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Abstract

Unstructured data accounts for 80-90% of all data generated, with image data
contributing its largest portion. In recent years, the field of computer vision, fueled
by deep learning techniques, has made significant advances in exploiting this data
to generate value. However, often computer vision models are not sufficient for
value creation. In these cases, image-based decision support systems (IB-DSSs), i.e.,
decision support systems that rely on images and computer vision, can be used to
create value by combining human and artificial intelligence. Despite its potential,
there is only little work on IB-DSSs so far.

In this thesis, we develop technical foundations and design knowledge for IB-
DSSs and demonstrate the possible positive effect of IB-DSSs on environmental
sustainability. The theoretical contributions of this work are based on and evaluated
in a series of artifacts in practical use cases: First, we use technical experiments
to demonstrate the feasibility of innovative approaches to exploit images for IB-
DSSs. We show the feasibility of deep-learning-based computer vision and identify
future research opportunities based on one of our practical use cases. Building
on this, we develop and evaluate a novel approach for combining human and
artificial intelligence for value creation from image data. Second, we develop design
knowledge that can serve as a blueprint for future IB-DSSs. We perform two design
science research studies to formulate generalizable principles for purposeful design
— one for IB-DSSs and one for the subclass of image-mining-based decision support
systems (IM-DSSs). While IB-DSSs can provide decision support based on single
images, IM-DSSs are suitable when large amounts of image data are available and
required for decision-making. Third, we demonstrate the viability of applying IB-
DSSs to enhance environmental sustainability by performing life cycle assessments
for two practical use cases — one in which the IB-DSS enables a prolonged product
lifetime and one in which the IB-DSS facilitates an improvement of manufacturing
processes.

We hope this thesis will contribute to expand the use and effectiveness of image-
based decision support systems in practice and will provide directions for future
research.
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Introduction 1
“A picture is worth a thousand words.”1 Consider a photograph of a house to
understand the meaning of this saying: observers see many details like the roof,
doors, windows, and the colors of walls. Furthermore, they can see the location and
size of different rooms. They might even make assumptions about the people living
in the house and their lifestyle. Also, the image conveys additional information
about, for example, the surrounding of the house, its age, and its architectural style.
This example illustrates that it requires a large number of words to only approximate
the amount of information contained in a single image. From a data perspective,
image data is considered unstructured data as opposed to structured data, which is
stored, for example, in spreadsheets and relational databases, and can be directly
processed automatically. It is estimated that 80 to 90% of all data is unstructured
(CIO.com, 2019). Hence, it is particularly promising to further exploit this type of
data for value creation.

A crucial step for value creation based on image data is the application of CV
techniques that allow to automatically extract information from images (Szeliski,
2010) and thus enable subsequent automated processing of image data. In recent
years, the field of CV has made significant advances because of machine learning
(ML) techniques (LeCun et al., 2015). Already in 1959, Arthur Samuel defined
ML as giving computers the ability to learn without being explicitly programmed
(Samuel, 1959). Nowadays, mainly deep learning (DL) is used for CV tasks. DL is
a subfield of ML which relies on deep neural networks (Janiesch et al., 2021). In
broader terms, ML and DL are subfields of artificial intelligence (AI) (Kühl et al.,
2019).

While these technological advances facilitate novel forms of value creation, com-
panies are currently facing challenges due to fast-changing environments. The
average lifespan of companies in the S&P 500 stock index, comprising the largest
500 stock-indexed companies in the United States, has been reduced from around
35 years in 1976 to approximately 22 years in 2020 (INNOSIGHT, 2019). More
recently, the consequences of current events like the Covid-19 pandemic, the Ever
Given cargo ship blocking the Suez Channel, and the Russian invasion of Ukraine

1derived from “One look is worth a thousand words” by Frederick R. Barnard in Printer’s Ink, 1921.
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show how rapidly changing, globalized, and interconnected our modern world is.
This threatens many established forms of value creation. Therefore, companies must
adopt novel forms of value creation to stay competitive.

A popular, novel way of value creation is to combine data and analytical methods to
make better decisions and solve complex problems (Hunke et al., 2022).

For CV, in particular, the application in various areas has economic importance and
can bring value to society: e.g., in agriculture (Tian et al., 2020), manufacturing
(J. Wang et al., 2018) and autonomous driving (Grigorescu et al., 2020). However,
contrary to past predictions (e.g., Faggella (2020)), many of these applications
are not fully automated yet and require certain human inputs. For example, in
the field of autonomous driving, the level of autonomy is classified from level 0
(no driving automation) to level 5 (full driving automation) (On-Road Automated
Driving (ORAD) committee, 2021). Currently, the cars equipped with the highest
degree of autonomy are in level 3 (Nedelea, 2021) — conditional driving automation
— according to the classification mentioned above. That means the driver is still
required to take over when the automated driving system requests this.

Considered with a more abstract lens, CV alone is often just an intermediary step. In
terms of the data, information, knowledge, and wisdom (DIKW) pyramid based on
Ackoff (1989), CV techniques can be used to convert images (data) to information
automatically. Yet, to reach higher levels of abstraction (knowledge and wisdom),
combining human and artificial intelligence is often necessary. Decision support

Fig. 1.1.: Data, information, knowledge, and wisdom pyramid for image-based decision
support systems based on Ackoff (1989).

systems (DSSs) are a proven tool to generate value (Kohli & Devaraj, 2004) by
combining human and artificial intelligence (Power, 2002, p. 149). DSS “is a
general term for any computer application that enhances a person or group’s ability
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to make decisions” (Power, 2008, p. 149). While existing literature already addresses
similar data types like text (Abbasi & Chen, 2008), there is only little work on DSSs
that rely on images and CV. We call this novel class of systems image-based decision
support systems (IB-DSSs). Compare Figure 1.1 on page 4 for a graphical depiction
of the DIKW pyramid for image data and the role of CV and IB-DSSs.

This thesis contributes to making use of the information value of images. It demon-
strates how IB-DSSs can be designed and used to be of value to society — supporting
people in their work life, creating monetary value, and lessening environmental
impact.

1.1 Essential Terminology

Before introducing the structure of this work and our research design, we briefly
present terminology that is essential for understanding the remainder of this thesis.
Central terms for this thesis are image-mining-based decision support systems (IM-
DSSs), image-based decision support systems (IB-DSSs), and computer-vision-based
hybrid intelligence systems (CV-HISs). Their relation is depicted in the Venn diagram
in Figure 1.2 and described in the following.

IM-DSSs IB-DSSs CV-HISs

Fig. 1.2.: Venn diagram showing the relationship of image-mining-based decision sup-
port systems (IM-DSSs), image-based decision support systems (IB-DSSs), and
computer-vision-based hybrid intelligence systems (CV-HISs).

We understand the most general class of the systems under consideration, CV-HISs,
as all information systems (IS) that rely on CV and hybrid intelligence (HI) — a
combination of human and artificial intelligence (Dellermann, Ebel, et al., 2019).

1.1 Essential Terminology 5



For example, CV-HISs comprise active learning systems (Settles, 2009); i.e., systems
for developing accurate ML/DL models for CV efficiently. In active learning systems,
AI in the form of ML/DL models signals for which data instances human input
would probably be most helpful for model improvements. Subsequently, human
intelligence is used for the actual labeling.
In contrast, we understand DSSs as IS that support decisions that are directly relevant
to the business and rely on “finished” ML/DL models. As a result, we understand
IB-DSSs as a subclass of CV-HISs. Conversely, we understand every IB-DSS as CV-HIS
because DSSs are intended to support decision-makers and not replace them (Power,
2002). As a consequence, all IB-DSSs rely on hybrid intelligence because artificial
intelligence in the form of CV models based on DL is always combined with human
intelligence for decision-making. An example of an IB-DSS is a DSS for the detection
of maintenance needs in infrastructure like wind turbines: a single image is sufficient
to decide whether a component needs to be serviced or exchanged.
This is in contrast to the subclass of IM-DSSs: they provide decision-makers with
information based on large amounts of image data, e.g., multiple images describing
the same real-world phenomenon. Consequently, the information extracted from the
images with CV needs to be aggregated further to facilitate human decision-making.
This aggregation is achieved with image mining, which “deals with the extraction of
implicit knowledge, image data relationship, or other patterns not explicitly stored
in the image databases” (Hsu et al., 2002, p. 1). Image mining is most widely used
for medical applications; in this domain, it is called radiomics (Gillies et al., 2016;
Lambin et al., 2012). An industrial example of an IM-DSS is the monitoring of
process stability in a production line. Inspecting several images of produced goods
is necessary to estimate the process stability and derive subsequent actions.
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1.2 Structure of Work & Research Design

Having presented essential terminology for this thesis, we now introduce the struc-
ture of this work and our research design. This thesis comprises five parts, each
consisting of one or more chapters. Figure 1.3 provides an overview of the structure
of this thesis. Also, it indicates which research question (RQ) is addressed in which
chapter.
In Part I, we lay the foundations for the rest of the thesis. First, in Chapter 1, we
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Fig. 1.3.: Structure of this thesis.

introduce the motivation and essential terminology for this thesis. Furthermore, we
describe the structure and research design of our work. Then, we present founda-
tions and related work in Chapter 2. We start with foundations regarding design
science research (DSR), CV, and DL. Afterwards, we describe related work regarding
DSSs, and finally regarding IB-DSSs and IM-DSSs in particular.
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Tab. 1.1.: Use case overview.
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tools
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machining tools to
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remanufacturing
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Computer
vision
task

Image classification
and

semantic segmentation
Object detection

Semantic
segmentation

Relating to
research
questions

1, 2, 3, 4 1, 2, 3 1, 4

Parts II-IV constitute the core part of this thesis — each part comprises one to three
studies as separate chapters. We are working with several real-world use cases in
different industry domains to ensure our work’s real-world validity and usefulness.
A brief overview of the use cases can be found in Table 1.1. Also, the industry use
cases described in Table 1.1 are shown as pictograms in the lower right corner of
the chapters in Figure 1.3 on page 7. In the following, we describe our RQs, the
corresponding research design, and the individual chapters in Part II-IV.

A first, crucial step for enabling IB-DSSs is to convert image data into information
that computers can process (compare Figure 1.1 on page 4). To this end, in Part II,
we explore, develop and evaluate established and novel options for turning image
data into valuable information based on mainly artificial and also human intelligence
when needed. Thus, we ask:

Research Question 1 (RQ1)
How can image data be converted into valuable information by combining
artificial and human intelligence?

We address RQ1 with two technical studies. The first study, in Chapter 3, relies
on DSR2 — DSR has proven to be an essential paradigm for the development of
IS (Gregor & Hevner, 2013) as it allows to examine the theoretical and practical

2For readers unfamiliar with design science research, we recommend reading Section 2.1 already now.
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tasks required for designing and building IS. We apply DL-based CV in a particular
scenario — and turn image data into information in the machining tools use case.
This serves not only to demonstrate feasibility in this particular domain, but also
to explore opportunities for future research. To this end, we first build a dataset
of images of worn tools from an actual machining process. Subsequently, we train
and evaluate a DL-based CV model for classifying if a given microscopic image of a
machining tool shows a specific type of wear. The results show that it is possible to
classify different wear types with a DL-based CV model.

In Chapter 4, we realize the first of the future research possibilities identified and
described in Chapter 3. Domain experts state that a DL-based CV model for detecting
wear on machining tools in a pixel-accurate manner would be even more valuable
than image classification. Consequently, we train and evaluate DL-based CV models
for pixel-accurate wear detection on microscopic images of machining tools. Having
shown the feasibility of this wear detection, we develop and assess an approach for
estimating the uncertainty of predictions of the applied DL-based CV model. Images
for which the DL-based CV model indicates high uncertainty are deferred to a human
expert. We show that this selected involvement of humans in a human-in-the-loop
system can improve the overall system’s performance. To ensure that the findings of
this study are valid not only for our specific use case, we also evaluate the approach
on the publicly available Cityscapes dataset for urban scene understanding (Cordts
et al., 2016).

Subsequently, in Part III, we develop and evaluate design knowledge for IB-DSSs, IM-
DSSs, and CV-HISs. As described previously in Chapter 1 and depicted in Figure 1.1
on page 4, CV (turning data into information) alone is just an intermediary step for
generating value in terms of knowledge and wisdom from images. DSSs are well-
established tools for generating knowledge and wisdom based on a combination of
artificial and human intelligence. However, despite this potential for value creation,
there is little previous research regarding the design of IB-DSSs. Consequently, the
next step in this thesis is to address the design of IB-DSSs. We rely on DSR for
addressing this RQ since it has proven to be a particularly important paradigm for
developing DSSs (Arnott & Pervan, 2012). One of the main goals of DSR is the
formulation of design theories (Beck et al., 2013). Therefore, we ask:

Research Question 2 (RQ2)
What design knowledge should guide the development of image-based decision
support systems?

1.2 Structure of Work & Research Design 9



We perform two separate studies to address this RQ — one regarding the subclass
of IM-DSSs and the other for IB-DSSs. In each study, we use a different use case to
develop and evaluate the design knowledge.

First, in Chapter 5, we develop and evaluate design knowledge for IM-DSSs. As
described previously, IM-DSSs are suitable when a big amount of image data is to be
analyzed for decision-making. To ensure the practical relevance of the developed
design knowledge, we conduct the study based on the machining tools use case.
This is suitable since the wear on machining tools from an identical process is subject
to variations. Consequently, there is a need for images of many worn machining
tools from a given process. Image mining allows for a holistic view of the wear
on machining tools from a machining process and consequently leads to a better
decision basis for process improvements. In the first step of this DSR study, we obtain
design requirements for IM-DSSs from literature and interviews with domain experts.
Then, we formulate design principles addressing these design requirements based
on appropriate literature. Subsequently, over three design cycles, we instantiate
and evaluate design features derived from these design principles in an IM-DSS.
This IM-DSS supports the analysis of machining processes and the identification of
process improvement options. Depending on the design principles and features, the
design cycles, and their goals, we apply different evaluation methods: two technical
experiments, one exploratory focus group, one confirmatory focus group, and one
logical argument. The evaluation confirms our nascent design knowledge’s sufficient
effectiveness, efficiency, and usefulness. Also, the evaluation confirms the usefulness
of the artifact itself.

In Chapter 6, we develop and evaluate design knowledge for IB-DSSs. Also for this
study, we use a practical industry use case to ensure the practical relevance and
usefulness of the developed design knowledge. In the power line maintenance use
case, it is possible to derive the necessary information for one business-relevant
decision from one single image. Based on a single image of, e.g., an insulator,
it is possible to decide if maintenance is required for this part. Hence, this use
case is suitable for a IB-DSS. The methodology is similar to the previous study:
Initially, we formulate design requirements based on a structured literature review
and interviews with domain experts. Then, we describe design principles addressing
the design requirements. Building on this conceptualization, design features derived
from the design principles are instantiated in and evaluated through an IB-DSS that
supports power line maintenance decision-making based on images captured by
unmanned aerial vehicles.
This study’s structure follows the partition of a DSS of Turban et al. (2010) into the
model component and the user interface component. First, we address the model
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component of the DSS. As we cannot build on previous work for this, we assess
the technical feasibility of converting image data into valuable information with a
DL-based CV model (compare RQ1). To this end, we build DL-based CV models for
detecting the state and localization of power line infrastructure components. We then
evaluate the models with a technical experiment and interviews with domain experts.
The technical experiment confirms that it is possible to use DL-based CV models to
convert images of power line components into valuable information. Additionally,
the interviews confirm that domain experts perceive the model component as useful.
Building on this model component of the DSS, we design, implement and evaluate
the user interface component. We assess the user interface component with nine
one-on-one confirmatory workshops. The results of these workshops show the
suitability, usefulness, and effectiveness of the developed design knowledge and the
corresponding artifact.

Having developed and evaluated design knowledge for IB-DSSs and IM-DSSs in the
studies addressing RQ2, we aim to reach a higher degree of generalizability with
addressing RQ3. Here, we regard design knowledge for CV-HISs — a superordinate
class of IB-DSSs.

Research Question 3 (RQ3)
What design knowledge should guide the development of computer-vision-based
hybrid intelligence systems?

The study in Chapter 7 addressing this RQ contributes in a more theoretical manner
due to two reasons. First, this study abstracts across four real-world CV use cases in
addition to the machining tools and the power line maintenance use case. Second,
as described previously, we understand the focus of CV-HISs as broader than that of
IB-DSSs. Furthermore, the design knowledge in this study complements the design
knowledge for IB-DSSs and IM-DSSs by addressing another perspective. The main
focus of the design knowledge developed in Chapter 7 is how IS can be designed such
that hybrid intelligence (i.e., the combination of human and artificial intelligence) is
facilitated. In contrast, the design knowledge described in Chapter 5 and Chapter 6
is focused on the concrete design of IB-DSSs and IM-DSSs.

We also apply DSR for this study — however, we rely on a different DSR strategy.
As described in more detail in Section 2.1 there are two strategies for DSR studies
(Iivari, 2015). The studies we described so far rely on strategy I if they rely on DSR.
In these studies, we start with a problem class: we build an artifact as a general
solution concept to address this problem class. In contrast, in studies relying on
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strategy II, first, an artifact that solves a specific client problem is created. Afterwards,
design knowledge is formulated by abstracting from the concrete artifact (Möller
et al., 2020). In the study in Chapter 7, we aim to derive design knowledge for
CV-HISs by employing the reflective DSR strategy II. We gather a focus group of
six experts with relevant expertise in developing CV-HISs to participate in a series
of workshops. First, we conceptualize the CV-HIS as a collaboration of human
and computer to solve a vision-based task. As a result, we identify four design-
related mechanisms: automation, signaling, modification, and collaboration. These
mechanisms inform our derived meta-requirements and design principles. Then, we
describe meta-requirements that are derived from case-specific requirements and
literature. Subsequently, we formulate design principles based on specific design
features implemented in the six different real-world CV use cases. This study can
help practitioners design CV-HISs and lays the foundation for many future research
directions.

The studies described so far focus on technical aspects and the design of IB-DSSs.
Additionally, we evaluate the real-world impact of IB-DSSs. In light of climate
change being a serious threat to humanity (Pörtner et al., 2022), we perform this
evaluation in terms of possible improvements in environmental sustainability. In
Part IV, we aim to answer the call by Zeiss et al. (2021, p.148) for IS research
helping “to intensify and extend use of products and components and recycle waste
materials”.

Research Question 4 (RQ4)
How can image-based decision support systems be applied to improve
environmental sustainability in the industry?

In the study in Chapter 8 that addresses RQ4, we rely on two use cases: the
machining tools case frequently mentioned above and the rotating anode case. For
the rotating anode case, we first show in a technical experiment in this study that
DL-based CV models are suitable for pixel-accurate wear detection on microscopic
images of rotating anodes (compare RQ1) since this has not been shown previously.
To assess the sustainability impact of the different improvement scenarios enabled by
the IB-DSS for the respective use case, we perform life cycle assessments (LCAs). LCA
is a widely used, standardized method for assessing the quantitative environmental
impact of products, processes, services, and systems throughout their life cycles
(Finkbeiner et al., 2006). The LCAs in this study are based on real data from our
case companies when possible and assumptions by domain experts when necessary.
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The results of the LCAs show that the improvement scenarios enabled by the IB-
DSSs facilitate a reduction of 12% (machining tools) and 44% (rotating anodes) of
emission of CO2 equivalents. We are convinced that IB-DSSs can be employed for
sustainability improvements for many more challenges. Therefore, at the end of this
study, we conceptualize our approach and describe the prerequisites for applying it
to other use cases.

The last Part V first summarizes this thesis and then presents contributions, limita-
tions, and directions for future research.

1.3 Development of Work

As mentioned previously, Part II-IV each contain one to three studies. Four of the
six studies in total have already been published in academic outlets; the remaining
two are included as working papers. Table 1.2 on page 14 provides an overview of
the studies in this thesis. When available, we report the VHB-Jourqual3 (Verband
der Hochschullehrerinnen und Hochschullehrer für Betriebswirtschaft e.V., 2022)
ranking for all published studies. The outlet for the study in Chapter 4 is not ranked
in the VHB-Jourqual3; therefore, we report the CORE ranking (The Computing
Research and Education Association of Australasia, CORE Inc, 2022).
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Tab. 1.2.: Overview of studies included in this thesis. Status as of December 15, 2022.
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Foundations and Related
Work

2
In this chapter, we present relevant foundations and related work. First, in Sec-
tion 2.1, we describe foundations regarding design science research (DSR). After, in
Section 2.2, we describe basics regarding computer vision (CV) and deep learning
(DL). Subsequently, in Section 2.3 we introduce decision support systems (DSSs).
Finally, we discuss related work regarding image-based decision support systems (IB-
DSSs) and image-mining-based decision support systems (IM-DSSs) in Section 2.4.

2.1 Design Science Research

In this section, we briefly present key concepts, terminology, and strategies of DSR
that are relevant for the remainder of this thesis.

DSR is a research paradigm aiming to provide design knowledge and construct
innovative artifacts for real-world problems (vom Brocke et al., 2020). It is an
important research paradigm for IS research in general (Gregor & Hevner, 2013)
and the development of DSSs in particular (Arnott & Pervan, 2012).

The formulation of design knowledge is a major goal of DSR. Design knowledge
describes “how things can and should be constructed or arranged (i.e., designed),
usually by human agency, to achieve a desired set of goals” (vom Brocke et al.,
2020, p. 2). Thus, design knowledge can serve as a blueprint for practitioners and
researchers that build similar systems or address similar problems. Generally, design
knowledge is formulated on such a level of abstraction that it is valid for a problem
class and not only a single problem (Hevner et al., 2004). A typical way to describe
design knowledge, which we also rely on in several chapters of this thesis, is along
the categories of design requirements, design principles, and design features. In the
following, we describe these key terms.
Design requirements are abstract requirements for a problem class. While the
terms “design requirement” and “meta-requirement” are often used interchangeably,
some authors use the term meta-requirement to indicate a higher level of abstraction
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(Maedche, Gregor, et al., 2019). Importantly, both design requirements and meta-
requirements are to be distinguished from requirements in software engineering;
software requirements are less abstract (Maedche, Gregor, et al., 2019). Design
principles are “prescriptive statements that indicate how to do something to achieve
a goal” (Gregor et al., 2020, p. 1622); they are formulated such that they address
the design requirements. Design features are derived from the design principles
and are concrete enough that they can be instantiated in an artifact (Meth et al.,
2015).

Artifacts in DSR studies can be of many different types and serve various purposes.
Exemplary artifacts realized in DSR studies include blockchain-based smart contracts
for shipping documents (Nærland et al., 2017), an ML-based classification model
for detecting fraudulent documents in the context of stock market manipulations
(Siering et al., 2021), and a phase model for the development and application of
maturity assessments for social and technical systems (Mettler, 2011). Further
examples are a conversational agent (Gnewuch et al., 2017) and a system for semi-
automated requirements elicitation from natural language (Meth et al., 2015). Also,
many DSSs serve as artifacts in DSR studies. For example, Koornneef et al. (2020)
develop a DSS for aircraft dispatch assessment and Gottschlich and Hinz (2014)
propose a DSS for stock investment recommendations using collective wisdom in
their DSR study. The artifact developed by Ferro et al. (2020) addresses a problem
in the health care sector; their DSS predicts patient no-show behavior.

There are two DSR strategies for deriving generalizable design knowledge (Iivari,
2015). The currently predominant strategy of DSR studies is referred to as strategy
I (Iivari, 2015). Studies employing this strategy start with a problem class: they
build their artifact as a general solution concept to address this problem class. There
are many different research frameworks and guidelines for structuring DSR studies
following strategy I (e.g., Kuechler and Vaishnavi (2008), Peffers et al. (2007), and
Venable et al. (2016)). The three-cycle guidelines by Hevner (2007) are a frequent
choice for structuring DSR studies following strategy I. These studies then comprise
a rigor cycle, a relevance cycle, and one or more build-and-evaluate cycles. In the
relevance cycle, it is ensured that a real-world problem is addressed (vom Brocke
et al., 2020). This can be achieved, for example, through a literature review or
exploratory focus groups with domain experts (Tremblay et al., 2010a). Furthermore,
conducting a rigor cycle makes sure that the research is “standing on the shoulder
of giants” by using appropriate, existing foundations and methodologies (Hevner,
2007). Often, a literature review is performed to this end. Building on the relevance
and rigor cycle, one or more build-and-evaluate cycles are performed (vom Brocke et
al., 2020); often, these cycles are also called design cycles (Hevner, 2007). In these
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cycles, a real-world artifact is created and subsequently evaluated. For example, in a
technical experiment or with a survey with potential users. These design cycles are
the central activity in DSR studies following strategy I.
On the other hand, studies employing DSR strategy II first build a concrete artifact
that aims to solve a specific client problem. Based on this, generic knowledge
addressing the respective problem class is formulated in a reflective manner by
abstracting from the specific implementation (Möller et al., 2020). According to
Iivari (2015), there was little practical experience with strategy II in 2015; this is
still true today. Therefore, we cannot refer to established research frameworks and
guidelines for strategy II.

2.2 Computer Vision and Deep Learning

In this section, we will first define computer vision (CV) and briefly describe its
history and the basic working principles of deep learning (DL)-based CV models.
Then, we present different CV tasks and appropriate models. Lastly, we describe
suitable evaluation measures that are relevant for the remainder of this thesis.

CV aims to equip computers with human-like visual perception abilities (Szeliski,
2010). Originally, CV relied on techniques like edge detection and filters (Szeliski,
2010). For those techniques, a CV engineer needs to define, e.g., the filters, which
are then applied to images. These techniques are now referred to as traditional CV
techniques (O’Mahony et al., 2019). Lately, it has been shown that learning entire
CV models, including the filters from data with ML leads to CV models that produce
more accurate outputs. For specific tasks, even human performance was surpassed
by CV models based on ML (He et al., 2015). ML is a relatively old field of research
— already in 1959, Arthur Samuel defined ML as giving computers the ability to
learn without being explicitly programmed (Samuel, 1959). Current CV models
are based on DL, a subfield of ML that relies on deep neural networks (Janiesch
et al., 2021). In particular, convolutional neural networks (CNNs) are used for CV
tasks. They are well suited for data with spatial relationships like images and can
be trained with less data than fully-connected neural networks since the number of
parameters to be trained is lower.

In the following, based on LeCun et al. (2015), it is briefly described how CNNs work.
Similar to other types of neural networks, CNNs consist of multiple processing layers.
In each layer, the input data is represented with different degrees of abstraction. The
outputs of a certain layer that serve as inputs for the next layer are called feature
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Fig. 2.1.: VGG16 network architecture (Simonyan & Zisserman, 2014), figure from Fergu-
son et al. (2017).

maps. In the first layers, CNNs use mainly convolutions, pooling operations, and
activation functions. In the convolutional layers, filters are applied for detecting
features — as opposed to traditional CV, these filters are not selected by humans
but learned from the data. Pooling layers combine semantically similar features.
Activation functions allow neural networks to learn non-linear relationships.
Figure 2.1 shows an exemplary CNN architecture; we will now explain the different
operations applied in the first layers. The network receives an image with a size of
224x224x1 pixels as input (we are considering a grayscale image here). In the first
two convolutional layers, 64 filters are applied per layer. The filters are typically
much smaller than the input feature maps and are thus applied to the different
regions of the input feature map in a sliding window fashion. Since 64 filters are ap-
plied, the resulting feature maps have a dimensionality of 224x224x64.1 After each
convolutional layer, an activation function is applied to introduce non-linearity in the
CNN. In Figure 2.1, a rectified linear unit (ReLU) is applied as an activation function.
Following the convolutional layer and the ReLU, 2x2 maximum pooling is applied
— in a sliding window fashion, the maximum value of a square of four adjacent
entries from the feature maps is computed. For example, we regard a feature map
resulting from applying a filter that detects edges. By applying maximum pooling, it
becomes irrelevant which of the four adjacent entries in the feature map detected the
edge. In Figure 2.1, this maximum pooling is applied to all non-overlapping squares
containing four pixels. This halves the dimensionality of the resulting feature maps

1Technical details like filter size, stride, and padding that ensure that the first two output dimensions
of a convolutional layer are equal to the first two input dimensions are left out here for simplicity.
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and allows the detection of features with a certain independence of their localization
in the image. Hence, the resulting feature map has a dimensionality of 112x112x64.
After applying two more convolutional layers, the dimensionality is increased to
112x112x128.
As described above, each filter is applied to all inputs from the previous layer in a
sliding window fashion. Thereby the number of weights is reduced considerably
compared to fully-connected networks where the weight is distinct for each con-
nection of two neurons. As a consequence, CNNs can be successfully trained with
drastically less data and computing power than a fully-connected neural network for
the same task (LeCun, Bengio, et al., 1995). The nature of the last layers depends on
the concrete task: Usually, the output is computed either directly by a convolutional
layer (Ronneberger et al., 2015) or by a series of fully-connected layers (Krizhevsky
et al., 2012) (cf. Figure 2.1 on page 18).

The following CV tasks are the most typical ones on static images (cf. Figure 2.2):
Image classification, object detection, and semantic segmentation (Griebel, Dürr,
et al., 2019). A CNN for image classification produces just one or more class labels
for the entire image as output, while a CNN for object detection locates objects
of interest within an image — its outputs are bounding boxes around the objects
alongside the class labels. CNNs for semantic segmentation yield an even more
detailed output by assigning a class label to each individual pixel.
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Fig. 2.2.: Outputs of typical CV tasks for an image of a cat. Own representation based on
F.-F. Li et al. (2017) and Kosson and Marklund (2018).

In the following, we briefly describe typical architectures for the CV tasks depicted
in Figure 2.2. An early CNN for image classification, in particular recognizing
handwritten zip codes for the U.S. postal service, was developed in 1989 by LeCun
et al. With increasing computer power, and in particular graphical processing units
being used for training CNNs, the architectures got “deeper” in terms of the number
of layers and were able to solve more and more complex computer vision tasks.
Proven architectures for image classification include the VGG16 network (Simonyan
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& Zisserman, 2014) and the ResNet (He et al., 2016). More recent architectures
enable two main types of improvement: reduced need for resources and higher clas-
sification accuracy. To use DL-based CV models on devices with less computational
power (mobile devices, edge devices, etc.), novel architectures like the MobileNetV2
(Sandler et al., 2018) that are significantly less resource-hungry were created. The
MobileNetV2 network consists of 3.5 million parameters that have to be learned
during training and stored for inference. In contrast, e.g., the VGG16 network
mentioned above consists of 138.4 million parameters. Also, this reduced number of
parameters leads to lower inference times which is particularly important for near
real-time applications. All these enhancements were possible while the accuracy on
the ImageNet dataset (J. Deng et al., 2009), which is widely used for benchmarking,
is on par with the one of the VGG16 (Keras, 2022). In case classification accuracy is
more important than the reduced need for resources, novel architectures like the
EfficientNetV2 are available (Tan & Le, 2019).

Building on these advances regarding image classification, there were also innova-
tions regarding CNNs for object detection and semantic segmentation. CNNs for
object detection have a more complex structure since they perform classification and
localization. Early approaches like the one by Sermanet et al. (2013) rely on image
classification for various regions of an input image in a sliding window fashion.
Current architectures reduce the computational effort by using generated region
proposals instead of the sliding window approach. The current architectures can be
categorized into one-stage detectors, CNNs performing classification and localization
at once (e.g., YOLO by Redmon et al. (2016) and SSD by W. Liu et al. (2016)), and
two-stage detectors, CNNs predicting localization and class label separately (e.g.,
Faster R-CNN by S. Ren et al. (2015)).

CNNs for semantic segmentation compute a class label for each input pixel as shown
in Figure 2.2 on page 19. To achieve this, they consist of a downsampling path
and an upsampling path. The downsampling path is similar to the first layers of an
image classification network (cf. Figure 2.1 on page 18) — the dimensionality is
reduced from layer to layer. At the same time, the number of features is increased.
In the upsampling path, the number of features is reduced, and the dimensionality
is increased again until the original image’s dimensions are reached. Typical archi-
tectures for semantic segmentation include the U-Net (Ronneberger et al., 2015),
Fully Convolutional Neural Networks (Long et al., 2015), Mask R-CNN (He et al.,
2017), and the Segnet (Badrinarayanan et al., 2017).
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Tab. 2.1.: Confusion matrix.
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In the following, we describe relevant metrics for evaluating the accuracy of DL
models throughout this work; the metrics are sorted according to the CV tasks
described in Figure 2.2 on page 18.
Metrics for image classification are built on the so-called confusion matrix. It
compares ground truth labels and predictions. There are four options as illustrated
in Table 2.1 (Ting, 2017a): true positives (TPs) and true negatives (TNs) are correct
predictions, while false positives (FPs) and false negatives (FNs) describe the two
error types.
The most straightforward evaluation metric for image classification is the accuracy

— it divides all correct predictions by the total number of predictions issued (Sammut
& Webb, 2017):

Accuracy = TP + TN

TP + FP + TN + FN
. (2.1)

However, in reality, the accuracy is often not suitable due to the class imbalance
problem: consider an image classifier distinguishing cats and dogs, trained and
tested with datasets consisting of 95% cat and 5% dog images. A simple classifier
that predicts the majority class for each image, in this case, cat, will yield an accuracy
of 95%. Despite 95% sounding like a good result, the classifier cannot distinguish
cats and dogs and hence does not provide actual value for this task.
A common evaluation metric for classification tasks with imbalanced classes is the
matthews correlation coefficient (MCC) (Matthews, 1975). The MCC considers class
imbalance — an MCC of “0” corresponds to random guessing based on the relative
size of the classes. Perfect predictions yield an MCC of “1”, “-1” indicates that the
predictions are inverse to the actual labels. According to Chicco and Jurman (2020),
the MCC is defined as

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)

. (2.2)

2.2 Computer Vision and Deep Learning 21



Precision and recall are two evaluation metrics stemming from document retrieval
(Ting, 2017b). In ML as well as document retrieval tasks, there is often a high
share of TNs, and in many application cases, the TNs are not of particular interest —
hence, they are ignored by precision and recall. Precision is defined as

Precision = TP

TP + FP
. (2.3)

Recall, also called true positive rate (TPR), is defined as

Recall/TPR = TP

TP + FN
. (2.4)

Based on precision and recall, the F1-score is defined as the harmonic mean of
precision and recall (Ting, 2017b):

F1-score = 2 ∗ Recall ∗ Precision

(Recall + Precision) . (2.5)

For tasks with class imbalance, it is possible and reasonable to weight precision,
recall, and F1-score according to the relative class frequencies.
Another popular evaluation metric for classification tasks is the receiver operating
characteristic (ROC) curve (Melo, 2013): it shows the trade-off relationship between
the TPR and the false positive rate (FPR). The latter is defined as

FPR = FP

FP + TN
. (2.6)

AUROC stands for area under the receiver operating characteristic curve: “1” in-
dicates a perfect image classification model while “0.5” corresponds to random
guessing. It is considered to be particularly robust as it takes into account all
possible classification thresholds.

Evaluation metrics for object detection consider the accuracy of the object local-
ization in addition to the accuracy of the classification. In object detection, object
localization is usually defined by the coordinates of a rectangular bounding box
containing the object of interest (cf. Figure 2.2 on page 19). In the following,
we explain common metrics for object detection relevant for this work based on
Padilla et al. (2020). A standard metric for evaluating the localization error of an
object detection model is the intersection over union (IoU). It is computed based
on the area of the bounding box depicting the ground truth and the area inside the
bounding box that represents the prediction. Precisely, it is defined as:

IoU = area of intersection

area of union
= ground truth area ∩ predicted area

ground truth area ∪ predicted area
. (2.7)
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The IoU takes values between “0” (no overlap) and “1” (perfect overlap). To convert
the IoU values to binary TP, FP, and FN values, a threshold between “0” and “1” is
applied. Note that TNs are not of interest for object detection as there is an high
number of TNs in each image. Increasing the IoU threshold leads to higher precision
because there will be fewer FPs and lower recall because there will be more FNs.
Conversely, a lower threshold leads to a lower precision since there will be more
FPs and a higher recall since there will be fewer FNs. Ideally, we want a model
to have high precision and recall. A common metric for assessing this trade-off
relationship is the average precision (AP). The AP is calculated by averaging the
precision values evaluated at multiple recall points of the precision-recall curve. A
popular implementation is the 11-point interpolation:

AP 11 = 1
11

∑
R∈{0,0.1,...,0.9,1}

P interp(R) (2.8)

with
P interp(R̃) = max

R̃:R̃≥R
P (R̃). (2.9)

In case an object detection task has more than two classes, the APs of each class are
aggregated to the mean average precision (mAP):

mAP = 1
C

C∑
c=1

AP c (2.10)

with C denoting the number of classes.

Evaluation metrics for semantic segmentation are conceptually simpler again since
we can directly compare prediction and ground truth on a pixel basis. A widely
used metric is the dice similarity coefficient (Setiawan, 2020), also called the dice
coefficient. It assesses the overlap, or intersection, between the model’s outputs as
binarized one-hot encoded predictions ŷi,c and the one-hot-encoded ground truth
labels gi,c. It is defined as:

Mean Dice Coefficient = 2
C

C∑
c=1

∑N
i=1 ŷi,c gi,c∑N

i=1 ŷi,c +
∑N

i=1 gi,c

. (2.11)

C denotes the possible classes, and N the number of pixels in an input image. A
value of “1” represents a complete overlap between a prediction and a ground truth
label. If there is no overlap, the dice coefficient returns “0”.
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2.3 Decision Support Systems

In the following, we introduce decision support systems (DSSs). First, we provide a
definition of the term DSS. Then, we describe the history and different classes of
DSSs. Lastly, we present exemplary application areas of DSSs.

Power (2008, p. 149) defines a DSS as “a general term for any computer application
that enhances a person or group’s ability to make decisions”. They can serve
various purposes, e.g., improve consistency in decision-making, enforcement of
policies, or distribution of expertise to non-expert staff (Power, 2002). An important
characteristic is that in contrast to automated decision systems (Harris & Davenport,
2005), DSSs are intended to support skilled decision makers instead of replacing
them (Power, 2002).

In the following, we briefly describe the history and different classes of DSSs. A
graphical representation can be found in Figure 2.3 on page 25. The history of DSSs
goes back to the late 1960s, with the first DSSs being implemented at that time
(Power, 2007). Gorry and Scott Morton (1971) coined the term DSS in 1971 (Arnott
& Pervan, 2005). The earliest DSSs are personal decision support systems (PDSSs) —
designed and implemented to support the decision-making of a single manager or a
small group of managers (Arnott & Pervan, 2005).
Over time, three types of DSSs evolved from PDSSs: intelligent decision support
systems (IDSSs), executive information systems (EISs), and group support systems
(GSSs) (Arnott & Pervan, 2014). IDSSs involve artificial intelligence techniques
— either rule-based expert systems or data-based approaches like neural networks
(Power, 2002). EISs are targeted at all levels of management despite the executive in
the name; they provide an overview of information concerning the organizational
goals (Arnott & Pervan, 2005). GSSs aim to support a group of people in their
decision-making process; nowadays, they are typically deployed on the web (Tur-
ban et al., 2010). Negotiation support systemss (NSSs) are a special type of GSS,
their goal is to enhance negotiation between two opposite parties (Arnott & Pervan,
2014).
Knowledge management-based decision support systems (KMDSSs) are successors
of IDSSs — they are designed to assist knowledge storage, retrieval, transfer, and
application (Arnott & Pervan, 2012).
EISs require large-scale data for decision support. Consequently, data warehousing
(DW) was developed as an appropriate infrastructure. Business intelligence (BI)
systems are often built on top of DW to facilitate decision-making (Turban et al.,
2010). However, the term BI can be confusing since it lacks a clear definition and
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Fig. 2.3.: DSS genealogy. Own representation based on Arnott and Pervan (2014) and
Schemmer (2020).

many companies use it for different commercial offerings in the field of decision
support (Arnott & Pervan, 2005). (Business) Analytics, an umbrella term for data
analysis applications, evolved from BI (Watson, 2014). Typically, analytics applica-
tions are distinguished into descriptive, predictive, and prescriptive ones (Davenport,
2013). Descriptive analytics report on the past, while predictive analytics is about
predicting the future based on data from the past. Prescriptive analytics goes one
step further by recommending optimal actions for the future.
This thesis introduces the novel class of image-based decision support systems; we
will present them in Section 2.4.

DSSs are now developed and applied for many application areas. For example,
in the banking industry, there are DSSs for credit decisions (Ignatius et al., 2018;
Sachan et al., 2020). Also, DSSs support several financial fraud detection use cases.
For example, Nasir et al. (2021) develop a DSS for a bank to detect and prevent
misstatements and fraudulent actions of bank employees. Craja et al. (2020) develop

2.3 Decision Support Systems 25



a DSS for potential investors, auditing companies, and state regulators to detect
financial statement fraud. In the health care domain, various clinical decision support
systems exist, e.g., for severity risk prediction and triage of Covid-19 patients (Wu
et al., 2020) and for diagnosing the heart disease status of patients (Fitriyani et al.,
2020). Disaster prevention and management also benefits from DSSs — Ahmad and
Simonovic (2006) develop a DSS for flood forecasting and management, Chang et al.
(2022) develop a DSS for post-earthquake pedestrian evacuation, and Schätter et al.
(2019) develop a DSS for supply chain risk management after disasters. Another
interesting application area of DSSs is agriculture and forestry. Navarro-Hellín
et al. (2016) develop a DSS to manage irrigation in agriculture by estimating the
weekly irrigation needs of plantations. In the related field of forestry, the DSS of
Wikström et al. (2011) enables, e.g., long-term forest level planning under different
climate scenarios and estimation of recreation values. DSSs also play a major role for
different logistics tasks like port logistics (Irannezhad et al., 2020) and ambulance
relocation (Hajiali et al., 2022). Finally, DSSs are also used in manufacturing.
Marcos et al. (2020) develop a DSS for improving the usage and maintenance of
a heat-exchanger network used in the process industry. Guo et al. (2015) propose
the usage of radio frequency identification in a DSS for production monitoring and
scheduling.

2.4 Image-Based and Image-Mining-Based Decision
Support Systems

In case the DSSs described above rely on data, they are primarily based on structured,
tabular data. In contrast, image data is considered unstructured data. As described
in Section 2.2, there have been significant advances in the field of DL for CV — as a
result, accurate, automated processing of images is now possible. This facilitates the
usage of images as a data source for DSSs. In the work at hand, this novel class of
DSSs — image-based DSSs — plays a significant role. As displayed in Figure 2.3 on
page 25, we see them as a subclass of IDSSs since artificial intelligence techniques,
in particular, DL models, are used to convert images into processable information.
We distinguish between image-based decision support systems (IB-DSSs) and image-
mining-based decision support systems (IM-DSSs) as described in Section 1.1 —
IB-DSSs provide decision support based on single images while IM-DSSs rely on
large amounts of data like multiple images and image mining. In recent years, the
first works on IB-DSSs have been published. Chatterjee et al. (2018) design and
implement a “vision-based DSS for road crack detection”. It can be used to enhance
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road infrastructure monitoring and maintenance. Chaudhuri and Bose (2020) utilize
DL to identify earthquake survivors on image data from social media. Also, several
IB-DSSs are developed in the medical field. For example, Ben-Cohen et al. (2017)
develop an IB-DSS to assist human experts in the localization of the primary cancer
sites in patients with liver metastasis.
Extant research on IM-DSSs is more scarce and even more focused on medical
applications. Zaiane et al. (1998) is the only published IM-DSS outside the medical
domain we are aware of. In their work, a domain-independent prototype for mining
knowledge in image and video databases is developed. An example from the medical
domain is Gatta et al. (2019): they develop an IM-DSS supporting the entire process
of cancer patient treatment based on images.

In conclusion, to the best of our knowledge, none of the existing research provides
guidance for the design of IB-DSSs and IM-DSSs. Hence, we see a research gap due
to the great potential of IB-DSSs and IM-DSSs for value creation and the lack of
existing research in this field. We hope this work advances the field by targeting this
gap, that is, developing and evaluating generalizable design knowledge for IB-DSSs
and IM-DSSs.

2.4 Image-Based and Image-Mining-Based Decision Support
Systems
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Towards Leveraging
End-of-Life Tools as an Asset:
Value Co-Creation based on
Deep Learning in the
Machining Industry1

3

3.1 Introduction

Sustainability is the key concept regarding the management of products having
reached their end-of-life. Various approaches have been developed which suggest
to implement sustainable end-of-life strategies already in the product development
phase (Chan & Tong, 2007; Gehin et al., 2008; Rose et al., 1999). Such exemplary
strategies range from refurbishing over remanufacturing to direct resale.
We argue that products having reached their end-of-life have additional value, which
exceeds the material value, for provider and customer. Thus, these products should
be considered an asset. They can be leveraged to gain insights into their usage. This,
in turn, can be utilized to positively impact earlier stages of the value chain through
value co-creation which involves manufacturer and customers.
Precisely, we propose to use worn tools from machining processes as a basis for easier
and more objective optimization of customer’s production processes. To this end,
images of worn tools are automatically turned into valuable information by a deep-
learning-based computer vision system. Information about occurrence, extent, and
frequency of wear phenomena on the tools is usually the basis for understanding and
improving machining processes. Due to the complexity of process optimization, tool
manufacturers typically have dedicated teams of application engineers responsible

1This chapter comprises an article that was published as: Walk, J., Kühl, N., & Schäfer, J. (2020).
Towards Leveraging End-of-Life Tools as an Asset: Value Co-Creation based on Deep Learning in
the Machining Industry. Proceedings of the 53rd Hawaii International Conference on System Sciences
(HICSS-53). https://aisel.aisnet.org/hicss-53/da/bi_applications/2/. Note: The abstract has been
removed. Minor edits have been made and tables and figures were reformatted, and newly referenced
to fit the structure of the thesis. Chapter, section and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted and references were
integrated into the overall references section of this thesis.
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for supporting the customers in the optimization of their processes. They often
rely on the visual inspection of worn tools to understand potential problems in a
machining process. This, however, is usually done manually with small and non-
representative samples. Our proposed system enables the automatic characterization
of a large quantity of worn tools. This leads to more reliable and information-rich
results and thus facilitates an easier and more objective process optimization. To
maximize the real-world impact, scalability and generalizability of our proposed
system, we formulate the following requirements:
Labelled training data should be the only required human input. As a consequence,
the system can easily be trained for other tools or wear mechanisms. Also, the
images for the testing and development of the system should be from real production
processes.
In addition to enhancing process optimization, the insights based on our proposed
system can also support the development of new tools. First, the development
process itself can be accelerated since wear characterization is a frequent task in
tool development and executed manually so far. Second, and more important, our
system enables profound insights into potential problems of certain tools. So far,
testing is mainly done internally and with standardized, simplified processes. With
our proposed system it will be possible to analyze the wear mechanisms on a large
quantity of tools used by customers in different real-world processes. This supports
identifying promising directions for the development of new tools in the machining
industry.
The remainder of this work is structured as follows: in Section 3.2, we present our
research design. Subsequently, related work from different domains is introduced in
Section 3.3. Based on this we then present our first, already completed, design cycle
in detail in Section 3.4. In Section 3.5 we then present our agenda for future research.
Afterwards, in Section 3.6, we summarize our work and describe limitations.

3.2 Research Design

As an overall research design, we choose design science research (DSR), as it allows
to consider the theoretical and practical tasks necessary when designing IT artifacts
(March & Smith, 1995) and has proven to be an important and legitimate paradigm
in information systems research (Gregor & Hevner, 2013). For the design of the
artifact, we follow the DSR process methodology and its individual phases according
to Kuechler and Vaishnavi (2008), as we favor a clear differentiation between an
abstract “suggestion” and a concrete, more programming-specific “development”.
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The work at hand presents the first DSR cycle as part of a larger research endeavor.
Our overall goal is to assess the following general research question:

General Research Question A
How can we utilize end-of-life tools to improve processes at the interface of tool
manufacturer and customer?

In the work at hand, we complete the first cycle with the individual phases as
illustrated in Figure 3.1.
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Fig. 3.1.: Overview of DSR cycles of the work at hand and the overall research endevour.

We ask the following specific research question:

Research Question A.1
How can we design a system for deep-learning-based computer vision to auto-
matically classify worn tools regarding their wear phenomena?

This research question forms the basis of our overall research endeavor and allows
to draw conclusions regarding the future steps of our reseach project.
In terms of knowledge contribution, the presented work of the first cycle depicts
an “improvement” according to Gregor and Hevner (2013), since we apply a novel
method, i.e., supervised machine learning with deep neural networks (LeCun et al.,
2015), to the existing problem of worn tool classification. In order to evaluate
the resulting artifact, we use a technical experiment as proposed by Peffers et al.
(2012). We evaluate the statistical classification performances of the identified
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models. Figure 3.1 on page 33 presents the activities of this first DSR cycle, as well
as the future research activities containing two additional cycles, separated into the
steps of problem awareness, suggestion, development, evaluation and conclusion.
After elaborating on the state of the art of relevant fields for the research at hand in
a designated rigor cycle (Hevner, 2007), we present all aforementioned steps for
the first design cycle. Subsequently, we describe our research agenda for the second
and third design cycle in Section 3.5.

3.3 Rigor Cycle and Related Work

To set a foundation for the remainder of this work, we review relevant literature
from the body of knowledge. Several fields of research are of relevance, which we
elaborate on in the following subsections: machining and wear mechanisms, deep
learning and computer vision as well as value co-creation.

3.3.1 Machining and Wear Mechanisms

Machining is “one of the most important of the basic manufacturing processes”
(Black, 1995, p. VI). It is applied in a variety of industries like aerospace, automotive,
and the electro and energy industry. In general, machining describes the process
of removing unwanted material from a workpiece (Black, 1995). The removal
of unwanted material is generated by a relative motion between the cutting tool
and the workpiece (Boothroyd & Knight, 1989). In regards to the different types
of material, metallic workpieces are most widespread (Black, 1995). The tools
used for machining can be regarded as consumables, as the occurrence of wear
which ultimately results in a tool that can not be used anymore is inherent. For the
first design cycle, we aim to show the general feasibility of our proposed system,
therefore, we concentrate on the two main wear mechanisms we observed in our
dataset: flank wear (82.56%) and chipping (55.40%) of the cutting edge. We will
briefly describe those in the following.
Flank wear occurs due to friction between tool flank surface and workpiece (Altintas,
2012). It is unavoidable and thus the most commonly observed wear mechanism
(Siddhpura & Paurobally, 2013). As a consequence it is regarded as good criterion
for tool-life, i.e. for deciding when to change a tool (ISO - International Organization
for Standardization, 1991). An exemplary image with flank wear is depicted in
Figure 3.2 on page 35.

34 Chapter 3 Towards Leveraging End-of-Life Tools as an Asset: Value Co-
Creation based on Deep Learning in the Machining Industry



Fig. 3.2.: Example of flank wear.

Chipping refers to particles of the cutting edge breaking off and thermal cracking
(ISO - International Organization for Standardization, 1991). This is less common
and also less desirable since it suddenly deforms the cutting edge and leads to
poor surface quality on the workpiece. Figure 3.3 shows an exemplary image with
chipping.

Fig. 3.3.: Example of chipping.

For the research at hand the application of image processing techniques for tool
condition monitoring is the most related field of machining research. Tool condition
monitoring based on image processing techniques means that an automatic visual
inspection is used to determine the wear state of cutting tools. This enables to decide
whether a tool can still be used or not. In the following we briefly present research
from this field.
Dutta et al. (2013) provide a comprehensive review of the field of wear classifica-
tion and measurement based on image processing. We briefly describe the papers

3.3 Rigor Cycle and Related Work 35



most relevant for our research: First, there is a multitude of research developing
approaches for automatic wear measurement. Several articles describe systems for
flank wear measurement for drills, which are based on traditional computer vision
approaches (Duan et al., 2010; Y.-T. Liang & Chiou, 2006; Su et al., 2006). Tradi-
tional computer vision refers to approaches like texture-based image segmentation
and edge detection for which the user needs to fine-tune a multitude of parameters
(O’Mahony et al., 2019). Another common approach is to classify the extent of wear
into different classes. For example, Alegre et al. (2009) use traditional computer
vision algorithms (preprocessing like filtering and then automatic segmentation) to
classify the flank wear on cutting inserts into low and high. Castejón et al. (2007)
extract geometrical descriptors with traditional computer vision approaches and
then use machine learning to classify if the wear on a given image is low, medium
or high. Another stream of research works on classifying which wear mechanisms
are visible on a given image. For instance, Schmitt et al. (2012) use traditional
computer vision features (image statistics, surface texture, canny analysis, histogram
and fourier coefficients) as input for a neural network which decides if the wear
mechanism on the image is flank wear or tool breakage. Subsequently, they also
apply an active contour algorithm to extract the wear region. In addition to the wear
region, they compute the maximum and average wear perpendicular to the cutting
edge. Lanzetta (2001) proposes a system to detect all types of wear on cutting
inserts. Depending on the concrete tool, several parameters have to be chosen by
the user of the system. Interestingly, this is the only identified article stating that
the images are from cutting tools that were used in a real production environment—
other articles either describe how they used the tools in their laboratory or do not
elaborate on the environment.
Overall, we conclude that extant literature provides meaningful ideas for the de-
velopment of an automated tool characterization system. However, none of the
regarded research described above satisfies the requirements we formulated for our
system in Section 3.1. Namely, that only labelled images are necessary as human
input and that all images for testing and development of the system should be from
real production processes. Furthermore, critically viewed, the performance of the
systems developed in the articles above is often intransparent and hard to reproduce.
Most datasets are rather small, e.g. Schmitt et al. (2012) use 15 images for the
training of their neural network and 25 for testing. Also, they do not describe their
dataset in detail—it is unclear on how many images which wear mechanisms are
visible. Thus, it is not clear if they also worked with images where more than one
wear mechanism is visible. Other papers rely on a purely visual evaluation based on
concrete image examples (Duan et al., 2010; Lanzetta, 2001; Y.-T. Liang & Chiou,
2006).
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3.3.2 Deep Learning and Computer Vision

Some of the systems for wear measurement and classification we just presented
already use machine learning. However, they all rely on traditional computer vision
approaches like edge detection to extract features from the raw images (Alegre et al.,
2009; Castejón et al., 2007; Schmitt et al., 2012). With deep learning algorithms
this becomes obsolete. Deep learning algorithms implement representation learning,
i.e. they are able to directly process raw data and learn the relevant features for
the task themselves (LeCun et al., 2015). Even more importantly, deep learning
algorithms have been proven to achieve far better results than the previous state-of-
the-art techniques in many computer vision applications (Krizhevsky et al., 2012;
Voulodimos et al., 2018). Specifically, convolutional neural networks are applied
for computer vision tasks. The first and main part of these networks consists of a
series of convolutional and pooling layers (LeCun et al., 2015). In the convolutional
layers filters are applied. These filters are learned from the data by backpropagation.
Pooling layers “merge semantically similar features into one” (LeCun et al., 2015,
p. 439), a typical application is to compute the maximum over e.g., nine pixels. In
a given layer, the respective operations (convolution or pooling) are applied to all
inputs from the previous layer. This drastically reduces the amount of weights to be
learned compared to fully-connected networks where the weight is distinct for each
connection of two neurons. Depending on the concrete computer vision application,
the output is computed directly by a convolutional layer (Ronneberger et al., 2015)
or by a series of fully-connected layers (Krizhevsky et al., 2012).

3.3.3 Value Co-Creation

With the relevant research from a technical perspective at hand, we now regard
related work from a business perspective. Especially in the machining industry,
the understanding of value has been mainly influenced by the goods-dominant
logic: value is created (manufactured) by one firm and distributed in the market,
usually through exchange of goods and money (Vargo et al., 2008, p. 146). Other
industries like the software industry, in contrast, have already adopted the idea of
service-dominant logic where “the roles of producers and consumers are not distinct,
meaning that value is always co-created, jointly and reciprocally, in interactions
among providers and beneficiaries through the integration of resources and applica-
tion of competences” (Vargo et al., 2008, p. 146).
Several studies show that this value co-creation can be beneficial. For instance Nike,
formerly also a product-centric company, successfully used a social networking site
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for co-creation with their customers. Among other benefits they also use the social
networking site to learn about their customers’ needs and preferences. Overall, they
used the internet engagement platform “to establish customer relationships on a
scale and scope as never before” (Ramaswamy, 2008, p. 10). On a more general
level, Kale and Singh (2009) show that partnerships between companies generally
help increasing firm value. In the remainder of this work, we take the perspective
of service-dominant logic as well, as our general research question A refers to the
creation of value at the interface between provider and customer.
The subfield of "reverse use of customer data" is even more closely related to our
research. Saarijärvi et al. (2014) describe three cases how customer data can be
turned into information that directly supports customers’ value creation. We build
on this research and extend it since the cases of Saarijärvi et al. (2014) rely on usage
data as a basis for value creation. We, however rely on products without any usage
data. In that sense our analysis is forensic. We do not have access to any usage data
and can only rely on the tool having reached its end-of-life and the observations we
can make directly from it.

3.3.4 Summary and Delineation

Based on the related work described above we believe we can contribute to the
body of knowledge on different levels: Our proposed system addresses the lack of
reproducibility and generalizability in existing research on automatic wear charac-
terization and measurement based on image processing. First, we aim to ensure
reproducibility by a detailed description of both our datasets and the computer vision
systems. To the same end, we will use acknowledged machine learning evaluation
techniques.
In regards to the missing generalizability, which we encountered in existing litera-
ture, we aim to utilize flexible, modern approaches. Existing research is based on
traditional computer vision approaches, thus, a multitude of parameters need to be
fine-tuned by the user. The recent developments in the area of deep learning facili-
tate end-to-end learning. Consequently, labelled training data is the only required
human input for our proposed system based on deep learning. Thus, the system can
be trained for other cutting tools or wear mechanisms without the need to fine-tune
parameters.
From a business perspective our research contributes to the field of value co-creation
and reverse use of customer data since it shows that these value creation mechanisms
are also feasible based on forensic analyses.
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3.4 First Design Cycle: Wear Mechanism Classification
based on Deep Learning

So far, we completed the first cycle of our research endeavor, which we present in
this chapter.

3.4.1 Awareness of Problem and Data Set

Visual characterization of worn tools is an essential part of the optimization of
machining processes. We conducted interviews with domain experts to better under-
stand their general approach for this optimization. Usually, visual characterization
is done manually. The necessary effort leads to small and non-representative sam-
ples of worn tools. Due to the advances in the deep learning field described in
Section 3.3.2, it seems plausible to apply deep learning for characterizing images of
worn tools. Therefore, in the first cycle, we assess the feasibility of characterizing
worn tools with deep learning. To be precise, we implement and evaluate two
classification models: one for each of the two most prevalent wear mechanisms.
We consider this a reasonable feasibility study since it gives an indication if and
how deep learning algorithms are able to extract relevant features directly from the
images in our dataset.
Our dataset consists of 648 images of worn cutting inserts from real production

Fig. 3.4.: One of the two production processes.

processes on two different machines. The type of cutting insert is always the same
for this first design cycle. Figure 3.4 shows one of the two production processes. The
workpiece to the left rotates at high speed such that the cutting insert to the right
removes unwanted material; during production the workpiece and cutting insert are
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Tab. 3.1.: Frequency of wear mechanisms in our dataset.

Wear mechanism Frequency (relative)
Flank wear 536 (82.72%)
Chipping 359 (55.40%)
No wear 96 (14.81%)
Built-up edge (Black, 1995) 90 (13.89%)

in direct contact. The images in our dataset show the flank side, i.e. the back side of
the cutting edge.
To train and evaluate a classification algorithm we labelled the images manually. The
first 60 images were labelled jointly by three domain experts. Afterwards labels were
assigned individually, unclear cases were discussed by the three domain experts.
Several wear mechanisms are present on the images. Table 3.1 shows the absolute
and relative frequency of different wear mechanisms. A cutting edge could show no
wear, if e.g., wear on other parts of the cutting insert prevent a utilization. Note, that
the data implies the presence of more than one wear mechanism on many pictures.
Due to the scarcity of data for all other wear mechanisms, we only consider flank
wear and chipping as wear mechanisms for our first design cycle.

Regarding the data, it is important to understand that the images depicted in
Figure 3.2 and Figure 3.3 on page 35 are abnormally easy cases compared to the
rest of the data set. Figure 3.5 shows a more representative image: both flank wear
and chipping are present and the areas of chipping are relatively small.

Fig. 3.5.: Example of combination of flank wear (left to middle) and chipping (right).
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3.4.2 Suggestion

In this subsection, we address the classification tasks described above and explain
the selection of certain options for the machine learning approach.
In general, deep neural networks require a large amount of data (e.g. millions of
samples) to be trained (Oquab et al., 2014). However, in our case, relatively little
data is available. For such cases, transfer learning has proven to be successful for
other image classification tasks (Oquab et al., 2014; Shin et al., 2016). Transfer
learning with deep neural networks refers to reusing the first part of a network
which has been trained on a different task with a big data set. To be precise, one
uses the already trained weights of the first layers of a neural network. These first
layers perform feature extraction. Research has shown that these learned features
can often be successfully transferred from one task to another (Oquab et al., 2014;
Shin et al., 2016).
Consequently, we apply transfer learning in our first cycle. First, we use an already
trained deep neural network to extract features from our images. Since this outputs
a large quantity of features we need a feature selection mechanism. Thus, we apply
a gradient boosting classifier that automatically performs feature selection as part of
the classification (Friedman, 2011). To be precise, we apply the gradient boosting
classifier to perform the classification regarding chipping and flank wear.
As evaluation strategy, we choose 3-fold cross-validation. Cross-validation is applied
to use the whole data set and since it gives a good estimate for the error on unseen
data (Friedman, 2011, p. 241). We choose only three folds due to the high runtime of
the algorithms. As evaluation metric, we report the matthews correlation coefficient
(MCC) (Matthews, 1975) since our dataset is imbalanced for both classification
tasks. The MCC takes class imbalance into account — a MCC of “0” corresponds
to random guessing based on the relative size of the classes. Perfect predictions
yield an MCC of “1”, “-1” indicates that the predictions are inverse to the actual
labels. Also, contrary to other popular evaluation measures like precision, recall and
f-Measure the MCC also takes the true negatives into account. Thus, it gives a more
holistic assessment of the classifier’s performance (Powers, 2007). Additionally, we
report the confusion matrix to enable a more in-depth evaluation of the different
types of correct and false predictions.

3.4 First Design Cycle: Wear Mechanism Classification based on
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3.4.3 Development

In this subsection, we describe the implementation of our approach in the python
programming language.
The images in our dataset have a size of 1600x1200 pixels. Since so far our
computations are performed on a standard laptop we resized the images to 640x480
pixels to speed up computation. For the classification, we apply the transfer learning
approach described in Section 3.4.2. Figure 3.6 shows an overview of the pipeline.
We use the convolutional base of a VGG-16 network (Simonyan & Zisserman, 2014)
to extract features from the raw images. The convolutional base comprises the
first layers of a convolutional neural network, i.e. all layers apart from the fully-
connected ones and the last softmax layer. The VGG-16 network which we apply,
is pretrained on the ImageNet dataset (J. Deng et al., 2009). Specifically, we use
the implementation from the Keras package (Chollet et al., 2015). At this point,
the 153,600 features per image are saved to disk since the computation of these
features is time consuming and independent of the concrete classification task. These

Feature extraction: 
VGG-16 

convolutional base

True

False

3-fold cross-validation

Gradient boosting 
classifier

Fig. 3.6.: Overview of classification pipeline.

features are then used as input for two classification models. One with chipping
and one with flank wear as binary target variable. The gradient boosting classifier
implemented in the scikit-learn package (Pedregosa et al., 2011) is applied for
these classification tasks.

3.4.4 Evaluation

After describing the implementation of the classification pipeline, we now present
the results of the two classification models in terms of matthews correlation coeffi-
cient and confusion matrix.
The matthews correlation coefficient resulting from the flank wear classifier is 0.878.
Table 3.2 on page 43 contains the corresponding confusion matrix.

42 Chapter 3 Towards Leveraging End-of-Life Tools as an Asset: Value Co-
Creation based on Deep Learning in the Machining Industry



Tab. 3.2.: Confusion matrix for the flank wear classifier.

Predicted
flank wear

Predicted
no flank wear

Actually
flank wear

532 4

Actually
no flank wear

18 94

Tab. 3.3.: Confusion matrix for the chipping classifier.

Predicted
chipping

Predicted
no chipping

Actually
chipping

292 67

Actually
no chipping

48 241

For the chipping classifier the matthews correlation coefficient is 0.644. The corre-
sponding confusion matrix is shown in Table 3.3.

3.4.5 Conclusion

Our results show that it is possible to use deep learning to extract relevant features
and perform classification regarding wear mechanisms based on our raw images.
Keeping in mind, that a matthews correlation coefficient of “0” corresponds to ran-
dom guessing based on the class sizes our results are significantly better. Discussions
with domain experts confirmed that the approach is promising. The usefulness,
however, can be increased when the location and extent of wear mechanisms are
determined as well.

3.4 First Design Cycle: Wear Mechanism Classification based on
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3.5 Future Cycles: Semantic Segmentation and
Business Impact & Usability

In this section we present the currently planned second and third cycle on a concep-
tual level. For easier reading we refrain from using the dedicated steps in the DSR
cycle (awareness, suggestion etc.) in this section.

3.5.1 Second Design Cycle: Semantic Segmentation

In the first design cycle, we have shown that it is possible to use deep learning
to extract relevant features for a classification regarding wear mechanisms based
on our raw images. Discussing the results with domain experts, we learned that
a more detailed characterization of images from worn tools would be beneficial.
In detail, an exact identification of the location as well as the extent of wear
phenomena would significantly increase the impact of our system. First, this enables
statistics over certain wear phenomena. For instance, flank wear is a widespread
tool life characteristic—the corresponding ISO Norm for turning (ISO - International
Organization for Standardization, 1991) recommends 0.3 mm as tool life criterion.
Measurements of flank wear on many tools from one process give an indication if
the tools are changed too late, too early or just right. Second, heatmaps can be
generated which show the locations of frequent wear. Accordingly, our research
question for the second cycle is:

Research Question A.2
How can we design a system for deep-learning-based computer vision to au-
tomatically determine the location and extent of wear phenomena on images
from worn tools?

In the following, we present how we propose to address this research question in
the future. To extract the location and extent of wear mechanisms from the images,
we propose a system for automatic semantic segmentation. The goal of semantic
segmentation is to classify each pixel in a given image into a fixed set of categories
(He et al., 2017). Figure 3.7 illustrates this by depicting an original image and the
corresponding labels. So far, we are manually generating this pixelwise labelling
as input for supervised learning. The goal of the second cycle is to automatically
generate such labels.
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(a) Raw image. (b) Segmentation map: flank wear in light
grey and chipping in white.

Fig. 3.7.: Example of raw image and corresponding segmentation map.

Research shows that deep convolutional neural networks are the best known ap-
proach for semantic segmentation; compare Ronneberger et al. (2015) for the U-Net
architecture and Long et al. (2015) for the so-called fully convolutional networks for
semantic segmentation. Accordingly, we will implement our system for the second
cycle based on these network architectures. Since the pixelwise labelling is labor-
intensive, we will explore if data augmentation techniques can help to reduce the
number of required labelled images. Data augmentation refers to generating more
training images by applying operations like shifting, rotating, flipping, distorting
etc. to the original images (Perez & Wang, 2017). Previous research shows mixed
results: Long et al. (2015) note that data augmentation does not help for their task,
Ronneberger et al. (2015) describe data augmentation as an essential part of their
approach.
We plan to evaluate this system for automatic semantic segmentation as follows.
Training deep neural networks involves the optimization of hyperparameters such
as the learning rate. Accordingly, we will split our data into three disjoint sets.
The training set is used to learn the weights of the neural network, the validation
set is used to find optimal hyperparameters, and the test set gives an estimate for
performance on unseen data (Goodfellow et al., 2016).
Since our images contain a lot of background and unworn tool surface the choice
of a proper evaluation measure is crucial. A popular and well-suited choice is the
intersection over union (IoU) (Rahman & Wang, 2016). It is defined as

IoU = T rue P ositives
T rue P ositives+F alse P ositives+F alse Negatives .

Thus, the intersection between the labelled area and the area predicted by the
algorithm is divided by the union of these two areas, hence the name. Depending
on the use case this measure can then be aggregated, e.g., over all pixels or over
different classes of wear mechanisms.

3.5 Future Cycles: Semantic Segmentation and Business Impact &
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3.5.2 Third Design Cycle: Business Impact & Usability

Whilst the first two design cycles focus on technical feasibility, implementation and
statistical performance, the third cycle will focus on business impact and usability.
Thus, the research question we address in the third cycle is:

Research Question A.3
How is the business impact and usability of the system for semantic segmenta-
tion perceived by the users?

In order to investigate this research question, we envision to examine two different
scenarios which we describe in the following: First, the application of the system
to improve process optimization. Second, the application of the system to optimize
tool development.
Currently, customers of a tool manufacturer request an inspection of an application
engineer in case they see optimization potential regarding their production process.
Then the application engineer visits their production line and works on optimizing
the production process. Thus, usually he2 just looks at a small number of worn
tools which are obtained during his visit or shortly before. Our proposed system
enables an improved scenario: Again, a customer assuming optimization potential
in a machining process requests a visit of an application engineer. He is then asked
to collect all worn tools from the respective process for the next days/weeks. These
worn tools are then sent to the application engineers and automatically analyzed
by our proposed system. This has two major advantages. First, the application
engineer receives the results of the wear characterization already before visiting
the production line. This enables him to prepare better and to focus on the actual
problem to be solved. Second, he gets deeper insights since the sample of worn
tools is bigger and more representative which is even more important than the first
advantage.
Thus, application engineers of a tool manufacturer are an important user group
of our proposed system. Of course, we will also consider the customers of the
application engineers. To ensure real-world impact, we will assess the business
impact and usability of our proposed system in a field experiment: application
engineers use the system for a certain time in their daily work. Afterwards, we
interview both the application engineers and their customers regarding the business
impact and usability of our proposed system.

2To ensure a steady reading flow in this work, we use only one gender and use male pronouns (he, his,
him) when necessary. This always includes all genders.
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Supporting tool development is another promising application of the system for
semantic segmentation. When used with images from many different customers
the proposed system can be utilized to understand inherent problems of certain
tools and needs of the market. For example, if a certain tool suffers from severe
chipping even though utilized at different customers on different material and with
different process parameters, this is an important indication for the next generation
of tools. Such an analysis can be another example for successful value co-creation:
the development of tools tailored to the most prevalent problems in the market
is only possible when information is shared between tool users and manufacturer.
This is particularly promising since according to domain experts there is relatively
little communication between tool manufacturers and companies using the tools.
The proposed system could alleviate this problem. Often, the exchange of data or
information between companies is restricted due to data confidentiality concerns
(Hirt & Kühl, 2018). Worn tools are already sold from the companies using them to
special recycling companies, thus they are not considered as confidential information.
Consequently, tool developers are another important user group of our proposed
system. We will perform a field experiment with this group to ensure real-world
impact: they use our proposed system for a certain time and then we will interview
them regarding the business impact and usability.

3.6 Conclusion

So far, research regarding the management of products having reached their end-
of-life focuses on facilitating sustainable solutions like refurbishing and recycling
instead of e.g., landfilling. In the work at hand, we propose an approach to generate
additional value from products having reached their end-of-life. An exemplary use
case in the machining industry illustrates how an automatic characterization of worn
tools can foster value co-creation between tool manufacturer and the users of the
tool. Both parties can benefit from easier and better process optimization and tool
development.
There are four main contributions of this work: First, we summarize the state-of-
the-art in automatic wear characterization on machining tools and show how such
systems can be used beneficially apart from tool condition monitoring. Second, we
show the feasibility of a deep-learning-based classification approach for different
wear phenomena. With first results at hand, we, thirdly, present our agenda for future
research. From a technical point of view, it will enable a complete characterization
of worn tools including details like the exact location and extent of each wear
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phenomena. From a business point of view, it will evaluate the actual impact of the
system. As fourth and more general contribution, we describe an example of how
deep learning and products which have reached their end-of-life can be leveraged to
positively impact earlier stages of the value chain. Thus, we argue that in certain
cases products having reached their end-of-life should be considered an asset. This
approach can be promising for further applications: experts in the respective domain
confirm the potential usefulness of analyzing worn industrial seals. Furthermore,
several applications in the business-to-consumer setting seem feasible: for instance,
worn shoes could be analyzed to improve future generations of shoes.
Besides these contributions, this work has limitations. On a general level, parts
of this paper are still conceptual. A more specific limitation regarding the process
optimization and tool development use cases is that the survivorship bias (Brown
et al., 1992) has to be kept in mind: in extreme cases, machining tools can break
completely and customers will (probably) not send back these tools. Consequently,
our proposed system cannot generate a complete overview of the wear mechanisms
in real production processes. Another technical limitation is our (so far) limited
consideration of only the flank of a worn cutting edge. Analyzing the other side
(called face (ISO - International Organization for Standardization, 1991)) can also
provide valuable information. However, domain experts confirmed the usefulness of
an automatic characterization of the flank side. Thus, we believe this is a reasonable
scope for now and leave this aspect for future work.
Overall, we believe this “cutting edge” research is a promising field of research. It
has potential real-world impact and extends the research on value co-creation by
showing possibilities based on forensic analyses of products having reached their
end-of-life.
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An Uncertainty-Based
Human-in-the-Loop System
for Industrial Tool Wear
Analysis1

4

4.1 Introduction

Machining is an essential manufacturing process (Altintas, 2012), which is applied
in many industries, such as aerospace, automotive, and the energy and electronics
industry. In general, machining describes the process of removing unwanted material
from a workpiece (Black, 1995). Thereby, a cutting tool is moved in a relative
motion to the workpiece to produce the desired shape (Boothroyd & Knight, 1989).
Figure 4.1a on page 50 displays an exemplary image of a machining process applying
a cutting tool insert. Cutting tools are consumables because of the occurrence of wear
on the tools, which ultimately results in unusable tools. In the following, we will
briefly describe three common wear mechanisms, compare Figures 4.1b – 4.1d on
page 50 for exemplary images. Flank wear occurs due to friction between the tools
flank surface and the workpiece (Altintas, 2012). It is unavoidable and thus the most
commonly observed wear mechanism (Siddhpura & Paurobally, 2013). Chipping
refers to a set of particles breaking off from the tool’s cutting edge (Altintas, 2012).
A built-up edge arises when workpiece material deposits on the cutting edge due to
localized high temperatures and extreme pressures (Black, 1995). Chipping and
built-up edge are less desirable than flank wear since they induce a more severe and
sudden deformation of the tool’s cutting edge, leading to a reduced surface quality
on the workpiece. Ultimately, this can lead to an increase of scrap components. A
visual inspection of cutting tools enables an analysis of different wear mechanisms

1This chapter comprises an article that was published as: Treiss, A., Walk, J., and Kühl, N. (2020).
An Uncertainty-Based Human-in-the-Loop System for Industrial Tool Wear Analysis. Proceedings of
the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD
2020), (Part V), pp. 85–100. https://link.springer.com/chapter/10.1007/978-3-030-67670-4_6.
Note: The abstract has been removed. Minor edits have been made and tables and figures were
reformatted, and newly referenced to fit the structure of the thesis. Chapter, section and research
question numbering and respective cross-references were modified. Formatting and reference style
was adapted and references were integrated into the overall references section of this thesis.

49

https://link.springer.com/chapter/10.1007/978-3-030-67670-4_6


and provides insights into the usage behavior of cutting tools. Tool manufacturers,
as well as tool end-users, can later leverage these insights to optimize the utilization
of tools and to identify promising directions for the development of the next tool
generations. Furthermore, an automated visual inspection enables the application
of tool condition monitoring within manufacturing processes (Dutta et al., 2013).
These analytics-based services possess a high economic value. Research suggests that
tool failures are responsible for 20% of production downtime in machining processes
(Kurada & Bradley, 1997). Furthermore, cutting tools and their replacement account
for 3–12% of total production cost (Castejón et al., 2007). Due to the relevance of
these analytics-based sercives, our industry partner Ceratizit Austria GmbH, a tool
manufacturer, agreed to closely collaborate within the research and implementation
of an automated visual inspection for tool wear analysis.

(a) Process (b) Flank wear (c) Chipping (d) Built-up edge

Fig. 4.1.: Machining process and common wear mechanisms.

Numerous studies have examined wear analysis in the machining industry to address
the need for automated wear analysis. However, the majority of the research to
date focuses on traditional computer vision techniques (Walk et al., 2020). Since
traditional computer vision approaches require the user to fine-tune a multitude of
parameters (O’Mahony et al., 2019), scalability often becomes an issue. Contrary to
traditional computer vision approaches, deep-learning-based approaches learn the
required features themselves and can, therefore, be applied to different wear prob-
lems more efficiently. Another critical advantage of deep neural networks (DNNs) is
their performance. In particular, the exploitation of convolutional neural networks
(CNNs) has contributed to a performance increase in several computer vision tasks,
e.g., classification and segmentation. CNNs are even able to surpass human-level
performance in some of these settings (He et al., 2015), which demonstrates that
a variety of visual tasks, previously performed by humans, can be automated us-
ing CNNs. Recently, Lutz et al. (2019) published the first work utilizing a CNN
for wear analysis on cutting tool inserts, reporting promising results. However,
CNNs, functioning as black-box systems, generally do not provide a reliable measure
about the confidence of their decisions. This shortcoming is critical because the
trustworthiness of a model’s output remains unclear for a human supervisor. Two
scenarios (J. D. Lee & See, 2004) can unfold: First, the model’s capabilities can be
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underestimated, resulting in a disuse of the system. Secondly, the human supervisor
can overestimate the model’s capabilities, leading to a misuse. The correct balance
between trust and distrust constitutes one of the main barriers for a successful
adoption of CNNs in many real-world use cases (Dellermann, Ebel, et al., 2019).
In particular, a measure of confidence is essential in safety-critical applications and
in scenarios for which data is limited (Kendall & Gal, 2017). Limited amounts of
data often occur in industrial problems, where resources and knowledge required
to label and retrieve data are frequently restricted. In these settings, CNNs can
occasionally produce sub-optimal results because they usually require a substantial
amount of training data. Moreover, while performance can be high on average,
within safety-critical applications, it is crucial to filter out any erroneous output.
Lastly, due to the black-box property, CNNs are currently non-compliant with the
ethics guidelines for trustworthy artificial intelligence by the european union (AI
HLEG, 2019). In the future, these guidelines could translate into legislation that
would limit the application of CNN-based systems in some industrial settings.
In this work, we address the need for CNN-based systems to output a confidence
measure in an industrial environment. We consider the task of tool wear analysis
using a unique, real-world data set from our industry partner Ceratizit. We em-
ploy an image segmentation algorithm based on the U-Net (Ronneberger et al.,
2015) for the pixel-wise classification of three different wear mechanisms on cut-
ting tool inserts. To increase transparency and performance, we further enhance
the tool wear analysis system with capabilities to function as an uncertainty-based
human-in-the-loop system. The suggested system aims at classifying the quality
of a prediction, enabling the incorporation of a human expert. In particular, we
estimate the quality of a prediction using the model’s uncertainty. As a foundation
for uncertainty, we apply monte carlo dropout (MC-dropout), which approximates
a bayesian neural network (BNN) (Gal & Ghahramani, 2016). The approximated
BNN outputs a probability distribution over the outputs. Based on the probability
distribution, we apply multiple measures that aim at capturing the uncertainty of an
output. Subsequently, we show that for the use case of wear analysis, there exists a
significant linear correlation between the uncertainty measures and the performance
metric, the dice coefficient. The linear relationship enables the utilization of the
uncertainty measures as explanatory variables to predict the quality of a prediction
in the absence of ground truth. We utilize these quality estimations in the following
way: Predictions, which are estimated to be of high quality, are marked as successful
by the system. These predictions are then passed on for automated analysis without
any further human involvement. Otherwise, if an output is marked as failed, a
human expert is requested to annotate the image manually. Hence, the system is
introducing transparency by measuring the confidence of the predictions and is
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furthermore increasing performance with the selective use of a human expert.
Overall, we see the following contributions of our work. While research is car-
ried out within the field of medical imaging, no previous study, to the best of our
knowledge, has investigated the use of uncertainty estimates in order to predict
segmentation quality in an industrial setting. We contribute by showing how an
uncertainty-based assessment of segmentation quality can be utilized in an industrial
task of tool wear analysis. While Lutz et al. (2019) implement a CNN for tool wear
analysis, we are additionally able to generate and leverage confidence estimates of
the predictions. Besides the industrial relevance, our work also contributes on a
more technical level. Most studies derive uncertainty estimates for binary classifi-
cation problems, we are only aware of a study of Roy et al. (2018), which focuses
on the task of deriving uncertainty measures in a multi-class image segmentation
problem. Therefore, we contribute by deriving uncertainty measures for two fur-
ther multi-class image segmentation problems. Additionally, we demonstrate, that
a multiple linear regression can be applied to estimate segmentation quality in
these multi-class segmentation problems. Regarding the challenge of estimating
segmentation quality using uncertainty measures, we are only aware of DeVries
and Taylor (2018), who use a DNN to predict segmentation quality. Within our
use case, we rely on a multiple linear regression model, as it is interpretable, and
also can be used in scarce data settings. Additionally, researchers press for more
insights on human-in-the-loop systems (Brynjolfsson & McAfee, 2011), as successful
designs are still scarce. Especially the allocation of (labeling) tasks between humans
and machines is under-researched (Dellermann, Ebel, et al., 2019). We contribute
by implementing our human-in-the-loop system and evaluating it by a simulation
study. To ensure generalizability, we assess the use of our approach on the publicly
available Cityscapes (Cordts et al., 2016) dataset for urban scene understanding.

4.2 Foundations and Related Work

First, we shortly introduce the motivation to use MC-dropout as an approach to
estimate uncertainty. Subsequently, we present selected related studies, which
focus on assessing the quality of a predicted segmentation by the use of uncertainty
estimates.
There is a considerable body of literature growing around the theme of uncertainty
estimation in DNNs. In classification tasks, a softmax output displays the probability
of an output belonging to a particular class. Thus, softmax outputs are occasionally
used to represent model uncertainty (Hendrycks & Gimpel, 2016). However, as
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illustrated by Gal and Ghahramani (2016), a model can be uncertain even with
a high softmax output, indicating that softmax outputs do not represent model
uncertainty accurately. Contrary to traditional machine learning approaches, a
bayesian perspective provides a more intuitive way of modeling uncertainty by
generating a probability distribution over the outputs. However, inference in BNNs is
challenging because the marginal probability can not be evaluated analytically, and,
therefore, inference in BNNs is computationally intractable. Nevertheless, in a recent
advance, Gal and Ghahramani (2016) show that taking monte carlo samples from a
DNN in which dropout is applied at inference time approximates a BNN. In a study
by Kendall and Gal (2017), the authors show that these approximated BNNs lead to
an improvement in uncertainty calibration compared to non-bayesian approaches.
Since dropout exists already in many architectures for regularization purposes, MC-
dropout presents a scalable and straightforward way of performing approximated
bayesian inference using DNNs without the need to change the training paradigm.
For the human-in-the-loop system, we are particularly interested in the prediction
of segmentation quality based on uncertainty estimates. To date, several studies
on this particular topic have been conducted within the field of medical imaging.
DeVries and Taylor (2018) use MC-dropout as a source of uncertainty to predict
segmentation quality within the task of skin lesions segmentation. A separate
DNN is trained to predict segmentation quality based on the original input image,
the prediction output, and the uncertainty estimate. While the subsequent DNN
achieves promising results in predicting segmentation quality, the subsequent model
lacks transparency and explainability itself. In particular, the subsequent model
does not provide any information why a prediction failed. Furthermore, a DNN
is only applicable if a considerable amount of data is available. Nair et al. (2020)
utilize MC-dropout to explore the use of different uncertainty measures for multiple
sclerosis lesion segmentation in 3D MRI sequences. The authors show that for small
lesion detection, performance increases by filtering out regions of high uncertainty.
While the majority of studies focus on pixel-wise uncertainties, there is a need to
aggregate uncertainty on whole segments of an image. These aggregated structure-
wise uncertainty measures allow an uncertainty assessment on an image-level. The
work of Roy et al. (2018) introduces three structure-wise uncertainty measures,
also based on MC-dropout, for brain segmentation. While the authors show that
these uncertainty measures correlate with prediction accuracy, the work does not
display how these uncertainty measures are applicable in a broader context, e.g., in
a human-in-the-loop system.
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4.3 Methodology

On the basis of the previously presented foundations, we now introduce our applied
methodology. In Section 4.3.1, we shortly introduce foundations regarding image
segmentation. Subsequently, in Section 4.3.2, we present the modified U-Net
architecture, which we use to approximate a BNN. Section 4.3.3 then describes the
loss function and the evaluation metric, which we use to train and evaluate the
modified U-Net. Lastly, Section 4.3.4 depicts the computation of the uncertainty
measures on which our human-in-the-loop system relies.

4.3.1 Image Segmentation

For our use case of wear analysis in the machining industry, information must be
available on a pixel level to facilitate the assessment of location and size of wear for
a given input image. An approach that provides this detailed information is called
image segmentation. While image segmentation can be performed unsupervised,
it is often exercised as a supervised learning problem (Garcia-Garcia et al., 2017).
In supervised learning problems, the task is generally to learn a function f : X →
Y mapping some input values (X) to output values (Y ). In the case of image
segmentation, the concrete task is to approximate a function f , which takes an image
x as input and produces a segmentation ŷ. The predicted segmentation assigns a
category label c ∈ C to each pixel i ∈ N in the input image, where C denotes the
possible classes and N the number of pixels in an input image. Therefore, the task
of image segmentation is also referred to as pixel-wise classification. Consequently,
the outputs must have the same height and width as the input image, the depth is
defined by the number of possible classes.

4.3.2 Model: Dropout U-Net

We apply a modified U-Net architecture due to its ability to produce good results
even with a small amount of labeled images (Ronneberger et al., 2015). To avoid
overfitting and increase performance, we implement the following adaptions to the
original U-Net architecture: We use an L2-regularization in every convolutional
layer, and additionally, we reduce the number of feature maps in the model’s
architecture, starting with 32 feature maps instead of 64 feature maps in the first
layer (Bishop, 1995). The number of feature maps in the remaining layers follows
the suggested approach from the original U-Net architecture, which doubles the
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number of feature maps in the contracting path and then analogically halves the
number of feature maps in the expansive path. To accelerate the learning process,
we add batch normalization between each pair of convolutional layers (Ioffe &
Szegedy, 2015). We use a softmax activation function in the last layer of the model
to obtain predictions in the range [0,1]. Therefore, the modified U-Net takes an
input image x and produces softmax probabilities pi,c ∈ [0, 1] for each pixel i ∈ N

and class c ∈ C, compare equation (1).

pi,c = f(x) ∀i ∈ N, ∀c ∈ C (4.1)

As a source of uncertainty, we realize the human-in-the-loop system based on MC-
dropout because of its implementation simplicity, while still being able to generate
reasonable uncertainty estimates (Gal & Ghahramani, 2016). We employ dropout
layers in the modified U-Net to enhance the model with the ability to approximate a
BNN (Gal & Ghahramani, 2016). Units within the dropout layers have a probability
of 0.5 to be multiplied with zero and therefore, to drop out. We follow the suggested
approach by Kendall et al. (2015) in the context of the Bayesian SegNet to use
dropout layers at the five most inner decoder-encoder blocks. Hereinafter, we will
refer to the modified U-Net, which applies dropout at inference time, as the Dropout
U-Net. By the application of dropout at inference time, the Dropout U-Net constitutes
a stochastic function f . For multiple stochastic forward passes T of an input image
x, the Dropout U-Net generates a probability distribution for each pi,c. To obtain
a segmentation ŷ, we calculate the mean softmax probability first, as described in
equation (4.2). Then, the segmentation ŷ is derived by applying the argmax function
over the possible classes of the softmax probabilities pi,c, compare equation (4.3).

pi,c = 1
T

T∑
t=1

pi,c,t ∀i ∈ N, ∀c ∈ C (4.2)

ŷi = argmax
c∈C

(pi,c) ∀i ∈ N (4.3)
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4.3.3 Loss Function and Performance Evaluation Metric

As a loss function, we use a weighted category cross-entropy loss. We weight each class
with the inverse of its occurrence (pixels) in the training data due to class imbalance.
This leads to an equal weighting between the classes in the loss function (Crum
et al., 2006). The weighted categorical cross-entropy loss is defined in equation
(4.4); gi,c denotes the one-hot-encoded ground truth label, and wc the computed
weights for each class.

L(p, g) = − 1
N

N∑
i=1

C∑
c=1

wc gi,c log pi,c (4.4)

To reflect the quality of a predicted segmentation, we rely on the dice similarity
coefficient (DSC) (Dice, 1945) as a performance evaluation metric. The dice coef-
ficient assesses the overlap, or intersection, between the model’s outputs and the
one-hot-encoded ground truth labels gi,c. A full overlap between a prediction and
a label is represented by a value of one. If there is no overlap, the dice coefficient
returns zero. Representing the outputs, one could use the softmax probabilities
pi,c or the binarized one-hot encoded predictions ŷi,c. We use the binarized pre-
dictions ŷi,c since these predictions represent the foundation for the subsequent
tool wear analysis. As suggested by Garcia-Garcia et al. (2017) for the related
jaccard-coefficient, we compute the dice coefficient for each class separately. To
assess the segmentation quality of an input image, we compute the averaged dice
coefficient across all classes, leading to a mean dice coefficient, defined in equation
(4.5). To evaluate a model on the test set, we calculate the average across the mean
dice coefficients per image. Next to the dice coefficient, we also compute the pixel
accuracy as a performance measure. It defines the percentage of correctly classified
pixels.

Mean Dice Coefficient = 2
C

C∑
c=1

∑N
i=1 ŷi,c gi,c∑N

i=1 ŷi,c +
∑N

i=1 gi,c

(4.5)
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4.3.4 Uncertainty Estimation

As a next step, we describe how uncertainty measures can be calculated using the
probability distribution outputs of the Dropout U-Net. In general, the information-
theory concept of entropy (Shannon, 1948) displays the expected amount of infor-
mation contained in the possible realizations of a probability distribution. Following
previous work (Kendall & Gal, 2017), we utilize the entropy as an uncertainty
measure to reflect the uncertainty of each pixel in a predicted segmentation:

H(pi) = −
C∑

c=1
pi,c log pi,c ∀i ∈ N (4.6)

The entropy displays its maximum if all classes have equal softmax probability and
it reaches its minimum of zero if one class holds a probability of 1 while the other
classes have a probability of 0. Therefore, the entropy reflects the uncertainty of
a final output ŷi by considering the model’s outputs pi,c over all classes C. For the
task of image segmentation, the entropy is available per pixel. However, for several
applications, it is necessary to derive an uncertainty estimate on a higher aggregation
level. For example, within the tool wear analysis, we want to decide on an image
basis, whether a segmentation is successful or failed. One approach is to average the
pixel-wise entropy values over an image to come up with an image-wise uncertainty
estimate. Roy et al. (2018) propose to calculate the average pixel uncertainty for
each predicted class in a segmentation. We utilize this idea in the context of wear
analysis and define the entropy per predicted class Uc in equation (4.7). Equation
(4.8) defines the number of pixels for each predicted class. The entropy per predicted
class provides information on an aggregated class-level and can be used to estimate
uncertainty for each class in an input image. Since only the predictions are used,
this uncertainty estimate is applicable in the absence of ground truth.

Uc = 1
Sc

Sc∑
i=1

H(pi) ∀c ∈ C (4.7)

Sc = {i ∈ N | ŷi = c} ∀c ∈ C (4.8)

4.4 Experiments

With the methodology at hand, the upcoming Section 4.4.1 provides information
about the two datasets, the preprocessing and training procedures. Subsequently,
Section 4.4.2 briefly describes the performance results in terms of the dice coefficient.
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In Section 4.4.3, we evaluate the uncertainty-based human-in-the-loop system in the
following way: First, we illustrate the relation between uncertainty and segmentation
quality using two exemplary predictions. Then, we quantitatively assess the relation
between uncertainty and segmentation quality using the bravais-pearson correlation
coefficient. Next, we fit a multiple linear regression on each test set, which uses
the uncertainty measures as independent variables to explain segmentation quality.
Lastly, we simulate the performance of the uncertainty-based human-in-the-loop
system based on the multiple regression and compare it against a random-based
human-in-the-loop system.

4.4.1 Datasets, Preprocessing and Training Procedure

The unique Tool wear dataset consists of 213 pixel-wise annotated images of cutting
tool inserts, which were previously used by Ceratizit’s customers in real manufac-
turing processes until their end-of-life. The labels are created as follows: The first
20 images are labeled jointly by two domain experts from Ceratizit. Afterwards,
labels are assigned individually, whereas at least two domain experts discuss unclear
cases. The recording of the images is standardized to reduce the required amount
of generalization of the learning algorithm. The images initially have a resolution
of 1600×1200 pixels. As a preprocessing step, we cut the image to a shape of
1600×300, which lets us focus on the cutting edge where the wear occurs. For
computational efficiency and as a requirement of the U-Net architecture, we resize
the images to a shape of 1280×160 using a bilinear interpolation. We randomly
split the dataset into 152 training, 10 validation and 51 test images. The model
is trained for 200 epochs, using an Adam optimizer, a learning rate of 0.00001,
an L2-regularization with an alpha of 0.01, and a batch size of 1. We choose the
hyperparameters after running a brief hyperparameter search. The training is con-
ducted on a Tesla V100-SXM2 GPU, with a training duration of approximately two
hours. In the literature, the number of conducted forward passes ranges from 10 to
100 (DeVries & Taylor, 2018), we use 30 monte carlo forward passes to create the
probability distribution over the outputs.
The Cityscapes dataset (Cordts et al., 2016) is a large-scale dataset, which contains
images of urban street scenes from 50 different cities. It can be used to assess
the performance of vision-based approaches for urban scene understanding on a
pixel-level. The Cityscapes dataset initially consists of 3475 pixel-wise annotated
images for training and validation. Performance is usually specified through 1525
test set images for which ground truth labels are only available on the Cityscapes
website (Cordts et al., 2016). Since we need ground truth labels to assess the
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uncertainty estimates, we use the 500 proposed validation images as the test set and
randomly split the remaining 2975 images into 2725 training and 250 validation
images. There are initially 30 different classes which belong to eight categories. We
group classes belonging to the same category together, to create a similar problem
setting between the Cityscapes dataset and the tool wear dataset. Furthermore, we
combine the categories ’void’, ’object’, ’human’, and ’nature’ to one class, which we
consider in the following as the background class. The remaining categories are
’flat’, ’construction’, ’sky’ and ’vehicle’, ultimately resulting in five different classes.
The original images have a resolution of 2048×1024 pixels. During training, an
augmentation step flips the images horizontally with a probability of 0.5. Then, a
subsequent computation randomly crops the images with a probability of 0.15 to an
input size of 1024×512. Otherwise, the images are resized using a bilinear interpo-
lation to the desired input shape of 1024x512. Following a brief hyperparameter
search, we train the model for 15 epochs with a learning rate of 0.0001 using an
Adam optimizer, a batch size of 10, and an L2 weight regularization with an alpha
of 0.02. We train the model on a Tesla V100-SXM2 GPU for approximately 2.5 hours.
The Dropout U-Net uses five monte carlo forward passes, considering the higher
computational complexity due to the more extensive test set and the large image size.

4.4.2 Performance Results

Next, we assess the quality of a predicted segmentation in terms of the dice coef-
ficient. Table 4.1 on page 60 displays the performance results on each respective
test set. The background class has the largest proportion of pixels (93.9%) in the
tool wear dataset, followed by flank wear (4.7%), built-up edge (0.9%) and lastly,
chipping (0.4%). We assume that the amount of labeled pixels of a specific class is
closely related to prediction performance. We find, that the model has particular
difficulties segmenting chipping phenomena, which is expressed by a dice coefficient
of 0.244. We explain this lack of prediction performance by the punctual and minor
occurrence of chipping phenomena within images, compare Figure 4.2 on page 61,
and the characteristic of the dice coefficient. In particular, the dice coefficient per
class drops to zero, if the model produces a false negative, meaning the model falsely
predicts a wear mechanism, and if there is no wear for the corresponding class
labeled in the image. This characteristic and the challenging task of classifying small
chipping phenomena in an input image causes the dice coefficient of the chipping
class to drop to zero for several images. In contrast to chipping, the Dropout U-Net
recognizes the background class well and is classifying flank wear and built-up edge
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Tab. 4.1.: Performance results.

Tool wear dataset

Class Dice coefficient

Background 0.991
Flank wear 0.695
Chipping 0.244
Built-up edge 0.596

Mean DSC 0.631
Pixel accuracy 0.977

Cityscapes dataset

Class Dice coefficient

Background 0.929
Flat 0.693
Construction 0.830
Sky 0.769
Vehicle 0.773

Mean DSC 0.799
Pixel accuracy 0.875

considerably well. Compare the label (Figure 4.2c) and the prediction (Figure 4.2e)
on page 61 for an illustration. The performance results of the Cityscapes dataset
also indicate that the Dropout U-Net can generate a predicted segmentation for each
class considerably well.

4.4.3 Evaluation: Uncertainty-Based Human-in-the-Loop System

With the performance results at hand, we focus on assessing the uncertainty-based
human-in-the-loop system. Figure 4.2 on page 61 presents two preprocessed images,
their corresponding human labels, their predictions, and the generated uncertainty
maps for the tool wear dataset. The uncertainty maps are generated using pixel-wise
uncertainties based on the entropy, compare equation (4.6). Within the uncertainty
maps, brighter pixels represent uncertain outputs, and darker pixels represent certain
predictions. The uncertainty map (g) of the left input image (a) displays uncertain
outputs, indicated by brighter pixels, at the edge between classes. This behavior is
often noticed within uncertainty observation in image segmentation tasks (Kendall
et al., 2015), as it reflects the ambiguity of defining precise class regions on a pixel-
level. The most interesting aspect of Figure 4.2 on page 61 is the prediction (f) and
the corresponding uncertainty map (h). The model falsely predicted several areas
on the right hand side as flank wear (red). However, the model also indicates high
uncertainty for this particular area, indicated by brighter pixels in the corresponding
uncertainty map (h).
This relationship is essentially the foundation of the uncertainty-based human-in-

the-loop system. The relationship between a pixel’s uncertainty and the probability
of being classified correctly enables the system to distinguish between images which
the model segments successfully and images which the model segments poorly.
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(a) Preprocessed input image (1) (b) Preprocessed input image (2)

(c) Label (1) (d) Label (2)

(e) Prediction (1) (f) Prediction (2)

(g) Entropy per pixel (1) (h) Entropy per pixel (2)

Fig. 4.2.: Illustration of two images of the test set with their corresponding labels, predic-
tions and uncertainty maps (best viewed in color).
Color coding: Flank wear = dark grey/red, Chipping = light grey/green, and
Built-up edge = white/blue.

As the goal is to distinguish segmentation quality on an image level, the average
uncertainty of a predicted segmentation can be used as an uncertainty measure for
an image. However, we find that for the task of tool wear, there does not exist a
significant correlation (−0.34) between the averaged entropy per prediction and
the mean dice coefficient on the 51 images of the test set. The same analysis yields
a correlation of −0.57 for the Cityscapes dataset. However, we find that the mean
entropy of a predicted class, Uc, is highly correlated with the corresponding dice
coefficient per class. Table 4.2 on page 62 displays the bravais-pearson correlation
between the entropy of a predicted class and the corresponding dice coefficient per
class on the respective test sets. In the case of the tool wear dataset, the linear
relationship is especially strong for the classes flank wear, chipping and built-up edge,
while it is slightly weaker for the background class. These results are reproducible
on the Cityscapes dataset. As can be seen from Table 4.2 on page 62, correlations,
besides the background class, range from −0.751 to −0.878, indicating a strong
negative linear relationship. We use ordinary least squares to fit a multiple linear
regression on the test set for both datasets using the uncertainties per predicted class
Uc as independent variables and the mean dice coefficient as the dependent variable.
Subsequently, the linear regression aims at quantifying the prediction quality on
an image-level in the absence of ground truth. We find that, for both datasets, the
independent variable ’uncertainty per background class’ is statistically not significant
at the 0.05 value. Therefore, we discard it as an independent variable from the
multiple regression model. The remaining independent variables are significant at
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Tab. 4.2.: Correlation coefficients between the uncertainty per predicted class (Uc) and the
dice coefficients per class.

Tool wear dataset

Class Correlation

Background -0.656
Flank wear -0.911
Chipping -0.818
Built-up edge -0.932

Cityscapes dataset

Class Correlation

Background -0.208
Flat -0.878
Construction -0.754
Sky -0.751
Vehicle -0.858

the 0.01 level for both datasets. The regression results yield a R2 = 0.718 for the
Tool wear dataset and a R2 = 0.655 for the Cityscapes dataset. This indicates that
the multiple linear regression can explain a substantial amount of variation of the
mean dice coefficient. The full regression results can be found in Table 4.3.
In the following paragraph, we assess the use of the multiple linear regression in the

Tab. 4.3.: Regression results.

Tool wear dataset

Dependent variable: Averaged Dice

Const 0.922∗∗∗

Background
Flank wear -0.165∗∗∗

Chipping -0.099∗∗∗

Built-up edge -0.169∗∗∗

Observations 51
R2 0.718
Adjusted R2 0.7
Residual Std. Error 0.066
F Statistic 39.849∗∗∗

Cityscapes dataset

Dependent variable: Averaged Dice

Const 1.206∗∗∗

Background
Flat -0.172∗∗∗

Construction -0.203∗∗∗

Sky -0.131∗∗∗

Vehicle -0.132∗∗∗

Observations 500
R2 0.655
Adjusted R2 0.653
Residual Std. Error 0.078
F Statistic 235.335∗∗∗

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

context of a human-in-the-loop system by running a simulation. The multiple linear
regression predicts the quality of a predicted segmentation in terms of the mean
dice coefficient, using the uncertainties per predicted class as independent variables.
Then, in an iterative process, the input image, for which the prediction displays the
lowest estimated mean dice coefficient is forwarded for human annotation. Images,
displaying a higher estimated dice coefficient are retained by the system. Within the
simulation, we assume a perfect human segmentation, and set the corresponding
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dice coefficient of the forwarded image to one. The performance of the system is
then calculated by combining the mean dice coefficients of the retained images and
the forwarded human annotated images. Figure 4.3 shows the simulation results for
both datasets. The x-axis displays the number of images, which are forwarded to
human annotation. The y-axis displays the performance of the system. We compare
the performance of the human-in-the-loop system (blue line) against a random-based
human-in-the-loop sytem (orange line). Contrary to the uncertainty-based system,
the random-based system decides randomly, which images are forwarded to human
annotation. To avoid overfitting, we use a split for each dataset as follows: For the
tool wear dataset, the multiple linear regression is fitted on 30 images, the remaining
21 predictions are then used for simulation. Within the Cityscapes dataset, we use
300 test set images to fit the regression and 200 images for simulation. For both
datasets, the uncertainty-based human-in-the-loop system is able to achieve a better
mean dice coefficient using less human annotations than a random-based approach.
This is due to the multiple regression, which identifies low-quality predictions and
therefore enables the system to forward these predictions to human annotation
first.

(a) Tool wear dataset (b) Cityscapes dataset

Fig. 4.3.: Simulation results.

4.5 Discussion and Outlook

In this work, we show the applicability and usefulness of an uncertainty-based
human-in-the-loop system for the task of industrial tool wear analysis. The human-
in-the-loop system addresses critical challenges regarding the adoption of CNNs in
industry. In particular, it increases transparency by providing uncertainty measures
which are correlated with segmentation performance. Additionally, it improves
performance by incorporating a human expert for the annotation of images that are
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estimated to be of low quality.
Within the use case of tool wear analysis, we consider the task of segmenting three
different wear mechanisms on cutting tool inserts. We apply and train a modi-
fied U-Net architecture on a real-world dataset of our industry partner Ceratizit,
achieving good performance results. For the human-in-the-loop system, we enhance
the existing tool wear analysis with the following capabilities: We implement MC-
dropout and use the information-theory concept of entropy to compute pixel-wise
uncertainties. Furthermore, we aggregate the pixel-wise uncertainties to compute
class-wise uncertainty measures on an image-level. A multiple linear regression
reveals that the class-wise uncertainties can be used as independent variables to
explain a substantial amount of the mean dice coefficient of an image. The multiple
linear regression is then leveraged within the human-in-the-loop system to decide,
whether a given segmentation should be forwarded to a human expert, or be re-
tained in the system as a successful prediction. A simulation study demonstrates
that the performance improves through the utilization of a human expert, which
annotates estimated low-quality predictions. Furthermore, the system increases
transparency by additionally issuing an estimate about the quality of a prediction.
We assess our system not only on our proprietary tool wear data set but also on the
publicly available and substantially larger Cityscapes data set, confirming the gener-
alizability of our approach to the task of urban scene understanding. Nevertheless,
we consider the application to only two data sets as a limitation of the study. In
the future, we aim at validating the system on additional datasets. Another promis-
ing avenue for future research is to further distinguish uncertainty into epistemic
(model) and aleatoric (data) uncertainty (Kendall & Gal, 2017). While aleatoric
uncertainty is due to inherent noise in the input data, e.g., a blurred image, epis-
temic uncertainty occurs due to model uncertainty, e.g., lack of training data. Within
human-in-the-loop systems, this distinction can lead to more informed decisions,
e.g., when images are forwarded to a human expert, a possible cause for a failed
prediction can be provided. Regarding uncertainty estimation, further research is
also needed on a more theoretical level, to establish a more profound understanding
of uncertainty outputs of different approaches and their relation to prediction quality.
This could include a structured comparison of different ways to calculate uncertainty
across different use cases. Lastly, from a human-centric machine learning standpoint,
further research should assess, if the increased transparency of the human-in-the-
loop system leads to a more calibrated level of trust from the user. While we found
several indications in the literature, few studies have investigated this relationship
in a systematic way.
We see a broad applicability of the uncertainty-based human-in-the-loop system
in industrial applications. While we consider the task of image segmentation, the
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general observations should be relevant in a variety of supervised learning problems.
A human-in-the-loop system can be beneficial for all types of automation tasks, in
which human experts display superior performance than automated systems, but in
which the automated system is more cost efficient. An example for such a system
would be an industrial quality control system. Otherwise, we perceive limited poten-
tial for tasks, in which the performance of human experts is inferior compared to the
performance of automated systems. This scenario would include many applications
of time series forecasting. In these tasks, the estimated prediction quality could only
be used to issue warnings whenever an output is likely to be faulty. Altogether, we
believe that the uncertainty-based human-in-the-loop system represents an essential
building block for the facilitation of a more widespread adoption of CNN-based
systems in the industry.
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Part III

Design Knowledge





Image-Mining-Based Decision
Support Systems: Design
Knowledge and its Evaluation
in Tool Wear Analysis1

5

5.1 Introduction

Many decision processes are based on image data, for example cancer diagnosis
in medicine (Lambin et al., 2017), infrastructure maintenance (Chatterjee et al.,
2018), user decision-making in e-commerce (Naumzik & Feuerriegel, 2020), real
estate pricing (Kucklick & Müller, 2020), or industrial monitoring (J. Wang et al.,
2018). Due to rapid and major advances in image processing techniques, the process
of automatically transforming image data into information has improved heavily.
Deep learning development in particular is often regarded as a breakthrough (LeCun
et al., 2015) because respective algorithms are able to outperform humans in image
classification tasks (He et al., 2015).
The common denominator in most existing research and practical implementations
is the focus on analyzing single images to detect or classify objects. There is however
large untapped potential in analyzing image collections. In manufacturing, for
example, an inherent dispersion in processes makes them unreliable to be analyzed
based on single images. Figuratively speaking, a single image does not differ from
a single database row, therefore the analytical potential is limited. To retrieve
knowledge from data collections, data mining techniques can be applied (Han et al.,
2011; Spangler et al., 1999). When it comes to images, the inherent complexity
leads to challenges that are not covered by standard data mining techniques. Image
mining aims to discover patterns in image data, thereby generating value out of
image collections (Bhatt & Kankanhalli, 2011).
1This chapter comprises an article that is currently under review as: Walk, J., Schemmer, M., Kühl,
N., Satzger, G. (2022). Image-Mining-Based Decision Support Systems: Design Knowledge and its
Evaluation in Tool Wear Analysis. Working Paper. Note: The abstract has been removed. Minor edits
have been made and tables and figures were reformatted, and newly referenced to fit the structure of
the thesis. Chapter, section and research question numbering and respective cross-references were
modified. Formatting and reference style was adapted and references were integrated into the overall
references section of this thesis.
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Decision support systems are a proven tool to generate value out of data by providing
a basis for making informed decisions (Kohli & Devaraj, 2004). Image data has high
potential to be used in these systems because of its information richness (Lambin
et al., 2017). A single image contains more information than text or numerical data
— as the saying goes, “A picture is worth a thousand words”. For example, an image
of a car can provide information about the manufacturer or the color, but also about
the condition, the setting, and many more.
Due to the information richness of image data and recent advances in deep learning,
we see great potential in combining the research of image mining and decision
support systems. “Image-mining-based decision support systems” can create value
in every domain where images need to be analyzed for decision-making. There is a
magnitude of potential application areas, such as manufacturing (Trinks & Felden,
2019), medicine (Sollini et al., 2019), sport (W. Sun et al., 2008), geo-information
(Coenen & Dittakan, 2016), or services (Villarroel Ordenes & Zhang, 2019). Most
of these areas have conducted initial research about image mining, this confirms
the potential for value creation. However, to the best of our knowledge, there is no
design knowledge that supports the design of image-mining-based decision support
systems. Such design knowledge is essential to facilitate value creation from image
collections, a field with great potential due to the information richness of image data
and technological advances in the field of automatic image processing (Dey et al.,
2015). The information systems (IS) knowledge body on designing decision support
systems (DSSs) should be expanded to enable incorporation of this important type
of data. While other special data types, e.g. text, are traditionally embodied in
DSS research (Turban et al., 2010) and design knowledge for text mining is already
formulated (Abbasi & Chen, 2008), the potential of image mining has not yet been
unlocked–even though the data contains potentially yet more information. We
believe that in later times it was neglected because of the complexity of transforming
image data into information. Due to recent advances in the field of deep learning
this complexity has been reduced (LeCun et al., 2015). We therefore formulate the
following research question:

Research Question C
What design knowledge should guide the development of image-mining-based
decision support systems (IM-DSSs)?
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In his outlook for IS research, A. S. Lee (2010) stressed that the predominant form of
theory should become theory for design and action. We followed common guidelines
from design science research (Hevner et al., 2004; March & Smith, 1995; Peffers et
al., 2007; Winter, 2008) to derive design knowledge and test this design knowledge
in practice. Design knowledge always refers to a class of problems (Gregor & Jones,
2007; Hevner et al., 2004). With our work, we want to shed first light on a problem
class that we define as image-mining-based decision support systems. Based on
this new problem class, we follow the dual mission of design science research of
generating theoretical knowledge and developing usable artifacts (Gregor & Jones,
2007; March & Smith, 1995).
To ensure practical grounding, a key issue in former DSS research (Arnott & Pervan,
2012; Miah et al., 2019), we conducted a design science research project in a man-
ufacturing company that produces machining tools. Machining is one of the most
important manufacturing techniques (Arrazola et al., 2013). It is applied in various
industries, such as aerospace (Nabhani, 2001), automotive (Dasch et al., 2005), and
medicine (Kreiss et al., 1996). Our case company is well-suited for developing and
evaluating an image mining artifact because many of the workers have use cases
where they need to interpret image collections as part of their daily job. These use
cases are concerned with analyzing wear on machining tools, either as a customer
service or as part of developing new machining tools. This analysis is currently done
manually by using magnifiers and microscopes. Based on optical inspection, the
domain experts make decisions such as selecting machining parameters (Lukić et al.,
1991), tools (Alberti et al., 2011), or coatings (Athanasopoulos et al., 2009). These
tasks possess a high economic importance: Research suggests that tool failures are
responsible for 20% of production downtime in machining processes (Kurada &
Bradley, 1997). Furthermore, cutting tools and their replacement account for 3–12%
of total production cost (Castejón et al., 2007).
Having outlined the importance of our case industry we now present our contribu-
tions. This research contributes to theory as well as practice. Our work provides
design knowledge for image-mining-based decision support systems that contributes
to information systems research because image-mining-based decision support sys-
tems are an important, but neglected class of design. Therefore, our first theoretical
contribution is depicting and discussing a new problem class. Based on that, we
conducted an exploratory study in the machining industry to derive initial design
requirements. To address these design requirements, we conceptualized design
principles, based on previous work in image mining, deep learning, and decision
support systems. These design principles could work as a “blueprint” for upcoming
image-mining-based decision support systems (Gregor & Jones, 2007). Based on
these design principles, we derived design features as specific implementations for
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the machining industry. These specific design features were used to develop an
artifact that allowed us to rigorously evaluate the design knowledge in practice.
We utilize this instantiation to solve a real-world problem at our case company.
The concrete artifact supports developers and researchers at the case company by
removing manual work and supporting the knowledge generation process.
The remainder of this work is structured as follows: In Section 5.2, we introduce
our design science research methodology. In Section 5.3, we derive tentative design
requirements based on an exploratory interview study and literature. In Section 5.4,
we present related work and the key concepts of our research. In Section 5.5, we
derive and evaluate design knowledge for image processing. Based on this, in
Section 5.6, we derive further initial design principles, following the image mining
process and evaluate them. In Section 5.7, we refine our derived design knowledge
and the artifact based on the prior feedback and evaluate it. In Section 5.8 we
discuss our results and present our developed design theory. Lastly, in Section 5.9,
we summarize this research, explain limitations of our study and provide an outlook
on future work.

5.2 Research Design

Our research follows the design science research approach (Hevner et al., 2004;
March & Smith, 1995). In particular, we follow the three-cycle design science
research guidelines from Hevner (2007) — the relevance, rigor, and design cycle
(DC). The relevance cycle provides the research with environmental requirements
and ensures field testing (input from the practical knowledge base). The rigor cycle
provides the research with grounding theories and methodology from the knowledge
base (input from the theoretical knowledge base). A design cycle incorporates the
design, development, and evaluation of artifacts. For our research, we conduct three
DCs that each refine the proposed design knowledge and the artifact. Each DC
follows the steps awareness of problem, suggestion, development, and evaluation,
based on Kuechler and Vaishnavi (2008). In the awareness of problem step, we
draw from the practical knowledge base and gather requirements. In the suggestion
phase, we derive design principles (DPs) based on the theoretical knowledge base.
In the development phase, we map the abstract DPs in specific design features (DFs)
and implement them in an artifact that is used to evaluate the design.
A key aspect in design science research is the rigorous evaluation (Peffers et al.,
2012; Prat et al., 2015). To structure the evaluation, we follow the guidelines of
Venable et al. (2016). In their framework, the evaluation is structured in distinct
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evaluation episodes (EEs), and each DC can be evaluated with multiple distinct EEs.
In general, Venable et al. (2016) differentiate two major purposes of evaluation —
formative and summative. While formative evaluation addresses artifact refinement,
summative evaluation is used to depict the results of the completed development.
We conduct multiple formative and summative EEs, addressing different goals and
following a mixed-method approach by conducting quantitative and qualitative EEs
to provide a comprehensive analysis.
In the first DC, we derive design knowledge for image processing. In the evaluation
phase, we show the feasibility of deep learning (DL) as a prepossessing step for
image mining by conducting a technical experiment, as Peffers et al. (2012) propose.
After targeting the technical viability of the image processing in DC1, in DC2 we
derive further design knowledge for image-mining-based decision support systems
and show the general desirability. We therefore develop an artifact, the automatic
tool wear analyzer, and evaluate it in a formative way by using exploratory focus
groups (EFGs) (Tremblay et al., 2010a).
In the final DC3, we refine our design knowledge and the prototype from the
previous DC and perform a summative evaluation conducting four distinct EEs. First,
we assess the effectiveness with an additional technical experiment that compares
humanly derived features with features that our artifact automatically extracts.
Second, we calculate the efficiency of our system by measuring potential savings
in human working time. Additionally, we use confirmatory focus groups (CFGs), as
Tremblay et al. (2010a) propose, to gather qualitative feedback about the artifact’s
usefulness. Lastly, to validate perceived usefulness, we conduct a survey based on
questions from the technology acceptance model (TAM) (Davis, 1989; Venkatesh &
Bala, 2008). Figure 5.1 on page 74 visualizes the interplay of the three DCs and our
EEs, including the objectives, the methods, and our results.

5.3 Relevance Cycle: Design Requirements for
Image-Mining-Based Decision Support Systems

To ensure a grounding in practice, we derive the design requirements (DRs) based
on domain requirements collected through an exploratory study in a case company.
We purposefully selected the industry and the case company based on the importance
of the image data analysis. We selected a manufacturing company that produces
cutting tools for the machining industry. Because the analysis of these tools is
mainly done visually, the employees have a lot of experience in image analysis. An
additional advantage of the case industry is that there is potential to get high-quality
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Fig. 5.1.: Design science research methodology based on Hevner (2007), Kuechler and
Vaishnavi (2008), and Venable et al. (2016).

standardized images that facilitate image processing. The industry in general as well
as the particular case company are therefore highly suitable for IM-DSSs research.
In general, machining is a key manufacturing process (Arrazola et al., 2013) that
describes the mechanism of removing unwanted material from a workpiece using
a cutting tool (Black, 1995). There are several types of cutting tools, for example
drills and indexable inserts. We focus on the latter, shown in Figure 5.2 on page 75.
The exploratory study had two goals: First, collecting potential use cases of IM-

DSSs in the machining industry, and second, gathering domain requirements for the
chosen use case. Based on the domain requirements, we then derive first preliminary
DRs for IM-DSSs. In the following subsection, we describe the methodology and
results.
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Fig. 5.2.: Exemplary machining process with an indexable insert.

5.3.1 Methodology: Exploratory Study

To conduct insightful interviews, we used purposive sampling (Coyne, 1997) and
snowballing as a sampling technique (Palinkas et al., 2015). We started the study by
interviewing managers who are well-connected in the company and have a good
overview of applications of tool wear analysis. Afterwards, we used the snowballing
technique and asked each interviewee for other relevant interviewees. The sugges-
tions were clustered into stakeholder groups based on their job descriptions. We
found two major stakeholder groups that can directly profit from IM-DSSs. First,
there are application engineers, who are the technical interface to the customers.
Analyzing images is a crucial building block in their task of developing recommenda-
tions for customers to improve their machining processes. DSSs can support them
in tool or machining parameter selection. The second group of stakeholders are
developers who improve and develop products using image analysis to get insights
regarding the tool wear mechanisms. These insights can be used to improve specific
tool development decisions, like the coating choice.
We chose semi-structured interviews because they allow for flexibility (Whiting,
2008). We interviewed 19 experts (9 application engineers, 3 managers, and 7
developers). Some were interviewed in group sessions because their application
domain was similar. Each interview lasted between 30 and 70 minutes.
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After conducting the interviews, we transcribed and coded them in MaxQDA (Kuckartz,
2012). Potential application areas were summarized, whereafter we chose the most
promising use case. We then analyzed nine sessions in-depth to extract domain
requirements. Because we conducted exploratory interviews, we decided to use
inductive coding for the analysis (D. R. Thomas, 2006). We chose this route instead
of the deductive approach because we were in an exploratory phase, aiming to find
the stakeholders’ important business issues. With the deductive approach, key topics
could be ignored (D. R. Thomas, 2006). Based on the identified codes, we derived
eight initial tentative DRs.

5.3.2 Results of the Exploratory Study

We found 12 image mining use cases in the case company2. For our research,
we chose services for customers of our case company where experts (application
engineers and developers) analyze machining processes and give recommendations
on how to improve the process — optimization-as-a-service. Because image mining
needs huge image collections to be useful (Hsu et al., 2002) and the customer
services enable an efficient collection of relevant images, we identified the use case
as highly suitable for an IM-DSS.
In the following part, we present and discuss our preliminary DRs, derived from the
coded interviews. Because we develop generalized design knowledge for IM-DSSs,
we formulate them on the relevant abstraction level. Table 5.1 on page 78 shows
exemplary quotes from the interviews done in the case company to illustrate the
derivation. We also support the DRs with evidence from literature.

2(1) Tool condition monitoring; (2) Single-image recommender systems; (3) Quality assurance; (4)
Benchmark tests; (5) Consumer complaint analysis; (6) Coating analysis; (7) Chip breaking analysis;
(8) Predictive maintenance; (9) Recommender systems; (10) Customer services; (11) Market-driven
development; (12) Market trend analysis
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According to the experts, context is needed to generate significant value from image
data (Alpha). In terms of tool wear analysis, this means information about the
cutting process parameters like the cutting speed, the workpiece, and the tool. We
therefore formulate the following DR:

DR1 (Context): The system should ensure the availability of context.

Another important aspect is the quality of the input images. The necessary quality
of the recording depends on the goal of the IM-DSS. For example, if the goal is
generating very general recommendations for cutting parameters, a low resolution
might be sufficient. Nevertheless, the recording quality must match the goal of the
IM-DSS.

DR2 (Image quality): The system should ensure sufficient image quality.

A recurring theme of the experts was the comparison of image collections in bench-
mark tests (Beta). An image collection in the machining industry usually represents
the wear on cutting tools that were utilized in a defined production process. After
changing process parameters such as the type of cutting tool, the outcomes need to
be compared with each other. The image collections are currently being compared
with small sample sizes and are subject to individual assessment. Experts conse-
quently formulated a need for more reliable comparisons. We therefore formulate
the following DR:

DR3 (Comparison): The system should increase the validity of image
collection comparisons.

Furthermore, the system must be able to handle large image collections efficiently.
The experts described situations where 400 inserts have to be analyzed (Epsilon).

DR4 (Scalability): The system should enable scalability of image analysis.

Additionally, when dealing with data-heavy algorithms, like DL, it is necessary to
keep the cost factor in mind. An interviewee in a management position specifically
emphasized this point (Zeta). We therefore formulate the following DR:

DR5 (Cost-effectiveness): The system should be cost-effective.
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Tab. 5.1.: Tentative design requirements, exemplary quotes, and support from literature.

Design requirement Exemplary quote Support from
literature

DR1 (Context) “[...] without the metadata, it is half the
truth, or it can falsify the truth. There is a
danger of something being misinterpreted.”
(Alpha)

Lambin et al.
(2017)

DR2 (Image quality) “Unfortunately, we have had the expe-
rience that misinterpretations are made.
That’s why I am so fussy about the quality
of the original picture. Because you can
only make a clear statement by the quality
of the original picture.” (Alpha)

Afshar et al.
(2019)

DR3 (Comparison) “The approach is mostly that you have
some kind of benchmark, let’s say when
turning. Then you find out that your com-
petitors are reaching this tool life and then
you make your test variants.” (Beta)

M. Liu et al.
(2018)

DR4 (Scalability) “Now we’re going to do a long-term exper-
iment of 300 or 400 records, it depends.
They’ll be tested.” (Epsilon)

Kumar et al.
(2012)

DR5 (Cost-effectiveness) “I think that’s the biggest challenge, be-
cause we can’t afford to have five million
images labeled by any user like Google.”
(Zeta)

K. Wang et al.
(2016)

DR6 (Reproducibility) “If you ask three experts now, you’ll get
five opinions.” (Gamma)

Patel and
Sethi (2007)

DR7 (Dispersion) “Reality simply has a certain spread, on
the machine side, cooling, material being
machined. Our products also have scat-
ters. Then we haven’t talked about the
tool holder. If it’s brand new, the plate
tends to be more stable and work better
when it fits, like a tool that’s already worn
out and you just get vibration. Sometimes
it’s just the screw. Doesn’t tighten properly
anymore. If it’s screw tension, the plate
can be as good as it wants if it doesn’t fit
properly.” (Gamma)

Grove et al.
(2015)

DR8 (Exploration) “Yes, above all, maybe we can draw conclu-
sions, maybe our phase or our geometry is
not stable enough at that point, because
you always get wear at the same place.”
(Delta)

Gillies et al.
(2016)
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The inherent problem of image data is that it is usually subject to human inter-
pretation (Patel & Sethi, 2007), this can lead to a huge variance in generated
recommendations. Many domain experts stated a need for reproducibility in tool
wear analysis. Additionally, the measurement of image features incorporates a
significant variance that should be reduced. We therefore formulate the following
DR:

DR6 (Reproducibility): The system should decrease the variance of
feature measurement and human image interpretation, while keeping the
quality at least equal.

In industrial settings, a single image is often just a snapshot. To derive knowledge,
the dispersion of the process must be displayed.

DR7 (Dispersion): The system should capture and display the dispersion
of an image collection.

Lastly, data mining needs exploration and hypothesis generation potential (Gillies
et al., 2016). The experts stressed the complexity of tool wear analysis and the
exploratory nature thereof. We therefore formulate the following final DR:

DR8 (Exploration): The system should provide users with the possibility
of exploring image collections interactively.

5.4 Rigor Cycle: Theories Informing the Design of
Image-Mining-Based Decision Support Systems

With the results of the relevance cycle at hand, we describe the theoretical founda-
tions of our research. First, we delve deeper into image mining. Next, we present
related work of image-mining-based decision support systems by summarizing the
results of a structured literature review (SLR). Finally, we provide insights on the
analysis of tool wear.

5.4.1 Image Mining

Image mining is the extraction of knowledge from large image collections by utilizing
techniques from image processing and data mining to improve decision-making
in an image-rich domain (Hsu et al., 2002). Image mining is applied in multiple
domains, such as medicine, where it is called radiomics (Gillies et al., 2016; Lambin
et al., 2012).

5.4 Rigor Cycle: Theories Informing the Design of
Image-Mining-Based Decision Support Systems

79



The image mining process follows the data, information, knowledge, and wisdom
(DIKW) hierarchy (Ackoff, 1989) by first transforming image data into information
and subsequently into knowledge. Mishra and Silakari (2012) and Khodaskar and
Ladhake (2014) outline the traditional process of image mining. In a first step, the
images, meaning the data, must be stored in an image database. The next step is to
preprocess the data — crop the images or improve their quality. Then the region of
interest (ROI) should be segmented, meaning that each pixel is classified. Thereafter,
features like color or texture are extracted from the ROI, transforming the image
data into processable information. These features can then be analyzed with data
mining techniques to find patterns and generate knowledge.
A key step in the image mining process is the segmentation of ROIs, because it
is the basis of the feature extraction (Gillies et al., 2016). In the following part,
we will present and discuss technical options for segmentation — manually, semi-
automatically, or automatically. If performed manually, an expert defines and
segments each ROI, using image labeling tools like Fisher and Mackiewicz (2020).
Manual segmentation has the disadvantage of significant intra- and interobserver
variability (Louie et al., 2010), and requires considerable manual effort. Automatic
segmentation can be differentiated in traditional computer vision approaches and
machine-learning-based approaches. Semi-automatic approaches combine both
techniques, for example by presegmenting the images automatically and refining
the segmentation by experts.
For computer vision tasks, DL techniques have been shown to be the most suitable
machine learning approach. DL is a subset of machine learning and is based
on artificial neural networks, which simulate functionalities of the human brain
(O’Mahony et al., 2019). In contrast to traditional approaches, DL does not require
extensive feature engineering and therefore increases the scalability of image analysis
(O’Mahony et al., 2019). DL has also outperformed humans in image classification
tasks (He et al., 2015). Lastly, DL provides superior flexibility, because the models
can be retrained for similar tasks (Pan & Yang, 2010).
After the segmentation, image mining techniques need to be applied to generate
knowledge from the information. Hsu et al. (2002) give a holistic overview of
the most common ones. Traditional techniques comprise image retrieval, image
classification, and clustering or association rule mining.
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5.4.2 Image-Mining-Based Decision Support Systems

“Decision support systems is a general term for any computer application that en-
hances a person or group’s ability to make decisions” (Power, 2008, p. 149). Our
work synthesizes the long-lasting knowledge body of DSSs with image mining. This
provides new potential by transforming image data into knowledge, thereby creating
competitive advantages out of image collections. To ensure a rigorous overview of
former research, we conducted an SLR following H. M. Cooper (1988) and Vom
Brocke et al. (2009) by searching the Scopus database with the following search
string: (radiomics OR “image mining” OR “image data mining”) AND “decision support
system”.
The articles were included if their abstract and/or title focused on DSSs and image
mining. We applied three exclusion criteria: First, we excluded the paper if the
researchers focused purely on object recognition or image classification because
these are just preprocessing steps of image mining and focus on single images.
Second, as we are interested in DSS design, we excluded papers that focused purely
on algorithms. Lastly, we excluded research about image retrieval because this is
a specialized subfield (Hsu et al., 2002) and we are interested in holistic solution
approaches.
We conducted the SLR in November 2022 and identified 1328 potentially relevant
papers, mostly from the field of radiomics research. Most research in radiomics
outlined the development of a DSS as potential future research, but did not develop
one. This led to a significant reduction in the number of papers. After evaluating
all abstracts, 18 papers remained. After reading the papers in detail, we excluded
eleven more. The seven relevant papers are outlined below.
Most previous research was conducted in medical application areas. Exceptions are
the works of Zaiane et al. (1998) and Koh and Cui (2022). Zaiane et al. (1998)
developed an IM-DSS for multimedia mining. Koh and Cui (2022) developed an
IM-DSS to analyze the impact of visual attributes of thumbnails on the view-through
of videos. In terms of medical research, Berlage (2007) reviewed image mining for
biomedical imaging experiments. Barnathan et al. (2008) designed a framework for
image mining and instantiate it in a web application for mining medical image data.
Foran et al. (2011) developed software for the image mining of tissue micro-arrays.
It consists of image processing, segmentation, feature extraction, and classification.
Gatta et al. (2019) built a holistic IM-DSS and evaluate it on two data sets of cancer
patients. Cheng et al. (2019) developed a clinical DSS aimed at weight loss predic-
tion after head and neck cancer.
Our SLR shows that the existing research on IM-DSSs largely focuses on the medical
field. Our study allows generalization by conducting research in the machining in-
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dustry. Furthermore, previous research on IM-DSSs did not leverage the advantages
of DL. On a more general level, existing research on IM-DSSs did not aim to develop
generalized design knowledge. In addition, none of them used real-world expert
input to derive requirements. Lastly, except for Cheng et al. (2019), the impact of
the system was not evaluated with potential end users.
Besides the results of the SLR we would like to mention two works that we are aware
of that derive design knowledge for similar classes: Landwehr et al. (2022) (compare
Chapter 6) and Zschech, Walk, et al. (2021) (compare Chapter 7). Landwehr et al.
(2022) derive design knowledge for image-based DSSs and conduct a case study
in power line infrastructure maintenance. They use images from unmanned aerial
vehicles to analyze the wear of power line infrastructure. Their DSS provides deci-
sion support in scoping and planning maintenance orders through improved data
and information quality. However, they focus on decision support based on single
images. Hence, no image mining is required. Zschech, Walk, et al. (2021) develop
design knowledge for computer-vision-based hybrid intelligence systems. They focus
on design knowledge that facilitates hybrid intelligence (i.e., the combination of
human and artificial intelligence) in any information system based on computer
vision. The design knowledge we develop in this work differs in two ways: first,
we target concrete design knowledge for DSSs while focusing less on the hybrid
intelligence part. Second, we address design knowledge for DSSs that rely on image
mining in particular.

5.4.3 Machining and Tool Wear

The design knowledge is instantiated and evaluated in the machining industry.
Machining is applied in various industries, such as aerospace (Nabhani, 2001),
automotive (Dasch et al., 2005), and medicine (Kreiss et al., 1996).
The machining process unavoidably results in tool wear. In the following part, we
shortly describe the three most common types of tool wear (compare Figures 5.3
to 5.5 on page 83 for exemplary images). The first type is abrasive wear on the flank,
called flank wear or VB (Dutta et al., 2014). Flank wear is unavoidable and the most
frequent wear characteristic (Siddhpura & Paurobally, 2013). For this reason, it is
the most commonly used criterion for evaluating tool life, meaning deciding when to
change a tool (ISO - International Organization for Standardization, 1991). Another
wear characteristic that frequently and heavily impacts product quality is chipping.
This refers to particles of the cutting edge breaking off or thermal cracking (ISO
- International Organization for Standardization, 1991). Lastly, high temperature
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and pressure can lead to a built-up edge (BUE) (Dutta et al., 2014). Chipping and
BUE lead to deformations of the cutting edge, this may lead to insufficient product
quality, increased scrap, and high costs.

Fig. 5.3.: Flank wear. Fig. 5.4.: Chipping. Fig. 5.5.: Built-up edge.

5.5 First Design Cycle: Effective and Scalable Image
Mining

Our overall goal in the DCs is to derive design knowledge for IM-DSSs and evaluate
it with the help of a developed artifact. Figure 5.6 on page 84 summarizes our DRs,
as well as our suggested DPs and DFs, iteratively derived over three DCs.
As explained in Section 5.4.1, image mining starts with preprocessing and seg-

menting the images, enabling a transformation of the image data into processable
information. For this reason, the goal of the first DC is to derive design knowledge
for this initial transformation process.

5.5.1 Suggestion and Development

Deep learning, in particular convolutional neural networks, have shown significant
performance in computer vision tasks, outperforming humans in image classifi-
cation (He et al., 2015). This shows the potential of automated image analysis
of human-level quality and addresses the fourth DR (scalability) and the fifth DR
(cost-effectiveness). We therefore formulate the following DP:

DP1 (Information extraction): Provide the system with deep learning
capabilities for image segmentation.

To implement the DP, we propose the following DF. We used the U-Net (Ronneberger
et al., 2015), an encoder-decoder CNN architecture, as a basis for our DL model
because it has shown high performances with low amounts of labeled images,
addressing DR7 (cost-effectiveness). The implementation details can be found in
the Appendix on page 100.
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Fig. 5.6.: Design knowledge for image-mining-based decision support systems.

We used an open source web application to label images on a pixel level (Fisher &
Mackiewicz, 2020). Our image data set consists of 213 labeled cutting tool inserts
that customers of our case company used in real machining processes. The labeling
covers four classes: The three major tool wear characteristics (flank wear, chipping,
and BUE — see Section 5.4.3) as well as the remaining background pixels. The
data set has two major sources of imbalance: First, because VB is the major wear
type, there is an imbalance on an image level. Second, on a pixel level, even after
cropping, the images contain more background pixels than wear pixels. To address
the imbalance of the dataset, we used a weighted cross entropy as a loss function
that equalizes the weighting of the classes (Ronneberger et al., 2015). Figure 5.7 on
page 85 shows an exemplary image, label and output.
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Fig. 5.7.: Transformation from original recorded images to segmentation maps.

5.5.2 Evaluation and Discussion

The test data set incorporated 51 images and was hand-selected by experts to ensure
representativeness. To evaluate the results of the segmentation, we used pixel
accuracy and the mean dice coefficient. We did so because accuracy is easy to
interpret and the mean dice coefficient takes the class imbalance into account. As
Garcia-Garcia et al. (2017) proposed for the related jaccard-coefficient, the mean
dice coefficient is a function of precision and recall calculated for all classes and
averaged (see Equation (5.1)).

Mean dice coefficient = 2
C

C∑
c=1

∗ precisionc ∗ recallc
precisionc + recallc

(5.1)

We reached a pixel accuracy of 0.977 and a mean dice coefficient of 0.631. Table 5.2
shows the specific results of all four classes.

Tab. 5.2.: Performance results of the semantic segmentation.

Class Dice coefficient

Background 0.991
Flank wear 0.695
Chipping 0.244
BUE 0.596

Mean dice coefficient 0.631

Flank wear and BUE can be predicted with sufficient consistency. Due to a low
number of chipping labels, the algorithm has difficulties predicting this class. Overall,
we trained with a relative small data set. Research has shown that DL performance
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grows logarithmically with increasing data-volume (C. Sun et al., 2017). Increasing
training data, especially when starting with small datasets, therefore has significant
influence on the performance. We conclude that the results show the general
technical feasibility of DL as a preprocessing step for image mining in tool wear
analysis.

5.6 Second Design Cycle: General Desirability of
Proposed Image-Mining-Based DSS

The second DC is conducted to derive DPs to process the transformed image data
further. Subsequently, the DPs are instantiated in an artifact and evaluated to show
the general desirability and collect formative feedback for refinement.

5.6.1 Suggestion

Image segmentation is just one step in the image mining process (Lambin et al.,
2017). To extract knowledge, the resulting segmentation maps need to be processed
further. A common step in literature is the derivation of features from the segmenta-
tion map (Lambin et al., 2017). We propose to calculate domain features based on
the segmentation maps to enable data mining and an aggregation of the information
contained in image collections. This addresses DR3 (Comparison), as unprocessed
image data is unstructured and statistical comparisons can only be applied on struc-
tured numerical or categorical data (Müller et al., 2016). Furthermore, the DP
addresses DR7 (Dispersion) and DR8 (Exploration). We therefore formulate the
following initial DP:

DP2 (Information aggregation): Provide the system with the ability to
aggregate features extracted from segmentation maps.

Tool wear analysis has dispersion on two levels, summarized in DR6 (Reproducibility)
— first, on the level of tool wear measurements and second, on the decisional level.
Automatic segmentation and feature extraction reduce the dispersion on the first
level. To address the second level, we propose to utilize design knowledge from the
decision support system body of knowledge and implement features of decisional
guidance. Decisional guidance is defined as structuring and guiding the user’s
decision-making process (M. S. Silver, 1991). M. S. Silver (1991) differentiates three
forms of guidance — informative, suggestive, and quasi-suggestive. Informative
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guidance provide decision makers only with decision relevant information, whereas
suggestive guidance makes judgmental recommendation (M. S. Silver, 1991). Quasi-
suggestive guidance is guidance “that does not explicitly make a recommendation
but from which one can directly infer a recommendation or direction” (M. S. Silver,
2006, p. 109). Research has shown that decisional guidance can improve decision-
making and decreases variance in generated decisions (Sharda et al., 1988). We
therefore derive the following DP:

DP3 (Decisional guidance): Provide the system with decisional guidance
during image mining.

To address DR4 (Scalability) and DR5 (Cost-effectiveness) further, the process of
tool wear analysis needs to be viewed holistically. This starts with item collection,
followed by recording, segmenting, and finally analyzing. A bottleneck of image
mining can occur in each step. In terms of tool wear analysis, the bottleneck is the
creation of tool wear. Depending on the material used, the process of wear creation
can be protracted. We therefore formulate the following DP:

DP4 (Holistic view): Automize the image mining process holistically.

Lastly, to address DR1 (Context), research in radiomics has shown that the system
needs to provide metadata to enable image mining (Bannach et al., 2017). Especially
in exploratory analysis, image features and non-image features should be combined
in a single dataset to enable the investigation of relationships (Lambin et al., 2017).
Image mining frameworks like Hsu et al. (2002) define metadata as a key element
to extract knowledge. We therefore formulate:

DP5 (Metadata): Provide easy access to complementary non-image data
within the system.

5.6.2 Development

To test the DPs in practice, we translated them into concrete DFs that address the
specific project environment. For the second DP, image mining, many specific DFs
are possible. Figure 5.8 on page 88 visualizes different options on a high level. Our
chosen DFs are highlighted. The options can be clustered into three major categories:
segmentation, feature engineering, and data mining.
As stated in Section 5.5, an algorithm to derive the segmentation map is necessary

(DF1). Due to the reasons explained in Section 5.5, the segmentation map is created
by using DL and in particular CNNs. Next, based on that segmentation map, domain
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Fig. 5.8.: Possible design features for image mining.

features are extracted. There are multiple ways to derive the domain features, the
two major methods being the traditional approach and automatic feature generation
(Afshar et al., 2019). The traditional approach uses handcrafted features, while the
automatic approach derives these features by utilizing techniques like DL (Afshar et
al., 2019). We decided to use the traditional approach to utilize domain knowledge
and enable data exploration (DF2). Because some of the features were familiar to
end users, we aimed to create trust. The relevant domain measures were defined
with experts and based on the corresponding ISO standard (ISO - International
Organization for Standardization, 1991). Table 5.3 summarizes the handcrafted
features.
The third category are data mining techniques chosen with respect to the application
domain and the use case. Tool wear analysis is exploratory, seeking to understand

Tab. 5.3.: Domain features extracted from segmented tool wear images.

Feature Description

VBMax Maximal height of the flank wear
VB Average height of the flank wear
VB length Length of the flank wear
VB area Size of the ROI of the flank wear
Homogeneity Dispersion in the distribution of flank wear height
Number of chippings Number of chippings
Chipping area Size of the ROI of the chippings
BUE area Size of the ROI of the BUEs

tool wear mechanisms. We therefore draw mainly from the knowledge base of
exploratory data mining. In general, the development of the graphical user interface
was guided by principles of visual data mining (Keim, 2002) (DF3). Visual data
mining aims to facilitate human machine collaboration in the data exploration
process (Keim, 2002).
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The first and second DF were developed in Python and are the input for the DSS.
The data mining techniques were prototyped in Tableau. The prototype allowed us
to engage in further discussions with the experts. We called the resulting artifact
the automatic tool wear analyzer (ATWA). ATWA supports the analysis of tool wear
experiments as well as the subsequent decision-making. In the experiments, the
domain experts vary parameters of the machining process and measure target values
like the flank wear.
The data mining techniques were implemented in four views — the aggregated,
detailed, comparison, and exploration view. Their design was guided by the infor-
mation seeking mantra: Overview first, zoom and filter, and then details-on-demand
(Shneiderman, 1996). Each view needs relevant metadata (DF4) to enable filtering
and facilitating the analysis of the tool wear mechanisms. Together with the experts,
necessary metadata was defined.
In the following part, we describe each view and the corresponding DF in detail:
To enable the overview, the aggregated view summarizes the image collection of
a selected tool wear experiment. For summarizing, we apply multiple methods
from the descriptive statistics knowledge base (DF5). We use histograms, boxplots,
and summary statistics such as the mean and the variance. Additionally, we imple-
ment statistics from the domain, in particular the Cpk value. The Cpk value has its
origins in the manufacturing industry and measures whether a process is capable
of reproducing items within specification limits (Pearn & Lin, 2004). Inverted,
the Cpk value can also be used to calculate the process capability of tools used to
produce the items, as shown for example by Nabil and Mabrouk (2006). To add
quasi-suggestive guidance, we use knowledge from the existing body of tool wear
analysis. As explained in Section 5.4.3, the common criteria for tool life evaluation
is the VBMax. The ISO standard defines a VBMax of 0.3 millimetres as end of life
criterion (ISO - International Organization for Standardization, 1991). This criterion
is implemented as default value for an upper limit which is graphically highlighted
in the histogram and boxplot.
Additionally, to enable a visual exploration of the image collection, we propose using
heatmaps (DF6). The heatmap is the aggregation of all selected segmentation maps.
This means that the numerical array representation of the segmentation maps is sum-
marized. The heatmap allows users to visually explore the tool wear characteristics.
Figure 5.9 on page 90 shows the approach for the tool wear characteristic chipping
for 95 images. Blue values imply low occurrence of the characteristics in that area,
and red values point to high occurrence. As the image shows, mainly chippings in
the left side of the cutting edge are occurring, pointing out the mechanism of chip
breaking. These two DFs, descriptive statistics (DF5) and heatmaps (DF6), allow
the user to get a fast overview.
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Fig. 5.9.: Heatmap for chippings.

The second view is the detailed view that enables the analysis on an image level.
The view provides access to the original images and depicts the segmentation maps.
An additional feature is the clustering of the flank wear pixels (DF7). To guide the
experts, we color small groups red to draw the attention of the experts to regions in
the image that may have been ignored otherwise.
A major task in tool wear analysis is the comparison of the performance of tools,
therefore the third view enables statistical comparison of two machining experiments
(DF8). Quasi-suggestive guidance was implemented by utilizing symbolic guidance
in the form of traffic lights.
The last view, the exploration view, incorporates a correlation matrix (DF9) where
the user can interactively explore correlations of image mining features and corre-
sponding metadata. By selecting two features, the correlation matrix changes into a
scatterplot visualizing all data points and a trend line. The prototype can be viewed
at https://youtu.be/1UdqHV35lkc.

5.6.3 Evaluation and Discussion

To evaluate the prototype, we use EFGs (Tremblay et al., 2010a). The goal is to
discuss the usefulness of the proposed DFs and generate feedback for the refinement
of the artifact. To select the participants, we used theoretical sampling (Coyne,
1997) to control the homogeneity of the groups and increase free-flowing discussion
(Tremblay et al., 2010b). Seven interviewees and two researchers participated in
two sessions. We conducted two focus groups, one with a focus on the application
engineer perspective and one with a focus on the developer perspective. We chose a
small sample size because we knew from the interview phase that the participants
are experts in their area and have much to contribute. During the session, we
showed the participants the prototype and led them through the different options
by using a click-through approach. The focus groups were recorded and afterwards
transcribed using MaxQDA. Following the data analysis approach from Tremblay
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et al. (2010a), we used template coding (King, 2004). Our template included the
following codes: each DF, new requirements, usability requirements as well as
evidence and counterevidence of usefulness. Template analysis is especially useful
for hierarchical coding (King, 2004, p. 258), allowing us to label each DF as evi-
dence/counterevidence of usefulness or requirement. To ensure intercoder reliability,
the transcripts were coded by two researchers and deviations were discussed.
Finally, we summarized the feedback, visualized in Table 5.4. The overall feedback
was very positive. We can conclude that IM-DSSs are desired by the experts and
have potential for tool wear analysis. Additionally, we could generate feedback for
the artifact refinement.

Tab. 5.4.: Evidence and counterevidence of usefulness gathered from exploratory focus
groups.

Design feature Evidence of usefulness Counterevidence of use-
fulness

DF1: Segmentation map Supports inexperienced
users

None

DF2: Domain features Reduces variance in fea-
ture measurement

None

DF3: Visual data mining Interactivity is perceived
as useful

None

DF4: Metadata Necessary to interpret
the image data

None

DF5: Descriptive
statistics

ATWA facilitates statis-
tical grounding, this is
lacking in current tool
wear analysis

None

DF6: Heatmap The heatmap is per-
ceived as useful, espe-
cially for generating hy-
potheses

Blurring due to rota-
tional or zooming errors

DF7: Unsupervised
clustering

Helps to notice irregular-
ities of the tool wear

None

DF8: Statistical tests Perceived as useful for
customer discussions

Redundancy with tests
for profitability

DF9: Correlation matrix Enables assessment of
own hypotheses

Requires huge data
sources; comparison of
experiments is difficult
due to varying metadata
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5.7 Third Design Cycle: Effectiveness, Efficiency, and
Usefulness of Proposed Image-Mining-Based DSS

In the third design cycle, we used the feedback from the second design cycle’s EE to
refine the artifact. Finally, we evaluated our design knowledge with the help of the
final artifact in a summative way, conducting four EEs.

5.7.1 Suggestion and Development

In the following part, we discuss the feedback from DC2 and the implications. We
clustered the implications in four categories: usability requirements (requirements
of the end users regarding usability of the artifact), exclusions (elements that were
excluded from the final artifact), refinements (changes of DFs), and new DFs. In
terms of usability, the experts expressed the need for explanations because they
were unfamiliar with statistical techniques. We implemented these explanations in
the artifact as tool tips, meaning that an explanation is shown when the mouse is
positioned over certain elements of the web application. While most descriptive
statistics (DF5) were easy to understand for the end users, some were unfamiliar
and led to confusion, for example the boxplot. We therefore excluded these elements
from the artifact. We also excluded DF9 (Correlation matrix) for this iteration of the
artifact. Even though it is perceived as useful and is a necessary step for large-scale
exploration, it needs a magnitude of data which is currently not available. Referring
to the refinements, the experts articulated the need for additional descriptive statis-
tics (DF4). One expert explained the current practical approach for determining
a limit value of tool wear in machining processes: “[...] then there are 10 inserts
and then the best and the worst are deleted. And the worst of the remaining eight
sets the limit.” In other words, the experts were interested in quantile information.
We developed a more rigorous approach to calculate these and implemented an
interactive-value-at-risk-based approach (Pflug, 2000).
Additionally, we derived three new DFs. First, a major theme of the EFGs was
the dispersion in machining processes. To make accurate decisions from tool wear
experiments, the dispersion must be taken into account. Therefore, a sufficient
sample size needs to be chosen before conducting a tool wear experiment. To add
suggestive guidance we added a sample size calculation function (DF10).
Additionally, because the experts emphasized the value of the original images, we
implemented image retrieval (DF11). In particular, we implemented shape-based
image retrieval (Burl et al., 1999). For example, the domain experts can filter for all
images having two chippings or search for outliers with the maximum number of
chippings of the dataset.
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Lastly, we automatize the service process holistically (DF12). Based on the ex-
ploratory study of Section 5.3, we first analyzed and then generalized the process.
For generalization, we searched for key elements in each expert’s process description.
Recurring key elements were then interpreted as part of the generalized process.
Afterwards, we conceptualized an adapted process, including automation potentials.
Figure 5.10 on page 94 depicts the adapted process. It starts with an external cus-
tomer order (0). Afterwards, the customer collects a predefined number of inserts
(1). These inserts are shipped to the analyzing center and in parallel metadata of
the process is collected (2). Subsequently, the inserts are cleaned (3) and recorded
(4). Cleaning and recording need to be done in an automatized way to address
DR6 (Scaling). Currently we are working on automizing this step with a robot.
Afterwards, a batch job is triggered that segments the images (5) and calculates
features (6). These features are the basis for the DSS. In step (7), the domain experts
use the DSS to find important features and build recommendations for the customer.
These recommendations are implemented (8) and afterwards evaluated with respect
to optimization criteria (9).
Figure 5.11 on page 95 shows the final artifact’s graphical user interface. A video of
the artifact can be found at https://youtu.be/OdZZBRXchyE.

5.7.2 Evaluation and Discussion

To evaluate the artifact in a summative way, we conducted four EEs. As Gregor and
Jones (2007) recommended, we evaluate the design using testable propositions:

Proposition 5.7.1. The transformation of image data into information is more effective
using IM-DSSs than manual information extraction.

Proposition 5.7.2. The transformation of image data into information is more efficient
using IM-DSSs than manual information extraction.

Proposition 5.7.3. Domain experts perceive the application of IM-DSSs as useful.

Testing Proposition 5.7.1 To measure the effectiveness of the feature measurement,
we chose a key feature in machining, the height of the flank wear (VBMax), to com-
pare the human and ATWA’s error rate. Lutz et al. (2019) use the same approach to
evaluate the effectiveness of a tool wear monitoring system. We define the error rate
as the mean absolute error (MAE). The manual measurements were conducted by a
domain expert familiar with microscopy and tool wear analysis. The ground truth
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Fig. 5.10.: Data flow and architecture of ATWA.

was based on the created labels for Section 5.5. Conducting ten measurements led to
a human MAE of 0.025 mm with a standard deviation of 0.021 mm and ATWA’s MAE
of 0.049 mm with a standard deviation of 0.026 mm. The MAE shows that there is a
small difference between human and ATWA’s feature measurement. Even though
we could not verify Proposition 5.7.1, we believe that, as explained in Section 5.5,
additional data should further improve the automatic semantic segmentation and
increase the effectiveness of the feature measurement. Discussions with domain
experts have shown that they already perceive our current results as sufficiently
effective.

Testing Proposition 5.7.2 In the second EE, we measured the efficiency of ATWA.
We defined efficiency in tool wear analysis as the savings in human working time.
Human work in tool wear analysis is mainly performed during image recording
and tool wear measurement. By observing and tracking an expert in tool wear
analysis, we found that the recording step takes on average 24.4 seconds and the
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Fig. 5.11.: Interface of ATWA (top left: aggregated view; top right: detailed view; bottom
left: comparison view; bottom right: admin view).

measurement step on average 28.2 seconds, leading to a total of 52.6 seconds per
image. Under the assumption that the recording is automated as well, the saving for
a sample size of 100 would be more than one hour of human working time for a
single tool wear experiment. We conclude that ATWA enables significant efficiency
enhancements.

Testing Proposition 5.7.3 In the third EE, we conducted two CFGs, with 12 experts
and two researchers participating. Similar to the second DC, the focus groups
were audio-recorded and transcribed, and the second researcher took observational
notes. The transcripts and field notes were combined and afterwards coded with
template analysis by two researchers independently. The results were discussed
and merged afterwards. Table 5.5 on page 96 visualizes the results of the CFGs.
In summary, the results show more evidence than counterevidence of usefulness,
pointing towards ATWA being a useful artifact. Furthermore, we conducted a survey
based on questions of the well-known TAM (Venkatesh & Davis, 2000). This survey
was handed out after each experiment and after each focus group. The items were
chosen based on literature (Venkatesh & Bala, 2008; Venkatesh et al., 2003). Each
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Tab. 5.5.: Evidence and counterevidence of usefulness gathered from confirmatory focus
groups.

Design feature Evidence of usefulness Counterevidence of use-
fulness

DF1: Segmentation
map

Supports inexperienced
users and acts as a con-
trol function

None

DF2: Domain features Measurement of new
features like areas

None

DF3: Visual data
mining

Interactivity is perceived
as useful

None

DF4: Metadata Perceived as the most
critical element in tool
wear analysis.

None

DF5: Descriptive
statistics

Enables statistics for the
customer

Raw data needs to be
well-prepared to enable
useful data mining

DF6: Heatmap Provides an overview None
DF7: Unsupervised
clustering

Inspires to find new
wear patterns

None

DF8: Statistical tests Increases the validity of
image collection com-
parisons.

Difficult to compare dif-
ferent geometrics; diffi-
cult to get the necessary
number of images

DF9: Correlation
matrix

Excluded

DF10: Sample size Provides guidance None
DF11: Image retrieval Good to detect outliers None
DF12: Standardized
recording, automated
preprocessing, and
segmentation

Relief of expenses for
the customer

None

item was measured on a 5-point likert scale. We calculated the mean and standard
deviation (Std.) of each item. The results are shown in Table 5.6 on page 97. A total
of 17 experts completed the survey. Overall, with a mean of 4.28, the participants
perceived the tool as very useful for tool wear analysis.
The evaluation shows that the instantiated design knowledge is sufficiently effective,

efficient, and perceived as useful by domain experts.
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Tab. 5.6.: Results of the survey regarding the perceived usefulness, automatic tool wear
analyzer (ATWA).

Construct Mean Question Mean per
item

Std.

Perceived usefulness 4.28 Using ATWA would improve
tool wear analysis.

4.41 0.8

Using ATWA in my job would
increase the productivity of
tool wear analysis.

4.18 0.73

Using ATWA would enhance
my effectiveness in tool wear
analysis.

4.06 0.83

I find ATWA to be useful in tool
wear analysis.

4.47 0.62

5.8 Discussion

The first two EEs (effectiveness and efficiency) illustrate the automation potential
of tool wear segmentation and characterization and address the issue of DR6 (Re-
producibility) and DR4 (Scalability). Utilizing DL for image processing addresses
the cost-effectiveness (DR7) of the system (O’Mahony et al., 2019). By providing
statistical tests, we address DR3 (Comparison). The recording’s standardization
addresses DR2 (Image quality) and easily accessible interfaces for metadata address
DR1 (Context). Implemented descriptive statistics provide information about the
dispersion of the image collection (DR7). Lastly, techniques from the image mining
knowledge base target DR8 (Exploration). As stated in Section 5.5, Figure 5.6 on
page 84 shows the matching of DR, DP, and DF.
The CFGs (EE3) and the survey (EE4) indicate the general usefulness of our de-
veloped nascent design knowledge. We use the core components of the IS design
theory framework from Gregor and Jones (2007) to structure and present our overall
developed nascent design knowledge for IM-DSSs. Table 5.7 on page 98 summarizes
the design knowledge.
We build on top of existing work of image mining and DSSs and synthesize both into

a novel design class, IM-DSSs. We see IM-DSSs as an extension of the knowledge
base of intelligent decision support systems, i.e., systems that involve the application
of artificial intelligence (AI) (Arnott & Pervan, 2012). Due to the complexity of
image data, novel processing and aggregation techniques need to be developed. Our
design requirements and design principles can guide researchers and practitioners
to develop efficient and useful IM-DSSs.
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Tab. 5.7.: Nascent design knowledge for IM-DSS.

Component Description

Purpose and scope Prescriptive knowledge for developing image-
mining-based DSSs to improve information and
knowledge extraction from collections of images.

Key constructs We defined three levels of output-specific con-
structs (Offermann et al., 2010): The segmen-
tation, feature measurement and decision qual-
ity. Technical metrics measure the segmentation
quality. Feature measurement is evaluated do-
main specifically. Lastly, the decision quality is
measured by the process outcome quality.

Principles of form and function Drawing from the body of knowledge, we de-
rived five tentative design principles and eval-
uated the design in four evaluation episodes
through twelve design features.

Justificatory knowledge We conceptualize our design principles based on
the kernel theories of Hsu et al. (2002), LeCun
et al. (2015), and M. S. Silver (1991).

Testable propositions We formulated and tested three testable proposi-
tions: Proposition 5.7.1, Proposition 5.7.2, and
Proposition 5.7.3.

Artifact mutability We discuss the mutability of image-mining-based
DSSs due to advances in image processing tech-
niques, as well as the instantiation of the design.

Principles of implementation We derived design features as a concrete instan-
tiation of the design principles.

Expository instantiation We built an artifact, the automatic tool wear
analyzer (ATWA), to support the experts in con-
ducting tool wear experiments and evaluating
these.

Beyond our contribution of nascent design knowledge for IM-DSSs, we developed
an artifact to facilitate human-machine collaboration and evaluated it in practice.
The goal of human-machine collaboration is to leverage the advances of AI and
human intelligence to enable synergy effects, for example free employees’ time for
higher-level tasks (Wilson & Daugherty, 2018).
The AI part of our artifact is the semantic segmentation of the images through
DL, which enables an efficient and effective transformation of image data into
information. The DSS interface provides access for human intelligence and enables
human-AI synergy. With our work, we could show the usefulness of an artifact using
human-machine collaboration.
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5.9 Conclusion

The purpose of this study is to develop design knowledge for image-mining-based
decision support systems. We initiated the design science research project by con-
ducting an exploratory study (relevance cycle). Subsequently, we analyzed the
existing body of knowledge of image mining, deep learning, and decision support
system to inform our research (rigor cycle). We then conducted a first design cycle
to derive design knowledge for image processing. In the second design cycle, we
suggested initial design principles for image-mining-based decision support systems.
These were mapped into specific design features, which were implemented in a
prototype and qualitatively evaluated using exploratory focus groups. The focus
groups indicated a general desirability of the artifact and consequently of the design
knowledge. In the third design cycle, we used the results of the second design cycle
as input and refined our design knowledge and the artifact. Following that, we
evaluated our design knowledge with the help of the developed artifact and con-
ducted four summative evaluation episodes, which indicated sufficient effectiveness,
efficiency, and usefulness of our nascent design knowledge.
Our research contributes to theory and practice. Regarding theoretical contributions,
we shed first light on a problem class which we defined as image-mining-based deci-
sion support systems. We developed preliminary design requirements and design
principles that could guide the future development of such systems.
Regarding practical contributions, we translated the design principles in specific
design features and instantiated them in an artifact, the automatic tool wear analyzer.
This instantiation solves a real-world problem at our case company by removing
manual work and supporting the knowledge generation process. Our evaluation
episodes confirm the usefulness of the artifact for the domain experts.
Besides the aforementioned contributions, our research also has limitations. First,
regarding the evaluation, the technology acceptance model aims to measure po-
tential users’ intended usage behavior. A further study should assess the artifact’s
long-term effects. We therefore want to conduct a field test and already equipped
the artifact with a logging functionality to access and analyze usage data. Second,
we developed and evaluated the artifact at a single company. Future studies should
apply the design knowledge in other domains and evaluate it.
We see potential in several other domains, such as medicine, sports, or biology. The
domains should use the advances in image processing to extract previously inacces-
sible knowledge from large image collections to create competitive advantages. We
invite researchers and practitioners to instantiate, evaluate, and extend the proposed
nascent design knowledge for image-mining-based decision support systems.
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5.10 Appendix for Chapter 5: Implementation Details

As deep learning has developed rapidly in recent years, we have made some changes
to the original model, addressing overfitting and performance issues. In particular,
we added batch normalization (Ioffe & Szegedy, 2015) and L2-regularization (Cortes
et al., 2012). We implemented the U-Net for semantic segmentation in Keras (Chollet
et al., 2015). We trained the model for 200 epochs, using an Adam optimizer and a
learning rate of 0.00001.
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Design Knowledge for
Deep-Learning-Enabled
Image-Based Decision
Support Systems — Evidence
From Power Line
Maintenance
Decision-Making1

6

6.1 Introduction

With modern-day societies increasingly relying on electrical power, the importance
of continuous electricity supply cannot be overlooked. Continuous power supply has
two central building blocks — the electricity generation as well as its transmission
and distribution to the consumer. From the perspective of transmission or distribu-
tion system operators, the maintenance program of the power line infrastructure
is crucial in avoiding unexpected disruptions. These system operators have typi-
cally adopted condition-based maintenance programs to minimize the probability of
equipment breakdowns (Jalil et al., 2019; Pagnano et al., 2013). Condition-based
maintenance is considered as a three-step process of data acquisition, data process-
ing, and maintenance decision-making (Jardine et al., 2006), with the last step
integrally including maintenance order planning (Gopalakrishnan et al., 2015).
Assessing the condition of the components in an electricity network includes in-
specting towers or poles with their connected components, conducting power lines,

1This chapter comprises an article that was published as: Landwehr, J., Kühl, N., Walk, J. and
Gnädig, M. (2022). Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support
Systems. Business & Information Systems Engineering. https://link.springer.com/article/10.1007/
s12599-022-00745-z. Note: The abstract has been removed. Minor edits have been made and tables
and figures were reformatted, and newly referenced to fit the structure of the thesis. Chapter, section
and research question numbering and respective cross-references were modified. Formatting and
reference style was adapted and references were integrated into the overall references section of this
thesis.
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and the surrounding vegetation of the two previous elements, as it can cause short
circuits. Operators routinely examine these aspects regarding faults. Based on the
operator’s composed inspection reports, maintenance engineers need to compile
situation-dependent, well-defined, complete, and prioritized maintenance orders.
This requires the consideration of several other factors, such as infrastructure topol-
ogy, available workforce and skill sets, scheduled infrastructure revision projects,
and bundling of maintenance orders. Fast and accurate inspection as well as com-
plete and exhaustive data and information dissemination are crucial for efficient
maintenance decision-making and can reduce the risk of power outages due to
component failures, increasing the reliability of electricity supply.
Traditionally, the inspection is performed through human visual observation by
means of manual ground inspection, helicopter-based patrolling, and tower climb-
ing. These inspection methods are costly, time consuming, partly hazardous, do not
comprehensively capture data, and are hardly scalable. Recent technical advances
in the fields of unmanned aerial vehicles and image processing or computer vision2

have spurred the development of automated power line inspection. Specifically,
deep learning has proven to boost the performance of image processing applications
(LeCun et al., 2015) — converging towards human level performance or even sur-
passing humans (He et al., 2015). Researchers are therefore increasingly focusing on
the automatic vision-based detection of components and the immediate diagnosis of
faults in the inspection of power lines (X. Liu et al., 2020) leaving only the eventual
maintenance decision-making for human handling.
Previous research on power line maintenance has been scattered, focusing on the
technical building blocks. Today, the majority of studies either focus on performing
unmanned aerial vehicle inspection flights autonomously (Hui et al., 2018) (data
acquisition), on task-specific image processing approaches for component detection
and fault diagnosis (Nguyen et al., 2018) (data processing), or on orchestrating the
various technical components (Homma et al., 2017; Huang et al., 2018) (interplay
between data acquisition and processing). So far, little effort has been devoted
to holistic and end-to-end considerations establishing a relationship between the
solely technical problems of automating the data acquisition and processing and the
need for integrating and transferring the acquired data and extracted information
into maintenance decision-making. To this end, we conduct a project to design and
evaluate a suitable decision support system following the design science research
paradigm (Hevner, 2007) and its common research guidelines (March & Smith,
1995; Winter, 2008). We address the ever-increasing need for maintaining the impec-
cable condition of power lines, and consequently the reliability of electricity supply.

2Note that we will use the term image processing and computer vision interchangeably, as there is no
common agreement between the boundaries of the two terms (Gonzalez & Woods, 2018).
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We do so by utilizing available technological possibilities for holistic vision-based
applications to provide decision support in scoping and planning maintenance orders
for maintenance engineers through improved data and information quality. We focus
on addressing this need by answering the following research question (RQ):

Research Question D
How can an automated, efficient, and useful vision-based power line mainte-
nance decision support system be designed?

By answering this question, we tap the still largely unregarded and nascent problem
class of image-based decision support systems, which we believe to be the higher level
abstraction for our specific vision-based power line maintenance decision support
system. In particular, following the dual mission of design science research of de-
veloping usable artifacts for practice and generating theoretical knowledge for the
knowledge base (Gregor & Jones, 2007), we initially explore the challenges and
issues of power line maintenance to derive a number of design requirements for
image-based decision support systems. Subsequently, we conceptualize design prin-
ciples based on justificatory knowledge from image processing and deep learning.
Based on these design principles, we obtain a number of design features as our
application domain specific design for the image-based decision support systems for
vision-based maintenance of power line components. We instantiate these design
features into a concrete artifact that allows us to rigorously evaluate the proposed
design knowledge in practice.
The remainder of this work is structured as follows: Section 6.2 summarizes the exist-
ing relevant literature. Next, in Section 6.3, we introduce the research methodology.
In Section 6.4, we conceptualize our design knowledge for image-based decision
support systems, before we introduce the developed artifact as well as its various
evaluations in Section 6.5. Finally, in Section 6.6, we discuss our research findings,
reflect on the limitations of our work, and provide an outlook for future studies.

6.2 Related Work

To determine the potential of extensively captured images of power line components
(PLCs), we review related work and the literature background in several fields.
First, we briefly introduce foundations regarding deep learning (DL) (Section 6.2.1).
In Section 6.2.2 we present how computer vision (CV) is used for infrastructure
inspection in different application domains. Subsequently, in Section 6.2.3 we
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present related work regarding automated vision-based power line inspection using
UAV-captured images. Afterwards, in Section 6.2.4 we examine image-based decision
support systems (IB-DSSs) as a way to harness images in efficient decision-making.
We conclude this section by synthesizing the presented literature and depicting our
research gap in Section 6.2.5.

6.2.1 Deep Learning

Within the past decade, machine learning has shown significant results solving
complex problems — both in theory as well as in application within industry (Bryn-
jolfsson & Mcafee, 2017). Especially in the field of DL3, a family of algorithms solely
based on artificial neural networks with multiple hidden layers, the developments
grew rapidly (Bharati & Pramanik, 2020).
DL overcomes a general limitation of machine learning to handcraft appropriate
features in order to find and learn patterns in input data. The advanced architecture
gives DL the capability to automate feature learning and consequently reduce human
effort (Janiesch et al., 2021). Hence, DL is able to better deal with large-scale, noisy,
and unstructured data.
The exact amount and size of layers is a design choice such that the ideal archi-
tecture for a given problem and its data must be found through experimentation
(Goodfellow et al., 2016). Each layer is subject to learning and computes non-linear
input-output mappings which enables a DL model to represent extremely intricate
functions of its input (LeCun et al., 2015).
Due to these capabilities, DL has brought breakthroughs in processing images, videos
and audio like speech (LeCun et al., 2015). In particular, convolutional neural net-
works (CNNs) a class of DL algorithms which excel at learning hierarchical features
(Janiesch et al., 2021), are especially suited for the application to feature-rich data
— like images. Therefore, DL is a promising candidate for applications within the
field of CV.

3For a general introduction into machine learning and deep learning, we refer the interested reader to
Janiesch et al. (2021).
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6.2.2 Computer-Vision-Based Infrastructure Inspection

CV aims to equip computers with visual perception skills similar to the human ones
(Szeliski, 2010). CV models based on DL have led to a significant increase in perfor-
mance — DL models have even been proven to surpass human-level performance
for specific applications (He et al., 2015). Typically, four different CV tasks are
distinguished on static images (Griebel, Dürr, et al., 2019): in image classification
the whole image is assigned a class label. Object detection additionally outputs an
approximate location of the object of interest. Semantic segmentation produces even
more fine-granular information, as each pixel is assigned a class label. In the specific
case of instance segmentation, neighboring objects of the same class are distinguished
additionally.
In the past years, several specific architectures have been developed to allow for
these different CV tasks. While the two main optimization criteria are the accuracy
of the prediction and the time inferred to obtain the solution ever more tailored
solutions building on CNNs are being developed recently. Architectures such as
VGG16 (Simonyan & Zisserman, 2014) and ResNet (He et al., 2016) for image
classification and Faster R-CNN (S. Ren et al., 2015) and SSD (W. Liu et al., 2016)
for object detection have proven to provide good accuracy at reasonable inference
time.
CV is utilized for infrastructure inspection in many application domains. The typical
challenges addressed with CV in this area are cases where large amounts of physical
objects are to be inspected and they are geographically remote and / or dispersed.
Selected research articles are presented in the following and summarized in Table 6.1
on page 109.
A major application area is road surface inspection and maintenance. Roads in bad
condition can ultimately result in more accidents and higher costs (Baladi et al.,
2017; Gleave et al., 2014). Thus, CV is utilized to automatically assess road surface
condition and derive necessary maintenance actions. Over the last years this became
possible without expensive, specialized hardware (compare e.g. Quintana et al.
(2016)). Chatterjee et al. (2018) show how machine learning-based CV can be used
to detect road surface cracks and develop a “vision-based DSS for crack detection”.
They offer first insights into a nascent design theory for the application case of road
crack detection on the basis of images.
Not only roads, but also railways need to be inspected periodically to ensure safe
transports. Wei et al. (2019) employ a Faster R-CNN to detect defects of railway track
fasteners. Gibert et al. (2017) propose a CNN-based multitask learning approach
that detects railway track fasteners and crossties and classifies the state of these
components.
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Wind turbine blades are another physical object of interest for CV-based infrastruc-
ture inspection. Akhloufi and Benmesbah (2014) present a CV approach to identify
ice accreation on wind turbine blades. Ice accreation can require a maintenance
action since it can cause malfunction and premature wear and is a safety hazard
for nearby people and infrastructure like roads and powerlines. Shihavuddin et al.
(2019) show how faults like leading edge erosion can be detected with a Faster
R-CNN on wind turbine blades.

6.2.3 Automated UAV Vision-Based Approaches for Power Line
Inspection

In this work, we are particularly interested in CV solutions for power line inspection
relying on UAV images. From a component-based view, power line inspection can
be divided into four major categories: towers or poles, insulators, conductors, and
fittings (X. Liu et al., 2020). Each of these categories contains several subcompo-
nents (Nguyen et al., 2018) that typically vary in size, kind, and material according
to the voltage level. For instance, some part of a distribution network with low
voltage might have wooden poles, small standing insulators, and a single, relatively
thin conductor. On the other hand, transmission networks usually have lattice steel
towers, large suspending insulators, and thicker conductors. Several studies have
been published that utilize various potential platforms (e.g. helicopter, satellite, and
UAV) to collect different data types (e.g. optical images, laser scanner data, thermal
images, and synthetic aperture radar images) and analyzed these through different
processing techniques (Matikainen et al., 2016). The vision-based approach — with
image data from the visible spectrum captured by UAVs and automatically analyzed
through image processing capabilities — has gained the most attention and traction
in the power line inspection research domain (X. Liu et al., 2020).
With a few exceptions, automated vision-based power line inspection based on
UAV-captured images requires two inherently related tasks (X. Liu et al., 2020): com-
ponent detection and localization as well as fault diagnosis. The exceptions relate
to objects such as bird nests, whose detection already represents a fault. Previous
research applying image processing for the detection and fault diagnosis of PLCs is
numerous (Mirallès et al., 2014). X. Liu et al. (2020) identify several characteristics
and shortcomings of previous studies using UAV-captured images in their exhaustive
literature review. Most studies in the field of vision-based inspection of power lines
focus on the insulator and its faults (X. Liu et al., 2020) — mainly missing caps (e.g.
Sampedro Pérez et al. (2019), Y. Yang et al. (2019), Zhai et al. (2018)) — while
little attention has been paid to other components. The safety pin that prevents
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other components from loosening and falling is the smallest object in the power line
and has, despite its importance, received little attention and has only been regarded
in fault diagnosis but not in the detection step. Finally, both X. Liu et al. (2020)
and Nguyen et al. (2018) conclude that the mediocre performance of task-specific
approaches presented in the vast majority of studies has been superseded by DL
approaches that have improved the performance of component detection as well as
fault diagnosis.
To move towards the operationalization of automated vision-based inspection, we
require approaches capable of detecting a wide variety of components and diag-
nosing their faults in order to integrate them into a valuable system. Although
“the component detection is a relatively mature area” (X. Liu et al., 2020)[p.10],
we found that only a few articles shed light on detecting several components in a
single approach or pipeline. Besides the identified challenges, we therefore review
all available DL-based approaches that consider more than one component in the
detection step.
The first steps in this field were done by Zhu et al. (2018), who investigate the
cascading of two Faster R-CNN architectures for high-voltage PLCs. While towers,
spacers, vibration dampers, and insulators are directly detected from the input image
on the first stage, the pixel coordinates of the tower are used to crop the input image
and consequently feed it into the second stage to detect small objects — in their
case bird nests and tower plates. Their results show that the cascaded architecture
is able to detect small objects at better performance. Nguyen et al. (2019) propose
a similar approach for low-voltage PLCs (pole, cross-arm, insulator, or top cap)
with a large number of various subcomponents totaling 54 classes. The authors
detect poles in the first stage, crop the respective image and detect other, smaller
components in the second stage. In a third stage, the recropped components are fed
into image classifiers to perform a fault diagnosis. This work shows the feasibility
of designing a cascaded multistage detection and classification pipeline utilizing
spatial relationships. However, it does so only for larger components in terms of
pixel size. H. Liang et al. (2020) take a different approach. They do not follow the
prevalent approach of separating detection and fault diagnosis, but skip the general
detection of PLCs and directly detect only components that exhibit faults. While
including a total number of ten fault types, the work naturally states the problem of
the detection of intact components as defective components. It also does not try to
achieve the detection or fault diagnosis of overly small components.
The aforementioned approaches can strongly facilitate inspection and thus the pri-
oritization of subsequent maintenance operations. Additionally, the data that is
acquired in an automatic and structured manner can serve as foundation for pre-
dictive maintenance (Selcuk, 2017). By utilizing the data to train detection models
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(as shown later in this work), continuous forecasts about the future occurrence of
defects can be issued. A well-trained and deployed model can, therefore, support
experts in indicating future maintenance needs early and prioritize potential work
orders.

6.2.4 Image-Based Decision Support Systems

The access to increasing volumes of images and the capabilities of DL to process
and extract information from images creates the potential to harness this rich
data and DL methods to facilitate effective decision-making (Chaudhuri & Bose,
2020). Despite their capabilities, DL methods, particularly CNNs, have found limited
adoption in extant research of IS in general (Kraus et al., 2020), and specifically DSS.
Most research performed on image-based decision support focuses on the medical
application domain (Ben-Cohen et al., 2017; Comaniciu et al., 1999). However,
these works use highly specific medical scans rather than images from the visible
spectrum. Some examples of the scarce literature on DL-enabled image-based
decision support in non-medical contexts include vision-based maintenance and
monitoring applications or pattern analysis (Chaudhuri & Bose, 2020; Jamshidi
et al., 2018; Nazerdeylami et al., 2019; M. Ren et al., 2021; Schumann et al., 2019;
Xie et al., 2020).
Despite the efficacy of DL methods for image processing in related decision support
contexts, none of the previous work provides guidance on how to design IB-DSSs.
Specifically, although all these studies aim for improved data and information
availability, close to no insight is provided on how to bridge the gap between the sole
image processing as well as consequent information extraction, and the respective
efficient, high-quality decision-making.
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6.2.5 Synthesis and Research Gap

This work aims to interweave two research domains. It combines the applied
research of image processing in power line maintenance (PLM) with the need for
decision support in vision-based domains in general and in PLM in particular. This
allows us to tap new potential through making previously unattainable data and
information from individual images available.
We address this potential by investigating the environment of automated vision-
based PLC maintenance, focusing on the design of a holistic image-based decision
support solution. We develop design knowledge for IB-DSSs and evaluate it by
instantiating a concrete artifact for PLC maintenance. We extend the reviewed
existing works (cf. Table 6.1 on page 109) by managing to detect PLCs of extreme
size difference (insulators and safety pins), which we believe is a crucial prerequisite
for moving towards decision support in this domain.

6.3 Research Methodology

The research at hand develops design knowledge for IB-DSSs which supports the
maintenance decision-making and planning of maintenance engineers (MEs) for
power lines. Since design science research (DSR) has proven itself to be not only a
suitable but also an important paradigm to develop IS in general (Gregor & Hevner,
2013) and DSS in particular (Arnott & Pervan, 2012), we follow its steps to develop
and evaluate our artifact. At its core, DSR is a problem solving paradigm that in-
volves two primary and distinct activities to design solutions to real-world problems:
(1) the development of innovative artifacts in a series of design activities based on a
deep understanding of the problem, justificatory knowledge, and the capabilities
of the researcher and (2) the evaluation of the novel artifact to assess its ability
and utility in solving the identified problem (Hevner et al., 2004). Following this
“build-and-evaluate loop” (Hevner et al., 2004), we iteratively develop an artifact to
extend the knowledge base regarding IB-DSSs.
Besides this loop — more precisely termed design cycle — Hevner (2007) describes
the existence of two additional cycles: relevance and rigor. The three cycles are
inherently related and part of any DSR project. The relevance cycle connects the
environment, application domain, or case company of the research project to the
design science activities by, for instance, incorporating input from expert practi-
tioners. It does not only provide the requirements, problems, or challenges for the
research, but also defines acceptance criteria (Hevner & Chatterjee, 2010). The rigor
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cycle relates the design science activities to the existing knowledge base. It provides
knowledge from scientific theories, engineering methods, experience, and expertise
to the research project. The often repeatedly performed design cycle is the core of
any DSR project and naturally builds on the insights from the two previous cycles.
Specifically, during a design cycle the research iterates between construction and
evaluation of an evolving artifact (Hevner & Chatterjee, 2010) to eventually deploy
the artifact in the environment as well as distill insights and output the research’s
design knowledge contributions into the knowledge base.
In the general view of our research displayed in Figure 6.1 we start with study-

Conceptualization (Section 6.4.3)

Environment 
(Relevance)

Knowledge base
(Rigor)

Design cycle I (Section 6.5.2)
DSS model component (MC)

Design cycle II (Section 6.5.3)
DSS user interface component (UIC)

(Artificial) Evaluation episode I.I

(Naturalistic) Evaluation episode II

(Naturalistic) Evaluation episode I.II

R
el

ev
an

ce
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yc
le

R
igor cycle

Application case 
(Section 6.4.1)

Challenges and 
problems 

(Section 6.4.2)

Methodologies and 
kernel theories 
(Section 6.2)

Image-based DSS for power line maintenance

Design

Fig. 6.1.: Overview of the research cycles and activities in the conducted study (based on
Hevner, 2007).

ing the environment in which the research is embedded. We consequently state
our application case (Section 6.4.1) and review related challenges and problems
(Section 6.4.2). Joining these insights with knowledge from kernel theories we
conceptualize principles and requirements for the problem class of IB-DSSs. We
subsequently derive a concrete PLM artifact and, based on Turban et al.’s (2010)
high-level notion of a DSS, first focus on the model component (MC) of our DSS
artifact in the first design cycle (Section 6.5.2). Afterwards we move to the user
interface component (UIC) in the second design cycle (Section 6.5.3). To orchestrate
the evaluation of our artifact, we apply and follow the overarching framework for
evaluation in design science (Venable et al., 2016) to rigorously demonstrate the
utility and efficiency of the artifact and its underlying design knowledge. Figure 6.1
provides an overview of the performed evaluation episodes (EEs) in these design
cycles. As it is our goal to indicate technical feasibility as well as utility of IB-
DSSs enabled through DL, we start with a technical evaluation and then move to a
naturalistic context within the application setting.
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6.4 Application Case and Conceptualization

Our DSS artifact, built on images from the visible spectrum, intends to support MEs
of power line infrastructure in their decision-making. More precisely, our system
supports the planning and scoping of individual maintenance orders for the repair
and replacement of components through improved data and information quality.
Because the artifact is to intervene in an organizational context, it is considered
“socio-technical” (Gregor & Hevner, 2013). To manage the complexity of the artifact
construction in terms of size as well as social and technical components, Gregor
and Hevner (2013) suggest the explicit extraction of design principles (DPs). We
therefore conceptualize and suggest a number of tentative DPs for the design of
artifacts of the problem class of IB-DSSs by first investigating challenges in power
line maintenance (PLM). These are recast into a prescriptive mode with appropriate
abstraction yielding preliminary design requirements (DRs), which then serve as a
basis for deriving the DPs.

6.4.1 Application Case and Decision Process

As the largest distribution system operator in Baden-Württemberg, Netze BW supplies
around 2.2 million customers and operates a network of almost 100,000 km. The
distribution network, which is largely rural, poses challenges in the inspection of
towers, poles, and overhead line routes. Every year, Netze BW operators routinely
carry out around 7,000 scheduled inspections of high-voltage towers and lines,
which include a visual inspection from the ground or by helicopter. For around
1,400 of these, towers must be climbed physically. Whenever operators identify
an issue or defect on a tower during these inspections they manually create a
report including the location, description, and if possible images. Based on these
largely unstructured inspection reports, MEs need to subsequently compile situation-
dependent, well-defined, complete, and prioritized maintenance orders. Accordingly,
based on reported incidents MEs first scan the report and verify the priority of
the incident. While the priority determines the processing order, for any incident
several maintenance order specific details need to be compiled regardlessly. MEs
will therefore check the topology surrounding an incident location as it determines
which device and equipment can be used. Additionally, the incident and its preferred
solution approach determine whether either internal operators can be dispatched or
contractors are required. Another important aspect especially for incidents of lower
priority is the consideration of forthcoming infrastructure revision projects. These
can typically include the required maintenance order and, thus, avoid additional
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work. Finally, to avoid hazards during the maintenance work the respective circuits
must be free of electrical current which requires routing the current flow to other
power lines. Hence, MEs need to appropriately terminate these so called switches
based on the incident priority and in close consultation with the grid control center
as well as operators or contractors. Since the electrical grid often offers small
margins for additional current flow such switches are often times difficult to set up.
On this occasion MEs need to bundle incidents on the same power line to use such
switches as efficiently as possible.

6.4.2 Challenges in the Power Line Maintenance

To understand PLM from a practitioner as well as a theoretical perspective, we
started our research with a series of expert interviews among the case company’s
employees and a structured literature review (SLR) of domain-specific articles. The
interviewees were chosen based on their work experience and affiliation to different
departments dealing with the various aspects of the PLM process (cf. Table 6.2). This
sampling allowed us to benefit from diverse viewpoints and nuanced perspectives
on the challenges of PLM with today’s manual inspection.
To guarantee a rigorous overview, we conducted the SLR following Webster and

Watson (2002) and Vom Brocke et al. (2009) by querying various databases (cf.
Table 6.3 on page 114). We harnessed a selection of search strings, as displayed
in Table 6.3, to retrieve the initial set of relevant articles. To extract only relevant
articles, we defined three exclusion criteria. If the paper examined or investigated
only one specific solution approach for the automation of PLM, it was excluded. If a
paper focused on constant monitoring of power lines rather than periodic inspection,
it was also excluded. Finally, if on a thorough read of the paper no challenges
regarding PLM were mentioned, the paper was ruled out. These exclusions allowed
us to focus on review and survey contributions for the automation of PLM. The
SLR conducted in January 2020 resulted in a large number of potentially relevant
contributions as depicted in Table 6.3, with 22 papers remaining after the first
exclusion and 18 survey and review papers mentioning challenges in today’s PLM.

Tab. 6.2.: Overview of interview participants to determine challenges in power line mainte-
nance.

ID Role
Experience
[years]

Alpha Senior standardization engineer 10
Beta Operator of high- and medium-voltage power lines 25
Gamma Operations manager of high-voltage power lines 28
Delta Asset manager 12
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Tab. 6.3.: Search strings and respective results for the structured literature review.

Search strings EBSCO WoS IEEE Xplore Scopus
"Automat*" AND "Power line" AND "Inspection" 24 79 86 158
"Power line" AND "Quality control" 4 89 12 141
"Transmission line" AND "Automat*" AND
("Inspection" OR "Monitoring")

21 97 213 370

"Inspection" AND
("Power line" OR "Transmission line")

104 393 547 1301

("Power line" OR "Transmission line" OR
"Overhead lines" OR "Overhead power lines")
AND "Condition monitoring"

18 131 0 271

"Challenges" AND "Power line" AND "Inspection" 2 7 8 24

Statements from both the interview transcripts and scientific articles were then
coded in an open coding process and combined in a qualitative content analysis as
proposed by Mayring (1991) to derive a category system of today’s PLM challenges.
Table 6.4 on page 115 depicts a part of the identified challenges with the respective
subchallenges and their sources. These three challenges (C1-3) appeared to be
specific to our context of infrastructure inspection with its concrete characteristics
being dependent on power line infrastructure and therefore inform the design of our
artifact. Further identified challenges attributed to company and industry specifics
can be found in Section 6.8.1 on page 137 within the Appendix.
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Tab. 6.4.: Challenges in the maintenance of power lines based on expert interviews and a
structured literature review.

ID Challenge Subchallenge Source

C1
Complicating
workplace
characteristics

C1.1—Hazardous work environment

Pagnano et al., 2013;
Nguyen et al., 2018;
Jones, 2005;
D. Li and Wang, 2019;
Seok and Kim, 2016;
Huang et al., 2018;
Toth and Gilpin-Jackson, 2010;
Alpha; Beta

C1.2—Strenuous inspection activities Alpha

C1.3—Requirement for broad expertise

Takaya et al., 2019;
Pernebayeva and James, 2020;
Huang et al., 2018;
Alpha; Beta; Gamma; Delta

C1.4—Impact of subjectivity

Nguyen et al., 2018;
Jones, 2005;
Katrasnik et al., 2010;
Toth and Gilpin-Jackson, 2010;
Homma et al., 2017;
Beta; Delta

C2
Inspectability
challenges

C2.1—Inspection type related scope restrictions
Jones, 2005;
Katrasnik et al., 2010;
Beta; Gamma; Delta

C2.2—Requirement for unscheduled inspections Matikainen et al., 2016

C3
Infrastructure
characteristics

C3.1—Age of power line infrastructure
Aggarwal et al., 2000;
Toussaint et al., 2009;
Alpha

C3.2—Extent of power line infrastructure

Pagnano et al., 2013;
Aggarwal et al., 2000;
Pernebayeva and James, 2020;
Huang et al., 2018;
Homma et al., 2017;
Alpha

C3.3—Topography of infrastructure territory

Prasad and Rao, 2016;
C. Deng et al., 2014;
Aggarwal et al., 2000;
Takaya et al., 2019;
Pernebayeva and James, 2020;
Matikainen et al., 2016;
Seok and Kim, 2016;
Huang et al., 2018;
Toth and Gilpin-Jackson, 2010;
Homma et al., 2017

C3.4—Vast spectrum of inspection aspects

Nguyen et al., 2018;
Prasad and Rao, 2016;
Jones, 2005;
Homma et al., 2017;
Alpha; Gamma
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6.4.3 Design Requirements

Our DSS artifact intends to support MEs of power line infrastructure in their planning
and scoping of individual maintenance orders to repair and replace components.
To accomplish this by systematically addressing the aforementioned uncovered
challenges in PLM with a vision-based application, we cast these challenges into
a prescriptive mode and derive DRs as depicted in Figure 6.2 on page 117. Con-
sequently, we derive five DRs which describe our system objectives and confine to
which objectives our subsequently derived design knowledge applies (Walls et al.,
1992). Because we target developing generalized design knowledge for the problem
class of IB-DSSs, we formulate the DRs on the relevant level of abstraction in the
following.

The infrastructure characteristics (C3.1 - C3.4) pose challenges with regard to
efficient data capturing as, for instance, power lines running across valleys or in
mountainous areas complicate inspection and hinder data acquisition. In addition to
this, the three inspection types used in today’s PLM provide heterogeneous condition
data of varying quality (C2.1). Together, these factors result in the need for an appro-
priate image quality relating to uniformly captured high-resolution image condition
data regardless of infrastructure characteristics and with process consistency.

DR1 – Image quality: The system should uniformly capture condition
image data of sufficient quality.

Image data contains large amounts of unstructured information. However, the
information contained in an image is typically of little use if its observer lacks
contextual information. Context allows for a broader understanding of specific
pieces of information and it places them in a bigger picture by for example providing
temporal or geographical information. Images of the infrastructure and in particular
of components therefore need to be contextualized in an appropriate way. On the
other hand, the infrastructure characteristics (C3.1 - C3.4) pose the requirement for
providing infrastructural context to enhance decision-making.

DR2 – Context: The system should capture and provide context.

Today’s inspection process of power line infrastructure is fully manual and labor-
intensive. Above that, various human-factor-related challenges (C1.1, C1.2, & C1.4)
influence the inspection’s susceptibility to errors. Additionally, characteristics of the
infrastructure, such as topography (C3.2) and extent (C3.3), result in an increased
labor effort for maintenance. To mitigate the limitations of today’s inspection process,
both parts of the process — image acquisition and image processing — should be
infused with automation capabilities.

DR3 – Automation: The system should allow for automatic image acquisi-
tion and provide automated image processing.
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To make adequate maintenance decisions in terms of repair or replacement prioriti-
zation, MEs require consistent condition data. However, just as in any human-based
inspection, the fault diagnosis of power lines is characterized by the personal ex-
perience and expertise (C1.3) of the inspector, making the evaluation or judgment
subjective (C1.4). To objectify the fault diagnosis and making it less subject to the
experiences of a wide variety of inspectors, personal biases need to be eliminated or
harmonized. Consequently, the analysis of the condition data needs to build upon
equal decision parameters, achieving reproducible results. By reproducibility of
results we refer to similar evaluation or fault diagnosis of a unique PLC within a
range of potentially changing environmental conditions (e.g. lighting conditions).

DR4 – Reproducibility: The system should provide image processing in a
reproducible manner.

To draw inferences from the previously captured data and extract crucial information,
proper visualization is required. Consequently, not only the quality but also the
presentation of information regarding faults in the power line infrastructure are
crucial. Specifically, it is important to integrate and transfer the entire collected data
from the data acquisition and the extracted information from the data processing into
the maintenance decision-making to enable the compilation of situation-dependent,
well-defined, complete, and prioritized maintenance orders.

DR5 – Visualization: The system should support the process of decision-
making with the visualization of the extracted information.

6.4.4 Design Principles

In the following, we suggest several design principles (DPs) which prescribe how to
develop the artifact in order to accomplish our predefined preliminary DRs (Chandra
Kruse et al., 2015). The translation process from DRs into tentative DPs is displayed
in Figure 6.2 on page 117. The DPs use the knowledge of several theories in order
to meet the DRs. The main contributions originate from the domains of image
processing, DL, DSS, as well as visual data exploration.
We have identified that the images of the PLCs need to be captured uniformly and
with sufficient quality (DR1). Additionally, the system should capture context (DR2)
of the images for unambiguity regarding their location and time. To address these
design requirements, two considerations have to be made: the type and kind of
data collected and the collection method, which we will refer to as platform. The
primary type of collected data is predefined in our use case to be image data from
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the visual domain as it (1) provides enough information to detect a wide variety
of common faults (Nguyen et al., 2018) — especially on PLCs — and (2) allows
fast comprehension by MEs. On the other hand, the platform responsible for the
data acquisition needs to be able to acquire uniform image data. In particular, the
platform should be able to combine the advantages of today’s inspection methods
of helicopter-based, ground-based, and climbing-based inspection in a way that
each of these methods that are specifically suitable for different components can be
imitated. The platform is consequently able to capture images from above, below,
and the front while maintaining a uniform viewing perspective per component type.
The system should also allow data acquisition to happen in a potentially automated
fashion (DR3) to further increase the scalability and reduce human involvement in
the inspection process.

DP1 – Image acquisition: Provide the system with (automated) capabili-
ties for uniform acquisition of images in context.

The system relies on a vision-based approach with captured images containing
information about the infrastructure condition. The image data should be processed
in an automated and reproducible fashion (DR3 & DR4). Image processing is
necessary to process and analyze the data in order to extract the desired information.
Image processing has traditionally been implemented for industrial applications like
quality control of manufactured parts, as they exhibit inherently less challenging
lighting conditions and scene complexity than outdoor environments (Mirallès et
al., 2014). Owing to the rapid growth and evolution of DL (LeCun et al., 2015;
X. Liu et al., 2020) in general and CNNs in particular, there are many successful
approaches that have improved the performance of visual recognition systems in
application areas such as self-driving cars, face recognition, image search, and
image understanding (Nguyen et al., 2018) despite the challenging conditions of
outdoor application. CNNs provide a method for automatically learning features
in images, which can drastically reduce the effort in hand-designing solutions
and improve generalization. In summary, this makes its application promising
for the analysis of images containing PLCs (Jalil et al., 2019; Prates et al., 2019;
Sampedro Pérez et al., 2019). Consequently, based on the assumption that all
relevant components are captured in images, they can be extracted using DL. In
particular, the assessment of a component’s condition features is determined by
two factors. First, the component needs to be detected in the captured image,
containing one or more component objects. Second, each detected component
requires component-specific fault diagnosis. The system should therefore include
these two tasks performed by a DL approach.

DP2 – Image processing: Provide the system with state-of-the art deep
learning for the detection and fault diagnosis of components.
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Images containing PLCs form the basis of the IB-DSS for vision-based maintenance.
However, without any additional information the images can hardly be seen as
sufficient for a system designed for component maintenance. To enable MEs in
their decision-making, metadata (Sen, 2004) regarding the images or contained
components is required. The primary purpose of this metadata is to provide context
(DR2) to the reported data and therefore provide enriching information that leads
to knowledge creation (Kassam, 2002). It can describe both physical (e.g. towers
and insulators) as well as digital objects (e.g. images and documents) through
providing values or information for certain characteristics (Clobridge, 2010). The
main purpose of attaching metadata to a data item is to uniquely identify it in a
system and to find it by browsing or searching (Burgin, 2016). In the PLM, metadata
can range from geographical and temporal image tags all the way to geographical
location, age, history, et cetera of the individual infrastructure components. However,
the main consideration to be taken here is that the physical objects, such as towers,
insulators, or conductors, are to be considered the focal data as they represent the
maintained infrastructure. The captured images contain information about these
components and should therefore be appropriately linked, at best based on the
individual component.

DP3 – Metadata: Provide the system with metadata.

The availability of context in the form of simple metadata such as the geographic
location and a time stamp or advanced/processed metadata such as the object
location, object type, and binary fault presence adds valuable information to an
IB-DSS. However, in terms of context for the individual fault contained in an
image, these details are of limited help. In the light of fault diagnosis, the required
context (DR2) should be defined as parts of it that can be accessed to clarify and
understand the fault. The combination of the contextualized fault diagnosis as well
as visualization of the extracted information (DR5) directly results in necessary
interpretability of the decision in the fault diagnosis. Consequently, the decision
of the fault diagnosis should be interpretable for MEs such that they are able to
comprehend why for instance an insulator was marked as faulty. Thereby, we adapt
the definition of Miller (2019)[p.14] referring to interpretability as “the degree to
which an observer can understand the cause of a decision”. The interpretability of
the results of the fault diagnosis provides MEs with additional information (context)
at a PLC level which in turn enhances their ability to make high-quality decisions.

DP4 – Interpretability: Provide the system with interpretable fault diag-
nosis.
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To facilitate decision-making in PLM, we found that acquired and processed data
should be visualized (DR5) to the respective users in order to determine a fault’s
existence, location, and significance. Because such a user interface can be considered
as the "source of many of the power, flexibility, and ease of use" (Turban et al., 2010,
p.100) of a DSS, it requires careful consideration. MEs face a situation where
they need to compile well-defined, complete, and prioritized maintenance orders
with a variety of details and latent information requiring their consideration. An
appropriate interface should therefore harness visual data exploration (Keim, 2002)
by integrating its user into the data exploration process by applying their perceptual
abilities. It can help the personnel to answer the mission critical questions such as
the required equipment and achieve high decision quality regarding maintenance
prioritization.

DP5 – Visual data exploration: Provide the system with an interface for
visual data exploration.

6.5 Image-Based Decision Support System for
Vision-Based Power Line Maintenance

To improve the planning and scoping of individual maintenance orders, enhanced
data and information quality needs to be provided to MEs. By following the pre-
scribed tentative DPs for an IB-DSS our designed and evaluated artifact provides
evidence of achieving this objective. The artifact is integrated into our case company
by deriving specific capabilities to satisfy the DPs , termed design features (DFs)
(Meth et al., 2015). Accordingly, we present the image data collection, their subse-
quent processing and analysis through the MC, and the presentation of the results
through the UIC along with their respective DFs depicted in Figure 6.2 (cf. page
117) in the following three subsections.

6.5.1 Image Data Collection

The platform responsible for the image data collection is required to capture images
of sufficient quality. Consequently, it needs to be able to acquire uniform, stan-
dardized, and consistent image data in a potentially automated way (DP1). UAVs
equipped with capabilities to capture optical images (DF1) meet these expectations
(Matikainen et al., 2016; Nguyen et al., 2018; Spencer et al., 2019) for our specific
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use case. This is due to three main reasons. First, UAVs are able to capture images
from above, below, and the front, combining the best aspects of today’s helicopter,
ground, and climbing inspection methods. Second, a UAV’s ability to fly close to
power lines allows it to take detailed images. Finally, although an approach for
UAVs’ autonomous navigation and image acquisition along power lines still has to
be developed, the general feasibility of this automation step is undisputed (Nguyen
et al., 2018).

6.5.2 Deep-Learning-Enabled Model Component

To build an efficient IB-DSS for infrastructure maintenance, images containing
relevant components, meaning components that exhibit faults, need to be identified
from the entire dataset. For this purpose, we present the preparation, instantiation,
and evaluation of our MC below.

Data Description and Preparation

To build a DL vision-based MC, large quantities of data are required. We therefore
collected images of PLCs, annotated them according to our desired component
classes, prepared them for training through creation of several datasets, and finally
used them for model training.
The images were collected by flying a UAV along high-voltage power lines in several
selected areas in southern Germany and circling around power towers to take pic-
tures of PLCs. The power line passages were selected so that the captured images
would contain diverse background scenes and PLCs of varying age and type. For
each power tower, around 70 images were captured. Images containing faulty safety
pins were created artificially in collaboration with field experts. Accordingly, an
insulator and fitting application was installed in the lower area of one power tower
(see Figure 6.3 on page 123 — left image) and a sequence of 608 images was
captured while modifying the splint itself as well as changing the respective image
perspective.
After collecting the images, each one was annotated with bounding boxes (BBGT )
representing the ground truth. Each BB was associated with one of five PLC classes
(insulator, fittingtop, fittingbottom, birdnest, safetypin) that we chose for this
project. These annotations and the respective images eventually constituted our root
dataset DSRo, containing 1,424 insulators, 1,073 fittingstop, 1,438 fittingsbottom,
61 birdnests, and 5,186 safetypins. Two further datasets DS1Co and DS2F i were
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obtained through subsampling DSRo to train different aspects of the object detec-
tion as depicted in Table 6.5. Finally, DS3P i was derived to train the classifier for
safetypins, with 1,494 images of defective and 3,692 images of intact safetypins.
The characteristics of the four datasets are summarized in Table 6.5 and sample
images are shown in Figure 6.3 and Figure 6.4 on page 124.

Tab. 6.5.: Characteristics of the datasets.

Dataset # Images
Image
resolution

Volume
Annotation
type

# Annotation Objective

DSRo 1690 5280x3956 15.2 GB BB + label 9182

Single-stage component detection
(insulator, fittingtop,
fittingbottom, birdnest,
safetypin); derive data set
DS1Co, DS2F i, and DS3P i

DS1Co 1589 5280x3956 14.3 GB BB + label 3996

Multistage large component
(insulator, fittingtop,
fittingbottom, birdnest)
detection

DS2F i 1820 1200x1200 1.2 GB BB + label 5186

Multistage small component
(safetypin) detection from
cropped fittingtop and
fittingbottom

DS3P i 5186 60x60 35.3 MB Label 5186 safetypin fault diagnosis

Fig. 6.3.: Exemplary images of the DSRo dataset containing insulators (cyan), fittings
(blue and dark blue), birdnest (not present), and safetypins (pink). The images
show various subcomponents of the component types, captured from varying
perspectives to ensure the robustness of the model; the left image provides an
impression of the artificial setup for capturing defective safetypins.

Instantiation of a Multistage Pipeline

Inspired by Nguyen et al. (2019) and X. Liu et al. (2020), we designed a DL-based
multistage component detection pipeline (MSCD) and classification pipeline for
high-resolution images containing multisized objects with spatial relationships (DF2
& DF3) to satisfy DP2. This addresses the requirement for automation (DR3) of
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Fig. 6.4.: Exemplary images of the safetypin component type from the DS3P i dataset. The
defective safetypins (two to the left) are not completely bent, while the intact
ones (two to the right) are completely bent and consequently prevent slipping
out.

(small) 

Component 

detector

Splint 

classifier

e.g. fitting 

classifier

(large) 

Component 

detector

e.g. insulator 

classifier

Fig. 6.5.: Structure of our multistage power line component detection and classification
pipeline for high-resolution images.

infrastructure inspection (Katrasnik et al., 2010; Montambault et al., 2010) and re-
producibility (DR4) of the derived results to mitigate subjective decisions (Katrasnik
et al., 2010; Toth & Gilpin-Jackson, 2010). While our case company is interested in
the fault diagnosis of a significantly larger number of components, for the purpose of
this study we intend to only demonstrate the feasibility of detecting both the smallest
components (safetypins), as well as the largest ones (insulators), in images taken
of high-voltage power lines — a topic not yet considered in the automated inspection
of power lines. The pipeline consists of three elements responsible for different
detection and classification tasks, as displayed in Figure 6.5.

In the proposed MSCD pipeline, the (large) component detector first detects
insulator, fittingtop, fittingbottom, birdnest from an input image. The detected
fittings are cropped from the input image and used as input for the subsequent
(small) component detector to detect safetypins. The detected safetypins are re-
cropped and passed into the pin classifier for fault diagnosis.
For the implementation of the MSCD, we chose to compare two well-proven DL
object detection architectures — SSD (W. Liu et al., 2016) and Faster R-CNN (S.
Ren et al., 2015) — which we additionally benchmarked against a single-stage
component detection pipeline (SSCD), meaning all components are detected in one
step. We selected ResNet as the backbone CNN for the object detection architectures
as well as our main classifier for the fault diagnosis of the safetypins. To compare
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and benchmark the fault diagnosis, we chose the well-known VGG16 (Simonyan
& Zisserman, 2014) architecture. In both tasks, image augmentation was used to
improve the generalization of the models. For object detection the brightness of the
images was randomly adjusted. For the classification task, where cropped images
of safetypins were classified, we applied horizontal and vertical flipping, random
brightness adjustment, width as well as height range shifting, and random image
blurring.
The component detectors were implemented using the Tensorflow4 DL framework5

(Abadi et al., 2016) with models pretrained on the MS COCO dataset (Lin et al.,
2014). The image classifiers were realized using the Keras DL library6 (Chollet et al.,
2015) which provides image classification models pretrained on the ILSVRC dataset
(Russakovsky et al., 2015).

Evaluation of the Instantiated Model Component (EE I.I & EE I.II)

For the evaluation of DF1-DF3 and DP1 and DP2 respectively, we conducted both an
artificial evaluation to closely assess the pipeline’s efficacy and efficiency as well as a
naturalistic evaluation to generally judge the design’s acceptance and usefulness. In
accordance, the evaluation episodes were guided by the questions below:

EE I.I
How well does the proposed DL-based MC extract power line components of
various sizes? How well does it diagnose component faults?

EE I.II
Do MEs regard the MC’s capabilities as helpful?

Artificial evaluation of the model component (EE I.I)
The efficiency evaluation of the proposed pipelines required two considerations.
First, the pipeline’s ability to detect the chosen components needed to be evaluated.
Second, the accuracy of the fault diagnosis — which we performed for detected
safetypins — had to be assessed.

4Version 1.15
5In particular, the tensorflow object detection API
6Version 2.3.1

6.5 Image-Based Decision Support System for Vision-Based Power
Line Maintenance

125



i bn ftop fbottom
spinter spintra mAP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
ve

ra
ge

pr
ec

is
io

n
(A

P)

MSCD Faster R-CNN SSCD Faster R-CNN MSCD SSD SSCD SSD

Fig. 6.6.: Average precision of the different pipelines using Faster R-CNN and SSD on the
five selected component classes.

Evaluating the efficacy and efficiency of the detection task in terms of average preci-
sion (AP) and mean average precision (mAP) (Padilla et al., 2020), we compared our
proposed MSCD to the SSCD pipeline. As we were working with our own proprietary
dataset DSRo, the available images were split into a training set comprising 80%
of the data, with the remaining 20% used for the evaluation set. To increase the
evaluation’s validity, images captured at one tower were held out from the random
split and solely utilized for the evaluation dataset, while maintaining the split ra-
tio. This image-level split was kept consistent across the derived datasets DS1Co

and DS2F i. The SSCD pipeline was fine-tuned to detect the respective component
classes using the DSRo dataset. Accordingly, both detection stages of the MSCD
pipeline were fine-tuned on DS1Co and DS2F i respectively. All models were trained
using the stochastic gradient descent optimizer with 0.0003 (Faster R-CNN) and
0.001 (SSD) initial learning rate respectively, 0.9 momentum, and batch size 64. We
determined the models by using early stopping on the validation loss with a patience
of 100 for all models. The testing results of the different pipelines using the different
architectures are shown in Figure 6.6. The performance for the safetypin class is
disclosed in terms of inter pipeline performance for both the SSCD and the MSCD
pipeline as well as the intra pipeline performance for solely the MSCD pipeline.
We evaluated the fault diagnosis task performed for the safetypins class in terms

of weighted precision, weighted recall, and weighted F1-score (Pedregosa et al.,
2011) to account for class imbalance. We applied a 3-fold cross validated grid-search
to identify the optimal combination of parameters. We chose to account for the
following parameters: unfrozen convolutional layers, dense layer size, optimizer
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and its respective learning rate, dropout rate, and batch size. The images in dataset
DS3P i were shuffled, a hold out set containing 10% of the images was retained and
the remaining images were split into 3 folds. Consequently, for each grid search
configuration three models were trained with early stopping with patience 30. The
best resulting model of the Resnet and VGG16 model were harnessed to be evaluated
on the retained hold out set. The results of the evaluation of the cropped safetypin

classification task based on the test set are shown in Table 6.6. All details on the
machine learning steps and choices are depicted within Section 6.8.2 on page 139
in the Appendix (Kühl et al., 2021).

Tab. 6.6.: Safetypin crop classifier test results on the DS3P i dataset.

Architecture AUROC Weighted precision Weighted recall Weighted F1-score
VGG16 0.8114 0.80 0.80 0.80
ResNet50 0.8080 0.76 0.75 0.75

Naturalistic evaluation of the model component (EE I.II)
To answer whether the detection and fault diagnosis of PLCs help MEs, we conducted
nine purposefully sampled (Coyne, 1997) interviews with potential users of the
IB-DSS from our case company. The interviewees included two senior MEs (Epsilon
– Zeta) with a working experience of 34 and 41 years, five MEs (Eta – Lambda)
with on average 27 years experience, one operations manager (My) with 28 years’
working experience, and one senior standardization engineer (Ny) with 10 years’
working experience. Each interviewee received a brief introduction to the DF1-DF3.
Accordingly, the image data collection setup employing UAVs and the image analysis
to detect and diagnose PLCs was introduced. Exemplary images (cf. Figure 6.3,
page 123) were shown to clarify the use case. The interviewees were allowed
to ask questions of comprehension. Subsequently, in a semi-structured interview
fashion each participant was asked to evaluate the DFs. A detailed overview of
the questionnaire can be found in Section 6.8.3 on page 141 in the Appendix. The
question of whether each presented DF appropriately addresses its respective DPs
served as the starting point. The interviewees opinion and attitude regarding all
DFs was explored and probing questions were asked if necessary. This allowed us
to assess the attitude of human expert workers towards the technology. This initial
evaluation of part of the IB-DSS’s tentative design serves as initial mediation to
ensure that the final artifact can be designed as a useful and efficient instrument for
solving our research question.
In accordance with Hevner and Chatterjee’s (2010) suggestion for the analysis of
confirmatory focus groups and King’s (1998) general proposal of template analysis for
textual data, we adapted the approach for the analysis of the interview transcripts.
The artifact’s DPs served as the initial coding categories.
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In general, the interviewees confirmed the usefulness of the way the image acquisi-
tion (DP1) is performed and also acknowledged the image processing (DP2) to
extract comparable, trustful, and helpful information. They specifically confirmed
the usefulness of the vision-based approach for capturing a wide variety of different
faults. More significantly, the ability to “[...] look into the detailed pictures is
already of high value” (Iota) since it is easier to scope maintenance operations from
component images rather than plain table entries. Additionally, the interviewees
emphasized the good quality of the images as well as the improved perspective to
view the PLCs and respective defects, due to the UAVs being able to fly close to
the component of interest. Similarly, the functionality to automatically analyze the
images for components and their faults was perceived as a major gain and precisely
addressed the request of interviewee Zeta: “It would actually be quite interesting if
someone or something evaluates these pictures that the drone captures and then
just sends the damage.” The interviewees stressed several particular factors. First
and foremost, the prevention of subjectivity was mentioned, leading to a unifor-
mity in fault diagnosis and consequently to a flawless comparability between faults.
Second, besides the presented ability to detect insulators, fittings, birdnests and
safetypins, the interviewees assumed that several other components could be added
easily. However, in more detail two participants raised doubts about the system’s
ability to recognize severe incidents such as completely broken and consequently
dangling insulators. Finally, six out of the nine participants indicated, without being
asked, that they felt there were benefits in using an automated process to extract
defective components. They specifically mentioned benefits regarding timeliness,
cost, and performance in comparison to the current manual inspection methods.
However, although the proposed extraction of faults generated generally positive
feedback, the need to “comprehend: how did this assessment come about” (Ny) was
mentioned. Consequently, both the results and the reasoning of the fault diagnosis
require visualization.
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6.5.3 User Interface Component

Supporting MEs based on improved data and information quality requires making
them accessible through a UIC. In the following, we describe the UICs’ design and
evaluation.

Instantiation of the User Interface Component

To create a UIC that accomplishes the preliminary DRs of visualization (DR5) of
the network and related defects (Shakhatreh et al., 2019), we implemented the
artifact based on the inferred DPs (cf. Figure 6.2 on page 117) using Tableau7

and JavaScript. The artifact integrates two data sources: (1) UAV-captured image
data (DP1) and its according metadata (DP3) as well as (2) metadata about the
physical objects of the power line infrastructure (DP3) at our case company, such
as geographical position or age. Information that is extracted as part of the image
processing (cf. Section 6.5.2) is integrated into the artifact (DP2 & DP4). Finally,
these building blocks are arranged in a meaningful way to support decision-making
through visual data exploration (DP5). Figure 6.7 depicts the different views and
their interactive links along with the respective DFs.

Detail view 4

View 1 View 3

DF7

DF5

DP2 – Image processing DP3 – Metadata DP4 – Interpretability DP5 – Visual data exploration

DF8

DF4

DF6

DF8
View 2

Fig. 6.7.: Structure of our user interface with its different views and the transitions between
the views.

7https://www.tableau.com/, last accessed: 07.07.2022

6.5 Image-Based Decision Support System for Vision-Based Power
Line Maintenance

129



To satisfy DP5, the general layout of the UIC should follow the visual exploration
paradigm (Shneiderman, 1996) and provide overview first, allow for zoom and filter
capabilities, and then accommodate details on demand. We base our UIC on four
different views which emphasize different task properties in our multidimensional
data and maximize the availability of explicit and latent information. View (1)
provides an operational dashboard view (DF7) to get a quick and aggregated sense
of the condition of the power line infrastructure. View (2) contains a geographical
information system view (DF5) to find and inspect adjacent infrastructure items
and faults. This allows MEs to explore both the incident location to determine
maintenance order specifics as well as further incidents which can be bundled.
View (3), a list-based view (DF6), enables MEs to examine a large number of faults
regarding their attributes as well as to find specific faults. This may help in either
bundling incidents, making sourcing decisions upon resource scarcity, or ordering
replacement components. View (4) presents a fault detail view to inspect particular
faults regarding the results of the fault diagnosis, including properties, specifics,
and context. It consequently enables MEs to assess the faults priority, judge the
skills required for the faults resolutions, and determine the affected circuit. The
interactive visualization (DF8) allows MEs to directly interact with the visualizations
to obtain and extract the relevant data at the right time. A persistent filter sidebar
with domain-specific filters provides consistency across the first three views. While
View 1 through 3 already provide different levels of zoom, the list-based view is
the closest to viewing a single fault. Users are therefore able to filter subsamples of
faults in View 1 as well as 2 and through interactive linking consequently invoke
their display in the list-based View 3. Finally, detailed information on a particular
fault identified either in View 2 or 3 can be examined. Images of the defective
component are available in a gallery. To address DP4, the gallery provides the user
with visual fault explanations (DF4) of the component for improved interpretability
of the fault diagnosis. In particular, the detected defective component is framed by a
bounding box for convenient localization. Additionally, based on the type of fault
either a segmentation mask (for insulators) or a heat map (for splints) is visualized.
Besides the image gallery, the user is able to expand related information showing
other faults on the power tower and the fault timeline of the power tower. As a
summary, a video demonstration of the user interface shows all described views in
detail8.

8https://youtu.be/Y3oIJghtRT4, last accessed: 07.07.2022
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Evaluation of the User Interface Component (EE II)

For the evaluation of our UIC, we applied a qualitative evaluation to test the proof
of applicability in the real-world context and to assess the usefulness as well as
efficiency. In particular we aimed to answer the evaluation question:

EE II
Does the instantiated UIC support MEs in making improved decisions about
planning and scoping individual maintenance orders?

To answer this question, we remotely9 conducted nine one-on-one, confirmatory
workshops with the same participants already questioned in EE I.II over the com-
pany’s collaboration platform. This confirmatory evaluation approach was chosen for
two reasons. First, the flexibility of the method enabled us to adapt the procedure if
necessary. Second, each user was able to individually explore and use the prototype
in their accustomed work setting, which allowed the integration into the user’s
working routine and ensured that the artifact and its capabilities were understood
unambiguously.
For each workshop, we initially introduced the intent of the UIC. We subsequently
started a screen sharing session and asked each participant to explore and use the
UIC and verbalize their thoughts. Whenever appropriate, the researcher enriched
the participant’s experience by providing information about the DFs. Afterwards,
each participant was asked to fill out a survey based on Davis’s (1989) technology
acceptance model (TAM). Finally, the participant was asked to evaluate whether the
presented artifact addresses its decisive DPs during a semi-structured interview. The
question of whether each presented DF appropriately addresses its respective design
cycles (DCs) served as the starting point. The transcripts of the workshops were
analyzed in analogy to E I.II, using template analysis by King (1998).
The survey results as well as the results from our qualitative evaluation indicate that
our instantiated artifact is able to support MEs in their decision-making regarding
PLCs. While our TAM survey comprising the nine interviewed experts cannot claim
significance, it suggests the tool’s usefulness as the perceived usefulness averaged
6.2 on a 7-point Likert scale. In accordance, the interviews revealed that the artifact
would support the MEs in their everyday work by enhancing the availability of data
and information of the power line infrastructure and the appropriate arrangement of
the information. The confirmatory workshops therefore showed that the underlying
design knowledge is suitable, useful, and effective for developing IB-DSSs artifacts
aimed at the vision-based maintenance of infrastructure.
9due to COVID-19
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In particular, the participants mentioned that the IB-DSS allows fast and convenient
visual data exploration (DP5) while being helpful to experienced workers as well
as (and especially) those in training. The interviewed experts mentioned that the
artifacts’ capabilities for overview, interactive zooming, and interactive filtering are
the main facilitators for convenient exploration. The interactive zooming across
the multiple views makes latent information, for example staggering faults on one
passage or the circumstances around a tower, visually available. Finally, the filter
capabilities support finding relevant faults, as “[one] can filter out the unimportant
ones” (Eta). However, six participants requested additional filters based on further
metadata concerning the components in the infrastructure. While the available
metadata (DP3) regarding towers and their identified faults was perceived as a
good starting point, all participants mentioned further data which could be inte-
grated: fault-related workflow tracking metadata as well as component-related
material and reordering metadata. The participants also recognized that the visual
fault explanations could mainly help them localize faults significantly faster as well
as develop a thorough comprehension and understanding of the fault. Specifically, it
was mentioned that the easier localization could reduce the workload and accelerate
the root cause analysis. On the downside, it could hinder independent examination
of the images in the long run. The image augmentations consequently provide
fault interpretability (DP4). Most significantly, all participants acknowledged that
the IB-DSS is especially suitable for improved maintenance decision-making, as
they would be able to “work more efficiently, simply work more or even combine
activities” (Epsilon). In fact, besides the planning and scoping of individual mainte-
nance orders, the improved data and information availability and quality enhance
four key decision-making tasks: finding and discovering systematic faults (Epsilon,
Iota, Lambda), combining maintenance orders (Eta, Epsilon, Kappa), discussing
maintenance budget (My, Iota, Ny), and scoping and planning long-term restoration
projects (My, Kappa).
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6.6 Discussion

In this section we depict the contributions and limitations of our work and present
an outlook regarding PLC inspection and maintenance.

6.6.1 Contributions

Our results imply that our instantiated IB-DSS enables maintenance engineers to
make better, more informed decisions about repairing or replacing PLCs through
improved data and information quality.
More generally, this suggests that the rich information from uniformly acquired
images extracted through deep-learning-based image processing capabilities com-
bined with contextual information of metadata and interpretability provided through
visual data exploration is a valuable solution to the information intensive context of
maintenance and monitoring applications. Figure 6.8 depicts the schematic layout
of these aspects. Consequently, we hypothesize that our derived knowledge provides
a nascent design theory for the still underresearched class of IB-DSSs. This design
knowledge might be particularly valuable to create automated decision support
systems in information-intensive contexts where decision-makers largely rely on
unstructured vision-based image data. This in turn would increase the quality of
decision both in terms of efficiency and effectiveness (Kraus et al., 2020).
The schematic layout of our conceptualized design principles, as depicted in Fig-
ure 6.8, therefore provides prescriptive knowledge that may serve as a blueprint
(Gregor & Jones, 2007) to develop similar systems for vision-based applications.

DP2

Image processing

DP3

Metadata

Model component User interface component(Image) Data component

DP4

Interpretability

DP5

Visual data 

exploration

DP1

Image acquisition

Metadata 

component

Fig. 6.8.: Schematic layout of the design principles of image-based decision support systems.
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In our specific use case of PLC inspection, the proposed IB-DSS relying on UAV
generated images can provide multiple benefits over the status quo. It can prevent
accidents since hazardous inspection methods like tower-climbing are no longer
necessary — as the inspection of the towers is now performed by unmanned UAVs.
While no coherent numbers are available within Europe, recent reports from the US
demonstrate that power line workers are listed among top 10 most dangerous jobs.
Each year, over 40 power line workers receive fatal injuries resulting from falling
or electrocution (Schwarz & Drudi, 2018). While certainly only a share of these
workers die during inspection activities (rather than the repair activity itself), any
saved life is desirable. The non-fatal injuries amount to 1,200 per year in the US
(Schwarz & Drudi, 2018) and the typical reasons are falling, slipping and tripping.
We also expect significant reduction of injuries in this area, once automation of
inspection is implemented.
Currently, the data that MEs work with are tables of compiled inspection reports
with heterogeneous assessments of a distributed workforce. The standardized data
acquisition and processing results in (1) more reliable and (2) more structured data.
Combined with the benefits of a unified interface that provides metadata and latent
information maintenance decisions are fully comprehensible.
In total, the participants of the confirmatory workshop affirmed that the IB-DSS
enhances their decision-making substantially. As mentioned by Epsilon, Theta,
Kappa, and My even besides the pure planning of maintenance orders, moreover,
the artifact could be utilized for other tasks, like the combination of maintenance
orders or the planning of long-term restoration projects.

6.6.2 Limitations

While meeting Gregor and Jones’s (2007) six common criteria for design theories,
our design knowledge for IB-DSSs carries limitations that open opportunities for
future research. Our research can only be generalized to a limited extent because
it was conducted at one company in the power line infrastructure domain and
focused on a selection of defect cases. While we can claim some generalization
through supporting our design through kernel theories and other studies, further
IB-DSSs should be developed for other use cases and in other domains to extend and
consolidate the design theory. Furthermore, our research lacks the quantification
of the effect on the field efficiency of the image processing. Quantitative studies
in this regard could be conducted to benchmark the artifacts’ effects in terms of
performance of automated versus manual image processing.
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Fig. 6.9.: Road map towards predictive maintenance.

6.6.3 Future Design Activities

Within our presented research, we showed novel ways to design condition-based
maintenance systems. More precisely, we utilized images captured by UAVs which are
subsequently automatically analyzed and included within an image-based decision
support system. Figure 6.9 shows a possible general road map demonstrating
increasing maintenance maturity where the next evolutionary step is to use the data
as well as the generated models not only as a basis for maintenance order planning,
but moreover to predict maintenance needs for the (distant) future, i.e., predictive
maintenance.
In regards to the practical aspects at the case company, the artifact is currently

prepared for a broader implementation and deployment into the business. For
these steps, the solution is containerized (Rufino et al., 2017) to allow for flexible
and scalable applications. An expert team analyzes the different possibilities of
automated UAV routing (Avellar et al., 2015) to allow for a continuous and correct
gathering of the required data. Meanwhile, experts are being educated on the
possibilities of integrating the tool in their current day-to-day processes, supported
by an expert for change management of industrial business processes (Bokrantz et
al., 2020). One remaining challenge is the aspect of data storage and management,
e.g., within a data warehouse. On the basis of the required data volume shown
in Table 6.5 on page 123, we estimate a total volume of images for a one-time
acquisition of the complete network of our case company of 9 TB. How often this
data has to be refreshed and how it is stored precisely (e.g. hybrid cloud) needs to
be discussed for future iterations of the artifact.
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In a broader context, the automated inspection of PLCs will be an important, yet only
intermediate step for PLC maintenance in the future. The image data used in this
work can be combined with multiple additional data sources such as weather and
location characteristics (e.g., sun exposure and topology). The inclusion of additional
sources of information can enable an accurate prediction of future maintenance
needs which further facilitate effective planning and resource utilization.

6.7 Conclusion

Planning and preparing of maintenance orders in power line maintenance is a
challenging task for maintenance engineers, as they must rely on human-created,
heterogeneous, and largely unstructured information. These characteristics make
the process both time-intensive and costly, which can adversely affect the continuous
supply of electricity. As most research on power line maintenance focuses on
automated inspection through UAV-captured images and deep learning, there is
an apparent gap in literature for transferring the acquired data into maintenance
decision-making.
Following the design science research guidelines, we designed, developed, and
evaluated an artifact to address this research gap. Initially, we rigorously analyzed
the challenges in power line maintenance. Building on these, we conceptualized
design principles for an image-based decision support system that integrates the
capabilities of deep learning to extract faulty components from a set of captured
images and appropriately presents the information to relevant users. Accordingly,
we instantiate our design principles into an exemplary artifact. The evaluation
using a technical experiment as well as two qualitative evaluation episodes with
long-standing experts indicates the utility of our design knowledge and can therefore
inform future system designs of similar nature.
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6.8 Appendix for Chapter 6

6.8.1 Further Challenges in the Power Line Maintenance

In Table 6.7 on page 138 we present further challenges in the maintenance of
power lines. Challenge C4 attributes to organizational or administrative levels of
introducing novel solutions which include the consideration of the exact purpose of
the infrastructure (C4.1), the cost associated to their inspection (C4.2), and specific
challenges that come with the culture, digitization maturity, and capabilities of an
organization (C4.3). Moreover, the challenge C5 addresses the fact that power
lines are considered as critical infrastructure which’s operations, inspection, and
maintenance is strictly regulated. Another challenge that applies to generally all
infrastructure related inspections is of environmental kind (C6). Environmental
challenges include limitations in the maintenance of power lines due to weather
conditions and general seasonal circumstances.
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Tab. 6.7.: Further challenges in the maintenance of power lines based on expert interviews
and a structured literature review.

ID Challenge Subchallenge Source

C4
Organizational
challenges

C4.1—Significance of uninterrupted power supply

Pagnano et al., 2013;
Nguyen et al., 2018;
Prasad and Rao, 2016
D. Li and Wang, 2019;
Matikainen et al., 2016;
Toussaint et al., 2009;
Katrasnik et al., 2010;
Seok and Kim, 2016; Beta

C4.2—Scale of inspection cost

Pagnano et al., 2013;
Nguyen et al., 2018;
Mirallès et al., 2014;
Prasad and Rao, 2016;
C. Deng et al., 2014;
Jones, 2005;
Aggarwal et al., 2000
D. Li and Wang, 2019;
Takaya et al., 2019;
Pernebayeva and James, 2020;
Matikainen et al., 2016;
Katrasnik et al., 2010;
Seok and Kim, 2016;
Huang et al., 2018;
Ostendorp, 2000;
Alpha; Beta; Gamma; Delta

C4.3—Company-specific challenges Alpha; Gamma; Delta

C5
Regulatory
requirements

C5.1—Compliance with regulations

Pagnano et al., 2013;
Prasad and Rao, 2016;
Jones, 2005;
Takaya et al., 2019;
Matikainen et al., 2016;
Toussaint et al., 2009;
Gamma

C6
Impact of
environmental
conditions

C6.1—Dependence on seasonal circumstances Delta

C6.2—Dependence on climatic conditions

Nguyen et al., 2018;
Pernebayeva and James, 2020;
Seok and Kim, 2016;
Homma et al., 2017;
Beta
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6.8.2 Supervised Machine Learning Report Card based on Kühl
et al. (2021)
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Problem statement Detect objects of power line components (insulator, fitting, 

safety pin, birdnest) from an input image and classify whether 

the safety pin components are intact or defect. 

Data gathering The proprietary data set originates from the application case 

company Netze BW, a distribution system operator in Southern 

Germany. We harnessed UAVs to capture images of their high 

voltage power lines as part of a technology driven proof of 

concept. 

Data distribution After annotation of the images of the proprietary data set it 

contains (BB = Bounding Box): 

Insulator (BB) 1,424 

fitting_top (BB) 1,073 

fitting_bottom (BB) 1,438 

Birdnests (BB) 61 

Safety Pins (BB) (3,692 intact/1,494 defect) 5,186 

Data quality High-quality images with a resolution of 5280x3956 pixels. 

Bounding boxes and labels generated by researchers who had 

received instructions and feedback from field experts. 

Data preprocessing methods Rescaling (1/255) 

Performance Estimation 
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Parameter optimization None 

Data split Training data set 80%, Evaluation data set 20% 

To increase the evaluation’s validity, images captured at one 
tower were held out from the random split and solely utilized for 
the evaluation dataset, while maintaining the split ratio. 

Sampling/ Data augmentation Random brightness adjustment 

Performance metric 

 

 

 

mean average precision (mAP) (Rafael Padilla & da Silva 2020) 
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Algorithm Parameters CNN backbone ResNet-50 

Early stopping patience (on 

validation loss) 

100 

Optimizer SGD (learning rate 0.0003 

and 0.9 momentum) 

Batch size 1 

Performance evaluation 0.7510 

S
S

D
 

Algorithm Parameters CNN backbone ResNet-50 

Early stopping patience (on 

validation loss) 

100 

Optimizer SGD (learning rate 0.001 

and 0.9 momentum) 

Batch size 64 

Performance evaluation 0.7718 
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Parameter optimization Yes Search space cf. Table 6.8 
Search algorithm Grid search 

Data Split 10% Hold out set 
90% train and validation set with 3-fold cross validation 

Sampling/ Data augmentation - Average blur [0,11] 
- Brightness range [0.2,1.5] 

Height shift range [0.1] 
- Width shift range [0.1] 
- Horizontal flip: true 
- Vertical flip: true 

Performance metric Weighted precision, weighted recall, and weighted F1-score 
(Pedregosa et al. 2011) to account for class imbalance 

Re
sN

et
 -5

0 

Final algorithm parameters Dense layers (512, 512) 
Unfrozen layers 3 
Dropout rate 0.1 
Early stopping patience (on 
validation loss) 

30 

Optimizer Adam (learning rate 0.0005) 
Batch size 32 

Performance evaluation AUROC: 0.8080 
Weighted precision: 0.76   
Weighted recall: 0.76  
Weighted F1-score: 0.71 

VG
G1

6 

Final algorithm parameters Dense layers (512, 512) 
Unfrozen layers 8 
Dropout rate 0.1 
Early stopping patience (on 
validation loss) 

30 

Optimizer Adam (learning rate 0.0005) 
Batch size 32 

Performance evaluation AUROC: 0.8114 
Weighted precision: 0.80  
Weighted recall: 0.80 
Weighted F1-score: 0.78 

 

Tab. 6.8.: Parameter set options for the training of convolutional neural network for both
ResNet-50 and VGG16.

Parameters Dense layers Unfrozen 
layers 

Optimizer Learning 
rate 

Batch size Dropout 
rate 

Ranges ((512, 512) 
(512, 1024) 
(512, 2046) 
(1024, 1024) 
(1024, 2046) 
(2046, 2046)) 

[3, 8] Adam, SGD (0.0005, 
0.001, 
0.0015, 
0.002) 

(32, 64, 128) [0, .6] 
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6.8.3 Questionnaire (translated from German to English)

1. General introduction:
How was the “application” of the the image-based decision support system
(IB-DSS) for you?

• Would you use the IB-DSS in practice?

• What worked particularly well?

• What did not work well?

• What possibilities result from the application of the IB-DSS?

• What problems could occur during the application?

Model component:

2. Design principle 1:
Unmanned aerial vehicle (UAV) & RGB images
Was the quality of the RGB images of the UAVs sufficient and do they enable
a good overview over the most important properties / the condition of the
infrastructure?

• Were you lacking important images / information / data?

• Were the images from the UAVs well inspectable?

3. Design principle 2:
Deep learning for computer vision
Does the usage of machine / deep learning enable additional, helpful informa-
tion (e.g., severity, defect type, etc.)?

• What chances and risks arise through the IB-DSS?

• What strengths and weaknesses does the IB-DSS possess regarding the
recognition of faulty / defect components?
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User Interface Component:

4. Design principle 3:
Interpretability
How did the accentuation of the condition of components influence the inter-
pretability? Was it a good assistance to understand the result?

• Is the IB-DSS a good tool to comprehend the condition of a component?

• What are the advantages of the visualization?

• What are the disadvantages of the visualization?

• What problems can occur due to the visualization?

5. Design principle 4:
Exploratory (data) visualization
Does the IB-DSS enable an investigation / exploration of the data? Does
it facilitate to gain information about the condition of power lines and a
corresponding overview?

• What are the strengths and weaknesses of the visualisation of the condi-
tion data?

• How important is the availability of the data?

• What long-term chances and risks do you see regarding the maintenance
process?

6. Finalization
Anything else you would like to share with me?

• Where do you see room for improvement?

• Is there any other feedback you would like to share?
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A Picture Is Worth a
Collaboration: Accumulating
Design Knowledge for
Computer-Vision-Based
Hybrid Intelligence Systems1

7

7.1 Introduction

Intelligent information systems (IS) that incorporate artificial intelligence (AI),
so-called AI-based IS (Maedche, Legner, et al., 2019), have a massive impact on
our society and revolutionize how we live, act, and work together. Cars begin to
drive autonomously in real traffic (Grigorescu et al., 2020); smart home systems
recognize and adapt to individual user preferences (Fischer et al., 2020); and medical
assistance systems support doctors in diagnosing hard-to-find diseases (McKinney
et al., 2020). A key enabler for the realization of such scenarios is the capability
of modern AI-based systems to automatically process high-dimensional data to
identify useful patterns and relationships that can be utilized for decision support
and business automation purposes (Brynjolfsson & Mcafee, 2017).
An important sub-field in this context is the area of computer vision (CV). It seeks to
automatically extract useful information from images to mimic human capabilities of
visual perception (Szeliski, 2010). On this basis, time-consuming and labor-intensive
tasks like the recognition, detection, localization, tracking, and counting of objects
can be supported more efficiently to save unnecessary resources and relieve the
burden of human workers (Heinrich, Roth, et al., 2019).

1This chapter comprises an article that was published as: Zschech, P., Walk, J., Heinrich, K., Vössing,
M., and Kühl, N. (2021). A Picture is Worth a Collaboration: Accumulating Design Knowledge for
Computer-Vision-Based Hybrid Intelligence Systems. Proceedings of the 29th European Conference
on Information Systems. https://aisel.aisnet.org/ecis2021_rp/127/. Note: The abstract has been
removed. Minor edits have been made and tables and figures were reformatted, and newly referenced
to fit the structure of the thesis. Chapter, section and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted and references were
integrated into the overall references section of this thesis.
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Fueled by the broad availability of huge online image databases and the broad access
to necessary computing power, the field of CV is currently experiencing a consider-
able phase of scientific progress and dissemination expressed by manifold activities
in research and practice. As such, we can observe a continuous development of
advanced algorithms based on machine learning and especially artificial neural
networks (ANNs) (Bharati & Pramanik, 2020); procedure models and tutorials
for solution development are proposed (Griebel, Dürr, et al., 2019); and a global
community of developers shares reusable software code and provides user-friendly
programming frameworks (Chollet, 2017). As a result, more and more CV systems
are being embedded into organizational and societal contexts across a wide range of
domains, such as traffic surveillance (W. Liu et al., 2017), manufacturing (T. Wang
et al., 2018), agriculture (Tian et al., 2020), and sports (G. Thomas et al., 2017).
However, past efforts in research and practice often exclusively focused on technical
performance aspects when designing and developing CV systems (e.g., achieved ac-
curacy, required computing resources), while neglecting socio-technical facets, such
as transparency, control, and autonomy. Coming from an IS research perspective,
such aspects are crucial, for example, to ensure that a technology is accepted by
its users and that it is in line with the organization’s objectives (Schaper & Pervan,
2005). Especially in the realm of designing and working with AI systems, such
aspects play a fundamental role and therefore should be translated into an AI-based
system design to aid the user in setting up, understanding and using autonomously
operating AI systems (Thiebes et al., 2020). Dellermann, Ebel, et al. (2019) discuss
the concept of hybrid intelligence (HI) that combines the complementary strengths
of both sides in order to reach superior performance than would be achievable
separately. Although this hybrid system design can bring out the best of both worlds,
it is faced with challenges like algorithm aversion that occur due to the complexity of
the AI system resulting in the distinctness of human and AI system in such a setting
(Berger et al., 2021).
Against this background, this paper deals with the design of computer-vision-based
hybrid intelligence systems (CV-HISs). The aim is to derive prescriptive design
knowledge from a socio-technical view that should ultimately result in a (nascent)
design theory (Gregor & Jones, 2007). To this end, we follow a design science
research (DSR) approach (Hevner et al., 2004) and reflect on accumulated design
knowledge generated in six comprehensive CV development projects. With this
strategy, we pursue a reflective approach (Möller et al., 2020) based on real problem
cases as encountered and solved in practical settings (Iivari, 2015). More specifically,
we contribute in the following ways: (i) we conceptualize the HI collaboration
in the realm of vision-based tasks to identify design-related mechanisms, (ii) we
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derive requirements and abstract them to meta-requirements in relation to central
kernel theories in terms of justificatory knowledge, and (iii) we accumulate design
principles by abstracting from specific design features which were implemented
across the different CV projects.
Our paper is structured accordingly: In Section 7.2, we introduce the foundations
and refer to related work. Subsequently, we depict our research approach in more
detail in Section 7.3. In Section 7.4, we describe our selected CV cases, followed
by the conceptualization of CV-HISs in Section 7.5. We then proceed in Section 7.6
to outline our derived design knowledge by distinguishing between four identified
mechanisms as introduced by design. Finally, we summarize and discuss our contri-
bution and present an outlook of further research opportunities in Section 7.7.

7.2 Foundations and Related Work

7.2.1 Computer Vision and Artificial Intelligence

The field of CV is concerned with the development of techniques for the acquisi-
tion, processing, analysis, and understanding of digital images to transform high-
dimensional data into symbolic or numerical information (e.g., for automated
decision-making). Just as humans use their eyes and brains to understand the world
around them, CV attempts to produce the same effect so that computers can perceive
and understand an image or a sequence of images and act accordingly in each
situation. This understanding can be achieved by disentangling high-dimensional
data from images using models built with the aid of geometry, statistics, physics,
and learning theory (Forsyth & Ponce, 2002). Driven by personal or industrial
motives, grand advances have been made in several areas such as optical character
recognition, machine inspection, 3D model building, disease diagnostics, motion
capture, or surveillance (Szeliski, 2010). Nowadays, CV tasks are increasingly per-
formed by AI-based systems that rely on machine learning algorithms. Of particular
interest are ANNs, which can be organized in deep network architectures consisting
of multiple, hierarchical processing layers (Janiesch et al., 2021). This allows them
to automatically process spatial information in raw image data and learn patterns
that are relevant for prediction tasks, which is often also referred to as deep learning
(DL) (LeCun et al., 2015). The automated learning of patterns by DL models is
usually done in a supervised manner. This means that humans provide training data
that are tagged with labels/annotations to specify the target of the learning task
(Hastie et al., 2017; Sager et al., 2021). Computer vision is also gaining momentum
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in the field of IS. Extant publications range from use cases like road crack detection
(Chatterjee et al., 2018) and automated fashion recommendations (Griebel, Welsch,
et al., 2019) to guidelines for the technical aspects of CV projects (Griebel, Dürr,
et al., 2019).

7.2.2 Hybrid Intelligence

Due to the rising capabilities of AI in the last decade (Russell, 2016), researchers are
increasingly reconsidering much of the established design knowledge regarding how
intelligent systems should be designed. As noted by Zheng et al. (2017), the develop-
ment of AI is profoundly changing how humans interact with their environment and
how they support their work processes. The authors introduce hybrid-augmented
intelligence as a means to combine “human cognitive ability and the capabilities of
computers”. Similarly, Dellermann, Ebel, et al. (2019) define hybrid intelligence as
“the ability to achieve complex goals by combining human and artificial intelligence,
thereby reaching superior results to those each of them could have accomplished
separately”. The core concept of augmenting both sides, computers and humans,
and thus creating a symbiotic relationship between them is also mentioned by Akata
et al. (2020), Maedche, Legner, et al. (2019), and Seeber et al. (2019).
While the benefits of the relationships are depicted in the recent literature, it is also
mentioned that to achieve beneficial utility; it is required to “[develop] novel inter-
action paradigms that exploit the strengths and overcome the weaknesses of both
partners” (Terveen, 1995). However, so far, only a few researchers have formalized
the required design knowledge.
Zheng et al. (2017) provide a framework that suggests a human-in-the-loop ap-
proach comprising a computer with AI capabilities that outputs a prediction along
with confidence scores as an uncertainty assessment and a human decision-maker.
Additionally, it is suggested that the human gives feedback to the AI system through
additional data labeling. In comparison to the rather human-centric approach,
Schwartz et al. (2016) provide the concept of an augmented human in the context of
industrial cyber-physical systems. The human is equipped with sensors and augment
VR tools like gloves and glasses to be able to act on the AI system’s suggestions
and provide additional feedback through collected sensor data. Dellermann, Ebel,
et al. (2019) provide a structured overview of design knowledge for HI systems
in the form of a taxonomy, including the dimensions task characteristics as well
as human and machine learning paradigms. As a specific example, Dellermann,
Lipusch, et al. (2019) outline design principles for business model validation by
suggesting to combine crowd-sourced data and machine predictions. Table 7.1 on
page 147 summarizes our findings of the related work of HI systems.
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7.3 Research Approach

DSR is a fundamental paradigm in IS research concerned with the construction of
socio-technical artifacts to solve organizational problems and derive generalizable
design knowledge (Gregor & Hevner, 2013). One of the ultimate goals of DSR
is the formulation and consolidation of design theories (Beck et al., 2013). To
communicate intermediate theoretical results of the theorizing process, so-called
nascent design theories, Gregor and Jones (2007) describe important components,
ranging from the purpose and scope (meta-requirements) and justificatory knowl-
edge (kernel theories) to principles of form and function (design principles) and
expository instantiations (implemented systems).
In order to derive generalizable design knowledge, two strategies are applicable
(Iivari, 2015). The first strategy (“Strategy I”) deals with the construction of IT
meta-artifacts as a generic solution concept for a problem class in advance. In
the second strategy (“Strategy II”), abstract knowledge is derived in a reflective
manner, i.e., specific IT artifacts are first designed and implemented within a prac-
tical context. Subsequently, generalizable knowledge emerges during or after the
design iterations of the artifact when abstracting from the specific implementation
(Iivari, 2015; Möller et al., 2020). For the work at hand, we chose a reflective,
practice-inspired approach in-line with Strategy II. More specifically, we analyzed
CV development projects from industry and accumulated design knowledge from
specific implementations while informing our findings with justificatory knowledge
from well-established kernel theories to support the observed phenomena. In this
way, it was intended to unveil implicit design knowledge concerning socio-technical
mechanisms with respect to hybrid intelligence interactions, which so far have been
little addressed in the literature on the design of CV systems.
To conduct our research, we organized a focus group with experts in the field
(Morgan, 1996). For this purpose, we identified researchers in the IS community
fulfilling the following four criteria: (i) active involvement in multiple CV system
development projects, (ii) fundamental understanding of AI-based technologies,
(iii) sufficient experience in conducting DSR projects, and (iv) solid understanding
of IS-related theories. As a result, we recruited six researchers from six different
institutions which were asked to participate in a series of workshops to reflect their
collected design knowledge during their involvement in CV-related development
projects.
Due to COVID-19, the workshops were conducted using video conferencing tools.
Initially, there was no predefined structure for the full series of workshops as it only
became apparent during the sessions which consecutive steps were necessary to
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derive generalizable design knowledge. Overall, this resulted in a total of seven
workshop sessions over a period of three months, each lasting between 60 and 120
minutes. To mitigate the bias caused by opinion leaders within the group, there
were several tasks to be performed by each researcher individually before presenting
and reflecting the results in each workshop with the entirety of the group. The full
series of workshops is summarized in Figure 7.1 and is briefly described below with
regard to the performed activities and achieved results.

Problem 
definitionWorkshops

Individual
reflection

Case 
selection

Case level 
concepts

Meta level
concepts

Unified 
conceptual-

ization

Multi-level 
design 

knowledge

Final 
agreement

Familiarization Case 
reflection Theorizing Unification Connection Consolidation

1 2 3 4 5 6 7

Results & 
Focus of 
this Work

Implemented 
features

Objectives &
Requirements

Case 
characteristics

Mechanisms

Design principles

Design features

Meta-requirements

Testable 
propositions

Generic 
constructs

Explained 
mechanisms

Application environment 

Moderators

Evaluation 
studies

Design 
theory

Justificatory knowledgeConceptualization of 
CV-HI interaction

6 x
Real 

world 
cases

Kernel
theories

Prospects 
for future 

work

Fig. 7.1.: Applied research approach and focus of this paper.

In the first session, the project’s initiator introduced the research idea and the group
agreed upon a common understanding of relevant fundamentals (e.g., CV/AI/HI
technology, understanding of generalizable design knowledge) to establish a shared
problem definition. On this basis, all participants had to prepare initial proposals on
how design knowledge could be derived and presented systematically by using their
individual experiences from research and practice.
In the second session, the individual proposals were discussed, which finally resulted
in the decision to pursue a reflective methodological strategy by starting from a
selection of practical cases and then incrementally accumulating and generalizing
design knowledge towards the development of a nascent design theory. Thus, a total
of six CV development cases were chosen as a basis for knowledge generation, which
subsequently had to be reflected and characterized by the individual researchers.
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In the third session, the results were presented to the group to derive a collection
of (i) case requirements, (ii) implemented features, and (iii) several more case
characteristics (e.g., domain, criticality, expertise of users) to classify each specific
case (cf. Section 7.4). By comparing similarities and differences across all projects,
various case level concepts could be extracted and tentatively connected to gain a
first level of abstraction towards generalizable design knowledge. This included
known concepts like supervised learning, active learning, degree of automation,
accuracy, speed, image complexity, labeling cost, black-box behavior, explanation,
uncertainty, compliance, and others. On this basis, all researchers were asked to
conduct an individual step of theorizing. To this end, each participant should prepare
conceptualizations and schemata to link theoretical constructs and mechanisms with
observations collected within the cases.
The results were jointly discussed in the fourth session. Several potential kernel
theories were identified, such as technology acceptance theory (Venkatesh et al.,
2012), principal-agent and signaling theory (Eisenhardt, 1989), and algorithm aver-
sion (Dietvorst et al., 2015). In combination, they resulted in several meta-level
concepts like performance, effort, system restrictiveness, information asymmetry,
perceived control, trust, and others. However, the participants struggled to connect
observations from the application environment with justificatory knowledge from
theory. This led to a divergent picture within the individual conceptualizations,
which were created with different emphases on different levels of abstraction. For
example, some participants focused on HI interaction patterns between the human
and the computer from different theoretical lenses, while others connected specific
case properties, features, and requirements to theoretical constructs. As a result,
three researchers agreed to translate the different views into a unified conceptual-
ization to serve as a foundation for further discussion.
In the fifth session, the unified conceptualization was discussed and incrementally
refined by the entire group. With this unified framing, three distinct design-related
components could be distinguished from each other towards an adequate level
of abstraction of derived design knowledge, precisely (i) meta-requirements, (ii)
designed mechanisms in relation to the HI interaction, and (iii) case characteristics
in terms of moderating effects related to the nature of the vision-based task (e.g.,
task criticality) (cf. Section 7.5). All researchers were asked to iterate another cycle
of individual reflection and formulate testable propositions to reflect on how these
three components are related to each other as observed within their cases. In this
respect, the identified mechanisms had to be translated into corresponding design
principles by abstracting from particular features implemented in the CV projects
(Gregor et al., 2020).
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In the sixth session, the design principles and propositions were evaluated and
harmonized. As a result, an overview of the generated multi-level design knowledge
was derived spanning from high-level mechanisms and meta-requirements to case-
specific features and concrete requirements.
In the seventh session, the results were revalidated and minor adjustments on
all partial results (i.e., meta-requirements, mechanisms, design principles, design
features, moderators, and testable propositions) were implemented. The required
steps for future work were discussed, precisely the setup of corresponding evaluation
studies towards the development of a nascent design theory. At this point, the series
of workshops was paused to prepare the results for presentation and obtain external
feedback from a broader community.

7.4 Overview of Regarded Cases

For the selection of suitable CV development projects, the principles of Yin (2017)
were followed to select cases that shared common properties (e.g., implementation
of AI technology) while differing from each other to obtain the required variance
(e.g., vision-based task, application domain). This non-probability sampling tech-
nique is similar to comparison focused sampling in which cases are selected to
compare, contrast, and learn about characteristics that explain their similarities and
differences Saunders et al. (2009). On this basis, a total of six different cases were
selected, which we describe in the following. The reported characteristics were dis-
cussed (cf. Figure 7.1 on page 149) until the experts agreed that the characteristics
both represent the individual cases appropriately and can be compared across cases
(Table 7.2 on page 153). All cases were conducted in cooperation with industry
partners. Some projects are completed, while others are still under continuous
development.
Car configuration (CAR). Car manufacturers offer their customers car configurators
to assess different combinations of characteristics like color, rims, and headlights. As
the 3D car rendering process is highly complex, the rendering software can output
virtual car models with black holes instead of the chosen part. Currently, these faulty
virtual car models are identified manually. This is highly inefficient as there are
billions of possible combinations. A CV-HIS was built to detect faulty virtual car
models. The CV-HIS relies on active learning to reduce the labeling effort.
Energy infrastructure (NRG) (compare Chapter 6). At present, power line mainte-
nance relies mainly on human inspection via manual ground visitation, helicopter-
based patrolling, and tower climbing. This is costly, time consuming, and often
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hazardous. A CV-HIS was developed that detects faults like bird nests or open safety
pins on image data acquired by unmanned aerial vehicles. The detected faults are
presented to human operators as a basis for decisions like prioritization and route
optimization.
Solar panels (SOL). Manufacturers of solar panels must meet high quality standards
when offering their products on the market. It is therefore important that quality
impairments are detected at an early stage in the manufacturing process to treat
them accordingly and avoid unnecessary costs. Thus, a CV-HIS was developed
in which defects had to be detected automatically based on electroluminescence
images. The challenge here was to separate defective solar cells from flawless ones
and distinguish between specific types of defects while ensuring low inference times
as determined by the rigid setting of the production environment.
Viticulture (VIT). Apart from planting crops, harvesting grapes, and producing
vine, viticulture is faced with many tasks and obstacles, such as control of perfect
planting positions, disease detection, and personnel allocation, especially in the
harvesting process. To support these tasks with a low-cost structure, a CV-HIS was
deployed that was integrated into the daily processes with minimal additional effort
by mounting cameras on farm tractors to capture image data of vines and grapes to
be subsequently used for disease detection and yield prognosis.
Cutting tools (CUT) (compare Chapter 5). In machining processes, unwanted
material is removed from a workpiece by a cutting tool. Different types of wear
occur on the tools due to friction and heat, so over time the tools are rendered
unusable. A frequent task in the machining industry is the visual inspection of
cutting tools. It serves as a decision basis for developing new generations of tools as
well as for optimizing the parameters of machining processes. For the decisions, it is
important to know precisely where which type of wear occurred. Here, a CV-HIS
was developed that performs this visual analysis.
Architectural floor plans (ARC). The architecture, engineering, and construction
industry often relies on floor plans only available as rasterized images or analog doc-
uments. For tasks such as pricing services and building operations, information such
as symbols, room size, or space use must be extracted. A CV-HIS was developed to
automate the digitization and analysis of floor plans. Domain experts were included
to manage unknown symbols and uncertain predictions.
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7.5 Conceptualization of CV-Based Hybrid Intelligence
Systems

To aid the design process for CV-HIS, we integrated HI theory with findings from the
cases to depict a conceptualization that forms the basis of our design knowledge.
The CV-HIS is conceptualized as an interaction of the human and the computer
to solve a vision-based task in alignment with granular case requirements. The
conceptual model is depicted in Figure 7.2 on page 155 distinguishing between
three components.
First, case requirements could be observed and linked to generic theoretical con-
structs to obtain meta-requirements determining the need, and likewise, the useful-
ness of any designed system functionalities.
Second, it was possible to observe several mechanisms within the CV-HIS interaction
patterns between humans and computers as introduced by specifically implemented
design choices, which could also be justified by mechanisms of related kernel theo-
ries. We can relate these mechanisms to three aspects that act as key resources in
AI-based systems: data, model, and decision (Thiebes et al., 2020). The computer
provides an automation mechanism that uses labeled image data to learn a model
that generates a decision in the form of recognized objects (e.g., through the presen-
tation of bounding box coordinates). Since the computer employs black-box models
like deep neural networks, there exists a natural information asymmetry between the
human and the computer. The human cannot fully comprehend the inner decision
logic (i.e., the model) of the computer, and thus the computer is required to provide
transparency and reduce information asymmetry by using a signaling mechanism
(e.g., visualizing the relation between data and decisions). Additionally, the human
wants to maintain some control within the decision process through a modification
mechanism, which, for example, allows to modify data labels or manually change
the computer’s decision. Following the idea of a beneficial symbiosis in HI systems,
the proposed mechanisms need to be coordinated by a collaboration mechanism that
provides an interaction design via push and pull principles so that both sides can
request resources (e.g., the computer can employ an active learning approach and
signal the need for additional labels as a data modification from the human).
Third, several case characteristics, particularly related to the nature of the vision-
based task, could be identified as potential moderating factors that are likely to have
an effect on the relevance and need for any designed system functionality. This
includes characteristics like the task’s criticality and complexity or the CV experience
of a user, as exemplarily summarized in Table 7.2 on page 153.
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Case 
characteristics

(e.g., complexity, 
criticality)

Case 
requirements

(e.g., performance, 
effort)

Human ComputerDecision

Automation mechanism
(e.g., feature learning)

Data
(e.g., image, label)

Model
(e.g., neural network)

Decision
(e.g., recognized object)

Modification mechanism
(e.g., labeling)

Signaling mechanism
(e.g., XAI, uncertainty)

Collaboration mechanism
(e.g., active learning)

Fig. 7.2.: Conceptualization of CV-based hybrid intelligence systems.

7.6 Design Knowledge of CV-Based Hybrid Intelligence
Systems

In this section, we present our results on the accumulated design knowledge of CV-
HISs. Due to space limitations, we focus on the presentation of (i) meta-requirements
and their connection to case requirements and related kernel theories, as well as
(ii) mechanisms introduced by design in conjunction with design principles and
exemplary features as implemented in the cases. A summary of the derived elements
and their relationships is depicted in Figure 7.3 on page 156. In the following,
we provide further details by organizing our findings in relation to the identified
mechanisms. Moreover, we present some exemplary propositions and the role of
observed moderators at the end of this section.

7.6.1 Automation Mechanism

When examining the extracted requirements from the individual cases, it became
apparent that the main requirement of AI-based CV systems is to reduce the manual
effort to perform the vision-based tasks. Depending on the baseline situation, effort
can take on different dimensions. In the VIT case, for example, there was no system
support before so that previously vineyard objects had to be inspected and counted
manually. In other cases, effort refers to the operations and configurations during
system usage to perform the vision-based task. In the SOL case, for example, electro-
luminescence images were previously inspected by domain experts via techniques
that required costly image engineering efforts that had to be reduced.
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MR1: Increase 
performance

MR2: Decrease 
effort

MR3: Decrease 
information 
asymmetry

MR4: Decrease 
system 

restrictiveness

Computer

Computer
Human & Computer

DP1: Automation mechanisms

DP2: 
Signaling 

mechanisms

DP4: 
Collaboration 
mechanisms

Meta requirements Design principles

Data transparency

Model transparency

Decision transparency

Human

DP3: 
Modification 
mechanisms

Data modification

Model modification

Decision modification

Fig. 7.3.: Meta-requirements and design principles for CV-based hybrid intelligence systems.

Another important requirement across all cases concerned the performance of the
system. As such, it was necessary to automatically process and analyze visual objects
while achieving a certain degree of quality, which was often required to be close to
or even better than human performance. This requirement was expressed by several
dimensions, such as model accuracy, inference time, and required resources. In the
ARC case, for example, almost 100% detection accuracy was required for correct
order generation and pricing. In the SOL case, a defect detection accuracy of 98%
was demanded while simultaneously guaranteeing inference times of less than two
seconds. In the CUT case, on the other hand, the users did not press for perfect
predictions as long as they were good enough and cheaper than human experts.
Effort expectancy and performance expectancy are also pivotal factors within the

unified theory of acceptance and use of technology (UTAUT). Among several other
determinants, such as social influence and facilitating conditions, both factors play
a significant role whether users adopt and use a new system (Venkatesh et al.,
2012). Since this effect can also be assumed in the given context, we can derive the
following two meta-requirements (MRs) in-line with theory and observations from
practice:

MR1: The vision-based task should be supported by system functionalities
that improve the overall task performance (e.g., detection accuracy).

MR2: The vision-based task should be supported by system functionalities
that decrease the human effort required to perform the task (e.g., manual
inspections).
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The mechanism, introduced by design, which essentially addresses these two re-
quirements and thus constitutes the main strength of the computer within the HI
interaction is the automation mechanism. This is about automatically extracting
and processing useful information from image data that can be exploited for the
respective vision-based task. As concrete system features, implementing this mech-
anism, different types of DL models could be identified across the six cases that
are basically all based on convolutional neural network (CNN) architectures. The
nested design of CNNs allows them to be fed with high-dimensional raw data and
then automatically discover internal representations at different levels of abstraction
that are needed for visual recognition tasks (LeCun et al., 2015). On this basis, CV
tasks can be executed with high quality results while outperforming conventional
types of CV systems, such as statistical approaches or shallow ML. Moreover, in
contrast to conventional systems, there is no need for extensive data preparation,
especially with regard to manual feature engineering, thus minimizing undesired
human effort. The only central prerequisite for DL models is the availability of
sufficiently large training data with labeled instances so that they can automatically
recognize relevant structures. In summary, we therefore formulate the following
design principle (DP) addressing the automation mechanism.

DP1: Provide the system with the functionality to automatically extract
visual features from image data and build a model that supports the vision-
based task to minimize undesirable manual interventions.

This design principle constitutes a core principle of today’s CV systems, as it can
also be observed in broader practice. It has a remarkable influence on all other
design-related components, such as (meta) requirements, design features and their
abstraction towards design principles. This includes, for example, that DL models
generally show black-box characteristics limiting their interpretability, or that they
are prone to biases induced into training data by undesired effects, which demand
for further mechanisms to address such issues (Janiesch et al., 2021).

7.6.2 Signaling Mechanisms

Besides the main requirements of automation, the individual case requirements
revealed additional needs concerning the reduction of information asymmetry be-
tween the human and the computer within the CV-HIS. In the VIT case, for example,
a comparison between the detection of vines and grapes by the AI and the actual
input data and bounding boxes was required to rely on the yield prognosis. Similarly,
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system users in the SOL case asked for explanations on which basis automatically de-
tected errors were classified in one class or another. Other examples could be found
in the SOL, NRG, and CUT cases, where users asked for input data visualizations to
inspect training samples and labels to reduce uncertainty with regard to the actual
labeling process.
Adopting principal agency theory, we can state that there is an information asym-
metry between the human and the computer in CV-HISs that needs to be resolved
or reduced (Vladeck, 2014). On the one hand, the human has the meta-knowledge
of what constitutes a real-world object that should be detected from image data by
the computer, whereas the computer itself does not have such knowledge due to the
lack of superintelligence (Jebari & Lundborg, 2020). On the other hand, the trained
system outputs predictions that are not comprehensible for the human due to the
black-box-nature of the automation mechanism (Wanner et al., 2020). Failure to
reduce this information asymmetry can result in decreased system adoption (Castelo
et al., 2019; Miller, 2019; Oh et al., 2017). Thus, connecting the theory with the
case requirements, we can derive the following meta-requirement:

MR3: The vision-based task should be supported by system functionalities
that reduce information asymmetry between the human and the computer.

Thus, to comply with the requirement, signaling mechanisms can be introduced by
design that reduce uncertainty by creating explanations for the different aspects
of the CV-HIS (i.e., data, model, and decision). The first set of explanations are
aimed at increasing data transparency. In CV problems, the user is usually faced
with detecting objects and classifying them into several available classes. The user
needs to be able to determine if the input data along with its labeling is in alignment
with his or her understanding of the problem domain to provide a correct input
to the computer to be processed (e.g., only providing image counts as labels for
criminal surveillance where specific persons are sought after will not suffice (Barbosa
& Chen, 2019). Specific features related to this aspect are visualizations of input
data together with suggested labels via labeling tools or providing metadata on
input images. The second set of explanations covers model transparency. This
may include to provide global explanations and meta-information regarding the
trained model (e.g., configurations, hyperparameters) that are useful for a user to
better comprehend the system’s behavior. Lastly, local explanations are required to
create decision transparency. The human should be able to compare the provided
explanation with his or her decision logic to assess the quality of the system’s decision.
Methods from the field of explainable AI like LRP (layer-wise relevance propagation)
or Grad-CAM (gradient-weighted class activation mapping) can be implemented for
this purpose to generate pixel heat maps highlighting important parts of the input
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image that are responsible for the prediction. Enhancing the computer with the
ability to express its confidence in single predictions is another option to reduce
decision transparency by implementing features such as uncertainty measures based
on, e.g., Monte Carlo dropout (Gal & Ghahramani, 2016). In summary, we can thus
formulate the following design principle:

DP2: Provide the system with the functionality to generate and signal
explanations about the computer’s behavior in terms of data, model, and/or
decision to increase transparency for the human.

Figure 7.4 shows exemplary images, labels, predictions, and uncertainty maps from
the CUT case. In the uncertainty maps, a higher degree of uncertainty is indicated by
brighter pixels. The left side depicts a situation with high prediction quality. In the
uncertainty map, only the pixels at the borders between classes are bright/uncertain
- classifying these pixels is also difficult for humans (Kendall et al., 2015). The
images on the right, on the other hand, depict a situation with low prediction quality
where whole areas are bright. Consequently, the system indicates that it is uncertain
about the situation, and thus, reaches its limits for correctly inspecting the cutting
tool.

Original Images

Human Labels

Decisions of 
CV System

Uncertainty 
Maps

Fig. 7.4.: Uncertainty-based signaling in the CUT case (Treiss et al., 2020)
(compare Chapter 4).

7.6.3 Modification Mechanisms

On top of the previously discussed mechanisms, we could observe that the human
using the developed CV-HIS did not only ask for more transparency to better un-
derstand the systems’ behavior but that they also wanted to be in control of the
situation they were facing. For example, in the CUT and ARC cases, professionals
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asked for the explicit possibility to intervene and make decisions based on their own
experience when uncertain outcomes are indicated by the system. Furthermore, in
the SOL and VIT cases, we could observe the requirement to have the option to
directly adjust faulty labels when inspecting input data in order to achieve better
model quality. Another example is given in the SOL case where the users asked to
have control over the selection and configuration of detection models to choose a
suitable approach depending on the situation (e.g., available resources). With regard
to informing theories, our observations can be related to two theoretical lenses;
that is algorithm aversion and decision support system (DSS) theory. Algorithm
aversion describes that individuals are hesitant to rely on predictions computed by
algorithms and rather prefer human forecasters because humans tend to believe they
have superior reasoning in comparison to algorithms. However, this effect is not
always present. Instead, algorithm aversion can be reduced by giving humans (even
a slight degree) of control over the algorithm to modify its prediction (Dietvorst
et al., 2018). Similarly, DSS theory states that a system should not be too restrictive
when preparing decisions in order to not negatively limit the users’ decision strategy
and thus allow sufficient control over the situation (Meth et al., 2015). To sum up,
we can therefore derive the following meta-requirement:

MR4: The vision-based task should be supported by system functionalities
with minimal restrictiveness facilitating a sufficient degree of flexibility for
the human user.

To address this requirement, it is therefore necessary to give the user sufficient
flexibility and control over the system by providing appropriate modification mecha-
nisms. In analogy to the manifestation of the signaling mechanisms, modification
possibilities can also be designed at multiple touchpoints between the human and
the computer (i.e., data, model, and decision components). Considering the modifi-
cation of data, e.g., the designers of the SOL case developed an integrated labeling
tool that was closely connected to the actual detection system. In this way, domain
experts could quickly enter the image repository at any time to refine bounding
boxes or modify class affiliations whenever it was necessary according to their expert
knowledge. Referring to another example introduced above, it was a crucial design
element within the CUT and ARC cases to integrate human knowledge in uncertain
situations, which is related to the modification of the decision. As such, we can
formulate the following design principle:

DP3: Provide the system with the functionality to modify the computer’s
behavior in terms of data, model, and/or decision to allow the human to
contribute knowledge and to control the vision-based task.
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7.6.4 Collaboration Mechanism

As outlined by Dellermann, Ebel, et al. (2019), collaboration between human
users and the computer is an important characteristic of HI. It was found from
the CUT and ARC cases that a collaboration mechanism can be crucial for the
overall task performance. The collaboration mechanism raises awareness about a
collaborator’s activity and subsequently enables input requests with regard to the
different mechanisms and aspects (e.g., the human could request an explanation for
a specific decision from the computer). Hence, we formulate the following design
principle:

DP4: Provide the system with the functionality to facilitate a collaboration
of human and computer-based mechanisms.

The collaboration mechanism enables the interplay of the CV-HIS mechanisms by
providing collaboration functionalities such as push and pull requests. For example,
when individual decisions are uncertain (DP2 - decision transparency), the CV
system can request the user to modify the provided decision where appropriate (DP3
- decision modification). This is an important aspect of the CV-HIS developed in
the ARC case. The user can also support the learning process of the computer by
utilizing his or her knowledge to label unknown data (DP3 - data modification) where
the system expects the highest level of improvement (DP2 - model transparency).
This pattern, frequently referred to as active learning, is a well-known example of
dialogue-based collaboration mechanism and is a crucial design element within the
AUT case. Another example of such a combination is given in the SOL case, where
users can also choose between different levels of model complexity (DP3 - model
modification) based on the task characteristics and the computer’s signaling outcome
(DP2 - model transparency).

7.6.5 Outlook: Exemplary Propositions and Moderating Effects

With the accumulated design knowledge outlined in the previous sections, it is
possible to derive a set of testable propositions (TePs) constituting the relationships
between meta-requirements and design principles. Since we cannot fully discuss
all derived propositions due to space limitations, we only provide two examples by
TeP1 and TeP2 to pave the further way towards a nascent design theory.
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Example proposition 1: Using a CV-HIS with automation mechanisms
(DP1) will result in a higher degree of perceived performance than using a
system without automation mechanisms.

Example proposition 2: Using a CV-HIS with automation mechanisms
(DP1) and modification mechanisms (DP3) will result in a higher degree of
perceived control than using a CV-HIS with automation mechanisms, but
without modification mechanisms.

Both propositions reflect generalized design knowledge as observed within the cases
and place it in relation to a respective reference system. Thus, TeP1 describes the
effect of employing a system with the core design principle DP1 in contrast to an-
other type of CV system (e.g., conventional system based on statistical approaches),
whereas TeP2 describes the effect of two different design configurations with regard
to DP1 and DP3. Thus, with the different meta-requirements and design principles, a
system of propositions can be obtained that describes the effects of the mechanisms
introduced by design in their entirety. However, since not all mechanisms could be
observed equally across all cases, the propositions are only tentative assumptions
that need to be examined in larger evaluation studies in more controllable settings
and with more users involved.
Furthermore, we assume that the contextual case characteristics, such as the critical-
ity of the vision-based task or the CV experience of users, might have a significant
influence on the intensity of the need for any design principle. Thus, we assume,
for example, that there is a higher need for explanation (DP2) and modification
(DP3) of generated decisions in cases where domain professionals are responsible
for critical situations that can lead to high costs or even lives at risk. Similarly, we
expect that CV cases with rather technically oriented users (e.g., SOL case) will
presumably require a higher degree of control over models and configurations (DP3)
so that they can bring their technical expertise into the processes than it will be the
case, for example, in agricultural domains (e.g., VIT case). While some of these
characteristics and their influences were already captured in this research project,
such moderating effects need to be further examined in future studies.
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7.7 Conclusion

In this paper, we provided insights from a research project with the goal to accumu-
late prescriptive design knowledge for computer-vision-based hybrid intelligence
systems. To this end, we pursued a reflective DSR approach, introduced as “Strat-
egy II” by (Iivari, 2015). We conducted a series of workshops with IS researchers
involved in several industrial computer vision projects. As a result, we were able
to derive generalizable design knowledge illustrated through meta-requirements,
mechanisms, design principles as well as testable propositions. Even though our
focus was on the application area of computer vision, we are confident that the
results show a more generalizable character and can therefore be transferred to
broader contexts in which hybrid intelligence systems need to be designed (e.g., in
the realm of natural language processing).
However, the generalizability of these results is subject to certain limitations. For
instance, we only regarded a total of six cases and future work should include
additional examples to further facilitate the theorizing process. Furthermore, due to
space restrictions, we could only elaborate on some excerpts of the current findings.
For instance, we had to exclude design principles with a more technical focus (like
scalability and robustness), and we could not discuss the potential moderating
effects and testable propositions in sufficient detail, which will therefore be part of
subsequent work.
Our work can help practitioners to design CV-HIS in a more human-centric manner
by incorporating socio-technical considerations. From an academic point of view,
this research contributes to the knowledge base by proposing generalizable design
knowledge and laying the foundation for many future research directions in need
of further investigation by considering factors beyond technical performance like
restrictiveness and information asymmetry between human and computer. Future
work needs to focus on the testable propositions and their translation into evaluation
studies and experiments. A promising field of research lies ahead.
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Part IV

Applications for Sustainability





Facilitating Sustainable Smart
Product-Service Systems with
Computer Vision1

8

8.1 Introduction

In addition to the agricultural and energy sectors, the manufacturing industry is
one of the largest emitters of CO2 (Edenhofer et al., 2014) and its demand is con-
tinuously rising (Hatfield-Dodds et al., 2017). Therefore, there is an urgent need
to reduce the carbon footprint of the manufacturing industry (Park et al., 2009).
An option to address this challenge is to substantially reduce waste generation
through prevention, reduction, recycling, and reuse, as formulated by the United
Nations (United Nations, 2015, p. 27). However, technical innovations enabling and
supporting these activities are an imperative (Mohmmed et al., 2019).
In recent years, there have been major breakthroughs in the field of artificial intelli-
gence (AI) systems based on deep learning (DL), which have enabled them to surpass
human performance in specific tasks (He et al., 2015; D. Silver et al., 2017). As
described by Vinuesa et al. (2020), AI can positively affect sustainable development
and multiple frameworks help to structure these endeavours (S. Ren et al., 2019;
Zhang et al., 2017). However, thus far, only a few real-world implementations of AI
address sustainable development goals.
To address this research gap, this work applies DL-based computer vision (CV) to
facilitate initiatives that address the aforementioned challenges. Specifically, we
utilize CV to efficiently determine the wear states of products. As machine learning
(ML) and DL has been shown to yield benefits in the related field of smart manufac-
turing (Flath & Stein, 2018; Miguéis, Borges, et al., 2022; J. Wang et al., 2018), it
promises to be effective for the proposed approach.
1This chapter comprises an article that is currently under review as: Walk, J., Kühl, N., Saidani, M.,
Schatte, J (2022). Artificial Intelligence for Sustainability: How Computer Vision Can Facilitate
Sustainable Smart Product-Service Systems — Evidence From Life Cycle Assessments Based on Two
Case Studies. Working Paper. Note: The abstract has been removed. Minor edits have been made and
tables and figures were reformatted, and newly referenced to fit the structure of the thesis. Chapter,
section and research question numbering and respective cross-references were modified. Formatting
and reference style was adapted and references were integrated into the overall references section of
this thesis.
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The products investigated in our case studies are machining tools used for machining
processes and rotating anodes used in diagnostic imaging applications. These prod-
ucts show different types of wear over their life cycles, which can only be observed
accurately with a microscope. We employ a DL-based CV model, which is a special-
ized AI technique, to determine the wear state of these products from microscopic
images. For the associated use cases of our products, complete automation is neither
possible nor desirable. Instead, we rely on combining the strengths of human and
artificial intelligence — an approach called hybrid intelligence (Dellermann, Ebel,
et al., 2019). The DL-based CV detects product wear from images in a reproducible
and efficient manner. This task is tedious and difficult for humans to perform.
However, final decisions, such as the adaptation of machining process parameters,
are at the discretion of human experts. They can incorporate a plethora of additional
information, such as operating conditions and years of domain expertise. At present,
training an AI to incorporate this additional information is infeasible because a large
amount of data is required to reflect all the nuances of real-world situations.
The results of the wear analysis performed through CV facilitate different types of
product-service systems (PSSs) that support environmental sustainability in four
ways. First, it can facilitate typical reversible strategies (4R): re-design, remanufac-
turing, reuse, and recycling (X. Li et al., 2021). Understanding the current wear state
of a product is crucial for deciding which one of the 4Rs is most suitable from an
economic and environmental sustainability perspective. Second, the product usage
stages can be improved in terms of environmental sustainability. Data on the usage
of products are scarce and generally of low quality because the products are typically
owned by customers at this stage (Zhang et al., 2017). The proposed approach pro-
vides information about this important phase, and thus, it enables more data-driven
product lifecycle management. Third, assessing the wear state of products using
CV can improve the usage of the same product in future iterations. For instance,
P. Wang et al. (2018) show for steel that altering the usage stage is one of the biggest
levers of manufacturing companies regarding sustainability. Finally, result-oriented
PSSs can yield sustainability benefits (Tukker, 2015). In result-oriented PSSs, the
client and provider agree on an outcome, but the provider can choose how the
outcome will be achieved — in particular, no predefined product is involved (Tukker,
2004). However, a detailed understanding of product usage is necessary to offer
result-oriented PSSs because it is crucial to assess the risks and costs to make a
competitive yet profitable offering (Tukker, 2004). An accurate assessment of the
wear state of products using CV can facilitate a detailed understanding of product
usage.
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Conceptually, the proposed approach depicts a novel type of sustainable smart
product-service system as proposed by X. Li et al. (2021). In contrast to previous
studies by Zhang et al. (2017) and X. Li et al. (2021), the products under consid-
eration do not have to be smart for the proposed approach; that is, no sensors are
integrated in or placed on the product.
This work contributes to the existing literature by demonstrating the effectiveness
of DL-based CV for extracting valuable information from non-smart products to
improve environmental sustainability. We validate this approach using two products
by demonstrating its technical feasibility through an experiment and environmental
sustainability through a life cycle assessment (LCA). The technical feasibility for
detecting wear on the two products is demonstrated, and the environmental sus-
tainability benefit of the proposed approach is verified through LCAs. Furthermore,
the requirements of this approach are conceptualized to provide researchers and
practitioners with guidance regarding its applicability to other PSSs.
The remainder of this work is organized as follows. In Section 8.2, we introduce
relevant foundations and the methodology employed. Subsequently, in Section 8.3,
we present the evaluation and the results of the CV models and the LCAs. In Sec-
tion 8.4, we discuss our work in a broader context and conceptualize it. Finally, in
Section 8.5, we summarize our work and discuss its limitations and possible future
research.

8.2 Materials and Methods

This chapter introduces the relevant foundations in the fields of PSSs, CV, and DL.
We then present the methodology and the selected case studies.

8.2.1 Foundations

In the following section, we first discuss sustainable PSSs and then introduce the
fundamentals of CV and DL.

Sustainable Smart Product-Service Systems

PSSs were first defined in 1999 by Goedkoop et al. (1999) as “a marketable set of
products and services capable of jointly fulfilling a user’s need.” In the early stages of
PSSs, sustainability was already an important concept (A. Q. Li et al., 2020). In 2016,

8.2 Materials and Methods 169



based on their literature review, Annarelli et al. (2016) define PSSs as “a business
model focused toward the provision of a marketable set of products and services,
designed to be economically, socially, and environmentally sustainable, with the
final aim of fulfilling a customer’s needs.” More recently, various authors extended
the concept of sustainable PSSs to be smart based on technological innovations,
such as AI or Internet of things-based connectivity (de Jesus Pacheco et al., 2019;
X. Li et al., 2021; Sakao & Neramballi, 2020). Alcayaga et al. (2019) coined
the term smart-circular systems, which they conceptualized as a combination of
circular strategies, smart products, and PSSs. Based on Ellen MacArthur Foundation
(2016), smart products are considered to possess the ability to sense, store, and
communicate information about their environments and themselves. X. Li et al.
(2021) propose a data-driven reversible framework for achieving sustainable smart
PSSs. They illustrated this framework by sustainably developing a 3D printer. This
work contributes to this area of research by providing empirical proof of sustainable
smart PSSs with the support of AI in the form of DL-based CV models.

Fundamentals of Computer Vision and Deep Learning

CV aims to equip computers with the ability to visually perceive the world similar
to humans (Szeliski, 2010). For decades, CV systems relied on techniques such as
edge detection and filters (Szeliski, 2010), which are now referred to as “traditional”
CV techniques (O’Mahony et al., 2019). Recently, it was shown that CV systems
based on ML have the potential to produce more accurate outputs. In isolated cases,
ML-based CV systems even surpassed human performance (He et al., 2015).
ML is a relatively old field of research, defined in 1959 by Arthur Samuel as giving
computers the ability to learn without being explicitly programmed (Samuel, 1959).
Current CV systems are based on DL, a subfield of ML that relies on deep neural
networks (Janiesch et al., 2021). In particular, convolutional neural networks
(CNNs) are typically applied to CV tasks, as they perform well on visual data (Kim,
2017).
In this paragraph, we briefly describe how CNNs work according to LeCun et al.
(2015). Like other types of neural networks, CNNs consist of multiple processing
layers that learn to represent data with different degrees of abstraction. However,
as opposed to fully connected neural networks the same operations are applied
to all inputs from the previous layer. Hence, the number of weights is reduced
considerably in comparison to fully connected networks. Consequently, a CNN can
be successfully trained with significantly less data and computing power than a
classic fully connected neural network for the same task (LeCun, Bengio, et al.,
1995).
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The following CV tasks are most typical for static images (compare Figure 8.1):
image classification, object detection , and semantic segmentation (Griebel, Dürr,
et al., 2019). In image classification, the CNN output is a class label for the entire
image. In object detection, a bounding box containing the object of interest is
output along with the class label. The information produced by a CNN for semantic
segmentation is even more fine-granular — each pixel in an input image is assigned
a class label.
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Fig. 8.1.: Outputs of typical CV tasks for an image of a cat. Own representation based on
F.-F. Li et al. (2017) and Kosson and Marklund (2018).

8.2.2 Methodology

With the foundations of PSSs and DL-based CV at hand, we now introduce our
methodology. Figure 8.2 on page 172 presents a high-level overview of the method-
ology. First, we describe various steps to assess the feasibility of extracting relevant
information from microscopic images using DL-based CV. The last two steps describe
the LCAs at a high level. As shown at the bottom of the figure, some steps are
performed manually while others are performed by the DL-based CV model. The
following subsection details the CV and LCA methodology.

Computer Vision Methodology

To allow for an accurate assessment of the wear state of products in 2D images, we
train a DL-based CV model to perform semantic segmentation. Semantic segmenta-
tion provides pixel-wise information; thus, it enables a detailed assessment of the
different wear types. According to the domain experts in the case companies, this
level of detail is most helpful for the case studies considered. We use a CNN based
on the U-Net architecture (Ronneberger et al., 2015). This architecture stems from
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the biomedical domain and has become a standard for different types of semantic
segmentation tasks. Semantic segmentation models are typically trained in a super-
vised manner — the neural network learns to solve a task using the optimal results
as a (to be predicted) target during training. For semantic segmentation, the target
is specified in the form of a human-created label that defines the wear class for each
pixel in the corresponding image. To train, tune, and evaluate the DL-based CV,
we split the datasets into training, validation, and test sets (Hastie et al., 2017, p.
222). The training set is used to fit the models, the validation set is used to select
a model configuration from different models with varying hyperparameters, and
the test set is used to estimate the fraction of errors the DL-based CV will commit
later in a — previously unseen — real-world setting. To assess the prediction quality,
we compare the human-assigned labels and predictions and compute numerical
evaluation measures. For the numerical assessment of the predictions, we rely on
the pixel accuracy and mean dice similarity coefficient (mean DSC) (Dice, 1945),
which is a common metric for evaluating the performance of semantic segmentation
models (Setiawan, 2020). It is defined as follows:

Mean DSC = 2
C

C∑
c=1

∑N
i=1 ŷi,c gi,c∑N

i=1 ŷi,c +
∑N

i=1 gi,c

(8.1)

with the prediction ŷ assigning a class label c ∈ C to each pixel i ∈ N . C represents
the total number of classes and N denotes the number of pixels in the input image.
gi,c denotes the one-hot-encoded human labels used as the ground truth. We
implement, train, and evaluate our model using the Python library Keras in version
2.1.6. (Chollet et al., 2015).

Life Cycle Assessment Methodology

Once we are aware of the CV results, we integrate them into a user-centric arti-
fact that supports domain experts in decision-making and facilitates the different
PSSs described previously. Additionally, we discuss the CV results with domain
experts from the case companies. Based on this, we examine the impact on the
environmental sustainability of different PSSs together with domain experts. To
assess the environmental impacts of the selected PSSs, we perform LCAs using the
methodology described in the following.
LCA is an internationally standardized method used for the quantitative environmen-
tal impact assessment of products, processes, services, and systems throughout their
life cycles (Finkbeiner et al., 2006). LCA can be particularly useful for comparing
alternative strategies and understanding the trade-offs between the benefits and
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impacts of different systems, which can help in making informed decisions (Niero
et al., 2014). LCA can be deployed as a quantitative decision-support tool in sustain-
able design engineering or green manufacturing (Saidani et al., 2021).
According to ISO standards 14040 (ISO - International Organization for Standard-
ization, 2006a) and 14044 (ISO - International Organization for Standardization,
2006b), an LCA comprises four major steps:

1. Goal and scope definition: The goal phase defines the overall objectives of the
study. The scoping phase sets the boundaries of the system studied, sources of
data, and functional unit to which the results refer.

2. Life cycle inventory (LCI): A detailed compilation of all the inputs (e.g., mate-
rial and energy) and outputs (e.g., pollutants) at each stage of the life cycle is
performed.

3. Life cycle impact assessment (LCIA): It aims to quantify the relative importance
of all environmental burdens obtained in the LCI by analyzing their influence
on the selected environmental impact categories.

4. Interpretation of results: The outcomes of the LCI and LCIA stages are inter-
preted to find hotspots and compare alternative scenarios.

A key aspect to consider in the goal and scope definition is the functional unit (FU).
It provides a reference to which the inputs and outputs of the LCA can be related
(J. S. Cooper, 2003). According to ISO 14044 (ISO - International Organization for
Standardization, 2006b), the FU should be clearly defined and measurable. This
enables a scientifically sound (i.e., consistent and unbiased) comparison between
different product systems and scenarios. Joint Research Centre (2010) recommends
including the following aspects in the definition of the FU: (i) verb (functional
analysis); (ii) what (form of the output); (iii) how much? (magnitude), how well?
(performance), and how long? (duration).
For the LCIA, the OpenLCA software (2021 version 1.10.3), developed by Green-
Delta (Ciroth et al., 2014), was used to model the PSSs and conduct comparative
LCAs. Within OpenLCA, the Ecoinvent database (2021 version 3.7) (Wernet et
al., 2016) and the ReCiPe 2016 Midpoint (H) method were used to perform the
environmental evaluation. Ecoinvent is one of the most comprehensive and acknowl-
edged databases providing the necessary data for impact calculations, including
region-specific production and manufacturing data for numerous commodities across
multiple industries (Frischknecht & Rebitzer, 2005). ReCiPe is a scientifically sound
and acknowledged impact calculation method that provides characterization factors
and normalization methods for calculating the impact (Huijbregts et al., 2017).
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8.2.3 Case Studies

In this subsection, we introduce our case studies: the products, necessary domain
knowledge, and respective industries. In each case study, we introduce DL-based
CV as a tool to better assess wear and, subsequently, demonstrate how the results
impact environmental sustainability.

Machining Tools

Machining is an important manufacturing process (Black, 1995, p. VI). It is utilized
in numerous industries, such as healthcare (Churi et al., 2009), aerospace (Ezugwu,
2005), and automotive (Tai et al., 2014). Figure 8.3 on page 177 shows an exemplary
turning process, a specific type of machining process. During the turning process, the
workpiece rotates at a high speed; consequently, there is a relative motion between
the workpiece (left) and the cutting tool (right). This results in the removal of
unwanted material from the workpiece (Black, 1995, p. VI). Owing to the powerful
forces and elevated temperature, the cutting tool is subject to wear and must be
changed regularly (Bergs et al., 2020). Analyzing the wear of the cutting tool is
essential for understanding the improvement potential of the machining process.
Because the cutting tools are small and frequently changed, it is economically
unviable to equip the tools themselves with sensors for connectivity, as is the
case with several other small tools with low unit prices (Martin & Kühl, 2019).
Consequently, the visual inspection of worn cutting tools is an important building
block for understanding the wear and, therefore, the improvement potential.
Machining processes are influenced by several interdependent components such
as cutting tools, tool holders, workpieces, workpiece holders, engines, and cutting
fluids. The interplay of these components leads to an inherent variance in the
machining processes. Particularly, the wear on two tools used in an identical process
can vary significantly. Analyzing a single tool only provides a snapshot of the entire
process. By contrast, analyzing several tools provides a more holistic overview of a
given machining process. However, manual visual inspection of cutting tools requires
considerable effort and, therefore, is currently not performed on a large scale. Visual
inspection by CV facilitates efficient analysis of a large number of cutting tools and
consequently allows for more reliable conclusions regarding the machining process.
As described in Section 8.2.2, we utilize a DL-based CV to detect the wear on worn
cutting tools.
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The possible sustainable smart PSSs resulting from this can be grouped into im-
provement of machining processes at customer sites, re-design of cutting tools based on
behavior in use, and establishing the foundation for result-oriented PSSs. These three
approaches will be discussed in greater detail in the following section in terms of
the improvement of environmental sustainability.
Tool producers typically have teams of specialized application engineers who support
customers in improving their machining processes. The visual inspection of worn
cutting tools is an important part of their job. Domain experts describe the current
process for machining process improvements as follows: Typically, an application
engineer visits the production site of a customer and inspects a small number of
worn cutting tools (e.g., three) with a magnifier. Based on this, as well as additional
information, such as machining parameters and domain expertise, a recommenda-
tion for process improvement is provided and implemented. Our approach enables
the inspection of many worn cutting tools as a decision basis. Owing to its efficiency,
it is possible to assess the wear state of a large number of worn cutting tools, for
example, 200. This provides more reliable insights into the process improvement
potential. Consequently, better results are expected from the process improvements.
Additionally, the efficiency of the DL-based CV enables more process improvements.
In Section 8.3.2, we present the results of an LCA for machining process improve-
ments based on the proposed DL-based CV for wear assessment.
These insights can also be utilized in a more strategic way — understanding the
usage behavior of machining tools can aid the design of the next generation of
machining tools. Currently, the development of new generations of machining tools
relies mainly on internal tests in controlled environments, which do not necessarily
reflect real usage and the possible variances therein.
Ultimately, understanding the usage behavior of machining tools can support a
change in the business model. Tool manufacturers typically sell their products to
companies that use them in their production. Research suggests that PSSs, particu-
larly result-oriented ones, can yield both environmental sustainability (Tukker, 2015)
and economic benefits (Annarelli et al., 2016; M. Yang & Evans, 2019). A major
hurdle for the adoption of PSSs is the difficulty of the offering party in estimating
expected costs and risks (Erkoyuncu et al., 2011). Visual inspection of worn cutting
tools using CV can facilitate a quick and accurate estimation of the risks and costs
for a given machining process.
For this case study, we collected 213 worn cutting inserts from a real production
process and captured microscopic images of the cutting edges. The wear mech-
anisms relevant to this case study are shown in Figure 8.4 on page 177. Flank
wear results from friction between the cutting tool and workpiece (Altintas, 2012).
This is the preferable wear mechanism because it occurs continuously. Also, it is
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Fig. 8.3.: Exemplary turning process.

the most frequent wear mechanism (Siddhpura & Paurobally, 2013). In contrast,
chipping and built-up edge are less desirable because they occur suddenly, leading
to a significant deformation of the cutting edge. The cutting edge deformation
can lead to the workpiece being considered scrap owing to its poor surface quality.
Chipping describes the phenomenon of the cutting edge particles breaking off. A
built-up edge occurs because of stress in the form of heat and pressure, resulting
in the deposition of workpiece material on the cutting edge. In our case study, we
trained a DL-based CV model to detect these wear mechanisms using microscopic
images of worn cutting edges. A detailed description of the ML-related technical
details of this case study can be found in Treiss et al. (2020).

(a) Flank wear (b) Chipping (c) Built-up edge

Fig. 8.4.: Common wear mechanisms in machining processes.

We closely cooperated with the domain experts of the case company to validate
the results of the CV model and LCA. Additionally, we were in frequent contact
with them to obtain real data and assumptions as inputs for LCAs. Table 8.1 on
page 178 describes the domain experts as well as the IDs used for the remainder of
this work.
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Tab. 8.1.: Domain experts for the machining tools case.

ID Role
experience

in years

Alpha development engineer 5-10
Beta development engineer 5-10
Gamma application engineer <5
Delta application engineer >10

Rotating Anodes

Modern medicine relies on X-rays for the diagnosis of injuries and illnesses, for
example, broken bones (Behling, 2015, p. 110)2, breast cancer (Behling, 2015,
p. 139), and cardiac and vascular diseases (Oppelt, 2005, p. 479). To produce
X-rays, a cathode emits electrons via thermal emission. These electrons are acceler-
ated towards an anode, where they are decelerated, and X-rays emerge as a result
(Behling, 2015, p. 180). Rotating anodes are typically used for high-intensity X-rays
(Behling, 2015, p. 18). The rotation counteracts overheating because the electron
beam from the cathode hits different spots along the circumference of the anode
(Oppelt, 2005, p. 283). The rotating anode can be considered the most important
part of an X-ray tube, and is usually one of the most expensive parts. It determines
the performance of the overall system (Behling, 2015, p. 233, Oppelt, 2005, p. 280).
During operation, temperatures of rotating anodes reach up to 1,500 °C (2,732 °F)
(Behling, 2015, p. 240) with microsecond-long pulses of up to 2,500 °C (4,532 °F)
(Mehranian et al., 2010). Consequently, in the area where the electron beam hits the
rotating anode, the focal track erodes due to extreme thermal cycling (Behling, 2015,
p. 235, 247). Focal tracks show two types of wear (Behling, 2015, p. 248): Cracks
occur because of repeated heating and cooling, they provide stress relief. Molten
areas appear because the grains of the focal track are isolated due to cracks, and,
consequently, heat conduction to the surrounding material is limited. The focal track
wear often limits the lifespan of a rotating anode (Erdélyi et al., 2009). Examples of
rotating anodes are shown in Figure 8.5 on page 179. Figure 8.6 on page 179 shows
a microscopic image of an eroded focal track.
The state of the focal track often limits the lifespan of the rotating anode. We utilize

a DL-based CV model to detect and quantify the wear state of the focal tracks of the
worn rotating anodes. In this case, it is not only more scalable and reproducible to
characterize the wear state of the product. Owing to the large size of the rotating

2Please note that rotating anodes are a niche and specialized topic. The reference books (and largely
the only ones) for this topic are Behling (2015) and Oppelt (2005), which is why they are frequently
used in this section. The rights for the reuse of images (Figure 8.5 and Figure 8.6) are granted.
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Fig. 8.5.: Rotating anodes based on Behling (2015).

Fig. 8.6.: Microscopic image of eroded rotating anode focal track from Behling (2015).

anodes and focal tracks and the small size of the wear mechanisms, it is almost
impossible for humans to assess the wear state in detail. During our project, we
captured microscopic images of the focal tracks, which enable an assessment of the
wear state. A single microscopic image is more than 19,000 pixels high and 5,000
pixels wide. This microscopic image shows less than 0.5% of the entire focal track.
Hence, a detailed manual assessment of the wear state of an entire focal track is
tedious.
The possible sustainable smart PSSs resulting from this detailed assessment of the
wear state by CV can be grouped into remanufacturing and recycling decisions, re-
design of rotating anodes based on actual wear, and establishing the foundation for
result-oriented PSSs. In this section, we further describe these three approaches for
improving environmental sustainability.
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Tab. 8.2.: Domain experts for the rotating anode case.

ID Role
experience

in years

Epsilon development engineer 5-10
Zeta development engineer >10
Eta sales manager >10
Theta sales manager <5

An assessment of the wear state of the focal track of a rotating anode using CV
enables making an efficient and reproducible decision regarding the options reman-
ufacturing and recycling. There are different options for remanufacturing depending
on the type and severity of the wear. If none of the remanufacturing options is
applicable, the rotating anode must be recycled. As described by Fang et al. (2015),
uncertainty regarding the state of returned products is a major hurdle in remanufac-
turing endeavors, which is addressed by our approach. In Section 8.3.2, we present
the results of an LCA that compares a baseline scenario with a remanufacturing
scenario.
Similar to machining tools, the development of new generations of rotating anodes
can be aided by actual usage behavior and wear instead of internal laboratory set-
tings.
The rationale behind wear information serving as the foundation for establishing
result-oriented PSSs is also in accordance with that regarding the machining tools
described in Section 8.2.3.
For this case study, we collected images of focal tracks of several worn rotating
anodes that were sampled for a realistic wear distribution. As described before, the
images captured by the microscope are large; therefore, labeling an entire image
manually would be extremely tedious. Instead, we choose 1,106 representative
small patches of microscopic images together with domain experts, labeled them,
and used them for the training and evaluation of our DL-based CV.
As stated previously, we cooperated closely with the domain experts of the respective
case company. In addition to selecting representative image patches, they provided
input data for the LCA and validated the results of the CV model and LCA. Table 8.2
describes the domain experts as well as the IDs we use for the remainder of this
work.
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8.3 Results

In this section, we report the application results of our previously described method-
ology. More precisely, we first describe the CV results in Section 8.3.1 and, subse-
quently, in Section 8.3.2, the results of the LCAs.

8.3.1 Computer Vision Results

In the following, we describe the results of the DL-based CV models for the machining
tools and rotating anode case study.

Machining Tools

We split our dataset containing 213 microscopic images of worn cutting tools into
152 training images, 10 validation images, and 51 test images. Figure 8.7 shows an
exemplary original image, human label, and prediction from the test set.
Table 8.3 on page 182 lists the performance results of our trained U-Net on the

(a) Preprocessed input image.

(b) Human label.

(c) Prediction.

Fig. 8.7.: Image from test set with the corresponding human label and prediction of the
neural network (best viewed in color).
Color coding: flank wear = dark grey/red, chipping = light grey/green, and
built-up edge = white/blue.

unseen test set. Theoretically, the DSC can reach values between zero (no overlap
between prediction and ground truth) and one (perfect overlap). In our case,
depending on the wear type, we obtained results between 0.244 (chipping) and 0.991
(background). We attribute the relatively poor prediction performance for chipping
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Tab. 8.3.: Performance results for the machining tools dataset.

Class and Dice coefficients

Background 0.991
Flank wear 0.695
Chipping 0.244
Built-up edge 0.596

Mean DSC 0.631
Pixel accuracy 0.977

to two phenomena: first, chipping seldom occurs in our dataset. Consequently, there
is relatively little data from which the model can learn. Second, the DSC drops to
zero in the case of a false positive, that is, the respective wear class is predicted
but not present in the ground truth, which occurs several times for chipping in our
dataset. We obtained a mean DSC value of 0.631. Although there is no unified scale
to judge the results, they are in accordance with related work in the medical domain
(Zou et al., 2004). Guindon and Zhang (2017) [p.51] state that a DSC of 0.7 is
“deemed to be indicative of an excellent match between the segmentation result and
human expert delineation”. However, to further validate the results, we engaged
in a dialogue with domain experts from our case company. During the discussions,
they confirmed the feasibility of our approach (Alpha and Beta).
Although an efficient assessment of the wear state of machining tools is already

helpful for domain experts, the utility is further increased by the integration of the
outputs in a user-centric artifact. A screenshot showing an exemplary view of the
artifact is shown in Figure 8.8 on page 183. This user-centric artifact was developed
iteratively with seven domain experts as end users. It visually and statistically
aggregates a dataset consisting of images of worn cutting tools from the same
process assessed using CV. Overall, it enables domain experts to interactively explore
the dataset. Consequently, they can combine the information extracted through
CV with their domain expertise to make data-driven decisions. For example, an
application engineer can use the results of the DL-based CV model for wear detection
in the user-centric artifact to optimize the machining processes of customers.

Rotating Anodes

We split our dataset of 1,106 microscopic image patches into 1,031 training images,
37 validation images, and 38 test images. The results reach performance levels
comparable to those of the machining tools case study. These results are listed
in Table 8.4 on page 184. They demonstrate the feasibility of extracting relevant
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Fig. 8.8.: Exemplary screenshot of user-centric artifact for machining tool wear interpreta-
tion.

information from images using CV according to domain experts (Epsilon and Zeta).
In direct comparison with the machining tools, the somewhat lower values for the
evaluation metrics can be explained by the fact that the images of focal tracks of the
rotating anodes do not contain any black background, which is particularly easy to
detect.
A similar user-centric artifact is conceptualized for rotating anodes, which allows

domain experts to explore the wear state as detected by CV. Domain experts can use
it to better understand the wear of rotating anodes — a prerequisite for designing
new generations of rotating anodes based on the usage behavior and for offering
result-oriented PSSs.
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Tab. 8.4.: Performance results for the rotating anodes dataset.

Class and Dice coefficients

Normal surface 0.485
Cracks 0.634
Molten area 0.690

Mean DSC 0.603
Pixel accuracy 0.737

8.3.2 Life Cycle Assessments

Using the performance metrics of the CV models, the potential impact savings and
environmental effects owing to their usage within the processes at our case compa-
nies can be calculated. We followed the LCA terminology depicted in Section 8.2.2.
Goal and scope definition: The main objective of the current LCAs is to assess the
potential impact savings facilitated by the DL-based CV models to enhance the usage
and lifespan of manufactured products through PSSs. For the two case studies, the
status-quo situation is compared with improvement scenarios that are supported by
the DL-based CV models:

• For the machining tools case, the FU is defined as follows: Manufacture 100
unit shafts (42CrMo4, 800 grams) per hour with tungsten carbide cobalt
cutting tools (WC-Co, 9.06 grams) according to predefined specifications.

• For the rotating anode case, the FU is defined as follows: Provide two X-Ray
rotating anodes according to predefined specifications for assumed usage of
five years.

The system boundaries for the two case studies are as follows:

• For the machining tools case, the cutting tool, electricity for the machining
center, cutting fluid, and CV model for wear assessment are considered within
the scope of the LCA.

• For the rotating anode case, two rotating anodes are within the scope of the
LCA. Depending on the scenario, either both are produced from scratch, or the
second is remanufactured. Additionally, transportation from the production
site to customers (and back if necessary) is considered. Additionally, the CV
model for wear assessment is accounted for.
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Life cycle inventory (LCI): Product factsheets and real measurements provided by
our case companies have been used for the LCI whenever possible, e.g., for the exact
material composition of the cutting tool, and the energy and resource consumption
of several production steps of rotating anodes. If this was not possible, assumptions
made by the domain experts described in Table 8.1 on page 178 and Table 8.2 on
page 180 were used in combination with the scientific literature on the respective
topics.
For the machining tools case, the expected lifespan under the baseline scenario of
the cutting tool is estimated to be 30 minutes of operation (Gamma and Delta).
The manufacturing of one unit shaft is estimated to take 30 seconds. Considering
breaks for the employee and setup times, we assume that 100 unit shafts can be
produced in one hour (Gamma and Delta). The energy consumption of the machin-
ing center is estimated to be 12.5 kWh (Gamma and Delta) on average, using the
German electricity mix, that is, where the pieces are manufactured in the present
case. Regarding the lubrication system, the consumption of cutting fluid is 0.0155
liters per hour, based on real data from our case company’s customer. Finally, the
actual surplus energy consumption due to the training of the DL-based CV model for
wear assessment is considered and detailed in the improvement scenarios to account
for potential impact transfers (Bonvoisin et al., 2014).
The considered improvement scenarios are improvements in machining processes
at customer sites by application engineers using the DL-based CV model for wear
assessment. We make the (rather conservative) assumption that one trained model
can be used to manufacture 1000 unit shafts. In theory, the CV model can be used
an infinite number of times for the same type of machining process. The electricity
usage to train and run the CV model and run the user-centric artifact is estimated to
be 2.4 kWh, as detailed in the Appendix on page 195.
The improvement of machining processes usually aims at increasing both the lifes-
pan of the cutting tool and the process speed, while still meeting the predefined
specifications. In the following, typical machining process improvement scenarios
for our FU are described based on the experience of our case company’s application
engineers. According to the domain experts (Alpha, Beta, Gamma, and Delta), an
efficient assessment of the wear state can support these process improvements by
providing accurate and fine granular information, and can hence lead to better
outcomes. Additionally, the domain experts (Alpha, Beta, Gamma, and Delta) con-
firmed that the wear assessment by CV is highly efficient because little manual effort
is required. Consequently, it is possible to provide additional process improvements
to customers. A typical machining process improvement for our FU enables an
enhanced lifespan of 20% on average for the present cutting tool, and increases
the speed by 20% on average with a maximum increase of up to 50%. Note that
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there exists a clear trade-off between the cutting speed and lifespan. Higher cutting
speeds result in shorter tool lifespans. For this process, it is estimated that increasing
the cutting speed by 20% decreases the tool lifespan to 70% of its original lifespan,
and increasing the cutting speed by 50% decreases the tool lifespan to 30%, based
on experience from internal tests (Beta, Gamma, and Delta) and existing literature
(e.g., Klocke and König (2008)). Despite this trade-off relationship, domain experts
(Gamma and Delta) confirm that it is often possible to achieve a longer lifespan and
higher cutting speed. Based on this, the improvement scenarios are computed as
follows:

• Lifespan increased by 20%

• Speed increased by 20% (implies more wear and tear on the tool as aforemen-
tioned, i.e., the tool needs to be replaced more often but less electricity and
cutting fluid consumption for the same FU)

• Speed increased by 50%

• Lifespan increased by 20% and speed increased by 20%

• Lifespan increased by 20% and speed increased by 50%

For the rotating anode case, we work with a typical rotating anode that weighs 1.9
kilograms and comprises 12.5% tungsten-rhenium alloy (a typical 95% tungsten
and 5% rhenium mix (Oppelt, 2005, p. 284)) for the focal track, 12.5% graphite
for the metallic disc, and 75% molybdenum for the cup. For this LCA, we explicitly
consider the energy and resource consumption of the production steps because they
have a high impact.
The lifespan of the rotating anode is estimated by experts (Eta and Theta) to
be on average 2.5 years. Because the FU refers to five years of operation, two
new rotating anodes are required in the baseline case, which corresponds to the
current predominant usage in this industry. As described in Section 8.2.3, the state
of the focal track often limits the lifespan of the rotating anode (Erdélyi et al.,
2009). Different remanufacturing strategies can be applied to restore the focal track
depending on its wear state. Consequently, the rotating anode has another 2.5 years
of estimated lifespan (Eta and Theta). The CV model for wear assessment is crucial
for determining whether remanufacturing is possible and the suitable strategy.
For the LCAs of the different scenarios, we almost always consider real measurements
of, for example, the energy consumption of different production steps. If such values
are not available, we rely on the assumptions made by the domain experts of our
case company. Additionally, for this LCA, we considered the electricity consumption
of the DL-based CV model, which is estimated to be 2.875 kWh (description of this
can be found in the Appendix on page 195).
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To factor in transportation impacts, we consider distances from our case company
in Austria to representative customers in Europe (874 km on trucks), and Asia
and the United States (124 km on trucks and on average 8930.5 km by plane).
Rotating anodes are typically recycled close to their last usage sites. Consequently,
in the baseline case, we assume only a one-way trip from the production site to
the respective customers. In the remanufacturing scenario, a round trip from the
customer to the production site and back is considered. The transportation phase is
represented by ton-kilometers (tkm), which is defined as the transport of 1 ton of
material over a distance of 1 km (Goedkoop et al., 2008).
Note that the impacts from the infrastructure needed to support the manufacturing
facilities are beyond the scope of this study and therefore not included in the LCAs
of both case studies.

Life Cycle Assessment: Machining Tools

For the machining tools case study, we first compare the carbon footprint of the
baseline with the DL-based CV-supported improvement scenarios. We then expand
our analysis to the 18 ReCiPe midpoint indicators to consolidate our interpretation
and/or fine-tune our recommendations, for example, in the case of impact transfers.
The baseline scenario has a carbon footprint of 8.013 kg CO2 eq. per hour to
manufacture 100 unit shafts, as described in the FU. Enabled by process improvement
with the DL-based CV model for wear assessment, the combination of keeping the
cutting tool in use closer to its maximum lifespan (original +20%) and increasing
the process speed by 50% allows a reduction in the global warming potential of
almost 1 kg CO2 eq. per hour (around 12% of baseline scenario), as illustrated
in Figure 8.9 on page 188. Considering complementary environmental indicators
(see Figure 8.10 on page 189), the lifespan +20% and speed +20% improvement
scenario leads to the most significant mitigation of environmental damage. The
reduction in the carbon footprint is slightly lower than in the lifespan +20% and
speed +50% scenario. However, there is considerably less transfer to other impact
categories. Note that only increasing the lifespan of the cutting tool by 20%, with
the support of the DL-based CV model for wear assessment, is not a relevant strategy
in terms of the carbon footprint because of the surplus of impact allocated to the
training of the CV model. Consequently, a dedicated LCA is necessary to ensure the
environmental benefits of other machining process improvements.
A limitation of this LCA is that we quantify the impact of the cutting tool based

on material data from the Ecoinvent database and a literature value (Furberg et al.,
2019) for hard metal sintering of 11 kWh/kg. However, the impact of an individual
tool can vary significantly (>100%) depending on the raw materials, production
technologies, and energy sources (Alpha).

8.3 Results 187



Fig. 8.9.: Carbon footprint for multiple scenarios in the machining case.

Life Cycle Assessment: Rotating Anodes

In the rotating anode case, the DL-based CV-supported remanufacturing scenario
leads to significantly increased environmental sustainability (compare Figure 8.11 on
page 190 and Figure 8.12 on page 191 for European and non-European customers,
respectively). This is possible because many energy- and resource-intensive processes
for producing rotating anodes do not have to be repeated. The carbon footprint
is reduced by 44.79% / 39.26% in the remanufacturing scenario (European/non-
European customers). Figure 8.13 on page 192 illustrates that no impact transfers
occur for the improvement scenario for the rotating anode case.

8.4 Discussion

In this section, we interpret the obtained results, relate them to similar literature,
conceptualize our approach, and explore possible implications. It is our hope that
other researchers and practitioners can transfer it to similar scenarios.

8.4.1 Interpretation of Results

Regarding the CV results, it is essential to note that the detection performance of DL-
based CV models will further improve with a higher amount of training data (C. Sun
et al., 2017). In terms of the LCAs, several considerations should be remembered.
Generally, we want to highlight again that the sustainability improvements cannot
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Fig. 8.11.: Carbon footprint in the rotating anode case for multiple scenarios for the Euro-
pean market.

be attributed only to the DL-based CV models. To a certain extent, the described
improvement scenarios are also possible with a selective manual visual inspection
of the wear states of the products. For example, machining processes of customers
are already being improved by application engineers. However, the DL-based
CV model for wear assessment facilitates further process improvements owing to
the efficiency of the CV system. Additionally, domain experts confirm that more
effective machining process improvements are possible because of the large number
of images that can be assessed efficiently. Consequently, decisions are made on
a better statistical basis. Similarly, in the rotating anode case, it is possible to
realize the described improvement scenario without a DL-based CV model for wear
assessment. However, for this type of product, manual visual inspection would be
highly inefficient owing to the image size and the amount of wear to be detected.
Consequently, the improvement scenario for the rotating anode case is only partially
implemented in the respective industry.
The LCA results indicate a clear improvement in terms of environmental sustainability
in the rotating anode case. The remanufacturing of the focal track leads to significant
environmental savings (up to 44.79%) because many resource- and energy-intensive
processes necessary to produce rotating anodes do not have to be repeated. In
comparison, improvements in terms of environmental sustainability in the machining
case study seem minor. However, considering the improvements over a more
extended period of time, they become considerable. The reduction of almost 1
kg of CO2 equivalent in the improvement scenario with a 20% increase in both
lifespan and process speed is for a single hour of production on a single machining
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Fig. 8.12.: Carbon footprint in the rotating anode case for multiple scenarios for the non-
European market.

center. Scaling this to an entire shift of eight hours and five working days for the
duration of a year leads to a saving of 2080 kg CO2 equivalent for one machining
center. Additionally, machining is an extremely widespread manufacturing process;
consequently, these savings can be scaled up to numerous production sites and
processes.
For both LCAs, it is interesting to consider the current trend towards an emission-free
electricity mix in many countries (IEA - International Energy Agency, 2021). For
the rotating anode case, the emissions resulting from transportation will become
more relevant. For the machining tools case, the lifespan of the tool will play an
even more significant role than it currently does.

8.4.2 Related Work: Similarities and Differences

Our approach is a type of sustainable smart PSS described by X. Li et al. (2021). As
proposed by them, we do not focus only on the sustainability of physical materials
and components but also consider the information value that can be extracted
from physical products. However, in contrast to previous studies (e.g., X. Li et al.
(2021) and Zhang et al. (2017)), our approach does not rely on smart products
in the sense of connected products. Consequently, we extend X. Li et al. (2021)’s
conceptualization to a wider range of products. There is a multitude of reasons
why a product is not equipped with sensors or radio frequency identification tags:
it might not be economically viable, technically not possible, or not desirable from
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a data privacy point of view. One might also argue that the camera capturing the
pictures is our sensor (Martin et al., 2021). Then one could consider our approach
as a type of smart retrofitting, which Jaspert et al. (2021) describe as ”a sustainable
approach of transforming the current state of legacy equipment into smart and
connected assets.“ Our approach differs from previously documented ones because a
static image provides information about the usage stage. In that sense, our analysis
is forensic, as we do not have live data about the usage stage or several points in
time.

8.4.3 Conceptualization of Our Approach

In the following section, we describe the prerequisites that need to be fulfilled
to make the proposed approach possible. First, it must be reasonable to imple-
ment potential improvements in environmental sustainability, such as re-design,
remanufacturing, reuse, and recycling (4R), or a result-oriented PSS based on wear
assessment by CV. Hence, the product under consideration must be produced and
used in sufficient quantity now and in the future. Second, it must be possible to
obtain images wherein the wear state of the product can be visually assessed. In this
regard, it is also necessary to have sufficient information about the product or usage
process to counterbalance the real-life variance in terms of usage and observable
wear. For the case of machining tools, this is given because we analyze images
of many tools from the same production process. For the rotating anodes, this is
given by the large image size. In addition to these technical aspects, organizational
aspects are also important. The change from a linear business model to a more
circular one requires a willingness to transform of both parties involved — customer
and provider (Ceschin, 2013). Additionally, co-creation between the provider of
the product and the user is helpful, as described by Arnold (2017). In our cases,
the providing company can perform the wear state assessment and draw relevant
insights based on their domain knowledge. However, most business decisions benefit
from additional metadata such as usage process parameters, which typically belong
to the company using the product.

8.4.4 Implications

As demonstrated in this work, DL-based CV can facilitate sustainable smart PSSs. This
can yield numerous benefits for the manufacturing industry. Primarily, providers and
consumers can reduce the environmental impact of their respective overall systems.
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Additionally, economic benefits can be expected. Domain experts confirm for both
case studies that economic benefits are anticipated for providers and customers.
Additionally, existing literature (Annarelli et al., 2016; M. Yang & Evans, 2019)
confirms that result-oriented PSSs can yield economic advantages. As outlined
before, DL-based CV can be used to address uncertainties regarding risks and costs
that often hinder the formation of result-oriented PSSs (Erkoyuncu et al., 2011).

8.5 Conclusion

In this work, we demonstrate the effectiveness of deep-learning-based computer
vision, a special type of artificial intelligence, for facilitating sustainable smart
product-service systems. To this end, we perform two case studies: one on ma-
chining tools and another on X-ray rotating anodes. For both case studies, we first
demonstrate the feasibility of detecting the wear state with deep-learning-based
computer vision as an input for sustainable smart product-service systems. Sub-
sequently, we perform life cycle assessments based on real data and the inputs of
domain experts. The results demonstrate the possible improvements in environmen-
tal sustainability resulting from sustainable smart product-service systems based on
deep-learning-based computer vision.
A limitation of our work is its focus on the environmental dimension of sustain-
ability. The concept of sustainability typically consists of three pillars: economic,
environmental, and social. Economic sustainability was not evaluated explicitly
in this work; however, as described previously, benefits are expected according to
domain experts and the existing literature. Although we did not explicitly evaluate
social sustainability, a direct effect on this dimension is not expected. Particularly,
the proposed approach aims not to fully automate jobs but to complement human
experts in tedious jobs and free their capacity for jobs that are more suited to their
skill levels.
We hope that this work will inspire researchers and practitioners to conduct similar
studies and look forward to studies extending sustainable smart product-service
systems to products that are not inherently smart. This can help the manufacturing
industry reduce its environmental impact while increasing its competitiveness. More
broadly, we hope that this work accelerates the implementation of novel ideas and
artificial-intelligence-based innovations that have a positive environmental impact.
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8.6 Appendix for Chapter 8: Energy Consumption for
Training of Computer Vision Models

In our improvement scenarios, there are several computer-supported phases: Train-
ing of the DL-based CV model, predictions of the DL-based CV model, and execution
of the user-centric artifact. The energy consumption of the latter two is negligible
because these applications can run on a standard laptop in parallel to other tasks.
Training of the DL-based CV model is the most energy-intensive step because it
must be performed on specialized hardware. For both machining tools and rotating
anodes, approximately five training runs are required to find a suitable model. For
the machining tools case, a training run takes 25 minutes, and for the rotating
anodes, it takes 30 minutes. The IBM AC922 machine with two graphical processing
units we used consumes a maximum of 1.15 kW. Multiplied by five training runs and
25/30 minutes per training, we obtain 2.395 kWh and 2.875 kWh for the machining
tools and the rotating anode cases, respectively.

8.6 Appendix for Chapter 8: Energy Consumption for Training of
Computer Vision Models
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Conclusion 9
Technological advances in the field of computer vision based on deep learning enable
efficient, automated processing of image data. This offers great potential for value
creation — Data Bridge Market Research (2022) valued the global computer vision
market at 12.78 billion US$ in 2021 and expects it to grow to 24.19 billion US$
by 2029. But for many application cases, a combination of artificial and human
intelligence is required — image-based decision support systems can enable this
combination. However, thus far, there is a lack of research regarding image-based
decision support systems. Therefore, this thesis investigates image-based decision
support systems from various perspectives. We address four research questions
related to image-based decision support systems with the help of several use cases
from different industry domains.

9.1 Summary and Contributions

Combining data and analytical methods has become a popular way of value creation
by solving complex problems and making better decisions (Hunke et al., 2022).
In this thesis, we focus on value creation based on image data. The automated
extraction of information from image data with computer vision has made significant
advances due to the development of novel neural network architectures, increased
computing power, and a growing number of freely available image data sets. For
many use cases based on image data, a combination of artificial and human intelli-
gence (Dellermann, Ebel, et al., 2019; Hemmer, Schemmer, et al., 2021) in the form
of image-based decision support systems seems most beneficial.
This thesis contributes on several levels to enable value creation with image-based
decision support systems. To ensure that the findings can be generalized, all stud-
ies were performed with real-world data and incorporated domain experts when
reasonable. First, we show the technological feasibility of automatically extracting
valuable information from image data for our industry use cases. Building on this,
we develop, implement and assess a novel approach that enables the beneficial
combination of artificial and human intelligence for extracting valuable information
from images in a human-in-the-loop system. Second, building on this, we contribute
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design knowledge for image-based decision support systems developed in two design
science research studies — each performed and evaluated based on a different use
case in a different industry domain to ensure the practical relevance of our design
knowledge. Third, we contribute design knowledge for the superordinate class of
computer-vision-based hybrid intelligence systems. To this end, we perform a study
following the reflective design science research strategy II based on the previous
two and four additional use cases from different domains. Lastly, we contribute
by demonstrating the possible positive impact of image-based decision support
systems on environmental sustainability for two selected industry use cases and
conceptualizing the approach.

In this thesis, we address four research questions with different research methods
like technical experiments, interview studies, structured literature reviews, and life
cycle assessments. In the remainder of this section, we discuss and summarize the
contributions of this thesis. The structure follows the research questions described
in Section 1.2.

As described in Chapter 1 and illustrated in Figure 1.1 on page 4, the first step
for enabling image-based decision support systems is to convert image data into
information that computers can process automatically.

Research Question 1 (RQ1)
How can image data be converted into valuable information by combining
artificial and human intelligence?

We address RQ1 with two studies (Chapter 3 and Chapter 4) utilizing the machining
tools use case; each study contains a technical experiment. As described in Table 1.1
on page 8 and the respective chapters, the business challenge in the machining tools
use case is to identify wear on machining tools to derive improvement options for
machining processes and tools. First, in Chapter 3, we develop a deep-learning-
based computer vision model to classify microscopic images of worn machining tools
regarding the occurrence of relevant wear classes. In this study, we demonstrate
that performing image classification for the given use case is possible and explore
opportunities for future research. At the time of publication of this study, there was
no published work on utilizing only a deep-learning-based computer vision model
for the characterization of wear on microscopic images of machining tools. Hence,
we contributed by showing the feasibility of this more modern and flexible approach.
According to domain experts, this is already helpful, but pixel-granular information
would be even more valuable for their use cases.
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Building on this, in Chapter 4, we first develop a deep-learning-based computer
vision model for semantic segmentation. The model decides for each pixel of a given
microscopic image of a worn machining tool which type of wear is present. After
showing the feasibility of this approach, we develop and evaluate a human-in-the-
loop approach for increasing the accuracy of the overall system. To this end, we
develop, implement and evaluate an approach to assess the uncertainty of a given
prediction issued by the deep learning model. We show that the chosen uncertainty
measure is correlated with the probability of the prediction being faulty. Hence, the
uncertainty measure enables the identification of potentially incorrect outputs of the
deep learning model without requiring ground truth labels. Therefore, in cases of
high uncertainty, a human expert can be incorporated to make the final decision.
This approach leads to a higher accuracy with little human effort. As pointed out in
Section 1.2 and the study in Chapter 4, we also evaluate this approach on the publicly
available Cityscapes dataset (Cordts et al., 2016) to ensure the generalizability of
our approach.

Having addressed RQ1, we then consider image-based decision support systems. As
described in Section 1.2, turning image data into information is not yet sufficient
for value creation in many cases. Image-based decision support systems are a
promising approach for achieving this value creation by combining human and
artificial intelligence. In terms of the data, information, knowledge, and wisdom
pyramid (Ackoff, 1989), RQ1 is about turning image data into information. RQ2
is about turning information into knowledge and wisdom (compare Figure 1.1 on
page 4 for a graphical depiction). A. S. Lee (2010) states that theory for action
and design should become the predominant form of theory. We respond to this call
by developing and evaluating design knowledge for image-based decision support
systems in our studies addressing RQ2:

Research Question 2 (RQ2)
What design knowledge should guide the development of image-based decision
support systems?

In the first study addressing RQ2 (Chapter 5), we develop and evaluate design
knowledge for image-mining-based decision support systems, a special class of image-
based decision support systems. Image-mining-based decision support systems are
suited for use cases where large amounts of image data, e.g., many images describing
the same real-world phenomenon, are used as a basis for decision-making. In
such use cases, image mining is applied to extract patterns, relationships, and
implicit knowledge from these images (Hsu et al., 2002). To ensure the practical
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relevance and usefulness of our findings, we use the machining tools use case for
the development and evaluation of the design knowledge. An image-mining-based
decision support system is suitable for the machining tools use case since the wear on
machining tools from an identical machining process is subject to variations. Hence,
to support decision-making for a given machining process, it is necessary to identify
wear on multiple images of worn machining tools and aggregate this information.
In this design science research study, we develop design knowledge in the form of
design requirements and design principles based on literature and interviews with
domain experts. Subsequently, over three design cycles, we implement an artifact
based on concrete design features derived from our design principles. We then
evaluate the design knowledge and the artifact with different suitable evaluation
techniques like technical experiments and focus groups. These evaluation results
attest that the design knowledge, as well as the artifact itself, are useful, effective,
and efficient.

In addition, we address RQ2 with a study (Chapter 6) developing design knowledge
for image-based decision support systems. As described in Section 1.1, image-based
decision support systems are suitable for use cases in which the analysis of a single
image is sufficient to support business-relevant decisions. Again, we use an industry
use case to develop and evaluate the design knowledge; for image-based decision
support systems the power line maintenance use case is suitable. In this design
science research study, we apply a methodology similar to the one in Chapter 5. The
main methodological difference is that as opposed to Chapter 5, the preceding step
of extracting information relevant for the use case from image data is covered more
extensively. This is due to the lack of respective previous work for the power line
maintenance use case. First, we formulate design requirements based on interviews
with domain experts and a structured literature review about challenges in power
line maintenance. Subsequently, we develop design principles. Based on these
design principles, we then instantiate concrete design features in an artifact. The
artifact and design knowledge are then evaluated through a technical experiment
and interviews, and confirmatory workshops with domain experts. These evaluation
episodes indicate the utility of the design knowledge for image-based decision
support systems and the artifact itself.
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Building on the previous two and four additional use cases, we then address the
development of design knowledge for computer-vision-based hybrid intelligence
systems. As described in Section 1.2, we understand computer-vision-based hybrid
intelligence systems as the superordinate class of image-based decision support
systems. Specifically, we ask:

Research Question 3 (RQ3)
What design knowledge should guide the development of computer-vision-based
hybrid intelligence systems?

To address RQ3, in Chapter 7, we rely on six real-world computer vision use cases.
Building on these use cases, we extract design knowledge according to the reflec-
tive design science research strategy II (compare Section 2.1 on page 15 for an
explanation of this strategy). To this end, we gather six expert researchers for partic-
ipation in several workshops. Over the course of these workshops, we conceptualize
computer-vision-based hybrid intelligence systems and identify four design-related
mechanisms: automation, signaling, modification, and collaboration. Based on
this, we derive meta-requirements and design principles based on specific design
requirements and design features from the real-world computer vision cases. The
resulting design knowledge complements the design knowledge for image-based
decision support systems and image-mining-based decision support systems since
it focuses on facilitating hybrid intelligence. Also, by relying on six use cases and
addressing the superordinate class of computer-vision-based hybrid intelligence
systems, we understand the contribution as even more generalizable. This study can
be the basis for many future research endeavors and informs practitioners regarding
the design of computer-vision-based hybrid intelligence systems.

Having addressed the conversion of image data into valuable information (RQ1) and
design knowledge for image-based decision support systems (RQ2) and computer-
vision-based hybrid intelligence systems (RQ3), we then assess the real-world impact
of image-based decision support systems. Due to climate change being one of the
most pressing challenges for humanity (Pörtner et al., 2022), the last research
question (RQ4) is concerned with the real-world impact of image-based decision
support systems in terms of environmental sustainability.
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Research Question 4 (RQ4)
How can image-based decision support systems be applied to improve
environmental sustainability in the industry?

With the study addressing RQ4, we contribute as described by Gholami et al. (2016)
— they call for solution-oriented information systems studies mitigating negative
impacts with regard to environmental sustainability. In this study (Chapter 8), we
rely on two use cases: the machining tools case used in four of the previous studies
and the rotating anode case that is introduced first at this point. Since the rotating
anode case is novel at this point, we first show in a technical experiment that it is
possible to automatically extract valuable information from image data of rotating
anodes. To be precise, we build and assess a deep-learning-based computer vision
model to detect wear on the surface of rotating anodes in a pixel-accurate fashion.
This has not been shown before to the best of our knowledge. Building on this
successful extraction of relevant information from image data for both use cases,
we perform a life cycle assessment for each use case. These life cycle assessments
are a quantitative evaluation of improvement scenarios in terms of impact on
environmental sustainability. The improvement scenarios in this study are based on
image-based decision support systems. We rely primarily on real data from our case
companies as input for the life cycle assessments. When lacking such real data, we
use assumptions by domain experts. The results of these life cycle assessments show
that image-based decision support systems can facilitate noteworthy improvements
in terms of environmental sustainability: Remanufacturing allows for 44% less
emission of CO2 equivalents in the rotating anode case. For the machining tools case,
the emission of CO2 equivalents can be reduced by 12% through improvements of
machining processes. We strongly believe that image-based decision support systems
can support sustainability improvements also for other challenges. Therefore, we
then conceptualize our approach and depict what is necessary for an application to
different use cases.

In summary, we see the following contributions of our work. In Chapter 3, we show
the feasibility of utilizing deep learning to characterize wear on microscopic images
of machining tools and explore opportunities for future research. More generally, we
illustrate how deep learning can be used for novel use cases based on image data. In
Chapter 4, we first show how the wear on microscopic images of machining tools can
be characterized in a pixel-granular fashion. Building on this, we show how human
and artificial intelligence can be purposefully combined for this computer vision
task to achieve better results with little human effort in a human-in-the-loop system.
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Building on these technical studies, we perform two design science research studies
(Chapter 5 and Chapter 6) to contribute design knowledge for image-based decision
support systems and the subclass of image-mining-based decision support systems.
This can inform the design of similar decision support systems. In Chapter 7, we
provide design knowledge for the overarching class of computer-vision-based hybrid
intelligence systems. This study serves as a research agenda for future research. Also,
the design knowledge can support academics and practitioners in designing their
computer-vision-based hybrid intelligence systems in a more human-centric manner.
Lastly, in Chapter 8, we contribute by demonstrating how image-based decision
support systems for different use cases can support environmental sustainability.
Overall, we hope that our contributions inspire practitioners and researchers alike to
pursue similar projects.

9.2 Practical Implications

In the following, we shed light on the practical implications of our work. First,
we describe practical implications for the industries in which we performed our
use cases. Then, we describe more general practical implications independent of
concrete use cases and industries. Lastly, we illustrate the practical implications by a
hypothetical example of the support provided by this work for the development of
an image-mining-based decision support system.

The studies within this thesis have direct implications for the respective industry do-
mains that are used to evaluate feasibility and design knowledge by solving concrete
real-world problems. For the machining tools use case, we first show how computer
vision models can be used to characterize wear on microscopic images of worn
machining tools in a pixel-granular way in Chapter 4. This wear characterization
is of high practical relevance in the machining industry. In addition to our previ-
ously described use case, it can be used for tool condition monitoring (Dutta et al.,
2013). Tool condition monitoring is the frequent inspection of the wear state of a
machining tool currently in use. This prevents unnecessary downtime in production
and enables full utilization of the tool’s lifetime (Ambhore et al., 2015). This is of
high economic importance — Kurada and Bradley (1997) suggest that failures of
tools are responsible for 20% of production downtime in machining processes. Also,
according to Castejón et al. (2007), machining tools and their replacement account
for 3-12% of total production cost. Building on the computer vision models, we
describe the development, implementation, and evaluation of the automatic tool
wear analyzer — an image-mining-based decision support system for the machining
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industry in Chapter 5. The automatic tool wear analyzer can support the work of
two main user groups: First, application engineers can compare different machining
processes to choose the best machining process parameters and tools. With the
automatic tool wear analyzer, they can make decisions based on the wear state
of many automatically analyzed machining tools. This allows for more reliable
insights into improvement potentials than the currently predominant manual visual
inspection of a few worn machining tools. Also, due to its efficiency, the automatic
tool wear analyzer enables more machining process improvements. Second, tool
developers can use insights from the automatic tool wear analyzer to develop the
next generations of machining tools. Currently, tool development relies mainly on
internal, standardized tests in controlled environments. This does not necessarily
reflect the actual usage of the machining tools considered. The automatic tool wear
analyzer enables tool developers to understand the wear state of many machining
tools used in different real machining processes. Consequently, they can develop
future generations of machining tools explicitly tailored to the needs and potentials
observed in real machining processes. A possible design goal is increased longevity
— this translates into increased cost efficiency and environmental sustainability of
machining processes. Additionally, in Chapter 8, we demonstrate how computer
vision and image-mining-based decision support systems can be used to improve en-
vironmental sustainability in the machining tools use case (up to 12% less emission
of CO2 equivalents).
For the power line maintenance use case, we describe the development, implemen-
tation, and evaluation of an image-based decision support system in Chapter 6.
This decision support system is an important building block for enabling power
line inspections with unmanned aerial vehicles. Power line inspection with un-
manned aerial vehicles can substitute current hazardous inspection methods like
tower-climbing. According to Schwarz and Drudi (2018), this offers great potential
for avoiding injuries — they report over 40 fatal and 1200 non-fatal injuries per year
among power line workers. Of course, only a share of these accidents occurs during
the inspection (rather than during repair activities). Still, an inspection based on un-
manned aerial vehicles and our decision support system has the potential to reduce
injuries among power line workers by replacing tower-climbing-based inspection.
Additionally, this decision support system supports maintenance engineers in their
decision-making — for example, through a geographical information system view
that enables the identification of adjacent infrastructure faults.
For the rotating anode use case, we first show how computer vision models can
be used to identify wear on microscopic images of rotating anodes to derive re-
manufacturing options — to the best of our knowledge this has not been shown
previously. Subsequently, we demonstrate how these computer vision models can
improve environmental sustainability in combination with an image-mining-based
decision support system (up to 44% less emission of CO2 equivalents).
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In general, computer vision is expected to become even more relevant in industry
— according to the 2021 hype cycle for artificial intelligence of the technology
research firm Gartner, Inc. computer vision has already passed the “peak of inflated
expectations” and is expected to reach the “plateau of productivity” between 2023
and 2027 (Gartner, Inc., 2022). Consequently, the research in this thesis will also
gain more relevance because it relies on computer vision and extends the application.
We believe that, in particular, the studies in Chapter 3 and Chapter 4 can facilitate this
expected, more widespread adoption of computer vision in industry. In Chapter 3,
we exemplify how the usage of computer vision can be explored with a relatively
low entry barrier in terms of effort by relying on pre-trained computer vision models.
The study and findings in Chapter 4 are particularly relevant for industry use cases
where finding a highly accurate computer vision model is not feasible. A frequent
reason for insufficient model accuracy is a too small amount of data — a problem
most prevalent in small and medium-sized enterprises. Approaches to combine
human and artificial intelligence for computer vision tasks, like the one described
in Chapter 4, can alleviate this problem and consequently lead to more widespread
adoption of computer vision in industry.
As described previously, for many use cases, computer vision models alone are
insufficient for actual value creation. Image-based decision support systems and
the superordinate class of computer-vision-based hybrid intelligence systems enable
value creation by combining human and artificial intelligence. While the first image-
based and image-mining-based decision support systems and computer-vision-based
hybrid intelligence systems exist, the studies in Chapter 5 - 7 are the first ones in
which explicit design knowledge for the respective class of system is developed and
evaluated. This design knowledge can guide practitioners in the design of computer-
vision-based hybrid intelligence systems and image-based and image-mining-based
decision support systems for their use cases.

In the following, we describe an additional, hypothetical image-mining-based deci-
sion support system to illustrate how practitioners can benefit from the studies in
this thesis regarding design, development, and evaluation. The assumed business
goal in this use case is to design running shoes with an increased useful lifetime. The
image-mining-based decision support system relies on many images of worn running
shoes. First, computer vision models are used to identify wear (e.g., abrasion on the
sole and holes on the top) on the images of the shoes. A first feasibility study, as
described in Chapter 3, can reveal if the images are suited for classifying different
wear types with deep-learning-based computer vision. Also for this use case, it
appears relevant to characterize wear in a pixel-granular fashion — this enables
insights regarding the exact location and extent of wear. Chapter 4 can guide the

9.2 Practical Implications 207



development of this computer vision model for semantic segmentation. Additionally,
in Chapter 4, we demonstrate how human and artificial intelligence can be combined
for this task in case the accuracy of the computer vision model is not yet sufficient. To
enable faster improvements of the computer vision model, an active learning system
can be employed — it can be designed based on the guidelines in Chapter 7. Having
built a sufficiently accurate computer vision model to identify wear on running
shoes, the next step is to create an image-mining-based decision support system
for wear analysis. For this, the design knowledge formulated in Chapter 5 and
chapter 6 is helpful — e.g., image mining and metadata are highly relevant design
principles for this use case. Image mining is used to aggregate the wear identified
on different images of worn running shoes. Relevant metadata (total distance ran
in the respective shoe, distance per different surfaces ran on, etc.) enables an
understanding of different wear modes and the underlying reasons. Overall, by
combining computer vision, image mining, and human expert intelligence through
an image-mining-based decision support system, future generations of running shoes
can be designed to address these wear patterns. This leads to longer-lasting running
shoes and hence could increase environmental sustainability. The expected effect on
environmental sustainability can be measured as shown in Chapter 8.

9.3 Limitations and Future Research

The research in this thesis has several limitations. We already describe the limitations
of the studies in this thesis in the individual chapters. In the following, in contrast,
we discuss three general limitations of the research on image-based decision support
systems in this thesis. Also, we highlight the resulting potential for future research.

The first potential we see for future research is the creation of additional use cases.
The research in this thesis already allows for reasonable generalizability of the
findings for the following reasons. First, we rely on several use cases with different
characteristics. Second, in many studies, we apply appropriate design science
research strategies that allow for findings independent of the concrete use cases.
Still, future work based on other use cases could further validate and refine the
findings. The studies in this thesis all focus on manufactured goods sold from
business to business. A study considering goods sold from business to consumer (like
the running shoe case depicted before) would be interesting. Additionally, studies
working with use cases from entirely different domains, like medicine or biology,
could lead to interesting additional findings.
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Another overarching avenue for future research is a long-term evaluation of the
findings in this thesis. For example, the design knowledge formulated in Chapter 5
and Chapter 6 could be evaluated by a long-term study in which employees of the
partner companies use the respective image-(mining-)based decision support system
for their daily work over several months. An analysis of the users’ interactions with
the image-(mining-)based decision support systems and a subsequent focus group
with the users could further refine and validate the design knowledge.

Lastly, the image-(mining-)based decision support systems described in this thesis
can be classified as descriptive according to the categorization by Davenport (2013).
Future research could extend image-(mining-)based decision support systems such
that they can be used for predictive and prescriptive tasks. For example, for the power
line maintenance case, the image-based decision support system could then predict
infrastructure maintenance needs based on location characteristics, infrastructure
type, etc., combined with a data history of past maintenance needs. Similarly, the
image-mining-based decision support system for the machining tools case could be
extended by predicting the expected lifetime of a given tool in a particular machining
process. These extensions require suitable prediction models based on a sufficient
data history obtained by a more extended usage period of the image-(mining-)based
decision support systems. Later, the data accumulated over time could be used for
prescriptive components. For example, the image-mining-based decision support
system for the machining tools case could prescribe suitable parameters and tools
for a given, novel machining process.

Overall, we hope this thesis contributes to extending the meaning of “a picture is
worth a thousand words”. In its original sense, this famous saying refers to the high
information value of images. This thesis contributes to leveraging the information
value of images. It shows how image-based decision support systems can be designed
and used such that they are of value to society — supporting people in their jobs,
creating monetary value, and reducing environmental impact.
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