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Neuromorphic acoustic sensing using an 
adaptive microelectromechanical cochlea 
with integrated feedback

Claudia Lenk    1 , Philipp Hövel    2,3, Kalpan Ved1, Steve Durstewitz1, 
Thomas Meurer3,4, Tobias Fritsch5, Andreas Männchen5, Jan Küller5, 
Daniel Beer5, Tzvetan Ivanov1 & Martin Ziegler    1,6

Many speech processing systems struggle in conditions with low 
signal-to-noise ratios and in changing acoustic environments. Adaptation 
at the transduction level with integrated signal processing could help to 
address this; in human hearing, transduction and signal processing are 
integrated and can be adaptively tuned for noisy conditions. Here we report 
a microelectromechanical cochlea as a bio-inspired acoustic sensor with 
integrated signal processing functionality. Real-time feedback is used 
to tune the sensing and processing properties, and dynamic switching 
between linear and nonlinear characteristics improves the detection of 
signals in noisy conditions, increases the sensor dynamic range and enables 
adaptation to changing acoustic environments. The transition to nonlinear 
behaviour is attributed to a Hopf bifurcation and we experimentally validate 
its dependence on sensor and feedback parameters. We also show that 
output-signal coupling between two coupled sensors can increase the 
frequency coverage.

Our hearing exhibits remarkable sensing properties: a dynamic range 
of sound pressure level (SPL) of 120 dB, a frequency resolution of 0.1%, 
an intensity discrimination of 1 dB and adaptive capabilities (particu-
larly at small SPLs and in noisy environments; these environments are 
known as the ‘cocktail party effect’)1. This functionality is due to three 
properties of the system: pre-processing, local frequency-selective 
feedback and dynamic adaptation. Pre-processing includes frequency 
filtering and frequency-selective nonlinear amplification of the sig-
nal before it reaches the auditory nerve, and encoding of the signal 
into spike trains at the auditory nerve2,3. Local frequency-selective 
feedback of the sensor changes the sensor gain by 40–60 dB (ref. 4), 
based mainly on changes to the outer hair cell motility2,5,6; feedback 
enables the detection of sounds below the thermal noise level and in 
the presence of noise or masking sounds7–9. Dynamical adaptation 

occurs at multiple stages of the auditory pathway, including signal 
processing before transduction (that is, middle ear transfer function 
by acoustic reflex), during transduction (that is, inner ear processes) 
and at subsequent processing stages. This provides improved sensing 
conditions for varying hearing environments7,10–12.

It remains challenging to recreate the features of biological hear-
ing with technology. Learning-based sound processing systems such as 
convolutional, recurrent and spiking neural networks have been devel-
oped for tasks such as keyword spotting, speaker identification and 
speech analysis13–16. It has been shown that incorporating bio-inspired 
pre-processing increases the performance considerably17. Process-
ing of a microphone signal, such as nonlinear filtering, frequency 
decomposition and feature extraction, occurs at the audio front end 
before feeding it into a neural network at the back end (Fig. 1, left).  
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actuator and four piezo-resistive elements for deflection sensing—and 
a feedback system that connects the sensor elements to the actuator. 
This feedback is used to tune the sensing and processing properties of 
the system in real time based on the acoustic signal properties (Fig. 1, 
right). The feedback and coupling properties can be controlled to suit 
different acoustic environments. For example, the signal amplitude can 
be used to implement an amplitude-dependent shift of the dynamic 
range43 to increase the sensitivity of measurements at low noise levels.

In the case of the MEMS cochlea with a single transducer, the 
self-feedback strength is used to switch the transfer characteristics—
the voltage as a function of sound amplitude—among linear, nonlin-
ear, mixed or amplitude-independent regimes (for example, in the 
nonlinear regime, the sensitivity is high at lower sound pressures and 
decreases at higher pressures, which improves signal detection in noisy 
conditions). Our dynamic MEMS cochlea exhibits a gain change of up 
to 44 dB, comparable with mammalian hearing. Stability analysis of 
the nonlinear response indicates that a Hopf-type bifurcation occurs 
in the system. In addition to the operation based on the self-feedback of 
a single transducer, we show that two transducers in the MEMS cochlea 
can be coupled using feedback based on the output signal of the other. 
This can be used to adjust the sensitivity and frequency coverage.

Sensing properties
The sensor system proposed here consists of an acoustic transducer 
and a feedback loop (Fig. 2a,b). The transducer is realized as a silicon 
beam with integrated piezo-resistive deflection sensing and integrated 
thermo-mechanical actuation (Methods). Such transducers have already 
been successfully applied in atomic force microscopy and scanning 
probe lithography44, as well as other sensing tasks like gas flow sensing 
and gas mixture analysis45,46. The integration of actuation and sensing 
into the beam has the advantage of being able to implement real-time 
feedback loops. Here the feedback loop is either self-feedback for a sin-
gle transducer (Fig. 2) or an output-signal coupling of two transducers 
(Fig. 5), with feedback calculation time in the range of less than 10 μs.

However, room reverberation, interfering noise and other perturba-
tions to the signal that can affect the underlying feature representa-
tion can limit performance, particularly at low signal-to-noise ratios 
(SNRs)18–20. In addition, it is difficult to separate individual sound 
sources from a mixed acoustic signal and to generalize to unknown 
acoustic conditions. Automatic adaptation that can overcome some 
of these issues is currently being implemented at the signal processing 
level (that is, nonlinear filtering) or at the network stage21–23. Although 
basic tasks like voice activity detection, keyword spotting and speech 
detection with a limited vocabulary have been implemented on 
low-power devices24,25, this has yet to be achieved for more complex 
applications such as acoustic scene analysis.

Neuromorphic sound sensors—such as silicon and field- 
programmable gate array (FPGA) cochleae23,26–35—already incorpo-
rate some adaptive signal pre-processing in the form of frequency 
decomposition and nonlinear frequency-selective amplification. 
However, these sensors rely on standard microphones that have lim-
ited pre-processing and adaptation capabilities for transduction. 
Bio-inspired acoustic sensors have been developed that can implement 
frequency decomposition (of up to 12 channels), nonlinear amplifica-
tion (change in gain of up to 7 dB) and directionality36–38, but these only 
cover a small frequency range, have low frequency resolution (quality 
(Q) factor of around 1) and do not include adaptability. Artificial coch-
leae that can adapt to their acoustic environment can greatly improve 
the performance and efficiency of processing. This has been achieved 
by damping the neighbouring frequency bands39,40 and incorporating 
a leaky-integrate-and-fire model for feedback41. Such an approach is 
expected to outperform state-of-the-art signal processing capabilities 
in terms of detecting/processing large SPLs, latency, energy efficiency 
and reduction in masking of quiet sounds in noisy environments42.

In this Article, we report an adaptive neuromorphic microelec-
tromechanical system (MEMS)-based cochlea with integrated signal 
processing. The acoustic sensor system consists of one or more acous-
tic transducers—a silicon beam integrated with a thermo-mechanical 
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Fig. 1 | Concepts of speech processing: technological versus biological audio 
front ends and speech processing units. The bright grey boxes indicate the 
adaptive parts. The orange arrows represent feedback at the same level or from 
higher levels to change sensing and/or processing properties. The red bracket 
indicates the target levels and properties for the design of neuromorphic 
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The responses of two sensors with different resonance frequencies 
(f1 = 5.19 kHz; f2 = 3.73 kHz) to a complex sound signal (consisting of nat-
ural sounds like ferret calls, speech and running water, from a natural 
sound database47) are shown in Fig. 2c–f. The frequency filtering effect 
is visible from different onsets of response, as well as the frequency 
spectra. Due to these strong filtering properties, the dynamics are not 
affected by extrinsic noise down to a very small SNR (Supplementary 
Section 1). Furthermore, as shown by the frequency response (Fig. 2e) 
and the enlargement of the time series (Fig. 2f), harmonic oscillations 
are observed only at the first mode, despite the complex input.

Self-feedback strength a provides a route for tuning the transfer 
characteristics, that is, sensing voltage (proportional to deflection of the 
beam) as a function of the amplitude of sound pressure, for single-tone 
excitation (Fig. 3). Besides the passive mode (a = 0), four different types 
of response characteristic can be observed in the active, amplifica-
tion mode (a > 0; Fig. 3a): a linear response for a < 0.50, a nonlinear 
response for 0.70 < a < 0.74, a mixture of linear and nonlinear response 
for 0.50 < a < 0.70 and a sound-amplitude-independent response for 
a > 0.74. In the following, these regimes are discussed in more detail.

In the linear regime, the sensitivity increases and lower sound 
pressures can be detected, if the feedback strength is increased  
(Fig. 3a). At the same time, the equivalent noise level (self-noise) is 
reduced by 3 dB SPL due to the active operation. The relative gain for 
the active operation mode compared with the passive mode without 
feedback can be increased by a factor of 4–5, where the highest gain is 
observed at the highest sound pressures (Fig. 3c).

In the nonlinear regime (Fig. 3b), in contrast, the highest change 
in gain (around 9) is observed for the lowest sound pressure (0.05 Pa) 
and the lowest gain (around 3) for the highest sound pressure (0.43 Pa). 
Thus, the sensor becomes more sensitive to lower sound pressures 
than larger sound pressures. This effect resembles compressive 
amplification, which is observed in the human hearing system in 
the perception of loudness, that is, at the processing stage48, and 
at the transduction stage, that is, the hair cells in the inner ear5,49,50. 
Furthermore, this effect is applied in many acoustic sensing systems 
as post-transduction processing by using nonlinear amplification 
(Fig. 1). Compressive amplification yields an amplitude-dependent 
resolution/sensitivity48, and is observed for most of the biological 
senses such as vision and touch.

The change in gain could be further increased by optimizing 
the design of the transducer for acoustic sensing (Supplementary  
Section 2). This design shows a change in gain by a factor of 10 for the 
active linear mode (compared with the passive mode) and a factor of 
16 for the active nonlinear mode. Furthermore, the self-noise, that is, 
the lowest detectable SPL (at resonance), was reduced to 26–28 dB SPL 
in the passive mode, comparable with standard MEMS microphones51, 
and can be further reduced to 18–20 dB SPL in the active nonlinear 
mode, which is almost at the level of higher-quality measurement 
microphones (≈15–16 dB SPL).

In both linear and nonlinear regimes, the sensing of single tones 
is possible even in the presence of band-limited white noise down to 
SNRs below 0 dB (Supplementary Fig. 1). Here the SNR of the sensing 
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signal is constant for a large range of SNRs of sound signals (≈25 dB) 
and the SNR of the sensing signal can be improved by the active mode.

For much larger feedback strengths (a > 0.74), the sensing ampli-
tude is almost independent of the SPL, and the sensor oscillates even 
without applying any sound (Fig. 3a,d). This behaviour is typical of 
nonlinear systems at a Hopf bifurcation52.

Introducing a negative feedback strength results in damping of the 
acoustic response (Fig. 3e). Combining the amplification and damp-
ing regime, the sensor offers a change in gain of up to 44 dB, which is 
comparable with the added gain of 40–60 dB by outer hair cell activity 
in the mammalian cochlea4.

Modelling of sensing properties
To understand the nonlinear response of the acoustic sensor and find 
out whether the observed autonomous oscillation is caused by a Hopf 
bifurcation, we analysed the dynamics of the sensing system. The math-
ematical description is based on another model53. The derived model 

describes the change in deflection x of the free end of the beam due to 
thermo-mechanical actuation αθ and external forcing ( ̃Fext), (such as 
sound), by a damped oscillator equation derived using Euler–Bernoulli 
beam theory:

ẍ(t) + ω0
Q0

̇x(t) + ω2
0x(t) = αθ(t) + ̃Fext(t), (1)

where ω0 is the resonance frequency, Q0 is the quality factor and θ is 
the change in beam temperature, which is caused by the applied actua-
tion voltage uact:

̇θ(t) + βθ(t) = γ( tanhuact(t)
R )

2

(2)

obtained from the feedback loop

uact(t) = aua.c.(t) + ud.c., (3)
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Fig. 3 | Sensing properties as a function of feedback. a, Amplitude of the sensor 
signal versus sound pressure amplitude for different values of feedback strength 
a to study the transfer characteristics of the sensor system (ud.c. = −200 mV). 
Measurements were performed using a transducer with a resonance frequency 
of 14.2 kHz (Table 1 and Methods list the other properties) and chirped sound 
signals (12–16 kHz). Depending on a, the sensing behaviour in the active mode 
(a > 0) can be divided into an active, linear mode for a < 0.50; an active, nonlinear 
mode for 0.70 < a < 0.74; a mixture between the linear and nonlinear mode for 
0.50 < a < 0.70; and sound-amplitude-independent, autonomous oscillations 
for a > 0.74. The intrinsic noise level due to electronics and so on is given by the 
dashed black line. b,c, Gain as a ratio of the active-mode amplitude to passive-
mode amplitude for various sound pressure amplitudes in the two modes: 

active, linear mode (a < 0.50) (b); active, nonlinear mode (0.70 < a < 0.75) (c). 
Compressive amplification, yielding a higher gain for lower sound pressure 
amplitudes, is observed for the active, nonlinear mode. d, Power spectra 
maximum depending on positive feedback strength a without applied sound. 
Autonomous oscillations without a sound input occur for a > 0.74. e, Sensitivity 
of bio-inspired sensors, given by the slope of the ratio of sensing voltage to 
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60 dB change in gain in the human cochlea due to the outer hair cell operation.
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where R is the heater resistance. Here ua.c. is obtained from the trans-
formation of deflection x into a sensing voltage us (us = kx) by the 
piezo-resistive elements, including high-pass filtering and amplifica-
tion:

̇ua.c.(t) = −ua.c.(t)
τ + ̇us(t). (4)

The feedback introduces a nonlinearity into the system. This 
model includes various sensor properties such as the resonance fre-
quency ω0, heater resistance R and quality factor Q0, and it can be easily 
adjusted to other beam dimensions and frequency ranges. Parameter 
values of the analysed system are given in Table 1 and Methods.

To determine the origin of the nonlinear response and autono-
mous oscillations, we studied the stability of the fixed points. This 
revealed a Hopf bifurcation depending on the feedback parameters, 
that is, feedback strength a and bias voltage ud.c. (Supplementary Sec-
tion 3). For feedback strengths below the critical value acrit at which 
bifurcation occurs, the system is quiescent in the absence of sound, 
whereas for a > acrit, self-excited, autonomous oscillations occur 
together with a strong increase in amplitude (Fig. 3d, insets).

From this stability analysis and comparison with the normal form 
of Hopf-type oscillators, we derived an analytical equation for the criti-
cal feedback strength acrit, enabling us to obtain the nonlinear regime 
in the dependence of sensor properties and feedback parameter ud.c. 
(Methods). The comparison of the derived equation with experimental 
data (black dots) shows excellent, quantitative agreement between 
theory and experiment (Fig. 4a). It is noteworthy that the critical feed-
back strength stays finite even for higher frequencies. Thus, the non-
linear regime should occur not only in the audible frequency range but 
also for ultrasound. Indeed, in the experiments with sensors having 
different resonance frequencies between 2 and 96 kHz, all the sensors 
exhibited autonomous oscillations as an indication of Hopf bifurcation.

To study the origin of the increase in sensitivity with increas-
ing feedback strength in the linear regime, we compared the sound 
response in the experiment with the response to external forces in 
the model (Fig. 4b). We found that the sensitivity increase in the linear 
regime originates from an effective change in the quality factor with 
increasing feedback strength, similar to Q control. The slope of the 

effective quality factor strongly depends on the initial quality factor 
Q0, which is determined by the geometric dimensions of the beam 
(Methods). With an increase in the initial Q0, the slope of the effective 
quality factor strongly increases due to the influence of feedback. This 
enables us to control the sensitivity of the sensor by the choice of sensor 
design (setting Q0) and feedback strength a.

Two coupled sensors
In addition to the discussed nonlinear operation, the human auditory 
system is argued to be further enhanced by the coupling of sensory 
elements (hair cells)12,54,55. This can improve the sensing performance 
by reducing damping due to cochlear fluid, increasing sensitivity and 
response amplitude, enhancing the reliability of sound encoding 
and stabilizing the operation mode by increasing the range of non-
linear operation12,54–56. If we introduce output-signal coupling of two 
transducers as feedback (Fig. 5b) in our sensing system (instead of the 
self-feedback described above), we obtain increasing sensitivity with 
increasing coupling strength, a switching from linear to nonlinear sens-
ing characteristics, and self-excited, autonomous oscillations indicat-
ing a Hopf bifurcation. The latter was observed even if the resonance 
frequencies of the two sensors were more than 10 kHz apart.

Another effect of coupling feedback is shown by the power spectra 
of both sensors (Fig. 5a). If the sensors are uncoupled (coupling strength 
b12 = b21 = b = 0), each sensor responds to sound at its resonance fre-
quency (black curves). If the beams are mutually coupled, for example, 
increasing the coupling strength to b = 1.05, an increased response of 
the respective sensor at its own resonance frequency is observed, and 
each sensor exhibits a slight response at the resonance frequency of the 
other sensor (red curves). For even higher coupling strengths (b = 1.875), 
a substantial response of the sensors occurs even in the frequency range 
between both resonance frequencies. This effect strongly increases the 
bandwidth of the sensor system: initially from 500 Hz up to approxi-
mately 5 kHz (Fig. 5a). A further increase in the coupling strength results 
in self-excited oscillations of the sensor system.

Hence, the output-signal coupling can modify the sensitivity of 
each sensor and its transfer characteristics, similar to the self-feedback 
and coupling effects in the hearing system, and it can also modify the 
bandwidth of the coupled system consisting of both sensors. This 
effect helps to reduce the number of sensors needed to cover a certain 
frequency range, since the sensors do not only respond at their reso-
nance frequency (with a typical bandwidth of 20–500 Hz, depending 
on the design) but also in the frequency range between the resonance 
frequencies of the coupled sensors.

Dynamical adaptation
Biological senses, like vision, hearing and touch, are focused on detect-
ing the relative values and changes rather than absolute values3. There-
fore, adaptation is not only used to tune the sensing properties like 
sensitivity, resolution and operation point of the system in a slowly 
changing environment but also to highlight fast changes in stimuli such 
as, for example, the onset of a stimulus3,11,12,57. These fast adaptation 
mechanisms support processing tasks like sound source localization, 
where performance is strongly dependent on exact onset detection58–62. 
Furthermore, the adaptation can increase the efficiency of the system 
and reduce the redundancy of information for processing, for exam-
ple, by reducing the spike rate for constant stimuli (known as sensory 
adaptation). Onset/offset detection can help to reduce the power con-
sumption and data streaming needs by reducing the feedback signal 
after the detection of the onset of constant sounds and triggering the 
start/end of data streaming to processing units. In this way, data will 
be transferred for further analysis only when sound occurs in a specific 
frequency band set by the sensor.

In our sensing system, dynamic adaptation is implemented by 
the self-guided adjustment of the feedback parameters: feedback 
strength a, bias voltage ud.c. and coupling strength b. The feedback 

Table 1 | Parameters of the sensor system used for modelling

Variable Value

Width of beam, wSi 150 μm

Length of beam, lSi 350 μm

Thickness of beam, dSi 1.25–1.45 μm

Frequency of beam, f [14.2, 13.92, 12.75] kHz

Density of silicon, ρSi 2,329 kg m−3

Elastic modulus of silicon, ESi 170 GPa

Heater resistance, R [25.0, 20.5, 20.5] Ω

Calibration factor, k (piezo-resistive sensing and 
pre-amplification)

[1.00, 0.80, 0.25] × 106 V m−1

Time constant of high-pass filter, τ 10−3 s

Transfer factor, α (temperature to deflection) 749.3702 m2 s−2 K−1

Time constant, β (temperature change) 1.0066 × 103 s−1

Transfer factor, γ (voltage to temperature) 4.2588 × 107 K Ω2 s−1 V−2

Mode factor δ1 for frequency calculation 1.8751

Density of air, ρgas 1.189 kg m−3

Dynamic viscosity of air, ηgas 18.232 × 10−6 Pa s

Device-specific parameters for sensors 1, 2 and 3 are provided in the brackets.
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strength controls the linearity of transfer characteristics (amplifica-
tion behaviour), sensitivity and filtering properties by changing the 
quality factor of the system. The bias voltage shifts the critical feedback 
strength for the nonlinear regime. The coupling strength changes the 
sensitivity and bandwidth of the system. Since all the three parameters 
can be individually controlled, short-term and long-term adaptations 
targeting amplitude and frequency ranges can be easily implemented. 
This enables the combination of, for instance, a fast adaptation of 
the sensor to the onset of sound signals (similar to sensory adapta-
tion3) or automatic gain control to avoid damage due to high SPLs 
with slow adaptation, similar to homoeostatic control keeping the 
sensing amplitude in a pre-defined range11,22. Such adaptations can be 
used to increase the dynamic range, implement event-based sensing 
and spike-rate-based encoding of sound properties, as well as cover 
large frequency ranges with only a few transducers and still retaining 
high-frequency resolution.

We implemented a dynamical adaptation in our sensor system 
using a fast adaptation of feedback strength a depending on the sensing 
amplitude (Fig. 6a; switching time below 10 μs). Here a is switched from 
a1 to a lower value a0 if the amplitude crosses a pre-defined threshold 
Vth. It is reset to the initial value a1 either if the amplitude decreases 
below a second threshold (to model sensory adaptation) or after a 
pre-defined time interval τ2 (to model a refractory period).

Experimental implementation of the refractory period adaptation 
shows a spike-like output of the sensing system (Fig. 6b), which can be 
used to generate event-based spikes based on the acoustic input. The 
spiking frequency depends on the refractory period τ2, as well as on the 
sound pressure amplitude. Increasing the sound pressure amplitude 
results in a reduction in rise time τ1 of the sensor signal until reaching 
the threshold for switching the feedback strength, as evident from a 
comparison of the response to two different sound levels (Fig. 6b, red 
and blue curves). Thus, the sound amplitude is encoded as a spike rate 
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of the sensing signal. Furthermore, the experimental implementation 
of the latter loop using an FPGA demonstrates the stability of the sensor 
even under stepwise changes in feedback strength a.

Simulations (Fig. 6c) and measurements of the sensory adaptation 
case, implemented using analogue circuits with discrete devices, show 
that the onset of sound is highlighted in the sensing signal (which is 
important, for instance, for localization tasks) and that the dynamic 
range of the sensor is increased. The latter is achieved by generally 
operating the sensor in the most sensitive regime (a1 close to acrit) to 
enable highly resolved detection of small SPLs. However, as shown 
in Fig. 6d (black), this yields decreasing resolutions for increasing 
SPLs up to saturation with sound pressure amplitude. Switching to 
lower sensitivities after the initial response yields a better discrimina-
tion for larger SPLs (Fig. 6d (red)). Furthermore, the switching signal 
can be used to trigger either a data streaming unit, sending the sens-
ing signals to a processing system, or a processing unit. Thus, data 
streaming or sound processing is initiated only if the sound signals 
are detected, which reduces the power consumption and stream-
ing requirements for tasks like machine supervision or systems like  
hearing aids.

Conclusions
We have reported a neuromorphic acoustic sensing system that consists 
of MEMS cochlea and integrated real-time feedback, either to itself or 
as output-signal coupling to a pair of sensors. The system shows high 
tunability and adaptive sensing properties, such as variable sensitivity 
or switching between linear and nonlinear transfer characteristics, as 
well as the integration of signal processing steps such as frequency 
filtering and nonlinear compressive amplification. We also showed 
that dynamical switching between linear and nonlinear characteris-
tics improves the detection of signals in noisy conditions, increases 
the dynamic range of the sensor and enables adaptation to changing 
acoustic environments. Furthermore, output-signal coupling strongly 
increases the frequency coverage.

Our dynamic MEMS cochlea has several advantages over pre-
viously reported neuromorphic acoustic sensing systems (includ-
ing bio-inspired acoustic sensors with integrated signal processing/
adaptation38–41) and silicon and FPGA cochleae23,26–35. Its sensing  
properties—particularly, its gain change of up to 44 dB—are comparable 
with the mammalian cochlea, and the simplicity of the feedback algo-
rithm enables fast and efficient feedback and adaptation mechanisms 
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the sensing of low sound pressures before switching (nonlinear regime a1 = 0.8), 
which are otherwise below the noise level, and the discrimination of large sound 
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with a small overhead per channel. Our sensor can also be fabricated 
based on standard complementary metal–oxide–semiconductor pro-
cesses and shows high resilience against device tolerances and device 
mismatches, due to the large operation ranges for the feedback param-
eters (a comparison of the dynamic MEMS cochlea with mammalian 
cochlea and other neuromorphic acoustic sensing systems is given in 
Supplementary Section 4 and Supplementary Table 2).

The adaptive sensing of our system is of particular interest in 
noisy or multi-source situations. Due to the adaptive properties of 
the sensor, the sensitivity can be increased at low SNRs using the 
nonlinear-operation mode to improve detection or reduced at high 
SPLs using the linear mode to avoid saturation of the sensing signal. 
Since each sensor can be individually and dynamically tuned by the inte-
grated amplification mechanism, it is possible to avoid the masking of 
certain frequency bands by larger SPLs in other bands, as can occur for 
microphone-based systems. Furthermore, because the input dynamic 
range is directly compressed at the sensor level, there are no constric-
tions of the dynamic range by subsequent electronics. Both these 
features are hard to achieve using standard microphone technology.

The bio-inspired merging of sensing and processing in the dynamic 
MEMS cochlea provides compact (in terms of circuit elements per chan-
nel) and robust (in terms of device mismatch and tolerances) systems 
with minimal signal processing latency due to the integration of signal 
processing into the sensing process. These properties make our system 
a potential alternative to conventional ‘microphones plus subsequent 
signal processing’ as the input stage for speech processing systems.

Methods
Experimental implementation
The acoustic sensor system (Fig. 2a,b) consists of two parts: the acous-
tic transducer and a feedback loop63. The transducer comprises a 
three-layer structure with a silicon layer as the base of the beam struc-
ture with 150 μm width, 350 μm length and thickness varying between 1 
and 5 μm (fabrication details are given elsewhere44). The other two lay-
ers on top of the silicon are a silicon dioxide layer (thickness, ≈100 nm) 
for electrical isolation and an aluminium layer (thickness, ≈5 μm;  
Fig. 2b, red), which is used as an actuator for the beam. The size of both 
additional layers is negligible compared with the silicon base, which, 
thus, determines the resonance frequency and sensor properties (such 
as quality factor, Q0). The aluminium layer on top of the beam is used 
as a thermo-mechanical actuator. Applying a voltage at the aluminium 
loop leads to a current through the actuator that introduces heating 
of the beam due to its resistance. Since the thermal expansion coeffi-
cients of silicon and aluminium differ, the temperature change yields 
a deflection of the beam, which is proportional to the introduced 
power. In addition to the integrated actuator, deflection sensing of the 
transducer is realized by four piezo-resistive elements (Fig. 2b, green) 
near the base of the beam. They are arranged in a Wheatstone bridge 
configuration to reduce the influence of noise. The deflection can be 
inferred as a voltage change, since a deflection of the beam results in a 
resistivity change in the piezo-resistive elements.

The second part of the sensor system is the feedback loop (Fig. 
2b) that is used to tune the sensing properties by changing the dynam-
ics of the transducer. The sensing voltage is amplified, high-pass fil-
tered to neglect its d.c. part and converted into a digital signal by the 
analogue-to-digital converter of the STEMlab 125-14 board (sample 
rate 125 MHz and 14-bit resolution). The feedback signal is calculated 
in an FPGA structure on that board, too. Finally, the feedback signal is 
converted into an analogue signal by the digital-to-analogue converter 
of the STEMlab 125-14 board (sample rate 125 MHz; limitation ±1 V) and 
used to drive the actuator of the transducer.

Two types of feedback mechanism are applied: self-feedback, 
which uses the sensing voltage of a single transducer for feedback, and 
an output-signal coupling, which takes the sensing signal of one trans-
ducer to drive the actuator of a second transducer. The self-feedback 

signal uact is given by

uact(t) = aua.c.(t) + ud.c. (5)

with high-pass-filtered sensing voltage ua.c., the self-feedback strength 
a ≥ 0 and bias voltage ud.c.. In the case of output-signal coupling, the 
feedback signals u(i)act, i = 1, 2  for the two coupled transducers are  
given by

u(1)act(t) = b12u
(2)
a.c.(t) + u(1)d.c., (6a)

u(2)act(t) = b21u
(1)
a.c.(t) + u(2)d.c., (6b)

where u(1)a.c.(t)  and u(2)a.c.(t)  denote the high-pass-filtered sensing  
signals of sensors 1 and 2, respectively; coupling strength bij, i, j = 1, 2; 
and bias voltages u(i)d.c., i = 1, 2. The coupling strengths and bias voltages 
can be different for the two sensors, but in the following, we take the 
same values for both.

The implementation of the feedback loop with the FPGA archi-
tecture of the STEMlab 125-14 board allows a near real-time feedback 
(≈0.1–1.0 μs delay, corresponding to maximum 1.4% of the oscillation 
period of the resonator). The sensor signal is saved into a file with a 
sample rate of 1.98 MHz for a subsequent analysis using MATLAB (ver-
sions 2019b and 2022b).

The acoustic sensing properties are tested using sound excitation 
with a piezo-loudspeaker (Kemo Electronic L010) driven by a signal 
generator (Agilent 33521A). Three types of acoustic signals are used: 
(1) single-tone studies using a sine-wave signal (for self-feedback and 
dynamical adaptation experiments); (2) chirp tones with a sine wave, 
whose frequency is linearly swept (for output-coupling experiments); 
and (3) a sum of a sine-wave signal with band-limited white noise (for 
self-feedback experiments). The driving voltage for the loudspeaker 
determines the SPL, where the sound pressure amplitude is linearly 
dependent on the driving voltage.

Theoretical description
For the theoretical description of the sensor system, we use a modi-
fied form of the modal description for the first mode derived earlier53.

ẍ(t) + ω0
Q0

̇x(t) + ω2
0x(t) = αθ(t) + Fext(t)

meff
(7a)

̇θ(t) + βθ(t) = γ(uact(t)
R )

2
(7b)

̇ua.c.(t) = −ua.c.(t)
τ + ̇us(t). (7c)

Here x(t) represents the deflection of the beam, θ(t) is the tem-
perature difference between the beam structure and its surrounding, 
ua.c.(t) is the high-pass-filtered sensing signal and uact(t) is the actu-
ation voltage. The latter is calculated according to equation (5) or  
equation (6), depending on which case is studied. To prevent dam-
age to the transducer, the actuation voltage is limited to the range of 
±0.5 V. In the analysed deflection range, the sensing voltage us is linearly 
related to the deflection: us(t) = kx(t) with calibration factor k, which 
also includes the pre-amplification of the signal. The eigenfrequency 
of the transducer is given by ω0 = 2πf. Since the width and length are 
kept constant, the thickness of the transducer determines the eigen-
frequency of the sensor according to

f = ω0
2π = δ2n

dSi

2πl2Si√
ESi
12ρSi

. (8)
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Here lSi is the length of the sensor, dSi is the thickness of the sensor, ESi 
is the elasticity module, ρSi is the density of Si and δn is a pre-factor for 
the nth mode.

Quality factor Q0 of an oscillating beam in air was derived else-
where45 and is mainly determined by damping due to the surrounding 
fluid. It can be calculated according to

Q0 =

4ρSidSi

πwSiρgas
+ 1.05333 + 3.7997

√2Re
3.8019
√2Re

+ 2.7364
2Re

, (9)

where Reynolds number Re for this system is given by

Re =
2πfρgasw2

Si
4ηgas

.

Here wSi and 2πf describe the width and oscillation frequency of the 
silicon beam, respectively. Also, ρgas and ηgas denote the density and 
dynamic viscosity of the surrounding media (air), respectively.

Parameters α, β and γ are sensor-specific parameters that describe 
the transformation of temperature into deflection, the time constant 
for temperature changes and the transfer efficiency from actuation 
voltage into temperature changes, respectively. The resistance of the 
actuator is given by R. External forcing can be introduced by the force 
term Fext(t)/m related to mass m of the transducer. Note that mass m 
used to relate the force to the deflection is not the total mass mSi of 
the transducer but additionally includes a so-called added mass term  
mmovedgas, which arises from thermo-viscous damping45: m = mSi +  
mmovedgas. The added mass mmovedgas can be calculated using

mmovedgas =
1
4ρgasπw2

SilSi (1.0553 +
3.7997
√2Re

) .

Critical feedback strength
From equations (5) and (7), a linear stability analysis can be performed 
to study the origin of the nonlinear response of the sensor. This yields 
the critical feedback strength acrit at the bifurcation point in the absence 
of an external force. Specifically, a linearization around the fixed point 
leads to a characteristic equation. The solutions of this character-
istic equation are the eigenvalues of the fixed point. They are given 
depending on the feedback parameters a and ud.c. and sensor proper-
ties ω0, Q0, R, α, β and γ. We find one real-valued eigenvalue and a pair 
of complex-conjugate eigenvalues. The bifurcation occurs when the 
pair of complex-conjugate eigenvalues crosses the imaginary axis, 
that is, when their real parts become zero. This is the signature of a 
Hopf bifurcation. Indeed, we observe this dynamical behaviour as we 
vary the feedback strength a. Fixing all the other system parameters 
determines the critical value acrit at this bifurcation:

acrit =
−R2

4γατ2kud.c.
[ (β + β2τ + ω0

Q0
(1 + βτ + β2τ2)

+ ω2
0

Q0
( 1
Q0

−Q0) (τ + βτ2) + ω3
0

Q0
τ2) + (1 + βτ + τω0

Q0
)

√( ω0

Q0
+ τω2

0)
2
+ (β + βτ ω0

Q0
)
2
+ 2βω0 (−τω0 +

1
Q0

+ τω0

Q2
0
+ τ2ω2

0

Q0
)] .

(10)

The critical feedback strength (Fig. 3a) depends on the second con-
trol parameter, that is, bias voltage ud.c., for different quality factors Q0.

Data availability
The data that support the plots within this paper and other findings 
of this study are available via Zenodo at https://doi.org/10.5281/
zenodo.7640418.

Code availability
The custom-developed codes for the MATLAB simulation and data 
analysis are available from the corresponding author upon reasonable 
request. The code for the LTspice simulations is available via Zenodo 
at https://doi.org/10.5281/zenodo.7640418.
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