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% Check for updates Many speech processing systems struggle in conditions with low

signal-to-noise ratios and in changing acoustic environments. Adaptation
atthe transduction level with integrated signal processing could help to
address this; in human hearing, transduction and signal processing are
integrated and can be adaptively tuned for noisy conditions. Here we report
amicroelectromechanical cochlea as a bio-inspired acoustic sensor with
integrated signal processing functionality. Real-time feedback is used

to tune the sensing and processing properties, and dynamic switching
between linear and nonlinear characteristics improves the detection of
signals in noisy conditions, increases the sensor dynamic range and enables
adaptation to changing acoustic environments. The transition to nonlinear
behaviour is attributed to a Hopf bifurcation and we experimentally validate

itsdependence on sensor and feedback parameters. We also show that
output-signal coupling between two coupled sensors canincrease the
frequency coverage.

Our hearing exhibits remarkable sensing properties: adynamic range
ofsound pressure level (SPL) of 120 dB, afrequency resolution of 0.1%,
anintensity discrimination of 1 dB and adaptive capabilities (particu-
larly at small SPLs and in noisy environments; these environments are
known as the ‘cocktail party effect’)". This functionality is due to three
properties of the system: pre-processing, local frequency-selective
feedback and dynamicadaptation. Pre-processing includes frequency
filtering and frequency-selective nonlinear amplification of the sig-
nal before it reaches the auditory nerve, and encoding of the signal
into spike trains at the auditory nerve®’. Local frequency-selective
feedback of the sensor changes the sensor gain by 40-60 dB (ref. 4),
based mainly on changes to the outer hair cell motility>>¢; feedback
enables the detection of sounds below the thermal noise level and in
the presence of noise or masking sounds’’. Dynamical adaptation

occurs at multiple stages of the auditory pathway, including signal
processing before transduction (that is, middle ear transfer function
by acoustic reflex), during transduction (that is, inner ear processes)
and at subsequent processing stages. This provides improved sensing
conditions for varying hearing environments”'%™2,

It remains challenging torecreate the features of biological hear-
ingwithtechnology. Learning-based sound processing systems such as
convolutional, recurrent and spiking neural networks have been devel-
oped for tasks such as keyword spotting, speaker identification and
speech analysis" . It has been shown that incorporating bio-inspired
pre-processing increases the performance considerably”. Process-
ing of a microphone signal, such as nonlinear filtering, frequency
decomposition and feature extraction, occurs at the audio front end
before feeding it into a neural network at the back end (Fig. 1, left).
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Fig.1| Concepts of speech processing: technological versus biological audio
front ends and speech processing units. The bright grey boxes indicate the
adaptive parts. The orange arrows represent feedback at the same level or from
higher levels to change sensing and/or processing properties. The red bracket
indicates the target levels and properties for the design of neuromorphic

acoustic sensors. BM, basilar membrane; OHC, outer hair cell; IHC, inner hair
cell; AN, auditory nerve; DNN, deep neural network; CNN, convolutional neural
network; CRNN, convolutional, recurrent neural network. Credit: BM image,
Wikimedia Commons under a Creative Commons license CC BY 2.5; auditory
cortex, Wikimedia Commons under a Creative Commons license CC BY 4.0.

However, room reverberation, interfering noise and other perturba-
tions to the signal that can affect the underlying feature representa-
tion can limit performance, particularly at low signal-to-noise ratios
(SNRs)®2°, In addition, it is difficult to separate individual sound
sources from a mixed acoustic signal and to generalize to unknown
acoustic conditions. Automatic adaptation that can overcome some
oftheseissuesis currently being implemented at the signal processing
level (thatis, nonlinear filtering) or at the network stage” >*. Although
basic tasks like voice activity detection, keyword spotting and speech
detection with a limited vocabulary have been implemented on
low-power devices***, this has yet to be achieved for more complex
applications such as acoustic scene analysis.

Neuromorphic sound sensors—such as silicon and field-
programmable gate array (FPGA) cochleae****—already incorpo-
rate some adaptive signal pre-processing in the form of frequency
decomposition and nonlinear frequency-selective amplification.
However, these sensors rely on standard microphones that have lim-
ited pre-processing and adaptation capabilities for transduction.
Bio-inspired acoustic sensors have been developed that canimplement
frequency decomposition (of up to 12 channels), nonlinear amplifica-
tion (change ingain of up to 7 dB) and directionality**~*, but these only
coverasmallfrequency range, have low frequency resolution (quality
(Q) factor ofaround1) and do notinclude adaptability. Artificial coch-
leae that can adapt to their acoustic environment can greatly improve
the performance and efficiency of processing. This has been achieved
by damping the neighbouring frequency bands***° and incorporating
aleaky-integrate-and-fire model for feedback*.. Such an approach is
expected to outperform state-of-the-art signal processing capabilities
interms of detecting/processing large SPLs, latency, energy efficiency
and reduction in masking of quiet sounds in noisy environments*.

In this Article, we report an adaptive neuromorphic microelec-
tromechanical system (MEMS)-based cochlea with integrated signal
processing. The acoustic sensor system consists of one or more acous-
tic transducers—asilicon beam integrated with a thermo-mechanical

actuator and four piezo-resistive elements for deflection sensing—and
afeedback system that connects the sensor elements to the actuator.
Thisfeedbackis used to tune the sensing and processing properties of
the system in real time based on the acoustic signal properties (Fig. 1,
right). The feedback and coupling properties can be controlled to suit
differentacoustic environments. For example, the signal amplitude can
be used to implement an amplitude-dependent shift of the dynamic
range* to increase the sensitivity of measurements at low noise levels.
In the case of the MEMS cochlea with a single transducer, the
self-feedback strength is used to switch the transfer characteristics—
the voltage as a function of sound amplitude—among linear, nonlin-
ear, mixed or amplitude-independent regimes (for example, in the
nonlinear regime, the sensitivity is high at lower sound pressures and
decreases at higher pressures, whichimproves signal detectionin noisy
conditions). Our dynamic MEMS cochlea exhibits a gain change of up
to 44 dB, comparable with mammalian hearing. Stability analysis of
the nonlinear response indicates that a Hopf-type bifurcation occurs
in the system. Inaddition to the operation based on the self-feedback of
asingle transducer, we show that two transducers in the MEMS cochlea
canbe coupled using feedback based on the output signal of the other.
This can be used to adjust the sensitivity and frequency coverage.

Sensing properties

The sensor system proposed here consists of an acoustic transducer
and a feedback loop (Fig. 2a,b). The transducer is realized as a silicon
beamwithintegrated piezo-resistive deflection sensing and integrated
thermo-mechanicalactuation (Methods). Suchtransducers have already
been successfully applied in atomic force microscopy and scanning
probelithography**, as well as other sensing tasks like gas flow sensing
and gas mixture analysis***®. The integration of actuation and sensing
into the beam has the advantage of being able to implement real-time
feedbackloops. Here the feedback loopis either self-feedback for a sin-
gletransducer (Fig.2) or an output-signal coupling of two transducers
(Fig. 5), with feedback calculation time in the range of less than 10 ps.

Nature Electronics


http://www.nature.com/natureelectronics
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41928-023-00957-5

a b Loudspeaker .
B} < L
// ‘\ Pre-amplifier boards
e STEMIab 125-14
~ S
Signal generator” U, =au, +u,
Thermo-mechanical actuation
Piezo-resistive deflection sensing
Cc Loudspeaker input signal e
o8 s 6
= 5% Loudspeak
O% oudspeaker
g o4 S5 4l Sensor 1
2 5 ER:
Q g5 Sensor 2
Z rg o2
-0.4
: L
= (0]
-08 1 3 5 7 9
Frequency (kHz)
Time (s)
~ 0.3 - Sensor output signals ~ 03 T
2 o2 Sensor 1 2 o2} Sensor2 |l e
= st " |
2 0.1 g 01} Al ™
= B | 2 L |
> BB EAIA
2 = Sensor 1
g -01 S ) \ g -o1t 11 ‘
ensor | Il
$ -02 & -02f Rl I
on %] UL UG
-0.3 -03 ¢
9 10 n 12 13 14 15 16 17 18 19 20 18.430 18.434 18.438 18.442
Time (s) Time (s)

Fig.2|System overview and frequency filtering. a,b, Photograph (a) and
schematic (b) of the sensor system with self-feedback. The inset shows a coloured
microscopy image of the transducer. ADC, analogue-to-digital converter; DAC,
digital-to-analogue converter. ¢, Time series of the sound input given by natural
sounds (from the natural sound dataset 1in ref. 47), used to study the sensor
response to complexinputs. d, Sensor response (in the active, nonlinear mode)
tosound input (shown in ¢) obtained from the measurements in an anechoic

chamber with two sensors of different resonance frequencies: 5.19 kHz for
sensor1(purpleline), 3.73 kHz for sensor 2 (red line). e, Frequency responses

of sensor1, sensor 2 and the exciter signal for natural sound input (as shownin
c). Thefiltering effectis clearly visible. f, An enlarged section of the peak ind, to
demonstrate the sine-wave response of the sensor despite the complex sound
input. Note that the measurements in c-fare performed with a sensor having the
design shownin Supplementary Fig. 2.

Theresponses of two sensors with different resonance frequencies
(fi=5.19kHz;f, =3.73 kHz) to acomplex sound signal (consisting of nat-
ural sounds like ferret calls, speech and running water, from a natural
sound database*’) are shown in Fig. 2c—f. The frequency filtering effect
is visible from different onsets of response, as well as the frequency
spectra. Dueto these strong filtering properties, the dynamics are not
affected by extrinsic noise down to a very small SNR (Supplementary
Section1). Furthermore, as shown by the frequency response (Fig. 2e)
and the enlargement of the time series (Fig. 2f), harmonic oscillations
are observed only at the first mode, despite the complex input.

Self-feedback strength a provides a route for tuning the transfer
characteristics, that s, sensing voltage (proportional to deflection of the
beam) as afunction of theamplitude of sound pressure, for single-tone
excitation (Fig.3). Besides the passive mode (a = 0), four different types
of response characteristic can be observed in the active, amplifica-
tion mode (a > O; Fig. 3a): a linear response for a < 0.50, a nonlinear
response for 0.70 < a < 0.74,amixture of linear and nonlinear response
for 0.50 <a < 0.70 and a sound-amplitude-independent response for
a>0.74.Inthe following, these regimes are discussed in more detail.

In the linear regime, the sensitivity increases and lower sound
pressures can be detected, if the feedback strength is increased
(Fig. 3a). At the same time, the equivalent noise level (self-noise) is
reduced by 3 dB SPL due to the active operation. The relative gain for
the active operation mode compared with the passive mode without
feedback canbeincreased by afactor of4-5, where the highest gain is
observed at the highest sound pressures (Fig. 3c).

Inthe nonlinear regime (Fig. 3b), in contrast, the highest change
ingain (around9) is observed for the lowest sound pressure (0.05 Pa)
and the lowest gain (around 3) for the highest sound pressure (0.43 Pa).
Thus, the sensor becomes more sensitive to lower sound pressures
than larger sound pressures. This effect resembles compressive
amplification, which is observed in the human hearing system in
the perception of loudness, that is, at the processing stage*s, and
at the transduction stage, that is, the hair cells in the inner ear>*>*°,
Furthermore, this effect is applied in many acoustic sensing systems
as post-transduction processing by using nonlinear amplification
(Fig. 1). Compressive amplification yields an amplitude-dependent
resolution/sensitivity*®, and is observed for most of the biological
senses such as vision and touch.

The change in gain could be further increased by optimizing
the design of the transducer for acoustic sensing (Supplementary
Section 2). This design shows a change in gain by a factor of 10 for the
active linear mode (compared with the passive mode) and a factor of
16 for the active nonlinear mode. Furthermore, the self-noise, that s,
thelowest detectable SPL (at resonance), was reduced to 26-28 dB SPL
in the passive mode, comparable with standard MEMS microphones®,
and can be further reduced to 18-20 dB SPL in the active nonlinear
mode, which is almost at the level of higher-quality measurement
microphones (=15-16 dB SPL).

Inboth linear and nonlinear regimes, the sensing of single tones
is possible even in the presence of band-limited white noise down to
SNRs below 0 dB (Supplementary Fig. 1). Here the SNR of the sensing

Nature Electronics


http://www.nature.com/natureelectronics

Article

https://doi.org/10.1038/s41928-023-00957-5

a
400 10
» > Feedback b
» > strength, a @
» Autonomous 5
> illati -
O oscillation S o a
N » > r » 0.75 5 = . . . kel
3001 , [N = P — 2
L L 2 - L ] w
° 5
S 2 ; < No sound input
£ Active mode, a 0.05 Pa
[} nonlinear Qa o0 .
T 200 | < ® 0.70 0.72 0.11Pa
= V| o064 2 0.16 Pa
o P . S e+ 024Pa
E Paan RS0 Active mode, c = s + + 0.27Pa
LY O -k : linear T H » +  0.32Pa
x| a-k ® t 2 e e 0.38Pa
100 - LA A—"’k > 3 e e 0.43Pa
~ A= o
e v £ 010 1.05 ! @
< D el = 3=EI-F 3 0.00 Passive mode @
ZEQsEd=E3=F 3" ' s
O‘ = i e sl S——— — 14
0 0.1 0.2 0.3 0.4 T
Sound pressure amplitude (Pa ) ‘
P P (Pa) Feedback strength, a
d . : e
1
80 _ 6
102 - 200 |
I3 = 100 : Amplifying Damping
g 1wl o2 S
1S B 1 2 = 60 »
= 22 o 1 £ 5 o
« c £ - € 2
E 100 = ! < = =
@© < - 1 <
g 3 100 ! 5 E 44 dB ‘ E
2 | 2 < 40 F ;43 =
Q c E ) 3
: 5 : Sl
[ [} ‘@ 3
H 7] S <
E g 2 3
Time (s)
¥y L
I I I | o _ ) o

0.2 0.4 0.6 0.8 1
Feedback strength, a

Fig.3|Sensing properties as a function of feedback. a, Amplitude of the sensor
signal versus sound pressure amplitude for different values of feedback strength
atostudy the transfer characteristics of the sensor system (4. = -200 mV).
Measurements were performed using a transducer with a resonance frequency
of14.2 kHz (Table 1and Methods list the other properties) and chirped sound
signals (12-16 kHz). Depending on a, the sensing behaviour in the active mode
(a>0)canbedivided into an active, linear mode for a < 0.50; an active, nonlinear
mode for 0.70 < a < 0.74; amixture between the linear and nonlinear mode for
0.50 <a <0.70; and sound-amplitude-independent, autonomous oscillations
for a>0.74. Theintrinsic noise level due to electronics and so onis given by the
dashedblackline.b,c, Gain as aratio of the active-mode amplitude to passive-
mode amplitude for various sound pressure amplitudes in the two modes:

0 0.2 0.4 -2 -1 0
Feedback strength, a

active, linear mode (a < 0.50) (b); active, nonlinear mode (0.70 < a < 0.75) (c).
Compressive amplification, yielding a higher gain for lower sound pressure
amplitudes, is observed for the active, nonlinear mode. d, Power spectra
maximum depending on positive feedback strength a without applied sound.
Autonomous oscillations without a sound input occur for a > 0.74. e, Sensitivity
of bio-inspired sensors, given by the slope of the ratio of sensing voltage to
driving voltage of the loudspeaker, as a function of feedback strength a. A
positive feedback strength strongly increases the sensitivity near the bifurcation
point, namely, a = 0.5 (left), whereas a negative feedback strength reduces the
sensitivity (right). Using positive and negative feedback strengths together, the
sensitivity (or gain) of the sensor can be varied by 44 dB, which is close to the 40—
60 dB change in gain in the human cochlea due to the outer hair cell operation.

signal is constant for a large range of SNRs of sound signals (=25 dB)
andthe SNR of the sensing signal canbe improved by the active mode.

For muchlargerfeedback strengths (a > 0.74), the sensing ampli-
tude is almost independent of the SPL, and the sensor oscillates even
without applying any sound (Fig. 3a,d). This behaviour is typical of
nonlinear systems at a Hopf bifurcation®.

Introducing anegative feedback strength results in damping of the
acoustic response (Fig. 3e). Combining the amplification and damp-
ing regime, the sensor offers a change in gain of up to 44 dB, which is
comparable with theadded gain of 40-60 dB by outer hair cell activity
in the mammalian cochlea®.

Modelling of sensing properties

To understand the nonlinear response of the acoustic sensor and find
out whether the observed autonomous oscillation is caused by aHopf
bifurcation, we analysed the dynamics of the sensing system. The math-
ematical description is based on another model*’. The derived model

describesthe changein deflectionx of the free end of thebeam due to
thermo-mechanical actuation a6 and external forcing (F..), (such as
sound), by adamped oscillator equation derived using Euler-Bernoulli
beamtheory:

Wo
Qo
where w, is the resonance frequency, Q, is the quality factor and @ is

the changein beam temperature, whichis caused by the applied actua-
tion voltage u,.:

() + =2X(6) + WRX(0) = aB(0) + Foxe(0), o

2
b0+ g0 = o =) @

obtained from the feedback loop
uact(t) = aua.c.(t) +Uqgc.s 3
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Table 1| Parameters of the sensor system used for modelling

Variable Value

Width of beam, wg; 150pum

Length of beam, [g; 350pum

Thickness of beam, dg; 1.25-1.45um
Frequency of beam, f [14.2,13.92,12.75] kHz
Density of silicon, pg; 2,329kgm™

Elastic modulus of silicon, Eg; 170GPa

Heater resistance, R [25.0,20.5,20.5]1Q

[1.00,0.80,0.25]x10°Vm™

Calibration factor, k (piezo-resistive sensing and
pre-amplification)

Time constant of high-pass filter, T 107%s

749.3702m?s 2K
1.0066x10%s™
4.2588x10'KQ%s™'V2

Transfer factor, a (temperature to deflection)

Time constant, 8 (temperature change)

Transfer factor, y (voltage to temperature)

Mode factor &, for frequency calculation 1.8751

1189kgm™
18.232x10Pas

Density of air, 0gss

Dynamic viscosity of air, Ng,s

Device-specific parameters for sensors 1, 2 and 3 are provided in the brackets.

where Ris the heater resistance. Here u, . is obtained from the trans-
formation of deflection x into a sensing voltage u, (u, = kx) by the
piezo-resistive elements, including high-pass filtering and amplifica-
tion:

+ U (D). “@)

. () =-— uzi+.(t)

The feedback introduces a nonlinearity into the system. This
model includes various sensor properties such as the resonance fre-
quency w,, heater resistance R and quality factor Q,, and it can be easily
adjusted to other beam dimensions and frequency ranges. Parameter
values of the analysed system are given in Table 1 and Methods.

To determine the origin of the nonlinear response and autono-
mous oscillations, we studied the stability of the fixed points. This
revealed a Hopf bifurcation depending on the feedback parameters,
thatis, feedback strength a and bias voltage u, . (Supplementary Sec-
tion 3). For feedback strengths below the critical value a.;, at which
bifurcation occurs, the system is quiescent in the absence of sound,
whereas for a > a.,;, self-excited, autonomous oscillations occur
together with astrongincrease in amplitude (Fig. 3d, insets).

From this stability analysis and comparison with the normal form
of Hopf-type oscillators, we derived an analytical equation for the criti-
calfeedback strength a.,;,, enabling us to obtain the nonlinear regime
in the dependence of sensor properties and feedback parameter u, .
(Methods). The comparison of the derived equation with experimental
data (black dots) shows excellent, quantitative agreement between
theory and experiment (Fig. 4a). It is noteworthy that the critical feed-
back strength stays finite even for higher frequencies. Thus, the non-
linear regime should occur not only inthe audible frequency range but
also for ultrasound. Indeed, in the experiments with sensors having
different resonance frequencies between 2 and 96 kHz, all the sensors
exhibited autonomous oscillations as an indication of Hopfbifurcation.

To study the origin of the increase in sensitivity with increas-
ing feedback strength in the linear regime, we compared the sound
response in the experiment with the response to external forces in
themodel (Fig. 4b). We found that the sensitivity increase in the linear
regime originates from an effective change in the quality factor with
increasing feedback strength, similar to Q control. The slope of the

effective quality factor strongly depends on the initial quality factor
Q,, which is determined by the geometric dimensions of the beam
(Methods). With anincrease in the initial Q,, the slope of the effective
quality factor strongly increases due to the influence of feedback. This
enables us to control thesensitivity of the sensor by the choice of sensor
design (setting Q,) and feedback strength a.

Two coupled sensors

Inadditionto the discussed nonlinear operation, the human auditory
systemis argued to be further enhanced by the coupling of sensory
elements (hair cells)'>***, This can improve the sensing performance
by reducing damping due to cochlear fluid, increasing sensitivity and
response amplitude, enhancing the reliability of sound encoding
and stabilizing the operation mode by increasing the range of non-
linear operation'>**~¢, If we introduce output-signal coupling of two
transducers as feedback (Fig. 5b) in our sensing system (instead of the
self-feedback described above), we obtain increasing sensitivity with
increasing coupling strength, a switching fromlinear to nonlinear sens-
ing characteristics, and self-excited, autonomous oscillationsindicat-
ing a Hopf bifurcation. The latter was observed even if the resonance
frequencies of the two sensors were more than 10 kHz apart.

Another effect of coupling feedback is shown by the power spectra
ofbothsensors (Fig. 5a). If the sensors are uncoupled (coupling strength
b, =b, =b=0), each sensor responds to sound at its resonance fre-
quency (black curves). If the beams are mutually coupled, for example,
increasing the coupling strength to b =1.05, an increased response of
therespective sensor atits own resonance frequency is observed, and
eachsensor exhibitsaslight response at the resonance frequency of the
othersensor (red curves). For even higher coupling strengths (b =1.875),
asubstantial response of the sensors occurs even in the frequency range
between both resonance frequencies. This effect strongly increases the
bandwidth of the sensor system: initially from 500 Hz up to approxi-
mately 5 kHz (Fig.5a). Afurtherincrease inthe coupling strength results
inself-excited oscillations of the sensor system.

Hence, the output-signal coupling can modify the sensitivity of
eachsensorandits transfer characteristics, similar to the self-feedback
and coupling effects in the hearing system, and it can also modify the
bandwidth of the coupled system consisting of both sensors. This
effect helps toreduce the number of sensors needed to cover a certain
frequency range, since the sensors do not only respond at their reso-
nance frequency (with a typical bandwidth of 20-500 Hz, depending
onthedesign) butalsointhe frequency range between the resonance
frequencies of the coupled sensors.

Dynamical adaptation
Biological senses, like vision, hearing and touch, are focused on detect-
ing the relative values and changes rather than absolute values®. There-
fore, adaptation is not only used to tune the sensing properties like
sensitivity, resolution and operation point of the system in a slowly
changing environment but also to highlight fast changesin stimulisuch
as, for example, the onset of a stimulus>"'>*", These fast adaptation
mechanisms support processing tasks like sound source localization,
where performanceis strongly dependent on exact onset detection™ 2,
Furthermore, the adaptation canincrease the efficiency of the system
and reduce the redundancy of information for processing, for exam-
ple, by reducing the spike rate for constant stimuli (known as sensory
adaptation). Onset/offset detection can help to reduce the power con-
sumption and data streaming needs by reducing the feedback signal
after the detection of the onset of constant sounds and triggering the
start/end of data streaming to processing units. In this way, data will
betransferred for further analysis only when sound occursin a specific
frequency band set by the sensor.

In our sensing system, dynamic adaptation is implemented by
the self-guided adjustment of the feedback parameters: feedback
strength a, bias voltage u, . and coupling strength b. The feedback
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strength controls the linearity of transfer characteristics (amplifica-
tion behaviour), sensitivity and filtering properties by changing the
quality factor of the system. The bias voltage shifts the critical feedback
strength for the nonlinear regime. The coupling strength changes the
sensitivity and bandwidth of the system. Since all the three parameters
canbeindividually controlled, short-term and long-term adaptations
targeting amplitude and frequency ranges can be easilyimplemented.
This enables the combination of, for instance, a fast adaptation of
the sensor to the onset of sound signals (similar to sensory adapta-
tion®) or automatic gain control to avoid damage due to high SPLs
with slow adaptation, similar to homoeostatic control keeping the
sensing amplitude in a pre-defined range™*%. Such adaptations can be
used to increase the dynamic range, implement event-based sensing
and spike-rate-based encoding of sound properties, as well as cover
large frequency ranges with only a few transducers and still retaining
high-frequency resolution.

We implemented a dynamical adaptation in our sensor system
using afastadaptation of feedback strength a depending onthe sensing
amplitude (Fig. 6a; switching time below 10 ps). Here ais switched from
a,to alower value a, if the amplitude crosses a pre-defined threshold
Vi Itis reset to the initial value a, either if the amplitude decreases
below a second threshold (to model sensory adaptation) or after a
pre-defined time interval 7, (to model a refractory period).

Experimentalimplementation of therefractory period adaptation
shows aspike-like output of the sensing system (Fig. 6b), which canbe
used to generate event-based spikes based on the acousticinput. The
spiking frequency depends onthe refractory period 7,, aswellason the
sound pressure amplitude. Increasing the sound pressure amplitude
resultsinareductioninrise time 7, of the sensor signal until reaching
the threshold for switching the feedback strength, as evident from a
comparison of the response to two different sound levels (Fig. 6b, red
andblue curves). Thus, the sound amplitudeis encoded as aspike rate
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Fig. 6| Dynamical adaptation of feedback strength. a, Schematic describing
the dynamic adaptation algorithm used inb and c. b, Time series of sensor
signals for two different sound amplitudes (blue and red) obtained from
experiments with the FPGA-based implementation of feedback strength
switching (schematic shownina) between a; = 0.7 and a, = 0. Here the feedback
strengthis kept atits lower value for a constant time interval 7, before resetting
itto the high-sensitivity regime. This yields a spike-like response of the sensor
system to the constant sound input. The comparison for both sound amplitudes
reveal an amplitude-dependent spike rate, which is determined by the sound-
amplitude-dependent part 7, and the fixed time interval 7, for reset. ¢, Numerical
implementation of sensory adaptation obtained from LTspice simulations of
system with adaptation circuit (schematic shownin a). The envelope of the
sensor signal with dynamic adaptation of feedback strength is shownin the

b
200
S 100
E
©
)
2 0
o
C
‘@
C
o -100
»n
-200
Time (s)
d
60 - A
e
e g
PO
E 50 |- -z &
£ -7
3 -
- e
2 10| tad -
3 - e
£ - 7
< [ 2 e
o <~ @ Peak:a,=0.8
30 _ B Plateau: a,=0.5
— y = 4.96 x 102 - 4.74
_ < y=-4.68 x10°x2 + 0.073 - 4.46
20 | I I
200 300 400 500 600

Driving voltage (mV)

case of a constant sound inputin the interval of 0.05to 0.10 s. Switching events
changing the feedback strength are marked with the blue dashed lines. The
dynamic adaptation increases the resolution and dynamic range by enabling

the sensing of low sound pressures before switching (nonlinear regime a, = 0.8),
which are otherwise below the noise level, and the discrimination of large sound
amplitudes after switching (linear regime a, = 0.5). The resolution decreases with
increasing sound amplitude and large sound amplitudes can drive the sensor
into saturation in the nonlinear regime (Fig. 3a). d, Peak (black dots) and plateau
(red squares) amplitude of the time series obtained from dynamic adaptation
simulations shownin c: a decreasing resolution with increasing sound amplitude
is observed for the peak amplitudes due to the nonlinear-operation range
(a,=0.8).Incontrast, for the linear-operation regime (a, = 0.5), the resolution
remains constant. The dashed curves are fitsas a guide to the eye.

ofthe sensing signal. Furthermore, the experimentalimplementation
ofthelatterloop using an FPGA demonstrates the stability of the sensor
evenunder stepwise changes in feedback strength a.

Simulations (Fig. 6¢) and measurements of the sensory adaptation
case, implemented using analogue circuits with discrete devices, show
that the onset of sound is highlighted in the sensing signal (which is
important, for instance, for localization tasks) and that the dynamic
range of the sensor is increased. The latter is achieved by generally
operating the sensor in the most sensitive regime (a, close to a;,) to
enable highly resolved detection of small SPLs. However, as shown
in Fig. 6d (black), this yields decreasing resolutions for increasing
SPLs up to saturation with sound pressure amplitude. Switching to
lower sensitivities after the initial response yields a better discrimina-
tion for larger SPLs (Fig. 6d (red)). Furthermore, the switching signal
can be used to trigger either a data streaming unit, sending the sens-
ing signals to a processing system, or a processing unit. Thus, data
streaming or sound processing is initiated only if the sound signals
are detected, which reduces the power consumption and stream-
ing requirements for tasks like machine supervision or systems like
hearing aids.

Conclusions

We havereported aneuromorphicacoustic sensing systemthat consists
of MEMS cochleaand integrated real-time feedback, either toitself or
as output-signal coupling to a pair of sensors. The system shows high
tunability and adaptive sensing properties, such as variable sensitivity
or switchingbetween linear and nonlinear transfer characteristics, as
well as the integration of signal processing steps such as frequency
filtering and nonlinear compressive amplification. We also showed
that dynamical switching between linear and nonlinear characteris-
tics improves the detection of signals in noisy conditions, increases
the dynamic range of the sensor and enables adaptation to changing
acousticenvironments. Furthermore, output-signal coupling strongly
increases the frequency coverage.

Our dynamic MEMS cochlea has several advantages over pre-
viously reported neuromorphic acoustic sensing systems (includ-
ing bio-inspired acoustic sensors with integrated signal processing/
adaptation®**) and silicon and FPGA cochleae*?**"*, Its sensing
properties—particularly, its gain change of up to 44 dB—are comparable
with the mammalian cochlea, and the simplicity of the feedback algo-
rithm enables fast and efficient feedback and adaptation mechanisms
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with a small overhead per channel. Our sensor can also be fabricated
based onstandard complementary metal-oxide-semiconductor pro-
cesses and shows high resilience against device tolerances and device
mismatches, due tothe large operation ranges for the feedback param-
eters (a comparison of the dynamic MEMS cochlea with mammalian
cochleaand other neuromorphic acoustic sensing systemsis givenin
Supplementary Section 4 and Supplementary Table 2).

The adaptive sensing of our system is of particular interest in
noisy or multi-source situations. Due to the adaptive properties of
the sensor, the sensitivity can be increased at low SNRs using the
nonlinear-operation mode to improve detection or reduced at high
SPLs using the linear mode to avoid saturation of the sensing signal.
Since eachsensor canbeindividually and dynamically tuned by the inte-
grated amplification mechanism, itis possible to avoid the masking of
certain frequency bands by larger SPLsin other bands, as can occur for
microphone-based systems. Furthermore, because theinput dynamic
rangeis directly compressed at the sensor level, there are no constric-
tions of the dynamic range by subsequent electronics. Both these
features are hard to achieve using standard microphone technology.

Thebio-inspired merging of sensing and processingin the dynamic
MEMS cochlea provides compact (in terms of circuit elements per chan-
nel) and robust (in terms of device mismatch and tolerances) systems
with minimal signal processing latency due to the integration of signal
processinginto the sensing process. These properties make our system
apotential alternative to conventional ‘microphones plus subsequent
signal processing’ as the input stage for speech processing systems.

Methods

Experimental implementation

The acoustic sensor system (Fig. 2a,b) consists of two parts: the acous-
tic transducer and a feedback loop®. The transducer comprises a
three-layer structure with asilicon layer asthe base of the beam struc-
ture with150 pmwidth, 350 pm length and thickness varying between1
and 5 pm (fabrication details are given elsewhere**). The other two lay-
ersontop of thesilicon are asilicon dioxide layer (thickness, =100 nm)
for electrical isolation and an aluminium layer (thickness, =5 pm;
Fig.2b, red), whichis used asanactuator for thebeam. The size of both
additional layers is negligible compared with the silicon base, which,
thus, determines the resonance frequency and sensor properties (such
as quality factor, Q,). The aluminium layer on top of the beam is used
asathermo-mechanical actuator. Applying a voltage at the aluminium
loop leads to a current through the actuator that introduces heating
of the beam due to its resistance. Since the thermal expansion coeffi-
cients of silicon and aluminium differ, the temperature change yields
a deflection of the beam, which is proportional to the introduced
power.Inadditiontotheintegrated actuator, deflection sensing of the
transducer is realized by four piezo-resistive elements (Fig. 2b, green)
near the base of the beam. They are arranged in a Wheatstone bridge
configuration to reduce the influence of noise. The deflection can be
inferred as a voltage change, since adeflection of thebeamresultsina
resistivity change in the piezo-resistive elements.

The second part of the sensor system is the feedback loop (Fig.
2b) thatisusedto tune the sensing properties by changing the dynam-
ics of the transducer. The sensing voltage is amplified, high-pass fil-
tered to neglect its d.c. part and converted into a digital signal by the
analogue-to-digital converter of the STEMIlab 125-14 board (sample
rate 125 MHz and 14-bit resolution). The feedback signal is calculated
inan FPGA structure on that board, too. Finally, the feedback signal is
converted into ananalogue signal by the digital-to-analogue converter
ofthe STEMIab125-14 board (sample rate 125 MHz; limitation +1 V) and
used to drive the actuator of the transducer.

Two types of feedback mechanism are applied: self-feedback,
which uses the sensing voltage of asingle transducer for feedback, and
anoutput-signal coupling, which takes the sensing signal of one trans-
ducer to drive the actuator of a second transducer. The self-feedback

signal u,. is given by

Unee(6) = Al ¢ (O) + Ug.c, %)

with high-pass-filtered sensing voltage u, ., the self-feedback strength
a >0 and bias voltage uy.... In the case of output-signal coupling, the
feedback signals u),i =1,2 for the two coupled transducers are

act’

givenby
U () = bpu (0 + ul) (6a)
U () = byl (0 + U, (6b)

where 4 (1 and 4 () denote the high-pass-filtered sensing
signals of sensors1and 2, respectively; coupling strength b, i,j=1,2;
and biasvoltages ufj’:)c', i = 1,2. The coupling strengths and bias voltages
can be different for the two sensors, but in the following, we take the
same values for both.

The implementation of the feedback loop with the FPGA archi-
tecture of the STEMIab 125-14 board allows a near real-time feedback
(=0.1-1.0 ps delay, corresponding to maximum 1.4% of the oscillation
period of the resonator). The sensor signal is saved into a file with a
samplerate of1.98 MHz for asubsequent analysis using MATLAB (ver-
sions 2019b and 2022b).

Theacoustic sensing properties are tested using sound excitation
with a piezo-loudspeaker (Kemo Electronic LO10) driven by a signal
generator (Agilent 33521A). Three types of acoustic signals are used:
(1) single-tone studies using a sine-wave signal (for self-feedback and
dynamical adaptation experiments); (2) chirp tones with a sine wave,
whose frequency s linearly swept (for output-coupling experiments);
and (3) a sum of a sine-wave signal with band-limited white noise (for
self-feedback experiments). The driving voltage for the loudspeaker
determines the SPL, where the sound pressure amplitude is linearly
dependent on the driving voltage.

Theoretical description
For the theoretical description of the sensor system, we use a modi-
fied form of the modal description for the first mode derived earlier>.

ae (1)0 . _ Fext(t)

X(0) + Q—Ox(t) + whx(t) = ab(t) + Mo (7a)
, Uyer (D))
00+ poce = 52 (7b)
e (0 = 250 i) (70)

Here x(¢) represents the deflection of the beam, 6(¢) is the tem-
perature difference between the beam structure and its surrounding,
u,.(t) is the high-pass-filtered sensing signal and u,(¢) is the actu-
ation voltage. The latter is calculated according to equation (5) or
equation (6), depending on which case is studied. To prevent dam-
age to the transducer, the actuation voltage is limited to the range of
+0.5 V.Inthe analysed deflection range, the sensing voltage u, s linearly
related to the deflection: u,(¢) = kx(¢) with calibration factor k, which
alsoincludes the pre-amplification of the signal. The eigenfrequency
of the transducer is given by w, = 21tf. Since the width and length are
kept constant, the thickness of the transducer determines the eigen-
frequency of the sensor according to

Wy o dsi | Es
= — =6 . 8)
f 2 " 2ni \ 12psi
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Here [ is the length of the sensor, dj; is the thickness of the sensor, Eg;
is the elasticity module, p; is the density of Si and 6, is a pre-factor for
the nth mode.

Quality factor Q, of an oscillating beam in air was derived else-
where® and is mainly determined by damping due to the surrounding
fluid. It can be calculated according to

3.7997

4psidsi
—nwswga‘ +1.05333 + Tore

Q= 3.8019  2.7364 ’

V2Re 2Re

)]

where Reynolds number Re for this system is given by

_ anpgaswgi
4’7gas

Here wg; and 2mif describe the width and oscillation frequency of the
silicon beam, respectively. Also, p,,, and 17, denote the density and
dynamic viscosity of the surrounding media (air), respectively.

Parametersa, fand yare sensor-specific parameters that describe
the transformation of temperature into deflection, the time constant
for temperature changes and the transfer efficiency from actuation
voltage into temperature changes, respectively. The resistance of the
actuatorisgiven by R. External forcing can beintroduced by the force
term F,(t)/m related to mass m of the transducer. Note that mass m
used to relate the force to the deflection is not the total mass mg; of
the transducer but additionally includes a so-called added mass term
Minovedgass Which arises from thermo-viscous damping®: m = mg; +
Menovedgas- The added mass m;,q,eqq.s €an be calculated using

37997)

1
Mmovedgas = Zpgasnwgilsi (1-0553 + R
(]

Critical feedback strength

Fromequations (5) and (7), alinear stability analysis can be performed
tostudy the origin of the nonlinear response of the sensor. This yields
thecritical feedback strength a,,; at the bifurcation pointin the absence
of an external force. Specifically, alinearization around the fixed point
leads to a characteristic equation. The solutions of this character-
istic equation are the eigenvalues of the fixed point. They are given
depending on the feedback parameters a and u, . and sensor proper-
ties wy, Qo, R, a, fand y. We find one real-valued eigenvalue and a pair
of complex-conjugate eigenvalues. The bifurcation occurs when the
pair of complex-conjugate eigenvalues crosses the imaginary axis,
that is, when their real parts become zero. This is the signature of a
Hopfbifurcation. Indeed, we observe this dynamical behaviour as we
vary the feedback strength a. Fixing all the other system parameters
determines the critical value a.,; at this bifurcation:

—R?

Ampis = ————
crit 4yar2kug .

(B+BT+ 2 (14 pr+ 72)

+%(Qi0 —Qo>(r+ﬂrz)+ Z—irz)+<1+ﬁr+ Tg—;)

(”—" + rw2)2 + <ﬁ+ﬁrﬂ)2 + 2w (—rw I L TZ%)
Q 0 Qo 0 0 Qo Q}; Qo ’
(10)

The critical feedback strength (Fig. 3a) depends on the second con-
trol parameter, that s, bias voltage u, ., for different quality factors Q,.

Data availability

The data that support the plots within this paper and other findings
of this study are available via Zenodo at https://doi.org/10.5281/
zenodo.7640418.

Code availability

The custom-developed codes for the MATLAB simulation and data
analysis are available fromthe corresponding author upon reasonable
request. The code for the LTspice simulations is available via Zenodo
at https://doi.org/10.5281/zenodo.7640418.
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