x
f (t, x, v)
ρ(x)

+ σt(t) f (t, x, v) =
∫
S2
σs(t, v · v′)ψ(t, x, v′) dv′

f (t = 0, x, v) = S (Emax)ρ(x) f (Emax, x, v) .
(3.10)

Hence, the CSD equation can be treated numerically with classical closure methods and space-time
discretizations.

3.3. Macroscopic Methods

To obtain a computationally feasible model with comparable accuracy, radiation particles are described
on a mesoscopic level through the deterministic linear Boltzmann equation [24, 222, 223, 224]. An
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3.4. Spatial-Temporal Discretization

efficient and accurate numerical approximation to the linear Boltzmann equation can be achieved through
the construction of grid-based macroscopic approximations [60, 229, 230, 87]. Variants of grid-based
methods for radiation therapy can e.g. be found in [16, 108, 193, 143, 148, 115].
The velocity space discretization of the Boltzmann equation is performed with the macroscopic models
discussed in §1.2, i.e., the MN method, namely

∂tu(t, x) + ∇x · ⟨vm(v) fu⟩ = ⟨m(v)Q( fu)⟩ ,

fu = argmin
f∈Fm

{⟨η( f )⟩ : ⟨m f ⟩ = u} , (3.11)

where we use ⟨·⟩ for the velocity integral. Further, we introduce the regularized MN method, i.e.,

∂tu(t, x) + ∇x · ⟨v ⊗m(v) fu⟩ = ⟨m(v)Q( fu)⟩ ,

fu = argmin
f∈Fm

{
⟨η( f )⟩ +

1
2γ
∥⟨m f ⟩ − u∥22

}
,

(3.12)

which we discuss in detail in §5. The PN method is given by

∂tu(t, x) + A · ∇xu(t, x) = Gu(t, x), (3.13)

and the SN method by

∂tfq(t, x) + vq · ∇x fq(t, x) =
Q∑

p=1

wpk(vp, vq)
[
fp(t, x) − fq(t, x)

]
. (3.14)

Application to the continuous slowing down approximation is performed analogously.
The spatial and temporal discretization for the macroscopic systems follows the finite volume method
for transport equations. We state the necessary notation and the numerical expressions to understand the
implementation. For a detailed derivation of finite volume methods and numerical schemes for transport
equations, we refer to [23, 159].

3.4. Spatial-Temporal Discretization

The KiT-RT framework is based on unstructured, cell-centered grids as spatial discretization. In the
following, we restrict ourselves to a two-dimensional spatial grid, however, the notations are straightfor-
wardly applicable to three or one spatial dimension. An unstructured grid X̃ = {Xi}i∈I is a partition of a
bounded spatial domain X ⊂ Rd. A grid cell Xi holds information about the coordinates of its centroid xi,
its measure Ai, the indices of its boundary vertices, indices of its neighbor cells N(i) and cell faces. The
information of the cell faces is encoded in the unit-normal vector of the face dividing cell i and its neigh-
bor j ∈ N(i), multiplied with the measure of the face and is denoted by ni, j. The grids used in this work are
either triangular or quadrilateral unstructured grids in two spatial dimensions.

3.4.1. Finite Volume Methods

The nodal and modal methods are different approaches to discretizing the velocity space of the Boltz-
mann equation, which result all in a system of transport equations that can be solved using a finite
volume scheme. Thus, we first describe a method agnostic finite volume scheme and afterward point out
the differences of the SN , PN , and MN based implementations. We denote the temporal variable by t,
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however, the results hold for energy interpreted as a pseudo-time as well. Let g(t, x) ∈ Rm be the vector
of conserved variables of a system of transport equations

∂tg(t, x) + ∇x · F(g(t, x)) = R(t, x, g(t, x)), x ∈ X, t ∈ [0, t f ) (3.15)

where F is the general flux function describing the solution transport, and R is a general right-hand
side, containing velocity discretizations of collision terms, sources, and absorption terms. The main
discretization strategy is to divide the spatial domain into an unstructured grid with Nx cells and the
time domain into Nt discrete values 0 = t0 < . . . < tNt−1. We consider the solution as an aver-
age

gn
i =

1
Ai

∫
Xi

g dx (3.16)

over one space-time cell. Then, we average Eq. (3.15) over one space-time cell

1
∆tAi

∫
Xi

∫ tn+1

tn
∂tg(t, x) dt dx +

1
∆tAi

∫
Xi

∫ tn+1

tn
∇x · F(g(t, x)) dt dx

=
1
∆tAi

∫
Xi

∫ tn+1

tn
R(t, x, g(t, x)) dt dx,

(3.17)

where ∆t = tn+1− tn. Solving the integrals using the Gauss theorem for the advection term and an explicit
Euler scheme for the time derivative yields

1
∆t

(
gn+1

i − gn
i

)
+

1
∆tAi

∫ tn+1

tn

∑
j∈N(i)

F(g(t, xi, j)) · ni, j dt =
1
∆t

∫ tn+1

tn
R(t, x, g(t, xi)) dt, (3.18)

where g(t, xi) is the conserved variable evaluated at cell i and g(t, xi, j) is the conserved variable evaluated
at the interface between cell i and its neighbor j. To compute the actual value of gn+1

j , one needs to find
approximations for the flux integral. A common ansatz is of the form

F(gn
j , g

n
i ) ≈

1
∆t

∫ tn+1

tn
F(g(t, xi, j)) · ni, j dt, (3.19)

where the numerical flux F(gn
j , g

n
i ) at face (i, j) is approximated using the cell averaged conserved

variable at cell i and j. For transport equations, a well-known numerical flux is given by the upwind
scheme [159]

F(gn
j , g

n
i )up = F(gn

i ) · ni, jH(ni, j · v) + F(gn
j) · ni, j

(
1 −H(ni, j · v)

)
, (3.20)

whereH is the heaviside step function and v is the transport velocity vector. Finally, we approximate the
source, absorption, and collision terms using the current cell average. Thus the explicit solution iteration
of a first-order scheme reads

gn+1
i = gn

i −
∆t
Ai

∑
j∈N(i)

F(gn
j , g

n
i )up + ∆tR(t, xi, gn

i ). (3.21)

Since the scattering term R is commonly stiff, implicit-explicit (IMEX) schemes can be used to remove
influences of scattering from time step restrictions. If we assume a linear scattering term, that is with a
given matrix Rn+1

i we have R(tn+1, xi, gn
i ) = Rn+1

i gn
i , the IMEX scheme reads

(I − ∆tRn+1
i )gn+1

i = gn
i −
∆t
Ai

∑
j∈N(i)

F(gn
j , g

n
i )up. (3.22)
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3.4.2. Second Order Finite Volume Methods

The KiT-RT solver provides the option to evaluate the space and time discretizations using second-order
accurate schemes. To this end, we use a Heun scheme for the temporal discretization and a second-
order upwind flux for the numerical flux [17]. Whereas, first-order spatial fluxes assume a constant
solution value gn

i in a cell i, a second-order upwind scheme is based on a linear reconstruction of the
conserved variable. Therefore the inputs gn

i and gn
j to the numerical flux of Eq. (3.20) are replaced

by

g̃n
i = gn

i + Ψi
(
∇xgn

i · ri, j
)
, (3.23)

g̃n
j = gn

j + Ψ j
(
∇xgn

j · r j,i
)
, (3.24)

where ri, j is the vector pointing from cell centroid xi of cell i to the interface midpoint between cells
i and j, and Ψi is the flux limiter for cell i. This reconstruction is formally second-order accurate on
regular grids [4] assuming exact evaluation of the gradient ∇xgn

i . The gradient of the conserved vari-
able gn

i is evaluated using the Green-Gauss theorem with interpolated solution values at the cell inter-
faces,

∇xgn
i ≈

1
Ai

∑
j∈N(i)

1
2

(
gn

i + gn
j

)
· ni,j. (3.25)

Second or higher-order upwind spatial discretizations require the use of flux limiters to prevent the
generation of oscillations in shock regions and to achieve a monotonicity-preserving scheme. In the
KiT-RT package, the Barth and Jespersen limiter [17], as well as the Venkatakrishnan limiter [232],
are implemented. Exemplary, we show the computation of the Barth and Jespersen limiter at cell i,
i.e.,

Ψi = min
j


min(1, gmax−gi

∆2
), if ∆2 > 0

min(1, gmin−gi
∆2

), if ∆2 < 0
1, else

, (3.26)

where we have

∆2 =
1
2
∇xgn

i · ri, j, (3.27)

gmax = max(gi, g j), (3.28)

gmin = min(gi, g j). (3.29)

The second-order Heun scheme for temporal discretization is a two-step Runge-Kutta scheme with the
iteration formula

g∗i = gn
i −
∆t
Ai

∑
j∈N(i)

F(gn
j , g

n
i )up +

∆t
Ai

R(gn
i ), (3.30)

g∗∗i = g∗i −
∆t
Ai

∑
j∈N(i)

F(g∗j , g
∗
i )up +

∆t
Ai

R(g∗i ), (3.31)

gn+1
i =

1
2

(
gn

i + g∗∗i
)
, (3.32)

which is based on the implicit trapezoidal integration method.
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3.4.3. Numerical Fluxes

In the following, we adapt the introduced numerical methods to the method-specific notation and present
the detailed implementation. The space and time-averaged conservative variable gn

i for the nodal dis-
cretization at cell i and time step n is given by the vector of the radiation flux

fn
i = [ f (v1), . . . , f (vNq)]T ∈ RNq (3.33)

evaluated at the quadrature points. The different methods are distinguishable by their numerical flux
function. The corresponding numerical flux for the SN method is given by

F(fn
i ) = vfn

i , i ∈ I (3.34)

and the corresponding upwind flux reads

F(fn
j , f

n
i )up = v · ni, jfn

i H(v · ni, j) + v · ni, jfn
j

(
1 −H(v · ni, j)

)
. (3.35)

The conservative variables gn
i of modal methods are given by the moment vector un

i . The numerical flux
for the PN method is then

F(un
i ) =

[
A1un

i , A2un
i , A3un

i

]T
, (3.36)

where Ai are the flux Jacobians emerging from the spherical harmonics recursion scheme. To evaluate the
numerical flux with an upwind scheme, we decompose the flux Jacobians in their positive and negative
definite parts, i.e.,

Al = A+l + A−l , l = 1, . . . , d. (3.37)

Then the numerical flux is given by

F(un
i ,u

n
j)up =

d∑
l=1

(
A+l un

i + A−l un
j

)
nlH(nl) +

(
A−l un

i + A+l un
j

)
nl (1 −H(nl)) . (3.38)

In contrast to the PN method, the flux function of the MN method cannot be expressed as a matrix
multiplication but reads

F(un
i ) =

〈
v ⊗m(v) fui

n
(v)

〉
, (3.39)

where ψui
n

is the reconstructed radiation flux density of the minimal entropy closure at the cell averaged
moment ui

n. Using a quadrature rule for the velocity integral discretization and a numerical flux for every
quadrature point, we arrive at the kinetic numerical flux

F(un
j ,u

n
i )up =

Q∑
q=1

wqmqvq · ni, j
[
fun

i ,qH(vq · ni, j) + fun
j ,q

(
1 −H(vq · ni, j)

)]
. (3.40)

Note, that the updated solution un
i of the MN method must still be a feasible, i.e., a realizable moment for

the minimal entropy closure of Eq. (1.52). To ensure this, one must either employ a flux limiter [141],
construct a realizability reconstruction [144] or employ the regularized entropy closure formulation [7].
The implentation of all solvers is summarized in Algorithm 2.
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3.4. Spatial-Temporal Discretization

Algorithm 3.1: Explicit time iteration scheme for the linear Boltzmann equation

Input: u0
i or f0

i : Initial condition of the test case
X̃: Mesh
Ri: Boundary and source terms

Result: unt f
i or fnt f

i : Solution values at final time nt f (and intermediate results, if specified)

if modal then
g0

i ← u0
i ∀i ∈ I /* Modal initial Condition */

if nodal then
g0

i ← f0
i ∀i ∈ I /* Nodal initial Condition */

for n = 0, . . . , nt f do
g∗i , g

k=0
i ← gn

i ∀i ∈ I /* Runge Kutta initialization */
for k = 0, . . . , krk − 1 do

if MN method then
f k
u,i ← Closure(u

n
i ) ∀i ∈ I /* Entropy closure */

if 2nd order then
Ψk

i ← SlopeLimiter(i, j) ∀i ∈ I /* Compute and limit spatial slopes */
F(gk

i )←
∑

j∈N(i) Fk
up,i,j ∀i ∈ I /* Flux computation */

gk+1
i ← gk

i −
∆t
Ai

(
F(gk

i ) + R(gk
i )
)
∀i ∈ I /* Pseudo time integration */

gn+1
i ← 1

2

(
g∗i + gkrk

i

)
∀i ∈ I /* Time integration */

3.4.4. Discretization of the Collision Operator for the CSD Approximation

Radiation therapy applications exhibit forward-peaked scattering, which cannot be well-captured by clas-
sical quadrature rules. To allow for moderate computational costs when computing scattering terms and
to efficiently treat forward-peaked scattering, we transform the nodal solution to a modal description and
apply the more efficient PN methodology for scattering terms. For this, we define a truncation order N
and construct the matrices O ∈ RQ×(N+1)2

which maps the modal onto its nodal representation. Con-
versely, M ∈ R(N+1)2×Q maps the nodal onto its modal representation. Such matrices can be constructed
by

O = (m(vk))Q
k=1 , and M = (wkm(vk))Q

k=1 .

In this case, we can replace the scattering term on the right-hand side of Eq. (3.14) by its PN counter-
part

Q∑
p=1

wpk(vp, vq) fp(t, x) =
Q∑

p=1

(OσsM)q,p fp. (3.41)

Thus, the continuous slowing down approximation with SN discretization reads

∂t fq(t, x) + vq · ∇x
fq(t, x)
ρ(x)

=

Q∑
p=1

(OΣM)q,p fp − σt fq(t, x) (3.42)
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3.5. Software Architecture

The design principle of the KiT-RT software package is focused on efficient implementation, high re-
usability of its components, and ease of extension. It contains a set of efficient numerical solvers for
radiation transport, which are constructed of basic, reusable building blocks. These building blocks can
be freely arranged to implement new solvers or tools for completely different applications. On the other
hand, KiT-RT is equipped with an easy-to-use command line interface based on readable configuration
files, which allows easy manipulation of the solvers. Thus the software is attractive for developers, who
want to experiment with the framework and build their numerical solvers as well as users and application
engineers, who want to gain experimental insights without directly interfering with the code base.
KiT-RT is implemented in modern C++ and uses mainly polymorphism for its construction. In the fol-
lowing, we present the class structures used to build the numerical solvers and explain the used building
blocks, which are displayed in Fig. 3.1. Most building blocks consist of a virtual base class, which
contains a static factory method to build an instance of the concrete-derived class, defined by the given
configuration details. Furthermore, the virtual base class defines the interface of this building block with
other parts of the KiT-Framework. For implementation details of the most important classes, we refer to
§3.9.

3.6. Parallel Scaling

In the following, we investigate the parallel performance of the three base solver implementations SN ,
PN , and MN , where we follow [189] for the brief review of parallel scalings. The speedup of a parallel
algorithm is defined as

S (n, p) =
T ∗(n)

T (n, p)
, (3.43)

where T ∗(n) is the execution time of the best inherently serial algorithm with input size n and T (n, p)
the time for the parallel implementation with p processing workers and input size n. In general, the
best serial algorithm may be different from the parallel algorithm, however, in our application case, the
finite-volume discretization scheme does not change for serial implementation.
In theory the best possible speedup is linear [68], i.e., S (n, p) = p, thus the measure of parallel efficiency
is

E(n, p) =
S (n, p)

p
. (3.44)

In practice, the speedup and parallel efficiency of an algorithm is limited by spawning and communication
overhead of the parallel workers as well as the fraction of inherently serial code f , that exists in any
algorithm. Thus, the upper bound for the speedup is given by Amdahl [94] as

S (n, p) ≤
1

f + (1 − f )/p
(3.45)

For larger input sizes, the fraction of inherently serial code f typically decreases, which enables the use
of highly parallel implementations. Two common approaches to measuring the parallel performance are
given by the strong and weak scaling approach. The former describes an experiment, where for fixed
input size n the number of parallel workers p is increased and their timing is measured, which directly re-
sults in the speedup of Eq. (3.43). The latter increases the input size n proportionally to the worker count
p. A perfectly parallel algorithm would have a constant parallel time T (n, p).
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3.6. Parallel Scaling

Figure 3.1.: Class and inheritance structure of the virtual SolverBase Class. Each instantiated solver
has class members and routines specific to its numerical structure.
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Figure 3.2.: Strong parallel scaling (left) and parallel efficiency (right) for the MN , SN , and PN solver. MN

methods have the best scaling, due to their immense CPU load during the entropy closure.

The philosophy of the parallel implementation of the solvers of this work is based on the independence
of the performed computations in the grid cells. As Algorithm 2 displays, during one (pseudo-) time
iteration of a solver, a set of instructions are calculated. Each instruction can be carried out indepen-
dently for each grid cell and only in between two instruction sets, the communication between parallel
workers needs to be established. Therefore, the parallel implementation spawns a set of parallel work-
ers with shared memory access and distributes the spatial grid among them to carry out the current
instruction. The input size n is thus given by the number of grid cells of the spatial discretization.

We perform a strong parallel scaling study for the implementation of the MN , SN , and PN solver on the
Linesource test case, as described in §3.7.1, with a fixed unstructured triangular mesh of size n = 578290
and a varying number of shared memory parallel workers p. We choose p = 1, . . . , 16, furthermore, the
solver’s allocated memory does not exceed the system’s memory. Figure. 3.2 shows a comparison of the
solver’s parallel scalings and efficiency. It is apparent that the MN solver enjoys the highest speedup even
for a high parallel worker count, while the PN and SN solver experience diminishing returns for more
than p = 12 workers. Reason for this is the higher computational load per core for the MN solver which
requires the computation of the minimal entropy closure to construct its flux function. Furthermore, SN

solvers have a higher memory load compared to modal methods for comparable numerical accuracy.
Here, the CPU cores may run idle while the CPU cache has to be exchanged more often in comparison
with modal methods, which impares parallel scaling.
The performance of the continuous slowing down solver implementations follows the corresponding
base solver performance since the same spatial, velocity, and (pseudo-) temporal discretizations are
used.

3.7. Validation of KiT-RT

For validation and a comparison of the implemented solvers, we consider a selection of the test cases pro-
vided within the class ProblemBase of KiT-RT. The SN solver is validated against the Julia package Ki-
netic.jl [239]. The continuous slowing down solvers are further compared to a reference Monte Carlo so-
lution computed using TOPAS [199] as well as the validated spherical harmonics solver StaRMAP [211].
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Table 3.1.: Computational setup for the numerical test cases

Test Case CFL t f ∆t ∆x Nx

Inhomogeneous Linesource 0.7 0.1 2.33e−3 3.33e−3 9e5
Checkerboard 0.45 10 3.15e−2 7e−2 2.5e5

An overview of the computational setup of all test cases is given in Table 3.1

3.7.1. Inhomogeneous Linesource Test Case

In the following, we compare the numerical results for the continuous slowing down approximation,
see §3.2.1 of our framework to a Monte Carlo solution, computed using TOPAS [199] as well as the
staggered-grid spherical harmonics solver StarMap [211]. The problem considered is an inhomogeneous
Linesource test case, which extends the classical Linesource benchmark [79, 78] to a steady-state but
energy-dependent setting. We consider a spatial domain X = [0, 1]2 and a velocity domain V = PR2(S2).
As background density, we choose a piece-wise constant function

ρ(x) = 1 + 4 · 1Xright(x), x ∈ X. (3.46)

In the left part of the spatial domain Xleft = [0, 1] × [0, 0.56] a reduced density is used, compared to the
right part of the spatial domain Xright = [0, 1] × [0.56, 1]. At a maximal energy of Emax = 1, i.e., initial
pseudo time, a particle beam is positioned in the center of the spatial domain x0 = [0.5, 0.5]T , which is
modeled as

f (E, x, v) =
1

2πϵ2 exp
(
−
∥x − x0∥

2

2σ2

)
, E = Emax (3.47)

f (E, x, v) =0, E = Emax, x ∈ ∂X. (3.48)

Here, a standard deviation of ϵ = 0.01 is chosen to obtain a sharp particle beam in the center. No
source term is used in the simulation and boundary conditions are zero-valued Dirichlet conditions,
i.e.,

f (E, x, v) =0, x ∈ ∂X. (3.49)

The scattering cross-section σs of the collision operator of the continuous slowing down approxima-
tion (3.10) is set constant to 1. The spatial grid for all deterministic methods is a structured rectangular
grid with 3002 cells. Due to the functionality of the Monte Carlo software, we use a three-dimensional
grid and project the x3-domain onto the x1 − x2 plane. To allow for feasible costs, the Monte Carlo
method uses a coarser grid resolution of 100 spatial cells per dimension and 100000 Monte Carlo runs
are computed to reduce statistical noise. The SN solver uses a product quadrature rule of order 20 for
the streaming step and spherical moments up to order 8 to compute scattering terms. Similarly, the PN

solver employs spherical moments up to order 8 and the MN solver as well as its regularized counterpart
uses shperical harmonics of order 3. The time step restriction of all deterministic methods picks a CFL
number of 0.7. All methods are second order in space and time using the Barth and Jespersen slope
limiter.

The resulting dose profile, i.e., the zeroth order moment of the kinetic density

u0(x, t) =
∫

V
f (t, x, v) dv, (3.50)
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(a) Regularized M3, inhomogenious linesource simulation with continuous slowing down approximation
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Figure 3.3.: Comparison of simulation results of deterministic and stochastic methods. The M3 method
and regularized M3 method with γ = 1e − 3 coincide best with the Monte Carlo reference,
surpassing StarMap in accuracy, as seen in the logarithmic scale plots.

is plotted in Fig. 3.3 along the x1-axis in the interval x1 ∈ [0.3, 0.65] at x2 = 0.5. All methods show
similar behavior and agree well with the Monte Carlo results. Moreover, it is observed that the regu-
larized MN method seems to coincide with its non-regularized counterpart and is closer to the Monte
Carlo reference than the SN and PN methods. The StarMap solution mostly undershoots the Monte Carlo
reference, whereas all KiT-RT solutions slightly overshoot it.
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(a) S10 (b) P5 (c) M3 (d) reg. M3, γ = 0.001

Figure 3.4.: Simulation results of various KiT-RT solvers for the Checkerboard test case in log scale;
S10, P5, M3 and regularized M3 solver (left to right). Ray effects are visible at the oscillating
contours of the S10 solution. The modal methods correspond well with each other.

3.7.2. Checkerboard Test Case

The heckerboard test case mimics a nuclear reactor block with a strong radiative source in the do-
main center, which is denoted by Xq, and several highly absorptive regions Xa placed in a checker-
board pattern around it, see Fig. 3.4. The corresponding time-dependent linear Boltzmann equation
reads

∂t f + v · ∇x f = σs(x)
∫

V
f dv − σa(x) f + q(x) (3.51)

for x ∈ X = [0, 7]2, t ∈ [0, 10) and v ∈ V = PR2(S2), i.e., the projection of the unit sphere onto R2. We
equip the equation with Dirichlet boundary conditions and initial condition

f (t, x, v) =0, x ∈ ∂X (3.52)

f (t, x, v) =0, t = 0 (3.53)

to obtain a well-posed problem. Furthermore, the collision operator simplifies to

Q( f ) = σs(x)
∫

V
f dv − σa(x) f . (3.54)

The scattering cross and absorption cross-sections are given by

σs(x) =

0 x ∈ Xa

1 else
, σt(x) =

10 x ∈ Xa

1 else
, (3.55)

The source term q(x) is assumed to be isotropic and constant in time and is given by

q(x) =

1 x ∈ Xq

0 else
. (3.56)

We create an unstructured triangular mesh with 25000 cells to discretize the spatial domain with regard
to the absorption and source regions, such that the region boundaries coincide with the mesh faces. The
simulation is computed until the final time t f = 10 using various solver configurations. All employed
solvers use a second-order upwind flux as the spatial discretization and the Heun scheme for temporal
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Figure 3.5.: Cross-verification of the S10 solver against Kinetic.jl [239] (a)-(b), cross-section comparison
of all KiT-RT solvers (c)-(d). M3 solvers report lower values at absorption regions. The
regularized M3 method yields higher values at the radiation source, the M3 and S10 methods
correspond well.

discretization with CFL number equals 0.45 since MN solvers with non-regularized entropy closure re-
quire a CFL number smaller than 0.5 for stability [8, 141, 144]. The solution computed at final time
t f = 10 is displayed in Fig. 3.4, where we can see the scalar flux

u0(x, t) =
∫

V
f (t, x, v) dv, (3.57)

in the contour plot in log scale, i.e., the moment of order zero. The radiation flux is highest at the source
region Xq and almost zero in the absorption region Xa for all solvers. Towards the top of the domain, the
radiation travels freely, whereas towards the left, right, and bottom, the radiation expansion is damped
by absorption regions.

Figure 3.4 shows the S10 solver with a tensorized Gauss Legendre Quadrature, the P5 solution with a
spherical harmonics basis, the M3 solution with a spherical harmonics basis, and a Newton optimizer
with line-search configured to accuracy 1e − 7 and the regularized M3 solution using the same optimizer
and basis. As seen in Fig. 3.5, the deviation between implementations of the S10 solver and the reference
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solution given by [239] is below the 1e−3, which is the characteristic length of a grid cell. The macro-
scopic methods yield quantitative differences in their solution. Regularization gives higher values of u0
at the radiation source, and entropy-based methods have smaller values at absorption regions, compared
to the PN and SN solutions.

3.8. Chapter Conclusion

In this chapter, we introduced the KiT-RT solver package for kinetic and radiation transport.

3.8.1. Summary

We have presented a collection of deterministic transport solvers for radiation therapy applications. The
methods agree well with results obtained with conventional radiation therapy codes. Due to the use of
polymorphism, we can guarantee a straightforward extension to further numerical methods, which fa-
cilitates the investigation of novel radiation therapy solvers and their comparison to conventional meth-
ods.

3.8.2. Limitations and Future Work

The framework can be extended in multiple directions. First, a low-rank acceleration of the macro-
scopic methods [148] can be implemented. Second, the MPI capabilities of the framework can be ex-
tended to support distributed memory systems. Optimization of treatment plans in a gradient-based or
gradient-free manner can be conducted using the existing solvers to sample the objective functions. Un-
certainty quantification in radiotherapy planning is a further research direction, in which KiT-RT can be
extended.
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3.9. Additional Material

Additional Material of Section 3.5

In the following, additional resources to understand the class structure of the KiT-RT framework, and
explain the governing principles of its implementation.

Solver Class

The virtual SolverBase class is the basic blueprint for all time or energy-dependent finite volume solvers
of the KiT-RT framework. It contains an abstract factory to create the instances of its child classes, which
takes a pointer to the Config class as an argument. All child classes of SolverBase hold an instance of
the NumericalFlux, ProblemBase, QuadratureBase, and Mesh class. Depending on the solver type
and the physical setting instances of other classes may be members.
The SolverBase class controls the screen, log, and volume output of the solver. The screen output
provides instantaneous feedback of the solver state via the command line and gives information on the
current iteration, the total mass of the system, the residual of the radiation flux as well as the flow field,
and whether logs and volume outputs have been written to file. The file log carries the same infor-
mation as the screen output in a tabular format. Lastly, the volume output consists of .vtk files with
solver and problem-specific solution data. The output data can be specified in the solver configura-
tion.

The method Solve() of the SolverBase class drives the execution of all derived solvers by iterating
over the time discretization of the numerical methods described in §3.3. This main time iteration is dis-
played in Algorithm 2. Each command is specified in the derived solver classes such as the PN , SN , and
MN solver and does not induce any additional communication overhead for the parallelization architec-
ture.
The class PNSolver inherits from SolverBase and does not own additional instances of other custom
building blocks and overwrites the subroutines of Algorithm 2 for the PN equation specific numerical
method, which allows for runtime solver assembly. Its child class is the CSDPNSolver, which is the im-
plementation of the PN based continuous slowing down solver, that overwrites the solver-preprocessing
routines for the continuous slowing down specific energy transformation. The PN-based solvers produce
radiation flux and moments as output.
The class SNSolver adapts the subroutines of Algorithm 2 for the ordinate-based numerical methods
and is the parent class of the CSDSNSolver. SN-based solvers produce the radiation flux as output.
Lastly, the MNSolver class contains the implementation of the MN numerical method and holds the
module SphericalBase, which controls the choice of basis functions m(v) of the velocity space, the
module EntropyBase, that controls the choice of the entropy functional for the entropy closure and
lastly the module OptimizerBase, which controls the choice of numerical optimizer or neural net-
work used to compute the entropy closure. The class CSDMNSolver inherits from the MNSolver class
and analogously overwrites the subroutines of Algorithm 2 for the continuous-slowing down equations.
MN based solvers produce the radiation flux, moments, and dual variable of the entropy closure as out-
put.
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Mesh Class

The mesh class handles the computational meshes of the spatial discretization of the underlying differ-
ential equation. It can handle 1D meshes and 2D unstructured triangular and quadrilateral meshes in
the SU2 [195] mesh format. The mesh class keeps a record of all geometry and adjacency information
required for the finite volume methods with first and second-order fluxes.

Computational Problem Class

The child classes of the ProblemBase class are responsible for the setup of the corresponding computa-
tional problems and test cases. These classes establish the initial conditions for the numerical solver solu-
tion and manage space, time, or energy-dependent material properties. The abstract class ProblemBase
holds references to the Mesh and Config classes and creates instances of specific problems based on the
selected configurations. Each implemented problem has two child classes, one for ordinate-based and
one for moment-based solvers. The moment-based problem classes calculate the moments of the initial
conditions and sources for the specified kinetic densities, which are specified in the nodal-based problem
class.

The solver framework is equipped with several pre-implemented test cases and functionalities. This
includes standard 1D and 2D test cases, such as Linesource and Checkerboard for the radiative transfer
solvers, as well as isotropic and directed sources with different background media that can be loaded
from a user-supplied image file for the continuous slowing down solvers. Custom test cases can be easily
added by the user, following the provided examples and our modular approach.

Quadrature Class

The QuadratureBase class provides a virtual framework for the creation of specific numerical quadra-
tures using its static factory method. These quadratures are designed to perform integration in velocity
space, but they can also be utilized in other applications. Each quadrature has a defined order and is
capable of handling integration points and weights in both Cartesian and spherical coordinates. The var-
ious quadratures are differentiated by their dimensionality and the region of integration. By default, the
quadratures are designed to perform integration over the unit sphere, however, full velocity space integra-
tion can also be configured. Implemented quadrature methods include Spherical Monte Carlo, Levelsym-
metric [171], Lebedev [178], Tensorized Gauss Legendre, and LDFESA [121].

Velocity Base Class

The class VelocityBasemanages the basic choice of the velocity space V for modal solvers. Currently,
monomial and spherical harmonics bases in d = 1, 2, 3 spatial dimensions are available and implemented
as child-classes, each available for the (truncated) full velocity space and the unit sphere S2 = V. For
a given pointer to a child of the QuadratureBase class, the VelocityBase class creates an evaluation
of the velocity base at the corresponding quadrature points. The spherical harmonics are implemented
following the recursive Algorithm of [167].
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Entropy Class

The MN solver classes rely on the choice of an entropy functional to close the moment system via the
minimal entropy closure ansatz. The abstract EntropyBase class yields an interface to implement any
possible choice of the entropy functional alongside its Legendre dual and the corresponding derivatives
and Hessians. Currently implemented are the Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein, and
Quadratic entropy. The EntropyBase class can also be used to reconstruct kinetic density functions,
moments, and the entropy functional value for a given Lagrange multiplier α. This feature is used to cre-
ate the training data sampler for the neural network training in §4, §5, and §6.

Optimizer Class

The minimal entropy closure ansatz traditionally relies on some sort of numerical approximation to close
the Boltzmann moment system. The OptimizerBase class gives a general interface to compute this
task. The child class NewtonOptimizer provides an implementation of a Newton optimizer with line-
search back-tracing as a locally quadratically converging optimizer for the convex entropy closure. The
NewtonOptimizer holds an instance of a child of EntropyBase, and QuadratureBase to compute the
entropy functional, its derivative, and Hessian. The regularized minimal entropy closure is implemented
in the RegularizedNewtonOptimizer, which inherits NewtonOptimizer and adds the regularization
terms to the entropy functional, derivative, and Hessian.

IO/Use of Config Files

The KiT-RT solver is a program that operates through a command line interface and requires a single
argument, which is the configuration file. This file is analyzed to assemble the desired modules of the
KiT-RT framework for a solver instance or any other custom tool.
The configuration file serves as a document that contains specifications for options in the form of
CONFIG_OPTION=VALUE. It includes information regarding the input and output of files, such as the
location of the mesh file, volume output files, and log files. Additionally, the computational problem
and problem-specific parameters, such as the scattering coefficient, final time, spatial dimension, and
boundary conditions, are defined in the configuration file. Furthermore, the solver-specific options are
established, as exemplified by the MN solver, where the velocity basis, the maximum degree of the ba-
sis functions, the CFL number, spatial integration order, entropy functional, optimizer, quadrature, and
quadrature order are specified.
Finally, the configuration file includes specifications for the screen, volume, and log output, along with
their respective output frequencies. Example configuration files for all currently implemented solvers
and the numerical results can be found in the relevant GitHub repository3.

Practices of Modern Software Development

The solver and its associated documentation are managed using version control with Git [40], which
significantly improves collaboration among team members. The code is hosted on the web-based plat-
form GitHub, which provides global access to the open-source MIT licensed code. This service also
acts as a central hub for progress tracking, issue tracking, deployment, and maintaining code qual-
ity.

3https://github.com/CSMMLab/KiT-RT
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To ensure code quality, automated testing is performed through unit tests and regression tests. Unit tests
validate the functionality of individual code instances such as functions or classes by comparing expected
results to actual results. Regression tests validate the solver as a whole by comparing results to reference
solutions. The tests are automatically run every time changes are made to the code and submitted to the
development branch or when a merge request is opened. If any of the tests fail, the submission is rejected
to maintain the integrity of the code. Metrics such as test coverage, which describes the percentage of
code lines validated through testing, help to build trust in the code. The test coverage for the KiT-RT
framework is reported to the coveralls.io service4.

Building and running the KiT-RT framework can be challenging due to its modest software dependencies.
To simplify this process, a pre-configured build environment is provided through Docker [184]. Docker
containers are isolated instances that have a minimal software stack and provide consistent software
development and deployment. The specialized docker image is publicly available5 and includes support
for Tensorflow-based surrogate models6.

The documentation is generated as part of the software build and is written in reStructuredText Markup
language. The Sphinx [28] documentation framework is used to compile the markup files into linked
HTML files, which are hosted by ReadTheDocs 7. GitHub is also used for the deployment of precompiled
software packages and the associated documentation.

The development workflow begins on GitHub, where each developer can create a new branch or fork
the KiT-RT framework to obtain a personal workspace. After changes have been made, a merge request
is filed, which is automatically tested by the continuous integration process. A core developer will then
review the code, and if the tests are successful and the quality of the code is deemed sufficient, the
changes will be merged into the development branch. When enough new features have been added to the
development branch, it will be merged into the master branch and a new version number will be assigned
(major or minor).

4https://coveralls.io/github/CSMMLab/KiT-RT
5https://hub.docker.com/r/kitrt/test
6https://hub.docker.com/r/kitrt/test_ml
7https://kit-rt.readthedocs.io
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CHAPTER 4

Neural Network-Based, Structure-Preserving Minimal Entropy Closures

This chapter focuses on the development of neural network-based surrogate models for the
minimal entropy closures of the Boltzmann moment system. These models aim to preserve the
mathematical structure of the system, such as entropy dissipation and hyperbolicity, while im-
proving computational efficiency of its corresponding numerical solver. To ensure the preser-
vation of convexity of the moment-to-entropy map, the neural network approximation is de-
signed to embed this feature on an archtectural level. An error bound for the interpolation error
of convex neural networks trained in Sobolev norm is derived and used to develop an effec-
tive data sampling strategy. Numerical experiments are conducted to evaluate the performance
of these neural network-based entropy closures and demonstrate their ability to significantly
speed up kinetic solvers while maintaining an acceptable level of accuracy.

4.1. Introduction

The Boltzmann equation is a high dimensional integro-differential equation, with phase space depen-
dency on space and particle velocity. The high dimensionality of the phase space presents a severe
computational challenge for large-scale numerical simulations.
Moment methods eliminate the dependency of the phase space on the velocity variable by computing
the moment hierarchy of the Boltzmann equation. Due to the structure of the advection term, the result-
ing moment system is typically unclosed. One distinguishes moment methods according to their closure
model, e.g. the MN and PN closure described in §4.7. The MN method, although methodically superior to
the PN counterpart, has the disadvantage of excessively high computation times in comparsion with other
discretization methods of the Boltzmann equation. This motivates the development of surrogate models
to accelerate the MN closure. Additionally, such a surrogate model should preserve the advantageous
mathematical structure of the MN method.
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4.1.1. Related Work on Neural Network-Based Moment Closures

In recent years, various machine learning-based techniques have been proposed in the field of mathe-
matical modeling of moment closures. In [61, 96], the authors pursue two strategies. First, they use a
encoder-decoder network to learn the generalized moments the moment system and then learn its clo-
sure by reconstruction of the kinetic density. Second, they learn directly the reduced model for the set
of generalized moments. In [114], Galilean invariant machine learning methods for partial differential
equations are developed using the conservation dissipation formalism. The authors of [166] directly
model the kinetic density to close the moment system using an U-Net that considers global information
of the solution field. The authors of [112] close the moment system by learning the spatial gradient of
the highest order moment. The authors of [61] considers the challenges of imposing physical constrains
on machine learning models in the example of Galilean invariance of Boltzmann equation. Iterative ex-
ploration strategies of the data space are proposed using of sequential learning of the physical model in
pursuit of obtaining optimal datasets.

4.1.2. Novelty and Scientific Contribution

This work explores the capacity of deep neural networks in the application of the Boltzmann equation
and its implications on numerical differential equation solvers. We provide two new deep neural network-
based structure-preserving minimal entropy closures for the moment system of the Boltzmann equation.
The first approach uses an input convex neural network inspired by the architecture of [9] and learns the
convex moment to entropy map. By this ansatz, the learned closure automatically inherits all structural
properties of the entropy closure for the moment system. The derivative of the network with respect to
the moments maps to the corresponding optimal Lagrange multipliers of the entropy minimization prob-
lem. The network is trained on the predicted entropy, the Lagrange multipliers, and the reconstructed
moments.
The second ansatz of this work is a monotonic neural network that maps the moments directly to the
Lagrange multipliers of the entropy minimization problem. We use a penalty function to train the neural
network to be monotonic and otherwise use the same loss as in the input convex approach.
Furthermore, we construct a maximum error bound for the interpolation error of input convex neural net-
works trained in the Sobolev norm. Additionally, we provide insights into the topology of the realizable
set, the data-to-solution map of the minimal entropy closure, and its implications on the construction of
data-driven closures.
We combine the above insights to propose a data sampling strategy for the neural network-based mini-
mal entropy closures. Finally, we demonstrate our findings in numerical simulation test cases, where we
compare the accuracy and computational efficiency of the closures to a traditional numerical solver that
provides a benchmark.

This chapter was published in the proceeding of the ICML Conference on Machine Learning 2022 and
authored in collaboration with Tianbai Xiao, Cory Hauck, and Martin Frank. The publication can be
found at [208] and the code of the described implementations are published in the open source GitHub
repositories KiT-RT1 and NeuralEntropyClosures2. The chapter focuses on the authors contribution to
the publication.

1https://github.com/CSMMLab/KiT-RT
2https://github.com/ScSteffen/neuralEntropyClosures
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4.1.3. The Chapter in Context of the Dissertation

This chapter presents the author’s first neural network-based surrogate model for the Boltzmann moment
system, i.e., the first used synergy of neural network function approximation and numerical methods
for kinetic equations. Furthermore, the chapter provides a deeper understanding of the minimal entropy
closure, leveraged by subsequent chapters.

4.1.4. Chapter Outline

We provide a brief overview of existing numerical methods for the minimal entropy closure and describe
the corresponding computational challenges in §4.2. In §4.3, we present our findings for structure-
preserving, neural network based surrogate models for the minimal entropy closure. In §4.4, we discuss
the structure of the realizable set, state interpolation error bounds, and propose a data-sampling strategy.
Lastly, §4.5 presents a range of numerical studies to validate the proposed methods.

4.2. Numerical Methods for Minimal Entropy Closures

We state the relevant equations of §1 to construct a neural network-based surrogate model for the minimal
entropy closure. The Boltzmann moment system with linear collision operator is given by

∂tu(t, x) + ∇x · ⟨v ⊗m(v) fu⟩ = ⟨m(v)Q( fu)⟩ , (4.1)

with the minimal entropy closure that yields fu as the minimizer of the convex optimization prob-
lem

min
f∈Fm
⟨η( f )⟩ s.t. u = ⟨m f ⟩ . (4.2)

The bracket operator ⟨·⟩ denotes as usual the integral over the velocity domain V = S2. Its convex dual
is given by

αu = argmax
α∈Rn

ϕ(α; u) (4.3)

ϕ(α; u) = α · u − ⟨η∗(α ·m)⟩ , (4.4)

and we call the maximizer αu for a given u. By the strong duality of the minimal entropy problem, the
maximum of (4.3) equals the minimum of (4.2). We define

h(u) := ⟨η( fu)⟩ = ϕ(αu; u) = αu · u − ⟨η∗(αu ·m)⟩ . (4.5)

The minimizer of the primal problem fu can then be reconstructed using the Lagrange multiplier,

fu = η′∗(αu ·m(v)). (4.6)

Lastly, the Hessian of ϕ is given by

H(α) = −
〈
m ⊗mη′′∗ (α ·m)

〉
. (4.7)
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Algorithm 4.1: Newton optimizer for the dual entropy optimization with line-search

Input: α0: Initial guess
u: Moment vector
ϵ: Tolerance to minimum
λ: Newton stepsize
tmax: Maximal number of iterations

Result: αu: Lagrange multiplier

t = 0
αt

0 ← α0

do
pt ← λ∇αϕn(αt; u) /* Compute scaled gradient */
k ← 0, s← 1
pt

k ← pt

do
αt

k+1 ← αt
k − sH−1,t

n pt /* Line-search update */
pt

k+1 ← λ∇αϕn(αt
k+1; u) /* Gradient update */

s← 1
2 s /* Half step size */

if
∥∥∥pt

k+1

∥∥∥ < ϵ then
αu ← αt

k+1 /* Terminate if minimizer is found */
break

k ← k + t
while

∥∥∥pt
0

∥∥∥ < ∥∥∥pt
k

∥∥∥ or
∥∥∥pt

k

∥∥∥ = ∞
αt+1 ← αt

k+1
t ← t + 1

while pt < ϵ and t < tmax
αu ← αt

4.2.1. The Newton Optimizer

The analytical structure of the minimal entropy closure problem provides a straightforward numerical
algorithm. We solve the finite-dimensional dual optimization problem (4.3) and use the optimizer αu to
reconstruct the primal optimizer fu for a given u ∈ R. Since ϕ(α; u) is twice differentiable and convex,
a reasonable and commonly used [5, 7, 8, 82, 141, 146, 149] choice for the numerical optimizer is the
Newton method with line-search, which converges locally quadratically to αu.
Following the convention of optimizing a convex functional, we redefine the dual problem as a convex
minimization problem with objective functional and Hessian

ϕn(α; u) = −ϕ(α; u), and Hn(α) = −H(α). (4.8)

Then, the Newton optimizer translates to the minimal entropy context as

αt+1 = αt − λH−1
n (αt)∇αϕn(αt; u), t = 1, 2, . . . , tmax (4.9)

with step-size λ > 0. The iteration is stopped if the criterion ∥∇αϕn∥ < ϵ is met or a maximal iteration
count tmax is reached.
Evaluating and inverting the Hessian Hn is the most expensive part of the Newton iteration. Thus iterative
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Algorithm 4.2: One time step for a first order MN solver

Input: un
i : Moments at time n of the grid X̃

Result: un+1
i : Moments at time n + 1 of the grid X̃

for each un
i ∈ X̃ do

αun
i
← Closure(un

i ) /* Entropy closure */

for each un
i ∈ X̃ do

Fi ← Upwind(αun
i
,αun

j
), ∀ j ∈ N(i) /* Flux construction */

un+1
i ← Euler(un

i ,Fi) /* Time integration */

approaches to determine the best step-size at the current iteration t are frequently used. Backtracking
Line-search [11] aims to find loosely the local minimum

min
a>0

ϕn
(
αt − aλHn

−1(αt)∇αϕn(αt; u)
)

(4.10)

to reduce the number of necessary gradient and Hessian evaluations. The minimizer is then set as αt+1

for the original Newton iterator. The Newton optimizer with line-search for the dual entropy problem
is summarized in Algorithm 4.1. The optimization tolerance ϵ measures the difference between the
reconstructed moment

〈
m exp(α ·m)

〉
and the original moment u.

4.2.2. Computational Challenges

Spatial-temporal discretization strategies of the Boltzmann moment system using finite volume, see §3.4
and [141, 147], or discontinuous Galerkin [7] schemes generally lead to an iterative time-stepping scheme
on a spatial grid. By construction of the MN method, the minimal entropy closure has to be computed in
each grid cell for each iteration step, see Algorithm 4.2. Although the Newton iterator converges locally
quadratically, calculation of the optimization problem consumes the majority of the overall simulation
wall-time, see Table 4.4 and [82, 141], where up to 90% of the simulation time is spent on the entropy
closure computation.

4.3. Neural Network-Based Entropy Approximations

The goal of this work is to create a surrogate model for the minimal entropy closure using a neural
network. The purpose of this model is to accurately and efficiently approximate the Boltzmann moment
system, bypassing the computationally expensive Newton solver. Although training a neural network
is resource-intensive, its inference is typically fast and can be easily parallelized. Additionally, the
computational cost of the network inference is only dependent on its architecture, unlike the Newton
iteration, which is dependent on the condition number of the closure problem. We propose two neural
network architectures as data-driven surrogate models for the minimal entropy closure. The task of these
surrogate models is to approximate the solution that maps a set of moments u to the kinetic density fu(v)
to with minimal entropy, i.e.,

U : Rn → Fm, u 7→ fu(v), (4.11)
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corresponding to the minimal entropy closure given the Maxwell-Boltzmann entropy density η : D→ R
with D = [0,∞), where it holds that

η( f ) = f log( f ) − f , η′( f ) = log( f ), η∗(z) = exp(z), η′∗(z) = exp(z) . (4.12)

Direct surrogate model approximation of fu with preservation of its inherent structure is a daunting and
computationally expensive task since Fm ⊂ L1 is a function space. Instead, we use the minimal entropy
ansatz to build surrogate models that map onto a finite-dimensional vector space.

4.3.1. Normalized Moments

The structure of the underlying data is crucial for the construction of meaningful machine-learning mod-
els. In the following, we derive a normalization and scaling formula and describe helpful relations
between the moment u, Lagrange multiplier αu and the entropy functional h. The normalized closure is
leveraged in §4.3.2 and §4.4 for error control and data-sampling strategies.
To construct a proper neural network-based approximation, we introduce the normalized realizable set R
and its reduced counterpart R̃:

R = {u ∈ R : u0 = 1} ⊂ Rn , (4.13)

R̃ =

{
w ∈ Rn−1 :

[
1,wT

]T
∈ R

}
⊂ Rn−1 . (4.14)

For D = [0,∞) and V = S2, i.e., the unit sphere, both R and R̃ are bounded [129, 187]. We further
introduce the normalization operator

· : Rn → Rn defined as u := u/u0 (4.15)

and the reduction operator

(·)# : Rn → Rn−1 defined such that for u# ∈ R
n−1 we have u =

[
u0,u⊤#

]⊤
. (4.16)

Then, for the entropy closure, we have u ∈ R, u ∈ R and u# ∈ R̃ and αu is the Lagrange multiplier of u.
Let us define the function

ϑ(β) = − log(
〈
exp (β ·m#)

〉
) (4.17)

for β ∈ Rn−1, which we use to reconstruct the order zero Lagrange multiplier for normalized mo-
ments.

Lemma 4.1 (Normalized Lagrange Multiplier Reconstruction)
Assume m0(v) = 1. For a normalized moment u and its Lagrange multiplier αu defined by Eq. (4.3), we
have the relation

αu,0 = ϑ
(
(αu)#

)
. (4.18)

The proof is given in §4.7.
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Lemma 4.2 (Lagrange Multiplier Scaling)
Assume m0(v) = 1. The Lagrange multipliers αu of a moment u and its normalized counterpart αu of u
have the relation

αu =
[
ϑ
(
(αu)#

)
+ log(u0), (αu)⊤#

]⊤
, (4.19)

where u0 is the first element of u. We have for h(u) and h(u) the relation

h(u) = u0
(
h(u) + log(u0)

)
. (4.20)

The proof is given in [8] and stated in §4.7 for the sake of completeness. It also implies that (αu)# =

(αu)#. Lastly, we define ĥ : Rn−1 → R as

ĥ(u#) = h
([

1,u#
])
= h(u). (4.21)

These scaling relations allow to train the neural network only on R, which is bounded, in contrast to R,
and integrate the trained neural network seamlessly into the kinetic solver that operates onR.

4.3.2. Neural Network-Based Surrogate Model Architectures

In the following, we present two ideas for entropy closures utilizing neural networks. Our approach
is grounded on the premise that any convex, twice differentiable function is a suitable entropy for the
linear Boltzmann equation. To denote a neural network with parameters θ, we use the symbol Nθ. The
approximation of quantities by the network is indicated by a superscript θ.

ICNN - Input Convex Neural Network Approximation of the Entropy Functional

In the first concept, we introduce a twice-differentiable and convex approximation, denoted as ĥθ, to the
target function ĥ. The neural network Nθ utilized for this purpose has been constructed to be convex and
serves as the approximator ĥθ directly, i.e.,

ĥθ(u#) = Nθ(u#) ≈ ĥ(u#). (4.22)

Using Lemma 4.1, the neural network approximation αθu to the Lagrange multiplier αu is given by

αθu =
[
ϑ
((
αθu

)
#

)
,
(
αθu

)⊤
#

]⊤
. (4.23)

By Eq. (1.64), the network derivative αθ# approximates the Lagrange multiplier (αu)#, i.e.,

(αθu)# =∇u#Nθ(u#) ≈ ∇u# ĥ(u#) = (αu)#. (4.24)

In practice, the network derivative can be computed using automatic differentiation [91]. Using Eq. (1.62)
the kinetic density

f θu = exp(αθu ·m) ≈ exp(αu ·m) = fu, (4.25)

is computed to close the moment system. The approximated moment reconstruction is then given
by

uθ =
〈
m exp(αθu ·m)

〉
≈

〈
m exp(αu ·m)

〉
= u, (4.26)
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Algorithm 4.3: ICNN closure training

Input: XT =
⋃

k XBk : Training data-set
{(

hi,ui,αu,i
)}

i∈T
, partitioned in kB batches

Nθ: Network architecture Nθ : u# 7→ ĥ(u#)
θ0: Weight initialization of the network
tepoch: Maximum number of training iterations

Result: Nθ∗ : Trained network for the minimal entropy closure

for t = 0 to t = tepoch do
θk=0 ← θt

for k = 0 to k = kB do
Load mini-batch XBk

ĥθi ← Nθ
(
(ui)#

)
, ∀i ∈ Bk /* Entropy approximation */

(αθu,i)# ← ∇u#Nθ
(
(ui)#

)
, ∀i ∈ Bk /* Lagrange multiplier approximation */

αθu,i ←
[
ϑ
(
(αθu,i)#

)
, (αθu,i)

⊤
#

]⊤
, ∀i ∈ Bk /* Reconstruct full multiplier */

uθi ←
〈
m exp

(
αθu,i ·m

)〉
, ∀i ∈ Bk /* Reconstruct moment vector */

L ← LICNN(XBk ; Nθ) /* Compute loss */
θk+1 ← θk − ∇θL /* Update network weights */

θt+1 ← θkB

θ∗ ← θtepoch /* Save final network weights */

where we use the definition of the moment u. The network is trained on a loss function given by the sum
of mean squared errors of the network prediction, the network derivative, and the moment reconstruc-
tion,

LICNN(XB; Nθ) =
1
|B|

∑
i∈B

(∥∥∥ĥ((ui)#) − ĥθ((ui)#)
∥∥∥2

2 + λ
∥∥∥∥(αu,i)# − (αθu,i)#

∥∥∥∥2

2
+

∥∥∥ui − uθi
∥∥∥2

2

)
. (4.27)

where B is the size of one batch of the training data set, XT =
{
ui,αu,i, h(u)i

}
. The parameter λ is used to

scale the loss in (αu)# to the same range as the loss in ĥ and u. The size of the training set is denoted by
T . The neural network training is summarized in Algorithm 4.3.
Training the neural network on the Lagrange multiplier αu and ĥ(u#) corresponds to fitting the neural
network approximation to the entropy functional ĥ in Sobolev norm, which increases training perfor-
mance [53] compared to standard regression loss.
During inference of the neural network in a kinetic solver, we gather the moments u for all grid cells of
the spatial discretization from the current iteration of the used finite volume scheme. After normalization
u, Nθ approximates (αθu,i)# just as in Eq. (4.24), followed by a scaled reconstruction, given by Lemma 4.2.
The closure is then computed using Eq. (4.25) and inference is summarized in Algorithm 4.4

IMNN - Input Monotonic Neural Network Approximation of Lagrange multipliers

The idea of the second neural network closure for the dual minimal entropy problem in Eq. (4.3), makes
use of the following characterization of multivariate convex functions via the monotonicity of their gra-
dients [18].
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4.3. Neural Network-Based Entropy Approximations

Algorithm 4.4: ICNN inference within a kinetic solver

Input: ui: Moments of the grid X̃

Result: f θu,i: Reconstructed kinetic densities of the grid X̃

for each ui ∈ X̃ do
ĥθi ← Nθ

(
(ui)#

)
/* Entropy approximation */

(αθu,i)# ← ∇u#Nθ
(
(ui)#

)
/* Lagrange multiplier approximation */

αθu,i ←
[
ϑ((αθu,i)#) + log(u0,i), (αθu,i)

⊤
#

]⊤
/* Reconstruct and scale α0 */

f θu,i ← exp
(
αθu,i ·m

)
/* Reconstruct kinetic density */

Lemma 4.3 (Convexity and Monotonic Gradients)
Let U ⊂ Rn be a convex set. A function G : U → Rn is monotonic, if and only if (G(x1)−G(x2))·(x1−x2) ≥
0 for all x1, x2 ∈ U. Let g : U → R be differentiable. Then g is convex, if and only if ∇g : U → Rn is
monotonic.

The proof is provided in [85]. Consequently, if the map u# → (αu)# is monotonic for all u# ∈ R̃, then
the corresponding entropy functional is ĥ is convex in u#. Let Nθ be a trained monotonic network with
parameters θ to approximate (αu)#, i.e.,

(αu)θ# = Nθ(u#) ≈ (αu)#. (4.28)

Using again Lemma 4.1, we get

αθu =
[
ϑ
((
αθu

)
#

)
,
(
αθu

)⊤
#

]⊤
. (4.29)

From here the reconstruction of fu and u is given analogously to the convex case, i.e.,

f θu = exp(αθu ·m) ≈ exp(αu ·m) = fu, (4.30)

uθ =
〈
m exp(αθu ·m)

〉
≈

〈
m exp(αu ·m)

〉
= u. (4.31)

Lastly, we use the definition of the dual objective functional ϕ and the approximated uθ and αθu to ap-
proximate the entropy functional h(u) as

ĥθ(u#) = hθ(u) = ϕ(αθu; u) ≈ h(u). (4.32)

The monotonicity criterion of Lemma 4.3 needs to be checked pointwise and does not provide insights
in how to construct a everywhere monotonic function. To the best of our knowledge, there exists no con-
structive definition of a multidimensional monotonic function. Thus we need to enforce the monotonicity
of the neural network by a penalty function.

Definition 4.4 (Monotonicity Loss)
Consider a neural network Nθ : x 7→ y. Let XB be a batch of the training data set. The monotonicity loss
is defined as

Lmono (XB; Nθ) =
1

|B|2
∑
i∈B

∑
j∈B

ReLU
(
−

(
Nθ(xi) − Nθ(x j)

)
·
(
xi − x j

))
. (4.33)

The function ReLU: R→ R is defined as usual in a pointwise manner,

ReLU(a) =

a if a > 0
0 if a ≤ 0.

(4.34)
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Algorithm 4.5: IMNN closure training

Input: XT =
⋃

k XBk : Training data-set
{(

hi,ui,αu,i
)}

i∈T
, partitioned in kB batches

Nθ: Network architecture Nθ : u# 7→ (αu)#
θ0: Weight initialization of the network
tepoch: Maximum number of training iterations

Result: Nθ∗ : Trained network for the minimal entropy closure

for t = 0 to t = tepoch do
θk=0 ← θt

for k = 0 to k = kb do
Load mini-batch XB,k

(αθu,i)# ← Nθ
(
(ui)#

)
, ∀i ∈ Bk /* Lagrange multiplier approximation */

αθu,i ←
[
ϑ
(
(αθu,i)#

)
, (αθu,i)

⊤
#

]⊤
, ∀i ∈ Bk /* Reconstruct full multiplier */

uθi ←
〈
m exp

(
αθu,i ·m

)〉
, ∀i ∈ Bk /* Reconstruct moment vector */

hθi ← ϕ(αθu,i; ui), ∀i ∈ Bk /* Reconstruct entropy functional */

L ← LIMNN(XBk ; Nθ) /* Compute loss */
θk+1 ← θkB − ∇θL /* Update network weights */

θt+1 ← θk

θ∗ ← θtepoch /* Save final network weights */

Algorithm 4.6: IMNN inference within a kinetic solver

Input: ui: Moments of the grid X̃

Result: f θu,i: Reconstructed kinetic densities of the grid X̃

for each ui ∈ X̃ do
(αθu,i)# ← Nθ

(
(ui)#

)
/* Lagrange multiplier approximation */

αθu,i ←
[
ϑ((αθu,i)#) + log(u0,i), (αθu,i)

⊤
#

]⊤
/* Reconstruct and scale α0 */

f θu,i ← exp
(
αθu,i ·m

)
/* Reconstruct kinetic density */

The monotonicity loss evaluates the monotonicity property for all data points of the training data set in
a pairwise fashion. If the dot product is negative, the property is violated and the value of the loss is
increased by the current dot product. The overall loss functional of the neural network training is then
given by

LIMNN(XB; Nθ) =
1
|B|

∑
i∈B

(∥∥∥ĥ((ui)#) − ĥθ((ui)#)
∥∥∥2

2 + λ
∥∥∥∥(αu,i)# − (αθu,i)#

∥∥∥∥2

2
+

∥∥∥ui − uθi
∥∥∥2

2

)
+Lmono(XB; Nθ).

(4.35)

Note, that we only validate the monotonicity of Nθ pointwise on the training data. As a consequence,
the mathematical structures of the resulting moment closure are only preserved in an empirical sense,
i.e., if the realizable set and more importantly, the set of Lagrange multipliers is sampled densely. The
neural network training is summarized by Algorithm 4.5 and the network inference is displayed by
Algorithm 4.6.
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4.3.3. Structural Properties of the Neural Network-Based Closure

We briefly examine the structural properties of a convex neural network-based entropy closure, which are
stated in §1.3. The invariant range property of fθ depends solely on the range of η′∗. Since both, the ICNN
and IMNN models use the ansatz (4.6) of the original entropy closure (with the Maxwell-Boltzmann en-
tropy), the surrogate models are of invariant range.
Consider the elements of the moment system (4.1) that are collision invariants mi ∈ E. For any kinetic
density, including the neural network-based reconstruction f θu , the right-hand side vanishes, i.e.,〈

miQ( f θu )
〉
= 0, (4.36)

since this is purely a property of the collision operator and not of the construction of f θu . This yields the
conservation law

∂tui + ∇x ·
〈
vmi f θu

〉
= 0. (4.37)

Next, the ICNN-based approximation of h for a normalized moment u. The structure preservation of
the input convex surrogate model follows the idea of [7], where a convex approximation of h acts as
the surrogate entropy of the Boltzmann moment system and preserves hyperbolicity and dissipates the
system’s entropy.

Theorem 4.5 (Hyperbolicity and Entropy Dissipation of the ICNN Closure)
The moment system (4.1) with ICNN-based moment closure is symmetric hyperbolic in the variable u.
Furthermore, the neural network approximation

hθ(u) = u0ĥθ(u) + u0 log(u0) (4.38)

acts as an entropy of (4.1), i.e., the solution uθ follows the entropy dissipation law

∂thθ(u) + ∇u · jθ(u) ≤ 0, (4.39)

where jθ is given by

j(u)θ = [j(u)θ1, . . . , j(u)θd]⊤, with j(u)θi =
〈
viη( f θu )

〉
(4.40)

The proof is provided in §4.7.
It is worth noting that only the approximation based on the ICNN meets the criteria for hyperbolicity
and entropy dissipation. In contrast, in the IMNN model non-convexity is penalized, but not ensured
everywhere by construction.

4.3.4. Architecture and Implementation Details

We briefly present the model details of the ICNN and IMNN closure.
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ICNN Implementation

Convex neural networks have been inspected in [9], where the authors propose several deep neural net-
works architectures that are strictly convex with respect to the input variables by design.

Lemma 4.6 (Convex Function Concatenation [27])

1. Let gi(x), i = 1, . . . ,m be convex and c ∈ Rm a vector with ci ≥ 0, i = 1, . . . ,m, then

f (x) = c · g(x) (4.41)

is convex in x.

2. Let f : Rm → R be the concatenation of the functions h : Rk → R and g : Rm → Rk. Then
f (x) = h(g(x)) is convex, if h is convex, h is non-decreasing in each argument and all gi=1,...,k are
convex.

For proof, we refer to [27, §3.2.]

Theorem 4.7 (Input Convex Neural Networks (ICNN))
Let Wz

k ∈ R
nk×nk−1 , W x

k ∈ R
nk×n and bk ∈ R

nk be the weights and biases of layer k of network Nθ. Assume
that

(Wz
k)i, j ≥ 0, ∀i = 1, . . . , nk, and ∀ j = 1, . . . , nk−1, (4.42)

and that the layer activation σk : Rnk → Rnk , defined as a point-wise evaluation

σk(a) =
[
σk(a1), . . . , σk(ank )

]⊤ , (4.43)

and is assumed to be convex and non-decreasing and twice differentiable in each argument. Then a
network Nθ : Rn → R with M layers, defined as

Nθ(x) = zM (4.44)

zk = σk(Wz
k zk−1 +Wx

k x + bk), k = 2, . . . ,M, (4.45)

z1 = σ1(Wx
1 x + b1) (4.46)

is convex in x and twice differentiable with respect to x.

We show the proof in §4.7. Exemplary choices forσk are the strictly convex softplus function

σ : R→ R+ : σ(y) = ln(exp(y) + 1), (4.47)

the ReLU activation, see Eq. (4.34), or simply the identity map. The ICNN implementation of this
chapter uses the softplus activation for layer k = 1, . . . ,M − 1 and ReLU for k = M. During the network
training, the non-negativity of Wz

k can be achieved by applying a projection onto R+ after the gradient
descent step. The authors of [43] have shown, that Nθ constructed by Theorem 4.7 with ReLU as the
choice for σk and Wx

k = 0 is dense in the space of convex functions. The main argument in their proof is
based on a standard argument of density of piecewise affine functions in the space of Lipschitz continous
convex functions on a compact set. Two practical downsides of this theoretical property appear. First,
situations may arise, where an exponential number of layers are needed to achieve good approximation
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accuracy in the proof [43]. Second, the Lipschitz constant may grow very large in the context of entropy
approximation, as u approaches ∂R, which is discussed in $4.4.2.

To achieve better training performance, we employ several commonly used modifications to the ICNN
architecture and show that they preserve convexity.

Lemma 4.8 (Mean-shift and Decorrelation Layer)
Let µX be the mean of the training data set X and ΛX the diagonal matrix of the eigenvalues of the
covariance matrix of X, i.e.

ΛX = diag(λ1, . . . , λn), (4.48)

with λi as the eigenvalues of X. The mean-shift and de-correlation layer is then defined as

z1 = σ(Wx
1Λ

T
X(x − µX) + b1), (4.49)

for a convex activation function σ. This layer is convex and twice differentiable with respect to x.

We prove the statement in §4.7. In the implemented ICNN entropy approximation model, we replace
layer k = 1 of the original ICNN architecture 4.7 by a mean-shift and de-correlation layer.
Centering and de-correlation of the input data accelerate training since the gradient of the first layer
directly scales with the mean of the input data. Thus a nonzero mean can cause zig-zagging of the
gradient vector [157].

IMNN Implementation

No particular design choices about the neural network are made to enforce monotonicity, since the char-
acterization of monotonic functions are not constructive. Normalization and the mean-shift and de-
correlation layers in Eq. (4.49) are used analogously to the input convex neural network. The core
network architecture consists ResNet blocks which were first presented in [104]. The ResNet layer is
given by

zk = W∗kσ((zk−1)) + b∗k + zk−1, (4.50)

The advantage of the skip connection in Eq. (4.50) is to mitigate the gradient vanishing problem for deep
neural networks. We choose σk as ReLU for k = 1, . . . ,M.
Furthermore, we include a batch normalization (BN) layer in front of each activation, which reduces the
problem internal covariance shift [119]. Batch normalization is given by

zk = Wk
zk−1 − E[zk−1]
√

Var[zk−1] + ϵ
+ bk, (4.51)

where E[zk−1] and Var[zk−1] denote the expectation value and the variance of the current batch of training
data, respectively. Note that a batch normalization layer may destroy convexity if Wk contains negative
elements and thus is not used in the ICNN model.
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4.4. Data Sampling Strategies for the Minimal Entropy Closure

The function approximation problem given by neural network training can be regarded as a numerical
analysis or a statistics problem. The trained model Nθ∗ depends on the distribution of its training data
XT and the generalization error further depends on the distribution Px of the inference data. The general
objective is to structure the network training by choice of architecture, training-data, and loss-functional
to minimize T and G, given by Definition2.2.
In the context of the minimal entropy closure, this translates to the following questions:

• What is the analytical structure of the training data set XT consisting of u, αu and h(u)?

• How can we estimate the distribution Px at inference time?

• How should we sample XT to minimize T and G?

A popular method for generating data for neural network models that interact with numerical methods for
partial differential equations is to generate the training data by direct simulation, see e.g. [112, 158, 240].
The underlying assumption is that the resulting training data set XT is generated with a similar distribu-
tion to Px. However, failure to anticipate important simulation configurations may result in unreasonably
high test errors. Another way to sample data using simulation is to use Fourier series with random
coefficients [113] to generate initial and boundary conditions, to eliminate some human bias in the spec-
ification of simulation runs.
The minimal entropy closure is a self-contained problem with a clear data to solution map. This provides
more options to sample training data than common machine learning applications.

4.4.1. The Realizable Set of the Minimal Entropy Closure

The minimal entropy optimization problem in Eq. (4.3) and the set of realizable moments R is studied
in detail by [7, 52, 100, 124, 125, 126, 161, 196] and we briefly review the works. As a reminder,
the set of all moments corresponding to a kinetic density f with Range( f ) ⊂ D is called the realizable
set

R = {u : ⟨mg⟩ = u, g ∈ Fm} (4.52)

with

Fm =
{
f ∈ Dom(Q) : Range( f ) ⊂ D and ⟨m f ⟩ < ∞

}
. (4.53)

The realizable set R is only dependent on the domain D of η, V and m, and can be described as the set of
all moments corresponding to kinetic densities f that fulfill the invariant range condition of the kinetic
equation.
The characterization endeavors of R use the fact that the realizable set is uniquely defined by its bound-
aries [139]. First, we remark that the realizable set R ⊂ Rn of the entropy closure problem of or-
der N is generally an unbounded convex cone. To see this consider the moment of order zero, u0 =

⟨ f ⟩ ∈ (0,∞) for any kinetic density function f ∈ Fm. For a fixed u0, and a bounded velocity space
V, the subset of the corresponding realizable moments of higher order is bounded and convex [129,
187].
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Theorem 4.9 (Characterization of R̃ [129, 187])
Let η be the Maxwell-Boltzmann entropy and m a monomial basis up to order N = 4 and V = [−1, 1] ⊂
R. Then, R̃ can be described by

1 ≥ u1 ≥ −1, (4.54)

1 ≥ u2 ≥ (u1)2, (4.55)

u2 −
(u1 − u2)2

1 − u1
≥ u3 ≥ −u2 +

(u1 + u2)2

1 + u1
, (4.56)

u2 −
(u1 − u3)2

(1 − u2)
≥ u4 ≥

(u2)3 + (u3)2 − 2u1u2u3

u2 − (u1)2 , (4.57)

For proof, we refer to [187]. Higher moment order moments for V = [−1, 1] can be characterized using
the more general results in [52].

4.4.2. The Boundary of the Normalized Realizable Set

We use Theorem 4.9 to inspect the dual minimal entropy closure Eq. (4.3) near ∂R̃, which becomes in-
creasingly difficult to solve [8]. Close to ∂R̃, the condition number of the Hessian matrix H of the dual
entropy problem can become arbitrarily large, which causes numerical solvers to fail rather unforgivingly.
This situation appears for moments of highly anisotropic distributions, vacuum states, where f (x, ·, t) = 0
or in the presence of strong sources [8]. At the boundary ∂R̃, the Hessian H is singular, and the minimal
entropy problem has no solution. In the space of Lagrange multipliers, this translates to ∥αu∥ → ∞,
which leads to numerical instabilities when computing the reconstruction of u =

〈
exp(αu ·m)

〉
.

The simplest case of the minimal entropy closure, the 1D M1 closure, already incorporates these difficul-
ties. Here we have u1 = u#. We can see in Fig. 4.1(a) the map

u# 7→
[
αu,0, αu,1

]⊤
(4.58)

and in Fig . 4.1(b) the minimal entropy functional

u# 7→ ĥ(u1). (4.59)

Since αu = ∇uh(u), the slope of h becomes steeper as u# → ∂R̃.

Note that both, the input convex and monotonic neural network model, require the evaluation of ϑ((αu)#)
for the reconstruction of f θu and u. This induces high vulnerability for numerical overflows, for u# near
∂R̃, especially when the networks are in the first iterations of the training process. No matter if we sample
u and then compute α or vice versa, a sampling strategy must incorporate a meaningful distance measure
d(u#, ∂R̃).

Direct boundary distance measures

Let us first consider proximity to ∂R̃ directly. Theorem 4.9 gives direct control over ∂R̃ since equality
in one or more of the equations describes a boundary of the normalized realizable set. More general
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Figure 4.1.: Data to solution maps for the 1D M1 closure.

results for arbitrarily high-order moments in one spatial dimension can be found in [129]. In this case,
the distance measured to ∂R̃ is the norm distance, i.e.,

d(u#, ∂R̃) = inf
{∥∥∥u# − w

∥∥∥ : w ∈ ∂R̃
}
. (4.60)

Note, that in Fig. 4.2(a-c), ∂R̃ is displayed by a dotted black line. The corresponding sampling strategy
can be seen in Fig. 4.2(a) and (d).

In three spatial dimensions necessary and sufficient conditions have been constructed by [187] for up to
order N ≤ 2, but a full characterization of ∂R̃ remains an open problem [152]. Thus the combination of
increasingly difficult direct characterization of ∂R̃ and the unavailability of such a characterization for
v ∈ Rd, d = 2, 3, renders this approach impractical.

Indirect boundary distance estimates

From a numerical point of view, it is interesting to construct a notion of distance to ∂R̃ in the space
of Lagrange multipliers, since the magnitude of ∥αu∥ has implications on the numerical stability of the
neural network training process.
A first idea consists of a norm bound of (αu)#, i.e., ∥(αu)#∥ < M < ∞, see [7, 200, 203].

Lemma 4.10 (Boundary Distance to R̃)
For αu , 0, we define the metric

d(u1
#,u

2
#) =

∣∣∣∣∣∣∣ 1∥∥∥(αu1)#
∥∥∥ − 1∥∥∥(αu2)#

∥∥∥
∣∣∣∣∣∣∣ . (4.61)

It induces the boundary distance

d(u#, R̃) =
1

∥(αu)#∥
, (4.62)
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(a) R̃, strategy (1) (b) R̃, strategy (2) (c) R̃, strategy (3)

(d) (αu)#, strategy (1) (e) (αu)#, strategy (2) (f) (αu)# strategy (3)

Figure 4.2.: Sampling strategies: (1) uniform grid sampling of R̃, (2) uniform grid sampling of (αu)# with
norm bound, and (3) low-discrepancy sampling of β from BM,τ. The value of h(u) = ϕ(αu; u)
is color coded.

The proof is stated in §4.7. Thus we have established a boundary distance metric via the Lagrange
multipliers, by enforcment of 1

∥(αu)#∥
> 1

M . Remark, that (αu)# = 0 is the Lagrange multiplier of a
non-boundary moment.

The approach is illustrated in Fig. 4.2(b) and (e), which shows a uniform grid in (αu)# with ∥(αu)#∥∞ <

40, and the corresponding moments u#. When comparing Fig. 4.2(e) with Fig. 4.2(d) and Fig. 4.2(f), it
is evident that a norm boundary distance leads to oversampling in the regions αu,1 > 10 and

∥∥∥αu,2
∥∥∥ > 10,

since the corresponding moments u# are too close to the boundary ∂R̃.

We introduce a second condition to the boundary distance, using the condition number of the Hessian of
the (negative) dual objective functional Hn, i.e.,

Hn(α) =
〈
m ⊗m exp(α ·m)

〉
, (4.63)

as an estimate for the distance to ∂R. Since it is symmetric and positive definite, the condition number
k2 is given by

k2(Hn) =
λmax

λmin
, (4.64)

where λmin, and λmax are the biggest and smallest eigenvalues of Hn. We use λmin to restric the sampling
set of Lagrange multipliers α =

[
ϑ(β),β⊤

]⊤ as the bounded set

BM,τ =

{
β ∈ Rn−1 : ∥β∥ < M ∪ λmin

(
Hn

([
ϑ(β),β⊤

]⊤))
> τ

}
. (4.65)

Figure 4.2(c) and (f) show u# and β ∈ BM=40,τ=1e−7, where the employed norm is the supremum norm.
Note that there is no over-representation of the regions near u# = [−1, 1]⊤ and u# = [1, 1]⊤ and the set of
sampled Lagrange multipliers, see Fig. 4.2(f), is similar to the Lagrange multipliers in Fig. 4.2(b).
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4.4.3. Inference Error of Convex Neural Network Approximations

The assessment of the generalization error of arbitrary neural networks is a non-trivial task [62]. How-
ever, we can use the fact that the ĥ is convex in u andR is a convex set. We consider the ICNN model, thus
Nθ(u#) is convex in u# as well. For the reconstruction of the kinetic density

f θu = exp
(
αθu ·m

)
, (4.66)

the Lagrange multiplier αu is the quantity of interest, not necessarily the entropy functional itself. The
idea is to consider the maximal interpolation error of the derivative of a trained, convex neural network
on the convex hull of the training data set, i.e.,

max
u#∈C(XT )

∥∥∥(αu)# − ∇u#Nθ(u#)
∥∥∥

2 , (4.67)

for a given training data set XT . The convex hull of the training data moments is denoted byC(XT ).

Interpolation error bounds for input convex neural networks trained in Sobolev norm

We consider the interpolation error of the Lagrange multiplier of the minimal entropy closure using an
ICNN, that approximates the entropy functional. Note that the results hold in general for any derivative
approximation of a convex neural network that approximates a convex function defined on a convex set.
For the sake of readability, we denote the truncated moment by

w := u# ∈ R
n−1, (4.68)

which is the argument of the entropy functional ĥ. We assume, that the network is trained (at least) in
Sobolev norm, i.e., the training loss reads

L (XT ,Nθ∗) =
1
|T |

∑
i∈T

(∥∥∥ĥ(wi) − Nθ∗(wi)
∥∥∥2

2 +
∥∥∥∇wĥ(wi) − ∇wNθ∗(wi)

∥∥∥2
2

)
(4.69)

when evaluated over the whole data set XT . In the following, we assume that the network is trained, i.e.,
L (XT ,Nθ∗) = 0 with optimal training parameters θ∗. Thus we have

ĥ(wi) = Nθ∗(wi), ∇wĥ(wi) = ∇wNθ∗(wi) ∀i ∈ T. (4.70)

Furthermore, let the domain R̃ ⊂ Rn−1 convex and bounded and the neural network be convex by design.
We are interested in the maximal interpolation error of the derivative neural network with respect to its
input variable w. To this end, we consider the local maximal interpolation error of Nθ∗ when using n
training data points Xn = {w0, . . . ,wn−1}, if the sampling space X ⊂ Rn−1 has dimension n − 1. Let C(Xn)
be the convex hull of Xn and w∗ ∈ C(Xn), which we call the point of interest. We assume without loss
of generality w∗ = 0. If this does not hold, one can consider the shifted setting C†(Xn) = C(Xn) − w∗,
ĥ† = ĥ(·+w∗), w† = w−w∗ instead. Using Lemma 4.3, we define the set Aw∗ as

Aw∗ =
{
v ∈ Rn−1 : v · wi ≤ ∇wĥ(wi) · wi, i = 0, . . . , n − 1

}
(4.71)

which is the dual polygon defined by the gradients at the sampling points and the point of interest and
can be seen in Fig. 4.3. The set Aw∗ contains all values which the gradient of a convex function with fixed
gradients at the sampling points w ∈ Xn can attain at the point of interest w∗, i.e., it contains all possible
approximation values for the Lagrange multiplier (αθu)#.
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Figure 4.3.: The convex hull of the training points C(Xn) (left) and the set of feasible gradients Aw∗ (right)
for n = 3. The normal vectors to the faces Fi are the vectors of the training points wi.

Theorem 4.11 (Feasible Gradients of a Convex Function)
Let ĥ be convex, and w∗ = 0 the point of interest in the interior of C(Xn). Then, Aw∗ is a bounded
polyhedron, whith n faces, defined by Fi =

{
v ∈ Rn−1 : v · wi = ∇wĥ(wi) · wi

}
and vertices vi =

⋂
j,i F j.

We provide proof in §4.7. A direct outcome of Theorem 4.11 is the derivation of a local upper bound for
the interpolation error of the gradient of an input convex network trained on a given training data set XT ,
i.e., ∥∥∥∇wĥ(w∗) − ∇wNθ∗(w∗)

∥∥∥ ≤ diam(Aw∗), (4.72)

where Aw∗ is the polyhedron of feasible gradients w.r.t the point of interest w∗ and the local training
points Xn. A first consequence is that the diam(Aw∗) does not depend on the distance between the point
of interest and any of the local training data points Xn since by definition of Aw∗ in Eq. (4.71), one can
divide by the norm of wi − w∗ on both sides of the inequality for the boundary of Aw∗ . Thus in the
following, we assume normalized wi.
The following theorem gives a more precise representation of diam(Aw∗).

Theorem 4.12 (Bound on the Feasible Gradients of a Convex Function)
Let Aw∗ be defined by Eq. (4.71) and vi be defined as

vi =
⋂
j,i

F j. (4.73)

Let vi be the vertex opposing the face Fi. The matrix

Xi = [wn
0, . . . ,w

n
i−1,w

n
i+1, . . . ,w

n
n−1]T (4.74)

contain the vectors of normalized sampling points relative to the point of interest w∗,

wn
i = wi/ ∥wi∥2 . (4.75)

Furthermore, let

bi =
[
∇wĥ(w0) · wn

0, . . . ,∇wĥ(wi−1) · wn
i−1,∇wĥ(wi+1) · wn

i+1, . . . ,∇wĥ(wn−1) · wn
n−1

]T
(4.76)
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be a vector. Under the assumptions of Theorem 4.11, the vertex vi is uniquely defined by

Xivi = bi. (4.77)

Additionally, we can estimate the distance between two vertices vi and v j by∥∥∥vi − v j
∥∥∥

2 ≤
(∥∥∥X−1

i

∥∥∥ + ∥∥∥X−1
j

∥∥∥)Cw∗ , (4.78)

where Cw∗ = maxk,l
∥∥∥∇wĥ(wk) − ∇wĥ(wl)

∥∥∥
2 and

∥∥∥X−1
i

∥∥∥ denotes the corresponding operator norm of X−1
i .

Let us draw some conclusions from Theorem 4.12. First, we have as a direct consequence∥∥∥(αu)# − (αθu)#
∥∥∥ = ∥∥∥∇wĥ(w∗) − ∇wNθ∗(w∗)

∥∥∥ ≤ diam(Aw∗) ≤
(∥∥∥X−1

i

∥∥∥ + ∥∥∥X−1
j

∥∥∥)Cw∗ . (4.79)

First, diam(Aw∗)→ ∞, if dist(w∗, ∂C(Xn))→ 0, since the normals of at least two neighboring boundaries
of Aw∗ become (anti)parallel to each other.
Additionally, we find, that for a fixed point of interest and angles between the local training points, the
size of diam(Aw∗) depends only on the norm distance of ∇wĥ(wi), i = 0, . . . , n − 1, which is encoded in
the definition of Cw∗ . The smaller the norm distance of the gradients of the sample points, the smaller
gets Cw∗ .
Lastly, we consider the case of w∗ on the boundary of the convex hull of the local training points. Then
one selects a new set of local training points, such that w∗ is in the interior of their convex hull. Remark,
that the polyhedron can be shrunk by including more training points to the set Xn.

4.4.4. Sampling Strategy for the Minimal Entropy Closure

As a conclusion of the analysis of the realizable set R and the maximal interpolation error of a convex
neural network, we can consider the task at hand. Let XT,S be a training data set of size T for the
minimal entropy closure sampled with strategy S . The task is to find a sampling strategy, that minimizes
the maximal interpolation error bound of the network gradient, i.e.,

min
XT,S

max
u#∈C(XT,S )

∥∥∥(αu)# − ∇u#Nθ∗(u#)
∥∥∥

2 . (4.80)

Consequently, we generate the training data XT by uniform rejection sampling of β from BM,τ, given
by Eq. (4.65). Uniform distribution of β is important since it is equivalent to a uniform norm distance
between the gradients of Nθ∗ . This minimizes the right-hand side of Eq. (4.79) and thus is a reasonable
strategy for the problem (4.80).

The random number generator has a non-negligible influence on the quality of training data, as Fig. 4.2(c)
and (e) display. In the former figure, u# are generated by a uniform grid sampling of β ∈ BM,τ, and
the latter by uniform sampling of β ∈ BM,τ using a low-discrepancy sampling method. The deformed
grid in Fig. 4.2(c) contains very steep triangles of local training points Xn at the upper boundary of
R̃. Consequently, a point of interest is always close to the boundary of C(Xn), which implies a big
diameter for the polyhedron of admissible gradients Aw∗ . We see in Fig. 4.2(c), that low-discrepancy
sampling mitigates this issue. Generally, low-discrepancy sampling methods have a positive impact on
neural network training, especially for high data dimensions [172, 185]. The data-sampling strategy is
summarized in Algorithm 4.7.
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Algorithm 4.7: Training data generator
Input: M: Lagrange multiplier norm boundary

τ: Eigenvalue tolerance
N: Order of the moment closure

Result: XT : Training data-set
{(

ĥi,ui,αu,i
)}

i∈T

for i = 0 to i = T do
do

β ∼ uniform
({
β ∈ Rn−1 : ∥β∥ < M

})
/* Sampling uniformly from BM,τ */

αu,i ←
[
ϑ (β) ,β⊤

]⊤ /* Compute Lagrange multiplier */

while λmin < τ

ui ←
〈
m exp

(
αu,i ·m

)〉
/* Reconstruct normalized moment vector */

ĥi ← αu,i · ui −
〈
exp

(
αu,i ·m

)〉
/* Compute entropy functional */

Append
(
ĥi,ui,αu,i

)
to XT .

4.5. Numerical Results

In this section, we present numerical results and investigate the performance of the neural entropy clo-
sure. First, we validate the training performance of the ICNN and IMNN models and conduct synthetic
tests to measure the performance of the networks on R̃ and the computational efficiency in comparison
with a baseline Newton optimizer. Then, we employ the network in a 1D and 2D kinetic solver and
compare the results with the benchmark solution in several simulation test cases. To ensure the signif-
icance of the errors compared to the spatial discretization errors, we perform a convergence analysis of
the neural network-based and benchmark solver.

4.5.1. Neural Network Training

In the following, we evaluate the training performance of the neural network architectures, which are
implemented in Tensorflow [1] and can be found in the GitHub repositories KiT-RT3 and NeuralEn-
tropyClosures4.
The neural networks are trained on data sampled from BM,τ. The sampled data is partitioned into training
and test data set, where the test data set consists of 10% of the total data. Table 4.1 compares the test error
of the ICNN and IMNN models for different closures. For the sake of comparability, the output of the
IMNN model, which approximates αu is scaled to the same range as the derivative of the ICNN model.
The networks are trained on an Nvidia RTX 3090 GPU in single-precision floating-point accuracy. For
each network architecture, we present the mean squared and mean absolute error for all quantities of
interest averaged over the test data set. For the IMNN model, the monotonicity loss is additionally dis-
played. We see that the MSE test errors of u range from 1e−4 to 1e−6 for the ICNN and IMNN model.
Remark, that the ICNN models require significantly fewer parameters to train to similar accuracy as the
IMNN models due to the architectural bias towards convexity.
For the stability of the kinetic solver, the error in the reconstructed flux ⟨vm fu⟩, which is Lipschitz contin-
uous in u, is the most important quantity. The results are in line with the findings of similar approaches,

3https://github.com/CSMMLab/KiT-RT
4https://github.com/ScSteffen/neuralEntropyClosures
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Table 4.1.: Approximation error of the neural network-based entropy closures against the validation data
in different metrics. We display the mean results over 10 experiments for each model and
closure each with less than 10% standard deviation.

M1 1D M2 1D M1 2D

ICNN IMNN ICNN IMNN ICNN IMNN

Layout 10 × 7 30 × 2 15 × 7 50 × 2 18 × 8 100 × 3
Params 9.27e2 2.47e3 2.07e3 6.80e3 3.27e3 3.64e4

M
SE

ĥ 7.87e−7 2.09e−5 1.33e−5 5.04e−4 1.10e−6 4.01e−4
(αu)# 7.52e−4 5.56e−6 2.81e−4 2.56e−4 3.39e−5 4.54e−5

u 1.47e−6 3.64e−6 2.81e−4 1.27e−4 3.39e−5 8.09e−5

Lmono n.a. 1.60e−14 n.a. 1.38e−14 n .a. 5.31e−16

M
A

E ĥ 7.57e−4 3.05e−3 3.11e−3 1.66e−2 1.02e−3 1.49e−2
(αu)# 1.26e−2 9.10e−3 1.23e−2 9.74e−3 3.36e−3 4.35e−3

u 9.59e−4 1.51e−3 1.23e−2 7.96e−3 9.62e−4 7.02e−3

1.0 0.5 0.0 0.5 1.0
u1

10 5

10 4
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10 1

e h
,r

el
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IMNN

(a) eĥ,rel
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(b) e(αu)#,rel
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(c) eu

Figure 4.4.: Relative l2 test errors of the input convex and monotone network architectures for the 1D
M1 closure. Minimal distance to ∂R̃ is 0.01. ICNN outperforms IMNN in every metric. In
the extrapolation regime, the approximation error increases significantly, since the bounds
of Eq. (4.79) are not applicable here.

see [200]. Notice, that the mean absolute error in the prediction of αu is significantly higher than the
error in h or ur for all input convex neural networks. The reason for this is the high range of values, that
αu can attain.

4.5.2. Synthetic Test Cases

In this section, we consider again the 1D M1 entropy closure, see Fig. 4.1, and perform accuracy tests
for the input convex and monotonic neural network architecture. The networks are trained on a data
set generated from sampling αu,1 ∈ [−50, 50] uniformly. Then, the networks are evaluated on twice as
many samples in the displayed data range u1 ∈ [−0.99, 0.99] which corresponds to αu,1 ∈ [−95, 95].
Consequently, we measure the interpolation error for αu,1 ∈ [−50, 50] and the extrapolation error of the
networks for αu,1 ∈ [−95, 50) ∪ (50, 95]. The relative norm errors of the predictions of both network
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Table 4.2.: Computational setup for the numerical test cases

Test Case CFL t f ∆t ∆x nq

Anisotropic Inflow M1 1D 0.4 0.7 8.00e−5 2.00e−4 28
Anisotropic Inflow M2 1D 0.4 0.7 8.00e−5 2.00e−4 28
Adiabatic M1 2D 0.4 10 3.00e−4 1.50e−3 400
Checkerboard 0.45 10 3.15e−2 7.0e−2 400

architectures, i.e.,

eĥ,rel =

∥∥∥ĥ − ĥθ
∥∥∥

2∥∥∥ĥ
∥∥∥

2

, (4.81)

can be seen in Fig. 4.4 and analogously for eu in and e(αu)#,rel. Within the convex hull of the training data,
the ICNN model obeys the error bound eĥ,rel < 5e−3. The relative error increases by half an order of
magnitude in the outside the convex hull of the training data, where the interpolation error bound does
not hold. The relative error of the IMNN model displays more fluctuation with a mean of 1e−2. In the
extrapolation area, the error of the IMNN model is by an order of magnitude larger than that of the ICNN
model. Similar results can be seen for e(αu)#,rel and eu. Remark, that eu < 1e−2 even in the extrapolation
areas. This shows, that the nature of the reconstruction map of Eq. (4.26) mitigates the approximation
inaccuracies of (αu)# to some degree.

4.5.3. Anisotropic Inflow Test Case

Let us first study particle transport in an isotropically scattering and homogeneous medium. We consider
the one-dimensional geometry, where the linear Boltzmann equation reduces to

∂t f + v∂x f = Q( f ) = σs ⟨ f ⟩ − σa f (v), (4.82)

whereσs is a scattering coefficient andσa is an absorption coefficient. The corresponding moment model
becomes

∂tu + ∂x ⟨vm fu⟩ = σsu0 − σau (4.83)

fu = exp(αu ·m), (4.84)

with σs = 1.0 and σa = 0.0, domain X = [0, 1] and V = PR(S2). Initial and boundary conditions are
given by

f (t, x, v) = ϵ, t = 0 (4.85)

f (t, x, v) =

0.5 if v > 0
0 if v ≤ 0,

, x = 0 (4.86)

with an anisotropic inflow condition imposed at the left boundary and a far-field condition on the right
boundary. The initial condition of the computational domain is set as a vacuum state with a numerical
safety 1 ≫ ϵ > 0 since the normalized vector u is defined for u0 > 0. The test case is challenging
for neural network surrogate models, since kinetic densities, that model vacuum states, and densities of
anisotropic phenomena correspond to moments near ∂R. Thus the test case is well suited to test the
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Figure 4.5.: Solution of the anisotropic inflow test case at t f . The ICNN closure outperforms IMNN in
all test cases. At the wavefront, the models exhibit the highest relative errors.

capabilities of the surrogate models in extreme conditions. The numerical PDE solver for the moment
system is a first-order kinetic scheme specified in §3.

We compare the simulation performance of the ICNN and IMNN model with the Newton solver base-
line set to single precision floating point accuracy. The CFL for all simulations is set smaller than 0.5
to maintain the realizability of the updated solution [194]. The detailed computational setup can be
found in Table 4.2. The solution profiles at final time t f = 0.7 are presented in Fig. 4.5 for the M1 and
M2 system and we see that the system’s dynamics are well captured by both neural network architec-
tures.

Figure 4.5 depicts the deviations of the l2 norm from the Newton baseline for the ICNN and IMNN
models in the M1 and M2 moment systems, calculated at final time t f . For the M1 system, see Fig. 4.5(c),
the point-wise norm error of the ICNN model is below of 1e−3.5 and below 1e−2.5 for the IMNN model.
In the M2 test case, see Fig. 4.5(e), the errors do not exceed 1e−2. An inspection of the relative errors
in Fig. 4.5(d) and Fig. 4.5(f) confirms that in both the M1 and M2 system, the maximal relative error is
exhibited at the wave-front of the anisotropic inflow at x ∈ (0.7, 0.8) and t = t f . In this area, the moments
u are closest to ∂R. This confirms the performance degradation of the neural network models at near
boundary moments.
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(a) Newton based reference, u0 (b) ICNN model, u0 (c) IMNN model, u0

(d) ICNN model, eu(x),rel (e) IMNN model, eu(x),rel

Figure 4.6.: Solution of the periodic 2D M1 closure at t = t f (top row) and eu(x),rel (bottom row). The
ICNN closure outperforms the IMNN closure, but both models capture the dynamics of the
test case satisfactorily.

4.5.4. Adiabatic Test Case

We consider a rectangular domain in two spatial dimensions. The phase space of the Boltzmann equation
is thus five dimensional, with

t > 0, X = [−1.5, 1.5]2, and V = PR2(S2) =
{
v ∈ R2 : ∥v∥2 ≤ 1

}
. (4.87)

We consider the M1 closure with a monomial basis m(v) = [1, vx1 , vx2]T . The velocity domain V is
parametrized in spherical coordinates and integrated with a tensorized Gauss-Legendre quadrature. This
test case considers a non-scattering and non-absorbing medium, i.e., σs = σa = 0, and the Boltzmann
equation reduces to a transport equation of the form

∂t f + v∂x f = 0. (4.88)

with the corresponding moment system

∂tu + ∂x
〈
v ⊗m⊤ fu

〉
= 0

fu = exp(αu ·m).
(4.89)

Periodic initial conditions that translate to the M1 moment system are given by

u0 = 1.5 + cos(2πx1) cos(2πx2), u1 = 0.3u0, u2 = 0.3u0 ∀x ∈ X. (4.90)

Periodic boundary conditions are imposed on the equations to get a well-posed system of equations.
Note that due to the absence of gain and loss terms and the choice of boundary conditions, the system
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Figure 4.7.: The relative errors eu(t),rel and e(αu)#(t),rel are stable and diminish over time. The ICNN model
outperforms the IMNN model accuracy by half an order of magnitude.
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Figure 4.8.: Total entropy of the test case per time-step. Both surrogate models dissipate the system’s
entropy at the same rate as the reference solution.

is adiabatic. The numerical PDE solver is again a first-order kinetic scheme, see §3. The detailed solver
configuration can be found in Table 4.2.

We present the Newton-based reference solution and the ICNN and IMNN surrogate models with their
corresponding relative l2 deviation from the Newton solution in Fig. 4.6 at t = t f . The relative errors of
both neural networks exhibit periodic behavior and are well below 1e−3 for the ICNN model and below
5e−3 for the IMNN model.
Figure 4.7 presents the relative l2 error in u and αu for both the ICNN and IMNN models, calculated
at various time steps during the simulation. The errors are calculated as the average relative l2 error
across the entire spatial domain. Observe that the ICNN is again more accurate than the IMNN surrogate
model, and both models are stable over a long time horizon t f = 10s, discretized with 3000 time steps.
The oscillations in the error curves stem from the periodic nature of the system’s solution, in which the
distance to ∂R of the appearing moments changes periodically as well. Remark that at all times during
the simulation, the total mass of the simulation, i.e., the integral of u0 over the spatial domain, is constant,
which validates the conservation property of the surrogate models.
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Figure 4.9.: Convergence analysis of the Newton reference, ICNN, and IMNN models with respect to
grid refinement. The errors of the IMNN architectures plateau earlier than the ICNN models
in all test cases.

Lastly, the total entropy of the system computed with the Newton closure and the ICNN and IMNN
models is analyzed at each time step in Fig. 4.8. Due to the periodic boundary conditions and σ = τ = 0,
the system is adiabatic, allowing for the analysis of the entropy dissipation of the Boltzmann equation.
The upwind scheme was selected for the numerical flux of the moment system, which is known to be
an entropy-dissipating scheme. All methods demonstrate entropy dissipation, however, the ICNN model
exhibits a smaller deviation from the reference entropy compared to the IMNN model. In conclusion, the
neural network-based hybrid solver retains the structural properties of the reference system and computes
the numerical solution with acceptable accuracy.

4.5.5. Convergence Analysis of Neural Network-Based Entropy Closures

A convergence analysis for the M1 and M2 systems is presented in Figure 4.9. This analysis compares
the numerical solutions of the moment system, as computed with the Newton baseline, the ICNN, and
the IMNN closure, on increasingly finer computational grids. The l2 deviation of the current numerical
solution is displayed, relative to a reference solution given by a Newton closure with double precision,
on the finest spatial grid. The results indicate that the Newton-based solver demonstrates first-order
convergence, as expected.

In Figure 4.9(a), it is seen that the IMNN model converges with first-order accuracy up to a cell size
of ∆x = 1e−3. Beyond this point, the approximation error of the neural network dominates the spatial
resolution error. On the other hand, the ICNN model converges up to ∆x = 1e−4, which confirms its
higher accuracy as measured in the synthetic test cases. Similar patterns are observed in Figure 4.9(b)
and Figure 4.9(c).

4.5.6. Computational Efficiency - Synthetic Tests

We compare the computational efficiency of the ICNN model and the Newton baseline optimizer in a
synthetic test case of the normalized M2 closure in 1D. In contrast to the neural network, the computa-
tional performance of the Newton solver is affected by the proximity of the moments u# to the boundary
∂R̃. Therefore, we consider three test cases. First, moments are sampled uniformly in R̃. Second, near
the center of R̃, that is, in the ball u# ∈ B[0, 0.5]T , r with radius r = 0.1. Third, near ∂R̃. In the second
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Table 4.3.: Wall time comparison for parallel computation of the normalized 1D M2 closure

Newton ICNN on CPU ICNN on GPU

data set size strategy mean [s] std. dev. [s] mean [s] std.dev. [s] mean [s] std. dev. [s]

1e
+

3 uniform 6.48e−3 1.17e−3 7.88e−3 5.10e−4 9.88e−3 4.76e−3
near ∂R 3.83e+2 7.90e−2 8.02e−3 6.40e−4 9.74e−3 4.75e−3
interior 5.14e−3 1.21e−3 8.75e−3 8.75e−4 9.57e−3 4.86e−3

1e
+

7 uniform 5.01e+0 1.23e−2 6.33e−1 8.91e−3 3.90e−2 3.82e−3
near ∂R 2.71e+5 1.33e+3 6.32e−1 8.53e−3 3.88e−2 3.52e−3
interior 4.24e+0 3.86e−2 0.63e−1 8.67e−3 3.84e−2 3.57e−3

case, the closure is easy to solve, while it is difficult to solve in the last case for the Newton optimizer.
The Newton solver is implemented in the KiT-RT framework.

As in a parallelized kinetic solver, we measure the parallel performance of Newton and ICNN. We test
CPU and GPU implementations and different-sized data sets. To ensure comparability, the accuracy
tolerance of the Newton solver is set to single-precision floating-point accuracy, to match the test error of
the trained networks. The used CPU is an AMD Ryzen9 3900x with 32GB memory and 24 threads, and
the GPU is an RTX3090 with 20GB memory. The mean and standard deviation of 100 measurements
for each case are presented in Table 4.3.

We demonstrate that the network efficiency is not affected by the condition of the closure, while the New-
ton solver is three orders of magnitude slower near ∂R̃ compared to an interior moment u ∈ B[0,0.5]T ,r.
The largest computational cost for the Newton optimizer arises from computing and inverting Hessians
using a 30-point Gauss-Legendre quadrature. A large number of quadrature points is necessary as the
integrand m ⊗m exp(αu ·m) is highly nonlinear.
It should be noted that the neural network surrogate efficiency increases with larger sample sizes, es-
pecially for GPU evaluations, as the TensorFlow implementations are optimized to benefit greatly from
data-level parallelism, as long as all data fit into the GPU memory. This suggests that the best application
scenario for neural network-based surrogates is large-scale simulations.

4.5.7. Computational Efficiency - Checkerboard Test Case

We revisit the checkerboard test case of §3.7.2 and compare the Newton and ICNN-based M1 simulation
with a monomial basis. In this test case, we compile the trained 2D M1 ICNN model into the C++ KiT-
RT solver for an efficient surrogate model implementation using the Tensorflow C++ back-end [1]. As
depicted in Fig. 4.10, both the Newton-based and neural network-based solutions are in good agreement,
with a small deviation only observed at the top of the domain (x2 ≈ 6.5) in the cross-section plot.
We investigate the timing profile of the Newton and ICNN-based M1 solver on a computational grid with
1e6 cells computed with 4 CPU cores, see Table 4.4. It is evident that 90% of the iteration time is spent
on computing the minimal entropy closure. The ICNN surrogate model is three orders of magnitude
faster and thus able to accelerate the M1 simulation by a factor of 10.48, i.e., to achieve a 90.45% reduc-
tion in simulation time for a simulation with 4 CPU cores.
Remark that the Newton-based entropy closure wall-times have an 8.06% standard deviation, which is
caused by vastly different conditions of the minimal entropy closure optimization problem in different
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Figure 4.10.: Newton and ICNN-based M1 simulations at t = t f with the KiT-RT solver. Vertical cross-
sections at x1 = 3.5 (a),(c), and simulation results (b),(d). The ICNN approximation error
is below grid accuracy, and flow fields and cross-sections are hardly distinguishable. The
ICNN solution reports slightly larger values at the radiation source x = [3.5, 3.5]⊤.

cells of the computational grid. Indeed, this is a challenging problem for distributed memory paral-
lelization, where the computational domain X is partitioned on the processors. If in one partition more
moments emerge near ∂R, parallel scaling capabilities are impaired. Neural network-based closures
timings have much less impact on the parallel load balancing.

4.6. Chapter Conclusion

In this chapter, we addressed the minimal entropy closure moment system of the Boltzmann equation
and the challenges of classical numerical approaches.

4.6.1. Summary

We introduced two novel neural network-based approaches to close the moment hierarchy of the Boltz-
mann equation, once with an input convex neural network (ICNN) that approximates the entropy of the
minimal entropy closure, and once with a monotonic neural network (IMNN) that approximates the La-
grange multipliers of the minimal entropy optimization problem.
We have analyzed the data structure of the entropy closure for normalized moments and investigated the
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Table 4.4.: Performance profiling and comparison of the M1 1st order solver of the KiT-RT package on
106 grid cells, with order 20 Gauss-Legendre quadrature. Displayed are the mean timings of
100 iterations. Newton and ICNN-based entropy closures are compared, where ICNN shows
a significant speedup.

Newton ICNN

Function time [ms] % time time [ms] % time

Entropy closure 197.54 ± 17.56 90.65 ± 8.06 0.34 ± 0.03 1.81 ± 0.15
Flux Computation 20.02 ± 0.89 9.18 ± 0.40 20.09 ± 0.84 96.58 ± 3.3
Time Integration 0.33 ± 0.01 0.15 ± 0.01 0.33 ± 0.04 1.61 ± 0.21

Total time [ms] 217.90 20.76
Time reduction by ICNN [%] 90.45
Speedup by ICNN 10.48

maximal interpolation error of convex neural network approximations to derive a comprehensive data-
sampling strategy that minimizes the neural network interpolation error.
The presented neural network surrogate models are tested in a wide array of synthetic and simulation test
cases examining numerical accuracy, long-time simulation behavior, and computational efficiency. In
conclusion, the ICNN surrogate model is best suited as a neural network-based entropy approximation.
Both presented surrogate models are far more computationally efficient than the baseline. The suggested
data-sampling method allows for good training and test performance of the networks, where the ICNN
model surpasses the IMNN model due to its inherent convex structure which obeys the derived maximum
interpolation error bound.

4.6.2. Limitations of the Approach

Near the boundary of the realizable set, the entropy closure presents an ill-conditioned optimization
problem, resulting in long simulation times of the Newton solver. This challenge unfortunately transfers
to the neural network surrogates, in two ways. First, numerical instabilities of the network training
prohibit sampling moments too close to the boundary of the realizable set. Second, as a result, the
test performance of the networks declines as one infers on moments near the boundary. The problem
exaggerates for higher order closures, where the condition of the Hessian of the dual problem increases
even faster as one moves closer to the boundary. This yields a challenge for building surrogate models
for high-order moment system closures.

We consider the treatment of the region near the boundary of the realizable set, where the neural networks
exhibit the highest errors, in §5.
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4.7. Additional Material

In the following, we provide proof for the stated theorems and lemmas of this chapter.

Statements of §4.3

We provide proof for Lemma 4.1.

Proof: (Lemma 4.1) Consider ϕ at the optimal point (αu; u) and assume m(v)0 = 1. By the first order
necessary condition, we have

∇αϕ(αu; u) = u −
〈
m exp(αu ·m)

〉
= 0 (4.91)

Inspecting the first element of u gives

1 = u0 =
〈
exp(αu ·m)

〉
. (4.92)

On the other hand, using

ϑ
(
(αu)#

)
= − log

(〈
exp

(
(αu)# ·m#

)〉)
, (4.93)

we see that〈
exp

([
ϑ
(
(αu)#

)
, (αu)⊤#

]⊤
·m

)〉
= exp

(
ϑ
(
(αu)#

)) 〈
exp

(
(αu)# ·m#

)〉
=

1〈
exp

(
(αu)# ·m#

)〉 〈
exp

(
(αu)# ·m#

)〉
= 1 = u0,

(4.94)

and the assertion holds. □

We provide proof for Lemma 4.2.

Proof: (Lemma 4.2) The proof is structured in two steps.
1. Consider again the definition of the normalized moment, i.e,

u =
〈
m exp(αu ·m)

〉
=

〈
m exp((αu)# ·m#) exp(αu,0)

〉
(4.95)

and multiply both sides with u0 > 0, such that

u =
〈
exp((αu)# ·m#) exp(αu,0)u0

〉
=

〈
exp((αu)# ·m#) exp(αu,0 + log(u0))

〉
. (4.96)

Using Lemma 4.1 yields the assertion.
2. Consider the functional ϕ at the optimal point (αu; u). We use the statement of the first part of the
proof and get

h(u) = ϕ(αu; u) = αu · u −
〈
exp(αu ·m)

〉
= u0

(
αu · u + log(u0)

)
−

〈
exp(αu ·m + ln(u0))

〉
= u0

(
αu · u + ln(u0)

)
−

〈
exp(αu ·m

〉
)

= u0
(
h(u) + ln(u0)

)
,

(4.97)

which yields the assertion, where we used Eq. (4.5) and (4.19). □
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We provide proof for Theorem 4.5.

Proof: (Theorem 4.5) The proof is structured in two steps.
1. We note that hθ is convex in u, if ĥθ is convex in u [200]. By Lemma 4.2 we see directly, that

αθu = ∇uhθ(u). (4.98)

We inspect the Hessian Hθ(αθu), which we define via its inverse

Hθ,−1(αθu) = ∇2
uhθ(u) = ∇uαu. (4.99)

Thus, Hθ,−1 is symmetric positive definite due to the convexity of hθ.
Since the neural network surrogate uses the same ansatz (4.6) for the reconstruction of f θu as the minimal
entropy closure, we can choose ji,∗(αθu) as in the proof of Theorem 1.13 and hyperbolicity y of the neural
network based system follows immediately.
2. For entropy dissipation, consider the proof of Theorem 1.15. Due to the reconstruction ansatz (4.6),
we can use the Legendre duality, and by Eq. (4.98), we can verify the entropy/entropy-flux pair and the
entropy dissipation law in analogy to the proof of Theorem 1.15. □

We show Theorem 4.7.

Proof: (Theorem 4.7) We show that each layer [z⊤k−1, x
⊤]⊤ 7→ zk is convex. For k = 1, we directly see,

that

Wx
1 x + bk (4.100)

is linear and thus convex. We apply Lemma 4.6 iteratively and obtain the assertion. □

We show Lemma 4.8

Proof: (Lemma 4.8) The map x 7→ Wx
1 z∗∗1 + b1 is linear, thus the assertion of the proof of Theorem 4.7

holds. □

Statements of §4.4

We provide proof for Theorem 4.11.

Proof: (Theorem 4.11) The proof is structured in two parts. First, we show that the vertices vi ∈ R
n−1

are well defined, if w∗ is element of the interior of C(Xn). Second, we show that all vi ∈ Aw∗ . Thus any
convex combination of vi is in Aw∗ and therefore, Aw∗ is defined by a (bounded) polyhedron with vertices
vi.
1. We show that vi are well defined. First, if the point of interest is an element of the interior of C(Xn),
then all wi ∈ Xn are linearly independent. The boundary of the set of feasible gradients with respect to
the sampling point wi and the point of w∗ interest consists of the hyperplane given by

Fi =
{
v ∈ Rn−1 : v · wi = ∇wĥ(wi) · wi

}
. (4.101)
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If all wi , 0 are linearly independent, no hyperplanes are parallel or lie in each other. The proper
intersection of d hyperplanes in Rn−1 yields a single point, which is

vi =
⋂
j,i

F j. (4.102)

which we define as vertex vi ∈ R
n−1, that touches all hyperplanes except Fi.

2. We show that all vi ∈ Aw∗ . This means, that we have to show

v j · wi ≤ ∇wĥ(wi) · wi, ∀i, j = 0, . . . , n − 1. (4.103)

By the definition of v j, we have

v j ∈ Fi, j , i, (4.104)

so we are only concerned with

vi · wi ≤ ∇wĥ(wi) · wi. (4.105)

We start by stating an auxiliary statement. Let pj
i = v j − vi for i , j. If Xn is linearly independent and

w∗ = 0 is in the interior of C(Xn), then

sign(pj
i · wi) = sign(pl

k · wk), ∀i , j, k , l. (4.106)

Linear independence of wi ∈ Xn and w∗ = 0 being in the interior of C(Xn) translates to

0 =
N∑

i=0

aiwi, ai > 0. (4.107)

We have

pj
i · wi =

−1
ai

∑
m,i

am
(
v j − vi

)
· wm

=
−1
ai

∑
m,i, j

am
(
v j − vi

)
· wm + a j

(
v j − vi

)
· w j


=
−1
ai

∑
m,i, j

am
(
v j · wm − vi · wm

)
+ a j

(
v j − vi

)
· w j


=
−1
ai

∑
m,i, j

am
(
∇wĥ(wm) · wm − ∇wĥ(wm) · wm

)
+ a j(v j − vi) · w j


=
−1
ai

a j(v j − vi) · w j =
a j

ai
(vi − v j) · w j =

a j

ai
pi

j · w j,

(4.108)

where we use the definition of the face Fm. Since a j
ai

is positive sign(pj
i · wi) = sign(pi

j · w j) follows for

all i , j. Assume pj
i · wi > 0 and ph

i · wi < 0. Then

v j · wi > vi · wi > vh · wi. (4.109)

Thus, we have

0 < (v j − vh) · wi = ∇wĥ(wi) · wi − ∇wĥ(wi) · wi = 0, (4.110)
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which is a contradiction to the monotonicity of the gradient. Then we obtain

sign(pj
i · wi) = sign(pk

i · wi) = sign(pi
k · wk) = sign(pl

k · wl), ∀i , j, k , l. (4.111)

This means that all face normals wi are either facing outward of the polyhedron defined by the vertices
{vi} or all facing inward. Assuming inward-facing normals, then for each face of the polyhedron created
by Aw∗ , the feasible set is the half-space outside the current face of the polyhedron. Due to convexity
of the polyhedron defined by {vi}, this would imply that Aw∗ = ∅, which contradicts continuity of the
gradient of ĥ. Therefor we have outward-facing normals. Finally, we have

0 < (v j − vi) · wi = ∇wĥ(wi) · wi − vi · wi, (4.112)

and thus vi · wi < ∇wĥ(wi) · wi, i.e., vi ∈ Aw∗ for all i. we have that Aw∗ is indeed a polygon defined by
the vertices vi. By convexity, the polyhedron Aw∗ contains all feasible gradients of the point of interest.

□

We provide proof for Theorem 4.12.

Proof: (Theorem 4.12) By definition of vi =
⋂

j,i F j and the fact that we can divide Eq. (4.71) by ∥wi∥

we get the linear systems. Let for ξ ∈ Rd hold that

Cξ = max
k=0,...,d

∥∇w f (wk) − ξ∥2 . (4.113)

Then, we have ∣∣∣w j · (vi − ξ)
∣∣∣ = ∣∣∣∣wi ·

(
∇wĥ(wi) − ξ

)∣∣∣∣ ≤ ∥wi∥2 Cξ = Cξ ∀i = 0, . . . , d (4.114)

since wi has unit norm. Thus, each entry of the vector Xivi has an absolute value smaller than Cξ. We
interpret Xi as a linear operator mapping (Rd, ∥·∥2)→ (Rd, ∥·∥∞).
Xi = [w0, . . . ,wi−1,wi+1, . . . ,wd]T is invertible, if w∗ is in the interior of C(Xn) and defines a mapping
(Rd, ∥·∥∞)→ (Rd, ∥·∥2). Consequently, we can estimate

∥Xi(vi − ξ)∥∞ ≤ Cξ, (4.115)

and thus

∥vi − ξ∥2 ≤
∥∥∥X−1

i

∥∥∥Cξ. (4.116)

Finally, we get ∥∥∥vi − v j
∥∥∥

2 ≤ ∥vi − ξ∥2 +
∥∥∥ξ − v j

∥∥∥
2 ≤

(∥∥∥X−1
1

∥∥∥ + ∥∥∥X−1
2

∥∥∥)Cξ. (4.117)

We can choose ξ = ∇wĥ(wl) such that

max
k=0,...,d

∥∥∥∇wĥ(wk) − ∇wĥ(wl)
∥∥∥

2 = max
k,l=0,...,d

∥∥∥∇wĥ(wk) − ∇wĥ(wl)
∥∥∥

2 =: Cw∗ . (4.118)

□
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Statements of §4.4

We state the proof of Lemma 4.10.

Proof: (Lemma 4.10) The map (4.62) is a metric, which is verifiable by the fact that u 7→ αu is a
bijection..
Consider a sequence of moments u#,n → w for w ∈ ∂R̃ and remark that

∥∥∥(αun)#
∥∥∥ → ∞. We see, that for

u ∈ R̃
o
, i.e., its interior, the metric (4.62), i.e.,

lim
n→∞

d(u#,u#,n) = lim
n→∞

∣∣∣∣∣∣∣ 1
∥(αu)#∥

−
1∥∥∥(αun)#

∥∥∥
∣∣∣∣∣∣∣ = 1
∥(αu)#∥

(4.119)

is well defined. Then we have

d(u#, R̃) =

lim
n→∞

d(u#,u#,n) = lim
n→∞

inf


∣∣∣∣∣∣∣ 1
∥(αu)#∥

−
1∥∥∥(α[1,w⊤n ])#

∥∥∥
∣∣∣∣∣∣∣ : wn → w ∈ ∂R̃


= inf

 lim
n→∞

∣∣∣∣∣∣∣ 1
∥(αu)#∥

−
1∥∥∥(α[1,w⊤n ])#

∥∥∥
∣∣∣∣∣∣∣ : wn → w ∈ ∂R̃


=

1
∥(αu)#∥

,

(4.120)

which yields the assertion. □
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CHAPTER 5

Regularized, Neural Network-Based, Structure-Preserving Minimal Entropy
Closures

In this chapter, we extend structure-preserving, neural network-based approximations of the
closure of the moment system to the context of regularized entropy closures. The main idea
is to interpret structure-preserving neural network approximations of the regularized minimal
entropy closure as an two stage approximation to the original entropy closure. We conduct
numerical analysis of this approximation and investigate optimal parameter choices. Our nu-
merical experiments demonstrate that the method has a much lower memory footprint than
traditional methods with competitive computation times and simulation accuracy.

5.1. Introduction

We consider again the structurally rich, but computationally expensive minimal entropy closure for the
linear Boltzmann moment system and address the open challenges and limitations of the work done in
§4. There, we successfully proposed an input convex surrogate model to approximate the entropy of
the Boltzmann moment system, in order to find a computationally cheap closure. Although success-
fully applied to low order entropy closures, these neural network-based closures face severe challenges
when approximating high order closures in higher spatial dimensions, due to the ill condition of the
underlying optimization problem in an-isotropic particle regimes, i.e., near the boundary of its feasible
set [208].

5.1.1. Related Work on Moment Closures

The most relevant previous work to this chapter is done by [208, 200], who proposed data-driven approx-
imations of the minimal entropy functional. The authors of [200] use convex splines for the M1 closure in
one dimension and show that this approach preserves the mathematical structure of the entropy closure.
Furthermore, classical, fully-connected neural networks have been employed for the M1 and M2 clo-
sure in one spatial dimension, where penalty terms ensure convexity in an empirical sense. In [208],i.e.,

83



5. Regularized, Neural Network-Based, Structure-Preserving Minimal Entropy Closures

§4, the authors extend the approach to two spatial dimensions for the M1 closure, where they employ
input-convex neural networks [9], to ensure a structure-preserving, neural network-based approximation
of the entropy closure. Furthermore, an error estimate and a sampling strategy for the approximation
with input convex neural networks is proposed. However, both works are limited to low-order moment
closures, since the approximation quality of both neural networks and splines decreases heavily near the
boundary of the set of feasible moments, especially for high order closures. The regularized minimal
entropy closure has been introduced by [7], which tackles the issues of ill condition of the optimization
problem near the boundary of the realizable set.

5.1.2. Novelty and Scientific Contribution

The scope of this work is the fusion of the regularized formulation of the minimal entropy closure [7] and
structure-preserving neural network-based closure approximations [208]. We investigate the challenges
of the non-regularized entropy closure in terms of neural network approximation and data-sampling.
Then we construct a normalized, regularized framework to create input convex, structure-preserving neu-
ral network approximations to the regularized entropy closure, which is in itself a convex approximation
to the non-regularized entropy closure. We conduct an error analysis of this multi-step approximation
including neural network approximation error, regularization error and scaling errors of the partially reg-
ularized closure to ensure a controlled deployment as a surrogate model in an high performance kinetic
solver using the open source codebase KiT-RT [147]. We introduce dimension reduction techniques ex-
ploiting Galilean invariance of the Boltzmann moment system to further reduce the data-space of the
neural network-based entropy for high order closures. Lastly we conduct extensive numerical experi-
ments comparing different neural network approximations for different, higher order entropy closures of
different regularization levels in synthetic tests as well as well known simulation benchmarks of the field
of radiation transport.
The neural networks are trained using the Tensorflow-based open source Github repository NeuralEn-
tropyClosures1 and the trained network graphs are integrated in the open source high performance solver
KiT-RT2.

This chapter is a collaboration with Cory Hauck, Paul Laiu and Martin Frank and under review in the
Journal of Computational Physics. The chapter focuses on the authors contributions.

5.1.3. The Chapter in Context of the Dissertation

This chapter directly continues the work of §4 and tackles the open challenges and limitations of the
proposed surrogate models, i.e., limited accuracy near the boundary of the realizable set, and high di-
mensional closures. We make use of the data-sampler of §4.

5.1.4. Chapter Outline

We discuss challenges and limitations of the current neural network-based entropy closure in §5.2, and
introduce the regularized entropy closure in §5.3 alongside normalization and reduction of the problem.
The neural network-based approximation of the entropy closure is presented in §5.4 and preservation
of the structure of the moment system including Galilean invariance is shown. In §5.5, we analyze the

1https://github.com/ScSteffen/neuralEntropyClosures
2https://github.com/CSMMLab/KiT-RT
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5.2. Challenges of the Entropy-Based Moment Closure

errors of the partial regularization, reconstruction ansatz, and neural network approximation and their
implications on data sampling. Numerical results are presented in §5.6.

5.2. Challenges of the Entropy-Based Moment Closure

We consider again the moment system of the linear Boltzmann equation with a spherical velocity domain
V = S2, i.e.,

∂tu(t, x) + ∇x · ⟨v ⊗m(v) f ⟩ = ⟨m(v)Q( f )⟩ , (5.1)

with minimal entropy closure with dual formulation, i.e.,

αu = argmax
α∈Rn

ϕ(α; u) (5.2)

ϕ(α; u) = α · u −
〈
exp(α ·m)

〉
(5.3)

for the Maxwell Boltzmann entropy, see Table 1.1 and the corresponding realizable set

R = {u : ⟨mg⟩ = u, g ∈ Fm} . (5.4)

For details we refer to §1.

Although the minimal entropy closure preserves many structural properties of the underlying equation
and avoids shortcomings such as potentially negative solutions of the PN method [82] and ray effects
of the SN method [31], it faces practical challenges. First, solving the convex optimization problem of
Eq. (1.58) at every time step in each grid cell of a numerical simulation comes at a high computational
cost, especially for higher spatial dimensions and high order closures [141]. This issue motivated the use
of neural network-based entropy closures, whose computational effort are several orders of magnitude
lower than that of an iterative optimizer if employed at scale [208]. The use of a neural network-based
closure even for an M1 2D simulation yields a speedup of up to 10.48 compared to the reference sim-
ulation that uses a numerical optimizer for the closure, see §4.5.7. Second, the entropy closure yields
numerical challenges near the boundary of the realizable set. To give insights into the behavior of the
entropy functional near the boundary of the realizable set, we introduce the normalized realizable set R
and the reduced, normalized realizable set R̃:

R = {u ∈ R : u0 = 1} ⊂ Rn , (5.5)

R̃ =
{
w ∈ Rn−1 : [1,w⊤]⊤ ∈ R

}
⊂ Rn−1 . (5.6)

For D = [0,∞) and V = S2, i.e., the unit sphere, both R and R̃ are bounded. We further introduce the
normalization operator

(·) : Rn → Rn defined such that u 7→ u := u
u0

(5.7)

and the reduction operator

(·)# : Rn → Rn−1 defined such that u 7→ u# := [u1, . . . , un]⊤ ∈ Rn−1 . (5.8)

Therefore, u ∈ R if and only if u ∈ R and u# ∈ R̃.
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It is known [7, 208, 82, 8] that when u approaches the boundary ∂R, the associated multiplier αu becomes
unbounded. In a reduced, one-dimensional slab geometry, the corresponding kinetic density fu of a real-
izable boundary moment for D = [0,∞) is a sum of delta functions [52, 187], i.e.

fu(v) =
∑

i

ciδ(pi(v)), (5.9)

where δ is a Dirac distribution and pi are rational functions depending on the moments ui. We describe
the limit behavior of the entropy functional for moments approaching the boundary of the reduced real-
izable set ∂R̃.

Theorem 5.1 (Entropy Divergence at ∂R)
When the Maxwell-Boltzmann entropy is considered, the entropy function h diverges to infinity as u →
∂R.

We provide the proof in §5.8.

Unfortunately, the divergent behavior of h and the poor conditioning of its Hessian H given in (1.65)
near the realizable boundary also affects the neural network approximation. In previous work [208], the
entropy function h is approximated for normalized moments u by an input convex neural network Nθ

with parameters θ, i.e.,

Nθ(u) ≈ h(u) and ∇uNθ(u) ≈ αu. (5.10)

Due to numerical overflow, it is infeasible to sample the entropy functional h or Lagrange multipliers
αu nearby or at the boundary ∂R as the training data, especially when training on GPUs in single pre-
cision. Thus, for moments near or at ∂R, there is no control over the neural network approximation
error, although an error bound in the interior of R has been established [208]. Moreover, it has been
shown that R may not be closed under the action of the numerical solver for the moment equation [8].
In such cases, realizable moments near ∂R may not stay realizable after updating in time by the nu-
merical solver. Although a neural network-based approximation to the entropy functional is technically
defined for u < R, the extrapolation error is expected to be prohibitively large outside of the realiz-
able set. Realizability-preserving limiters [82, 6] can mitigate this issue at the cost of a more complex
solver.

5.3. Regularized Entropy-Based Moment Closures

5.3.1. Fully Regularized Entropy-Based Closure

To overcome the challenge of approximating the entropy closure near the boundary of the realizable set,
a regularized version of the entropy closure is considered in [7]:

min
g∈Fm
⟨η(g)⟩ +

1
2γ
∥⟨m(v)g⟩ − u∥ , (5.11)

with regularization parameter γ > 0. Unlike the non-regularized problem, in the regularized entropy clo-
sure all u ∈ Rn are realizable. The minimizer f γu still has the form given in (1.62):

f γu = η
′
∗(α

γ
u,F ·m) . (5.12)
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However, αγu,F solves a regularized dual problem:

αγu,F = argmax
α∈Rn

{
α · u − ⟨η∗(α ·m)⟩ −

γ

2
∥α∥2

}
. (5.13)

Finally, the Hessian of the negative of the dual objective function in Eq. (5.13) is given by

Hγ
n (α) =

〈
m ⊗mη′′∗ (α ·m)

〉
+ γI . (5.14)

Since the regularization is a Tikhonov regularization of the dual problem, the condition number of H(α)
is bounded from above by 1 + γ−1λmax, where λmax is the largest eigenvalue of Hγ

n (α) [7]. This miti-
gates the ill condition of the entropy closure near ∂R. The regularized entropy closure inherits most of
the structural properties of the standard closure; a notable exception is the translation [7] and scaling
invariance.

5.3.2. Partially Regularized Entropy-Based Closure

The fully regularized entropy-based closure in (5.11) regularizes the full moment vector u. In this work,
we consider a partially regularized entropy-based closure that regularizes only the higher-order moments
u# while maintaining the zeroth moment u0. This partially regularized closure allows us to approximate
the entropy function in the bounded, normalized realizable set R and extend the approximation to the
full realizable set R by a scaling that is based on the value of u0. This scaling does not apply to the fully
regularized closure in which the values of u0 are affected by regularization.

To define the partially regularized entropy-based closure, we first introduce the decomposition of the
velocity basis

m(v) = [m0(v),m#(v)⊤]⊤ ∈ Rn (5.15)

using the reduction operator # defined in (5.8). The partially regularized closure is then given by

min
g∈Fm
⟨η(g)⟩ +

1
2u0γ

∥⟨m#g⟩ − u#∥
2
2 s.t. u0 = ⟨m0 g⟩ . (5.16)

Here, the convex entropy function hγ is defined, such that for given moments u with u0 > 0, hγ(u) takes
the optimal objective function value of (5.16). The partially regularized closure is defined for all u ∈ Rn

with u0 > 0 which is still much more relaxed than the realizability required by the standard closure.
If a solution to (5.16) exists, it is again of the same form as in Eq. (5.12) [7], except that the Lagrange
multiplier αγu ∈ Rn corresponding to u is now given by

αγu = argmax
α∈Rn

ϕγ(α; u), (5.17)

ϕγ(α; u) = α · u −
〈
exp(α ·m)

〉
−

u0γ

2
∥α#∥

2 . (5.18)

Here it is straightforward to verify that ϕγ is twice differentiable and concave in α. Using the strong
duality of (5.16)–(5.17), see [54] for proof, the entropy function for this partially regularized problem is
given by hγ(u) = ϕγ(αγu; u).
We note that, for a fixed γ, the magnitude of this partial regularization is linearly proportional to u0, which
corresponds to a uniform regularization magnitude when the moments are normalized with respect to u0,
as considered below. In [208, 200], it was shown that it is important to construct the neural network
approximations on the bounded, normalized realizable set R. In the following lemmas, we show that
for a moment u with u0 > 0, the multiplier αγu in (5.17) can be obtained from αγu, the multiplier for the
normalized moment u.
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Lemma 5.2 (Normalized, Regularized Lagrange Multipliers)
Assume m0(v) = 1. Given a normalized moment u, let αγu be the corresponding multiplier defined in
(5.17). Then we have the relation

α
γ

u,0 = ϑ
((
αγu

)
#

)
, (5.19)

where the function ϑ : Rn−1 → R is defined as

ϑ(β) = − log(
〈
exp (β ·m#)

〉
) . (5.20)

The proof is given in §5.8. Note that, in general, this relation does not hold for the multipliers given by
the fully regularized problem (5.13).

To reduce the dimension of the dual problem, we define the function

ϕ̂γ (β; w) = ϕγ
([
ϑ(β),β⊤

]⊤
;
[
1,w⊤

]⊤)
, where w ∈ Rn−1 and β ∈ Rn−1. (5.21)

In the following analysis, we show that for normalized moments u, the partially regularized dual problem
(5.17) can be formulated as a fully regularized problem in Rn−1. The following theorem then gives prop-
erties of ϕ̂γ and relates the optimal multiplier defined in (5.17) to the solution of a reduced maximization
problem given by ϕ̂γ.

Theorem 5.3 (Reduced, Regularized Dual Entropy Closure)
Assume m0(v) = 1. Then, ϕ̂γ (β; w) can be written as

ϕ̂γ(β; w) = −1 − log
(〈

exp(β ·m#)
〉)
+ β · w −

γ

2
∥β∥2 . (5.22)

Furthermore, ϕ̂γ (β; w) is concave and twice differentiable. Consider the Hessian of −ϕ̂γ w.r.t. β, denoted
by Ĥγ

n (β). Let λ and λγ denote the eigenvalues of Ĥγ=0
n (β) and Ĥγ

n (β), respectively, then

λ
γ
min = λmin + γ, λ

γ
max = λmax + γ (5.23)

and the condition number of Ĥγ
n (β) is bounded from above by 1 + γ−1λmax.

Next, let

βγu#
:= argmax

β∈Rn−1
ϕ̂γ(β; u#) , (5.24)

where u# ∈ R
n−1 is the truncation of a normalized moment u ∈ Rn. Then, [ϑ(βγu#

), (βγu#
)⊤]⊤ solves the

maximization problem in Eq. (5.17) at u, i.e., αγu = [ϑ(βγu#
), (βγu#

)⊤]⊤. Further, the optimal objective
function values are equal, i.e., ϕγ(αγu; u) = ϕ̂γ(βγu#

; u#).

The proof is given in §5.8.

Theorem 5.3 implies that, for normalized moments u, the partially regularized multiplier αγu in Eq. (5.17)
can be obtained by solving the reduced problem in Eq. (5.24). We define ĥγ(u#) = ϕ̂γ((αγu)#; u#) and no-
tice that ĥγ(u#) = hγ(u) from the equivalence of the objective function values.

The results in Theorem 5.3 lead to the following corollary.
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Corollary 5.4
Given the formulation of ϕ̂γ, respectively ĥγ, in (5.22), we have

∇u# ĥγ
(
u#

)
=

(
αγu

)
#

(5.25)

and

u# =

〈
m# exp

([
ϑ
((
αγu

)
#

)
,
(
αγu

)⊤
#

]⊤
·m

)〉
+ γ

(
αγu

)
#
. (5.26)

Here (5.25) is a direct consequence of (5.22), and (5.26) follows from the relation between αγu and βγu#
given in Theorem 5.3 and the first order optimality condition of (5.24).

Lemma 5.5 (Scaled, Partially Regularized Lagrange Multipliers)
Consider the partially regularized dual problem (5.17) with dynamic regularization u0γ. Let u be a
normalized moment and u0 the scaling factor to obtain u, i.e., u0u = u. Then, the Lagrange multiplier of
the non-normalized, partially regularized dual problem αγu is given by

αγu =
[
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
, (5.27)

where αγu is the regularized Lagrange multiplier of the normalized problem. Furthermore, one can
reconstruct the entropy functional of the full problem given the entropy of the reduced one, i.e.,

hγ(u) = u0ĥγ(u#) + u0 log(u0), (5.28)

and hγ(u) is convex in u.

The proof is given in §5.8.
Hence, we can focus on solving the fully regularized, reduced entropy closure for normalized moments,
and then reconstruct the solution of the partially regularized, non-normalized closure.

5.4. Regularized, Neural Network-Based Entropy Approximations

We extend the structure-preserving neural network-based entropy closure presented in [208] to the setting
of regularized entropy closures using Theorem 5.3 to solve the numerical challenge presented in §5.2. To
this end, we consider an input convex neural network Nθ to approximate the entropy functional ĥγ(u#) of
the reduced, fully regularized closure, i.e.,

ĥp(u#) = Nθ(u#) ≈ ĥγ(u#), (5.29)

where we use p = (γ, θ). Convexity of the neural network enables preservation of the mathematical
structure of the moment system, see §5.4.1. By Lemma 5.5 we get a convex approximation of the entropy
hγ(u#) of the partially regularized entropy closure for non-normalized moments via u0ĥp(u#)+u0 log(u0).
We use Lemma 5.2 and the neural network approximation (αp

u)# to the normalized Lagrange multiplier
(αγu)#, by Eq. (5.25), i.e., (

αp
u

)
#
=∇u#Nθ(u#) ≈ ∇u# ĥγ(u#) =

(
αγu

)
#
. (5.30)
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Algorithm 5.1: Network training

Input: XT =
⋃

k XB,k: Training data-set
{(

hi,ui,αu,i
)}

i∈T
, partitioned in kB batches

Nθ: Network architecture Nθ : u# 7→ ĥ(u#)
θ0: Weight initialization of the network
tepoch: Maximum number of training iterations

Result: Nθ∗ : Trained network for the minimal entropy closure

for t = 0 to t = tepoch do
θk=0 ← θt

for k = 0 to k = kb do
Load mini-batch XBk

ĥp
i ← Nθ

(
(ui)#

)
/* Entropy approximation */

(αp
u,i)# ← ∇u#Nθ

(
(ui)#

)
, ∀i ∈ Bk /* Lagrange multiplier approximation */

αp
u,i ←

[
ϑ
((
αp

u,i

)
#

)
,
(
αp

u,i

)⊤
#

]⊤
, ∀i ∈ Bk /* Reconstruct complete multiplier */

up
i ←

〈
m exp

(
αp

u,i ·m
)〉
+ γ

(
αp

u,i

)
#
, ∀i ∈ Bk /* Reconstruct normalized moment */

L ← LICNN(XBk ; Nθ) /* Compute loss */
θk+1 ← θk − ∇θL /* Update network weights */

θt+1 ← θkB

θ∗ ← θtepoch /* Save final network weights */

The reconstruction of the normalized moment is then given by Eq. (5.26)

uθ =
〈
m exp

(
αp

u ·m
)〉
+ γ

[
0,

(
αp

u

)⊤
#

]⊤
≈

〈
m exp

(
αγu ·m

)〉
+ γ

[
0,

(
αγu

)⊤
#

]⊤
= u. (5.31)

The network is trained on a loss function given by the sum of mean squared errors of the network
prediction, the network derivative, and the moment reconstruction,

LICNN(XB; θ) =
1
|T |

∑
i∈T

∥∥∥ĥγ((ui)#) − ĥp((ui)#)
∥∥∥2

2 + λ
∥∥∥∥(αγu,i)#

−
(
αθu,i

)
#

∥∥∥∥2

2
+

∥∥∥ui − uθi
∥∥∥2

2 , (5.32)

where B is the size of one batch of the training data set, XT =
{
u#,α

γ

u, ĥ
γ(u#)

}
, see Eq. (4.27). The

parameter λ is used to scale the loss in (αγu)# to the same range as the loss in ĥγ and u#. The size of
the training set is denoted by T . For details of the network architecture, we refer to [208]. The training
workflow is summarized in Algorithm 5.1

5.4.1. Entropy Dissipation

We show that the convexity of Nθ enables the preservation of key structural properties of the closed
moment system, such as entropy dissipation, hyperbolicity, invariance of range, and conservation. We
consider entropy dissipation first and identify a suitable entropy/entropy-flux pair for the moment sys-
tem. Care must be taken when considering the entropy of the full moment system since the en-
tropy gradient now differs from the non-regularized case (1.64) and does not recover the Lagrange
multiplier of the dual closure anymore - an important property of the non-regularized moment clo-
sure.
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Lemma 5.6 (Gradient of the Partially Regularized Entropy)
The gradient of the partially regularized entropy with respect to its moments, is given by

∇uhγ(u) = αγu,D = α
γ
u −

[
γ

2

∥∥∥∥αγu,#∥∥∥∥2
, 0

]⊤
, (5.33)

and we denote the gradient by αγu,D.

We provide proof in §5.8. Thus the ansatz function for the reconstruction of the kinetic density needs to
be adapted from (5.12) to

f γu,D = exp
(
αγu,D ·m

)
= exp

((
αγu −

[
γ

2

∥∥∥∥(αγu)#

∥∥∥∥2
,
(
αγu

)⊤
#

]⊤)
·m

)
. (5.34)

Using Lemma 5.5, the neural network-based approximation of αγu,D is given by

αp
u,D =

[
ϑ
((
αp

u

)
#

)
+ log(u0) −

γ

2

∥∥∥∥(αp
u

)
#

∥∥∥∥2
,
(
αp

u

)⊤
#

]⊤
, (5.35)

and f p
u,D is defined analogously.

Theorem 5.7 (Hyperbolicity and Entropy Dissipation of the Partially Regularized Entropy Closure)
The reconstructed entropy hγ, respectively hp, with the ansatz (5.34) is a suitable entropy of the moment
system corresponding to the entropy-flux

jγD(u) =
〈
v
(

f γu,D log
(

f γu,D
)
− f γu,D

)〉
, (5.36)

respectively jp
D(u), and yields the entropy dissipation law

∂thγ(u) + ∇x · j
γ
D(u) ≤ 0. (5.37)

Furthermore, the moment system

∂tu + ∇x ·
〈
v ⊗m f γu,D

〉
=

〈
mQ

(
f γu,D

)〉
(5.38)

is hyperbolic. The same results hold for the neural network-based closure.

We provide proof in §5.8.

Next, we notice that the range of the dynamic ansatz (5.34) does not change compared to the original
ansatz (5.12), i.e., f γu,D > 0, thus the physical bounds of solution vectors u of the moment system remain
unchanged. Further, the moment system is still a conservation law for basis functions, that are collision
invariants, since the dynamic ansatz does not affect the collision operator Q( f ).

5.4.2. Galilean Invariance

The minimal entropy closure is invariant under rotations of the velocity space [7, 161], thus any neural
network-based approximation to the entropy closure is expected to be invariant under rotations as well.
In the following, we construct a convex and rotation-invariant neural network-based entropy approxima-
tion.
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Lemma 5.8 (Rotated Moments)
Let m(v) be an orthonormal basis of the velocity space V ⊂ Rd. Let TR : V → V define a rotation in V.
Then there exists a block diagonal orthogonal matrix R ∈ Rn×n, such that

Ru = ⟨Rm(v) f (v)⟩ = ⟨m(TR(v)) f (TR(v))⟩ . (5.39)

The proof is given in [89]. Note that the rotation operator is in general, not an orthogonal matrix, if the ba-
sis m is not orthonormal. An example of an orthonormal basis is the spherical harmonics basis. Next, we
establish the relationship between a rotated moment Ru and its Lagrange multiplier.

Lemma 5.9 (Rotated Lagrange Mutlipliers)
Let m(v) be an orthonormal basis of the velocity space V ⊂ Rd. If u ∈ Rn is a realizable moment for
the (partially regularized or non-regularized) entropy closure, then Ru is also feasible. Furthermore, we
have

αγRu = Rαγu. (5.40)

We provide proof in §5.8. Lemma 5.9 also holds true for αγu,D, as the first component of the Lagrange
multiplier is not affected by rotations. We assess the consequence of a rotation-invariant approximation
to the entropy closure.

Definition 5.10 (Rotation-Invariance)
Consider a (neural network-based) approximation ĥp to the entropy functional ĥγ and the corresponding
approximation αp

u to the Lagrange multiplier αγu. We call the approximation rotation-invariant if

αp
Ru = Rαp

u (5.41)

for all R corresponding to rotation in V. We call the moment system of the Boltzmann equation rotation-
invariant, if

∂tRu + ∇x · ⟨v ⊗m fRu⟩ − ⟨mQ( fRu)⟩ = R (∂tu + ∇x · ⟨v ⊗m fu⟩ − ⟨mQ( fu)⟩) (5.42)

for all R corresponding to rotation in V.

Theorem 5.11 (Rotation-Invariant Entropy Closure Approximation)
Consider a (neural network-based) approximation ĥp to the entropy functional ĥγ of the reduced, nor-
malized closure and the corresponding approximation αp

u to the Lagrange multiplier αγu. Let the entropy
approximation be rotation-invariant, i.e.,

αp
Ru = Rαp

u (5.43)

for all orthogonal, block diagonal R in the sense of Definition 5.10. Let the kinetic density of the Boltz-
mann moment system be given by f p

u,D, see Eq. (5.34). Then the corresponding moment system of the
Boltzmann equation is rotation-invariant, i.e.,

∂tRu + ∇x ·
〈
v ⊗m f p

Ru,D

〉
−

〈
mQ

(
f p
Ru,D

)〉
= R

(
∂tu + ∇x ·

〈
v ⊗m f p

u,D

〉
−

〈
mQ

(
f p
u,D

)〉)
(5.44)

The proof is provided in §5.8. Note, that Theorem 5.11 also holds true for f γRu,D. To construct a rotation-
invariant, convex approximation to the (regularized) entropy functional, we define

V1 = {v ∈ V : v2 = 0, v3 = 0} , V1,+ = {v ∈ V1 : v1 ≥ 0} , and V1,− = {v ∈ V1 : v1 ≤ 0} . (5.45)

Additionally, we denote the velocity reference frame of the original, non-rotated moment u as Vu.
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Algorithm 5.2: Network inference within a kinetic solver

Input: ui: Moments of the grid X̃

Result: f p
u,i: Reconstructed, regularized kinetic densities of the grid X̃

for each ui ∈ X̃ do
u+i ← RV1,+ui /* Rotate moment onto V1,+ */
u−i ← R±RV1,+ui /* Rotate moment onto V1,− */

ĥp,±
i ← Nθ

(
(u±i )#

)
/* Entropy approximations */

(αp
u±,i

)# ← ∇u#Nθ

(
(u±i )#

)
/* Lagrange multiplier approximations */

(αp,∗
u+,i

)# ← R̃⊤± (αp
u−,i

)# /* Rotate mirrored multiplier onto V1,+ */

(αp,sym
u+,i

)# ←
1
2

(
(αp,∗

u+,i
)# + (αp

u+,i
)#

)
/* Average */

α
p,sym
u+,i

←

[
ϑ
((
α

p,sym
u+,i

)
#

)
,
(
α

p,sym
u+,i

)⊤
#

]⊤
/* Reconstruct α0 */

αp
u,i ← R⊤V+

(
α

p,sym
u+,i

)
#

/* Reverse original rotation of multiplier */

f p
u,i ← exp

(
αp

u,i ·m
)

/* Reconstruct kinetic density */

f p
u,i ← u0,i f p

u,i /* Re-scale kinetic density */

Theorem 5.12 (Rotation-Invariance of Algorithm 5.2)
Let Nθ be an input convex neural network. Let R̃ be defined as the rotation matrix acting on the truncated
moment basis, i.e.,

R̃i, j = Ri+1, j+1, ∀i, j = 1, . . . , n − 1. (5.46)

Then, Algorithm 5.2 constructs a rotation-invariant, convex approximation ĥp to ĥγ, if Nθ is convex for

u# =
〈
m#(TRV1,±

v) f
(
TRV1,±

v
)〉
, (5.47)

i.e., moments, whose velocity reference frame is (rotated to) V1,±.

The proof is provided in §5.8. Note, that R1, j = δ1, j and Ri,1 = δ1,i.

Previous works [8, 200, 208] consider normalization of the realizable set as means to bound and reduce
the size of the input-data-space of the entropy closure approximation problem. Dimension reduction by
manually removing degrees of freedom associated with symmetries as the rotation has been successfully
applied in, e.g., neural network-based simulation of molecular dynamics [247, 97, 61] and is applicable
for the entropy closure.

5.5. Error Analysis

We have constructed an approximation to the minimal entropy closure by first introducing a reduced
regularized version of the closure for normalized moments, then approximating its solution operator by
a neural network, and finally re-scaling the solution to the full problem. This three-stage approximation
introduces numerical errors through regularization and network approximation, which we quantify in the
following.
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5.5.1. Regularization Errors

The regularization errors affect the reconstruction of the kinetic density f γu,D. However, the quantity of

interest is the error in the kinetic flux F(u) =
〈
v ⊗m f γu,D

〉
, which is Lipschitz continuous in u, so we

consider the error in the corresponding moments. Here we need to distinguish the correct moment of the
partially regularized problem

u =
〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
·m

)〉
+ u0γ

[
0,

(
αγu

)⊤
#

]⊤
(5.48)

the moment with regularization error,

uγ =
〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
·m

)〉
, (5.49)

and the moment with an error through the dynamic ansatz,

uγD =
〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0) −

γ

2

∥∥∥∥(αγu)#

∥∥∥∥2
,
(
αγu

)⊤
#

]⊤
·m

)〉
. (5.50)

Theorem 5.13 (Approximation Error of the Partial Regularization)
Let BγM =

{
β ∈ Rn−1 : ∥β∥ < M

}
be a set of truncated Lagrange multipliers with norm bound M > 0. We

consider the regularized closure problem with parameter γ for moments u with (αγu)# ∈ BγM. Then, the
regularization error in the reconstructed problem is given by∥∥∥u − uγ

∥∥∥ ≤ γu0M, (5.51)

and the error in the dynamic ansatz is given by

∥∥∥u − uγD
∥∥∥ ≤ u0

(
γM + n

(
1 − exp

(
−
γ

2
M2

)))
. (5.52)

The proof for Theorem 5.13 is given in §5.8. Note that the error estimate of the dynamic ansatz is quite
pessimistic, since typically

∥∥∥uγ
∥∥∥ ≪ n, and (αγu)# < M. Only for highly anisotropic moments, the dynamic

ansatz error is expected to have an effect that exceeds the regularization error.
In [7], the authors consider the effect of a perturbation δ at the moment u on the error of the regularized
entropy closure, due to numerical errors given by an inexact solution uδ, of the closure in the previous
iteration of the numerical solver or in its spatial-temporal discretization, i.e., ∥uδ − u∥ ≤ δ. Then the
combined error of solving the partially regularized and normalized entropy problem, and numerical error
δ is given by ∥∥∥∥u −

〈
m exp

(
αγuδ ·m

)〉∥∥∥∥ ≤ δ + γ u0 M. (5.53)

A consequence is to choose γM < δ, with c > 0, and to scale the simulation appropriately, such that
u0 ≈ 1, then the numerical and regularization errors are in the same order of magnitude, i.e., δ ≈
u0γM.
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Algorithm 5.3: Regularized training data generator
Input: M: Lagrange multiplier norm boundary

τ: Eigenvalue tolerance
N: Order of the moment closure

Result: XT : Training data-set
{(

ĥγi ,ui,α
γ

u,i

)}
i∈T

for i = 0 to i = T do
do

β ∼ uniform
({
β ∈ Rn−1 : ∥β∥ < M

})
/* Sample BγM,τ */

while λγmin < τ

αγu,i ←
[
ϑ (β) ,β⊤

]⊤ /* Compute Lagrange multiplier */

ui ←
〈
m exp

(
αγu,i ·m

)〉
/* Reconstruct normalized moment vector */

ĥγi ← αγu,i · ui −
〈
exp

(
αγu,i ·m

)〉
+

γ
2

∥∥∥∥(αγui

)
#

∥∥∥∥2
/* Compute entropy functional */

Append
(
ĥγi ,ui,α

γ

u,i

)
to XT .

5.5.2. Neural Network Approximation Error

The last error source is the approximation error of the neural network, which can be categorized as part of
the numerical error δ in the sense of Eq. (5.53). Due to the convexity of the neural network-based approx-
imations of the entropy closure and the sampled moments, it is feasible to consider the maximum inter-
polation error of the neural network in the convex hull of the training data, i.e.

max
u#∈C(XT )

∥∥∥∥(αγu)#
− ∇u#Nθ(u#)

∥∥∥∥ , (5.54)

whereC(XT ) is the convex hull of the sampled moments u#, which are part of the training data set

XT =
{(

ĥγi ,ui,α
γ

u,i

)}
i∈T

. (5.55)

as the quantity of interest, which depends only on the distribution of the training data set XT . For a
given error bound in (αγu)#, one can employ Eq. (5.26), to derive the perturbance in u, which yields the
influence of the neural network error in δ. For details, we refer to [208].

5.5.3. Data Sampling

In [208] a sampling strategy to minimize the maximal interpolation error (5.54) is provided. A reasonable
strategy is to sample the bounded set

BγM,τ =
{
β ∈ Rn−1 : ∥β∥ < M ∪ λγmin > τ

}
. (5.56)

uniformly [208], where λγmin is the smallest eigenvalue of the Hessian Ĥγ
n (β) at the point (αγu)# of the

closure (5.24), and M is an additional norm boundary for the Lagrange multiplier. The training data mo-
ments and entropy values are then sampled from BγM,τ using Eq. (5.26), see Algorithm 5.3. This sampling
strategy applied to the reduced regularized entropy closure enables the generation of data (ĥγ(u#),αγu,u)
with u outside the realizable set R̃, since the feasible set of the regularized entropy closure is unbounded.
Furthermore, analysis of the regularization error in Theorem 5.13 shows, that regularized moments and
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Figure 5.1.: Sampled ĥγ and u# = ψ(β) with β ∈ A =
{
β ∈ Rn−1 : ∥β∥ < M

}
for different γ. For small

γ, the sampled data is close to the non-regularized data, but ĥγ is finite-valued at ∂R, thus
stabilizing training and inference of surrogate models.

non-regularized moments, generated by the same Lagrange multiplier with norm bound ∥β∥ < M, have
the distance ∥∥∥ψ(β) − ψγ(β)

∥∥∥ ≤ γM, (5.57)

with the formal moment reconstruction maps for the regularized and non-regularized, normalized clo-
sures,

ψγ(β) =
〈
m# exp

([
ϑ(β),β⊤

]⊤
·m

)〉
+ γβ, and ψ(β) = ψγ=0(β). (5.58)

Remark, that u = ψγ((αγu)#) and uγ = ψ((αγu)#) in the sense of Eq. (5.48) and Eq. (5.49).
Lastly, the regularized entropy closure functional ĥγ, γ > 0, is finite-valued at the boundary of the
non-regularized realizable set ∂R, which mitigates the problem of diverging entropy values described
by Theorem 5.1. Since ĥγ is convex in u#, the interpolation error bound (5.54) can be extended beyond
∂R of the non-regularized closure. Thus, we trade the uncontrollable extrapolation error near ∂R of the
non-regularized entropy closure problem to a controllable interpolation error of the regularized entropy
closure problem with an additional regularization error given by γM.

Figure 5.1a displays the convex hull of reconstructed momentsψγ(β), where β ∈ A =
{
β ∈ Rn−1 : ∥β∥ < M

}
and γ ∈ {0, 1e−1, 1e−2, 1e−3}. Indeed, the convex hull of the sampled ψγ(β), γ = 1e−3 and the hull of
the non-regularized reconstruction ψ(β) are almost identical, whereas, for γ = 1e−1, the corresponding
convex hull covers a far greater region, since γM is large in this case. Figure 5.1b gives corresponding
result for ĥγ. Figure 5.2 illustrates the sampling distributions of u# and (αγu)# for different γ. For γ > 0,
we see in Fig. 5.2f, 5.2g and 5.2h that within the norm boundary

∥∥∥(αγu)#
∥∥∥ ≤ M = 40, all Lagrange multi-

pliers fulfill the eigenvalue threshold τ = 0.01. The data generator is part of the KiT-RT framework [147]
and can be found in the corresponding GitHub repository3.

3https://github.com/CSMMLab/KiT-RT
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5.6. Numerical Results

(a) γ = 0 (b) γ = 1e−3 (c) γ = 1e−2 (d) γ = 1e−1

(e) γ = 0 (f) γ = 1e−3 (g) γ = 1e−2 (h) γ = 1e−1

Figure 5.2.: Sampling distributions of u# = ψ
γ
((
αγu

)
#

)
(top row) and corresponding

(
αγu

)
#
∈ BγM=40,τ=0.01

(bottom row). The value of ĥγ is color coded. Less regularization leads to steeper slopes of
ĥγ and thus higher sampling densities in regions with large

∥∥∥u
∥∥∥.

Table 5.1.: Architecture and the number of trainable parameters of the models for each closure after
architecture search. We report the layer output dimension and the number of layers for each
model. ICNNs require an order of magnitude fewer parameters than ResNets to achieve
similar test error levels.

ICNN ResNet

closure units layers params units layers params

M2 100 3 3.2e5 300 6 5.4e6
M3 300 3 2.8e6 400 6 9.6e6
M4 400 3 5.4e6 600 6 2.1e7

5.6. Numerical Results

5.6.1. Neural Network Training

In this section, we evaluate the training performance of the neural networks approximating the reduced,
regularized entropy closure for different regularization levels and moment orders. We consider test cases
with spatial domain X ⊂ R2 and V projected onto R2, so we train models with d = 2 spatial dimensions.
For a given order of the closure N, we sample BγM,τ, where M and τ are chosen, s.t. training the closure
for γ = 0 is numerically stable. Then BγM,τ is sampled for γ = 1e−1, 1e−2, 1e−3 using the same M and
τ. We partition the sampled data in 90% training and 10% test data.

The test accuracy of the input convex neural network (ICNN), and therefore structure preserving archi-
tecture, is compared with a non-convex ResNet architecture that serves as a baseline. The ICNN models
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Figure 5.3.: Comparison of ICNN- and ResNet-based M3 (a)-(f) and M4 (g)-(l) closures of different
regularization levels γ. The test errors of the ICNN model reduce heavily for increasing
γ, whereas ResNet test errors reduce only slightly by regularization. Results for M2 are
comparable.
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Table 5.2.: Mean test error (MSE), see Eq. (5.61) of neural network-based entropy closures of 10 exper-
iment repetitions each with less than 10% standard deviation. The regularization level with
the best result for each architecture and closure order is marked.

ICNN ResNet

closure γ eĥγ e(αγu)#
eu eĥγ e(αγu)#

eu

M2 0 1.45e−5 5.23e−3 1.17e−5 1.77e−5 4.28e−3 4.37e−6
M2 1e−3 1.02e−5 2.69e−3 8.87e−6 1.44e−5 2.57e−3 4.05e−6
M2 1e−2 1.34e−6 9.32e−5 7.81e−7 1.08e−6 7.78e−4 3.92e−6
M2 1e−1 1.24e−6 5.12e−5 1.71e−6 3.22e−5 3.57e−4 1.65e−5

M3 0 1.19e−4 4.05e−2 4.73e−5 3.92e−5 3.23e−2 1.04e−5
M3 1e−3 3.52e−5 9.21e−3 1.55e−5 2.55e−5 1.04e−2 9.44e−6
M3 1e−2 7.04e−6 3.61e−4 1.40e−6 4.40e−5 3.70e−3 1.28e−5
M3 1e−1 8.09e−6 2.03e−5 7.14e−7 1.50e−4 1.25e−3 4.51e−5

M4 0 1.65e−4 8.07e−2 9.88e−5 5.80e−5 1.64e−1 1.26e−5
M4 1e−3 1.12e−4 2.00e−2 2.69e−5 6.21e−5 6.71e−2 1.39e−5
M4 1e−2 1.01e−5 7.94e−4 2.76e−6 1.79e−4 1.12e−2 3.56e−5
M4 1e−1 8.87e−6 4.39e−5 1.46e−6 7.75e−4 2.79e−3 1.01e−4

consist of convex layers [208, 9] build from two weight matrices each, i.e.,

Nθ(u#) = zM,

zk = σk(Wz
k zk−1 +Wu

k u# + bk), k = 2, . . . ,M,

z1 = σ1(Wu
1 u# + b1),

(5.59)

where Wz
k has positive entries and σk is convex and non-decreasing, see §4 for implementation details.

The ResNet consists of dense layers with skip connection, i.e.,

Nθ(u#) = zM,

zk = σk(Wkzk−1 + bk) + zk−1, k = 1, . . . ,M,

z0 = u#.

(5.60)

We give an overview of the used layers and output dimension of the weight matrices of each layer as
well as the total number of learnable parameters in Table 5.1. For a given closure, the number of layers
and neurons are determined in an architecture search at γ = 0 and then fixed for all regularization levels
for comparability, and we see in Table 5.1, that the ICNN models require fewer parameters for similar or
better training performance.

Each model for each closure and regularization level is initialized with normally distributed weights and
then trained in single precision on an RTX3090 GPU for a total of 2000 epochs with a batch size of 256
on the loss function of Eq. (5.32), to ensure convergence. The experiment is repeated 10 times for each
closure, regularization, and model until the results have a standard deviation of less than 10%, i.e., a
total of 240 networks are trained. All following statements refer to the mean of the results for each case.
Table 5.2 displays the mean test errors of the training runs, i.e.,

eĥγ =
1

Ttest

∑
i∈Ttest

∥∥∥ĥγ((ui)#) − ĥp((ui)#)
∥∥∥2

2 , (5.61)
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Table 5.3.: Mean test error (MSE) of neural network-based entropy closures of 10 experiment repetitions
each with less than 10% standard deviation. Models of all regularization levels are tested
against data of the non-regularized closure to measure the combined regularization and net-
work approximation error, see Eq. (5.62). The regularized models with the least combined
error are marked.

ICNN ResNet

closure γ êγ
ĥ

êγ(αu)#
êγu êγ

ĥ
êγ(αu)#

êγu
M2 0 1.45e−5 5.23e−3 1.17e−5 1.77e−5 4.28e−3 4.37e−6

M2 1e−3 1.78e−4 1.68e−2 1.34e−5 9.33e−5 1.12e−2 7.94e−5
M2 1e−2 3.39e−3 2.76e−1 1.69e−4 3.44e−3 2.92e−1 1.09e−4
M2 1e−1 7.97e−2 1.13e−0 5.5e−3 7.7e−2 1.12e−0 8.83e−3

M3 0 1.19e−4 4.05e−2 4.73e−5 3.92e−5 3.23e−2 1.04e−5

M3 1e−3 2.01e−4 1.10e−1 2.01e−5 6.58e−5 1.32e−1 7.49e−5
M3 1e−2 3.84e−3 5.82e−1 9.45e−5 3.86e−3 5.7e−1 1.12e−4
M3 1e−1 7.47e−2 1.32e−0 3.06e−3 8.39e−2 1.32e−0 3.13e−3

M4 0 1.65e−4 8.07e−2 9.88e−5 5.80e−5 1.64e−1 1.26e−5

M4 1e−3 2.69e−4 4.07e−1 3.1e−5 2.12e−4 4.10e−1 2.48e−5
M4 1e−2 4.75e−3 1.29e0 6.11e−5 2.78e−3 1.15e0 1.04e−4
M4 1e−1 6.71e−2 1.85e0 1.73e−3 7.35e−2 1.83e0 3.06e−3

and analogously for eu and e(αγu)#
. Figure 5.3 shows the training performance for ICNN and ResNet ap-

proximations of entropy (left column), reduced Lagrange multiplier (middle column), and reconstructed
moment (right column) of the M3 and M4 closure for different regularization parameters. The plots dis-
play the best test error until the current epoch.
We can see, that the test error reduces by several orders of magnitude for larger values of γ for h, (αγu)#
as well as u# for the input convex network for the M2, M3 and M4 closure. The highly regularized mod-
els train until single precision floating point accuracy. We believe that the steeper slope of the entropy
function of the non-regularized problem is harder to approximate, see Fig. 5.1b. This trend is not as
pronounced for the ResNet approximations, where models exhibit inconsistent approximation perfor-
mance for ĥγ,(αγu)# and u. Furthermore, highly regularized ICNN approximations outperform ResNet
approximations by an order of magnitude, especially for M3 and M4 closures.

Finally, we measure the combined neural network approximation and regularization error in Table 5.3,
i.e.,

êγ
ĥ
=

1
Ttest

∑
i∈Ttest

∥∥∥ĥγ=0((ui)#) − ĥp((ui)#)
∥∥∥2

2 , (5.62)

and analogously for êγ(αu)#
. The error in the reconstructed moment is defined as

êγu =
1

Ttest

∑
i∈Ttest

∥∥∥ui − up
i

∥∥∥2
2 (5.63)

100



5.6. Numerical Results

Table 5.4.: Computational setup for the numerical test cases

Test-Case CFL t f ∆t ∆x

Linesource 0.3 0.75 1.68e−3 1e−2
Hohlraum 0.2 2 9.5e−4 7.5e−3

with up
=

〈
m exp

(
αp

u ·m
)〉

in the sense of Eq. (5.49). Since we have

〈
m exp(αu ·m)

〉
= u = uγ + γ

[
0,

(
αγu

)⊤
#

]
⊤ =

〈
m exp

(
αγu ·m

)〉
+ γ

[
0,

(
αγu

)⊤
#

]
⊤ (5.64)

using Eq. (5.49) and Eq. (5.48), the approximation error in u can be reformulated as∥∥∥u − up
∥∥∥ ≤ ∥∥∥u − uγ

∥∥∥ + ∥∥∥uγ − up
∥∥∥ ≤ γM +

∥∥∥uγ − up
∥∥∥ (Theorem 5.13) (5.65)

≤ γM +
∥∥∥u − uθ

∥∥∥ + γ ∥∥∥∥(αγu)#
−

(
αp

u

)
#

∥∥∥∥ (Eq (5.49)), (5.66)

where we can estimate
∥∥∥(αγu)# − (αp

u)#
∥∥∥ ≈ (e(αγu)#

)
1
2 and

∥∥∥u − uθ
∥∥∥ ≈ (eu)

1
2 . Comparing with the results

of Table 5.2 we see that êγu dominated by the regularization error, which is confirmed by the results of
Table 5.3.
Although regularization plays a dominant role in the moment error, remark that the error control of
the neural network, see Eq. (5.54), is only possible for regularized closures in the case of anisotropic
moments. Here, eu can be large in the non-regularized closure. A trade-off must be found between
approximation and regularization errors, see Table 5.5.

5.6.2. Linesource Test Case

The Linesource benchmark [79] is a torture test for numerical methods for kinetic equations and exposes
the advantages and disadvantages of different velocity space discretizations [30, 82, 101, 147, 183, 201].
Remark, that the goal of this section is not to improve the quality of the existing (regularized) MN

method itself, but to evaluate the approximation stability corresponding to the MN solution of the neural
network-based closure surrogate model under extreme conditions. The spatial-temporal discretization
is computed using a kinetic scheme of the open-source radiative transport package KiT-RT [147] and
available on GitHub4.

The physical setup is given by an initial pulse of particles distributed isotropically along an infinite
line in three-dimensional space. The particles travel through a homogeneous material medium with
a constant scattering cross-section σs. Since the Linesource problem is invariant to the third spatial
dimension, one typically considers the projected problem onto two-dimensional space, i.e., X ∈ R2 and
V =

{
v ∈ R2 : ∥v∥ ≤ 1

}
.

In this work, we consider the problem with an isotropic collision kernel, i.e. k(v, v′) = 1.0. The collision
operator is given by

Q( f )(v) =
∫

PR2S2
f (v∗) − f (v) dv∗. (5.67)

4https://github.com/CSMMLab/KiT-RT
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Figure 5.4.: Linesource test case, neural network-based M2 simulations (vertical and horizontal cross-
sections) in comparison to the (regularized) Newton-based closure. Each row denotes a reg-
ularization level. Columns (from left to right) denote rotated ICNN, ICNN, rotated ResNet,
and ResNet. Rotated ICNN captures the test-case dynamics best, whereas ResNet-based
simulations experience heavy artifacts. Remark the regularization error for γ > 0, that re-
sults in a lagging wave-front. The M3 and M4 closures yield similar results.
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(a) γ = 0, ICNN (b) γ = e−3, ICNN (c) γ = e−2, ICNN (d) γ = e−1, ICNN

(e) γ = 0, ResNet (f) γ = e−3, ResNet (g) γ = e−2, ResNet (h) γ = e−1, ResNet

Figure 5.5.: Linesource test case, neural network-based M2 simulations with rotated ICNN and ResNet-
based closures and increasing regularization. Rotated ICNN with captures the test-case dy-
namics well, whereas ResNet-based simulations experience heavy artifacts, especially in the
domain center. The M3 and M4 closures yield similar results.

The moment system then becomes

∂tu(t, x) + ∇x ·
〈
v ⊗m(v) f p

u,D

〉
=

〈
m(v)Q

(
f p
u,D

)〉
. (5.68)

Whereas the analytic initial condition is an isotropic Dirac pulse, for numerical simulations a steep
Gaussian is used as an approximation,

f (t = 0, x, v) =
1

4πϵ
exp

− ∥x∥224πϵ

 , ∀x ∈ X, v ∈ V, (5.69)

with ϵ = 0.0032. Thus, artifacts of the spatial discretization are avoided, whereas velocity artifacts
remain. The infinite physical domain is represented by a sufficiently large computational domain X =
[−1, 1]2, such that the wavefront never reaches the domain boundary. We use zero-value Dirichlet bound-
ary conditions. Lastly, the moments with respect to the velocity basis m(v) are computed to yield the ini-
tial conditions for the MN solver. The solver settings are displayed in Table 5.4.

The MN methods perform comparatively well in the Linesource test case [82] and accurately track the
wave-front, whereas linear Galerkin type closures as PN tend to oscillate and nodal methods as SN exhibit
ray effects. Note that the M2 closure, which we consider in the following, exhibits a standing wave in the
domain center, which is a model artifact of even order entropy closures. It is a region of interest to test
the neural network approximations since the standing wave displays an extreme case for Theorem 5.3,
where the re-scaled regularization error of see Theorem 5.13, i.e.,∥∥∥u − uγ

∥∥∥ ≤ γ ∥u0∥M. (5.70)

is big due to large u0, which is in O(100) during the first iterations of the simulation. This influences the
numerical error δ of Eq. (5.53) for the next iterations. Additionally, near the wavefront of the moving
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(a) Hohlraum Geometry

Region σt σs σa

white 0.1 0.1 0.0
red 100.0 95.0 5.0

green 100.0 90.0 10.0
blue 100.0 0.0 100.0
black 100.0 50.0 50.0

(b) Physical properties

0.0
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0.2

0.3

0.4

0.5

0.6

(c) S50 reference solution

Figure 5.6.: Hohlraum computational geometry (a), with inflow boundary conditions on the left face and
Dirichlet boundary conditions on all other faces. Physical properties of the color coded areas
of the Hohlraum geometry (b), and the reference solution computed with the ordinate S50
method (c).

particles, highly an-isotropic moments with large αγu appear, resulting in large regularization errors, and
potentially high network approximation errors.

In Figure 5.5, we compare neural network-based closures for different regularization levels as well using
Algorithm 5.2. Figure 5.4 displays the corresponding vertical and diagonal cross-sections alongside the
analytic solution and the cross-section of the Newton-based closure, as well as non-rotated network-
based closures.
The rotated ICNN closure indeed preserves the rotation-invariance of the solution, whereas the non-
rotated ICNN as well as the ResNet solution fail to maintain rotational invariance for γ = 0 and γ = 1e−3.
Furthermore, the approximation accuracy to the regularized Newton reference solution increases for
increasing regularization, which follows the increased training performance for these closures. However,
highly regularized solutions (Newton and neural network-based) deviate more from the analytic solution,
as the regularization reduces the speed of information transport.
The two right columns of Figure 5.4 show the simulation with a non-convex ResNet and rotated ResNet-
based closure, as well as their cross sections, respectively. Note, that the ResNet-based closure exhibits
severe artifacts in the center of the Linesource pulse for both rotated and non-rotated solutions. This can
be explained by the lack of convexity of the neural network approximation of the entropy functional and
thus lack of hyperbolicity of the moment system.

5.6.3. Hohlraum Test Case

The Hohlraum test case [51] is a simplified version of Hohlraum configurations used in nuclear fusion
devices. Originally proposed in [30] was a coupled system of radiative transfer and an energy equation
for the background material. A subsequently simplified version is described in [103, 49, 50], where
the nonlinear thermal absorption and re-emission of radiation are replaced by particle scattering. The
corresponding test-case design is displayed in Fig. 5.6Again we consider the slab geometry setting with
a collision operator given by

Q( f )(v) =
∫

PR2S2
σs(x)

[
f (v∗) − f (v)

]
dv∗, (5.71)

where the isotropic collision kernel k(x, v, v′) = σs(x) has a spatial dependence as specified in the color-
coded areas described in Fig. 5.6a and Table 5.6b. Collision and space dependent absorption σax mod-
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(a)
∣∣∣uICNN

0 − uNewton
0

∣∣∣ (b)
∣∣∣uS50

0 − uNewton
0

∣∣∣ (c)
∣∣∣uICNN

0 − uNewton
0

∣∣∣ 10 4

10 3

10 2

10 1

(d)
∣∣∣uS50

0 − uNewton
0

∣∣∣
Figure 5.7.: Norm differences of regularized M2 (a-b) and M3 (c-d) entropy closures with γ = 1e−3 to

a Newton and S50 reference. The network approximation error (a) and (c)) is much smaller
than the difference between MN and SN models (b) and (d).

eling yield the moment system

∂tu(t, x) + ∇x ·
〈
v ⊗m(v) f p

u,D

〉
=

〈
m(v)Q

(
f p
u,D

)〉
− σau, (5.72)

with collision operator Q is given by Eq. (5.71). We have σt = σa + σs. The reference solution for the
Hohlraum test case is a very high order nodal simulation, given by the discrete ordinates method of order
50, i.e. S50, [164] and displayed in Fig. 5.6c.

Simulation Quality of the regularized, ICNN-Based MN Method

All figures of the Hohlraum solution display the order zero moment u0(t f , x), which represents the scalar
flux of the solution. Figures displaying the error to the reference S50 solution show the pointwise l1
difference

e(t f , x) =
∣∣∣uref

0 (t f , x) − u0(t f , x)
∣∣∣ (5.73)

at final time t f of the given numerical method.

In Fig. 5.7, we compare the Newton-based, regularized MN simulation and the ICNN-based, regularized
MN simulation against the S50 reference solution for M2 and M3 with γ = 1e−3. One sees that the
difference between ICNN and Newton-based regularized M2 simulation is smaller than the l1 difference
between the Newton-based solution and the S50 reference solution. In the case of the regularized M3
closure, both errors are in the same order of magnitude.

Thus, we consider the l1 difference between the ICNN-based MN and the reference S50 simulation for
different closure and regularization levels. Figure 5.8 and Fig. 5.9 display the M2 closure based on the
non-rotated and rotated ICNN approximation, respectively. Figure 5.10 and 5.11 show the corresponding
evaluations of the ICNN-based M3 and M4 closures. We see that with increased closure order, the errors
in the streaming regions near the left side inflows are significantly reduced and the solution quality on the
right half of the simulation increases by almost an order of magnitude. Considering Fig. 5.10 and 5.11,
we further see that the difference to the S50 solution increases for γ = 0.1 in the M3 and M4 simulations
compared to smaller γ, which is an effect of the regularization error of the entropy closure. Theorem 1
of [7] recommends choosing γ ∈ O(∆x), i.e., in the same order of magnitude as the spatial resolution
of the simulation. Consequently, a trade-off between training performance and regularization error has
to be made when configuring a simulation: Higher order entropy closures yield lower differences to the
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(a) γ = 0 (b) γ = 1e−3 (c) γ = 1e−2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) γ = 1e−1

(e) γ = 0 (f) γ = 1e−3 (g) γ = 1e−2
10 4

10 3
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10 1

(h) γ = 1e−1

Figure 5.8.: ICNN-based M2 closures with different regularization (top row) and e(t f , x) (bottom row).
The non-regularized surrogate model performs best. Regularization errors manifest as arti-
facts near the left-hand side inflows of radiation, which overshadow neural network approx-
imation errors.

(a) γ = 0 (b) γ = 1e−3 (c) γ = 1e−2
0.0

0.1
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(d) γ = 1e−1

(e) γ = 0 (f) γ = 1e−3 (g) γ = 1e−2
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10 1

(h) γ = 1e−1

Figure 5.9.: Rotated, ICNN-based M2 closures with different regularization (top row) and e(t f , x) (bottom
row). The regularized model with γ = 1e−3 performs best.
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(a) γ = 0 (b) γ = 1e−3 (c) γ = 1e−2
0.0

0.1

0.2
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0.6

(d) γ = 1e−1

(e) γ = 0 (f) γ = 1e−3 (g) γ = 1e−2
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(h) γ = 1e−1

Figure 5.10.: ICNN-based M3 closures with different regularization (top row) and e(t f , x) (bottom row).
The γ = 1e−3 model has the smallest error. The heavily regularized model γ = 1e−1
displays artifacts in the absorption region on the right side of the domain.

(a) γ = 0 (b) γ = 1e−3 (c) γ = 1e−2
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(d) γ = 1e−1

(e) γ = 0 (f) γ = 1e−3 (g) γ = 1e−2
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10 3
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10 1

(h) γ = 1e−1

Figure 5.11.: ICNN-based M4 e(t f , x) (bottom row). The γ = 1e−2 model has the smallest error followed
by the γ = 1e−3 model, where regularization and neural network approximation errors have
the best trade-off.
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(a) P3 (b) P5 (c) P7
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Figure 5.12.: PN closures (top row) and their absolute difference to the S50 solution (bottom row). The
white areas in the solution plots denote unphysical negative solutions values. The PN clo-
sure displays higher numerical errors compared to SN and MN simulations with similar
degrees of freedom.

reference solutions, but are harder to train. Higher regularization increases training performance but
introduces the regularization error if γ is significantly bigger than the grid resolution. Table 5.5 shows
the best regularization level for each closure order and we see, that γ ∈ (1e−3, 1e−2) yields the best
results for ∆x = 7.5e−3. The displayed errors are computed as

erel,u0 =

∫
X

∥∥∥uref
0 (t f , x) − u0(t f , x)

∥∥∥
1 dx∫

X

∥∥∥uref
0 (t f , x))

∥∥∥
1 dx

, (5.74)

where uref
0 (t f , x) is the order zero moment of the S50 solution. Note that the neural network validation

results in Table 5.3 further support this regularization range.

Performance Comparison to the PN and SN Methods

Common other methods for radiative transport simulations are the PN and SN methods. The former
is a moment method with a different closure. Instead of using the minimal entropy closure, a simple
truncation closure is used, which yields a linear reconstruction of the kinetic density fu from the moment
basis,

fu(v) = u ·m(v). (5.75)

The PN closure can also be viewed as the special case of a quadratic entropy density η(g) = g2. Although
computationally highly efficient, the pitfalls of the PN method are oscillations and negative solutions,
which can be seen in Fig. 5.12. Furthermore, higher moment orders are required to ensure the same
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(a) S10 (b) S20 (c) S30
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Figure 5.13.: SN simulations (top row) and their absolute difference to the S50 solution (bottom row).
The numerical artifacts are so-called ray effects, which can be mitigated by very high order
SN schemes or diffusive rotation methods [31].

Table 5.5.: Relative integrated errors erel,u0 of ICNN-based entropy closures corresponding to the S50
Hohlraum simulation. Particularly higher-order closures benefit from regularized surrogate
models.

γ M2 M2, rotated M3 M4

0 7.058e−2 7.31e−2 3.60e−2 3.15e−2
1e−3 7.35e−2 7.05e−2 3.34e−2 2.06e−2
1e−2 7.18e−2 7.27e−2 3.86e−2 1.69e−2
1e−1 7.10e−2 7.73e−2 4.26e−2 3.12e−2

order of accuracy as MN closures. Figure 5.12 shows, that especially in the shielded regions on the right-
hand side of the computational domain the PN method experience higher numerical errors than the MN

simulation.
The SN method discretizes the velocity space directly using a quadrature rule. The resulting transport
system is of size equal to the number of quadrature points and the system’s equations are coupled only by
the collision operator. Consequently, the SN method has the lowest computational expense in comparison
with PN and MN systems of similar size. However, the required quadrature order for a high-quality
simulation is much higher than the moment order of PN and MN methods. Low-order SN methods
display numerical artifacts in the form of ray-effects [31], as seen in Fig. 5.13a, but very high-order
SN codes are typically used as reference models. The number of quadrature points scales quadratically
with the quadrature order since the velocity domain is a sphere in Rd, which results in a large system of
equations for high-order SN methods. On modern high-performance clusters, the performance bottleneck
is typically the memory footprint of the simulation.

109



5. Regularized, Neural Network-Based, Structure-Preserving Minimal Entropy Closures

102 103 104

time [s]

10 3

10 2

10 1

e r
el

,u
0

M 3
2 M 3

3NM2

NM3

NM4
S10

S20

S30

S40

P2 P3
P5 P7 P9

ours
reference

(a) erel,u0 vs sim. time

101 102 103

system size

102

103

104

tim
e 

[s
]

M 3
2

M 3
3

NM2

NM3
NM4

S10

S20

S30

S40

P2
P3

P5
P7

P9

ours
reference

(b) Sim. time vs system size

101 102 103

system size

10 3

10 2

10 1

e r
el

,u
0

M 3
2 M 3

3

NM2

NM3

NM4

S10

S20

S30

S40

P2 P3
P5 P7 P9

ours
reference

(c) erel,u0 vs system size

Figure 5.14.: Comparison of memory footprint, simulation wall-time, and relative simulation error of
PN , SN , MN and ICNN-based MN (denoted by NMN) solutions. Less is better. The neural
network-based MN method has a particularly small memory footprint, paired with a com-
petitive wall-time efficiency relative to the numerical error.

Thus a comparison between PN , SN , MN , and neural network-based MN methods needs to consider
computational time and memory footprint besides the difference to the reference solution. To this end,
we measure the wall-time of a Hohlraum simulation with the setup given by Table 5.4 for all previously
discussed non-regularized, regularized, and neural network-based MN , as well as the PN and SN methods.
Each simulation is computed on the same, isolated hardware, using a 16-core CPU with 64 GB Memory,
such that each test case fits entirely into the system’s memory. Figure 5.14 compares the computational
performance of all methods with different moment, respectively quadrature orders.
Note that the computation time and memory footprint of neural network-based MN methods only depends
on the size of the neural network, thus we only report the performance of one neural network-based
simulation per moment order, i.e., the best neural network-based run of the reported regularization levels.
The displayed errors are computed with Eq. (5.74). We denote the neural network-based methods by
NMN in the illustration. We see in Fig. 5.14a that the neural network-based entropy closure accelerates
the MN method to be computationally competitive, compared to the PN and SN methods. Note, that
simulation time is a function of the code. The KiT-RT framework is constructed such that spatial and
temporal discretizations use the same implementation across all macroscopic methods. However, remark
that an MN implementation leaves plenty of opportunities [141, 82] for advanced code optimization that
may improve the methods timings.
Figure 5.14b compares the size of the transport system and computational time of the different methods
showing that even for higher order closures, neural network-based MN methods have the same simulation
time as S20 simulations, whereas the memory footprint of the neural network-based MN method is smaller
by almost two orders of magnitude. Neural network-based entropy closure accelerates the Newton-based
MN method by more than an order of magnitude in terms of computational time, while keeping the
memory footprint the same. Figure 5.14c shows the simulation error over the system size of the different
methods. Here, the neural network-based M3 and M4 methods have the best trade-off between memory
footprint and simulation accuracy.

5.7. Chapter Conclusion

In this chapter, we addressed the key challenges and limitations of the neural network-based entropy
closure of the Boltzmann moment system.
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5.7.1. Summary

We have presented a framework for regularized, structure-preserving neural network surrogate models for
the minimal entropy closure of the Boltzmann moment system. Regularization addresses the challenge
of training and inference of neural network surrogates near the boundary of the realizable set, and thus
enables the creation of robust surrogates for high order closures in two and three spatial dimensions.
We have provided an error analysis of regularized network approximation and put it into context of
numerical errors of commonly used kinetic schemes for the Boltzmann equation. Rotational invariance
and normalization of the partially regularized entropy closure is used to provide a dimension reduction
technique and to improve simulation results. The presented methods are tested on a wide range of
synthetic and simulation test cases, with applications to radiation transport. We show that rotationally
invariant neural network surrogate models give good results even in the extreme Line-source test case.
The neural network-based entropy closure leads to a computationally competitive simulation method
with an advantageous trade-off between memory footprint and numerical error, compared to the spherical
harmonics, the traditional minimal entropy and the nodal method.

5.7.2. Limitations of the Approach

Although we were able to transfer most structural properties of the Boltzmann equation to our sur-
rogate model, invariance with respect to translations is lost due to the regularization of the entropy
closure. A practical shortcoming is that the rotated ICNN approach needs to evaluate the entropy of
each moment twice, thus introducing additional computational expense, compared to the non-rotated
closure.

The proposed entropy closures are limited to the linear Boltzmann equation with bounded velocity space.
The full Boltzmann Equation poses severe theoretical challenges for minimal entropy closures [125, 100]
and the methods are note directly applicable to this situation.

5.7.3. Future Work

Neural network architectures, which are rotation invariant by design [69, 179, 44], can be considered as
an alternative to the post-processing rotation proposed in this work. It needs to be investigated to which
extent input-convex, rotationally invariant neural networks can be constructed. Entropy closures can
be used for any truncated moment problem, i.e., it has a wide range of further application in statistics.
Further, the developed tools, especially the error control can be applied to any other convex function
approximation task.
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5.8. Additional Material

Statements of §5.2

We provide proof for Theorem 5.1. As a reminder, a sequence of probability densities fn converges in
distribution to f ∗,

⟨ fn(v)ϕ(v)⟩
n→∞
−−−−→

〈
f ∗(v)ϕ(v)

〉
, ∀ϕ ∈ Cb, (5.76)

where Cb denotes the set of bounded and continuous functions. If f ∗ is a Dirac distribution δ, then the
sequence fn converging in distribution is called a Dirac sequence.

Proof: (Theorem 5.1) Consider the fact [187, 52], that fu for u ∈ ∂R consists of a linear combination of
Dirac distributions for D = [0,∞) and V = S2. We show that the Maxwell Boltzmann entropy of a Dirac
sequence fn converging in distribution to δv∗ at any point v∗ ∈ V diverges to infinity. Consider

fn(v) = n1Bv∗
1
n

(v), n ∈ N (5.77)

where Bv∗
1
n
⊂ V is a subdomain of measure 1

n and 1(v) is the indicator function. Then fn is a Dirac

sequence, since

⟨ fn(v)⟩ = 1, ∀n ∈ N (5.78)

and

⟨ fn(v)ϕ(v)⟩
n→∞
−−−−→ ϕ(v = v∗) = ⟨δv∗(v)ϕ(v)⟩ ∀ϕ ∈ Cb (5.79)

For such a Dirac sequence, we investigate the limit

lim
n→∞

〈
fn(v) log fn(v) − fn(v)

〉
. (5.80)

Evaluating the Maxwell-Boltzmann entropy for fn using the transformation theorem yields〈
fn(v) log fn(v) − fn(v)

〉
=

∫
S2

n1Bv∗
1
n

(v) log n1Bv∗
1
n

(v) − n1Bv∗
1
n

(v) dv

=

∫
Bv∗

1
n

n log n dv − n
∫

Bv∗
1
n

1 dv

= log n − 1.

(5.81)

This term diverges to infinity as n→ ∞, which concludes the proof. □

Note, that the result depends on the choice of the velocity space V, the domain of the entropy density D,
and the choice of the entropy density η itself.
In the case of the normalized 1D M1 closure, we can specify the behavior of the entropy functional
h. Let α =

[
ϑ(β), β

]⊤, where we use Eq. (5.19). Consider −ϕ(α;ψ(β)) using Eq. (5.58), for |β| → ∞,
which is equivalent to u → ∂R. Here, we have V = [−1, 1] and m(v) = [1, v]. From Eq. (5.19) and
Eq. (1.62) we have, that the kinetic density fu with minimal entropy for the M1 1D closure takes the
form

fβ(v) =
eβv〈
eβv〉 . (5.82)
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Thus, fβ converges in distribution to δ±1 for β→ ±∞. Evaluating the entropy functional yields

〈
η( fβ)

〉
=

〈
eβv〈
eβv〉 log

(
eβv〈
eβv〉) − eβv〈

eβv〉〉
=β

eβ + e−β

eβ − e−β
+ log

(
β

eβ − e−β

)
− 2

(5.83)

Consider β > 0,

〈
η( fβ)

〉
=β

eβ + e−β

eβ − e−β
+ log (β) − log

(
eβ − e−β

)
− 2 (5.84)

and for β < 0 we get by inserting −1 in enumerator and denominator

〈
η( fβ)

〉
=β

eβ + e−β

eβ − e−β
+ log (−β) − log

(
−(eβ − e−β)

)
− 2 (5.85)

For large |β|, all terms except log(|β|)− 2 vanish, thus h diverges as log(|β|)− 2.

Statements of §5.3

We provide proof for Lemma 5.2, which is a tool for the elimination of the first degree of freedom of the
regularized entropy closure.

Proof: (Lemma 5.2) Under the assumption that m0(v) = 1, the first order optimality condition of the
partially regularized dual problem (5.17) leads to

∇αϕ
γ
(
αγu; u

)
= u −

〈
m exp

(
αγu ·m

)〉
+ γ

[
0,

(
αγu

)⊤
#

]⊤
= 0 . (5.86)

Inspecting the first element of u gives
〈
exp

(
αγu ·m

)〉
= u0(= 1). Thus,

1 =
〈
exp

(
αγu ·m

)〉
= exp

(
α
γ

u,0

) 〈
exp

((
αγu

)
#
·m#

)〉
, (5.87)

which, together with the definition of ϑ given in Eq. (5.20), proves the claim. □

We provide proof for Theorem 5.3, which gives the justification to work only on the reduced realizable set
of the regularized minimal entropy closure with the Maxwell-Boltzmann entropy.

Proof: (Theorem 5.3) We structure the proof to show the asserted statements one by one.
1. The first claim that

ϕ̂γ(β; w) = −1 − log
(〈

exp(β ·m#
〉)
+ β · w −

γ

2
∥β∥2 (5.88)

follows directly from the definitions of ϕ̂γ, ϕγ, and ϑ given in Eqs. (5.21), (5.18), and (5.20), respectively.
2. It is clear that ϕ̂γ is twice differentiable w.r.t. β. To show that ϕ̂γ is concave, we show that −ϕ̂γ is con-
vex. Since sums of convex functions are convex, we prove the claim by showing that log

(〈
exp(β ·m#

〉)
satisfies Jensen’s inequality, thus is convex. We prove Jensen’s inequality by using the monotonicity of
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the logarithm and Hölder’s inequality with 1/p = t and 1/q = (1 − t). Specifically, for t ∈ (0, 1) and
β1,β2 ∈ R

n−1, we have

log(
〈
exp((tβ1 + (1 − t)β2) ·m#)

〉
) = log(

〈
exp(tβ1 ·m#) exp((1 − t)β2 ·m#)

〉
)

≤ log(
〈
exp(β1 ·m#)

〉t 〈exp(β2 ·m#)
〉(1−t)) (Hölder’s ineq.)

= log(
〈
exp(β1 ·m#)

〉t) + log(
〈
exp(β2 ·m#)

〉(1−t))

=t log(
〈
exp(β1 ·m#)

〉
) + (1 − t) log(

〈
exp(β2 ·m#)

〉
).

Further, for γ > 0, ϕ̂γ is strictly concave since −γ2 ∥β∥
2 is strictly concave.

3. From the proof for 2., it is clear that −ϕ̂γ is still convex when γ = 0. Hence Ĥγ=0
n (β) is symmetric and

positive semidefinite and has non-negative eigenvalues. By definition, Ĥγ
n (β) can be written as

Ĥγ
n (β) = Ĥγ=0

n (β) + γI, (5.89)

which gives the eigenvalue relations in Eq. (5.23). The bound on the condition number is then a direct
consequence of the non-negativity of eigenvalues of Ĥγ=0

n (β).
4. Since ϕ̂γ is strictly concave, there exists a unique maximizer βγu#

that satisfies the first order optimality
condition, i.e.,

0 = ∇βϕ̂γ(βγu#
; u#) = u# −

1〈
exp(βγu#

·m#)
〉 〈

m# exp(βγu#
·m#)

〉
− γβγu#

= u# −

〈
m# exp(

[
ϑ
(
βγu#

)
,
(
βγu#

)⊤]⊤
·m)

〉
− γβγu#

.

(5.90)

On the other hand, the first order optimality condition of (5.17) is given by

0 = ∇αϕγ(αγu; u) = u −
〈
m exp(αγu ·m)

〉
− γ

[
0,

(
αγu

)⊤
#

]⊤
. (5.91)

From Eq. (5.90) and Lemma 5.2, it is straightforward to verify that [ϑ(βγu#
), (βγu#

)⊤]⊤ satisfies the opti-
mality condition in Eq. (5.91). The equivalence of αγu and [ϑ(βγu#

), (βγu#
)⊤]⊤ then follows directly from

the strict concavity of ϕγ, and the equivalence of objective function values is a direct consequence of the
definition of ϕ̂γ in Eq. (5.21).

Strict concavity of ϕγ: The Hessian of ϕγ is given by

Hγ :=
〈
m ⊗m exp(α ·m)

〉
+ γ

[
0 0
0 I

]
. (5.92)

We show that when γ > 0, α⊤Hγα > 0 for all α , 0. Since α⊤Hγα =
〈
(m · α)2 exp(α ·m)

〉
+ γ∥α#∥

2

and
〈
(m · α)2 exp(α ·m)

〉
≥ 0, it is clear that α⊤Hγα > 0 when α# , 0. Now let α# = 0, then α⊤Hγα =

α2
0
〈
exp(α0)

〉
> 0 for any α0 , 0, which concludes the proof. □

We provide proof for Lemma 5.5, which yields a scaling formula to recover the non-normalized closure
from the Lagrange multiplier of the normalized closure.

Proof: (Lemma 5.5) We structure the proof into three parts.
1. Let us define the reduced multiplier to moment map χ : Rn−1 → Rn as

χγ(β) =
〈
m exp

([
ϑ(β),β⊤

]⊤
·m

)〉
+ γ

[
0,β⊤

]⊤
. (5.93)
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We make use of the first order necessary condition of ϕ̂γ (β; w) at its optimal point (αγu,D)#, i.e., Eq. (5.26)
and get

u = χγ
((
αγu

)
#

)
(5.94)

Multiplication of both sides with u0 yields

u = u0u = u0χ
γ
((
αγu

)
#

)
=

〈
mu0 exp

([
ϑ
((
αγu

)
#

)
,
(
αγu

)⊤
#

]⊤
·m

)〉
+ γu0

[
0,

(
αγu

)⊤
#

]⊤
=

〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
·m

)〉
+ γu0

[
0,

(
αγu

)⊤
#

]⊤
,

(5.95)

which shows the assertion.
2. Expressing hγ, see Eq. (5.18), in terms of αγu then leads to

hγ(u) = u0 log u0 + u0α
γ

u · u −
〈
exp

(
αγu ·m

)〉
exp(log u0) −

u0 γ

2

∥∥∥∥(αγu)#

∥∥∥∥2

2

= u0ĥγ(u#) + u0 log u0 .
(5.96)

3. We show convexity of hγ(u) in u. We write the entropy functional of the statically, partially regularized
problem (5.11) as

hγorig(u) = αγu · u −
〈
exp(αum)

〉
−
γ

2

∥∥∥∥αγu,#∥∥∥∥2
. (5.97)

We show first the convexity of hγorig. To show convexity of hγorig, we notice

hγorig(u) = horig(u) −
γ

2

∥∥∥∥αγu,#∥∥∥∥2
, (5.98)

where horig(u) := hγ=0
orig(u), i.e., the expression equals the non-regularized entropy functional. Thus by

definition of the Legendre dual, we have:

hγorig,∗(α) = horig,∗(α) +
γ

2
∥α#∥

2 = ⟨η∗(α ·m)⟩ +
γ

2
∥α#∥

2 =
〈
exp (α ·m)

〉
+
γ

2
∥α#∥

2 (5.99)

where the last equality comes from using the Maxwell-Boltzmann entropy. The right hand side function
is clearly convex in α, and by Legendre duality, we conclude convexity of hγorig(u).
Then, we conclude convexity of ĥγorig(u#) = horig

γ(u). Afterward, we notice that

ĥγorig(u#) = ĥγ(u#) (5.100)

for normalized moments u, thus concluding convexity of the latter. Finally, convexity of hγ(u) is obtained
by convexity of ĥγ(u#) and [200, Theorem 3.1].

□

The validity of statement 1 of Lemma 5.5 is a feature of the dynamic regularization of the optimization
problem 5.24. From [208, 200, 8], it is known that for the non-regularized problem, we have the Lagrange
multiplier scaling relationships

αu =
[
ϑ
(
(αu)#

)
+ log(u0), (αu)⊤#

]⊤
, (5.101)

115



5. Regularized, Neural Network-Based, Structure-Preserving Minimal Entropy Closures

holds.
However, in the partially regularized closure with static regularization, the linear and exponential influ-
ence of the Lagrange multiplier in the reconstruction would prevent an equivalent exact scaling formula
for αγu with γ > 0, i.e.〈

m exp
([
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
·m

)〉
+γ

[
0,

(
αγu

)⊤
#

]⊤
=u0

〈
m exp

(
αγu ·m

)〉
+ γ

[
0,

(
αγu

)⊤
#

]⊤
,u0

(〈
m exp

(
αγu ·m

)〉
+ γ

[
0,

(
αγu

)⊤
#

]⊤)
=u0u = u.

(5.102)

We provide proof for Lemma 5.6

Proof: (Lemma 5.6) Consider the first-order necessary condition of the dual, partially regularized prob-
lem (5.17), i.e.,

∇αϕ
γ(α,u) = u −

〈
m exp(α ·m)

〉
− γu0

[
0,α⊤#

]⊤
, (5.103)

which equals zero at the optimal point αγu. Then, the total derivative of the entropy with respect to the
moments u is given by

∇uhγ(u) = αγu + ∇uα
γ
uu − ∇uα

γ
u
〈
m exp(αγu ·m)

〉
− γu0∇uα

γ
u[0,αγ,⊤u,# ]⊤ −

γ

2

[∥∥∥αγu#

∥∥∥2
, 0

]⊤
= αγu −

γ

2

[∥∥∥αγu#

∥∥∥2
, 0

]⊤
+ ∇uα

γ
u
(
u −

〈
m exp(αγu ·m)

〉
− γu0[0,αγ,⊤u,# ]⊤

)
= αγu −

[
γ

2

∥∥∥∥αγu,#∥∥∥∥2
, 0

]⊤
= α

γ
u,D

(5.104)

□

We provide proof for Theorem 5.7

Proof: (Theorem 5.7)We structure the proof into two parts.
1. We show entropy dissipation. Consider the flux function of the moment system,

F(u) =
〈
v ⊗m f γu,D

〉
(5.105)

with the ansatz function (5.34). By Lemma 5.5, hγ(u) is convex and thus a suitable entropy candidate.
We show the integrability condition for the entropy/entropy-flux pair hγ(u) and jγD(u) for each element
of jγD,i, i.e.,

∇u jγD,i(u) = ∇u
〈
viη

(
f γu,D

)〉
=

〈
η′

(
η′∗

(
αγu,D ·m

))
vimη′′∗

(
αγu,D ·m

)
∇uα

γ
u,D

〉
=

〈
αγu,Dvim ⊗mη′′∗

(
αγu,D ·m

)
∇u,Dα

γ
u,D

〉
(Legendre duality)

= ∇uhγ(u)
〈
vim ⊗mη′′∗

(
αγu,D ·m

)
∇uα

γ
u,D

〉
= ∇uhγ(u)∇uFi(u),

(5.106)

116



5.8. Additional Material

where we use Lemma 5.6, the ansatz (5.34), and the definition of the Maxwell-Boltzmann entropy η.
We multiply the moment system with ∇uhγ(u), i.e.,

∇uhγ(u)∂tu(t, x) + ∇uhγ(u)∇xF(u) = ∇uhγ(u)
〈
m(v)Q

(
f γu,D

)〉
= αγu,D

〈
m(v)Q

(
f γu,D

)〉
=

〈
αγu,Dm(v)Q

(
f γu,D

)〉
=

〈
η′

(
η′∗

(
αγu,D · m

))
Q

(
η′∗

(
αγu,D · m

))〉
(Legendre duality)

≤ 0 (H-Theorem + ansatz)

and obtain entropy dissipation.
2. We show the hyperbolicity of the system. Note, that hyperbolicity of the moment system follows from
the entropy dissipation property. Consider again the flux function of the moment system (5.105)

F(u) =
〈
v ⊗m f γu,D

〉
=

〈
v ⊗mη′∗

(
αγu,D ·m

)〉
(5.107)

We define the function ji,∗(α) = ⟨viη∗(α · m)⟩ and notice, that ∇α ji,∗
(
αγu,D

)
= Fi(u). Let us denote

Ji = ∆α ji,∗(α
γ
u,D). (5.108)

Furthermore, we consider the Hessian of hγ(u), i.e.

K = ∆uhγ(u) = ∇uα
γ
u,D, (5.109)

which is symmetric positive definite by the convexity of hγ(u). Now we rewrite Eq. (5.38)

∂tu + ∇x
〈
v ⊗m f γu,D

〉
=

∂tu +
d∑

i=1

JiK∂xiu =
〈
mQ

(
f γu,D

)〉
.

(5.110)

It is left to show that JiK is diagonalizable with real eigenvalues. Then

d∑
i=1

aiJiK, i = 1, . . . , d (5.111)

is diagonalizable with real eigenvalues and the system is hyperbolic.
Since K is symmetric and positive definite, we can write K1/2K1/2 = K and we have

JK = K−1/2K1/2JK1/2K1/2. (5.112)

Consequently, K1/2JK1/2 is similar to JK, i.e., it has the same eigenvalues. Since K1/2JK−1/2 is sym-
metric, JK is diagonalizable with real eigenvalues, which yields hyperbolicity of Eq. (5.38). □

We provide proof for Lemma 5.9.

Proof: (Lemma 5.9)
It has been shown that the entropy functional of the regularized and non-regularized entropy closure is
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invariant under rotations [126, 7], i.e., h(Ru) = h(u) and hγ(Ru) = hγ(u). We consider the regularized
entropy functional of the rotated moment, which is given by

hγ(Ru) = αγRu · Ru −
〈
η′∗

(
αγRu · Rm

)〉
−
γ

2
αγRu · α

γ
Ru, (5.113)

where αRu is the Lagrange multiplier of Ru. It’s straightforward to verify that the choice αRu = Rαu
leads to hγ(Ru) = hγ(u). Strict convexity of the entropy functional and the bijection u 7→ αu ensure the
uniqueness of this choice. The non-regularized case follows immediately for γ = 0. □

Note that intuitively, for D = [0,∞) and V = S2, in the partially regularized closure, all moments with
u0 ≥ 0 are feasible. The order zero moment u0 is not affected by rotations, i.e., the corresponding entry
of the rotation matrix is 1. Thus rotation does not affect the feasibility of a moment.
We provide proof for Theorem 5.11

Proof: (Theorem 5.11) Assume a rotation-invariant approximation to the entropy closure with approx-
imated Lagrange multiplier αp

u. Using Eq. (5.95) of the proof of Lemma 5.5 we rewrite the moment u
as

u =
〈
m exp

([
ϑ
((
αp

u

)
#

)
+ log(u0),

(
αp

u

)⊤
#

]⊤
·m

)〉
+ γu0

[
0,

(
αp

u

)⊤
#

]⊤
=uγ + γu0

[
0,

(
αp

u

)⊤
#

]⊤
,

(5.114)

where the moment with regularization error is defined as

uγ =
〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0), (αγu)⊤#

]⊤
·m

)〉
(5.115)

and have f p
u = u0 f p

u . Consider the rotated moment system

0 = R
(
∂tu + ∇x ·

〈
v ⊗m f p

u,D

〉
−

〈
mQ

(
f p
u,D

)〉)
= R

(
∂tuγ + ∂tγu0

[
0,

(
αp

u

)⊤
#

]⊤
+ ∇x ·

〈
v ⊗mu0 f p

u,D

〉
−

〈
mQ

(
u0 f p

u,D

)〉)
(Eq. (5.114))

= ∂tRuγ + ∂tγu0

[
0,

(
αp

Ru

)⊤
#

]⊤
+ ∇x ·

〈
v ⊗mu0 f p

Ru,D

〉
−

〈
RmQ

(
u0 f p

u,D

)〉
(Lem. 5.8, 5.9)

= ∂tRuγ + ∂tγu0

[
0,

(
αp

Ru

)⊤
#

]⊤
+ ∇x ·

〈
v ⊗mu0 f p

Ru,D

〉
−

〈
mQ

(
u0 f p

Ru,D

)〉
([7, 160])

= ∂tRu + ∇x ·
〈
v ⊗m f p

Ru,D

〉
−

〈
mQ

(
f p
Ru,D

)〉
(Eq. (5.114)),

(5.116)

which yields the assertion. Note, that the order zero moment u0 is invariant with respect to rotations,
since we have R1, j = δ1, j and Ri,1 = δ1,i. □

We provide proof for Theorem 5.12.

Proof: (Theorem 5.12) By assumption, Nθ is convex in u# = ⟨m#(v) f (v)⟩ for restriction of the velocity
variable onto V1,+ and V1,−. Thus ĥp|V− and ĥp|V+ are convex, respectively.
Consider Algorithm 5.2. First, we notice, that normalization and re-scaling are invariant under rotations
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since we have R1, j = δ1, j and Ri,1 = δ1,i. We have the following relation between the moments u+ and
u−,

u− = R±u+, and u+ = R⊤±u−, (5.117)

where R± rotates a moment u by 180 degrees in the v1, v2 plane of V, so the moments are "mirrored".
Note that R⊤± = R±. We have RV1,− = R±RV1,+ .
1. The function

ĥp,sym(u#) =
1
2

(
ĥp

((
RV1,−u

)
#

)
+ ĥp

((
RV1,+u

)
#

))
(5.118)

is convex for all u, since ĥp|V− and ĥp|V+ are convex. Further, a concatenation of a linear and a convex
function is convex and the average of convex functions is convex.
2. Consider αp,sym

u ,

α
p,sym
u =

[
ϑ
((
α

p,sym
u

)
#

)
,
(
α

p,sym
u

)⊤
#

]⊤
(5.119)

with

(αp,sym
u )# = ∇u# ĥp,sym(u#) =

1
2

(
du+#
du#

du−#
du+#

dĥp

du−#
(u−# ) +

du+#
du#

dĥp

du+#
(u+# )

)
=

1
2

(
R̃⊤V1,+

R̃⊤±
dĥp

du−#
(u−# ) + R̃⊤V1,+

dĥp

du+#
(u+# )

)
=

1
2

(
R̃⊤V1,+

R̃⊤±
(
αp

u−
)
#
+ R̃⊤V1,+

(
αp

u+
)
#

)
(5.120)

where we denote

R̃i, j = Ri+1, j+1, ∀i, j = 1, . . . , n − 1 (5.121)

as the Rotation matrix acting on the truncated Lagrange multiplier and remark that R1, j = δ1, j and
Ri,1 = δ1,i. This justifies the first 6 steps of the algorithm.
We directly see, that

α
p,sym
u =

[
ϑ
((
α

p,sym
u

)
#

)
,
(
α

p,sym
u

)⊤
#

]⊤
(5.122)

is indeed an approximation to αγu, since

(
αp

u−
)
#
≈

(
αγ

u−
)
#
, and

(
αp

u+
)
#
≈

(
αγ

u+
)
#

(5.123)
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by construction. Furthermore,

ϑ
((
α

p,sym
u

)
#

)
=ϑ

(
1
2

(
R̃⊤V1,+

R̃⊤± (αp
u−

)# + R̃⊤V1,+
(αp

u+
)#
))

= − log
(〈

exp
(
1
2

R̃⊤V1,+
R̃⊤± (αp

u−
)# ·m(v)#

)
exp

(
1
2

R̃⊤V1,+
(αp

u+
)# ·m(v)#

)〉)
= − log

(〈
exp

(
1
2

R̃⊤V1,+
R̃⊤± (αp

u−
)# · R̃⊤V1,+

R̃⊤±m(TR̃⊤±
TR̃⊤V1,+

v)#

)
exp

(
1
2

R̃⊤V1,+
(αp

u+
)# · R̃⊤V1,+

m(TR̃⊤V1,+
v)#

)〉)
≈ − log

(〈
exp

(
1
2

R̃⊤V1,+
R̃⊤± (αγ

u−
)# · R̃⊤V1,+

R̃⊤±m(TR̃⊤±
TR̃⊤V1,+

v)#

)
exp

(
1
2

R̃⊤V1,+
(αγ

u+
)# · R̃⊤V1,+

m(TR̃⊤V1,+
v)#

)〉)
= − log

(〈
exp

(
1
2

R̃⊤V1,+
(αγ

u+
)# · R̃⊤V1,+

m(TR̃⊤V1,+
v)#

)
exp

(
1
2

R̃⊤V1,+
(αγ

u+
)# · R̃⊤V1,+

m(TR̃⊤V1,+
v)#

)〉)
= − log

(〈
exp

(
R̃⊤V1,+

(αγ
u+

)# · R̃⊤V1,+
m(TR̃⊤V1,+

v)#

)〉)
= − log

(〈
exp

(
(αγu)# ·m(v)#

)〉)
=ϑ

((
αγu

)
#

)
,

(5.124)

which gives the reconstruction of the first element of the Lagrange multiplier.
We show rotational invariance. Consider αp,sym

Ru for some rotation matrix R. Defining û = Ru

(
α

p,sym
Ru

)
#
=

(
α

p,sym
û

)
#
=

du#

dû#

dĥp,sym

du#

(
Ru#

)
= R̃

1
2

(
R̃⊤V1,+

R̃⊤±
(
αp

u−
)
#
+ R̃⊤V1,+

(
αp

u+
)
#

)
=

(
R̃αp,sym

u

)
#
,

(5.125)

thus we have an approximation for the reconstruction of the first element of the Lagrange multiplier.
The same argument holds for ϑ

(
(αp,sym

Ru )#
)
. Naturally log(u0) as well as

∥∥∥(αp
u)#

∥∥∥ in the ansatz for αp
u,D is

invariant under rotations.
This yields a rotation-invariant approximation in the sense of Definition 5.10. □

Statements of §5.5

We provide proof for Theorem 5.13.

Proof: (Theorem 5.13) Let (αγu) ∈ BγM, i.e.,
∥∥∥(αγu)

∥∥∥ ≤ M. Consider u, see Eq. (5.48), and uγ, see
Eq. (5.49), which directly yields∥∥∥u − uγ

∥∥∥ = ∥∥∥∥∥u0γ
[
0,

(
αγu

)⊤
#

]⊤∥∥∥∥∥ = u0γ
∥∥∥∥(αγu)#

∥∥∥∥ = u0γM. (5.126)
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We consider now the difference between uγ and uγD, see Eq. (5.50), which gives

∥∥∥uγ − uγD
∥∥∥ = ∥∥∥∥∥∥

〈
m exp

([
ϑ
((
αγu

)
#

)
+ log(u0),

(
αγu

)⊤
#

]⊤
·m

)〉 (
exp(0) − exp

(
−
γ

2

∥∥∥∥(αγu)#

∥∥∥∥2))∥∥∥∥∥∥
=u0

∥∥∥uγ
∥∥∥ ∥∥∥∥∥(1 − exp

(
−
γ

2

∥∥∥∥(αγu)#

∥∥∥∥2))∥∥∥∥∥
≤u0

∥∥∥uγ
∥∥∥ ∥∥∥∥∥(1 − exp

(
−
γ

2
M2

))∥∥∥∥∥
≤u0n

∥∥∥∥∥(1 − exp
(
−
γ

2
M2

))∥∥∥∥∥
(5.127)

where the last inequality follows from
∥∥∥uγ

∥∥∥ ≤ n, since uγ ∈ R ∈ Rn. The error estimate of
∥∥∥u − uγD

∥∥∥
follows by the triangle inequality. □
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CHAPTER 6

Neural Network-Based Continuum Breakdown Prediction in Multi-Scale
Flows

In this chapter, we present a neural network based binary classifier to detect near-equilibrium
and non-equilibrium regimes of gaseous flows based on local flow conditions. We draw on
the minimal entropy closure and the Chapman-Enskog ansatz for hydrodynamic equations to
construct a robust data generator for the binary classifier, which is superior to simulation-
based sampling. An adaptive fluid-kinetic solver is constructed with the neural network-based
regime prediction and validated in multi-scale and non-equilibrium flow physics. The neural-
network classifier is compared to a traditional prediction of the continuum breakdown and
shows significant improvement in a series of test cases.

6.1. Introduction

The non-linear Boltzmann equation is a powerful tool to model multi-scale gas dynamics from continuum
to rarefied gas regimes. Flow regimes are often categorized according to the Knudsen number, which
is defined as the ratio of molecular mean free path to a characteristic length scale. With the variation
of Knudsen number, the domain of flow physics can be qualitatively divided into the continuum (Kn <

0.001), slip (0.001 < Kn < 0.1), transition (0.1 < Kn < 10), and free molecular, i.e., rarefied regimes,
(Kn > 10) [227]. The Knudsen number indicates the relative importance between individual particle
transports and their collective dynamics. Multi-scale simulations consider physical scenarios, where a
wide range of Knudsen numbers appear, for example in hypersonic flight [86], gas turbine flows, and
turbulent combustion [63] and hypersonic re-entry conditions [98]. The multi-scale nature of rarefied
gaseous flows poses tremendous difficulties for theoretical and numerical analysis and is challenging to
compute efficiently. Limited computational resources typically prohibit a full kinetic simulation of the
scenario.
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6.1.1. Numerical Methods for Different Gas Regimes

Different governing equations are routinely established to describe the fluid motions at different scales.
As an example, in rarefied gas where Kn is of O(1), the particle transport and collision processes are
distinguishable and can thus be modeled by two independent operators in the Boltzmann equation. The
direct Boltzmann solvers employ a discretized velocity phase space to compute transport and collision
terms respectively, in analogy to the SN method for the linear Boltzmann equation, see §1.2.1. An al-
ternative methodology is the direct simulation Monte Carlo (DSMC) method [21], which mimics the
probability distribution function with a large number of test particles and the collision term is calculated
statistically.
In another limit with asymptotically small Kn, the Euler and Navier-Stokes equations are used to de-
scribe collective behaviors of fluid elements at a macroscopic level. It is worth mentioning that there
is no quantitative description of the scale of a fluid element. Usually, it refers to a macroscopically in-
finitesimal concept, where the flow variables inside the element can be considered almost constant. With
a high amount of intermolecular collisions, the fluid inside an element is considered to be in local ther-
modynamic equilibrium. On the other hand, the compressible Navier-Stokes solvers are mostly based
on the Riemann solvers for inviscid flux and the central difference method for viscous terms. Only the
macroscopic flow variables are tracked in the simulation.
In the continuum regime, it is feasible to employ computationally far more efficient macroscopic gas
descriptions as Navier-Stokes, due to a drastically reduced number of degrees of freedom. As the Knud-
sen number increases, traditional Navier-Stokes equations fail, and gas kinetic equations are required to
model the flow.
The well-known Chapman-Enskog expansion bridges the mesoscopic,i.e., kinetic and macroscopic [42]
equations, where the Euler and Navier-Stokes equations can be derived from the asymptotic limits of ex-
pansion solutions of the Boltzmann equation. Although the hydrodynamic equations are based on first-
principle modeling, the Chapman-Enskog ansatz provides a rigorous criterion to define their validity. In
other words, the usage of hydrodynamic equations incorporates the assumption that the Chapman-Enskog
solution is a proper approximation of the particle distribution function. However, this judgment cannot
be verified in a macroscopic fluid simulation since the information on particle distribution functions has
already been filtered in the coarse-grained modeling. Often, this leads to a misuse of the Navier-Stokes
equations in simulation practice, when a local flow regime does not satisfy the continuum assumption
anymore.
In typical gas simulations, the full kinetic model is only necessary for small parts of the computational
domain, and the continuum assumption enables the use of efficient macroscopic models everywhere else,
which motivates the use of adaptive fluid-kinetic solvers. The success of an adaptive flow solver relies
on accurate prediction of the flow regimes.

6.1.2. Related Work on Flow Regime Classification

Different criteria have been proposed to predict the failure of continuum mechanics and construct the cor-
responding multi-scale numerical algorithms. Bird [21] proposed a parameter

P =
∂t(ln ρ)
ν

(6.1)

for the DSMC simulation of expansion flows, where ρ is gas density and ν is collision frequency, and the
breakdown threshold of translational equilibrium is set as P = 0.05.
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Boyd et al. [26, 220] extended the above concept to a gradient-length-local Knudsen number

KnGLL =
ℓ

I
|∇xI|, (6.2)

where ∇xI is a local gradient, ℓ is the local molecular mean free path and I is a scalar quantity of interest,
e.g. the local macroscopic density ρ, with the critical value being C = 0.05. Garcia et al. [81] proposed
a breakdown parameter based on dimensionless stress τ∗ and heat flux q∗, i.e.,

B = max(|τ∗|, |q∗|), (6.3)

with the switching criterion of B = 0.1.
Levermore et al. [162] developed a criterion based on moment realizability of the minimal entropy clo-
sure for the Boltzmann moment system to estimate the validity of the Navier Stokes description of the
flow field. The so-called validity matrix VNS based on the first order moments, i.e., the macroscopic
velocity of the gas, is constructed, which needs to have non-negative eigenvalues to correspond to posi-
tive kinetic densities f . Deviation of VNS from the identity matrix is used as a measure of the physical
accuracy of the Navier-Stokes simulation.
Recently, data-driven flow-regime classification techniques have emerged [204], where the authors de-
velop an adaptive gas-kinetic solver based on the Navier Stokes and DSMC method. For given macro-
scopic solution variables, the corresponding kinetic density is approximated by a Gaussian process.

6.1.3. Novelty and Scientific Contribution

In this chapter we employ neural networks based classifier of the most probable flow regime based on
local flow conditions. The inputs of the neural network are given by the macroscopic variables of the
current grid cell, their spatial slopes, and the local collision time.
We extend the minimal entropy-based data-generation strategy of §4 and §5 to the gas-kinetic context
and construct a simulation independent data-sampler to sample particle distributions near and out of
equilibrium of the Boltzmann equation. Based on kinetic solutions, the ground-truth labels are rigor-
ously determined by the deviation between the particle distribution functions and the Chapman-Enskog
solutions. Based on the neural classifier, we develop a multi-scale adaptive method, which realizes a
dynamic adaptation of flow regimes and fuses the continuum and kinetic solutions seamlessly.
The closest related works are [204, 162]. In contrast to [204], this work does not directly approximate
the Lagrange multipliers of the minimal entropy closure for an unbounded velocity space V, which may
lead to numerical instabilities due to the Junk-Line [125], but gives a direct regime classification. The
work of Levermore [162] relates to ours since we use moment realizability to sample distributions near
the continuum breakdown, but the neural network uses other parameters as the slopes of the macroscopic
variables to compute the regime classification.
This chapter is based on a collaboration with Tianbai Xiao and Martin Frank, where the authors contri-
bution focuses mainly on the data-generation strategy. The work is currently under review in the Journal
of Computational Physics and the preprint is available on ArXiv [241]. The code for the data genera-
tor, adaptive solver and the neural network implementation is available in the open source repositories
KiT-RT1 [147] and kinetic.jl2 [239].

1https://github.com/CSMMLab/KiT-RT
2https://xiaotianbai.com/Kinetic.jl/dev/
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6. Neural Network-Based Continuum Breakdown Prediction in Multi-Scale Flows

6.1.4. The Chapter in Context of the Dissertation

This Chapter is an extension of the data-generation strategies of §4 and §5. We leverage the gained
insights of the minimal-entropy closure, its data-structure, and in connection with equilibrium solutions
of the Boltzmann Equation, we establish the data-generation strategy of this chapter. The resulting adap-
tive solver is a combination of a discrete ordinates discretization method of the non-linear Boltzmann
Equation and the Navier-Stokes equation, a moment system with a specific closure. Thus, the chap-
ter can be viewed as an excursion to the domain of compressible fluid mechanics, where we apply our
findings of minimal-entropy closures to build efficient neural network based, hybrid numerical meth-
ods.

6.1.5. Organization of the Chapter

The paper is organized as follows. In §6.2, we introduce some fundamental concepts in the kinetic theory
of gases, the Chapman-Enskog expansion, and the Navier-Stokes equation. §6.3 presents the idea and
design of the neural network architecture and §6.4 introduces the strategy for generating data in training
and test set. §6.5 details the numerical algorithm of the adaptive solver incorporated with the neural
network classifier. In §6.6 we present several numerical test cases to validate the new method against
kinetic reference simulations and KNGLL-based adaptive simulations.

6.2. Kinetic Gas Dynamics

6.2.1. The Non-linear Boltzmann Equation

We reconsider the Boltzmann equation (1.1) for an unbounded velocity domain V = Rd in d spatial
dimensions with a non-linear collision operator that models interactions between particles based on the
hard spheres model. Then, the Boltzmann equation describes the time-space evolution of a particle
distribution function f (t, x, v) in dilute monatomic gas, i.e.,

∂t f + v · ∇x f = Q( f , f ) (6.4)

The Boltzmann equation depicts a physical process with increasing physical, i.e., decreasing mathemat-
ical entropy. The H-theorem indicates that the (mathematical) entropy is a Lyapunov function for the
Boltzmann equation and the logarithm of its minimizer must be a linear combination of the collision
invariants [25, 160], see Definition 1.3. The equilibrium solution of the Boltzmann equation related to
minimal (mathematical) entropy is the Maxwellian distribution function,

M(ρ,U,T )(v) := ρ
( m
2πkT

)3/2
exp

(
−

m
2kT

(v − U)2
)
, (6.5)

where m is molecular mass, U is macroscopic fluid velocity, T is temperature, and k is the Boltzmann
constant.
The macroscopic conservative flow variables can be obtained by taking moments from the particle dis-
tribution function over velocity space, i.e.,

u =
[
ρ, ρU⊤, ρE

]⊤
=

∫
V

fϕ dv, (6.6)

126



6.2. Kinetic Gas Dynamics

where ρE = ρ |U|2 /2+ρe, e is the internal energy per unit mass, and ϕ is the vector of collision invariants,
i.e.

ϕ =
[
1, v⊤, |v|2 /2

]⊤
. (6.7)

For an ideal gas, the internal energy is related to temperature as ρe = 3
2ρ/mkT . Taking moments of the

Boltzmann equation with respect to collision invariants yields the transport equations for conservative
variables,

∂tu +
∫

V
ϕv · ∇x f dv = 0, (6.8)

where the right-hand side vanishes due to the collision invariants. The moment system reads,

∂tρ + ∇x · (ρU) = 0,

∂t(ρU) + ∇x · (ρU ⊗ U) = ∇ · P,
∂t(ρE) + ∇x · (ρEU) = ∇ · (P · U) − ∇ · q,

(6.9)

where the stress tensor P and heat flux q are defined as,

P =
∫
V

(v − U)(v − U) f dv, q =
∫
V

1
2

(v − U)(v − U)2 f dv. (6.10)

It is clear that the flux terms in the above equations are one order higher than the leading terms, which
leads to the well-known closure problem [160], see §1.2.2. From §1.3, we know that different closure
strategies result in vastly different macroscopic transport equations.

6.2.2. The Chapmann-Enskog Expansion

In the following, we briefly show the methodology of Chapman-Enskog ansatz, where the Navier-Stokes
equations can be derived from the asymptotic solution of the Boltzmann equation. With the introduction
of the following dimensionless variables

x̃ =
x
L0
, t̃ =

t
L0/V0

, ṽ =
v

V0
, f̃ =

f
n0V3

0

, (6.11)

where V0 =
√

2kT0/m is the most probable molecular speed, the Boltzmann equation can be reformulated
as

∂t f̃ + ṽ · ∇x̃ f̃ =
1

Kn
Q( f̃ , f̃ ). (6.12)

The Knudsen number is defined as

Kn =
V0

L0ν0
=
ℓ0

L0
, (6.13)

where ℓ0 and ν0 are the molecular mean free path and mean collision frequency in the reference state.
For brevity, we drop the tilde notation to denote dimensionless variables henceforth.
Based on a small Knudsen number Kn = ε, the Chapman-Enskog expansion approximates the particle
distribution function [42] as

f ≃ fε =
∞∑

n=0

εn f (n), f (0) :=M(ρ,U,T ). (6.14)
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6. Neural Network-Based Continuum Breakdown Prediction in Multi-Scale Flows

Truncating the above expansion to the first non-trivial order, substituting it into Eq. (6.12) and projecting
the kinetic system onto the hydrodynamic level, i.e., computing its moments, one can derive the Navier-
Stokes equations. We refer the reader for a complete derivation to the literature [138]. The expansion
solution for the Navier-Stokes regime writes

fNS, Boltzmann =M

(
1 −

2κ
5Rp

(
c2

2RT
−

5
2

)
c · ∇x(ln T ) −

µ

RT p

(
c ⊗ c −

1
3

c2I
)

: ∇xU
)
, (6.15)

where c = v−U is the peculiar velocity, and I is the identity tensor, R is the gas-constant and p is pressure.
The viscosity µ and heat conductivity are determined by specific molecule models. For example, the
viscosity coefficient for hard-sphere molecules takes the form

µ = µ0

(
T
T0

)ω
, (6.16)

where the power index ω needs to be calibrated for different substances, and the heat conductivity is
linked by the Prandtl number Pr = cpµ/κ where cp is the specific heat of the gas at a constant pressure.
Lastly, one can approximate the collision time, i.e., the inverse of the collision frequency, τ = 1/ν using
the hard-sphere model [42, 20].

6.3. Neural Network-based Flow Regime Classification

Neural network-based surrogate models can provide an alternative for hand-crafted criteria to classify
the continuum breakdown regions of a flow field, see e.g. §6.1.2. The idea is to train a neural network Nθ

with variables θ to predict the local flow regime at the cell interface of two neighboring grid cells, based
solely on the macroscopic variables, their slopes, and mean collision time, i.e.,

Pr̂ = Nθ(Q), with Q =
[
u⊤,∇xu⊤, τ

]
. (6.17)

´The output Pr̂ denotes the likelihood for the current cell to be in a non-equilibrium regime. The neu-
ral network employs the sigmoid function as activation in the last layer, and thus the output satisfies
Pr̂ ∈ [0, 1] naturally. With the floor function,Pr̂ is transformed into a regime prediction r̂, where 1 de-
notes rarefied (non-equilibrium) and 0 denotes continuum (near-equilibrium) regime.
For a given kinetic density function fref , the true flow regime label r ∈ {0, 1} is defined as

r =

1, d > ϵ
0, d ≤ ϵ

, d =
DKL( fNS, fref)

ρ
, (6.18)

where DKL denotes the Kullback-Leibler divergence of the reference particle distribution function and
the reconstructed Navier-Stokes distribution, which is normalized by macroscopic density ρ. Follow-
ing the Chapman-Enskog ansatz, the Navier-Stokes distribution function fNS can be constructed using
Eq. (6.15) for a given reference kinetic solution fref . The macroscopic quantities in the above equations
can be obtained by taking moments of fref in Eq. (6.6), and the collision time τ = 1/ν can be derived
from the hard-sphere model.
Thus one may understand the neural networks’ internal mechanism as an implicit reconstruction of the
most probable kinetic solution, which is then compared to the Chapman-Enskog solution to determine
the flow regime. The surrogate model provided by the neural network bridges macroscopic variables and
flow regimes directly. Compared with classical criteria for continuum breakdown, no hand-crafted and
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semi-empirical expansions are needed from asymptotic theory.
For this binary classification task, we employ the binary cross-entropy as a loss function, i.e.,

L = −
1
T

∑
i∈T

ri · log r̂i + (1 − ri) · log (1 − r̂i) , (6.19)

where r̂ is the model output, r is the ground truth regime value, and T denotes the size of the training
set. The cross-entropy is equivalent to fitting the model using maximum likelihood estimation. Thus,
the Kullback-Leibler divergence between the empirical distribution of training data and the distribution
induced by the model is minimized.

6.4. Data Generation Strategies

As presented in Eq. (6.18), the information of exact particle distribution functions fref is needed to com-
pute macroscopic quantities Q and regime labels. We define the sampling space of fref as

Fϕ = { f (v) > 0 : |⟨ϕ f ⟩| < ∞} , (6.20)

which corresponds to the solution space of the minimal entropy closure (1.50), for the Maxwell-Boltzmann
Entropy and a moment basis m consisting only of the collision invariants ϕ.
Any strategy to sample data from Fϕ creates a data-distribution Px implicitly, which influences the train-
ing and test performance of the neural network, see §4.4. The goal of neural network-based classifier
is to find a decision boundary between the near-equilibrium and non-equilibrium regimes. To this end
we need to systematically create a data-distribution Px that generates enough samples near the boundary
between regimes. Similar to in §4.4, the baseline strategy is to sample data by kinetic simulations, which
comes at the disadvantage of test case specific sampling bias and computational expense of a full kinetic
solver.

6.4.1. Systematic Sampling of the Kinetic Density

Building upon the results of §4, we leverage the minimal entropy closure (1.52) and its reconstruction
ansatz

fref = η
′
∗(α ·m(v)), (6.21)

for some Lagrange multiplier α to systematically compute kinetic densities near and far away from m
equilibrium solutions. We consider the non-linear Boltzmann equation for gas dynamics, thus the suitable
choice for the entropy density is the Maxwell Boltzmann entropy [125],

η( f ) = f log( f ) − f , η′( f ) = log( f ), η∗(z) = exp(z), η′∗(z) = exp(z). (6.22)

We choose the basis m of V in a way that the first three moments coincide with the conservative variables
of the Navier-Stokes equations in Eq. (6.6),i.e.,

m(v) = [ϕ⊤, . . . ]⊤. (6.23)

Remark, that we adapt Fϕ of Eq. (6.20) accordingly to Fm if we extend m.
We sample the corresponding Lagrange multipliers α to generate fref , using Eq. (6.21). This ansatz is able
to reconstruct the Maxwellian of Eq. (6.5), i.e., equilibrium distribution, with

M(ρ,U,T )(v) = exp (α · ϕ(v)) , (6.24)
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Algorithm 6.1: Minimum entropy sampling of kinetic densities
Input: Vtr: Truncated velocity domain

σα: Sampling std. deviation for α
T,U: Temperature and bulk velocity
τcond: Condition number threshold

Result: FT : Set of sampled kinetic densities

for i = 0 to i = T do
βmean ←

[
U⊤
kT ,−

1
2kT , 0, . . .

]⊤
/* Compute sampling mean */

do
β ∼ N(βmean, σα) /* Sample reduced multipliers */

α←
[
ϑ(β),β⊤

]⊤ /* Reconstruct normalized Lagrange multipliers */

while λmin < τcond

fi ← exp(α ·m) /* Compute kinetic density */
Append fi to FT .

choosing α as

α0 = log
(

ρ

(2πkT )3/2

)
−
|U|2

2kT
, α1 =

U
kT

, α2 = −
1

2kT
. (6.25)

The deviation from the equilibrium state can be generated by adding white noise to α. Thus the gen-
erated Lagrange multiplier vector αi is sampled from a normal distribution with a mean given by α of
Eq. (6.25) and with mean 0 for αi with i > 2, i.e., in the case of an extended basis. The macroscopic
variables U, ρ T are chosen based on the test case. Lagrange multipliers of higher order model deviation
of the Maxwellian.
We make use of the data-normalization strategy of §4.3.1, to reduce a degree of freedom from the sam-
pling data. Thus, we sample β = α#, where (·)# is the reduction operator of Eq. (5.8), then we use the
reconstruction map ϑ of Eq. (5.20), to get α.
Consider again the Hessian Hn of the entropy closure, see Eq. (1.65), i.e.,

Hn(α) =
〈
m ⊗mη

′′

∗ (α ·m)
〉
=

〈
m ⊗m exp(α ·m)

〉
, (6.26)

which we use similarly as in §4 and §5 as a measure of deviation from the equilibrium state since recon-
structed kinetic densities with a low condition number are close to the Maxwellian. Highly anisotropic
densities, i.e., where Hn has a high condition number, deviate strongly from a Maxwellian., see Fig. 6.1.
Although theoretical gas dynamics describe an unbounded velocity domain, numerical implementations
use a local, truncated velocity domain Vtr ⊂ R

d centered around the current macroscopic velocity U,
which is described in detail in §6.5. Thus, we assume a local, truncated velocity domain. The resulting
sampling strategy is summarized in Algorithm 6.1.

Remark 6.1 The minimal entropy closure in an unbounded velocity domain yields theoretical chal-
lenges, since the set Fm = { f > 0 : ⟨m f ⟩ = u} is not closed when V is unbounded, since the map
f 7→ ⟨m f ⟩ is not continuous. As a consequence, the entropy functional h(u) is looses strict convex-
ity on a line starting from the Maxwellian distribution dubbed the Junk line [124, 125]. Furthermore, the
realizable set R, i.e.,

R = {u : ⟨mg⟩ = u, g ∈ Fm} , (6.27)
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Figure 6.1.: Sampling of particle distribution functions. The more a function deviates from the
Maxwellian, the higher is the condition number of the corresponding entropy problem.

Algorithm 6.2: Sampling of labeled training data
Input: [Knmin,Knmax]: Range of Knudsen numbers

[ρmin, ρmax]: Range of particle densities
[xmin, xmax]: Range of cell-center distances

Result: XT = {(Qi, ri)}i∈T : Training data-set

FT ← Algorithm 6.1 /* Compute reference kinetic density functions */
for i = 0 to i = T do

fL, fR ∼ FT /* Sample f of left and right cell */
ρL, ρR ∼ uniform([ρmin, ρmax]) /* Sample macroscopic density to fL and fR */
fL, fR ← ρL fL, ρR fR /* Scale fL and fR */
uL,uR ← ⟨ϕ fL⟩ , ⟨ϕ fR⟩ /* Compute macroscopic variables */
xL, xR ∼ uniform[xmin, xmax]d /* Sample ghost cell centroids */
n← (xL − xR)/ ∥xL − xR∥ /* Compute cell interface normal */
fref(v)← fL(v)H(n · v) + fR(v) (1 −H(n · v)) /* Upwind scheme */
ui ← ⟨ϕ fref⟩ /* Compute macroscopic variables */
∇xui ← (uL − uR)/ ∥xL − xR∥ /* Compute slope of macroscopic variables */
τi ← µ/p /* Hard-sphere model for τ */
fNS ←Eq. (6.15) /* BGK reconstruction of fNS */
ri ←Eq. (6.18) /* Determine local regime */

Qi ←
[
u⊤i ,∇xu⊤i , τi

]⊤
Append (Qi, ri) to XT .

is not convex anymore, but star-shaped at the moment of the Maxwellian distribution. Near the Junk
line, kinetic densities approach an exponential, which leads to serious robustness and stability problems
of the entropy reconstruction and corresponding kinetic solvers [219, 196].
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(a) Equilibrium solutions in ghost cells,
τ = 0.0012
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τ = 0.000511

Figure 6.2.: Sampling of reference solutions at the left and right cell, cell interface, and the Chapman-
Enskog reconstruction for Kn = 1e−3 and ∆x = 1e−2 for V ⊂ R. At near equilibrium (left),
the upwind and Chapman-Enskog reconstruction are similar, whereas for kinetic samples
(right), they differ vastly.

6.4.2. Sampling and Labeling of Macroscopic Data

The idea for data generation is to combine two sampled distribution functions { fL, fR} with two adjacent
ghost cells, where their spatial positions {xL, xR} as well as the unit normal vector n of the cell interface
are randomly sampled. Therefore, the reference particle distribution function at the interface can be
approximated via an upwind reconstruction,

fref(v) = fL(v)H(n · v) + fR(v) (1 −H(n · v)) , (6.28)

whereH is the heaviside step function. Figure 6.2 illustrates the process.
The conservative variables {u,uL,uR} are obtained by taking moments of fref, and the gradients ∇xu are
computed with a finite difference formula.
Using a randomly sampled Knudsen-number Kn from a predefined range, we can compute the local
collision time τ = 1/ν and obtain a completely assembled training data point Q = (u,∇xu, τ). Finally, we
compute the label of the training data point by first computing fNS using Eq. (6.15) and then calculating
the distance to the sampled reference solution fref using Eq . (6.18). The resulting sampling strategy is
displayed in Alogrithm 6.2.

We illustrate the sampling data distribution Px obtained from Alogrithm 6.2 and compare it to simulation
based sampling of Sod shock tube §6.6.1 with varying initial conditions in Fig. 6.3. The upper row
displays the sampled macroscopic variables and the lower row the corresponding gradients for a 1D
problem. The left column displays Px obtained by Algorithm 6.2 and the right Px obtained by simulation
data. The results have been normalized via u = u/ρ. Clearly, data sampled by Algorithm 6.2 produces
better coverage of the realizable set R, i.e., the set of feasible data, as the simulation sampler. The
simulation data is naturally not i.i.d., accumulated along trajectories of the solution and heavily biased
by the choice of the test case and initial conditions.
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Figure 6.3.: Data sampled by Algorithm 6.2 (a-b) and by kinetic simulation (c-d). The samples from the
kinetic solver have a strong bias toward positive bulk velocity, and T and U are strongly
correlated. Algorithmic samples cover large parts of the realizable set R. Their spatial
gradients are almost normally distributed with mean 0, whereas the gradients of simulation
data follow the solution trajectories.

6.5. Solution Algorithm

In this section, we present the numerical implementation of the adaptive scheme based on the neural
classifier. The solution algorithm is built on top of a finite volume method, which is in detail described
in §3.

6.5.1. Kinetic solver

In principle, the finite volume scheme at the kinetic level is an SN method for the non-linear Boltzmann
equation with an unbounded velocity domain V = Rd, see §1.2.1. For the numerical implementation, a
local velocity mesh is generated as a ball with radius 4

√
RT0, i.e.,

Vtr = Br=4
√

RT0
(V0) ⊂ V, (6.29)

where {V0,T0} are reference velocity and temperature, and R is the gas constant. The velocity grid is
chosen such that more than 99% of values of the Maxwellian distribution fall into its range. Given the
notation of a cell-averaged particle distribution function in the spatial element Xi with measure Ai at
discrete velocity vq ∈ Vtr at time step n,

f n
i,q =

1
Ai

∫
Xi

f (tn, x, vq) dx, (6.30)

the update algorithm of the finite volume scheme writes

f n+1
i,q = f n

i,q −
1
Ai

∫ tn+1

tn

∑
j∈N(i)

F( f j,q, fi,q)up dt +
∫ tn+1

tn
Q j ( fi (v) , fi (v)) dt, q = 1, . . . ,Nq, (6.31)

where N(i) are the neighbor cells of cell i and Fkin
up is an upwind flux for a nodal discretization scheme

described by Eq. (3.20), i.e.,

F( f j, fi)kin
up,q = vq · ni, j fi,qH(v · ni, j) + vq · ni, j f n

j,q

(
1 −H(v · ni, j)

)
, q = 1, . . . ,Nq (6.32)

where H is the heaviside step function and v is the transport velocity vector. Naturally, one can also
use its second-order counterpart. The time integral can be discretized with a suitable implicit or explicit
integrator. Inside each element, the collision term Q( f , f ) is computed by the fast spectral method [239].
The discrete Fourier transform is employed to solve the convolution in the spectral domain efficiently.
We refer to [190] for a detailed formulation of this method.
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6.5.2. Navier-Stokes Solver

The Navier-Stokes solver is a finite volume scheme moment system of the non-linear Boltzmann equation
with a special closure, see §3.4. In the absence of a velocity space, we define the average conservative
flow variables in an element as

un
i =

1
Ai

∫
Xi

u(tn, x) dx, (6.33)

and the finite volume algorithm writes

un+1
i = un

i −
1
Ai

∫ tn+1

tn

∑
j∈N(i)

F(i, j)NS
up dt. (6.34)

A key step for solving conservation laws is to compute the fluxes FNS
up of conservative variables. We

employ the Chapman-Enskog solution from the BGK-type relaxation model [19] to construct numerical
fluxes and to close the moment system. The relaxation model writes

∂t f + v · ∇x f = ν(E − f ). (6.35)

The equilibrium distribution E can be chosen as the Maxwellian in Eq. (6.5) or its variants [212, 110], and
ν is the collision frequency. The above equation can be written in the following successive form

f = E − τ∂tE + τ∂t(τ∂tE) + . . . , (6.36)

where ∂t denotes total derivative operator and τ = 1/ν. The above equation has the same structure as
Eq. (6.14), and thus the first-order truncation of Chapman-Enskog expansion writes [192],

f ≃ E − τ(∂tE + v · ∇xE). (6.37)

In the solution algorithm, we follow the Chapman-Enskog expansion and construct the particle distribu-
tion function at the cell interface with an upwind approach, i.e.,

fi = Ei (1 − τ (ai · v + bi)) ,

f j = E j(1 − τ(a j · v + b j)),
(6.38)

where Ei and E j are the equilibrium distributions computed from reconstructed macroscopic variables at
the left and right side of the cell interface, i.e.,

ũi = ui + Ψi
(
∇xui · ri, j

)
,

ũ j = u j + Ψ j
(
∇xu j · r j,i

)
,

(6.39)

where we follow the second order upwind scheme of §3.4.2 with slope limiter Ψ. Again ri, j = xi, j − xi is
the vector pointing from the centroid of cell i to the interface midpoint between cells i and j. ∇xui and
∇xu j are the gradients of the macroscopic values of neighboring cells, which can be computed with the
Green-Gauss theorem or with finite differences. In a well-resolved region, the relation ũi = ũ j holds, and
Eq. (6.38) deduces to the standard Chapman-Enskog expansion naturally. The spatial derivatives of the
particle distribution function ai, a j is related to macroscopic slopes via

⟨aiEiϕ⟩ = ∇xũi,〈
a jE jϕ

〉
= ∇xũ j,

(6.40)
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Figure 6.4.: Schematic of the adaptive scheme for multi-scale flow.

where ϕ are the collision invariants. Then ai and a j can be obtained by solving a linear system [242].
Then the time derivative bi and b j can be obtained through the compatibility condition of the BGK model,
i.e.,

⟨ν(E − f )ϕ⟩ = 0, (6.41)

which yields

⟨biEiϕ⟩ = − ⟨(ai · v)Eiϕ⟩ ,〈
b jE jϕ

〉
= −

〈
(a j · v)E jϕ

〉
.

(6.42)

After the coefficients for spatial and time variations are determined, the interface fluxes for macroscopic
variables can be obtained by taking moments over particle velocity space, i.e.,

F(i, j)NS
up =

〈
v ⊗ ϕ

(
fi(v)H(v · ni, j) + f j(v)

(
1 −H(v · ni, j)

))〉
, (6.43)

where H is the heaviside step function and ni, j is the interface normal. Since the equilibrium state is
based on Gaussian distribution, the above integral can be evaluated analytically. Remark, that the above
numerical method can be understood as a simplification of gas-kinetic scheme [242].

6.5.3. Adaptation Strategy

The Boltzmann and Navier-Stokes solvers can be combined to solve multi-scale flow problems efficiently
with an adaptive continuous-discrete velocity transformation. The work paradigm is shown in Fig. 6.4.
For a near-equilibrium flow region, the kinetic density can be formulated analytically from the Chapman-
Enskog expansion. Therefore, only the macroscopic flow variables are needed to store and iterate by
the Navier-Stokes solver in Eq. (6.34). For non-equilibrium flows, the solution algorithm allocates the
localized velocity quadrature to track the evolution of kinetic density in Eq. (6.31).
A core task of the adaptive solver lies in the dynamic adaptation of time-varying flow regimes at different
locations. At every time step tn, the spatial derivatives of the updated macroscopic variables are evaluated
via

∇xu =
∇xui + ∇xu j

2
. (6.44)

The collision time τ is evaluated from the hard-sphere model and thus, the complete neural network input
to predict the flow regime has been obtained. As shown in Fig. 6.4, we have two types of cells, i.e., the
non-equilibrium one holding a discrete solution of the distribution function and the near-equilibrium one
with Navier-Stokes variables, and three types of cell interfaces based on the flow regimes, i.e.,

• kinetic face: two neighboring cells are in the non-equilibrium flow regime;
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Table 6.1.: Computational setup for the numerical test cases

Test Case CFL t f ∆t ∆x nq

Sod shock tube 1D 0.5 0.15 2.50e−3 5.00e−3 64 × 32 × 32
Circular cylinder 2D 0.5 − 3.14e−2 6.28e−2 50 × 48 × 48

• continuum face: two neighboring cells of the face are in near-equilibrium flow regime;

• adaptation face: two neighboring cells of the face lie in different flow regimes.

The solution algorithm in kinetic and continuum type cells is straightforward following §6.5.1 and §6.5.2.
At the adaptation face, both macroscopic and microscopic fluxes are evaluated to update the solutions
in the left and right cells. This is uniformly done by computing the kinetic flux in Eq. (6.32), where its
velocity moments results macroscopic fluxes, i.e.,

FW
up =

〈
Fkin

up ϕ
〉

Vtr
≈

Nq∑
q

wqFkin
up,qϕ(vq), (6.45)

where Nq is the number of quadrature points and wq the quadrature weights.
Note, that the numerical stability of the adaptive algorithm is given by the stability of the discretization
schemes for the kinetic and macroscopic fluxes. Thus the adaptive solver can only increase the solution
accuracy compared with a full macroscopic solver, and does not raise additional numerical stability
concerns.

6.6. Numerical Results

In this section, we conduct numerical experiments of multi-scale flow problems to validate the neural
network-based flow regime classifier and the corresponding adaptive solver. All the variables are nondi-
mensionalized following the paradigm introduced in §6.2. The hard-sphere gas model is employed in all
cases. We choose the gradient-length-local Knudsen number KnGLL [26] as a baseline for an adaptive
solver and use a full kinetic solver as a high-fidelity reference solution. We provide quantitative com-
parisons of the flow regime predictions between KnGLL and the neural network, as well as simulation
comparisons to the reference solution.
The employed neural networks are feed-forward architectures in ResNet design, where the input di-
mension depends on the spatial dimension of the test case at hand. The computational resources of the
adaptive solver can be found in the software package kinetic.jl3.
The ADAM optimizer is used for the neural network training with default learning rate. The training
and testing data is produced by sampling and processing prescribed kinetic solutions of particle distri-
bution functions, and the test set is generated with the help of kinetic simulation data from numerical
cases.

6.6.1. Sod Shock Tube

The first numerical experiment is the Sod shock tube, where the longitudinal processes dominate the flow
motion in the one-dimensional Riemann problem [159]. The domain is partitioned on the left and right

3https://github.com/vavrines/Kinetic.jl/
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Figure 6.5.: Prediction of flow regimes from fully kinetic solutions at t = 0.15 in the Sod shock tube with
different criteria (0 is continuum, 1 is non-equilibrium). KnGLL underestimates the influence
of wave structures and makes inaccurate predictions, whereas network-based prediction is
more accurate.

side of a shock with different macroscopic values, i.e. ρ

U
T


t0,L

=

 1
0
2

 , and

 ρ

U
T


t0,R

=

 0.125
0

1.6

 . (6.46)

The kinetic density is initialized as a corresponding Maxwellian.
To test the capability of the current scheme to solve multi-scale flow problems, simulations are performed
with different reference Knudsen numbers, i.e., Kn ∈ {0.0001, 0.01}. We truncate V = [−8, 8] and choose
spatial Dirichlet boundary conditions corresponding to the initial conditions. The detailed computation
setup is listed in Table 6.1.

We first conduct a fully kinetic simulation with the Boltzmann equation, to obtain a ground truth for the
flow regimes from the KL-divergence between the particle distribution and its Chapman-Enskog recon-
struction of Eq. (6.18). Regime predictions based on neural networks and KnGLL are shown in Fig. 6.5.
With an increasing Knudsen number, the kinetic regime enlarges due to the increasing rarefied gas effect.
Then, we employ the adaptive solver to conduct complete simulations based on the criteria from the
neural network and KnGLL. It is known that localized flow structures, including rarefaction and shock
waves, and contact discontinuities, contribute as sources of non-equilibrium effects. In the remaining
near-equilibrium regions, the Chapman-Enskog expansion can approximate real particle distributions.
The profiles of density and temperature inside the shock tube at the time instant t = 0.15 under differ-
ent Knudsen numbers are presented in Fig. 6.6, 6.7 and 6.8. The kinetic and Navier-Stokes solutions
are plotted as a benchmark. As shown, although all the results are qualitatively similar, the zoom-in
view demonstrates that the adaptive solution based on KnGLL stands closer to the Navier-Stokes results,
while the neural network corresponds to the Boltzmann solution. At Kn = 0.01, the Chapman-Enskog
expansion yields negative values in kinetic density where the spatial slopes are large, resulting in the
failure of Navier-Stokes solutions. In this case, the inaccurate prediction of flow regimes from KnGLL
results in unreasonable oscillations of macroscopic solutions, which is overcome by the neural network
classifier.

We have seen that the adaptive solver has an accuracy advantage over the Navier-Stokes solver. In com-
parison with a full kinetic solver, it is advantageous in terms of computational effiency and memory
footprint. In a continuum cell at tn which holds the kinetic solution at tn−1, the excess memory can be
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Figure 6.6.: Profiles of ρ, U and T in the shock tube at t = 0.15 under Kn = 1e−4. The KNGLL solution
aligns more with Navier-Stokes, whereas the neural network-based solution is close to the
kinetic baseline.
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Figure 6.7.: Profiles of ρ, U and T in the shock tube at t = 0.15 under Kn = 1e−3. The KNGLL solution
aligns more with Navier-Stokes, whereas the neural network-based solution is close to the
kinetic baseline.
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Figure 6.8.: Profiles of density and temperature in the shock tube at t = 0.15 under Kn = 1e−2. The
Navier-Stokes simulation is far from the kinetic baseline. The network-based hybrid simu-
lation is more accurate than the KNGLL based one, which oscillates in ρ and T .
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Table 6.2.: Total number of memory allocations over the solver run-time and computational cost of the
Sod shock tube problem.

total FLOP total allocated
time [s] allocations memory [GB]

Navier-Stokes 1.39e0 2.16e7 1.82e0
Kinetic 1.64e3 1.65e8 7.35e3
Neural network 5.14e2 5.57e7 9.48e2
Adaptive (Kn=0.0001) 9.75e1 2.72e7 1.21e2
Adaptive (Kn=0.001) 5.14e2 3.60e7 7.13e2
Adaptive (Kn=0.01) 1.21e3 9.88e7 3.88e3

Algorithm 6.3: Workflow of steady flow problems

Converge the flow-field with the Navier-Stokes solver
Classify cell-wise the flow-regimes
Reconstruct the solution of kinetic cells
Converge the flow-field with the adaptive solver

deallocated. In a kinetic cell with no former record of the discretized distribution function, the solution
is reconstructed from the Chapman-Enskog expansion in Eq. (6.15) in the continuum cell, and then used
for flux evaluation. This way, a adaptive continuum-kinetic solver has been set up, where no buffer zone
is required to transit solutions.
Table 6.2 provides the computational cost of the kinetic, Navier-Stokes, and adaptive solvers with differ-
ent switching criteria. As can be seen, the adaptive scheme accelerates the simulation by 69%, and saves
66% of unnecessary allocations.

6.6.2. Flow Around a Circular Cylinder

In this numerical experiment, we simulate a two-dimensional hypersonic flow around a circular cylin-
der, where longitudinal and transverse processes coexist in the domain. The kinetic density is initialized
as Maxwellian everywhere corresponding to the Mach number Ma = 5. Knudsen numbers are set as
Kn ∈ {0.001, 0.01}. The velocity domain is given by V = [−10, 10]3 and the computational domain is a
polar grid with radius r ∈ [1, 6] and angle ranging from [0, π], i.e., the half plane surrounding a cylinder
with radius 1. We impose Maxwell boundary conditions at the cylinder wall, symmetric conditions at
the lower edge of the domain, and inflow conditions on the left side of the domain. The detailed compu-
tational setup is listed in Table 6.1.
In this steady-state problem, the computation can be accelerated with the help of the Navier-Stokes
solver. A convergent coarse flow field can be first obtained by the Navier-Stokes solver, and then re-
constructed as the initial state in the subsequent adaptive method, see Algorithm 6.3. We present the
contours of horizontal velocity and temperature produced by the adaptive solver at Kn = 0.001 and
Kn = 0.01 in Fig. 6.9. As shown, the bow shock and the expansion cooling region behind the cylinder
are well captured. At Kn = 0.001, the cell size and time step in the computation are much larger than
the particle mean free path and collision time, and all three methods result in a shock-capturing scheme.
When the reference Knudsen number gets to Kn = 0.01, a larger particle mean free path leads to a wider
shock structure. Due to the non-equilibrium gas dynamics in the shock wave and gas-surface interaction,
a slight difference can be observed in the solutions provided by kinetic and Navier-Stokes solvers, where
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(a) Kn = 0.001, U1. (b) Kn = 0.001, T .

(c) Kn = 0.01, U1. (d) Kn = 0.01, T .

Figure 6.9.: Profiles of U1 and T of the cylinder flow with Kn = 0.001 (upper row) and Kn = 0.01
(lower row) computed with the neural network based adaptive solver. The bow shock and
the expansion cooling region behind the cylinder are well captured.

the continuum scheme provides a narrower shock profile than the kinetic solution.
Based on the converged solution, the partition of flow regimes based on different criteria is shown in
Fig. 6.10 for Kn = 0.001 and Kn = 0.01. Note that different critical values C are tested for the gradient-
length-local Knudsen number criterion. For the commonly adopted value C = 0.05, KnGLL underesti-
mates the non-equilibrium effect and makes inaccurate predictions. After we reset it as C = 0.01, the
predictions are still not precise enough. On the contrary, the neural network-based regime classification
is close to the ground truth at different Knudsen numbers, especially at the shock bow. Differences can
be observed at x1 = 0 near the cylinder wall.
Figure 6.11 presents the quantitative comparison of solutions produced by the kinetic, Navier-Stokes,
and the neural adaptive solver respectively at the cross-section x2 = 0 from the left inflow-boundary to
the cylinder wall at x1 = −1. The neural network-based adaptive method switches to a kinetic regime
at the shock in front of the cylinder and thus represents the full kinetic solution accurately, which con-
firms the validity of the neural network classifier in the two-dimensional case. On the other hand, a full
Navier-Stokes solution yields differences from the kinetic solution, especially at the computation of the
temperature T .

6.7. Chapter Conclusion

Gaseous flow is intrinsically a cross-scale problem due to the possible large variations of density and
local Knudsen number. A quantitative criterion of continuum breakdown is crucial for developing sound
flow theories and multi-scale solution algorithms.

142



6.7. Chapter Conclusion

(a) Kn = 0.001, ground truth. (b) Kn = 0.001, neural network.

(c) Kn = 0.001, KnGLL(C = 0.05). (d) Kn = 0.001, KnGLL(C = 0.01).

(e) Kn = 0.01, ground truth. (f) Kn = 0.01, neural network.

(g) Kn = 0.01, KnGLL(C = 0.05). (h) Kn = 0.01, KnGLL(C = 0.01).

Figure 6.10.: Flow regime prediction in the cylinder test case using different criteria at Kn = 0.001 (a)-
(d), and Kn = 0.001 (c)-(h). Neural network-based predictions outperform KnGLL based
predictions in both cases and for different tuning parameters.
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Figure 6.11.: Profile of macroscopic variables along the horizontal center line in front of a cylinder at
Kn = 0.001 (upper row) and Kn = 0.01 (lower row). The neural network-based adaptive
method yields solutions close to the kinetic benchmark, whereas the Navier-Stokes solver
fails to capture the shock region accurately.

6.7.1. Summary

In this chapter, we developed the first neural network for binary classification of near-equilibrium and
non-equilibrium flow regimes. This data-driven surrogate model provides an alternative to classical
semi-empirical criteria and shows superiority in numerical experiments. Based on the minimal entropy
closure of the Boltzmann moment system, an algorithmic strategy is designed to generate a dataset with
a balanced distribution near and out of equilibrium state for model training and testing. An adaptive
Boltzmann-Navier-Stokes flow solver is developed, which can dynamically adapt to local flow regimes
using the neural network classifier. The current method provides an accurate and efficient tool for the
study of cross-scale and non-equilibrium flow phenomena. It shows the potential to be extended to other
complex systems, such as multi-component flows and plasma physics.

6.7.2. Limitations of the Approach

Neural network-based classifiers can only be as good as their data. Although we provide an alternative
to biased simulation-based sampling, our data-generator has multiple user-defined inputs, such as the
range of Knudsen numbers, macroscopic densities, choice of the velocity space, and most importantly,
the threshold difference for the Kullback-Leibler Divergence from the equilibrium solution to determine
the flow-regime.
The sampler removes simulation bias and abstracts human choices as setup of the flow-geometry and
initial conditions, but does not remove them completely.
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6.7. Chapter Conclusion

6.7.3. Future Work

Future research can be directed toward the creation of a more general sampling algorithm and the en-
gineering of a more sophisticated neural network architecture for regime prediction. Currently, only
a single grid cell is considered for the regime prediction. One could inspect the local neighborhoods
of the current cell with a convolutional approach, graph-neural networks, or transformer-like architec-
tures.

145





CHAPTER 7

DLRT: Dynamical Low-Rank Training for Efficient Neural Network
Compression

Neural networks have achieved tremendous success in a large variety of applications. How-
ever, their memory footprint and computational demand can render them impractical in ap-
plication settings with limited hardware or energy resources. In this chapter, we propose a
novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are
determined and adapted already during the training phase and the overall time and memory
resources required by both training and evaluating them are significantly reduced. The main
idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors
rather than the full matrix during training. To derive training updates that are restricted to the
prescribed manifold, we employ techniques from dynamic model order reduction for matrix
differential equations. This allows us to provide approximation, stability, and descent guaran-
tees. Moreover, our method automatically and dynamically adapts the ranks during training to
achieve the desired approximation accuracy. The efficiency of the proposed method is demon-
strated through a variety of numerical experiments on fully-connected and convolutional net-
works.

7.1. Introduction

While showing great performance in terms of classification records, most state-of-the-art neural networks
require an enormous amount of computation and memory storage both for the training and the evaluation
phases [116]. These requirements not only increase infrastructure costs and energy consumption but also
prohibit deployment of artificial neural networks to infrastructures with limited resources such as mobile
phones or smart devices. On the other hand, it is well-known that networks’ weights contain structures
and redundancies that can be exploited for reducing the parameter space dimension without significantly
affecting the overall accuracy [22, 45, 76, 150].
Network pruning is a popular line of research that addresses this problem by removing redundant pa-
rameters from pre-trained models. Typically, the initial network is large and accurate, and the goal is
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to produce a smaller network with similar accuracy. Methods within this area include weight sparsifi-
cation [93, 107, 186] and quantization [238, 48], with different pruning techniques, including search-
based heuristics [107], reinforcement learning [12, 106] and genetic algorithms [170]. More recent work
has considered pruning during training, by formulating pruning as a data-driven optimization problem
[93, 111, 116]. The resulting “dynamical pruning” boils down to a parameter-constrained training phase
which, however, has been mostly focused on requiring sparse or binary weights so far.
Rather than enforcing sparsity or binary variables, in this work, we constrain the parameter space to
the manifold of low-rank matrices. Neural networks’ parameter matrices and large data matrices, in
general, are seldom full rank [214, 228, 181, 70]. Constraining these parameters to lie on a manifold
defined by low-rank matrices is thus a quite natural approach. By interpreting the training problem as a
continuous-time gradient flow, we propose a training algorithm based on the extension of recent Dynam-
ical Low-Rank Approximation (DLRA) algorithms [35, 36, 37]. This approach allows us to use low-rank
numerical integrators for matrix-valued Ordinary Differential Equations (ODEs) to obtain modified for-
ward and backward training phases that only use the small-rank factors in the low-rank representation
of the parameter matrices and that are stable with respect to small singular values. This is a striking dif-
ference to recent alternative “vanilla” low-rank training schemes [233, 130] which simply factorize the
weight matrices as the product of two low-rank factors UV⊤ and apply a descent algorithm alternatively
on the two variables U and V .
We perform several experimental evaluations showing that the resulting dynamical low-rank training
paradigm yields low-parametric neural network architectures. Compared to their full-rank counterparts
they are both remarkably less demanding in terms of memory storage and require much less computa-
tional cost to be trained. Moreover, the trained low-rank neural networks achieve comparable accuracy
to the original full architecture. This observation is reminiscent of the so-called lottery tickets hypothesis
— dense neural networks contain sparse subnetworks that achieve high accuracy [76] — and suggests
the presence of low-rank winning tickets: highly-performing low-rank subnetworks of dense networks.
Remarkably, our dynamical low-rank training strategy seems to be able to find the low-rank winning
tickets directly during the training phase independent of initialization.

7.1.1. Related Work on Low-Rank Methods

Low-rank factorization using the SVD and other matrix decomposition techniques have been extensively
studied in the scientific computing and machine learning communities. The challenge of compressing
and speeding up large-scale neural networks using low-rank methods has sparked widespread research
interest in recent years and significant effort has been put towards developing low-rank factorization
strategies for deep neural networks.
Previous works can roughly be categorized into approaches with fixed low-rank and variable low-rank
during training time. Fixed rank approaches decompose weight matrices using SVD or tensor decompo-
sitions of pre-trained networks and fine-tune the factorized network [57, 155, 205, 226], constrain weight
matrices to have a fixed low-rank during training [120, 233, 130], or create layers as a linear combination
of layers of different rank [118]. Hence, these methods introduce the rank of the matrix decomposition as
another hyperparameter to be fine-tuned. Rank-adaptive methods mitigate this issue by automatic deter-
mination and adaption of the low-rank structure after training. In particular, [133, 134] apply heuristics
to determine the rank of the matrix decomposition ahead of time, whereas [235] encourages low-rank
weights via a penalized loss that depends on approximated matrix ranks.
Few methods have been proposed recently that adapt the ranks of the weight matrix alongside the main
network training phase. In [165], the authors set up the neural network training as a constrained opti-
mization problem with an upper bound on the ranks of the weights, which is solved in an alternating
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approach resulting in an NP-hard mixed integer program. The authors of [117] formulate a similar con-
strained optimization problem resulting in a mixed discrete-continuous optimization scheme that jointly
addresses the ranks and the elements of the matrices. However, both these approaches require knowledge
of the full weight matrix (and of its singular value decomposition) during training and overall are more
computationally demanding than standard training.

7.1.2. Novelty and Scientific Contribution

In this work, we overcome the above issues and propose a training algorithm with reduced memory and
computational requirements. To this end, we reinterpret the optimization problem of a neural network
as a gradient flow of the network weight matrices and thus as a matrix-valued ODE. This continuous
formulation allows us to use recent advances in DLRA methods for matrix ODEs which aim at evolv-
ing the solution of the differential equation on a low-rank manifold. The main idea of DLRA [136],
which originates from the Dirac-Frenkel variational principle [58, 77], is to approximate the solution
through a low-rank factorization and derive evolution equations for the individual factors. Thereby, the
full solution does not need to be stored and the computational costs can be significantly reduced. To
ensure the robustness of the method, stable integrators have been proposed in [173] and [37]. Instead of
evolving individual low-rank factors in time, these methods evolve products of low-rank factors, which
yields remarkable stability and exactness properties [132], both in the matrix and the tensor settings
[137, 175, 174, 39]. In this work, we employ the “unconventional” basis update & Galerkin step inte-
grator [37] as well as its rank-adaptive extension [35], see also [148, 38]. The rank-adaptive unconven-
tional integrator chooses the approximation ranks according to the continuous-time training dynamics
and allows us to find highly-performing low-rank subnetworks directly during the training phase while
requiring reduced training cost and memory storage.
This chapter is published in the proceedings of the NeurIPS 2022 conference [209] and is a collabo-
rative work with Emanuele Zangrando, Gianluca Ceruti, Jonas Kusch, and Francesco Tudisco. These
numerical experiments are supplemented by the open-source DLRT implementations in Tensorflow1 and
PyTorch2.

7.1.3. The Chapter in Context of the Dissertation

This chapter poses somewhat of a counterpart to the rest of the dissertation where we focus on using
neural networks and machine learning methods to construct efficient surrogate models to compute solu-
tions of kinetic equations. Now we turn our attention to the creation of efficient neural network training
methods, using numerical methods for kinetic systems. This chapter is not only a counterpart but a com-
plement to its predecessors: First, we give an example of how two mathematical fields can supplement
each other nicely. Second, DLRT and pruning methods are highly relevant for the construction of effi-
cient neural network-based surrogate models, for the whole point of their existence is to provide the best
accuracy-performance tradeoff. Future work may push the boundaries of high-order neural-network-
based closures even further with the help of large DLRT-trained models.

1https://github.com/CSMMLab/DLRTNet
2https://github.com/COMPiLELab/DLRT

149

https://github.com/CSMMLab/DLRTNet
https://github.com/COMPiLELab/DLRT
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7.1.4. Organization of the Chapter

We provide a brief overview of the Dynamical Low-Rank Approximation of matrix-valued dynamical
systems in §7.2, explain how the method transfers to neural network training, and derive the system
ODEs for dynamical low-rank-training with rank adaption. In §7.3 we develop the DLRT algorithm for
efficient, dynamical, rank-adaptive low-rank training of neural networks, and conduct error and conver-
gence analysis for the new method. We discuss implementation details and their effect on computational
and memory costs. In §7.4, we discuss the applicability of DLRT to other layer architectures as trans-
formers and convolutional layers. Lastly, §7.5 provides a wide array of numerical experiments to validate
the method on different benchmarks with popular network architectures.

7.2. Dynamical Low-Rank Approximation

Consider the solution A ∈ G of a dynamical system

Ȧ(t) = F (A, t), (7.1)

where G is a potentially high dimensional space and Ȧ denotes the time derivative. Dynamical low-
rank seeks to approximate the true solution A by a low-rank representation Y ∈ M ⊂ G, whereM is a
low-rank manifold. A best approximation Y(t) ∈ M to A(t) satisfies

Y(t) ∈ M such that ∥Y(t) − A(t)∥ = min (7.2)

Consider the case of matrices A(t) ∈ Rn1×n2 . Then Y(t) ∈ Rn1×n2 is a low-rank matrix with rank r ≪ n1, n2.
It has been shown [207], that in this case, a truncated SVD solves the optimization problem (7.2), how-
ever only in a point-wise fashion in time.
We are interested in a method, that yields a time evolution of Y(t) by working only with the factors of the
truncated SVD. If TY(t)M is the tangent space ofM at Y(t), we seek to determine

Ẏ(t) ∈ TY(t)M, such that
∥∥∥Ẏ − Ȧ

∥∥∥ = min . (7.3)

A stable numerical scheme to solve this equation is the projector splitting integrator proposed in [176].
Beyond the original application area of quantum dynamics, dynamical low-rank approximation [136]
has recently gained significant interest in several communities such as kinetic theory [136, 65, 198, 66,
197, 92, 64] and uncertainty quantification [71, 145, 206]. The increasing interest in dynamical low-
rank approximation stems mainly from its low memory requirements, which tackle the core issue of
modern HPC architectures. Furthermore, the significantly reduced computational costs of dynamical
low-rank approximation enable computing accurate numerical results for complex problems even with
limited computational resources. Two core ingredients of dynamical low-rank approximation are the
representation of the solution as a low-rank matrix or tensor factorization (e.g. a truncated singular value
decomposition for matrices) and the derivation of evolution equations for the individual factors of this
low-rank representation.

7.2.1. Low-Rank Training via Gradient Flow

Consider a feed-forward fully-connected neural network

Nθ(x) = zM

zk = σk(Wkzk−1 + bk), ∀k = 1, . . . ,M

z0 = x,
(7.4)
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(a) Discrete time weight update (b) Continuous gradient flow

Figure 7.1.: Graphical re-interpretation of the discrete weight update step (a) as a time-continuous pro-
cess (b).

with weights-matrices Wk ∈ R
nk ,nk−1 and biases bk ∈ R

nk as the set of weights θ and zk as layer out-
puts. The convolutional and transformer setting is discussed in §7.4. We consider the training of
Nθ based on the optimization of a loss function L(θ; Nθ(x), y) via a gradient-based descent algorithm.
For example, when using gradient descent, the weight matrix Wk of Nθ at iteration t ∈ N is updated
via

W t+1
k = W t

k − λ∇WkL(θ; Nθ(x), y) ∀k = 1, . . . ,M (7.5)

with a learning rate λ. When the weight matrices Wk are dense, both the forward and gradient evaluations
of the network require a large number of full matrix multiplications, with a high computational expense
and large memory footprint. This renders the training and the use of large-scale neural networks a
difficult challenge on limited-resource devices. At the same time, a wealth of evidence shows that dense
networks are typically over-parameterized and that most of the weights learned this way are unnecessary
[181, 70]. To reduce the memory and computation costs of training, we propose a method that performs
the minimization over the manifold of low-rank matrices, based on DLRA theory for dynamical systems.
Minimizing the loss function for Wk is equivalent to evaluating the long time behavior of the following
matrix ODE that allows us to interpret the training phase as a continuous process, discretized with time-
step λ in (7.5), i.e.,

Ẇk(t) = −∇WkL(θ; Nθ(x), y), (7.6)

The process is illustrated in Fig 7.1. We call the right-hand side

Fk(W, t) = −∇WkL(θ; Nθ(x), y) (7.7)

the gradient flow of the network with respect to layer Wk.
LetMrk denote the manifold of matrices with rank rk and assume at a certain time t0 the weights are in
the manifold In the sense of Eq. (7.2) and (7.3), we identify Wk(t) with A(t), and propose a set of low-rank
weight matrices Yk(t), with Yk(t0) ∈ Mrk . Using the continuous-time interpretation allows us to derive a
low-rank strategy to evolve the weights according to the dynamics in (7.6) with

Yk(t) ∈ Mrk such that ∥Yk(t) −Wk(t)∥ = min, for t ≥ t0. (7.8)
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Figure 7.2.: Orthogonal projection onto the tangent space of the low-rank manifold Mr. The dashed
line depicts the projection resulting in Ẏk(t), which is the tangent element minimizing the
distance between ∇YkL(Yk(t)) and the tangent space TYk(t)Mr at the approximation Yk(t).

So we assume that the ideal Wk can be well-approximated by a matrix Yk of rank rk ≪ nk, nk+1 of the
form

Wk ≈ Yk = UkS kV⊤k ∈ R
nk×nk−1 (7.9)

where Uk ∈ R
nk×rk , Vk ∈ R

nk−1×rk are thin and tall matrices having orthonormal columns spanning optimal
subspaces which capture essential properties of parameters, and S k ∈ R

rk×rk is a tiny full-rank matrix that
allows us to extrapolate the useful information from the learned subspaces Uk and Vk.
Traditional descent algorithms applied individually to the factors Uk, S k and Vk do not guarantee the
preservation of the low-rank structure UkS kV⊤k when updating the weights during training or require
knowledge of the whole Yk rather than the factors Uk, S k,Vk to couple the dynamics of the low-rank
system.

7.2.2. Coupled Dynamics of the Low-Rank Factors via DLRA

We consider the dynamical system of a single weight matrix Wk, while the remaining weight matrices are
fixed in time and are treated as parameters for the gradient. In the following, we omit writing these param-
eters down for the sake of efficiency. Assuming Yk(t) ∈ Mrk , we can formulate (7.6) as

min
{
∥Ẏk(t) + ∇YkL(Yk(t))∥F : Ẏk(t) ∈ TYk(t)Mrk

}
(7.10)

where TYk(t)Mrk is the tangent space of Mrk at position Yk(t), ∥ · ∥F is the Frobenius norm and Fk

denotes the gradient flow of the loss with respect to the k-th matrix variable. In order to solve (7.10),
we further observe that (7.10) can be equivalently formulated as the following Galerkin condition [136],
i.e.,

⟨Ẏk(t) + ∇YkL(Yk(t)), δYk⟩ = 0 ∀δYk ∈ TYk(t)Mrk , (7.11)

where ⟨·, ·⟩ is the standard scalar product. The Galerkin condition is illustrated in Fig. 7.2. From Yk =

UkS kV⊤k , a generic element δYk of the tangent spaceTYk(t)Mrk can be written as

δYk = δUkS kV⊤k + UkδS kV⊤k + UkS kδV⊤k , (7.12)

where δUk and δVk are generic elements of the tangent space of the Stiefel manifold with rk orthonormal
columns at the points Uk and Vk, respectively, and δS k is a generic rk × rk matrix, see e.g. [136, §2] for
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details. Additionally, the Gauge conditions U⊤k δUk = 0 and V⊤k δVk = 0 must be imposed to ensure or-
thogonality of the basis matrices, and the uniqueness of the representation of the tangent space elements.
Similarly, by the chain rule applied several times we have

Ẏk =
d
dt

{
UkS kV⊤k

}
= U̇kS kV⊤k + UkṠ kV⊤k + UkS kV̇⊤k . (7.13)

Now, the Galerkin condition (7.11) becomes

⟨U̇kS kV⊤k + UkṠ kV⊤k + UkS kV̇⊤k + ∇YkL(Yk(t)), δYk⟩ = 0, ∀δYk ∈ TYk(t)Mrk (7.14)

with U⊤k U̇k = 0 and V⊤k V̇k = 0. If we choose δYk = UkδS kV⊤k in (7.14), we obtain

⟨U⊤k U̇kS kV⊤k Vk + U⊤k UkṠ kV⊤k Vk + U⊤k UkS kV̇⊤k Vk + U⊤k ∇YkL(Yk(t))Vk, δS k⟩ = 0 .

Thus, using the Gauge conditions, we obtain ⟨Ṡ k + U⊤k ∇YkL(Yk(t))Vk, δS k⟩ = 0, which has to hold for
a generic rk × rk matrix δS k. We obtain this way an evolution equation for the S k(t) factor. Similarly,
specifying (7.14) for the two choices δYk = δUkS kV⊤k and δYk = UkS kδV⊤k , allows us to obtain the
following system of differential equations for the individual factors of Yk, i.e.,

Ṡ k = −U⊤k ∇YkL(Yk(t))Vk ,

U̇k = −(I − UkU⊤k )∇YkL(Yk(t))VkS −1
k ,

V̇k = −(I − VkV⊤k )∇YkL(Yk(t))⊤UkS −⊤k ,

(7.15)

where I is the identiy matrix.

7.3. Dynamical Low-Rank Training

To perform an efficient and robust rank-constrained training step, we numerically integrate the system of
ODEs (7.15). Our approach is based on the “unconventional KLS integrator” [37] and its rank-adaptive
version [35]. The pseudocode of the proposed training strategy is presented in Algorithm 7.1.
The main idea of the DLRT algorithm is to alternately represent the product Yk = UkS kV⊤k as Yk = KkV⊤k
and Yk = UkL⊤k , consider the corresponding coupled ODEs from (7.15), and then perform three main
steps:

• K&L-steps (in parallel). Update the current Kk and Lk by integrating the differential equationsK̇k(t) = −∇WkL(Kk(t)V⊤k )Vk, Kk(0) = UkS k,

L̇k(t) = −∇WkL(UkLk(t)⊤)⊤Uk, Lk(0) = VkS ⊤k ,
(7.16)

from t = 0 to t = η; then form new orthonormal basis matrices Ũk and Ṽk spanning the range of
the computed Kk(η) and Lk(η).

• S-step. Update the current S k by integrating the differential equation

Ṡ k(t) = −Ũ⊤k ∇WkL(ŨkS k(t)Ṽ⊤k )Ṽk (7.17)

from t = 0 to t = η, with initial value condition S k(0) = Ũ⊤k UkS kV⊤k Ṽk .
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An important feature of this algorithm is that it can be extended to rank adaptivity in a relatively straight-
forward manner [35], letting us dynamically evolve the rank of S k (and thus the rank of Yk) during the
computation. This is particularly useful, as we may expect the weight matrices to have low ranks but
we may not know what the “best” ranks for each layer are. Typically, dynamically adapting the ranks
of a low-rank optimization scheme is a challenging problem as moving from the manifoldMrk toMrk±1
introduces singular points [80, 2]. Instead, treating the training problem as a system of matrix differential
equations allows us to overcome this issue with a simple trick: at each step of the KLS integrator we
double the dimension of the basis matrices Ũk and Ṽk computed in the K- and L-steps by computing
orthonormal bases spanning [Kk(η) | Uk] and [Lk(η) | Vk], respectively, i.e. by augmenting the current
basis with the basis computed in the previous time step. Then, after the new S k matrix is computed via
the S-step, a truncation step is performed, removing from the newly computed S k matrix all the singular
values that are under a certain threshold ϑ.
Of course, adding rank adaptivity to the integrator comes at a cost. In that case, each step requires per-
forming an SVD decomposition twice the size of the current rank of S k to determin a threshold for the
singular values. Moreover, the dimension of the bases Uk and Vk may grow, which also may require
additional computational effort. However, if the ranks remain small throughout the dynamics, this com-
putational overhead is negligible, as we will further discuss in §7.3.3 and §7.5.

7.3.1. Error Analysis and Convergence

In this section we present our main theoretical results, showing that (a) the low-rank matrices Yk formed
by the weights’ factors UkS kV⊤k computed with Algorithm 7.1 are close to the true solution Wk of (7.6),
and (b) that the loss function decreases during DLRT, provided the singular value threshold ϑ is not too
large, i.e., is bounded by a constant times the square of the time-step size η (see Theorem 1). In the
version we present here, part of the statements are presented informally for the sake of brevity. We refer
to the supplementary material §7.7 for details and the proofs.

Theorem 7.1 (Low-Rank Approximation Error)
Assume the gradient flow Fk(Z) = −∇WkL(W1, . . . ,Z, . . . ,WM,Nθ(x), y) in (7.6) is locally bounded and
locally Lipschitz continuous, with constants C1 and C2, respectively. Then, for fixed x and y, let Wk(t)
be the (full-rank) continuous-time solution of (7.6) and let Yk = Uk, S k,Vk be the factors computed with
Algorithm 7.1 after t steps. Assume that the K, L, S steps (7.16) and (7.17) are integrated exactly from 0
to η. Assume moreover that, for any Z ∈ Mrk sufficiently close to Wk(tη), the whole gradient flow Fk(Z)
is “ε-close” toMrk . Then,

∥UkS kV⊤k −Wk(tη)∥F ≤ c1ε + c2η + c3ϑ/η k = 1, . . . ,M (7.18)

where the constants c1, c2 and c3 depend only on C1 and C2. In particular, the approximation bound
does not depend on the singular values of the exact nor the approximate solution.

Observe that, while the loss function L decreases monotonically along any continuous-time solution
Wk(t) of (7.6), it is not obvious that the loss decreases when the integration is done onto the low-rank
manifold via Algorithm 7.1. The next result shows that this is indeed the case, up to terms of the order
of the truncation tolerance ϑ. More precisely, we have

Theorem 7.2 (Monotonicity of DLRT)
Let Y t

k = U t
kS t

k(V t
k)⊤ be the low-rank weight matrix computed at step t of Algorithm 7.1 and let L(t) =
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Algorithm 7.1: Dynamic Low Rank Training Scheme (DLRT)

Input: S 0
k ∼ r0

k × r0
k ; U0

k ∼ nk × r0
k ;V0

k ∼ nk−1 × r0
k for k = 1, . . . ,M: Initial low-rank factors

iter: maximal number of descent iterations per epoch
adaptive: Boolean flag that decides whether or not to dynamically update the ranks
ϑ: singular value threshold for adaptive procedure

Result: Trained and compressed low-rank network

for each epoch do
for t = 0 to t = iter do

for each layer k do
Kt

k ← U t
kS t

k /* K-step */
Kt+1

k ← one-step-integrate
{
K̇(t) = −∇KL(K(t)(V t

k)⊤zk−1 + bt
k), K(0) = Kt

k
}

Lt
k ← V t

k(S t
k)⊤ /* L-step */

Lt+1
k ← one-step-integrate

{
L̇(t) = −∇LL(U t

kL(t)⊤zk−1 + bt
k), L(0) = Lt

k
}

if adaptive then /* Basis augmentation step */
Kt+1

k ← [Kt+1
k | U t

k]
Lt+1

k ← [Lt+1
k | V t

k]

U t+1
k ← orthonormal basis for the range of Kt+1

k /* S-step */
Mk ← (U t+1

k )⊤U t
k

V t+1
k ← orthonormal basis for the range of Lt+1

k
Nk ← (V t+1

k )⊤V t
k

S̃ t
k ← MkS t

kN⊤k
for each layer k do

S t+1
k ←one-step-integrate

{
Ṡ (t)= −∇SL

(
U t+1

k S (t)(V t+1
k )⊤zk−1+bt

k
)
, S (0)= S̃ t

k
}

if adaptive then /* Rank compression step */
P,Σ,Q← SVD(S t+1

k )
S t+1

k ← truncate Σ using the singular value threshold ϑ
U t+1

k ← U t+1
k P̃ where P̃ = [first rt+1

k columns of P]
V t+1

k ← V t+1
k Q̃ where Q̃ = [first rt+1

k columns of Q]

/* Bias update step */
bt+1

k ←one-step-integrate
{
ḃ(t)= −∇bL(U t+1

k S t+1
k (V t+1

k )⊤zk−1+b(t)), b(0)=bt
k
}
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L(Y t
1, . . . ,Y

t
M,Nθ(x), y). Then, for a small enough time-step η we have

L(t + 1) ≤ L(t) − αη + βϑ (7.19)

where α and β are positive constants that do not depend on t, η and ϑ.

7.3.2. Efficient Implementation of the Gradients

All three K, L, and S-steps require the evaluation of the gradient flow of the loss function with respect to
the whole matrix Wk. Different approaches to efficiently compute this gradient may be used. The strategy
we discuss below aims at reducing memory and computational costs by avoiding the computation of the
full gradient, working instead with the gradient with respect to the low-rank factors.
To this end, we note that for the K-step

∇WkL(Kk(t)V⊤k )Vk = ∇KkL(Kk(t)V⊤k ) (7.20)

holds Hence, the whole gradient can be computed through a forward run of the network with respect to
Kk

zk = σk
(
Kk(t)V⊤k zk−1 + bk

)
, k = 1, . . . ,M (7.21)

and taping the gradient with respect to Kk using automatic differentiation. In this way, the full gradient
does not need to be computed and the overall computational costs are comprised of running a forward
evaluation while taping gradients with respect to Kk, analogously to the traditional back-propagation al-
gorithm. The L- and S-steps can be evaluated efficiently in the same manner, by evaluating the network
while taping the gradients with respect to Lk and S k, respectively. Hence, instead of a single gradient tape
(or chain rule evaluation) of the full-weight matrix network, we have three gradient tapes, one for each
low-rank step, whose combined computational footprint is less than the full matrix tape. We provide de-
tailed formulas for all three gradient tapes in the supplementary material §7.7.

7.3.3. Implementation Details of DLRT

Each step of Algorithm 7.1 requires the computation of two orthonormal bases for the ranges of Kt+1
k and

Lt+1
k . There are of course different techniques to compute such orthonormal matrices. In our implemen-

tation, we use the QR algorithm, which is known to be one of the most efficient and stable approaches
for this purpose. In the adaptive strategy, the singular values of S t+1

k are truncated according to a pa-
rameter ϑ. To this end, in our implementation, we use the Frobenius norm of Σ. Precisely, we truncate
Σ = diag(σi) at step 7.1 of Algorithm 7.1 by selecting the smallest principal r × r submatrix such that
(
∑

i≥r+1 σ
2
i )1/2 ≤ ϑ. Finally, one-step-integrate denotes a numerical procedure that integrates the corre-

sponding ODE from time t = 0 to t = η. In practice, one can employ different numerical integrators,
without affecting the ability of the algorithm to reduce the loss function (see [35, Thm. 5]) while main-
taining the low-rank structure. In our implementation we used two methods:

• Explicit Euler. This method applied to the gradient flow coincides with one step of Stochastic
Gradient Descent (SGD), applied to the three factors Kk, Lk, S k independently.

• Adam. Here we formally compute the new factors by modifying the explicit Euler step as in the
Adam optimization method. Note that Nesterov accelerated SGD is known to coincide with a
particular linear multistep ODE integrator [210]. While Adam does not directly correspond to a
numerical integrator to our knowledge, in our tests it resulted in a faster decrease of the loss than
both Euler (SGD) and Nesterov accelerated SGD.
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For both choices, the target time step η corresponds to the value of the learning rate, which we set to 0.2
for Euler. For Adam, we use the default dynamical update, setting 0.001 as starting value.

7.3.4. Computational Cost of DLRT

To obtain minimal computational costs and memory requirements for the K-step, the ordering of evalu-
ating KkV⊤k zk−1 in (7.21) is important. First, we compute

z̃ := V⊤k zk−1 ∈ R
rk

which requires O(rknk−1) operations. Second, we compute

Kk̃z (7.22)

which requires O(rknk) operations. Adding the bias term and evaluating the activation function requires
O(nk) operations. Hence, combined over all layers we have an asymptotic cost of

O

∑
k

rk(nk + nk+1)

 . (7.23)

Taping the forward evaluation to compute the gradient with respect to Kk as discussed in §7.3.2 does not
affect the asymptotic costs, i.e., the costs of computing the K-step at layer k assuming a single data point
x requires

CK ≲
∑

k

rk(nk + nk+1) (7.24)

operations. Similarly, we obtain the computational costs of the L- and S-steps, which are again

CL,S ≲
∑

k

rk(nk + nk+1). (7.25)

Moreover, the QR decompositions used in the K- and L-step require

O

∑
k

r2
k (nk + nk−1)

 (7.26)

operations and computing the SVD in the truncation step has the worst-case cost of

O

∑
k

r3
k

 . (7.27)

Hence, assuming rk ≪ nk, nk+1, the cost per step of our low-rank method is

CDLRA ≲
∑

k

r2
k (nk + nk−1), (7.28)

opposed to dense network training, which requires

Cdense ≲
∑

k

nknk+1 (7.29)

operations. In terms of memory cost, note that we only need to store rk(rk + nk + nk+1) parameters per
layer during the algorithm, corresponding to the matrices S t

k,U
t
k,V

t
k. Moreover, at the end of the training,

we can further compress memory by storing the product of the trained weight factors UkS k, rather than
the individual matrices.
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7.4. Low-Rank Matrix Representation and Implementation of Other
Layer Architectures

Algorithm 7.1 shows DLRT for fully connected layers, however, modern neural network models employ
a wide variety of layer designs. In the following, we adapt DLRT for convolutional and self-attention
layers.

7.4.1. Convolutional Layers

A generalized convolutional filter is a four-mode tensor W ∈ RF×C×J×K consisting of F filters of shape
C × J × K, which is applied to a batch of N input C− channels image signals Z of spatial dimensions
U × V as the linear mapping,

(Z ∗W)(n, f , u, v) =
J∑

j=1

K∑
k=1

C∑
c=1

W( f , c, j, k)Z(n, c, u − j, v − k) . (7.30)

To train the convolutional filter on the low-rank matrix manifold, we reshape the tensor W into a rect-
angular matrix Wresh ∈ RF×CJK . This reshaping is also considered in e.g. [117]. An option is to see
the convolution as the contraction between a three-mode tensor Zunfolded of patches and the reshaped
kernel matrix Wresh using Pytorch’s fold-unfold function. We can construct the unfold by stacking the
vectorized version of sliding patterns of the kernel on the original input, obtaining in this way a ten-
sor Zunfolded ∈ RN×CJK×L, where L denotes the dimension of flatten version of the output of the 2-D
convolution. Thus, equation 7.30 can be rewritten as a tensor mode product:

(Z ∗W)(n, f , u, v) =
J∑

j=1

K∑
k=1

C∑
c=1

W resh( f , (c, j, k))Zunfolded(n, (c, j, k), (u, v))

=

r∑
p=

U( f , p)
r∑

q=1

S (p, q)
J∑

j=1

K∑
k=1

C∑
c=1

V((c, j, k), q)Zunfolded(n, (c, j, k), (u, v))

(7.31)

As it is shown in (7.31), we can decompose the starting weight W resh = US V⊤ and then do all the
training procedures as a function of the factors (U, S ,V), without ever reconstructing the kernel. Then
we can apply the considerations of fully connected layers.

7.4.2. Self-Attention Layers

Self-Attention becomes more and more popular in deep learning research and engineering and is the core
ingredient for transformer neural networks [59, 83, 127, 231]. Transformer neural network architectures
are used for time series processing tasks in the most general sense with successful application in natural
language processing [29], computer vision [59] and image synthesis [202].
We briefly describe the Transformer model architecture, where we follow [231]. A Transformer Nθ is an
auto-regressive model, i.e., for a given sequence x = [x1, . . . , xM] ∈ Rd×M, of maximum length M with
elements xi ∈ R

d, the next token xM+1 is predicted,

Nθ(x) = xM+1. (7.32)
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Then, the element is appended to the sequence, and the context window of size M is shifted by one
element to the right, i.e.,

x = [x2, . . . , xM+1] , (7.33)

to yield the input for the next prediction step. The transformer is built upon attention-heads followed by
basic fully-connected layers with ResNet-based skip connections.

Definition 7.3
(Attention-Head) Let q,k, v ∈ RM×d be the query q, key k and value v sequences. Let σ : RM×d → RM×d

be a point-wise defined non-linear activation function. For the weight matrices Wk,Wq,Wv ∈ R
d×d and

biases bk, bq, bb ∈ R
d, the attention-head is defined as

AH(q,k, v) = softmax
(
Q(q) · K(k)
√

d

)
V(v) (7.34)

with

K(k) = σ (Wkk + bk)

Q(q) = σ
(
Wqq + bq

)
V(v) = σ (Wvv + bv) .

(7.35)

The attention-head can be seen as a non-linear lookup table that can perform a query Q for keys K and
relate the result to a value table V in parallel for the whole context window of the sequence.
Dynamical low-rank training for transformers is straightforward, where we approximate the weight ma-
trices Wk,Wq,Wv, with low-rank matrices Yk,Yq,Yv, thus Eqs. (7.35) become

K(k) = σ
(
UkS kV⊤k k + bk

)
Q(q) = σ

(
UqS qV⊤q q + bq

)
V(v) = σ

(
UvS vV⊤v v + bv

) (7.36)

in the low-rank tensor decomposition.

7.5. Numerical Results

We illustrate the performance of DLRT Algorithm 7.1 on several test cases. The code is implemented
in both Tensorflow3 and PyTorch4. The networks are trained on an AMD Ryzen 9 3950X CPU and an
Nvidia RTX 3090 GPU. Timings are measured on pure CPU execution. In the following, we denote
an M layer low-rank network, factorized as Yk = UkS kV⊤k with ranks rk by [r1, . . . , rM]. If we refer
to a full-rank reference network with weights Wk, the nation refers to the output dimension of the cur-
rent layer, i.e., [n1, . . . , nM], where Wk ∈ R

nk×nk−1 . The following numerical tests are conducted using a
well-known benchmark dataset. The MNIST dataset [56] contains 70K greyscale images of 10 classes
and is partitioned in randomly sampled train-validation-test sets of size 50K-10K-10K. The Cifar10
dataset [142] contains 60K rgb images in 10 classes, 1000 of which are test-data. Finally, the Ima-
geNet1k dataset [55] contains 1.2 million RGB images of 1000 classes with additional 50K validation

3https://github.com/CSMMLab/DLRTNet
4https://github.com/COMPiLELab/DLRT
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Figure 7.3.: Comparison of averaged batch execution and training times of 5-layer, 5120-neurons low-
rank networks with Yk ∈ Mrk of different ranks and a reference network with Wk on the
MNIST dataset. Training times shown correspond to 200 iterations with batch-size 500.
Prediction times refer instead to the whole dataset.

and 100K test images. In all inspected test cases, the corresponding images are pixel-wise normal-
ized and no further data augmentation or regularization has been used. Numerical experiments on the
transformer architecture are conducted using a natural language processing data set, the TED talk tran-
scripts data set for the Portuguese-English language pair [246], consisting of 6K sentence pairs in the
training, 600 in the validation, and 1000 in the test set. The words are tokenized using the TensorFlow
tokenizer.

7.5.1. Computational Performance of Fully-Connected Networks

First, we compare the training time of the adaptive DLRT Algorithm 7.1 on a 5-layer fully-connected
[5120, 5120, 5120, 5120, 10] network fixing the ranks of layers 1-4, i.e. choosing a specific starting rank
r0

k for the input weight factors and truncating Σ at line 7.1 of Algorithm 7.1 to the principal r0
k × r0

k
submatrix, rather than via a threshold. Table 7.1 displays the corresponding average batch training times
on the MNIST dataset, with a batch size of 500 samples. We average the timings over 200 batches and
additionally display the standard deviation of the timings corresponding to the layer ranks. The batch
timing measures the full K, L, and S steps, including back-propagation and gradient updates, as well as
the loss and metric evaluations.

Next, we measure the average inference time on the whole MNIST dataset over 1000 runs. Fig. 7.3(a)
and 7.3(b) show that both timings scale linearly with the rank of the factorizations and that for sufficiently
small ranks DLRT is faster than the full-rank baseline both in terms of training and prediction. Remark,
that the amortization threshold is also a function of the DLRT implementation. Currently DLRT is imple-
mented in python without CUDA Kernel acceleration which further reduces the amortization threshold.
Table 7.2 shows the corresponding average inference times for different low-rank factorizations and the
full-rank reference network. The timings are averaged over 1000 evaluations of the 60K sample MNIST
training data set. We measure the K step forward evaluation of the low-rank networks as well as the loss
and prediction accuracy evaluations.
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7.5. Numerical Results

Table 7.1.: Average batch training times for fixed low-rank training of a 5-layer fully-connected network
with layer widths [5120, 5120, 5120, 5120, 10]. Different low-rank factorizations are com-
pared

ranks mean time [s] std. deviation [s]

full-rank 0.320 ±0.005227

[320, 320, 320, 320, 320] 0.855 ±0.006547
[160, 160, 160, 160, 10] 0.387 ±0.005657

[80, 80, 80, 80, 10] 0.198 ±0.004816
[40, 40, 40, 40, 10] 0.133 ±0.005984
[20, 20, 20, 20, 10] 0.098 ±0.005650
[10, 10, 10, 10, 10] 0.087 ±0.005734

[5, 5, 5, 5, 10] 0.071 ±0.005369

7.5.2. Rank Evolution of DLRT

Next, we demonstrate the capabilities of DLRT to determine the rank of the network’s weight matrices
automatically during the network training using Algorithm 7.1. The Adam optimizer with default learn-
ing rate is used for the gradient update. We train fully connected 5-layer networks, of which the first 4
are replaced by low-rank layers in the subsequent tests. The activation function is chosen to be ReLU for
the hidden layers, and softmax for the output layer. The training loss is sparse categorical cross entropy
and we additionally measure the model’s accuracy. We use batch size 256 and train for 250 epochs.
We choose ϑ = τ ∥Σ∥, thus we truncate the singular values of the current S t

k by a fraction τ of the total
Frobenius norm. The smaller τ, the more singular values are kept.
Figure 7.4 shows the evolution of the rank adaptive layers of a 5-layer [500, 500, 500, 500, 10] network

in a long time case study for τ = 0.03 to τ = 0.17. We can see that within the first epoch, the initial
full matrix ranks are reduced significantly, to 27 for τ = 0.15, and ∼ 85 for τ = 0.05 respectively.
Within the first 50 epochs, the layer ranks are already close to their final ranks. This indicates that the
rank adaptive algorithm is only needed for the first few training epochs, and can then be replaced by the

Table 7.2.: Average dataset inference times of a 5-layer fully-connected network with layer widths
[5120, 5120, 5120, 5120, 10]. Different low-rank factorizations are compared.

ranks mean time [s] std. deviation [s]

full-rank 1.2476 ±0.0471

[2560, 2560, 2560, 2560, 10] 1.4297 ±0.0400
[1280, 1280, 1280, 1280, 10] 0.7966 ±0.0438

[640, 640, 640, 640, 10] 0.4802 ±0.0436
[320, 320, 320, 320, 10] 0.3286 ±0.0442
[160, 160, 160, 160, 10] 0.2659 ±0.0380

[80, 80, 80, 80, 10] 0.2522 ±0.0346
[40, 40, 40, 40, 10] 0.2480 ±0.0354
[20, 20, 20, 20, 10] 0.2501 ±0.0274
[10, 10, 10, 10, 10] 0.2487 ±0.0276

[5, 5, 5, 5, 10] 0.2472 ±0.0322
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Figure 7.4.: Ranks of layers 1-4 of 5-layer [500, 500, 500, 500, 10] fully-connected net on MNIST with
adaptive DLRT at the end of each epoch for different compression rates τ. Ranks are signif-
icantly compressed after one epoch and stabilize after ≈ 80 epochs.
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Table 7.3.: Dynamical low-rank training for a 5-layer 500-neurons network. c.r. denotes the compression
rate relative to the full-rank dense network.

NN metrics Evaluation Train

τ test acc. ranks params c.r. params c.r.

full-rank 98.54 ± 0.03% [500, 500, 500, 500, 10] 1147000 0% 1147000 0%

0.03 98.49 ± 0.02% [176, 170, 171, 174, 10] 745984 34.97% 1964540 -71.27%
0.05 98.56 ± 0.02% [81, 104, 111, 117, 10] 441004 61.56% 1050556 8.40%
0.07 98.52 ± 0.08% [52, 67, 73, 72, 10] 283768 75.26% 633360 44.78%
0.09 98.34 ± 0.14% [35, 53, 51, 46, 10] 199940 82.57% 429884 62.52%
0.11 98.11 ± 0.46% [27, 40, 37, 38, 10] 154668 86.52% 324904 71.67%
0.13 97.50 ± 0.23% [20, 31, 32, 30, 10] 123680 89.22% 255500 77.72%
0.15 97.22 ± 0.29% [17, 25, 26, 24, 10] 101828 91.13% 207320 81.92%
0.17 96.90 ± 0.45% [13, 21, 24, 20, 10] 86692 92.45% 174728 84.76%

Table 7.4.: Dynamical low-rank training for a 5-layer 784-neurons network. c.r. denotes the compression
rate relative to the full-rank dense network.

NN metrics Evaluation Train

τ test acc. ranks params c.r. params c.r.

full-rank 98.53 ± 0.04% [784, 784, 784, 784, 10] 2466464 0% 2466464 0%

0.03 98.61 ± 0.07% [190, 190, 190, 190, 10] 1199520 51.37% 2968800 -20.36%
0.05 98.59 ± 0.06% [124, 120, 125, 126, 10] 784000 68.22% 1805268 26.80%
0.07 98.58 ± 0.03% [76, 86, 85, 83, 10] 525280 78.71% 1151864 53.29%
0.09 98.49 ± 0.05% [56, 67, 63, 59, 10] 392000 84.41% 836460 66.08%
0.11 98.12 ± 0.21% [35, 49, 47, 43, 10] 280672 88.63% 584240 76.31%
0.13 97.95 ± 0.23% [29, 35, 38, 34, 10] 221088 91.04% 453000 81.63%
0.15 97.81 ± 0.17% [22, 29, 27, 27, 10] 172480 93.01% 348252 85.88%
0.17 97.40 ± 0.25% [17, 23, 22, 23, 10] 141120 94.28% 281724 88.57%

computationally cheaper fixed-low-rank training (by setting the Boolean variable adaptive to False in
Algorithm 7.1).
Tables 7.3 and 7.4 display a detailed overview of the adaptive low-rank results for different τ. The dis-
played ranks are the ranks of the converged algorithm. The evaluation parameter count corresponds to
the parameters of the K step of the dynamical low-rank algorithm since all other matrices are no longer
needed in the evaluation phase. The training parameter count is evaluated as the number of parameters
of the S step of the adaptive dynamical low-rank training, with maximal basis expansion by 2r, where
r is the current rank of the network. We use the converged ranks of the adaptive low-rank training to
compute the training parameters. Note that during the very first training epochs, the parameter count is
typically higher until the rank reduction has reached a sufficiently low level.

Figure 7.5 compares the mean test accuracy of 5-layer networks with 500 and 784 neurons with different
levels of low-rank compression, over five independent runs each. The networks can be compressed via
dynamical low-rank training by more than 95%, while only losing a little more than 1% test accuracy
compared to the dense reference network marked in red. Remark that restricting the space of possible
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Figure 7.5.: Mean test accuracy over parameter count and compression rate for 5 runs on 5-layer fully-
connected networks. Red dots denote the full-rank baseline. Remark that compressed net-
works are exceeding the baseline accuracy for several rank choices.

networks to a given rank regularizes the problem since such a restriction can be understood as adding a
PCR regularization term to the loss function. This can be seen from the tendency of not overfitting and
reaching improved test accuracies compared to the corresponding dense network for moderate compres-
sion ratios. Also note that adaptive-low-rank training eliminates the need for hyperparameter grid search
in terms of layer weights, due to automatic rank adaptation.

7.5.3. Low-Rank Pruning with DLRT

The proposed low-rank training algorithm does not need to be applied to train a network from random ini-
tial weight guesses. When an already trained network is available, the proposed method can be employed
as a memory-efficient pruning strategy. A straightforward approach to reduce a trained fully-connected
network to a rank r network is to compute an SVD for all weight matrices and to truncate those decompo-
sitions at rank r. However, while this choice is optimal to present weight matrices, it might significantly
reduce the accuracy of the network. Hence, retraining the determined low-rank subnetwork is commonly
necessary to obtain desirable accuracy properties. Three key aspects are important to obtain an efficient
pruning method for low-rank methods:

• Retraining preserves the low-rank structure of the subnetwork.

• Retraining does not exhibit the memory footprint of the fully connected network.

• Retraining finds the optimal network among possible low-rank networks.

Let us note that the attractor of the proposed dynamical low-rank evolution equations fulfills these three
requirements. Recall that for the evolution equations we have (7.10), i.e.,

min
{
∥Ẏk(t) + ∇YkL(Yk(t))∥F : Ẏk(t) ∈ TYk(t)Mrk

}
(7.37)

The condition Ẏk(t) ∈ TYk(t)Mrk ensures that the weight matrices remain of low-rank. Moreover, as
previously discussed, the training method only requires memory capacities to store low-rank factors. At
the attractor, i.e., when Ẏk = 0, the last condition ensures that the attractor minimizes ∥∇YkL(Yk(t))∥F .
That is, the attractor is the optimal low-rank subnetwork in the sense that it picks the network with
minimal gradient. To underline the effectiveness of our low-rank method as a pruning technique, we take
the fully connected network from Table 7.4. To demonstrate the poor validation accuracy when simply
doing an SVD on the full 784 by 784 weight matrices and truncating at a given smaller rank, we perform
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Table 7.5.: Fixed-rank DLRT pruning for a [784, 784, 784, 784, 10] fully-connected network. Fixed-rank
DLRT successfully prunes with high test accuracy, whereas SVD pruning accuracy declines.

test accuracy evaluation

SVD low-rank training ranks params c.r.

98.63% 98.63% [784, 784, 784, 784, 10] 2466464 0%
9.91% 98.16% [100, 100, 100, 100, 10] 635040 74.25%
9.67% 98.44% [90, 90, 90, 90, 10] 572320 76.80%
9.15% 98.47% [80, 80, 80, 80, 10] 509600 79.34%
9.83% 98.58% [70, 70, 70, 70, 10] 446880 81.88%
9.67% 98.41% [60, 60, 60, 60, 10] 384160 84.42%
9.83% 98.39% [50, 50, 50, 50, 10] 321440 86.97%
10.64% 98.24% [40, 40, 40, 40, 10] 258720 89.51%
10.3% 98.24% [30, 30, 30, 30, 10] 196000 92.05%
9.15% 97.47% [20, 20, 20, 20, 10] 133280 94.60%
10.9% 95.36% [10, 10, 10, 10, 10] 70560 97.14%

this experiment for ranks r ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. It turns out that though reducing
memory requirements, this strategy leads to unsatisfactory accuracy of about 10%, see the first column
of Table 7.5. Then, we use the proposed low-rank training methods with fixed rank r to retrain the
network. As starting points, we use the low-rank networks which have been determined by the truncated
SVD. Retraining then reaches desired accuracies that are comparable to the previously determined low-
rank networks in Table 7.4.

7.5.4. Convolutional Layers: LeNet5

Here, we compare the proposed dynamical low-rank training scheme on LeNet5 [156] on MNIST, against
the full-rank reference and several baselines. SVD prune [243] and LRNN [117] are the closest ap-
proaches to our DLRT: they dynamically train low-rank layers by adding a rank penalty to the loss
function, and by complementing the standard training step via an SVD projection step in the latter and
a pruning step in the former. While computing low-rank factors for each layer, thus reducing memory
storage of the network, this training approach is more expensive than training the full network. GAL
[169], SSL [245], and NISP [234] are pruning methods that aim at learning optimal sparse weights
(rather than low-rank) by adding sparsity-promoting regularization terms to the training loss. As for
LRNN, these methods do not reduce the computational cost of the training phase (as indicated with
the < 0% in Table 7.6). Analogously to [117], our adaptive low-rank training technique is applied to
the convolutional layers by flattening the tensor representing the convolutional kernel into a matrix, see
§7.4.1.

All the models are trained for 120 epochs using SGD with a fixed learning rate of 0.2. Results in Table 7.6
show that the DLRT algorithm can find low-rank subnetworks with up to 96.4% fewer parameters than
the full-rank reference while keeping the test accuracy above 95%. Compared to the baseline methods,
we achieve better compression rates but observe lower accuracy. However, unlike the baseline references,
DLRT automatically prunes the singular values during training, without the requirement to solve any
additional optimization problem, thus significantly improving the time and memory efficiency of both
forward and backward phases, compared to the full reference.
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Table 7.6.: Results of the training of LeNet5 on MNIST dataset. Effective parameters represent the num-
ber of parameters we have to save for evaluating the network and those we need to train via
the DLRT Algorithm 7.1. The abbreviation “c.r.” is the relative compression rate compared to
the full model (< 0% indicates that the rate is negative). The abbreviation “ft” indicates that
the model has been fine-tuned. “LeNet5” denotes the standard LeNet5 architecture trained
with SGD.

NN metrics Evaluation Train

method test acc. ranks params c.r. params c.r.

LeNet5 99.2% [20, 50, 500, 10] 430500 0% 430500 0%

D
L

R
T

τ = 0.11 98.0% [15, 46, 13, 10] 47975 88.86% 50585 88.25%
τ = 0.15 97.8% [13, 31, 9, 10] 34435 92.0% 35746 91.7%
τ = 0.2 97.2% [10, 20, 7, 10] 25650 94.04% 26299 93.89%
τ = 0.3 95.3% [6, 9, 4, 10] 15520 96.4% 15753 96.34%

SSL [245] (ft) 99.18% 110000 74.4% < 0%
NISP [234] (ft) 99.0% 100000 76.5% < 0%

GAL [169] 98.97% 30000 93.0% < 0%
LRNN [117] 98.67% [3, 3, 9, 9] 18075 95.8% < 0%

SVD prune [243] 94.0% [2, 5, 89, 10] 123646 71.2% < 0%

7.5.5. Results on the ImageNet1K and Cifar10 Datasets

Table 7.7.: Results on ImageNet1k (left) and Cifar10 (right). The compression rate is the relative param-
eter reduction of the full model. DLRT is used with τ = 0.1. The number of parameters of
the full models is: 33.6M (VGG16); 23.6M (AlexNet); 29.6M (ResNet-50). We report the
difference in test accuracy (top-5 test accuracy for ImageNet1k) to the full-rank baselines.

ImageNet1k

test acc.[%] compression rate

method (to baseline) eval[%] train[%]

R
es

N
et

-5
0

DLRT −0.56 54.1 14.2
PP-2[213] −0.8 52.2 < 0
PP-1[213] −0.2 44.2 < 0
CP[107] −1.4 50.0 < 0
SFP[105] −0.2 41.8 < 0
ThiNet[177] −1.5 36.9 < 0

V
G

G
16

DLRT −2.19 86 78.4
PP-1[213] −0.19 80.2 < 0
CP[107] −1.80 80.0 < 0
ThiNet[177] −0.47 69.04 < 0
RNP(3X)[168] −2.43 66.67 < 0

Cifar10

test acc.[%] compression rate

method (to baseline) eval[%] train[%]

V
G

G
16 DLRT −1.89 56 77.5

GAL[169] −1.87 77 < 0
LRNN[117] −1.9 60 < 0

A
le

xN
et

DLRT −1.79 86.3 84.2
NISP[234] −1.06 − < 0

We assess the capability of compressing different architectures on large-scale training sets. We train a
full-rank baseline model and compare it to DLRT using the same starting weights on an Nvidia A-100
GPU. The used optimizer is SGD with a momentum factor of 0.1 and no data-augmentation techniques
are used. We compare the results of ResNet-50, VGG16, and AlexNet models on the Cifar10 and Im-
ageNet1k data sets. DLRT compression results are first compared to a full-rank baseline training for
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each model and then to several state-of-the-art baseline methods. The last layers of the networks have
been adapted to match the corresponding classification tasks. Detailed results are reported in Table
7.7, where we show the test accuracy (reported as the difference to the full baseline) as well as com-
pression ratios. With Cifar10, we achieve a train compression of 77.5% with an accuracy loss of just
1.89% for VGG16 and 84.2% train compression at 1.79% accuracy loss for AlexNet. In the ImageNet1k
benchmark, we achieve a train compression rate of 14.2%, with a test accuracy loss of 0.5% in top-5
accuracy on ResNet-50 and 78.4% train compression with 2.19 top-5 accuracy loss on VGG16. Com-
pression rates at inference time surpass the literature results in the ImageNet1k benchmark with 54.1%
and 86%.

7.5.6. DLRT for Self-Attention: Low-Rank Transformers

We assess the capability of low-rank compression of attention heads for transformer neural networks.
We investigate the classical Encoder-Decoder Transformer [231], on the TED talk transcripts data set
for the Portuguese-English language pair [246]. We use the ADAM optimizer, where the learning rate
is increased during a warm-up phase and then experiences an exponential decrease. Two models are
investigated, one with 6 attention layers and latent dimension d = 512. The larger model has 55 million
parameters. All weight matrices of each model, except for the embedding layers and the output layer are
factorized using DLRT. We present compression results for fixed-rank DLRT for different layer ranks in
Table 7.8. We report the test-accuracy difference between the baseline model and compression rate. Test
accuracy refers to the prediction accuracy of the next token given the sequence up to the current one. We
see, that DLRT works seamlessly in the context of self-attention.

Table 7.8.: Results of the training of a language translation transformer on the TED talk transcripts
Portuguese-English data set. The baseline model contains 55M parameters and has layer
ranks r = 512. The model can be significantly compressed.

test acc. [%]
layer ranks (to baseline) eval c.r. [%] params

270 −0.17 ± 0.25 1.14 54.3M
250 −0.69 ± 0.33 8.91 50.1M
230 −0.74 ± 0.19 16.53 45.9M
210 −2.00 ± 0.15 23.97 41.8M
190 −2.58 ± 0.20 31.26 37.8M
170 −2.45 ± 0.12 38.39 33.8M
150 −3.51 ± 0.12 45.36 30.1M
130 −4.15 ± 0.26 52.16 26.3M
110 −4.57 ± 0.11 58.80 22.6M
90 −5.06 ± 0.16 65.29 19.0M

7.5.7. Robustness with Respect to Small Singular Values

A direct way to perform training enforcing a fixed rank for the weight matrices is to parameterize each
weight as

Wk ≈ Yk = UkV⊤k (7.38)
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(a) Random initialization (b) Linear decay (c) Exponential decay

Figure 7.6.: Mean test accuracy standard deviation of LeNet5 on MNIST over 10 runs of DLRT com-
pared to a vanilla layer factorization Wk = UkV⊤k . DLRT is robust with respect to weight
initialization, whereas the vanilla factorization struggles to converge for initializations with
linearly (b) and exponentially (c) decaying singular values.

and alternating training with respect to Uk and to Vk. This is the strategy employed for example in
[233, 130]. This vanilla low-rank parametrization approach has several disadvantages compared to
DLRT, on top of the obvious non-adaptive choice of the rank. First, DLRT guarantees approximation
and descent via Theorems 7.1 and 7.2. Second, we observe that the vanilla factorization gives rise to an
ill-conditioned optimization method when small singular values occur. This problem is immanent to the
low-rank manifold itself [136, 72], whose local curvature is proportional to the inverse of the smallest
singular value of the weight matrices. In contrast, the numerical integration strategy at the basis of DLRT
is designed to take advantage of the structure of the manifold and is robust with respect to small singular
values [132]. This can be seen from the bound of Theorem 7.1, where the constants are independent of
the singular values of the weight matrices, and is illustrated by Figure 7.6, where DLRT shows a much
faster convergence rate than vanilla SGD performed on each factor of the parametrization UkV⊤k when
applied to train LeNet5 on MNIST. Both methods are implemented with the same fixed learning rate
of 0.01, and a batch size of 128. The weight matrices are either completely randomly initialized or are
initialized with a random choice forced to have an exponential decay on the singular values.
Our results show that advantageous low-rank winning tickets exist, but are not easy to find. The vanilla
low-rank subnetworks perform very poorly. From this point of view, our approach can be seen as an effi-
cient dynamical pruning technique, able to determine high-performing low-rank subnetworks in a given
dense network. Remarkably, our numerical experiments suggest that low-rank winning tickets can be
trained from the start and do not to heavily depend on the initial weight guess.

7.6. Chapter Conclusion

In this chapter we developed a low-rank compression framework for neural networks based on numerical
methods for kinetic equations.

7.6.1. Summary

We have introduced DLRT, a dynamic, rank-adaptive low-rank compression framework to compress
neural networks during training and allow for wall-time and memory-efficient training and inference.
Adaption of the low-rank basis and adaptive truncation based on the layers’ singular values enables fast
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rank reduction within only a few epochs. We have demonstrated the KLS-based update algorithm, a
robust way to evolve the gradient flow of a neural network along low-rank manifolds. After a discussion
of the computational complexity of DLRT was conducted, the approach was validated with several test
cases on MNIST, Cifar10, and ImageNet1k and common network architectures as fully-connected or
convolutional layers and transformers.

7.6.2. Limitations of the Approach

A requirement for DLRT’s efficiency is that rk ≪ nk, nk+1. When the truncation threshold ϑ is too small,
Algorithm 7.1 does not provide advantages over standard training. This is also shown by Fig. 7.3. More-
over, in the terminology of [215], DLRT is designed to reduce training costs corresponding to model
parameters. To additionally decrease activation costs, DLRT can be combined with micro-batching or
checkpointing approaches. Further, the activation costs can be reduced by decreasing the output di-
mensions of each layer as a post-processing step of the DLRT-algorithm. Possible options are channel
pruning, which has been found to be complementary to layer factorization methods [150].
Finally, the choice of ϑ introduces one additional hyperparameter which at the moment requires external
knowledge for tuning. However, our experiments in §7.5 show that relatively large values of ϑ yield com-
petitive performance compared to several baselines, including standard training.

7.6.3. Future Work

DLRT opens the door to a rich field of future study. On a practical side, it is interesting to remove the
hyper-parameter ϑ, e.g. by coupling it to the current validation error of the neural network or establishing
a schedule similar to learning rate schedules. Furthermore, new advances in the rank-adaptive integrator,
e.g. [102], can be incorporated to further accelerate the method. DLRT could also be used as a tool for
neural architecture search, instead of compression, in the sense of enabling the training of larger archi-
tectures of a given rank. Here, the effects of low-rank compression of attention heads can be compared
against the popular multi-head attention approach for transformers.
From a theoretical point of view, the implicit regularization of networks using DLRT by the singular
value cutoff has to be inspected. In this regard, a comparison with the double-descent behavior [191]
of massively over-parametrized neural networks can be inspected. Another field of future work is the
inspection of the robustness of low-rank neural networks. One has to inspect, if the low-rank representa-
tion of the network possibly improves the robustness of the network with respect to adversarial attacks,
i.e., noise in the input data, since cut-off of small singular values of the network weights might improve
tolerance to high-frequency signals that emerge from additive noise on the data.
Lastly, DLRT can be inspected for neural ODEs, i.e., parametrized dynamical systems. Dynamical
low-rank was originally developed to compress large dynamical systems and as their unparameterized
counterparts, neural ODEs suffer from high computational costs during inference and training. To this
end, low-rank compression of the adjoint ODE has to be investigated.
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7.7. Additional Material

Statements of Section 7.3

We provide here proof of Theorems 7.1 and 7.2. We remark that the proof of 7.1 is the work of the
co-authors Jonas Kusch and Gianluca Ceruti. The proof is based on some classical results as well as
recent advances in DLRA theory, including [35, 37, 132, 136, 173].
Recall that, for a fixed layer k, we reinterpret the training phase as a continuous-time evolution of the
weights on the manifold of low-rank matrices, as illustrated in Fig. 7.1. This boils down to solving the
manifold-constrained matrix differential equation (7.10).
For the sake of simplicity and a cleaner notation, as all the results we will present hold for a generic k, we
drop the subscript k from now on. In particular, we assume W is the weight matrix of a generic hidden
layer with n input and m output neurons and Y is its low-rank counterpart with factorization Y = US V⊤.
For our derivation to hold, we require the following two properties:

P1 The gradient flow F , see Eq. (7.7) is locally bounded and locally Lipschitz continuous, with con-
stants C1 and C2, respectively. Namely, we assume there exist C1,C2 > 0 (independent of k) such
that

∥F (Z)∥ ≤ C1 ∥F (Z) − F (Z̃)∥ ≤ C2∥Z − Z̃∥ (7.39)

for all Z, Z̃ ∈ Rm×n.

P2 The whole gradient flow is “not too far” from the rank-r manifoldMr. Precisely, we assume that
for any Z ∈ Mr arbitrary close to W(t), the whole gradient flow F (Z) near t is such that

∥(I − P(Z))F (Z)∥ ≤ ε , (7.40)

where P(Z) denotes the orthogonal projection onto TZMr. The situation is illustrated in Fig. 7.2.

Note that both assumptions are valid for low-rank neural network training. In particular, Lipschitz conti-
nuity and boundedness of the gradient are standard assumptions in optimization and are satisfied by the
gradient of commonly used neural networks’ losses. Moreover, assuming the gradient flow to be close to
the low-rank manifold is an often encountered empirical observation in neural networks [214, 181, 70].
To derive the proof of Theorems 7.1 and 7.2 we first present some relevant background lemmas. The first
lemma shows that the subspace generated by the K-step in Algorithm 7.1 after the QR-decomposition is
O(η(η + ε)) close to the range of the exact solution, where η is the time-step of the integrator and ε is the
eigenvalue truncation tolerance.

Lemma 7.4 ([37, Lemma 2])
Let W1 be the solution at time t = η of the full problem (7.6) with initial condition W0. Let U1 be the
matrix obtained with the K-step of the fixed-rank Algorithm 7.1, after one step. Under assumptions P1
and P2 above, we have

∥U1U1,⊤W1 −W1∥ ≤ θ (7.41)

where

θ = C1C2(4eC2η + 9)η2 + (3eC2η + 4)εη . (7.42)

The proof is shown in [37, Lemma 2]. In the next lemma, we show that also the space generated by the L
step is close to the exact solution. Namely, combined with the previous result, we have
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Lemma 7.5 ([37, Lemma 3])
Let W1, U1 be defined as above. Let V1 be the matrix obtained from the L-step of the fixed-rank Algorithm
7.1, after one step. The following estimate holds:

∥U1U1,⊤W1V1V1,⊤ −W1∥ ≤ 2θ. (7.43)

The proof is shown in [37, Lemma 3].

With the previous lemmas, we are in the position to derive the local error bound for the fixed-rank KLS
integrator of Section 7.3.

Lemma 7.6 (Local Error, [37, Lemma 4])
Let W1,U1,V1 be defined as above, and let S 1 be the matrix obtained with the S-step of Algorithm 7.1
after one step. The following local error bound holds:

∥U1S 1V1,⊤ −W1∥ ≤ η(ĉ1ε + ĉ2η), (7.44)

where the constants ĉi are independent of the singular values of W1 and S 1.

The proof is shown in [37, Lemma 4].

We are now in the position to conclude the proof of Theorem 7.1.

Proof: (Theorem 7.1) In Lemma 7.6, the local error for the fixed-rank integrator of §7.3 has been pro-
vided. The local temporal error of the rank-adaptive version is directly obtained via a triangle inequality

∥U1S 1V1,⊤ −W(η)∥ ≤ ĉ1εη + ĉ2η
2 + ϑ , (7.45)

where ϑ is the tolerance parameter chosen for the singular value truncation procedure. Here, we abuse
the notation and we maintain the same nomenclature U1, S 1, and V1 also for the novel low-rank approx-
imation obtained via the truncation procedure.

Thus, we conclude the proof using the Lipschitz continuity of the function F . We move from the local to
the global temporal error by a standard argument of Lady Windermere’s fan [95, Section II.3]. Therefore,
the error after t steps of the rank-adaptive Algorithm 7.1 is given by

∥U tS tV t,⊤ −W(tη)∥ ≤ c1ε + c2η + c3ϑ/η . (7.46)

□

To conclude, we prove that after one step the proposed rank-adaptive DLRT algorithm decreases along
the low-rank approximations. We recall that only property P1 needs to be assumed here.

Proof: (Theorem 7.2) Let Ŷ(t) = U1S (t)V1,⊤. Here, S (t) denotes the solution for t ∈ [0, η] of the S-step
of the rank-adaptive integrator. It follows that

d
dt
L(Ŷ(t)) = ⟨∇L(Ŷ(t)), ˙̂Y(t)⟩

= ⟨∇L(Ŷ(t)),U1Ṡ (t)V1,⊤⟩

= ⟨U1,⊤∇L(Ŷ(t))V1, Ṡ (t)⟩

= ⟨U1,⊤∇L(Ŷ(t))V1, −U1,⊤∇L(Ŷ(t))V1⟩ = −∥U1,⊤∇L(Ŷ(t))V1∥2 .

(7.47)
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The last identities follow by definition of the S-step. For t ∈ [0, η] we have

d
dt
L(Ŷ(t)) ≤ −α2 (7.48)

where α = min0≤τ≤1 ∥U1,⊤∇L
(
Ŷ(τη)

)
V1∥. Integrating (7.48) from t = 0 until t = η, we obtain

L(Ŷ1) ≤ L(Ŷ0) − α2η. (7.49)

Because the subspaces U1 and V1 contain by construction the range and co-range of the initial value, we
have that Ŷ0 = U0S 0V0,⊤ [35, Lemma 1]. The truncation is such that ∥Y1 − Ŷ1∥ ≤ ϑ. Therefore,

L(Y1) ≤ L(Ŷ1) + βϑ (7.50)

where β = max0≤τ≤1 ∥∇L
(
τY1 + (1 − τ)Ŷ1)∥. Hence, the stated result is obtained. □

Detailed Derivation of the Gradient

In this section, we derive the computation of the gradients in the K, L, and S steps in detail. For this,
let us start with the full gradient, i.e., the gradient of the loss with respect to the weight matrix Wk. We
have

∂Wℓ
jk
L =

nM∑
iM=1

∂zM
iM
L∂Wℓ

jk
zM

iM
=

nM∑
iM=1

∂zM
iM
L∂Wℓ

jk
σM

∑
iM−1

WiM iM−1zM−1
iM−1
+ bM

iM


=

nM∑
iM=1

∂zM
iM
Lσ′M

∑
iM−1

WiM iM−1zM−1
iM−1
+ bM

iM

 ∂Wℓ
jk

∑
iM−1

WiM iM−1zM−1
iM−1

 .
(7.51)

For a general α, let us define

σ′α,iα := σ′α

∑
iα−1

Wα
iαiα−1

zα−1
iα−1
+ bαiα

 (7.52)

and note that for α , ℓ

∂Wℓ
jk

∑
iα−1

Wα
iαiα−1

zα−1
iα−1

 =∑
iα−1

Wα
iαiα−1

∂Wℓ
jk
zα−1

iα−1
, (7.53)

whereas for α = ℓ we have

∂Wℓ
jk

 nα−1∑
iα−1=1

Wα
iαiα−1

zα−1
iα−1

 =∑
iα−1

δ jiαδkiα−1zα−1
iα−1

. (7.54)
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Therefore, recursively plugging (7.52), (7.53) and (7.54) into (7.51) yields

∂Wℓ
jk
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∂zM
iM
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Written in matrix notation and making use of the Hadamard product defined as y ◦A ◦ x = (yiAi jx j)i j, for
A ∈ Rm×n, x ∈ Rn and y ∈ Rm, we have:

∂WℓL =∂zML
⊤

σ′ℓ ◦ M∏
α=ℓ+1

W⊤α ◦ σ
′
α


⊤

z⊤ℓ−1 (7.56)

Now, let us derive the K, L, and S-steps for the dynamical low-rank training. For the K-step, we rep-
resent the weight matrix Wℓ as Wℓ

iℓiℓ−1
=

∑
m Kℓ

iℓm
Vℓ

iℓ−1m. Hence, reusing the intermediate result (7.55)
yields
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(7.57)

In matrix notation we obtain
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which is exactly the right-hand side of the K-step. Hence, the K-step can be computed by a forward
evaluation ofL and recording the gradient tape with respect to Kℓ. Similarly, for the L-step, we represent
Wℓ as Wℓ

iℓiℓ−1
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(7.59)
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In matrix notation, we obtain
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Lastly, for the S-step we write Wℓ
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In matrix notation, we have

∂S ℓL = U⊤ℓ ∂zML
⊤

σ′ℓ ◦ M∏
α=ℓ+1

W⊤α ◦ σ
′
α


⊤ (

V⊤ℓ zℓ−1
)⊤
= U⊤ℓ ∂WℓLVℓ. (7.62)
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CHAPTER 8

Summary and Outlook

Summary

In this thesis, we have investigated neural network-based surrogate models for kinetic and macroscopic
partial differential equations, as well as an acceleration algorithm neural network training, which is
inspired by numerical methods for kinetic equations. We have leveraged synergies between neural net-
works and kinetic modeling to develop fast and structure-preserving surrogate models for kinetic methods
as well as efficient and stable low-rank training for neural networks.
We started with a thorough review of the Boltzmann equation and common discretization methods for
the velocity variable of the phase space, with a focus on nodal and modal models in §1. Afterward, we
built an efficient C++ based framework and implemented these macroscopic models on top of a modular,
unstructured grid-based, second-order finite-volume-method for the spatial-temporal discretization of the
Boltzmann equation in §3. The resulting open-source framework KiT-RT is extended to radiation trans-
port applications and extensively validated against existing codebases for kinetic transport and radiation
therapy. We have compared nodal and moment methods with different closures in terms of parallel scal-
ability, wall-time and memory performance, and simulation accuracy. This layed out the computational
foundation and motivattion for the neural network-based surrogate models in the following chapters.
Next, we turned to the minimal entropy closure of the Boltzmann equation in §4, which stands out on
the one hand for its structural richness, i.e. preservation of the mathematical properties of the Boltzmann
equation, and its modeling versatility, but on the other hand is prohibitively expensive due to the high
computational effort of computing the minimal entropy problem, especially for high spatial dimensions
or high order moment bases. We have developed a neural network-based surrogate model to bypass the
iterative evaluation of the minimal entropy closure, which preserves the inherent structure of the Boltz-
mann equation and its moment system. Key to the structure preservation is the built-in convexity of the
neural network, which was also used to analyze interpolation error bounds and in the development of
a data-sampling strategy aimed to minimize inference errors of the network. The input convex and the
related input-monotone neural network surrogates were validated in various numerical tests, where we
highlighted their computational efficiency, the preservation of mass and dissipation of entropy, as well as
numerical stability for lower-order moment systems.
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8. Summary and Outlook

In §5, we considered the pitfalls of the neural network surrogate models presented in §4, especially poor
performance for moments near the boundary of the realizable set, i.e., in highly anisotropic simulations.
We introduce a dynamically scalable regularization for the minimal entropy closure problem and transfer
the surrogate model to this setting, with corresponding data generation based on the ansatz of the regular-
ized problem. Furthermore, we guarantee Galilean invariance of the surrogate model by the introduction
of a rotated and symmetrizing closure. We proved, that normalization, (partial) dynamical regulariza-
tion and rotation of the closure still guarantee a convex approximation to the entropy functional of the
moment system, thus preservation of the system’s mathematical structure. We compared data-sampling
of the new, regularized problem with the original strategies and remark, that the error-analysis transfers.
Numerical tests showed, that regularized surrogate models train significantly faster and to higher test
accuracy than their non-regularized counterparts, especially for higher dimensional closures. Rotational
invariance of the surrogate models helps in an-isotropic simulations as in the Linesource test case. A
broad numerical study in the Hohlraum test case shows that the ICNN-based entropy closure leads to a
computationally competitive simulation method with an advantageous trade-off between memory foot-
print and numerical error, compared to the spherical harmonics, the traditional minimal entropy, and the
nodal method.
We shift our attention to the non-linear Boltzmann equation for kinetic description of rarefied gases in §6,
where we built a neural network-based flow-regime classifier to predict the breakdown of the continuum
assumption in multi-scale flows. We again drew from the minimal entropy closure model, to construct
an algorithm to generate training data for the neural networks. We bridged the Navier-Stokes and kinetic
solver using the neural network switching criterion to construct a fast hybrid numerical method for multi-
scale flows. Numerical evaluation at the Sod shock tube and cylinder test case validates the method and
shows superiority over hand-crafted switching criteria as the gradient-length-local Knudsen number in
terms of accuracy.
Opposed to the previous chapters, where we used neural networks to speed up kinetic simulations, we
made use of the rich numerical analysis for kinetic systems to accelerate training and inference for neural
networks in §7. We interpreted the gradient flow of neural networks as a high-dimensional dynamical
system. The dynamical, adaptive low-rank evolution of this system is used to compress neural networks
during training to a low-rank factorization, a novelty compared to state-of-the-art methods, which typ-
ically compress a network only after training. We showed the stability and monotonicity of the DLRT
algorithm for low-rank training, which evolves the neural network on low-rank manifolds of its solution
space. The approach is validated on state-of-the-art network architectures for computer vision and natu-
ral language translation, where we showed an order of magnitude speedup and reduction of the memory
footprint during training and inference.

Outlook

A considerable amount of time has been spent over the last few years working on the projects that con-
stitute this dissertation. However, no project is ever truly finished and thus we would like to point the
reader into future directions of research that emerge from the conducted research.
The KiT-RT framework can be extended in multiple directions. First, a low-rank acceleration of the
macroscopic methods [148] can be implemented. Second, the MPI capabilities of the framework can
be extended to support distributed memory systems. Naturally, much software development time has
to be invested to make KiT-RT a truly useful tool for radiation transport planning, where for example
optimization of treatment plans in a gradient-based or gradient-free manner can be conducted using the
existing solvers to sample the objective functions. Uncertainty quantification in radiotherapy planning is
a further research direction, in which KiT-RT can be extended.
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The projects focused on neural network-based surrogate modeling of entropy closures have covered a
wide range of challenges. Future research may consider neural network architectures, which are rota-
tion invariant by design [69, 179, 44]. They can be considered as an alternative to the post-processing
rotation proposed in this work. It needs to be investigated to which extent input-convex, rotationally
invariant neural networks can be constructed. Entropy closures can be used for any truncated moment
problem, i.e., it has a wide range of further applications in statistics. In the domain of dynamical systems,
the techniques can be applied for Lyapunov function approximations in high dimensions. Further, the
developed tools, especially the error control can be applied to any other convex function approximation
task.
In the flow-regime classification project, future research can be directed toward the creation of a more
general sampling algorithm and the engineering of a more sophisticated neural network architecture for
regime prediction. Currently, only a single grid cell is considered for the regime prediction. One could
inspect local neighborhoods of the current cell with a convolutional approach, graph-neural networks, or
transformer-like architectures.
The last project in focus is the dynamical low-rank training of neural networks. DLRT opens the door
to a rich field of future study. On a practical side, it is interesting to remove the hyperparameter ϑ, e.g.,
by coupling it to the current validation error of the neural network or establishing a schedule similar to
learning rate schedules. Furthermore, new advances in the rank-adaptive integrator, e.g. [102], can be
incorporated to further accelerate the method. DLRT could also be used as a tool for neural architecture
search, instead of compression, in the sense of enabling the training of larger architectures of a given
rank. Here, the effects of low-rank compression of attention heads can be compared against the popular
multi-head attention approach for transformers.
From a theoretical point of view, the implicit regularization of networks using DLRT by the singular
value cutoff has to be inspected. In this regard, a comparison with the double-descent behavior [191] of
massively over-parametrized neural networks has to be conducted. Another field of future work is the
robustness of low-rank neural networks. Does a low-rank representation of the network possibly improve
the robustness of the network with respect to adversarial attacks , i.e., noise in the input data? The cut-off
of small singular values of the network weights might improve tolerance to high-frequency signals, that
emerge from additive noise on the data.
Lastly, DLRT can be applied to neural ODEs, i.e. parametrized dynamical systems. Dynamical low-rank
was originally developed to compress large dynamical systems and as their unparameterized counter-
parts, neural ODEs suffer from high computational costs during inference and training. To this end, a
low-rank compression of the adjoint ODE has to be developed.
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APPENDIX A

Nomenclature

We state a nomenclature for commonly used variables of this work.

Table A.1.: General nomenclature

Variable Description

· : Rn × Rn → R Inner product of two vectors in Rn

⊗ : Rm × Rn → Rm×n Outer product of two vectors
◦ : Rn × Rn → Rn Hadamard product of two vectors in Rn

∇· Nabla operator with respect to variable ·
∂· Partial derivative with respect to variable ·

d
d· Total derivative of with respect to variable ·

ẋ(t) Time derivative of a time dependent variable x(t)
δ(·) Dirac distribution at point ·
I Identity tensor
n Unit normal vector
H Heaviside step function

Table A.2.: Nomenclature - Entropy closures and the Boltzmann equation

Variable Description

v ∈ Rd Velocity variable in d dimensions
V ⊂ Rd Velocity domain in d dimensions
f (t, x, v) : R+×X×V→ R Kinetic density
ϕ(v) : V→ R Vector of collision invariants of the Boltzmann collision operator
E Span of collision invariants of the Boltzmann collision operator
η( f ) : D→ R Kinetic entropy density
u ∈ Rn Moment vector of the kinetic density f
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A. Nomenclature

m(v) : V→ Rn moment basis of the velocity space V
fu(v) : V→ D reconstructed kinetic density using the moment closure
Fm set of feasible functions for the minimal entropy closure problem
h(u) : R → R Entropy functional of the Boltzmann moment system
j(u) : R → Rd Entropy-flux of the Boltzmann moment system
R ⊂ Rn Realizable set of the minimal entropy closure problem
R ⊂ Rn Normalized realizable set of the minimal entropy closure problem
R ⊂ Rn Reduced, normalized realizable set of the minimal entropy closure
α ∈ Rn Lagrange multiplier of the dual minimal entropy closure problem
αu ∈ R

n Optimal Lagrange multiplier with respect to u
ϕ(α; u) : Rn → R Objective function of the dual minimal entropy closure problem
ϕn(α; u) : Rn → R Negative objective function of the dual minimal entropy closure

problem
H(α) : Rn×n Hessian of the dual minimal entropy closure problem
Hn(α) : Rn×n Negative of the Hessian of the dual minimal entropy closure
γ ∈ R+ Regularization parameter for optimization problems
⟨·⟩ Integral of · over the velocity space
· Normalization operator for moments
(·)# Truncation operator for moments and Lagrange multipliers
Q( f ) : L1(V)→ L1(V) Linear collision operator of the Boltzmann Equation
Q( f , f ) : L1(V)→ L1(V) Non-linear collision operator of the Boltzmann Equation
A( f , f ) : L1(V)→ L1(V) Advection operator of the Boltzmann Equation
B( f , f ) : V × V→ R+ Collision kernel of the Boltzmann Equation
(·)∗ Legendre transform
U : Rn → Fm Moment closure operator

Table A.3.: Nomenclature - Numerical methods for conservation laws

Variable Description

g(t, x) ∈ Rn Solution of a general conservation law in space and time
x ∈ Rd Spatial variable in d dimensions
v ∈ Rd Velocity variable in d dimensions
t ∈ R+ Temporal variable
X ⊂ Rd Spacial domain in d dimensions
V ⊂ Rd Velocity domain in d dimensions
h(g) : Rn → R Entropy of a conservation law
j(g) : Rn → Rd Entropy-flux of a conservation law
S2 ⊂ R3 Unit sphere in R3

µ ∈ [−1, 1], θ ∈ [0, 2π) Polar coordinates parametrization of S2

wq quadrature weight with index q
u ∈ Rn moment vector of the kinetic density f
F : Rn → Rn×d Flux function of a conservation law
Xi Spatial grid cell with index i
N(i) Indices of neighboring spatial grid cells of cell i
R : Rn → Rn Discretized right hand side of a conservation law
φ ∈ C∞0 (R+ × Rd) Test function for a weak solution of a conservation law
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Table A.4.: Nomenclature - Gas dynamics

Variable Description

Kn Knudsen number
KnGLL Gradient-length-local Knudsen number
M(ρ,U,T ) Maxwellian distribution function
k Boltzmann constant
q Macroscopic conservative variables
ρ Macroscopic particle Density
U Bulk velocity
T Macroscopic temperature
R Gas constant
µ Viscosity coefficient
κ Heat conductivity coefficient
c Peculiar velocity
E equilibrium distribution function
a spatial derivatives of kinetic density
b time derivatives of kinetic density
Pr̂ Neural network output - Flow regime probability

Table A.5.: Nomenclature - Neural networks

Variable Description

Nθ Neural network with trainable parameters θ
σk(z) : Rnk×b → Rnk×b Pointwise activation function of layer k of a neural network with

batch size b
Wk ∈ R

nk×nk−1 Weight matrix of layer k of a neural network
bk ∈ R

nk Bias term of layer k of a neural network
T Training error of a neural network
G Generalization error of a neural network
T̃ Test error of a neural network
λ ∈ R+ Learning rate of a neural network, step size of a numerical optimizer
L Loss functional for neural network training
zk Output of layer k of a neural network
x Input data of a neural network
y Output data of a neural network

Table A.6.: Nomenclature - Low-rank compression for neural networks

Variable Description

W General full rank dynamical system
Y General low-rank dynamical system
F Right hand side of a general dynamical system
Mr Low-Rank manifold of rank r
TY(t)M Tangent plane of the low-rank manifold at Y(t)

181



A. Nomenclature

U ∈ Rn×r,V⊤ ∈ Rm×r Basis vectors ofMr

S ∈ Rr×r Coefficient matrix of theMr corresponding to U and V⊤

δY Element of the tangent plane
⟨·, ·⟩ Scalar product in Rn
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