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A PRIORI ESTIMATES FOR A QUADRATIC DNLS

FRIEDRICH KLAUS

Abstract. In this work we consider integrable PDE with higher dimensional
Lax pairs. Our main example is a quadratic dNLS equation with a 3 × 3 Lax
pair. For this equation we show a-priori estimates in Sobolev spaces of negative
regularity H

s(R), s > − 1
2
. We also prove that for general N ×N Lax operators

L, the transmission coe�cient coincides with the 2-renormalized perturbation
determinant.

1. Introduction

In this work we consider integrable PDE with higher dimensional Lax pairs. Our
main example is the quadratic dNLS, given by

(1.1) iqt + 1√
3
qxx + 2iq̄q̄x = 0.

which admits a Lax pair with a 3× 3 matrix Lax operator, see (3.3). Here, q(t, x) ∶
I ×R → C is a complex-valued function defined on the real line. We are interested
in the initial-value problem for (1.1) and impose the initial condition

q(0, ⋅) = q0 ∈Hs(R).
Equation (1.1) was brought to the author’s attention when reading the very in-
teresting work [4] by Charlier–Lenells on a Miura map relating (1.1) to the good
Boussinesq equation. While he is not aware of any physical motivation to study
(1.1), and his own motivation is purely mathematical, he is quite sure that it can
be used as well to study wave propagation with a quadratic interaction.

From the scaling invariance

q�(t, x) = �q(�2t,�x),
which maps a solution q of (1.1) to another solution q�, we see that the scaling
critical Sobolev exponent for this equation is

sc = −1
2
.

This suggests that we may expect wellposedness of (1.1) in Sobolev spaces Hs(R)
with s > −1

2 .
To the best of the author’s knowledge the strongest result proving local and

global wellposedness is the one by Grünrock [6] for q0 ∈ L2, both on the real line
and on the torus. This makes the wellposedness situation very similar to the one
of cubic NLS before the seminal works of Killip–Visan–Zhang [13], Koch–Tataru
[17] and Harrop-Gri�ths–Killip–Visan [7]. They lowered the regularity threshold
to s > −1

2 , whereas L
2 wellposedness was known for a long time. A similar situation

was given for the Benjamin-Ono equation, with a-priori estimates being proven in
[22] and the very recent sharp wellposedness result [11].
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The first step on the way to sharp wellposedness in these examples was the con-
struction of conserved quantities at the level of negative Sobolev regularities. This
is also the first main result of this work, yielding low regularity a-priori estimates
for the equation (1.1) (see Theorem 14 for the full statement):

Theorem 1. Given a Schwartz solution q of (1.1), for all −1
2 < s < 0,

(1.2) �q(t)�Hs ≤ c(1 + �q(0)�Hs) −s
1+2s �q(0)�Hs .

Whether or not wellposedness of (1.1) can be proven in negative regularity similar
to [12, 7] is an interesting remaining question (see also Section 7). The existence
of weak solutions in negative regularity follows from Theorem 1 by a compactness
argument similar to [15].

To construct the conserved quantities for (1.1) we use its complete integrability.
In this situation there are two equivalent formalisms which were presented in the
works of Koch–Tataru [17] and Killip–Visan–Zhang [13] for the AKNS hierarchy.

The ansatz of Koch–Tataru [17] is very classical: they construct the Jost solutions
to define the inverse transmission coe�cient T −1, one of the novelties being their use
of Banach spaces of functions of p-bounded variation to treat low regularities. Due
to the structure of the compatibility condition of AKNS, the transmission coe�cient
is easily seen to be a conserved quantity. After constructing and showing bounds
on the transmission coe�cient, one can then analyze its logarithm. By establishing
a certain shu✏e algebra structure which permits to prove estimates with sharp
decay in the spectral parameter, conserved quantities are constructed by integrating− logT against a weight in the complex plane.

In comparison to the technical but classical machinery in [17], the formalism
developed in [13] is more elegant: Killip–Visan–Zhang start with a certain rep-
resentation of the transmission coe�cient in terms of a (renormalized) Fredholm
determinant. Now Jacobi’s formula for the logarithm of the determinant allows to
get rid of the shu✏e algebra used in [17], and many estimates on logT simply reduce
to estimates of operators in Schatten class norms. Then again, conserved quanti-
ties are constructed by integrating the Fredholm determinant against a weight,
respectively by performing a weighted summation.

There is one drawback of the formalism in [13] though: one either has to show
conservation of the renormalized perturbation determinant by hand, or know that it
equals T −1 for which conservation is much simpler to prove. In [13] the conservation
was shown by hand, and it was also shown by hand in the similar situation for
Benjamin-Ono [22] and dNLS [16]. This already indicates one issue: even though
the equality of the renormalized Fredholm determinant and the inverse transmission
coe�cient are mostly assumed to be known (e.g. for dNLS in [1]), apart from
rigorous treatments of their equality for KdV (see [10] and [20, Proposition 5.7]),
references for their equality in general higher dimensional systems are harder to
find (compare also to [8] where a proof of their equality for dNLS was included).

On the other hand, showing the conservation of the Fredholm determinant by
hand can be a cumbersome task. In fact, for (1.1) the author started with the rep-
resentation given in (4.3) but struggled to prove its conservation using commutator
identities similar to [13, 16]. This is why instead we prove our second main result
(see Theorem 19 for a full statement and Section 6 for definitions):

Theorem 2. Consider the first order system

(1.3) (@x −U)� = 0,
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where U = kJ +U0(u), k > 0, and
(1) J = diag(!1, . . . ,!n), !j ∉ iR are distinct, tr(J) = 0,
(2) U0(u) is an o↵-diagonal matrix of polynomials in u = (u1, . . . , um) without

zeroth order terms.

Then if �−1 , . . . ,�l

1 are the left Jost solutions and �+
l+1, . . . ,�+n are the right Jost

solutions, we have the equality

(1.4) W��−1 � . . . ��−l ��+l+1� . . . ��+n� = det2�1 − (@ − kJ)−1U0(u)�,
where W denotes the Wronskian and det2 the 2-renormalized Fredholm determi-

nant.

Having established Theorem 2 we know that the renormalized Fredholm deter-
minant in (4.3) is conserved, because the transmission coe�cient is (which follows
from the fact that the matrices in the compatibility condition for (1.1) are trace-
free). This conservation is needed to employ the formalism of [13].

The proof of Theorem 2 is inspired by work in progress [15]. Instead of showing
holomorphy of both sides and comparing their zeros as in [20] which in the general
situation (1.3) has the issue that the zeros are more complicated and not simple
anymore (see [2]), and instead of writing the equations for Jost solutions with the
help of the Fredholm determinant as in [10, 8], we prove the equality of the inverse
transmission coe�cient and the renormalized Fredholm determinant by showing
that their functional derivatives coincide. This may also help in identifying the
density function for logT (compare to the proof of [12, Proposition 2.4]) in future
work. More precisely we show that with the notation as in Theorem 2, the functional
derivative is

�

�ui

log det2�1 − (@ − kJ)−1U0(u)� = tr(∇iU0(u)g̃),
where g̃ is the diagonal of the integral kernel of (@x−U)−1−(@x−kJ)−1, and ∇iU0(u)
is defined by d

ds
�s=0U0(u + svei) = v∇iU0(u) for all v ∈ C∞

c
(R). Compared to [12],

and as in [7], the renormalization of (@x −U)−1 is necessary before calculating the
diagonal Green’s function because its first order term (@x − kJ)−1 does not have a
meaningful restriction to x = y.

This work is structured as follows. In Section 2 we list preliminaries to un-
derstand later calculations. In Section 3 we construct the Jost solutions and the
transmission coe�cient for (1.1). This is also done in the case when the function
has less than L

2 regularity and lies in a modulation space (see Theorem 6). In
Section 4 we prove equality of the inverse transmission coe�cient and the renor-
malized Fredholm determinant for (1.1). These proofs are less involved than in
the general case and help in its understanding. In Section 5 we prove Theorem 14
and in Section 6 we prove Theorem 19. Section 7 lists some open and interesting
questions which the author will probably not address soon.

Acknowledgements. The author is grateful to Herbert Koch for useful discussions re-
lating to Lemma 16. He also in general profited from many ideas from [15]. Funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
Project- ID 258734477 – SFB 1173.
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2. Preliminaries

In what follows we will often make use of the operators (@−z)−1, which we define
for f ∈ S ′(R) as
(2.1) ((@ − z)−1f)(x) = �������

− ∫ ∞x e
z(x−y)

f(y)dy, if Rez > 0,
∫ x−∞ e

z(x−y)
f(y)dy, if Rez < 0.

In particular when assuming k > 0 the operatorsR1 = (@−k)−1,R2 = (@−!2
k)−1,R3 =(@ − !k)−1, ! = exp(2⇡i�3), have integral kernels

K1(x, y) = −�{x<y}ek(x−y),
K2(x, y) = �{x>y}e!2

k(x−y)
,

K3(x, y) = �{x>y}e!k(x−y)
.

Given a functional F ∶ L2 → C we define its functional derivative �F

�u
via duality as

the unique function resp. distribution satisfying

d

ds
�
s=0F (u + sv) = �R

�F

�u
(x)v(x)dx, for all v ∈ S(R).

Partial functional derivatives are defined similarly. We denote the Schatten class of
compact operators with p summable singular values as Ip. I1 is called trace class,
I2 are Hilbert-Schmidt operators and I∞ are the compact operators. If A ∈ I1 is
of trace class on the separable Hilbert space H, then its trace is

trH(A) = ∞�
n=1��n,A�n�, (�n)n an orthonormal basis.

In particular if B which is written in matrix form is trace class on H
n,

B = ���
A11 . . . A1n

. . . . . . . . .

An1 . . . Ann

��� ,
its trace is

(2.2) trHn(B) = n�
i=1

trH(Aii).
Hilbert-Schmidt operators on L

2(R) can be identified with their integral kernels
K(x, y) ∈ L2(R2). Schatten class operators satisfy the Hölder-type estimate

� tr(AB)� ≤ �AB�I1 ≤ �A�Ip�B�Iq ,
1

p
+ 1

q
= 1,

and the continuous embeddings

Ip ⊂ Iq, p ≤ q,
hold. Given A ∈ I1 one can define the operator determinant of 1+A by the formula

log det(1 +A) = ∞�
n=1
(−1)n+1

n
tr(An),

assuming that the latter sum is absolutely convergent. This formula is called Ja-
cobi’s formula. If A is a matrix of operators we understand the traces as in (2.2).
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Given A ∈ Ik, define the k-regularized determinant of 1 +A by

log detn(1 +A) = ∞�
n=k
(−1)n+1

n
tr(An).

We refer to [21] for a complete introduction to these topics.

3. The transmission coefficient

Equation (1.1) can be seen as a system of equations

(3.1)
�������
iqt + 1√

3
qxx + 2irrx = 0,

irt − 1√
3
rxx + 2iqqx = 0,

with the restriction q = r̄. Since the arguments are the same and the calculations
are a bit more lucid, we will treat the system (3.1) in place of (1.1) until the
construction of almost conserved quantities in Section 5. We can write the system
(3.1) as a Hamiltonian system. To this end we define

{F,G} = � �F

�q
��G
�r
�′ + �F

�r
��G
�q
�′.

We can then write Hamilton’s equations

qt = {q,H}, rt = {r,H}
as

(3.2) qt = ��H
�r
�′, rt = ��H

�q
�′.

Now if

H = � i

2
√
3
�q′r − qr′) − 1

3
�r3 + q3�,

we recover (3.1) from the Hamiltonian equations (3.2). The system (3.1) admits a
Lax pair with a 3 × 3 Lax operator (see (3.5))

(3.3) L = ���
@ − k −q −r−r @ − !2

k −q−q −r @ − !k
��� .

Here, ! = Exp(2⇡i�3) is a third root of unity.
The qdNLS equations (1.1) can be written as the compatibility condition of the

system of equations

 x = U ,
 t = V  (3.4)

where the matrices U and V are (see [18])

U = k ���
1 0 0
0 !

2 0
0 0 !

��� +
���
0 q r

r 0 q

q r 0

��� = kJ +U0, ! = e 2⇡i
3 ,

and

V = −k2 ���
1 0 0
0 ! 0
0 0 !

2

��� + k
���

0 !q !
2
r

!r 0 q

!
2
q r 0

��� +
����

0 i√
3
qx − r2 − i√

3
rx − q2− i√

3
rx − q2 0 i√

3
qx − r2

i√
3
qx − r2 − i√

3
rx − q2 0

���� .
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For the overdetermined system (3.4) to be solvable the compatibility condition

Ut − Vx + [U,V ] = 0
has to be satisfied. The Lax operator L can be recovered from this as

(3.5) L = @x −U,
since in this case

Lt = −Ut = [@x −L,V ] − Vx = [V,L].
We are interested in the inverse transmission coe�cient and thus the Jost solu-

tions of L. For simplicity we suppress the time dependence and assume q, r ∈ C∞
c
(R)

for the moment. Let K ⊂ R be a compact interval with supp q ∪ supp r ⊂ K. Then
if x ∈Kc is outside of the support of q and r, a solution of

(3.6) L� = 0
is a solution of

(3.7) �x = k ���
1 0 0
0 !

2 0
0 0 !

����.
We can thus define two systems of solutions of L = 0, defined by asymptotics at
x→ ±∞ (which is the same as x < infK and x > supK, respectively, in this case),

(3.8) �±1 = ���
e
kx

0
0

��� , �±2 = ���
0

e
!

2
kx

0

��� , �±3 = ���
0
0

e
!kx

��� .
Note that the existence of these functions is ensured by the Cauchy-Lipschitz resp.
Picard-Lindelöf theorem, by solving the ODE (3.6) starting from x0 = infK for �−

i
,

resp. starting from x0 = supK and solving backwards in x for �+
i
.

Recall that ! = 1�2(−1 +√3i). We will only consider real-valued and positive
k > 0 when dealing with (3.3), thus the three functions �−1 ,�+2 ,�+3 are decaying at
their corresponding defining asymptotics. We call �−1 left Jost solution and both
�+2 ,�+3 right Jost solutions.

Usually one has to be a bit careful with the definition of Jost solutions in higher-
order systems. In the case of compactly supported potentials, the definition (3.8)
is unambiguous because the asymptotics (3.8) are an actual equality if x < infK
respectively x > supK. If we want to extend the definition to Schwartz potentials
though, we are lead to define Jost solutions by the condition
(3.9)

lim
x→±∞ e

−kx�±1(x) = ���
1
0
0

��� , lim
x→±∞ e

−!2
kx�±2(x) = ���

0
1
0

��� , lim
x→±∞ e

−!kx�±3(x) = ���
0
0
1

��� .
Now suppose that k ∈ C�R and that Re(k!) < Re(k!2), and that �+3 is (uniquely)
given. Then if �+2 satisfies the asymptotics in (3.9) we can add any multiple of
�+3 to �+2 and the result still satisfies the same asymptotics as �+2 . Thus we face a
problem in the uniqueness of the definition of Jost solutions.

In this specific example the uniqueness issue can be overcome by also requiring
that e

−!2
kx�±2(x) ∈ L∞(R), as was outlined in the work of Beals-Coifman [2]. In

here we instead simply restrict to k > 0. This results in Re(k!) = Re(k!2), making
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the asymptotics (3.9) unique (and also bringing us into the excluded set ⌃ in the
language of [2]).

We define the components �±
ij

as the entries of the matrix

�± = ��±1 ��±2 ��±3�,
so that e.g. �−1 = (�−11,�−21,�−31)t. Note that due to the linear independence of
their columns, both matrices �− and �+ are fundamental matrices for the problem
(3.6).

Using the Jost solutions we define the inverse of the transmission coe�cient as
the Wronskian

(3.10) T
−1(k, q, r) ∶=W (�−1 ,�+2 ,�+3),

where the Wronskian is

W ( 1, 2, 3) = det( 1� 2� 3).
This definition is independent of x: a small calculation reveals that for all v1, v2, v3 ∈
C3

,A ∈ C3×3,
(3.11) det(Av1�v2�v3) + det(v1�Av2�v3) + det(v1�v2�Av3) = tr(A)det(v1�v2�v3),
and hence,

@xW (�−1 ,�+2 ,�+3) = tr(U)W (�−1 ,�+2 ,�+3) = 0.
The inverse transmission coe�cient can also be written as a limit of the left Jost
solution at +∞,

(3.12) T
−1(k, q, r) = lim

x→∞ e
−kx�−11(k, q, r).

Indeed, since the Wronskian is independent of x we see that for all x > supK
T
−1 =W ���

�−11(x) 0 0

�−21(x) e
!

2
kx 0

�−31(x) 0 e
!kx

��� = e
−kx�−11(x),

and thus the limit on the right-hand exists for x→∞ and also equals T −1.
For the simplicity of calculations we often want to use equations like (1.1) in a

point-wise fashion. Unfortunately, solutions of dispersive equations with C
∞
c

initial
data tend to lose the compact support immediately as time progresses due to the
infinite speed of propagation. The better alternative is then to speak of Schwartz
solutions of (1.1), and we mean by that solutions q ∈ C∞(R,S(R)) of (1.1). These
solutions exist, as can be seen from the work of Beals–Coifman [2] respectively by
using a persistence of regularity argument on the global solutions of Grünrock [6].

Thus we have to extend the definition of Jost solutions and the inverse trans-
mission coe�cient from C

∞
c

functions to Schwartz functions. This is done in the
next Theorem 3 where it is actually shown that we need much less than Schwartz
regularity and decay.

Note though that this theorem restricts to the left Jost solution, which by (3.12)
is fortunately enough to define the inverse transmission coe�cient. For constructing
both right Jost solutions, L2 decay will in general be not enough due to Re(!k) =
Re(!2

k), instead one would have to impose an L
1 condition.



8 FRIEDRICH KLAUS

Theorem 3. There exists � > 0 such that for all q, r ∈ L2
and k > 0 with k

−1�2(�q�L2+�r�L2) ≤ � there exists a unique left Jost solution �−1 of the equation

 x = U .
It satisfies e

−kx�−1(x) ∈ C0(R) × (C0 ∩L2(R)) × (C0 ∩L2(R)). Moreover, for k > 0
the map

{�q�L2 + �r�L2 ≤ k1�2�} ⊂ L2(R)2 → C, (q, r)� T
−1(k, q, r)

is analytic.

Proof. We construct �−1 . We are looking for a solution of

 x = ���
k q r

r k!
2

q

q r k!

��� 
with asymptotics

 (x) = ���
e
kx

0
0

��� + o(1),
as x→ −∞. Let � = e−kx (x). Then � satisfies,

�1,x = q�2 + r�3,
�2,x = r�1 + k(!2 − 1) + q�3,
�3,x = q�1 + r�2 + k(! − 1)�3,

and hence

�1 = @−1x (q�2 + r�3) + 1,
�2 = (@x − k(!2 − 1))−1(r�1 + q�3),
�3 = (@x − k(! − 1))−1(q�1 + r�2),

(3.13)

where we define the operator @−1
x

acting on L
1 functions by

(@−1
x
f)(x) = � x

−∞ f(y)dy,
and the operators (@x − ⌘)−1 as in (2.1). Note that the numbers k(!2 − 1) and
k(! − 1) have negative real part. In particular by Young’s convolution inequality,

�@−1f�L∞ ≤ �f�L1(3.14)

�(@ − k(!2 − 1))−1f�Lp + �(@ − k(! − 1))−1f�Lp � k−1− 1
p+ 1

q �f�Lq , q ≤ p(3.15)

We can solve the system (3.13) via Picard iteration in the Banach space Xk =
C

0
0 × (C0

0 ∩ L2) × (C0
0 ∩ L2), where C

0
0 denotes continuous functions with limit at±∞. Note that C0

0 is a closed subspace of L∞(R). We endow Xk with the norm

���Xk = ��1�L∞ + ��2�L∞ + ��3�L∞ + k 1
2 (��2�L2 + ��3�L2).

We write (3.13) as

� = S� + ���
1
0
0

���
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where

S = ���
0 @

−1
q @

−1
r(@ − k(!2 − 1))−1r 0 (@ − k(!2 − 1))−1q(@ − k(! − 1))−1q (@ − k(! − 1))−1r 0

���
Then (3.14) and (3.15) show that

�S��Xk � k−1�2(�q�L2 + �r�L2)���Xk ,

hence by writing the Neumann series for (1 − S)−1 there exists a unique solution
� ∈Xk solving (3.13) provided

k
−1�2(�q�L2 + �r�L2)� 1.

The analyticity of the map (q, r)� T
−1 now follows from (3.12). ⇤

The importance of the transmission coe�cient is that it is a conserved quantity
for solutions of (1.1):

Theorem 4. Given k > 0 and q, r Schwartz solutions of (1.1), the transmission

coe�cient T
−1(k, q, r) is conserved.

Proof. If q, r are Schwartz solutions of equations (3.1) then the matrices from (3.4)
satisfy

Ut − Vx + [U,V ] = 0.
Thus given a solution  of  x = U we have

( t − V  )x = U( t − V  ).
This means that  t − V  can be written as a linear combination of (�±

i
)i=1,2,3.

From the time independence of the asymptotics of �−1 at −∞, and the decaying
behaviour of q, r in the matrix V , we find

�−1,t = V �−1 + k2�−1 .
Thus by (3.11),

@tT
−1 = � lim

x→∞ e
kx(V �−1 + k2�−1)(x)�

1
=
�������
−k2J2

���
T
−1
0
0

��� + k
2
���
T
−1
0
0

���
�������1
= 0.

Here we were able to exchange limit and @t because limx→∞ is a linear operator
acting on the space C

0
0 and t� �−1 is continuously di↵erentiable in this space. ⇤

In order to connect the transmission coe�cient to the renormalized Fredholm
determinant we want to use their respective functional derivatives. For the inverse
transmission coe�cient, these are calculated in the next lemma.

Lemma 5. Let q, r ∈ C∞
c
(R). The functional derivatives of the transmission coef-

ficient are

�T
−1
�q
= �−11(�+12�+23 −�+13�+22) +�−21(�+22�+33 −�+23�+32) +�−31(�+13�+32 −�+12�+33)

�T
−1
�r
= �−11(�+13�+32 −�+12�+33) +�−21(�+12�+23 −�+13�+22) +�−31(�+22�+33 −�+23�+32)
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Proof. We use that
T
−1 = lim

x→∞ e
−kx�−11(x).

Given q, r compactly supported, the fundamental matrix �− satisfies

�x = U�, �(x) = ���
e
kx 0 0

0 e
!

2
kx 0

0 0 e
!kx

��� if x� 0.

Thus �̇−(k, q, r) = d

ds
�s=0�−(k, q + sq̃, r + sr̃) solves
�̇x = U �̇ + U̇�, �(x) = 0 if x� 0,

and where

U̇ = ���
0 q̃ r̃

r̃ 0 q̃

q̃ r̃ 0

��� .
By the variation of constants formula, the unique solution of this boundary value
problem can be written as

�̇−(x) = � x

−∞�+(x)��+(y)�−1U̇(y)�−(y)dy,
where integrability towards −∞ is no issue due to the compact support of q, r.
Here the condition �̇−(x) = 0 if x� 0 is ensured by the integration up to x and the

compact support. Now note that e(!2−1)kx
, e
(!2−1)kx → 0 as x→∞, hence

lim
x→∞ e

−kx�+(x) = ���
1 0 0
0 0 0
0 0 0

��� =∶ E11.

Thus,

Ṫ
−1 = �R �E11��+(y)�−1U̇(y)�−(y) �

11
dy.

Now by Jacobi’s formula for the inverse of a matrix, and using that det�+(y) = 1
for all y ∈ R,

E11��+�−1 = ���
�+22�+33 −�+23�+32 �+13�+32 −�+12�+33 �+12�+23 −�+13�+22

0 0 0
0 0 0

��� ,
and moreover

U̇�− = ���
q̃�−21 + r̃�−31 . . . . . .

q̃�−31 + r̃�−11 . . . . . .

q̃�−11 + r̃�−21 . . . . . .

��� ,
Hence

Ṫ
−1 = �R(q̃�−21 + r̃�−31)(�+22�+33 −�+23�+32) + (q̃�−31 + r̃�−11)(�+13�+32 −�+12�+33)+ (q̃�−11 + r̃�−21)(�+12�+23 −�+13�+22)dy,

finishing the proof of Lemma 5. ⇤
Before continuing with the renormalized Fredholm determinant we want to com-

ment on the L2 assumption in Theorem 3. While for our purposes (namely defining
T
−1 for Schwartz solutions) L2 was clearly enough, the question of a threshold reg-

ularity to define Jost solutions is still very interesting. Approaches to define the
Jost solutions in lower regularity H

s(R), −1
2 < s < 0 were laid out by Koch–Tataru
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[17]. They used a special class of spaces of bounded variation in order to perform
a fixed point iteration similar to Theorem 3.

There is also a di↵erent approach, making use of so called modulation spaces
M2,p(R), which seems to be new. Define the modulation space norm as

�q�M2,p = ��
n∈Z
�� n+1

n

�q̂(⇠)�2 d⇠� p
2 � 1

p

,

andM2,p(R) as the subspace of tempered distributions with finite modulation space
norm. While compared to the spaces l2

⌧
DU

2 used in [17] modulation spaces do not
admit an embedding of the type

H
− 1

2+"(R) ⊂X, " > 0,
they still comprise functions of lower regularity than L

2(R) since
L
2(R) ⊂M2,p ⊂H− 1

2 (R), if p <∞.

There are also versions of these spaces with L
r type decay, Mr,p(R). Similar to

before these can be defined in terms of a norm,

�q�Mr,p = ��
n∈Z
� �n q�p

Lr� 1
p

,

where (�n)n∈Z are the Fourier multiplier operators corresponding to a smooth,
positive, unit sized partition of unity. The spaces Mr,1 used below can be shown to
satisfy the continuous embeddings

Mr,1(R) ⊂ C0
b
(R) ∩Lr(R),

where C0
b
(R) denotes the space of continuous and bounded functions. In particular

Mr,1 ∩C0
0 is a closed subspace of Mr,1.

We do not go into details here and refer to [14, Section 2] for a concise overview,
respectively the book [23] for a more thorough introduction to these spaces.

Theorem 6. There exists � > 0 such that for all k > 0, and q, r ∈M2,p, p ∈ [1,∞)
with k

− 1
p (�q�M2,p+�r�M2,p) ≤ � there exists a unique left Jost solution of the equation

 x = U 
with asymptotics (3.8). It satisfies e

−kx�−1 ∈ M∞,1 ×M2,1 ×M2,1. Moreover, for

k > 0 the map

{�q�M2,p + �r�M2,p ≤ k 1
p �} ⊂ (M2,p)2 → C, (q, r)� T

−1(k, q, r)
is analytic.

Proof. We are again reduced to the system (3.13), but we can only estimate q, r ∈
M2,q. We claim first that if R = (@ − k(!2 − 1))−1, the estimate

�R�M2,p→M2,1 �p k− 1
p
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holds. Now indeed, with !2 − 1 = −3
2 − √3

2 i = a + ib,
�Rf�M2,1 = �

n∈Z
�� n+1

n

�f̂(⇠)�2
(⇠ + kb)2 + k2a2 �

1
2 ≈ �

n∈Z
(n2 + k2a2)− 1

2 �� n+1
n

�f̂(⇠ − kb)�2� 1
2

� ��
n∈Z
(n2 + k2a2)− p′

2 � 1
p′ ��

n∈Z
�� n+1

n

�f̂(⇠ − kb)�2� p
2 � 1

p

�p k− 1
p �f�M2,p ,

where in the second line we estimated with Hölder’s inequality, and in the third line
we calculated the sum and estimated the characteristic function on [n − kb, n + 1 −
kb] by two unit sized characteristic functions supported between the surrounding
integers. Thus,

�R(r�1 + q�3)�M2,1 � k− 1
p (�r�M2,p + �q�M2,p)(��1�M∞,1 + ��3�M2,1)

where we used both the Hölder type estimate

�fg�Mr,p � �f�Mr1,p1
�g�Mr2,p2

,
1

p
= 1

p1
+ 1

p2
,1 + 1

q
= 1

q1
+ 1

q2

as well as the continuous embedding M2,1 ⊂M∞,1. In a similar fashion we estimate

�(@ − k(! − 1)−1(q�1 + r�2)�M2,1 � k− 1
p (�r�M2,p + �q�M2,p)(��1�M∞,1 + ��2�M2,1).

It remains to show that for all p <∞,

(3.16) �� x

−∞ f(y)dy�
M∞,1

� �f�M1,p .

Indeed, then (3.16) implies that

�@−1(q�2 + r�3)�M∞,1 � (�r�M2,p + �q�M2,p)(��2�M2,1 + ��3�M2,1)
after another use of the Hölder-type embedding, thus we can iterate in the Banach
space Xk = (M∞,1 ∩C0

0) × (M2,1 ∩C0
0) × (M2,1 ∩C0

0) with norm

���Xk = ��1�M∞,1 + k 1
p (��2�M2,1 + ��3�M2,1)

similar to Theorem 3.
To prove (3.16) we split into the frequency around zero,

�@−1
x
�0 f�L∞ ≤ � �0 f�L1 ,

which is a simple consequence of the triangle inequality, and the non-zero frequen-
cies,

�
n≠0 �@

−1
x
�n f�L∞ ≤ �

n≠0 �@
−1
x
�n f�L2

= �
n≠0 ��

n+1
n

�f̂(⇠)�2
⇠2

d⇠� 1
2

≈ �
n≠0 �n�

−1� �n f�L2

�p ��
n≠0 � �n f�p

L1� 1
p

,

where in the first line we used Bernstein’s inequality, in the second line we used that
for g ∈ S(R) with ĝ(⇠) supported away from zero one has F(@−1g)(⇠) = ĝ(⇠)�(i⇠),
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in the third line we approximated ⇠ ≈ n and in the last line we used Bernstein and
Hölder. ⇤

4. The Transmission Coefficient as a renormalized Fredholm

determinant

In this section we prove that the transmission coe�cient has a representation as
a renormalized Fredholm determinant.

To do so we need some notation. Given the Lax operator L,

L(k, q, r) = ���
@ − k −q −r−r @ − !2

k −q−q −r @ − !k
��� ,

we define L0(k) = L(k,0,0) = @ − kJ , and its inverse R0 = L
−1
0 . The experience

with KdV, NLS, mKdV and dNLS ([13, 16]) tells us that we should look at the
Fredholm determinant

log det(1 +R0(L −L0)) = log det(1 −R0U0).
Unfortunately, the operator

⇤̃ = R0(L −L0) = −���
0 R1q R1r

R2r 0 R2q

R3q R3r 0

��� ,
where

R1 = (@ − k)−1, R2 = (@ − !2
k)−1, R3 = (@ − !k)−1,

is not trace-class, and Hilbert-Schmidt only in the case of q, r ∈ L2. The first issue
can be dealt with by looking at the renormalization of the Fredholm determinant
(and because formally at least, tr(⇤̃) = 0, so that this renormalization gives formally
the same quantity), whereas for the second issue we use that ⇤̃ is equivalent to
⇤ =√R0(L −L0)√R0. Thus we define

(4.1) A(k, q, r) = log det2(1 +⇤),
where

(4.2) ⇤ = −
�����

0 R

1
2
1 qR

1
2
2 R

1
2
1 rR

1
2
3

R

1
2
2 rR

1
2
1 0 R

1
2
2 qR

1
2
3

R

1
2
3 qR

1
2
1 R

1
2
3 rR

1
2
2 0

�����
.

Note that when q, r ∈ L2,

A(k, q, r) = log det2(1 +R0(L −L0)),
and moreover, by Jacobi’s formula

(4.3) A(k, q, r) = ∞�
l=2
(−1)l+1

l
tr(⇤l)

With these definitions we prove:

Lemma 7. Given k > 0, q, r ∈ S(R), for all 1 ≤ i, j ≤ 3 the operators R

1
2
i
qR

1
2
j

are

Hilbert-Schmidt on L
2(R) and satisfy

(4.4) �R 1
2
i
qR

1
2
j
�2I2
≈ �R log �4 +

⇠
2

k2
� �q̂(⇠)�2(⇠2 + k2) 1

2

d⇠.
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Moreover, ⇤ is Hilbert-Schmidt on L
2(R)3 with

(4.5) �⇤�2I2
≈ �R log �4 +

⇠
2

k2
� �q̂(⇠)�2 + �r̂(⇠)�2(⇠2 + k2) 1

2

d⇠.

Proof. We begin by proving (4.4). For simplicity we consider i = 1, j = 2, the other
cases are proven similarly. We use Plancherel and the fact that !2 − ! = √3i to
write

�R 1
2
1 qR

1
2
2 �2I2

= tr((R∗1R1) 1
2 q(R2R

∗
2) 1

2 q̄)
= tr((−@2 + k2) 1

2 q(−@2 −√3ik@ + k2) 1
2 q̄)

= �R �R
�q̂(⇠ − ⌘)�2

(⇠2 + k2) 1
2 (⌘2 + k2 +√3k⌘) 1

2

d⇠d⌘.

The assertion now follows from the fact that

√
3k⌘ ≤

√
3

2
(k2 + ⌘2),

√
3

2
< 1,

and

� dx

((x + y)2 + 1) 1
2 ((x − y)2 + 1) 1

2

≈ log(4 + 4y2)
(y2 + 1) 1

2

,

see also [13, Lemma 4.1].
(4.5) now follows from (4.4) because

tr(⇤∗⇤) = �
�∈A3

�R 1
2

�(2)qR
1
2

�(1)�2I2
+ �R 1

2

�(1)rR
1
2

�(2)�2I2
,

where A3 is the alternating group of order 3 (that is, q is associated with the tuples
21,32,13 and r with 12,23,31). ⇤

As an important consequence of (4.5) we see that

(4.6) �⇤�I2 � k− 1
2−s�(q, r)�Hs

k
, s > −1

2
,

and hence the series in (4.3) converges geometrically for all q, r ∈ Hs
, s > −1

2 under
the condition

(4.7) �(q, r)�Hs � k
1
2+s.

For small data, the main contribution in (4.3) comes from the quadratic term. The
coercivity of the quadratic part in the case r = q̄ was the key to prove low regularity
a priori estimates for KdV, NLS and dNLS, and we have a coercivity here as well.
More precisely:

Lemma 8. The quadratic term in (4.3) is

(4.8) tr(⇤2) = −3k�(−@2 + 3k2 −√3ik@)−1q, r̄�
In the case r = q̄ this quantity is coercive in the sense that

(4.9) tr(⇤2) = �R
−3k�q̂(⇠)�2

⇠2 + 3k2 −√3k⇠ d⇠ ≈ −�R
k�q̂(⇠)�2
⇠2 + 3k2 d⇠.
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Proof. First note that by an explicit calculation,

tr(⇤2) = tr(⇤̃2) = 2 tr(R1qR2r +R2qR3r +R3qR1r).
When assuming k > 0 the operators Ri have integral kernels

K1(x, y) = −�{x<y}ek(x−y),
K2(x, y) = �{x>y}e!k(x−y)

,

K3(x, y) = �{x>y}e!2
k(x−y)

,

where �A denotes the characteristic function on the set A. Hence,

tr(R1qR2r) = �R2
K1(x, y)q(y)K2(y, x)r(x)dydx

= −�
x<y e

(1−!)k(x−y)
q(y)r(x)dydx

= �(@ − (1 − !)k)−1q, r̄�,
where �⋅, ⋅� denotes the L2 scalar product for complex valued functions. In a similar
fashion,

tr(R3qR1r) = �R2
K3(x, y)q(y)K1(y, x)r(x)dydx

= −�
x>y e

(!2−1)k(x−y)
q(y)r(x)dydx

= −�(@ − (!2 − 1)k)−1q, r̄�,
and

tr(R2qR3r̄) = 0,
because the supports of K2(x, y) and K3(y, x) do not overlap. Thus,

tr(⇤2) = −3k�(−@2 + 3k2 −√3ik@)−1q, r̄�
where we used 1 + ! + !2 = 0 and ! − !2 =√3i. Thus by Plancharel, if r = q̄,

tr(⇤2) = �R
−3k

⇠2 + 3k2 +√3k⇠ �q̂(⇠)�2 d⇠.
For the last part we simply use the estimate√

3k⇠ ≤ 1

2
⇠
2 + 3

2
k
2
.

⇤

Although not immediately needed, we present here the form of the terms of
higher homogeneity. They can be used to obtain the asymptotic expansion of A
and thus the higher order energies for (1.1). We skip the proof as it is a simple
calculation.

Lemma 9. Then homogeneous terms of order three and four in (4.3) satisfy

tr(⇤3) = −3 tr(R1qR2qR3q +R1rR2rR3r),
tr(⇤4) = tr �(R1qR2r +R1rR3q)2 + (R2qR3r +R2rR1q)2 + (R3qR1r +R3rR2q)2�

+ 2 tr(R1qR2qR3rR2r +R2qR3qR1rR3r +R3qR1qR2rR1r).
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The Green’s function associated to the Lax operator L is defined as the (by the
Schwartz kernel Theorem) unique function G(x, y) which is the integral kernel of
R = L−1, i.e.

Lx �RG(x, y)f(y)dy = f(x),
for a.e. x ∈ R. The existence of such a function G is ensured by the fact that R is
a Hilbert-Schmidt operator. Indeed, we simply write (compare to [9, Section 3])

R −R0 = (L0 +L −L0)−1 −R0 = R0(1 + (L −L0)R0)−1 −R0

=�R0

∞�
l=1
(−1)l��R0(L −L0)�R0�l�R0,

which is an absolutely convergent sum in the space of Hilbert Schmidt operators by
(4.5) under the smallness condition (4.7), and can easily be checked by hand to be
an inverse of L. In particular we can define the Green’s function for q, r ∈Hs

, s > −1
2

under the smallness condition (4.7).
The Green’s function and its diagonal played a central role in the works for KdV,

NLS and dNLS. Later in Lemma 12 we will see that it also enters in the setting
of qdNLS (1.1) in a similar way: the functional derivatives of the logarithm of the
transmission coe�cient are given by sums of the o↵-diagonal matrix entries of the
diagonal of the Green’s function (i.e. its restriction to x = y). This relation will
also allow us to prove that the inverse transmission coe�cient coincides with the
renormalized Fredholm determinant.

Our first result on the Green’s function shows its close connection with the Jost
solutions.

Lemma 10. Let q, r ∈ L
2(R). The constant multiple of the Green’s function,−T ⋅G(x, y), can be written as

��−11(x)(�+22�+33−�+23�+32)(y) �−11(x)(�+32�+13−�+33�+12)(y) �−11(x)(�+12�+23−�+13�+22)(y)
�−21(x)(�+22�+33−�+23�+32)(y) �−21(x)(�+32�+13−�+33�+12)(y) �−21(x)(�+12�+23−�+13�+22)(y)
�−31(x)(�+22�+33−�+23�+32)(y) �−31(x)(�+32�+13−�+33�+12)(y) �−31(x)(�+12�+23−�+13�+22)(y)

�
if x < y, and

��+12(x)(�−21�+33−�−31�+23)(y) �+12(x)(�−31�+13−�−11�+33)(y) �+12(x)(�−11�+23−�−21�+13)(y)
�+22(x)(�−21�+33−�−31�+23)(y) �+22(x)(�−31�+13−�−11�+33)(y) �+22(x)(�−11�+23−�−21�+13)(y)
�+32(x)(�−21�+33−�−31�+23)(y) �+32(x)(�−31�+13−�−11�+33)(y) �+32(x)(�−11�+23−�−21�+13)(y)

�
+��+13(x)(�−31�+22−�−21�+32)(y) �+13(x)(�−11�+32−�−31�+12)(y) �+13(x)(�−21�+12−�−11�+22)(y)

�+23(x)(�−31�+22−�−21�+32)(y) �+23(x)(�−11�+32−�−31�+12)(y) �+23(x)(�−21�+12−�−11�+22)(y)
�+33(x)(�−31�+22−�−21�+32)(y) �+33(x)(�−11�+32−�−31�+12)(y) �+33(x)(�−21�+12−�−11�+22)(y)

� ,
if x > y.
Proof. By an abuse of notation we call G(x, y) the matrix defined in the Lemma.
Since the columns of G(x, y) are multiples of Jost solutions they individually lie
in the kernel of L. Hence LxG(x, y) = 0 for all x ≠ y. Moreover G(⋅, y) ∈ L2(R)
because the left Jost solution �−1 is integrable on the left of y and the two right
Jost solutions �+2 ,�+3 are integrable on the right of y. To show LxG(x, y) = �(x−y)
it is enough to check that the jump condition

(4.10) G(y+, y) −G(y−, y) = Id



A PRIORI ESTIMATES FOR A QUADRATIC DNLS 17

holds, where y
± denotes the upper and lower limit towards y. Indeed, by writing

L = @ −U(k, q, r), we see that for all f ∈ C∞
c
(R) and " > 0,

�RLxG(x, y)f(x)dx = �
B"(y)((@x −U(x))G(x, y))f(x)dx

= −�
B"(y)U(x)G(x, y)f(x) +G(x, y)@xf(x)dx+G(y + ", y)f(y + ") −G(y − ", y)f(y − ").

Now since G(⋅, y), q, r ∈ L2 the integral on the right-hand side vanishes as " → 0,
whereas the remaining part converges to

(G(y+, y) −G(y−, y))f(y),
which by assumption should be f(y).

Now (4.10) holds because for all o↵-diagonal entries the diagonal x = y vanishes,
whereas for the diagonal entries we use that

T
−1 =W (�−1 ��+2 ��+3)= �−11(�+22�+33 −�+23�+32) −�−21(�+12�+33 −�+13�+32) +�−31(�+12�+23 −�+13�+22).

is constant. ⇤

When looking at Lemma 10 one may wonder whether there is some more struc-
ture to the form of the Green’s function. There is indeed, as is shown later in
Lemma 16.

We are immediately able to characterize the o↵-diagonal entries of the diagonal
Green’s function:

Corollary 11. The o↵-diagonal entries of the diagonal Green’s function are

g21 = −T�−21(�+22�+33 −�+23�+32)(4.11)

g32 = −T�−31(�+32�+13 −�+33�+12)(4.12)

g13 = −T�−11(�+12�+23 −�+13�+22)(4.13)

g12 = −T�−11(�+32�+13 −�+33�+12)(4.14)

g23 = −T�−21(�+12�+23 −�+13�+22)(4.15)

g31 = −T�−31(�+22�+33 −�+23�+32)(4.16)

Next we show that the o↵-diagonal entries of the diagonal Green’s function also
enter as the functional derivative of the (renormalized) Fredholm determinant:

Lemma 12. We have

�

�q
log det2(1 +R0(L −L0)) = −(g21 + g32 + g13),(4.17)

�

�r
log det2(1 +R0(L −L0)) = −(g12 + g23 + g31).(4.18)

This lemma follows from its generalization in Lemma 18. We postpone its proof
until then because there is no further insight in its proof in the special case of (1.1).

Finally, Lemma 12 and Lemma 5 allow to prove that inverse transmission coe�-
cient and renormalized transmission coe�cient coincide. In particular by Theorem
4 the renormalized transmission coe�cient is a conserved quantity.
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Theorem 13. For q, r ∈ L2(R) and under the smallness condition (4.7), we have

(4.19) log det2(1 +R0(L −L0)) = − logT.
Proof. By Lemma 12,

�

�q
log det2(1 +R0(L −L0)) = −(g21 + g32 + g13)
= T��−21(�+22�+33 −�+23�+32) +�−31(�+32�+13 −�+33�+12) +�−11(�+12�+23 −�+13�+22)�,

and a similar statement holds for the functional derivative in r. But by Lemma 5
this coincides with

− �
�q

logT = T �

�q
T
−1
.

Since the functional derivatives coincide we are done up to a constant. The state-
ment thus follows using the fact that both sides in (4.19) vanish for q = r = 0. ⇤

5. Low regularity a priori estimates

We now turn to the case r = q̄ which corresponds to (1.1). After having estab-
lished the conservation of

A(k, q) = log det2(1 +⇤)
and due to identifying its bilinear term as the coercive quantity

− tr(⇤2) = �R
3k�q̂(⇠)�2

⇠2 + 3k2 +√3k⇠ d⇠,
we can employ the machinery developed in [13] to derive a priori estimates. In fact,
we will restrict our attention to Sobolev norms in negative regularity, for which a
priori estimates can be established by a simple integration argument. It is clear
though that the results carry over to Besov norms as discussed in [13], and also to
modulation space norms [19, 14] without any technical di�culties.

We define the microlocal Sobolev norms (which give the usual Sobolev norms
when k = 3−1�2)
(5.1) �q�Hs

k
= ��R �q̂(⇠)�2(⇠2 + 3k2)s d⇠�

1
2

.

Theorem 14. Given a Schwartz solution q of (1.1), its microlocal Sobolev norms

are almost conserved for all −1
2 < s < 0 and for k ≥ 1 big enough depending on�q(0)�Hs , in the sense that

(5.2) �q(t)�Hs
k
≤ c�q(0)�Hs

k
,

for some constant C > 0. Moreover, for all −1
2 < s < 0,

(5.3) �q(t)�Hs ≤ c(1 + �q(0)�Hs) −s
1+2s �q(0)�Hs .

Proof. We fix k ≥ 1 big enough so that k− 1
2−s�q(0)�Hs

k
< � for � small enough. Since

s > −1
2 this is true if

(5.4) k
s+ 1

2 > �−1�q(0)�Hs .
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By making � < 1 a little smaller and since we are dealing with a Schwartz solution q

we can ensure that this condition also holds for a small open time interval I around
zero. The main observation now is that for all s < 0,
(5.5) � ∞

k0

3k1+2s
⇠2 + 3k2 +√3k⇠ dk ≈ �

∞
k0

k
1+2s

⇠2 + k2 dk ≈ (⇠2 + k20)s,
as was already seen in [13]. Thus we are led to define

Es(k0, q) = � ∞
k0

k
2s
A(k, q)dk,

which is a conserved quantity because A(k, q) is. Now since for l ≥ 2 and −1
2 < s,

by (4.6),

� ∞
k0

k
2s� tr(⇤l)�dk ≤ � ∞

k0

k
− l

2−(l−2)s�q�l
Hs

k
dk ≤ sup

k∈[k0,∞)
�q�l

Hs
k
� ∞
k0

k
− l

2−(l−2)sdk

≤ k− l−2
2 −(l−2)s

0 �q�l
Hs

k0
,

we obtain absolute convergence for the series expansion of Es(k, q) = ∑∞l=2E(l)s (k, q)
defined by

Es(k, q) = ∞�
l=2
(−1)l+1

l
� ∞
k0

tr(⇤l)dk.
Moreover we find smallness for the tail of the series by our smallness assumption
on q,

(5.6) �Es(k, q) −E(2)s
(k, q)� ≤ ∞�

l=3
k
− l−2

2 −(l−2)s�q�l
Hs

k
≤ c�E(2)

s
(k, q),

where we notice that (5.5) implies

E
(2)
s
(k, q) = −1

2 �
∞

k0

tr(⇤2)dk ≈ �q�2
Hs

k
.

Hence Es(k, q) is a conserved quantity which is coercive against the H
s

k
norm,

Es(k, q) ≥ (1 − c�)E(2)s
(k, q) ≥ C(1 − c�)�q�2

Hs
k
,

thus proving for small times,

(5.7) �q(t)�2
Hs

k
≤ C(1 + �)

1 − c� �q(0)�2Hs
k
.

But the same estimate also holds for large times provided we can make sure that�q(t)�2
Hs

k
≤ k 1

2+s�, which we can by (5.7) and by choosing � a little smaller.

Finally (5.3) follows from (5.2) by combining (for s < 0)
�q�2

Hs � (1 + k−2s)�q�2Hs
k

with (5.4). ⇤
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6. Fredholm determinant for N x N Lax operators

In this section we want to generalize Theorem 13 to N×N Lax pairs. We consider
the first order ODE problem

(6.1) �x = (kJ +U0(u))�,
with the following assumptions:

(1) J is diagonal, J = diag(!1, . . . ,!n), with n distinct eigenvalues, !i ≠ !j if
i ≠ j, and J is trace free, tr(J) = 0.

(2) U0(u) is o↵-diagonal, U0(u)ii = 0 for 1 ≤ i ≤ n. Its entries are polynomials
without zeroth order term in the components of u = (u1, . . . , um).

(3) ui ∈ C∞c (R) for all i.
In particular U0(u) ∈ C∞c (R,Cn×n). Again we define K = ∪i suppui.

Our first mission then is to define what we mean by Jost solutions in this context.
To simplify the analysis we assume that k > 0 is real-valued and positive and that
the entries of J are ordered.

(6.2) Re(!1) ≥ ⋅ ⋅ ⋅ ≥ Re(!l) > 0 > Re(!l+1) ≥ ⋅ ⋅ ⋅ ≥ Re(!n).
The assumption that Re(!i) ≠ 0 is necessary to have decay either as x →∞ or as
x→ −∞.

With these assumptions in place we define the Jost solutions �±
j
similar to Section

3:

Definition 15. Given solutions �±
j
of (6.1) such that

(6.3) e
!jkx�±

j
(x) = ej , x→ ±∞,

we call �−
j
a left Jost solution if Re(!j) > 0 and �+

j
a right Jost solution if Re(!j) <

0.

With other words, left Jost solutions are decaying unit vector exponentials at−∞ and right Jost solutions are are decaying unit vector exponentials at ∞.
Again the existence of Jost solutions is ensured by the Cauchy-Lipschitz theorem.

By the ordering of eigenvalues (6.2), there are exactly l left Jost solutions and n− l
right Jost solutions,

�−1 , . . . ,�−l , and �+
l+1, . . . ,�+n.

The transmission coe�cient corresponding to L = @x − kJ −U0(u) is defined as

(6.4) T
−1(k, u) ∶= det(�−1 � . . . ��−l ��+l+1� . . . ��+n).

A scattering theory for the problem (6.1) for ui ∈ S(R) (respectively ui ∈ L1(R))
was developed in the work of Beals–Coifman [2]. As was mentioned in Section 3 and
also outlined in [2, 5] if u is not compactly supported, in addition to e

!jkx�±
j
(x)→

ej , x→ ±∞ one has to impose the extra condition

(6.5) e
!jkx�±

j
(x) ∈ L∞(R,Cn),

to obtain an unambiguous (and di↵erent!) definition. Indeed, if e.g. Re(!1) >
Re(!2), then if  2 satisfies (6.3) so does  2 +  1. Note that this implies that the
left Jost solutions in [2] are possibly linear combinations of the Jost solutions in
here, and similar for the right Jost solutions.

We do not need this full theory here because we restrict to the analysis of the
(inverse) transmission coe�cient. Its definition is independent of whether one takes
Definition 15 or the one from [2]. Indeed, suppose that Re(!1) > ⋅ ⋅ ⋅ > Re(!l) > 0 >
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Re(!l+1) > ⋅ ⋅ ⋅ > Re(!n). Then if �±,BC

i
denote the Jost solutions defined with the

additional condition (6.5), we find that

�−,BC

1 = �−1 , �−,BC

2 = �−2 + a21�−1 , �−,BC

3 = �−3 + a31�−1 + a32�−2 , . . .
�+,BC

n
= �+

n
, �+,BC

n−1 = �+n−1 + an−1n�−n, . . . .
But then,

T
−1 =W (�−1 � . . . ��+n) =W (�−,BC

1 � . . . ��+,BC

n
),

because all other combinations vanish in the Wronskian. Another advantage is
that by using compactly supported functions we can assure the existence of Jost
solutions for every k > 0 even without imposing a scaling invariant L

1 smallness
condition as in [2, Theorem 3.8].

We want to prove Theorem 2 by showing that the functional derivatives of inverse
transmission coe�cient and renormalized Fredholm determinant coincide. To this
end we have to analyze the Green’s function of the operator L, more precisely its
diagonal.

We start with the Green’s function itself. We write

R0 = (@ − kJ)−1.
Since Re(!j) ≠ 0, R0 has an integral kernel G0 given by a diagonal matrix with
kernels as in (2.1) on the diagonal. We write again

(6.6) R −R0 =�R0

∞�
l=1
(−1)l(�R0U0(u)�R0)l�R0.

Since for all i ≠ j, by a calculation similar to (4.4),

�(@ − k!i)− 1
2 (U0)ij(u)(@ − k!j)− 1

2 �I2 ≈ �R log �4 +
⇠
2

k2
� �(Û0)ij(u)(⇠)�2
(⇠2 + k2) 1

2

d⇠,

we find under the smallness assumption

(6.7) �U0(u)�Hs � k 1
2+s, s > −1

2
,

that (6.6) has an absolutely convergent right-hand side, and that R−R0 is Hilbert-
Schmidt.

Even more, by arguing as in [9, Proposition 3.1] it can be seen that R − R0

has an integral kernel which is continuous on the restriction to x = y. We call
this function g̃(x). This continuity can also be derived from the following lemma
which is a generalization of Lemma 10. We do not necessarily need it for our
later calculations, but it gives a nice background on how to construct the Green’s
function if one is given the Jost solutions.

Recall that the tensor product v⊗w of two vectors v,w is the matrix defined by(v ⊗w)ij = viwj .

Lemma 16. The Green’s function G(x, y) of the first order operator L = @ − kJ −
U0(u) is given by

(6.8) G(x, y) = �������
−T (�−1(x)⊗ v1(y) + ⋅ ⋅ ⋅ +�−l (x)⊗ vl(y)), if x < y,
T (�+

l+1(x)⊗ vl+1(y) + ⋅ ⋅ ⋅ +�−n(x)⊗ vn(y)), if x > y,
where the vectors vi(y) are defined by duality satisfying

(6.9) �vi(y),w�Cn = det(�−1(y)� . . . ��±i−1(y)�w ��±i+1(y)� . . . ��+n(y)), ∀w ∈ Cn
.
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Proof. Again we check easily that the columns ofG solve the equation LxG(x, y) = 0
for all x ≠ y and are L

2 because they are exponentially decaying o↵ y. Thus it
remains to check the Jump condition (4.10). To this end notice that by definition
e.g.

T
−1�e1, (G(y+, y) −G(y−, y))e1�
= �−11 det(e1��−2 � . . . ��+n) + ⋅ ⋅ ⋅ +�+1n det(�−1 � . . . ��+n−1�e1) = T −1,

by expanding the determinant representation of T −1 by the first row. In a similar
manner we see that all other diagonal entries satisfy the jump condition. ⇤

After all these preparations, we can calculate the functional derivative of the
inverse transmission coe�cient, giving Lemma 5 the following generalization:

Lemma 17. The transmission coe�cient corresponding to the operator L = @ −
kJ −U0(u) satisfies
(6.10)

�

�ui

logT −1 = tr(∇iU0(u)g̃),
where

d

ds
�s=0U0(u + svei) = (∇iU0)(u)v, 1 ≤ i ≤m.

Proof. Write U̇ = d

ds
�
s=0U0(u + svej), and correspondingly for �. Then,

L�̇ = U̇�

for the Jost solutions. Since we assumed u ∈ C∞
c
, the right-hand side is in L

2(R)
and we can unambiguously write

�̇(x) = �RG(x, y)U̇(y)�(y)dy.
This formula holds both when � is a single Jost solution, or a matrix made of Jost
solutions, that is

d

ds
�
s=0(�−1 � . . . ��+n) = �RG(x, y)U̇(y)(�−1 � . . . ��+n)(y)dy.

Thus, for all x ∈ R, by making use of Jacobi’s formula for the derivative of the
determinant,

d

ds
�
s=0 log det �(�−1 � . . . ��+n)(x)�
= tr �(�−1 � . . . ��+n)−1(x)�RG(x, y)U̇(y)(�−1 � . . . ��+n)(y)dy�
= �R tr �(�−1 � . . . ��+n)−1(x)G(x, y)U̇(y)(�−1 � . . . ��+n)(y)�dy
= �R tr �(�−1 � . . . ��+n)(y)(�−1 � . . . ��+n)−1(x)G(x, y)U̇(y)�dy,

where in the last line we cycled the trace. Thus for all x ∈ R and a.e. y ∈ R,
�

�ui

logT −1(y) = tr �(�−1 � . . . ��+n)(y)(�−1 � . . . ��+n)−1(x)G(x, y)(∇iU0)(u)�.
We write G = G0 +G−G0 and note that setting x = y in the summand with G−G0

gives exactly the right-hand side of (6.10). It remains to show that the summand
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with G0 vanishes when x → y, x ≠ y. Indeed, because G0(x, y)∇iU is a trace-free
matrix,

� tr ��(y)�−1(x)G0(x, y)∇iU0�� = � tr �(�(y) −�(x))�−1(x)G0(x, y)∇iU0��
≤ ��(y) −�(x)��−1(x)��G0(x, y)��∇iU0�

(6.11)

where we introduced � = (�−1 � . . . ��+n). Now since we may write �−1 in terms of its
cofactor matrix and from det� = T −1, we can estimate

��−1(x)� � T ��(x)�n−1,
and because �G0(x, y)� ≤ e�x−y�, both sides in (6.11) vanish as x → y by continuity
of �. ⇤

An important case of Lemma 17 is when U0 is linear in u and has the form

U0(u) = u1A1 + ⋅ ⋅ ⋅ + umAm.

In this case the derivative reduces to
�

�ui

logT −1 = tr(Aig̃),
which may be compared to Lemma 12. Concerning Lemma 12 we find the following
generalization to hold:

Lemma 18. Under the smallness assumption (6.7) the renormalized Fredholm de-

terminant satisfies

(6.12) − �

�ui

log det2(1 −R0U0(u)) = tr(∇iU0(u)g̃).
Proof. Note that we can write g̃(x) = ((R − R0)�x)(x). Thus we calculate with
v̂ = vei, ei being the ith unit vector,

LHS(6.12) = − d

ds
�
s=0 log det2(1 −R0U0(u + sv̂))

= d

ds
�
s=0

∞�
l=2

1

l
tr(R0U0(u + sv̂))l

= ∞�
l=2

tr �(R0U0(u))l−1R0∇iU(u)v�
= tr � ∞�

l=2
∇iU0(u)v(R0U0(u))l−1R0�

= � tr �v(x)∇iU0(u(x))� ∞�
l=2
(R0U0(u))l−1R0�x�(x)�dx

= � v(x) tr �∇iU0(u(x))((R −R0)�x)(x))�dx
= � v(x) tr[∇iU0(u(x))g̃(x)]dx,

where used the definition of the renormalized Fredholm determinant, calculated
the derivative explicitly, cycled the trace, used the definition of the trace as the
integral over the diagonal of the kernel, and observed the appearence of R −R0 in
the integral. ⇤



24 FRIEDRICH KLAUS

By combining Lemma 17 with Lemma 18 as well as with the fact that

T
−1(k,0) = 1 = det2(1)

we arrive at our second main Theorem:

Theorem 19. Under the assumption of the beginning of Section 6 and under the

smallness assumption (6.7), we have equality

(6.13) T
−1(k, u) = det2�1 − (@ − kJ)−1U0(u)�,

of inverse transmission coe�cient and renormalized Fredholm determinant.

7. Open questions

As is usual in mathematics, answering one question rises at least ten new ques-
tions. Some of them are just not clear to the author and may have been already
treated elsewhere, some may be of general interest. A few of them which were not
answered in this work are listed here. If one of the readers has an answer to one of
the questions, the author would be grateful if he or she let him know.

(1) Is it also possible to treat U0(u) which has di↵erential polynomials as o↵-
diagonal entries in Theorem 19? Having ∇iU0(u) contain di↵erential op-
erators as entries causes problems in Lemma 17 and Lemma 18. Having
U0(u) being also dependent on k seems to be o↵ no issue, thus one could
hope then to analyze the good Boussinesq equation using the 3×3 Lax pair
from [3, Section 3]

(2) Is it possible to give a general formula for the density function of log det2(1−(@ −kJ)−1U0(u)) similar to [9]? If so, can it be used to show conservation?
(3) Is (1.1) amenable to the method of commuting flows (see [7])?
(4) Is it possible to construct weak solutions in negative regularity to the good

Boussinesq equation by using the Miura map of [4], arguing similar to [15]?
The Miura map is defined as follows: Let

u = −9
2
�q�2 + 3Re(!qx).

Then if q solves

iqt − 1√
3
qxx + 2√3q̄q̄x = 0,

u gives rise to a solution of

utt + 1

3
uxxxx + 4

3
(u2)xx = 0.

(5) Can one also invert the Miura map of [4] by modifying it similar to [15]?
(6) Is this Miura map related to a factorization of the third order one-dimensional

Lax operator of good Boussinesq similar to what happens for the Miura map
relating KdV and mKdV resp. Gardner (see [15])? This may be related to
the Drinfeld-Sokolov reduction.

(7) The vector and matrix NLS equations are examples of equations with higher
dimensional Lax pairs but seem to fail the condition (1) from the beginning
of Section 6. Can one still obtain results for these equations?
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(8) We have now seen three di↵erent one-dimensional Schrödinger equations
which are integrable: cubic NLS, cubic dNLS and the quadratic dNLS
(1.1). If the author is not mistaken, it seems that given a dNLS with two
derivatives on the cubic term, one can modify the proof of conservation of
the determinant in [16] to still hold. This would yield another integrable
nonlinear Schrödinger equation. Maybe it is also possible to construct a
hierarchy related to the one of (1.1) in the same way as the Kaup-Newell
hierarchy is related to the AKNS hierarchy. Is there a general theory to
construct integrable nonlinear Schrödinger equations arising from N × N
Lax pairs?

(9) Even further, is there maybe a way to construct one-dimensional integrable
PDE as reductions of systems integrable by N ×N pairs?
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