

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Weights Assimilation for Split Manufacturing of printed
Neuromorphic Circuits

Bachelor´s Thesis

by

Siyan Li

Department of Informatics

Responsible Supervisor: Prof. Dr. Michael Beigl

Supervising Staff: Haibin Zhao

Project Period: 30.08.2022 - 30.12.2022

I

Institut für Telematik

Pervasive Computing Systems / TECO

Leiter: Prof. Dr.-Ing. Michael Beigl

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel und Quellen benutzt habe, die wörtlich oder inhalt-
lich übernommenen Stellen als solche kenntlich gemacht und weiterhin die Richtlinien des
KIT zur Sicherung guter wissenschaftlicher Praxis beachtet habe.

Karlsruhe, den _________________________

__
 Unterschrift

Contents

1 Introduction 5

2 Background 7
2.1 Printed Electronics . 7

2.1.1 Printing technology . 7
2.1.2 Advantages of PE . 8

2.2 Artificial Neural Networks . 8
2.2.1 Hierarchical structure of neural networks 9
2.2.2 Operations of artificial neural networks 9
2.2.3 Training of artificial neural networks 9

2.3 Printed Neuromorphic Circuits . 10
2.3.1 Multiply accumulate (MAC) circuit 11
2.3.2 Negative weights operation . 12
2.3.3 Nonlinear transformation circuit 12

3 Preliminary 13
3.1 Gradient-based Learning . 13

3.1.1 Gradient . 13
3.1.2 Learning rate . 15
3.1.3 Momentum update . 16

3.2 Gravitation . 16
3.3 Clustering . 18

4 Related Work 21
4.1 Multitask . 21
4.2 Printed Neural Network . 22

5 Design 23
5.1 Gravitational Assimilation . 23
5.2 Clustering . 25
5.3 Trade-off . 25

6 Experiment 27
6.1 Datasets and Models . 27
6.2 Hyper-parameter Configurations and Learning 30
6.3 Evaluation . 30

6.3.1 Baseline . 30
6.3.2 Metric . 30

6.4 Results . 31

ii Contents

6.5 Discussion . 31

7 Conclusion and Future Work 37
7.1 Conclusion . 37
7.2 Future Work . 37

Bibliography 39

List of Figures

2.1 Schematic of the neural perceptron. The circle represents a percep-
tron. It receives multiple inputs [x1, x2, x3]

⊤ and produces an output. 9

2.2 Schematic of an artificial neural network (ANN). The input percep-
trons receive external input, make a judgment, and then send signals
as input to the next perceptrons until the final result is obtained. . . 10

2.3 The schematic of the 2-input crossbar (V1, V2) implementing the mul-
tiply accumulate operation. 11

2.4 Schematic of the proposed negative weight circuit. Two voltage di-
viders are deployed to shift the zero-crossing of the output voltage
towards 0V . 12

2.5 Schematic of inverter-based activation function for realizing tanh-like
function . 12

3.1 An example of gradient descent. The purple area has higher gradient,
whereas the red area has lower gradient. 14

3.2 A cartoon depicting the effects of different learning rates. With low
learning rates the improvements will be linear. With high learning
rates they will start to look more exponential. Higher learning rates
will decay the loss faster, but they get stuck at worse values of loss
(green line). This is because there is too much ”energy” in the opti-
mization and the parameters are bouncing around chaotically, unable
to settle in a nice spot in the optimization landscape. 15

3.3 TNesterov momentum. Instead of evaluating gradient at the current
position (red circle), we know that our momentum is about to carry us
to the tip of the green arrow. With Nesterov momentum we therefore
instead evaluate the gradient at this ”looked-ahead” position. 16

3.4 Figure of the effect of different sizes of gamma on the shape of the
gravity curve. 17

3.5 Comparison of neuron positions before and after clustering 18

5.1 Figure of the effect of different sizes of lambda and gamma on the
shape of the gravity curve. 25

5.2 The ideal case of gravity assimilation of multi neural networks. If the
gravity has great impact of neural network. 26

iv List of Figures

5.3 The normal case of gravity assimilation of multi neural networks . . . 26

6.1 Figures of accuracy compares to different baselines 32

6.2 Figures of cluster number compares to different baselines 32

6.3 Figures of the relation between accuracy and cluster number compares
to different baselines . 34

6.4 This image shows the relationship between accuracy and lambda in
the case of printing neuromorphic. 34

6.5 This image shows the relationship between production costs and lambda
in the case of printing neuromorphic. 35

6.6 Scatter plot of normalized accuracy versus cost of printing in the case
of printing neuromorphic for all the runs. 35

List of Tables

6.1 Information of 32 Datasets from UCI and Experiment Results 29

6.2 A table of some baselines. In this table, we take full model into
consideration. In column ”independent training”, accuracy of each
neural network, which are sepratelly trained, are listed. In column
”without gravity” data are trained together, but without the influence
of gravity. 33

6.3 Accuracy-Cost Trade-off . 34

Abstract

Due to low manufacturing cost, flexibility, non-toxicity, and excellent performance,
printed neuromorphic circuits have attracted increasing attention from multiple
emerging areas, such as Internet of Things, wearable devices, and soft-robotics.

Regarding printing technologies, high volume manufacturing of printed circuits is
usually done by the roll-to-roll printing, where the same circuits can be manufactured
in large quantities with high efficiency, leading to an ultra low-cost per circuit. On
the other hand, low volume manufacturing methods, such as inkjet printing, are
convenient to produce unique parts in low quantity, but with relatively higher cost.

In case a large amount of different circuits need to be printed, neither high nor low
volume printing technology can be deployed to guarantee high performance and low
cost at the same time.

However, by deliberate design and adjustment, both manufacturing approaches can
be leveraged: high volume manufacturing produces the common parts of different
circuits and low volume manufacturing adjust the unique part of each circuit. In
this paper, we will present a training framework that uses a special penalty term to
attract the most of the weights in neural networks for different tasks close to each
other or even coincident. The other advantage of this penalty is that, outlier weights,
whose value is far apart from others, will not be attracted, so that the performance of
circuits will not be destroyed. With this framework, multiple neuromorphic circuits
are prepared for lower production costs almost without reduction in performance.

Zusammenfassung

Aufgrund der niedrigen Herstellungskosten, der Flexibilität, der Ungiftigkeit und der
ausgezeichneten Leistung haben gedruckte neuromorphe Schaltkreise zunehmende
Aufmerksamkeit in verschiedenen neuen Bereichen wie dem Internet der Dinge, trag-
baren Geräten und Soft-Robotik auf sich gezogen.

Was die Drucktechnologien betrifft, so werden gedruckte Schaltkreise in großen
Mengen in der Regel im Rolle-zu-Rolle-Verfahren hergestellt, bei dem dieselben
Schaltkreise in großen Mengen mit hoher Effizienz gefertigt werden können, was
zu extrem niedrigen Kosten pro Schaltkreis führt. Andererseits eignen sich Ferti-
gungsverfahren für geringe Stückzahlen, wie der Tintenstrahldruck, für die Herstel-
lung von Einzelteilen in geringer Stückzahl, allerdings zu relativ hohen Kosten.

Wenn eine große Anzahl unterschiedlicher Schaltkreise gedruckt werden muss, kann
weder die Hoch- noch die Kleinserien-Drucktechnologie eingesetzt werden, um gle-
ichzeitig hohe Leistung und niedrige Kosten zu gewährleisten.

Durch gezieltes Design und Anpassung können jedoch beide Fertigungsansätze genutzt
werden: Bei der Großserienfertigung werden die gemeinsamen Teile verschiedener
Schaltungen hergestellt, während bei der Kleinserienfertigung die einzigartigen Teile
jeder Schaltung angepasst werden. In diesem Beitrag stellen wir einen Trainingsrah-
men vor, bei dem ein spezieller Strafterm verwendet wird, um die meisten Gewichte
in neuronalen Netzen für verschiedene Aufgaben nahe beieinander liegen oder sogar
übereinstimmen zu lassen. Ein weiterer Vorteil dieser Strafe ist, dass Ausreißergewichte,
deren Wert weit von den anderen abweicht, nicht angezogen werden, so dass die
Leistung der Schaltkreise nicht zerstört wird. Auf diese Weise lassen sich mehrere
neuromorphe Schaltkreise zu niedrigeren Produktionskosten und fast ohne Leistung-
seinbußen herstellen.

1. Introduction

The rapid development of soft robotics, wearables, smart consumer products, and
Internet of Things (IoT) applications is greatly facilitated and benefited by the
low-cost, flexible, and computational infrastructures. However, some of these re-
quirements can not be met by silicon-based chips [34].

Specifically, silicon chips have significant strong power in computing [34], but lack of
flexibility and requires extremely expensive equipments for production. In this case,
printed neuromorphic circuits serves as complement parts of silicon chips, which
fulfill the flexibility and low-cost. Printed neuromorphic circuits are an emerging
technology. By printing well-trained resistors and transistors on substrates, desired
computational processes can be implemented. By choosing appropriate materials,
flexibility and even non-toxicity can be achieved. Furthermore, by applying reason-
able manufacturing process, extremely low costs can be realized.

There are two main categories of manufacturing printed electronics (PE): high vol-
ume and low volume manufacturing. One representative of high-volume manufac-
turing is gravure printing, whereas inkjet printing is a typical Low volume printing
technology. High volume manufacturing has a lower manufacturing time and cost
regarding each printing circuit, but can only produce them with the same template.
Low-volume manufacturing, in contrast, can meet the high customization require-
ments for individual circuits, however, the cost and manufacturing time are much
higher than high volume production.

In most cases, the manufacturer should produce a large amount of different circuits
for different clientele. I.e., despite the large batch-size, low volume production will
be applied for keeping acceptable performance of different circuits, leading to high
printing cost. To the other end, if the cost is the prominent factor, the manufacturer
may train identical circuits to perform all tasks. However, this approach exacerbates
the circuit performance.

Is there any possibility to reduce production cost while keeping acceptable circuit
performance? The answer is ”yes”. We notice that, the structures of neural networks
(NNs) show a great similarity (interconnection of numerous neurons). Therefore, we
can speculate that different tasks could also be solved by neural networks with high

6 1. Introduction

similarity, and thus, the manufacturing cost of the common parts can be greatly
compressed by high-volume printing technologies, and the distinguishable parts can
be done by low-volume point-of-use configuration.

The purpose of this thesis is to train multiple NNs simultaneously with different
penalties to attract their weights (which correspond to the resistances) similar. With
this approach, two extreme situations should be emphasized:

• With large penalty, the weights in all NNs at the same position are fused. Thus,
all the circuits can be printed by high volume technology such as roll-to-roll
printing.

• With small (zero) penalty, the weights in all NNs are trained independently.
Thus, the weights (resistances) are hardly the same, consequently, the circuits
are printed by low volume technology such as inkjet printing.

Actually, these two situations are exactly the previous solutions. With adjustment
of the strength of the penalty, the aforementioned two solutions can be bridged, and
the trade-off between circuit performance vs. printing costs is enabled.

The contribution of this paper is to propose a method that uses gravitational at-
traction as penalty term in the gradient descent to assimilate the weights during the
training process. Moreover, we introduce a clustering algorithm to coincide similar
weights. Weights that are farther away from the clusters will not be affected by
the gravitational penalty, thus allowed to maintain their original movement trend
during the training process.

2. Background

2.1 Printed Electronics

Similar to color printing, components in PE are manufactured by gradually adding
materials to the substrates. Gravure printing and inkjet printing are two typical
process in PE, representing high and low volume production respectively. Due to
the simplicity of the production method and the cheap manufacturing equipment,
printed circuits have a lower cost compared to traditional silicon-based chips. In
addition, PE can be printed on a wider variety of materials. PE can not outperform
traditional silicon-based chips in terms of computing efficiency and area, therefore,
it serves more as a compliment of traditional silicon chips where silicon chips are
not capable of doing so. In this regard, PE has a great role in emerging scenarios
such as wearable devices.

2.1.1 Printing technology

Printed electronics is receiving more and more attention as an emerging electronic
technology. Information electronic and optoelectronic devices and systems manufac-
tured by printing methods have a range of advantages such as large area, flexibility,
personalization, low cost, and environmental friendliness. Although the printed pro-
cess itself does not have the high resolution and integration of traditional micro and
nano processing, these advantages are sufficient to make printed electronics useful
in many new applications. Printed electronics, also known as ”print + electronics,”
is the use of traditional printing technology to create electronic devices or circuits.
Traditional printing technology is known as the technology used to print newspapers
and magazines. Newspapers or magazines are printed with black and white or color
inks. If these inks, which express only color, are replaced with inks that have elec-
tronic functions, the printed graphics will have electronic functions. Similar to the
multicolor overprint technology used for printing color pictures, multiple electronic
function inks can be overprinted to create complex electronic function structures.
Currently, in common use in a variety of electronic devices integrated circuit chip IC
and printed circuit board PCB (printed circuit board) is achieved through a complex
series of processing steps such as photolithography, development, etching, etc., while
the print manufacturing is much simpler.

8 2. Background

Printed manufacturing is essentially an additive manufacturing technology, as is the
now familiar 3D printing. The traditional IC chip processing or circuit board manu-
facturing techniques commonly used in various electronic devices are all subtractive
manufacturing techniques, where unwanted materials are removed by plasma etching
or acid etching to form a graphic structure of functional materials. Printed additive
manufacturing has these advantages.

Printing can be done on large areas and in large quantities. Conventional printing
technology can already print newspaper or printed fabric on a surface several me-
ters wide in a continuous roll-to-roll fashion at high speed, and the same method
can be applied to printed electronic functional materials. While integrated circuit
chip processing is currently possible for wafers up to 300 mm in diameter, printed
electronics can be realized on areas over 1 m in diameter.

Inkjet printing methods in print manufacturing are characterized by digital and
personalized manufacturing. Like the personalized manufacturing features of 3D
printing, inkjet printed electronics do not require templates and can be rapidly
manufactured in small quantities for personalized electronics.

Since printed electronics can be both mass-produced and customized, they have
the advantage of being low-cost for high-volume production. In addition, based
on the products obtained from high-volume production, we can also customize the
manufacturing to meet specific needs for different tasks. This paper proposes a
method to optimize the design of multiple printing neural networks based on the
characteristics of both types of production. It enables a significant reduction in
production costs with minimal impact on the working capacity of the neural network.

2.1.2 Advantages of PE

Among all advantages of PE, the most significant features are:

• Low cost: Thanks to additive manufacturing, few materials are wasted, and
relatively cheap equipment is required. By selecting appropriate printing tech-
nology, production of various batch sizes can be achieved at a very small cost.

• Flexibility: By printing materials on certain substrates such as Kapton [20]
and PET [4], the whole printed device can be highly flexible.

• non-toxicity: There are multiple conductive materials, that are also non-toxic
or even bio-compatible [18, 1], therefore, they can perfectly employed in med-
ical or wearable applications [39].

Due to these remarkable properties, PE draws increasing attention from both academia
and industry.

2.2 Artificial Neural Networks
Artificial neural network (ANN), often called neural network (NN), are computa-
tional systems inspired by the biological neural networks that make up the human
brain. In 1958, American psychologist Frank Rosenblatt conceived and attempted
to build a machine that would respond like a human mind. He named his machine
”perceptron” [24] (Fig. 2.1). For all practical purposes, the ANN learns by exam-
ple in a human-like manner, in which external inputs are received, processed, and
manipulated in the same way as the human brain.

2.2. Artificial Neural Networks 9

Figure 2.1: Schematic of the neural perceptron. The circle represents a perceptron.
It receives multiple inputs [x1, x2, x3]

⊤ and produces an output.

2.2.1 Hierarchical structure of neural networks

Different parts of the human brain are used to process various kinds of informa-
tion [26]. These parts of the brain are arranged in a hierarchy. When information
enters the brain, each layer or level of neurons does its particular job, which is to
process the incoming information, gain insight, and then pass them on to the next
higher-level layer. Generally, ANNs have three types of neuron layers: input layer,
hidden layers, and output layer. Information flows from one layer of neurons to
another, just as it does in the human brain:

• Input layer: the entry point of data into the system.

• Hidden layer: the location where the information is processed.

• Output layer: the location where the system decides how to proceed based on
the data

The more complex the ANNs are, the more hidden layers they will have. ANN
operates through collections of nodes or connecting units. These nodes loosely mimic
the network of neurons in human brains. Just like in humans, artificial neurons
receive signals, process them, and send signals to other neurons connected to them.

2.2.2 Operations of artificial neural networks

In ANNs, neurons receive a stimulus in the form of a real number of signals. Then the
output of each neuron is calculated by the sum of its inputs followed by a nonlinear
transformation (activation function). The connections between neurons are called
edges. Each edge has its own weight. This parameter is adjusted and changed by
gradient descent in training process. The weights indicate the strength of the signal
at the connection. Once a signal is put into a ANN, it will be transferred from the
input layer via hidden layers to the output layer in the manner discussed above.

2.2.3 Training of artificial neural networks

As mentioned in the previous subsection, the output of an ANN is actually the input
signal, operated by a series of weighted-sums and nonlinear transformations. To find
appropriate weights that can successfully transform the input to the desired output
is referred to as training of the ANN.

It is known that, machine learning, especially ANN, is a data-driven approach, whose
training requires a large amount of labeled data. These data will be entered to the

10 2. Background

Figure 2.2: Schematic of an ANN. The input perceptrons receive external input,
make a judgment, and then send signals as input to the next perceptrons until the
final result is obtained.

neural network from the input layer, and the results will be compared with their
corresponding labels. The objective of training is to minimize the difference between
network output and the target output. To this end, a differentiable loss function is
usually introduced as the objective function to guide the training towards desired
direction. Since both operations in the network and the loss functions are differ-
entiable, the partial derivative of the objective function over learnable parameters
(gradients) can be easily calculated by ”back propagation”.

In each epoch, all data are used to calculate the loss through forward pass (in-
put layer - hidden layers - output layer), and then, the gradients of are calculated
by back propagation. With these gradients, the learnable parameters (usually the
weights) can be optimized easily through gradient-based optimization algorithm,
e.g., gradient descent, Adam, etc.

2.3 Printed Neuromorphic Circuits

Neuromorphic circuits is an emerging domain. It refers to implementing the same
functionality of ANNs by electronic components. The neuromorphic circuits fabri-
cated by printed electronics are called printed neuromorphic circuits. Weller et al.
proposed several basic circuit structures by which a printable ANN can be obtained
by a combination of these circuits [34].

Different from ANNs in silico, printed neuromorphic circuits are limited by some
physical constraints, for example, the resistance must be positive and it suffers from
fabrication errors. To this end, Zhao et al. [38] and Weller et al. [34] has proposed
multiple solutions. Since this part is beyond the scope of this paper, we do not
dicuss this further.

In next sections, we will introduce the important subcircuits in the printed neuro-
morphic circuits.

2.3. Printed Neuromorphic Circuits 11

2.3.1 Multiply accumulate (MAC) circuit

Multiply accumulate (MAC) operations are part of the computation of each neuron
in an ANN. It adds up the inputs, which are scaled and weighted by the weights
wi. The output of the multiply accumulate can be computed by:

a = x⊤w =
∑
i

wixi + b,

where xi is the i-th input, wi denote the corresponding weight, and b is the bias.

Figure 2.3: The schematic of the 2-input crossbar (V1, V2) implementing the multiply
accumulate operation.

In the printed neuromorphic circuit, MAC is implemented by a crossbar circuit,
which consists of multiple printed resistors Ri. According to Ohm’s law, the current
on the resistor Ri is Ii = (Vi − Vx)/Ri. Then, the currents are summed up based on
Kirchhoff’s rule: ∑

i=1

Ii + Id = 0, (2.1)

i.e.,

Vx =

∑
i
Vi

Ri∑
i

1
Ri

+ 1
Rb

+ 1
Rd

. (2.2)

By reformulating Ri as Ri = 1/gi (gi refers to the conductance), the formula can be
abbreviated to:

Vx =

∑
i giVi∑

j gj + gd
=:

∑
i giVi

G
=
∑
i

gi
G
Vi

If we express the weights by

wi =
∑
i

gi
G
.

The behavior of the crossbar becomes evident:

Vx =
∑
i

wiVi.

This is exactly the weighted-sum operation in ANNs. Note that, the bias term can
be extended by an additional resistor with a constant input voltage.

12 2. Background

Figure 2.4: Schematic of the proposed negative weight circuit. Two voltage dividers
are deployed to shift the zero-crossing of the output voltage towards 0V .

2.3.2 Negative weights operation

In each printed neuron, the MAC operation can implement the computation of the
input signal vector x and the weight w. However, since the weights in MAC circuit is
composed by resistances, they must be positive, which would limit its applicability
to potential classification or regression problems.

To implement negative weights, Weller et al. [34] proposed an inverter-based transfer
circuit (Fig. 2.4), which is capable of converting positive neuron input voltages to
negative voltages, in this way, the negative relationship can be realized. I.e., if we
need a negative weight

−|wi| · Vi,

instead of printing a negative wi, we transform the input voltage Vi into a negative
one, i.e.,

|w′
i| · neg(Vi).

Note that, the function neg(·) is nonlinear, therefore, the wi will be adjusted to w′
i,

which keep the absolute value of |wi| · Vi and |w′
i| · neg(Vi) are the same.

2.3.3 Nonlinear transformation circuit

Figure 2.5: Schematic of inverter-based activation function for realizing tanh-like
function

Each neuron in printed neuromorphic circuits requires a nonlinear activation func-
tion in addition to the two components mentioned above. The activation function
is located directly after the MAC operation. Weller et al. proposed ptanh based
on printed electronic circuits (Fig. 2.5), which uses two transistors to simulate the
tanh-like activation function.

3. Preliminary

In this chapter, we introduce some knowledge employed in this thesis, and several re-
lated works. Firstly, gradient-based learning is introduced, as it is the most common
method for training neural networks. Besides, gravitation is used to attract the cor-
responding weights in different networks close to each other. Subsequently, we intro-
duce DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [10],
a clustering algorithm to coincide similar weights to exactly same values.

3.1 Gradient-based Learning

3.1.1 Gradient

Gradient descent is a famous parameter optimization algorithm that is widely used to
minimize a certain differentiable objective function. Although it does not guarantee
a global optimum in nonconvex situation, it is still the easiest and the most popular
way in machine learning community. For a certain model, e.g.,

h(x) = w1x1 + w2x2 + · · · + wnxn + b = wTX + b.

We exemplarily define a loss function (objective function):

J(w) =

∑n
i (h(x(i)) − y(i))2

2
,

where x(i) and y(i) is the input and target output of the i-th instance, while w is the
optimization variable.

The goal of optimization is to make J(w) reach the minimum value. The gradient
descent process functions as follows:

• First assign a initial value to the optimization variable w. This value is usually
randomly selected.

• Change the value of w so that J(w) decreases in the direction of negative
gradient.

14 3. Preliminary

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
0.00672
0.99054

Figure 3.1: An example of gradient descent. The purple area has higher gradient,
whereas the red area has lower gradient.

As shown in Fig. 3.1, each gradient changes as follows:

w = w − α
∂J(w)

∂w
,

where α is the learning rate, which is a positive to determine the step size.

The commonly used gradient descent method also specifically contains three different
forms, each of which also has different advantages and disadvantages.

• Batch Gradient Descent (BGD)
BGD is the most primitive form of gradient descent method. The specific idea
is to use all training samples to update each parameter.
Advantage: optimal solution with relatively small number of iterations.
Disadvantage: slow training process with large datasets.

• Stochastic Gradient Descent (SGD)
SGD iterates through each sample to update once, if the sample size is large
(e.g., more than 100,000), then only a few tens of thousands or thousands
of samples may be used to iterate to the optimal solution, compared with
the above BGD iteration requires more than 100,000 training samples, one
iteration is not optimal. If we iterate 10 times, we need to iterate through the
training samples 10 times. However, one of the problems associated with SGD
is that there is more noise than BGD, so that SGD does not always iterate
in the direction of overall optimality. This optimization algorithm, which uses
only a single sample at a time, is sometimes called an on-line algorithm.
Advantages: fast training.
Disadvantages: worse solution.

• Mini-batch Gradient Descent (MBGD)
The MBGD method takes a compromise between the above two approaches

3.1. Gradient-based Learning 15

by using batch size samples for each parameter update, which ensures that
the training process of the algorithm is relatively fast and also guarantees the
accuracy of the final parameter training.

Most deep learning algorithms are based on small-batch gradient descent algorithms
for solving, and they are now often referred to simply as stochastic gradient descent
methods.

3.1.2 Learning rate

Figure 3.2: A cartoon depicting the effects of different learning rates. With low
learning rates the improvements will be linear. With high learning rates they will
start to look more exponential. Higher learning rates will decay the loss faster, but
they get stuck at worse values of loss (green line). This is because there is too much
”energy” in the optimization and the parameters are bouncing around chaotically,
unable to settle in a nice spot in the optimization landscape.

The learning rate α determines how fast the parameters move to the optimal value.
If the learning rate is too large, it is likely to go beyond the optimal value and over-
shoot, i.e., the extreme point at both ends of the divergence, or violent oscillation,
in short, as the number of iterations increases the loss does not reduce the trend;
on the contrary, if the learning rate is too small, the efficiency of optimization may
be too low, the algorithm can not converge for a long time, can not quickly find a
good direction of descent, as the number of iterations increases the loss is basically
unchanged, so The learning rate is crucial to the performance of the algorithm.

Therefore, to make the gradient descent method have a good performance, we need
to set the value of the learning rate in a suitable range. The following two types of
learning rate adjustments are commonly used:

• Manual tuning based on experience. By trying different fixed learning rates,
such as 0.1, 0.01, 0.001, etc., we observe the relationship between the number
of iterations and the change of loss, and find the learning rate corresponding
to the fastest decreasing loss relationship.

• Adaptive learning rate algorithms. E.g., AdaGrad, Root Mean Squared Prop-
agation (RMSprop), Adam, etc.

16 3. Preliminary

3.1.3 Momentum update

While stochastic gradient descent remains a very popular optimization method, its
learning process can sometimes be slow. Momentum update methods are designed to
speed up learning, especially when dealing with high curvature, small but consistent
gradients, or gradients with noise. The momentum algorithm accumulates a moving
average of the exponential decay of previous gradients and continues to move in that
direction. The effect of momentum is shown in the Fig. 3.31.

Figure 3.3: TNesterov momentum. Instead of evaluating gradient at the current
position (red circle), we know that our momentum is about to carry us to the tip
of the green arrow. With Nesterov momentum we therefore instead evaluate the
gradient at this ”looked-ahead” position.

3.2 Gravitation

The law of gravitation is a general physical law derived from empirical observations
that Isaac Newton called inductive reasoning [31]. It is a part of classical mechanics
and was first published in 1687 in Philosophie Naturalis Principia Mathematica. The
law states that each point of mass attracts the mass of every other point by pointing
to a force along the line of intersection of the two points. The force is proportional
to the product of the two masses and inversely proportional to the square of the
distance between them.

The equation for universal gravitation thus takes the form:

F =
Gm1m2

r2
, (3.1)

where F is the gravitational force received by the two masses, G is the gravitational
constant, m1, m2 are the masses of the objects, and r is the distance between the
centers of their masses.

Suppose the gravitational acceleration of the mass is a , and according to Newton’s
second law:

F = m1 · a1,

that is,

1CS231n: Convolutional Neural Networks for Visual Recognition https://cs231n.github.io

3.2. Gravitation 17

a1 =
F

m1

. (3.2)

Bringing this expression (3.2) into Newton’s equation of gravity 3.1, we get:

a = G
m2

r2
.

In this paper, we will train several neural networks applied to different datasets at
the same time. In order to make the trained neural networks have the most similar
structure, i.e., to make the parameters of neurons at corresponding positions of
different neural networks as identical as possible. For n neurons at the corresponding
positions of n neural networks, we can use gravity to make them actively close during
the training process.

The weight w of each neuron is used as its position and the weight difference between
every two neurons is used as their distance. To simplify the algorithm and to reduce
the computational effort, we consider the mass of all neurons as mi = 1,∀i.

This yields, for two neurons, their mutual gravitational acceleration is:

a =
1

(w1 − w2)2
.

To avoid pathological problems caused by the overlap of two neurons, we normalize
the gravitational acceleration by:

a =
γ

(w1 − w2)2 + γ
.

Here, γ modifies the shape of gravity function, see Fig. 3.4.

Figure 3.4: Figure of the effect of different sizes of gamma on the shape of the gravity
curve.

18 3. Preliminary

(a) An example of neuron position before
clustering.

(b) An example of neuron position after
clustering.

Figure 3.5: Comparison of neuron positions before and after clustering

3.3 Clustering

Clustering is a technique for finding the intrinsic structure between data. Clustering
organizes all data instances into groups of similarities, which are called clusters.
Data instances in the same cluster are the same as each other, and instances in
different clusters are different from each other. Clustering techniques are often
referred to as unsupervised learning, unlike supervised learning, where there is no
categorization or grouping information that indicates the class of data in a cluster.
The similarity between data is discriminated by defining a distance or similarity
coefficient(Fig. 3.5).

In this thesis, we use the DBSCAN clustering, one of the most popular clustering
algorithm, to cluster the neurons in different neural networks. For several different
neural networks, the neurons in them should have different weights. To make these
neural networks as similar as possible, the DBSCAN clustering algorithm analyzes
these weights. Several neurons with similar weights are grouped together. In a later
operation, the neurons in the same group are fused so that they can be manufactured
using a high-volume manufacturing method. The purpose of the clustering algorithm
is to find some neurons that can be grouped together.

DBSCAN is a density-based clustering algorithm, which defines a cluster as the
largest set of densely connected points and is able to classify regions with sufficient
density into clusters, and can find arbitrary clusters of arbitrary shape in a spatial
database of noise.

DBSCAN is based on a set of neighborhoods to describe the closeness of the sam-
ple set, and the parameters (ϵ, MinPts) are used to describe the closeness of the
sample distribution in the neighborhood. Where ϵ describes the neighborhood dis-
tance threshold and MinPts describes the minimum number of data points in a
neighborhood with distance ϵ.

• A point p is a core point if at least minPts points are within distance ϵ of it
(including p).

• A point q is directly reachable from p if point q is within distance ϵ from core
point p. Points are only said to be directly reachable from core points.

3.3. Clustering 19

• A point q is reachable from p if there is a path p1, ..., pn with p1 = p and
pn = q, where each pi+1 is directly reachable from pi. Note that this implies
that the initial point and all points on the path must be core points, with the
possible exception of q.

• All points not reachable from any other point are outliers or noise points.

The exact algorithm is expressed as follows:

Algorithm 1 DBSCAN(D, ϵ, MinPts)

C=0
for all unvisited point P in dataset D do

mark P as visited
N = D.regionQuery(P, ϵ)
if sizeof(N) < MinPts then

mark P as NOISE
else

C = next cluster
expandCluster(P, N, C, ϵ, MinPts)

end if
end for

Algorithm 2 expandCluster(P, N, C, ϵ, MinPts)

add P to cluster C
for all point P’ in N do
if P’ is not visited then

mark P’ as visited
N’ = D.regionQuery(P’, ϵ)
if sizeof(N’) >= MinPts then

N = N joined with N’
end if

end if
if P’ is not yet member of any cluster then

add P’ to cluster C
unmark P’ as NOISE if necessary

end if
end for

Algorithm 3 regionQuery(P, ϵ)

return all points within P’s ϵ-neighborhood (including P)

20 3. Preliminary

4. Related Work

Motivation revisit

Our goal is to increase the neural network similarity while processing multiple neural
networks at the same time. This allows to reduce the average production cost by
using high volume manufacturing as much as possible. Therefore, we will introduce
the related work about multitasks.

Moreover, since the work is based on printed neuromorphic circuits, we will also
state some related work about printed neural network (pNN).

4.1 Multitask

Multitask learning (MTL) aims at solving the related tasks simultaneously by ex-
ploiting shared knowledge to improve performance on individual tasks. MTL has led
to successes in many applications of machine learning, from natural language pro-
cessing and speech recognition to computer vision and drug discovery. In [30], Ruder
gives a general overview of MTL, particularly in deep neural networks. It introduces
the two most common methods for MTL in Deep Learning, which is hard parameter
sharing and soft parameter sharing. Hard parameter sharing is generally applied
by sharing the hidden layers between all tasks, while keeping several task-specific
output layers. In soft parameter sharing, on the other hand, each task has its own
model with its own parameters. Our paper is very similar to soft parameter shar-
ing, where each layer of each neural network can, but does not have to, share their
weights, thereby increasing the number of shared neurons and reducing unnecessary
accuracy degradation due to shared weights. In [41] Zhou, Fan, et al. revisited the
adversarial multitask neural network and proposed a new training algorithm to learn
the task relation coefficients and neural network parameters automatically. In [6],
Chou, Yi-Min, et al. propose a novel method to merge convolutional neural-nets
for the inference stage. Given two well-trained networks that may have different ar-
chitectures that handle different tasks, this method aligns the layers of the original
networks and merges them into a unified model by sharing the representative codes
of weights.

22 4. Related Work

4.2 Printed Neural Network

Weller, Dennis D., et al. demonstrate in [34] printed hardware building blocks
such as inverter-based comprehensive weight representation and resistive crossbars
as well as printed transistor-based activation functions. In addition, to find the
optimal component values in printed neuromorphic circuits, they also proposed the
printed neural network, which is a NN-based simulation model of the printed neuro-
morphic circuits. In printed neural networks, the learnable parameters are exactly
the component values of the printed neuromorphic circuits.

pNNs are also capable to respect hardware constraints, such as printing technology.
Given a printable conductance range {0} ∪ [gmin, gmax], a straight through gradient
estimator can be employed to solve this problem [38]. It can also simulate the
variation of component values caused by aging problem [38] and printing errors [34].

Regarding split manufacturing, we have only found a single work [40], which split the
conductances as the sum of a common part (which is shared among all networks) and
an individual part (which is the point-of-use of each individual task). After training,
the common part of all circuits will be printed by high volume process, while the
individual configuration will be done by low volume printing. By encoring a larger
common part and smaller individual parts, the cost for low volume production can
be saved.

5. Design

In this chapter, we will specifically describe how the attraction of gravity allows
different neural networks to achieve maximum similarity. First, the role of gravity
and the implementation method are introduced. Next, we will describe in detail the
cluster algorithm in this thesis. Finally, we use trade-off to balance the degree of
similarity versus the performance of each neural network.

5.1 Gravitational Assimilation

Our purpose is to reduce the manufacturing cost and time using a high-volume
manufacturing approach when given multiple neural networks. Therefore, we can
make neurons close together during the training process. However, we only want to
fuse neurons that are close together. Forcing fusion on distant neurons would make
the neural network much less accurate. This feature of greater influence for near
neurons and less influence for distant neurons is similar to gravity. Thus, gravity is
a particularly good choice in this paper.

Since weights at the same position among different neural networks can be correlated
with each other by gravity, we want to achieve the goal of neural network assimilation
by gravity. Therefore, if we wish to change the motion trend of neuron weights
through gravity, we need to associate the gravity with the gradient of neuron weights.
This is done as follows:

We achieve the goal of neural network training while assimilation by changing the
specific details of the gradient descent mechanism. The ordinary neural network uses
a loss function to calculate the deviation of the current neural network prediction
from the actual value. Then the gradient of each weight is calculated to determine
the direction of gradient descent.

We assume the cost function

J(w) =
1

2m

m∑
i=1

(f(x(i) − y(i))2,

24 5. Design

where

f(x) = w0x0 + w1x1 + · · · + wnxn =
n∑

j=0

wjxj.

Our goal is:

min
w

J(w) =
1

2m

m∑
i=1

(f(x(i) − y(i))2.

The gradient descent method is expressed by the formula:

wj = wj − α
∂J(w)

∂wj

.

In the case of all neurons with mass = 1, ignore the gravitational constant, a neuron
alone receives the force of another neuron as

F = sign(w1 − w2) ·
1

(w1 − w2)2
.

In the case of two neurons with very close weights, the force obtained will tend to
infinity, to avoid this situation, we add an identical γ to the numerator denominator:

F = sign(w1 − w2) ·
γ

(w1 − w2)2 + γ
.

In all neural networks, the total force it receives, shall be the gravitational force of
other neurons on it only and

Fsum =
∑

Fi =
∑

sign(w1 − wi) ·
γ

(w1 − wi)2 + γ
.

Since its mass equals 1, its acceleration is numerically the same as the combined
force:

asum =
∑
i

sign(w1 − wi) ·
γ

(w1 − wi)2 + γ
.

We take into the gravity of neurons account on this basis as well. From this, the
gradient change caused by gravity is added to the gradient after back-propagation
to obtain the direction of the final gradient descent.

The gradient descent after the influence of gravity is:

wj =wj − α

(
∂J(w)

∂wj

+ λasum

)
=wj − α

(
∂J(w)

∂wj

+ λ
∑
i

sign(w1 − wi) ·
γ

(w1 − wi)2 + γ

)
,

where λ is a new hyper-parameter to regulate the degree of gravitational influence
on the gradient descent.

5.2. Clustering 25

Figure 5.1: Figure of the effect of different sizes of lambda and gamma on the shape
of the gravity curve.

5.2 Clustering

Under the influence of gravity, the weights of neurons at the corresponding position
of different neural networks can become very close, but it is difficult to make the
weights of neurons overlap exactly by gravity alone. Therefore, we use a clustering
algorithm after each weight update, and we dynamically group the neurons in the
corresponding positions of different neural networks. The weights within the same
group are redistributed as the average of the weights within the group.

Therefore the selection of a suitable clustering algorithm is crucial to the effectiveness
of the experiment. There are many clustering algorithms, such as the classical k-
mean algorithm, but such clustering requires an artificially given number of groups,
which is obviously not possible in this thesis. Since the weights of neurons in different
neural networks need to be grouped dynamically, we choose the clustering algorithm
DBSCAN, which does not require a predetermined number of groups. DBSCAN
takes two parameters: ϵ and the minimum number of points (minPts) are needed
to form a high-density region, which starts with an arbitrary unvisited point and
then explores the ϵ-neighborhood of that point. If there are enough points in the
neighborhood, a new cluster is created, otherwise the point is labeled as a clutter.
If a point is in the dense region of a cluster, the points in its ϵ-neighborhood also
belong to that cluster, and when these new points are added to the cluster, if it is
also in the dense region, the points in its ϵ-neighborhood will also be added to the
cluster. This process will be repeated until no more points can be added, so that
a density-linked cluster is found in its entirety. Then, an unvisited point will be
explored to find a new cluster or clutter.

In this paper, we use the DBSCAN algorithm from the scikit-learn [25] package.
where ϵ equals to the hyper-parameter cluster threshold and minPts uses the default
value of 5.

5.3 Trade-off

We need to recognize that neuron attraction varies for different sizes of λ. When
the λ is very large, the gravity term will dominate the update direction, in this
way, all neurons will converge to the same value, i.e., the weights among all neural
networks at the same position will have the same weights. In this case, the cluster

26 5. Design

number becomes small, but as a side effect, the accuracy decreases significantly. For
smaller λ, gravity has limited effect on the update direction of weights, therefore,
fewer neurons are assimilated, but for each dataset, their respective accuracies will
be close to those of independently trained neural networks.

Figure 5.2: The ideal case of gravity assimilation of multi neural networks. If the
gravity has great impact of neural network.

Figure 5.3: The normal case of gravity assimilation of multi neural networks

6. Experiment

6.1 Datasets and Models

To evaluate the effectiveness of the theory proposed in this paper, we conducted
experiments using 32 classification datasets, that are suitable for PE and PNC con-
text. These datasets were obtained from the UCI machine learning database [8].
The names and sources of datasets are:

• acuteinflammation [7]

• acutenephritis [7]

• balancescale [19]

• blood [37]

• breastcancer [35]

• breastcancerwisc [32]

• breasttissue [17]

• ecoli [15]

• energyy1 [33]

• energyy2 [33]

• fertility [12]

• glass [22]

• habermansurvival [13]

• hayesroth [14]

• ilpdindianliver [28]

28 6. Experiment

• iris [11]

• mammographic [9]

• monks1 [16]

• monks2 [16]

• monks2 [16]

• monks3 [16]

• pima [3]

• pittsburgbridgesMATERIAL [29]

• pittsburgbridgesRELL [29]

• pittsburgbridgesSPAN [29]

• pittsburgbridgesTORD [29]

• pittsburgbridgesTYPE [29]

• postoperative [36]

• seeds [5]

• teaching [21]

• tictactoe [23]

• vertebralcolumn2clases [2]

• vertebralcolumn3clases [2]

The criterion of dataset filtering are: 1) The number of features, and the number of
classes in these datasets are less than 10, as the scenario of printed neuromorphic
circuits are generally simple. 2) The data number is less than 1000, as they are not
too much of a burden on the hardware for training.

For all datasets, 60% of the data is used for training, 20% for validation, and the
remaining 20% for testing.

We implement pNN in PyTorch. In pNN, each neural network consists of multiple
printed layers. Each printed layer consists of MACs and activation functions. Unlike
normal neural networks: the learnable parameters in printed layers are resistance
values instead of weights w.

6.1. Datasets and Models 29

Table 6.1: Information of 32 Datasets from UCI and Experiment Results

Dataset #features #classes #data
random
guess

acute-inflammation 6 2 120 0.3200
acute-nephritis 6 2 120 0.6400
balance-scale 4 3 625 0.4206
blood 4 2 748 0.7467
breast-cancer 9 2 286 0.7241
breast-cancer-wisc 9 2 699 0.6929
breast-tissue 9 6 106 0.1818
ecoli 7 8 336 0.4265
energy-y1 8 3 768 0.5000
energy-y2 8 3 768 0.5260
fertility 9 2 100 0.8571
glass 9 6 214 0.3256
haberman-survival 3 2 306 0.7903
hayes-roth 3 3 132 0.3438
ilpd-indian-liver 9 2 583 0.6838
iris 4 3 150 0.3226
mammographic 5 2 961 0.5389
monks-1 6 2 124 0.5045
monks-2 6 2 169 0.6167
monks-3 6 2 122 0.4909
pima 8 2 768 0.6429
pittsburg-bridges-MATERIAL 7 3 106 0.8636
pittsburg-bridges-REL-L 7 3 103 0.1905
pittsburg-bridges-SPAN 7 3 92 0.5000
pittsburg-bridges-T-OR-D 7 2 102 0.8000
pittsburg-bridges-TYPE 7 6 105 0.6364
post-operative 8 3 90 0.6316
seeds 7 3 210 0.2093
teaching 5 3 151 0.2581
tic-tac-toe 9 2 958 0.6302
vertebral-column-2clases 6 2 310 0.6349
vertebral-column-3clases 6 3 310 0.4762

30 6. Experiment

6.2 Hyper-parameter Configurations and Learning

In this paper, there are three hyper-parameters: λ, γ, and cluster threshold ϵ.
Among them, λ controls the effect of gravitational force on neurons, γ controls
the relationship between the distance of neurons and the gravity, ϵ controls the clus-
tering process of neurons in different neural networks at corresponding positions.

To find good networks for each task, a grid-search over the λ, γ and ϵ is performed.
All networks are trained for maximal 15,000 epochs. In addition, we set up three
different model architectures: semi, hidden, and full. The semi model has the archi-
tecture #inputs-3-max #outputs, where #inputs is the number of features in each
dataset corresponding to each neural network, and max #outputs represents the
number of maximum classes in all neural networks. This means that in the semi
model, the input layer is not shared by all neural networks. The hidden layer is
shared with the output layer. The full model has the architecture max #inputs-3-
max #outputs, which means that the weights can be shared by the corresponding
neurons of all neural networks. The last model is the hidden model, which has an
architecture of #inputs-3-3-# outputs, where each neural network has a different
input and output layer, but the hidden layer can be shared.

Training runs are canceled if the training did not improve over 500 consecutive
updates(see early stopping [27]). In the experiments, the λ, γ, ϵ are chosen loga-
rithmically with base equals 2 as λ ∈ [2−16, 28] with 50 points, γ ∈ [2−9, 2−3] with 8
points, ϵ ∈ [2−10, 2−8] with 5 points. Additionally, all experiments are run with 5 dif-
ferent random seeds leading to a total of 3 × 50 × 8 × 5 × 5 = 30000 configurations
for each dataset.

6.3 Evaluation

6.3.1 Baseline

In this thesis, we have several baselines to evaluate the performance of the proposed
training framework.

The first baseline is ”independent training”, which means that all the networks are
trained independently, this is equivalent to ”no gravity”, i.e., λ = 0. Since no coupling
exists in training, the accuracies of each task can be seen as the upper bound of each
task.

To the other end, we select ”full gravity” as the second baseline, meaning that, we
use the identical network to perform all tasks. This is equivalent to train networks
with very large gravity strength. This can be seen as the worst performance of the
networks, but with the lowest production cost.

6.3.2 Metric

As evaluation metric, we do not only consider the accuracy, but also the number
of clusters. Accuracy is used to evaluate the suitability of the neural network after
assimilation for each dataset, while the number of clusters indicates how well the
neural networks are assimilated. A higher number of clusters indicates a worse degree
of assimilation after the experiment. A lower number of clusters indicates a better

6.4. Results 31

degree of assimilation. Similarly, for a specific dataset, if the accuracy changes too
much before and after assimilation, it indicates that the assimilation process has too
much influence on this dataset and the assimilation is not effective. Also, the same
assimilation process may have different effects on different datasets.

Regarding the accuracy, since we trained multiple networks at the same time, the
resulted accuracies are hardly comparable to each other. Therefore, we calculated
the average value of the accuracies among all the tasks. In this way, the scalar result
can be easily compared to the results from other experiment setups. Moreover, we
normalize the accuracies by their upper bound, i.e., the ”independent training”. This
can eliminate the difficulties of each task.

The number of clusters is a good estimation to the printing cost, as the cost of
printing templates is usually the number of different patterns, i.e., the number of
different resistance in our case.

In the table 6.2, we list the accuracy that can be achieved for each dataset in several
baseline cases:

6.4 Results

After training, we test the performance of each dataset with test data. In the figures
6.1, 6.2, 6.3, we show the trend of accuracy and cluster number with gravity, and
the relationship between different cluster numbers and accuracy. In addition, we
also show the results of the full model with simulated pNN.

6.5 Discussion

From the Fig. 6.1, we can see, that with the influence of weak gravity, the best per-
formance is always better than the baselines. With the increase of hyperparameter
lambda, neural network accuracy decreases rapidly, until lambda reaches 2−5. After
this point, the change in accuracy flattens and converges to approximately 63% on
average compares to baseline split training and 0 gravity.

Regarding average performance, with the influence of feeble gravity, the neural net-
works have approximately the same accuracy as baselines. With the increase in
lambda, the accuracy slides gently down and pauses at 60%. When lambda is larger
than 2−4, the accuracy decreases and the variance also becomes larger.

As shown in the Fig. 6.2, in terms of neural network fusion, this framework shows
very good results. When compared with split training, even with a small gravita-
tional force, the average cluster reached about 1200, and the smallest network even
required only 900 clusters. Compared with the 0 gravity baseline, only 60% of the
cluster is required. When the lambda is 2−8, the cluster reaches the lowest point.
At this time, the average cluster is less than 100, which only needs to correspond to
5% of the 0 gravity baseline.

In the Fig. 6.3, we plot the relationship between accuracy and the number of clus-
ters. It can be seen that when the number of clusters is small, a small increase in the
number of clusters can achieve a great improvement in accuracy. Immediately after-
ward, the improvement of accuracy becomes slow. The effect of the cluster number

32 6. Experiment

(a) best accuracy compared with split
training

(b) mean accuracy compared with split
training

(c) best accuracy compared with 0 grav-
ity

(d) mean accuracy compared with 0
gravity

Figure 6.1: Figures of accuracy compares to different baselines

(a) best accuracy compared with split
training

(b) mean accuracy compared with split
training

(c) best accuracy compared with 0 grav-
ity

(d) mean accuracy compared with 0
gravity

Figure 6.2: Figures of cluster number compares to different baselines

6.5. Discussion 33

Some baseline results of 32 datasets (take full model as example)
Dataset independent

training
without gravity

acuteinflammation 1.000 0.920
acutenephritis 1.000 1.000
balancescale 0.897 0.873
blood 0.773 0.767
breastcancer 0.681 0.724
breastcancerwisc 0.957 0.971
breasttissue 0.545 0.636
ecoli 0.861 0.809
energyy1 0.919 0.916
energyy2 0.890 0.916
fertility 0.710 0.810
glass 0.665 0.698
habermansurvival 0.706 0.758
hayesroth 0.628 0.531
ilpdindianliver 0.650 0.658
iris 0.968 1.000
mammographic 0.835 0.819
monks1 0.839 0.685
monks2 0.696 0.592
monks3 0.775 0.791
pima 0.738 0.760
pittsburgbridgesMATERIAL 0.900 0.818
pittsburgbridgesRELL 0.471 0.571
pittsburgbridgesSPAN 0.633 0.611
pittsburgbridgesTORD 0.800 0.900
pittsburgbridgesTYPE 0.755 0.818
postoperative 0.632 0.579
seeds 0.951 0.930
teaching 0.410 0.581
tictactoe 1.000 1.000
vertebralcolumn2clases 0.848 0.857
vertebralcolumn3clases 0.825 0.841

Table 6.2: A table of some baselines. In this table, we take full model into consider-
ation. In column ”independent training”, accuracy of each neural network, which are
sepratelly trained, are listed. In column ”without gravity” data are trained together,
but without the influence of gravity.

on accuracy becomes invisible when it reaches 400, or the number of clusters reaches
20% of the baseline 0 gravity.

In the scatter plot, both production cost and accuracy are considered. At the black
point, each neural network has different structures, therefore, their accuracy is also
the highest. Then, at the blue point, under the action of gravity and clustering
algorithm, the neural network saves nearly 80% of the production cost, and the
accuracy is only slightly reduced. Finally, at the yellow point. When the production

34 6. Experiment

(a) relation between accuracy and clus-
ter number compares to split training

(b) relation between accuracy and clus-
ter number compares to 0 gravity

Figure 6.3: Figures of the relation between accuracy and cluster number compares
to different baselines

Figure 6.4: This image shows the relationship between accuracy and lambda in the
case of printing neuromorphic.

cost is less than 10% of the maximum value, the neural network still maintains
an accuracy greater than 70%. In the right part of the Fig. 6.6, production cost
is reduced without even influencing the accuracy. In the left part, we provide the
opportunity to choose from a better performance or a lower production cost.

Table 6.3: Accuracy-Cost Trade-off

summerized accuracy normalized production cost

independent training 100% 100%

our approach

101.8% 97.2%
100.0% 20.2%
95.2% 11.3%
90.2% 7.8%
85.3% 9.0%

6.5. Discussion 35

Figure 6.5: This image shows the relationship between production costs and lambda
in the case of printing neuromorphic.

Figure 6.6: Scatter plot of normalized accuracy versus cost of printing in the case
of printing neuromorphic for all the runs.

36 6. Experiment

7. Conclusion and Future Work

7.1 Conclusion

This paper presents a novel approach to the training of neural networks, consider-
ing not only the accuracy but also the cost of printing multiple different circuits.
Based on gravity attraction and the DBSCAN clustering method, we can fuse a
large amount of weights in multiple neural networks, and thus, bridge the gap be-
tween high-volume production and low-volume production when it comes to neural
network printing. This approach also inherits the advantages of both production
methods. Testing on the basis of different datasets and models has shown that this
training method has excellent performance. Under the action of gravity and clus-
tering algorithm, the production of neural networks saves nearly 80% of the cost,
and the accuracy is only slightly reduced. When the production cost is less than
10% of the maximum value, the neural network still maintains an accuracy greater
than 70%. This training method allows pNN to achieve significant production cost
savings at the cost of not losing too much accuracy.

7.2 Future Work

In this paper, we proved the effectiveness of the proposed training framework. How-
ever, a critical drawback of this work is the scalability, as the computation for gravity
is O(n2). To overcome this problem, advanced method for reducing computational
cost should be considered, e.g., Monte-Carlo approach.

Secondly, the cost of printing is estimated by the number of clusters. A more precise
cost model should be established.

Thirdly, the number of clusters is implicitly controlled by the scaling factor of the
gravity term. Other techniques might be introduced to explicitly control the number
of clusters, but without accuracy loss.

Lastly, too much additional tuning hyperparameters are introduced to this work.
Some tricks such as progressive tuning can be considered.

38 7. Conclusion and Future Work

Bibliography

[1] Masha Asulin et al. “One-step 3d Printing of Heart Patches With Built-in
Electronics for Performance Regulation”. In: Advanced Science 8.9 (2021),
p. 2004205.

[2] Eric Berthonnaud et al. “Analysis of the sagittal balance of the spine and
pelvis using shape and orientation parameters”. In: Clinical Spine Surgery
18.1 (2005), pp. 40–47.

[3] Rafa l Biedrzycki and Jaros law Arabas. “Evolutionary and greedy exploration
of the space of decision trees”. In: Evolutionary Computation and Global Op-
timization. Prace Naukowe, Elektronika Warsaw, Poland: Warsaw University
of Technology Publishing House (2006), pp. 479–489.

[4] Joseph Chang, Tong Ge, and Edgar Sanchez-Sinencio. “Challenges of Printed
Electronics on Flexible Substrates”. In: 2012 IEEE 55th international midwest
symposium on circuits and systems (MWSCAS). IEEE. 2012, pp. 582–585.

[5] Ma lgorzata Charytanowicz et al. “Complete gradient clustering algorithm for
features analysis of x-ray images”. In: Information technologies in biomedicine.
Springer, 2010, pp. 15–24.

[6] Yi-Min Chou et al. “Unifying and merging well-trained deep neural networks
for inference stage”. In: arXiv preprint arXiv:1805.04980 (2018).

[7] Jacek Czerniak and Hubert Zarzycki. “Application of rough sets in the pre-
sumptive diagnosis of urinary system diseases”. In: Artificial intelligence and
security in computing systems. Springer, 2003, pp. 41–51.

[8] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017.

[9] Matthias Elter, Rüdiger Schulz-Wendtland, and Thomas Wittenberg. “The
prediction of breast cancer biopsy outcomes using two CAD approaches that
both emphasize an intelligible decision process”. In: Medical physics 34.11
(2007), pp. 4164–4172.

[10] Martin Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise.” In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[11] Ronald A Fisher. “The use of multiple measurements in taxonomic problems”.
In: Annals of eugenics 7.2 (1936), pp. 179–188.

[12] David Gil et al. “Predicting seminal quality with artificial intelligence meth-
ods”. In: Expert Systems with Applications 39.16 (2012), pp. 12564–12573.

[13] Shelby J Haberman. Generalized residuals for log-linear models. 1976.

40 Bibliography

[14] Barbara Hayes-Roth and Frederick Hayes-Roth. “Concept learning and the
recognition and classification of exemplars”. In: Journal of Verbal Learning
and Verbal Behavior 16.3 (1977), pp. 321–338.

[15] Paul Horton and Kenta Nakai. “A probabilistic classification system for pre-
dicting the cellular localization sites of proteins.”In: Ismb. Vol. 4. 1996, pp. 109–
115.

[16] Cezary Z Janikow. “A knowledge-intensive genetic algorithm for supervised
learning”. In: Genetic Algorithms for Machine Learning. Springer, 1993, pp. 33–
72.

[17] J Jossinet.“Variability of impedivity in normal and pathological breast tissue”.
In: Medical and biological engineering and computing 34.5 (1996), pp. 346–350.

[18] Altynay Kaidarova et al. “Wearable Multifunctional Printed Graphene Sen-
sors”. In: NPJ Flexible Electronics 3.1 (2019), pp. 1–10.

[19] David Klahr and Robert S Siegler. “The representation of children’s knowl-
edge”. In: Advances in child development and behavior. Vol. 12. Elsevier, 1978,
pp. 61–116.

[20] Isidoro Ibanez Labiano and Akram Alomainy.“Flexible Inkjet-printed Graphene
Antenna on Kapton”. In: Flexible and Printed Electronics 6.2 (2021), p. 025010.

[21] Wei-Yin Loh and Yu-Shan Shih. “Split selection methods for classification
trees”. In: Statistica sinica (1997), pp. 815–840.

[22] Yanping Lu et al.“Particle swarm optimizer for variable weighting in clustering
high-dimensional data”. In: Machine learning 82.1 (2011), pp. 43–70.

[23] Christopher J Matheus and Larry A Rendell. “Constructive Induction On De-
cision Trees.” In: IJCAI. Vol. 89. 1989, pp. 645–650.

[24] WS McCullock and W Pitts. “A logical calculus of ideas immanent in nervous
activity. archive copy of 27 november 2007 on wayback machine”. In: Avtomaty
[Automated Devices] Moscow, Inostr. Lit. publ (1956), pp. 363–384.

[25] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[26] Tomaso Poggio. “A theory of how the brain might work”. In: Cold Spring Har-
bor symposia on quantitative biology. Vol. 55. Cold Spring Harbor Laboratory
Press. 1990, pp. 899–910.

[27] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the
trade. Springer, 1998, pp. 55–69.

[28] Bendi Venkata Ramana, M Surendra Prasad Babu, and NB Venkateswarlu.
“A critical comparative study of liver patients from USA and INDIA: an
exploratory analysis”. In: International Journal of Computer Science Issues
(IJCSI) 9.3 (2012), p. 506.

[29] Yoram Reich and Steven Joseph Fenves. Incremental learning for capturing
design expertise. [Carnegie Mellon University], Engineering Design Research
Center, 1989.

[30] Sebastian Ruder.“An overview of multi-task learning in deep neural networks”.
In: arXiv preprint arXiv:1706.05098 (2017).

Bibliography 41

[31] George Smith. “Newton’s philosophiae naturalis principia mathematica”. In:
(2007).

[32] W Nick Street, William H Wolberg, and Olvi L Mangasarian. “Nuclear feature
extraction for breast tumor diagnosis”. In: Biomedical image processing and
biomedical visualization. Vol. 1905. SPIE. 1993, pp. 861–870.

[33] Sathishkumar VE, Changsun Shin, and Yongyun Cho. “Efficient energy con-
sumption prediction model for a data analytic-enabled industry building in a
smart city”. In: Building Research & Information 49.1 (2021), pp. 127–143.

[34] Dennis D Weller et al. “Realization and training of an inverter-based printed
neuromorphic computing system”. In: Scientific reports 11.1 (2021), pp. 1–13.

[35] William H Wolberg and Olvi L Mangasarian. “Multisurface method of pattern
separation for medical diagnosis applied to breast cytology.” In: Proceedings of
the national academy of sciences 87.23 (1990), pp. 9193–9196.

[36] Linda Woolery et al. “The use of machine learning program LERS-LB 2.5 in
knowledge acquisition for expert system development in nursing.” In: Comput-
ers in nursing 9.6 (1991), pp. 227–234.

[37] I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. “Knowledge discovery on
RFM model using Bernoulli sequence”. In: Expert Systems with Applications
36.3 (2009), pp. 5866–5871.

[38] Haibin Zhao et al. “Aging-Aware Training for Printed Neuromorphic Cir-
cuits”. In: Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design. 2022, pp. 1–9.

[39] Haibin Zhao et al. “Printed Electrodermal Activity Sensor with Optimized
Filter for Stress Detection”. In: Proceedings of the 2022 ACM International
Symposium on Wearable Computers. 2022, pp. 112–114.

[40] Haibin Zhao et al. “Split Additive Manufacturing for Printed Neuromorphic
Circuits”. In: 2023 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). IEEE. 2023.

[41] Fan Zhou et al. “Task similarity estimation through adversarial multitask neu-
ral network”. In: IEEE Transactions on Neural Networks and Learning Systems
32.2 (2020), pp. 466–480.

	Contents
	1 Introduction
	2 Background
	2.1 Printed Electronics
	2.1.1 Printing technology
	2.1.2 Advantages of PE

	2.2 Artificial Neural Networks
	2.2.1 Hierarchical structure of neural networks
	2.2.2 Operations of artificial neural networks
	2.2.3 Training of artificial neural networks

	2.3 Printed Neuromorphic Circuits
	2.3.1 Multiply accumulate (MAC) circuit
	2.3.2 Negative weights operation
	2.3.3 Nonlinear transformation circuit

	3 Preliminary
	3.1 Gradient-based Learning
	3.1.1 Gradient
	3.1.2 Learning rate
	3.1.3 Momentum update

	3.2 Gravitation
	3.3 Clustering

	4 Related Work
	4.1 Multitask
	4.2 Printed Neural Network

	5 Design
	5.1 Gravitational Assimilation
	5.2 Clustering
	5.3 Trade-off

	6 Experiment
	6.1 Datasets and Models
	6.2 Hyper-parameter Configurations and Learning
	6.3 Evaluation
	6.3.1 Baseline
	6.3.2 Metric

	6.4 Results
	6.5 Discussion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

