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Abstract

With the rapid growth of emerging fields such as the Internet of Things and wearable
devices, more requirements such as flexibility, low-cost and non-toxicity are posed.
However, these advanced properties are often beyond the reach of conventional rigid
silicon technology, which make printed electronics increasingly recognized as a key
driver of these fields. With neuromorphic computing, printed neuromorphic circuits
offer not only the aforementioned properties, but also their learning-based design
process offers high optimization efficiency. Generally, printed neuromorphic circuits
express their functionality through resistor crossbars to emulate weighted-sum op-
eration, and nonlinear subcircuits to express activation functions. The values of the
former are usually learned, while the latter are predefined and considered fixed in
training for all tasks. This work focuses on the nonlinear subcircuits of printed neu-
romorphic circuits and explore an approach to make the components of nonlinear
subcircuits optimizable. We conduct experiments to study the effectiveness of this
approach. The preliminary experiment shows that, with this approach, the accu-
racy and robustness (standard deviation) of printed neuromorphic circuits can be
improved by 10.7% and 84.8% respectively under 5% variation of circuit components,
and 19.2% and 75.5% respectively under 10% variation of circuit components.

Keywords: printed electronics, neuromorphic computing, learnable nonlinear circuit





Zusammenfassung

Mit dem schnellen Wachstum aufstrebender Bereiche wie dem Internet der Dinge
und tragbaren Geräten werden immer mehr Anforderungen wie Flexibilität, niedrige
Kosten und Ungiftigkeit gestellt. Diese fortschrittlichen Eigenschaften sind jedoch
oft außerhalb der Reichweite herkömmlicher starrer Silizium-basierte Technologien,
wodurch die gedruckte Elektronik zunehmend als wichtiger Treiber dieser Bere-
iche anerkannt wird. Denn beim Neuromorphic Computing bieten gedruckte neu-
romorphe Schaltungen nicht nur die oben genannten Eigenschaften, sondern bi-
eten durch ihren lern-basierten Entwurfsprozess eine hohe Optimierungseffizienz.
Im Allgemeinen drücken gedruckte neuromorphe Schaltungen ihre Funktionalität
durch Widerstandskreuzschienen aus, um eine Operation mit gewichteter Summe
zu emulieren, und nichtlineare Teilschaltungen, um Aktivierungsfunktionen auszu-
drücken. Die Werte der ersteren werden in der Regel erlernt, während die letzteren
vordefiniert sind und im Training für alle Aufgaben als fest gelten. Diese Arbeit
konzentriert sich auf die nichtlinearen Teilschaltkreise von gedruckten neuromorphen
Schaltkreisen und untersucht einen Ansatz dafür die Komponenten nichtlinearer
Teilschaltungen optimierbar. Während wir zusätzliche Flexibilität der auszudrück-
enden Funktionalität bieten, führen wir Experimente durch, um die Wirksamkeit
dieser Methode zu untersuchen. Das Experiment zeigt, dass mit diesem Ansatz die
Genauigkeit und Robustheit (Standardabweichung) von gedruckten neuromorphen
Schaltungen um 10.7 % bzw. 84.8 % unter 5 % Variation der Schaltungskomponen-
ten, und um 19,2 % bzw. 75,5 % unter 10 % Variation der Schaltungskomponenten
verbessert werden kann.

Schlüsselwörter: gedruckte Elektronik, neuromorphes Rechnen, lernbare nichtlin-
eare Schaltungen





Abbreviations

ANN artificial neural network

Inv negative weight circuit

NC neuromorphic circuit

NN neural network

PE printed electronics

pNN printed neural network

ptanh circuit for tanh-like activation function
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1. Introduction

Internet of Things (IoT) [12] is an emerging field, including ubiquitous
computing, commodity sensors, increasingly powerful embedded sys-
tems, and machine learning [26]. In recent years, the significant trend
of IoT is the explosive growth of devices connected and controlled by
the Internet [1]. These devices, which promise revolutionary advances
for both industrial applications and the customer experience, enable
common things to be seamlessly connected, communicate, and display
responsiveness to contextual changes [1]. For example, retail may be
able to track specific products through smart labels and verify their
authenticity using smart labels [49].

With IoT infrastructures stepping into our daily lives, non-toxic and
low-cost electronics are in high demand [31], and there is a growing at-
tention in printed electronics (PE) for fast-moving goods and wearable
technologiesIoT. Because it promises a low-cost fabrication of possi-
bly disposable electronic components on various substrates [49] [35].
Additionally, due to the additive manufacturing of PE, it offers high
level customization [53]. There are different PE fabrication processes
for PE such as jet-printing technology and replicate printing tech-
niques(e.g., screen, flexography and gravure printing) [53]. These pro-
cesses promise the on-demand fabrication of low-cost, custom circuitry,
anywhere and by anyone. In combination with 3D printing and func-
tional inks, people may be able to create their own smart devices with
desired geometries and material properties in the future [49].

However, PE suffers from several drawbacks. Among them are mainly
high latencies and comparably large footprints [9]. This is especially
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true for classical and digital designs, because Boolean digital logic
designs would lead to substantial area overhead, low performance, and
high power consumption. Consequently the application requirements
cannot be met [43]. Additionally, some factors, such as fabrication
error of PE [58] and run-time degradation through usage (aging) [60],
can aösl influence the performance of printed circuits.

To address these issues, biological-inspired neuromorphic computing
is developed and can be leveraged as a suitable computing paradigm
for PE. Firstly, neuromorphic computing system can directly process
sensory data without converting them to digital signal [58]. Addi-
tionally, the use of neuromorphic computing allows formulating the
circuit design as an optimization problem similar to training artifi-
cial neural networks. Moreover, variations in PE can be considered in
the training to obtain robust designs [58]. For example, [58] proposed
an inverter-based printed neuromophic circuit, consisting of negative
weight circuits, crossbar circuits, and tanh-like nonlinear circuits. It
also proposed a design algorithm for the circuits, which is aware of the
variation of resistances in the crossbar. Similarly, [60] investigated the
aging of crossbar in neuromorphic circuits and proposed an adapted
training objective to mitigate aging effects.

However, these works focus mainly on the resistors of the crossbars
as learnable parameters, which correspond to weights in neural net-
works (NNs), whereas the nonlinear components are always predefined
and fixed. Since the additive manufacturing property of PE offers high
customization level, the design and optimization of nonlinear subcir-
cuits should be also considered. In this work, we investigate the non-
linear subcircuits, namely ptanh and negative weights circuit (Inv)
with intention to make their characteristic learnable, i.e., the non-
linear subcircuits’ parameterization can be learned together with the
values for crossbars resistances (i.e., weights) in training. We refer to
this optimizable nonlinear subcircuits as learnable nonlinear subcir-
cuit. Additionally, we also explore learning flexibility, namely different
training frameworks and learning strategies, to study the performance
of printed neuromorphic circuits (NCs).

1.1 Objective

The main aim of this work is to explore the modelling of the nonlinear
subcircuits of printed NCs, and integrate the obtained model into the
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design process of printed NCs. Additionally, due to the differentiable
model of the nonlinear circuits, the fabrication error can also taken into
account in the the design process. Furthermore, we explore different
training frameworks and learning strategies to study the performance
of printed NC. The contributions of this work can be summarized into
the following points:

• Modelling of nonlinear subcircuits of printed neuromorphic cir-
cuits

To design printed NCs, the model of printed NCs is required.
The printed NCs consists of three hardware primitives, namely
resistor crossbar, ptanh and Inv. The resistor crossbar realizes a
weighted-sum operation (weighted-sum in NN), and the ptanh re-
alizes nonlinear transformation (activation function in NN). Ad-
ditionally, Inv are required to express a notion of negative weights,
as these cannot be implemented directly, more details see subsub-
section 2.1.6.2.

In this work, the process of modelling of ptanh and Inv are intro-
duced. and we obtain NN-based surrogate models for nonlinear
subcircuits. The models for three hardware primitives can be as-
sembled to form a model for a printed NC. This model is referred
to as printed neural network (pNN). In this way, training a pNN
refers to design a printed NC, i.e., the components of nonlinear
subcircuits can be optimized in the design of printed NCs.

• Learning flexibility of printed neuromorphic circuit

In this work, we also explore learning flexibility, namely different
training frameworks and learning strategies, for printed neuro-
morphic circuit. There are three training frameworks, namely
neuron-level, layer-level, net-layer. Neuron-level means that each
neuron has independent surrogate models for ptanh and Inv.
Layer-level means that the same surrogate models for ptanh and
Inv are shared by all neurons in a layer. Net-level means that
the same surrogate models for ptanh and Inv are shared across
all neurons. Learning strategies refers to parameters of crossbar,
ptanh and Inv are updated simultaneously or alternatively in the
training of pNNs.

• Variation-aware training of printed neuromorphic circuit with
nonlinear subcircuits
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Training pNN refers to finding configurations of the adjustable
components of the NC to realize a desired functionality. Hence,
training can be seen as an automatic design solution for circuits
composed of hardware primitives of printed NCs. Variation-aware
training refers to taking the fabrication errors of printed compo-
nents into account during the training for pNNs.

In this work we extend variation-aware training of pNN with the
consideration of nonlinear subcircuits. Then we conduct exper-
iments to prove the feasibility of nonlinear subcircuits. Addi-
tionally, we explore different training frameworks and learning
strategies to study the performance of pNN.

1.2 Outline

The rest of this work is structured in the following chapters:

Chapter 2 provides a background on PE and its challenges. After-
wards, the concept of automatic circuit design is briefly introduced
to provide context of this work. Furthermore, NCs, artificial neural
networks, gradient-based learning and related work are presented as
additional preliminaries to the following chapters.

Chapter 3 introduces the process of modelling of ptanh and Inv, and
the integration of these two models into pNN. Additionally, we extend
variation-aware training of pNN with the consideration of learnable
nonlinear subcircuits.

Chapter 4 introduces the design of experiments for printed NC in
different considerations.

Chapter 5 introduces the experiments, which are conducted The frame-
work of Chapter 4 in order to study the performance of pNN with
integration of the model of ptanh and Inv into pNN.

Chapter 6 draws conclusions for this work and proposes some sugges-
tions for future work.





2. Background & Related Work

This chapter introduces the background and related work as prelim-
inary for this work. Firstly printed electronics and challenges in de-
signing and modelling printed circuitry are briefly introduced. the
followings is a review of automatic circuit design, which is related
to the design strategy of training neuromorphic circuitry. Artificial
neural network (ANN), as a necessity for this work, is presented,
and subsequent introduction are neuromorphic circuit and the con-
cept of neuromorphic computing based on brain-inspired computing
paradigm. Additionally, the basic hardware primitives of NC, which
work like the key components in ANN, as well as gradient-based learn-
ing, which is the most common strategy employed to train ANN, is
explained. Finally, the related work of pNN and learnable activation
function are outlined.

2.1 Background

2.1.1 Printed electronics

Printed electronics is a new and complementary technology to tradi-
tional, silicon-based electronics [40]. Traditional electronics are fab-
ricated using subtractive processes such as lithography and etching,
which require the removal of material. Printing electronics, on the
other hand, are fabricated with additive manufacturing, i.e., it uses
material only where it is needed and provides high level customiza-
tion [53]. Additionally, low-voltage technologies are developed, such
as the printed electrolyte-gated transistors, which make the fabrica-
tion costs of printed electronics decreases [39]. Furthermore, printed
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electronics can be fabricated with nontoxic materials [49]. Due to
its unique properties, printed electronics are able to address a wide
range of novel application domains, where conventional electronics
can’t meet the special requirements [43]. Examples are applications
for soft sensors [36]. These factors, such as stretchable, non-toxic, flex-
ible, and low-cost, have led to printed electronics being acknowledged
as a promising candidate with the rapid development of IoT [11].

There are different process for the fabrication of printed electronics,
and they can be broadly divided into duplicate printing and digital
printing. In duplicate printing, such as screen and gravure printing,
process, a costly mask or masterplate are required. However, it en-
ables a high throughput and volume production [53]. On the contrary,
Digital printing, such as inkjet or aerosol jet printing, doesn’t require
a mask. Through the nozzle, droplets of conductive ink are ejected
onto the substrate to print out the device. This characteristic of dig-
ital printing bound its scalability, while it allows for the fabrication
of each component and circuit on demand without substantial setup
costs [53]. In the future, digital printing would allow the cheap, on-
demand fabrication of customized smart devices for home users, which
could be popular in the fields of IoT [49].

However, there are some challenges to be overcome. For example,
the variations of printed electronics are generally much higher than
those of traditional electronics [11], and the solution to these varia-
tions need to developed for designing functional circuits [46]. Addi-
tionally, because the underlying physics are frequently unknown, only
semi-empirical models for devices have been developed far [39]. It is
possible, that near sensor processing applications frequently arise in
the fields of IoT in the future [23]. Hence, a new and improved comput-
ing paradigms should be explored to process sensor data properly [57],
although classical digital design, which is yet often not very efficient [9]
and requires high device counts [57], is theoretically feasible for such
applications.

These factors have prompted the investigation of bespoke analog de-
signs, which allow for the implementation of near sensor processing
circuits with a reduced size and power footprint without simultane-
ously the decrement of performance [57]. Additionally, the design for
these circuits might take the specialized requirements and character-
istics of the technology, such as the feasibility of certain device types,
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into account, Hence, specialized learning algorithms are needed to be
developed [23]. Finding a circuit configuration through these algo-
rithms can be seen as an automatic design solution.

2.1.2 Automatic circuit design

The goal of automatic circuit design is to finding a design for a cir-
cuit that meets a specific functionality, and the functionality is given
through input-output relationships or a behavioural description, which
refers to finding an appropriate component topology and dimensions [54].
The Topology refers to deciding which components to connect, while
sizing refers to determining the appropriate parameterization of the
components, such as the width of a transistor or the conductance
value of a resistor [33]. Further solutions may involve the derivation
of the circuit layout, including component placement and routing, and
automatic circuit design techniques have been broadly classified into
knowledge-based and optimisation-based approaches [7]. The first to
emerge are knowledge-based techniques that rely on prebuilt design
plans [28], and optimisation-based approaches can be further catego-
rized into equation-based, simulation-based, and learning-based ap-
proaches [51].

Equation-based techniques [41] optimize the circuit and its compo-
nents using a set of equations that describe the circuit and its com-
ponents. As a result, the equations are obtained either analytically
and automatically using symbolic analysis tools [7], or through circuit
simulation fitting [15]. with these equations evaluations are usually
completed more quickly, and numerical solvers, such as interior point
methods [25], are applied to tackle the design problem.

Circuit simulations are used in simulation-based approaches to evalu-
ate the performance of a circuit design. Such approaches often leverage
evolutionary algorithms [7], or more recently Bayesian optimisation,
which are primarily concerned with component sizing [38]. Evolu-
tionary approaches can integrate topology selection with component
scaling. Furthermore, they can meet a variety of different design re-
quirements, and meanwhile have minimal limits [24]. Additionally,
several simulation-based approaches apply predictive models, such as
SVMs [7], to rule out unfavorable solutions in order to limit the num-
ber of costly necessary circuit simulations.

Learning-based approaches are based on reinforcement learning [56].
They are more sample efficient since they require fewer circuit simula-
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tions than methods with evolutionary algorithm. Furthermore, simi-
lar to evolutionary approaches, Reinforcement learning-based methods
can perform topology search and component scaling [23].

In contrast to these approaches, this work employs neuromorphic com-
puting with printed NC, see Section 2.1.4. Instead of traditional digital
or analog components, printed neural networks [58] are represented
by model equations and learned in the same way of ANN, see Sec-
tion 2.1.3. As a result, the technique in this study may be viewed
through classical automatic circuit design as an equation-based opti-
misation strategy, where circuit design is analogous to ANN. After
training, the components, which are similar to the weight in NN, can
be mapped to printed neuromorphic circuit.

2.1.3 Artificial neural networks

Artificial neural networks, namely also ANNs, are computing sys-
tems inspired by the biological neural networks that constitute an-
imal brains. An ANN is based on a collection of connected units
or nodes called artificial neurons, which model the neurons in a bi-
ological brain [2]. It can be understood as directed computation
graphs with weighted edges (see Figure 2.1), which expresses a func-
tion fθ : Rn → Rm parameterized with θ, and θ an integration of
parameters.

As Figure 2.1 shows, the edges are viewed as connections, and the
nodes are called neurons. Furthermore, all neurons can be organized
in so-called layers l , and the inputs shared by all neurons in the
same layer are same. The computation performed by a neuron j is
a weighted sum of all incoming connections i with weights w l

ij plus
an additional bias value b lj . Finally, a nonlinear function ϕ(·) called
activation function is applied, and the neuron model equation can de-
scribed by

Neuronlj(x) = ϕ
(∑

xiw
l
ij + blj

)
where x = [x1 , x2 , . . .]

T is considered to be a vector of inputs xi. Re-
garding to activation functions, Rectifiers [29] are widely used for sim-
plicity and speed in modern NNs [34]. The basic requirement for an
activation function is nonlinearity and differentiability, which are es-
sential for the successful application of gradient-based approaches to
update the parameters of NN [20].
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Figure 2.1: A fully connected artificial (feed-forward) neural network mapping three
inputs to two outputs. In the layer l , for each node j , all incoming connections i are
multiplied with their respective weights w l

ij and summed up with an additional bias
b lj (omitted in the figure). Afterwards, a nonlinear activation function is applied to
the result which forms the neuron activation.

NN are also further implemented and discussed in terms of layers, and
a layer denotes the combined computations of several neurons with
shared inputs and can be described by

Layerl(x) = ϕ
(
xWl + bl

)
The weights of the neurons in the layer are summarized in the columns
of the matrix Wl, the biases are stacked in the vector bl, and the
activation function can be seen as an element-wise operation. Through
composing multiple layers, the expression of a NN can be described
with a set of equations as

fθ(x) =
(
LayerL ◦ · · · ◦ Layerl ◦ · · · ◦ Layer1

)
(x)

Note that the activation function around the most outer layer is op-
tional or could be defined as linear. Additionally, each layer may have
a different activation function. In the following, the parameters of NN
are summarized in the vector θ = {Wl,bl | l = 1, · · · , L} for brevity
and NN is simply denoted as the function fθ(x).

Given a dataset D = {(xn,yn) | xn ∈ X,yn ∈ Y, n = 1, · · · , N}
of input xn and desired outputs yn, a loss function l(x,y,θ) can be
defined. The loss function measures a distance of the output of the



10 2. Background & Related Work

network fθ(xn) for a training instance xn to the desired output yn [20].
Typical choices for the loss function are, e.g., the mean squared error
(MSE) for regression, or the cross-entropy (CE) for classification tasks.
In a classification setting, which is exclusively considered in this work,
yn refer to class labels and are usually mapped to natural numbers,
i.e., Y ∈ N, and X ∈ Rm with m = dim(x). NN is then build to
have as many outputs as the classes. Consequently, each class can be
associated with an index of NN output (vector). Most commonly, the
loss function is used to define the loss L(θ) over all training instances
of D for a given parameterization θ as

L(θ) =
∑

(x,y)∈D

l(x, y,θ)

Analogously, the loss L(θ) can also be defined as the average of the
l(x, y,θ) for all D. The improvement of the loss L(θ) can be measured
either on the training data or on a separate validation dataset.

2.1.4 Neuromophic circuit

Neuromorphic circuit [42] named NC refers to circuit that use brain-
like computing concepts. Recently, most publications on neuromor-
phic computing share one or more of the following characteristics, i.e.,
non-von-Neumann architectures, analog or mixed-signal computation
and spiking behaviour similar to biological neurons [10] [23].

The first characteristic illustrates the contrast between neuromorphic
computing and traditional von-Neuman computing. In the process of
von-Neuman computing, data is read from memory, computations are
performed on the central processing unit, and the result is written
back. In contrast, computations in neuromorphic computing are de-
centralized. In the process of brain-inspired computing, units behave
as neurons, and calculations are performed directly and parallel in
memory. This process eliminates the so-called ”memory-wall” and en-
hances the speed of certain computations while simultaneously reduces
power consumption [6].

The second characteristic is deal with analog computing. Instead of
digitizing the signal and constructing it from fundamental AND and
OR operations, alternative hardware primitive circuits are employed
to implement operations [23]. Most notably, Kirchoff’s law enables
the achievement of a zero-cost addition [42], and weighted sums are
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realized through resistor crossbars [27]. Additionally, analogue input
signals from sensors in analogue computing can be processed directly
without converting them to digital signals, which reduces time and
power consumption [58].

With respect to biological motivation, NCs sometimes attempt to add
a time-dependent element, such as charge buildup over time, and spik-
ing neural networks take this into account [23].

In this work, NCs mimic ANN, and the third characteristic is not
considered meanwhile the other two characteristics are applied. Such
NCs are easier to construct and train, and outperform hardware imple-
mentations of spiking neural networks in almost all aspects, including
lower latency and reducing the consumption of power and area [17].
Hence, neuromorphic circuits based on artificial neural networks are
considered suitable for real-world applications [23].

2.1.5 Gradient-based learning

Gradient descent is an optimisation algorithm for unconstrained op-
timisation problems with differentiable objective functions. In the
training of NN, it is assumed that only the loss function L(θ) should
be minimized.

The intuition behind gradient descent can be derived from the Taylor
expansion of L(θ) at a point θ(t) in a direction d, i.e.,

L(θ(t) + α · d) = L(θ(t)) + α · dT∇θL(θ
(t)) +O(α2)

For α ∈ R+ small enough(α ≈ 0), the O(α2) part can be neglected
and the expression reveals a characterization of a descent direction for
d, i.e., if d is chosen such that dT∇θL(θ

(t)) ≤ 0, then L(θ(t)+α ·d) ≤
L(θ(t)). More specially, the value of the function L(θ) can be decreased
when θ(t) moves in the direction d.

A recommendation for the descent direction is d = −∇θL(θ
(t)), which

leads to the gradient descent update rule for θ with

θ(t+1) ← θ(t) − α(t)∇θL(θ
(t))

The parameter α(t) ∈ R+ refer to as learning rate or step size at
iteration t, and is often simply a small and constant value, or chosen
through one of various heuristics. More recent techniques are based
on gradient descent that use knowledge about earlier gradients in the
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update algorithm, such as Adam [32]. In the training of NN, the
update rule can be stopped either after a fixed number of iterations,
or if the loss L(θ) doesn’t improve any more over a fixed number of
epochs, such as early-stopping [45].

Another important aspect to be considered is the initialization of
weights, i.e., the starting points θ(0). Especially when applying gradient-
based learning to optimize NN, the initially chosen θ(0) (initialization)
can greatly influence the success of learning [18]. Because unsuitable
initializations may lead to unfavourable propagation dynamics, which
hamper the learning process. For instance, suppose the initializations
in a layer mapping nearly all inputs to a saturation region of the ac-
tivation function, which means ∇θL(θ

(t)) ≈ 0 (vanishing gradients),
the loss L(θ) thereby decrease very slowly, and the updates doesn’t
work. To avoid this situation, multiple strategies have been devel-
oped to find good parameter initialization, e.g., the weights are usually
drawn uniformly or normally distributed around zero [20]. Addition-
ally, the choice of activation function can also influence the learning
process [21], as it influences the standard deviation of the layer out-
puts. For the computation of the gradient in NN, backpropagation
algorithm are widely applied because of its efficiency [50], and it is
combined with automatic differentiation techniques [44].

In conclusion, parameterized models can be optimized using gradient-
based learning to behave in a way that is determined by the loss func-
tion. Additionally, proper choices for initialization of weights and ac-
tivation function are the important parts for gradient-based learning.
If printed neuromorphic circuit can map into ANN, we can also use
gradient-based learning to optimize printed neuromorphic circuit.

2.1.6 Hardware primitives for neuromorphic computing

Since the NC in this work draws inspiration from ANN, the function-
ality of the fundamental components of NC should be same as the
core components of ANN, i.e., neurons constructed from an activation
function ϕ(·) and the weighted sum operation

∑
i xiwi + b. Different

implementations of printed NC have been proposed for the activa-
tion function and the weighted sum operation, and the components of
NCs [58] in this work are described in the following.
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2.1.6.1 Weighted-sum crossbars

For the weighted-sum
∑

i xiwi+ b, most works utilize resistance cross-
bars [59], where the input and output signals are represented by volt-
ages (see Figure 2.2).

(a) (b)

Figure 2.2: A weighted sum operation of a neuron realized through a resistor cross-
bar.

Through Kirchhoff’s law and Ohm’s law, the (output) voltage Vout can
be calculated as ∑

i

Ii + Ib + Id = 0⇔

(Vb − Vout) · gb + (Vd − Vout) · gd +
∑
i

(Vi − Vout) · gi = 0⇔

Vout =Vb ·
gb

gb + gd +
∑

j gj︸ ︷︷ ︸
b

+Vd ·
gd

gb + gd +
∑

j gj︸ ︷︷ ︸
Vd=0

+
∑
i

Vi ·
gi

gb + gd +
∑

j gj︸ ︷︷ ︸
xi·wi

(2.1)

For simplicity and brevity of notation, conductance values gi is used in-
stead of resistance values, i.e., gi = R−1i . The analogy to the weighted
sum operation can be readily seen by interpreting xi as Vi, and a weight
wi is a function of all conductances of the crossbar resistors and given
by

wi =
gi

gb + gd +
∑

j gj
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The bias b is realized by the product of Vb and the fraction of gb of
the sum of all conductances of the crossbar. For simplicity of the
resulting circuit, Vb will be chosen as a fixed value (assuming 1V in
the following), and the bias b behaves thereby like a weight wb with
a fixed input Vb = 1V . The values of the parameters wi and b are
bound to the range of [0, 1] and are coupled through the denominator
gb+ gd+

∑
i gi. Since this coupling would reduce the effective number

of free parameters of the neuron by one, it is relaxed via an addi-
tional pseudo-input connection Vd = 0V (ground) with a conductance
gd. Additionally, technological limitations have to be considered, For
example, the range of feasible conductance values gi ∈ [gmin, gmax].

As is described in Section 2.1.5, that proper initialization of the param-
eters can be essential for the success of neural network training [19].
In this work, we take θ related to conductance as learnable parame-
ters (weight in NN), i.e., g = |θ|. Equation 2.1 shows, that the scale
of the resulting network weights wi is already directly related to the
number of inputs through the coupling constraint of the crossbar. We
can therefore simply initialize the surrogate conductances θi, i.e., the
starting points θ

(0)
i , uniformly around zero with a constant deviation.

Additionally, it should be initially set to the highest possible value
θ
(0)
d = gmax in order to allow for maximum decoupling.

2.1.6.2 Negative weights circuit

Since conductances gi can only be nonnegative, the weights wi (see
Equation 2.1) are also restricted to nonnegative values. Hence, a con-
cept of negative weights is necessary to address this problem, and the
idea is to change the corresponding input xi of wi, i.e., the product
of xi with a negative weight is expressed through xi(−wi) = (−xi)wi.
Unfortunately, −xi cannot be directly generated so far and only be
approximately implemented by inverting the signal xi through an ap-
propriate circuit. One such circuit, namely negative weight circuit
(Inv), has been realized in printed electronics [58]. The figure (a) in
Figure 2.3 represents the schematic of a circuit for a negative tanh-like
transformation, and the red line of figure (b) in Figure 2.3 represents
the form of responding tanh-like function. Hence, the characteristic
curve of the circuit can be approximately described by a modified
negative tanh-like function inv(·), i.e.,

Vout = inv(Vin) = −(η1 + η2 · inv((Vin − η3) · η4)) (2.2)
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where Vin and Vout are the input and output voltages of the nega-
tive tanh-like circuit, and the auxiliary parameters η = [η1, η2, η3, η4]
modifies the tanh function in translating and scaling. Obviously, η is
determined by the resistors R and the electrolyte-gated transistor T .
The design parameters of the transistors are its width W and length
L [59]. In this way, the function of Inv is then described by

Vout = invη(p)(Vin)

where p = [R1, R2, R3, R4, R5,W, L] summarizes all design parameters
in this circuit. Hence, the notion of negative weights is expressed
through xi(−wi) = (−xi)wi ≈ inv(xi)wi. However, since inv(xi) only
represents an approximation to−xi, the characteristic of inv(xi) has to
be accounted for when modelling and training printed NCs. In general,
calculating η directly from p is sophisticated, therefore, previous works
only focused on the conductances gi in the crossbar and used a fixed
inv(·). In this work, the behaviour of this nonlinear circuit, i.e., η(p),
will be investigated and parameterized in terms of its parameters p,
which enables its design optimization. We refer to this optimizable
nonlinear circuit as learnable nonlinear circuit.

(a) Schematic (b) Measured Waveforms

Figure 2.3: (a) The schematic of the proposed negative weight circuit. (b) Contains
the simulated and fitted negative tanh-like function of negative weight circuit.

2.1.6.3 Circuit for tanh-like activation function

The activation function is the second essential part of a NN after the
weighted-sum operation. As is explained in Section 2.1.3, that the
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basic requirement for an activation function is nonlinearity and differ-
entiability. Many of the current methods aim to resemble well-known
functions such as ReLU or tanh. The latter was similarly realized in
printed electronics and referred to as ptanh [58]. The left figure in
Figure 2.4 represents the schematic of a circuit for a tanh-like trans-
formation and the red line of right figure in Figure 2.4 represents the
form of corresponding modified tanh-like function. Hence, the char-
acteristic curve of the circuit can be approximately described by a
modified tanh-like function ptanh(·), i.e.,

(a) Schematic (b) Measured Waveforms

Figure 2.4: (a) The schematic of the circuit for realizing tanh-like function. (b)
Contains the simulated and fitted transfer function of the circuit for realizing tanh-
like function.

Vout = ptanh(Vin) = η1 + η2 · tanh((Vin − η3) · η4) (2.3)

where Vin and Vout are the input and output voltages of the tanh-
like circuit, and the parameter η = [η1, η2, η3, η4] modifies the tanh
function in translating and scaling. Obviously, η is also determined by
the resistors R and the electrolyte-gated transistor T , and the design
parameters of the transistors are its width W and length L [59]. In
this way, function of ptanh is then described by

Vout = ptanhη(p)(Vin)

In this work for simplicity, we use the same circuit as Inv with inverted
V DD and V SS to achieve the ptanh. Analogous to the Inv, we will
also bring the components in this circuit to be optimizable. To dis-
tinguish the parameters from Inv, we introduce the superscript ACT
and INV, i.e., pACT and pINV

This activation function exhibits regions where the absolute value of
the strength is increased, i.e., there are x such that |ptanh(x)| > |x|.
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These areas enable signal magnitude to be maintained or even in-
creased while enhancing signal separation. Only the inverter-based
ptanh activation function is taken into consideration in the following
because signal separation is crucial for measuring, differentiating, and
comparing the signal strengths at the multiple outputs of the NCs [23].
In Section 2.1.5, vanishing gradients can occur because of the combi-
nation of initialization and activation function. For example, when
here Vin > 2.0, there is fast no gradients, i.e., the derivative of ptanh
is zero, then gradient-based learning doesn’t work. Hence, the initial-
ization should make the derivative of ptanh is the highest, i.e., here
the output of activation function at the begin of training should be
zero and benefits the training dynamics at the beginning of the train-
ing process. Assuming that the other θ have been initialized already
(see subsubsection 2.1.6.1), this can be achieved by reformulating the
activation function ptanh(·), and the initialization of the surrogate
conductance is thus given by

θb =
ptanh−1(0)

1− ptanh−1(0)
(
∑
i

|θi|+ |θd|)

2.2 Related work

The related work is mainly deal with printed neural network. The high
variations in printed structures are a challenge of designing printed
circuits [11], and these variations have an impact on printed devices’
electrical characteristics, which in turn affects the outputs of circuits.
If ignored, the printed NCs can show substantially worse accuracy than
initially expected. To make NCs more robust to various variations
and faults, various approaches have been proposed. The majority
of research focuses on changing the parameters of printed NCs using
either additive or multiplicative variation or noise [52] [13] [37]. More
recently, timing faults have also been considered [16] [60]. In this
work, a variation-aware training method [23][58] is applied and here
some important contents are introduced.

2.2.1 Loss function

In the training of NN, the loss function guides the learning process and
expresses the favorability of a set of parameters θ. For pNN, there
is a modelling assumption for loss function, i.e., a sufficient signal
separation should be encouraged to be able to clearly measure and
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distinguish different outputs [23]. More specifically, the value of the
correct output of the network fθ(x) should exceed T and all other
outputs should return values below 0. To express these conditions, a
loss function inspired by a multi-class-hinge-loss [14] is constructed by

L(θ) =
∑
(x)∈D

l(x, y,θ) (2.4)

with

l(x, y,θ) = (m+ T − fθ(x))
+ + (m+min

i ̸=y
fθ(x)i)

+

Here, T ∈ R+ denotes an implementation-specific measuring thresh-
old, m ∈ R+ is a user-defined parameter called margin and (·)+ =
max{0, · · · }. Using this loss function, a positive loss is incurred if the
output activation of the neuron associated with the correct class fθ(x)
does not surpass m + T (margin and threshold), or the activation of
any other network output fθ(x)j ̸=y is bigger than −m. The parameter
T should be set to a value above which a signal is measurable and can
be clearly distinguished from 0. The margin m represents a hyperpa-
rameter and can be used to further improve the separation [23]. In
this work, uniformly with [23] [60], we use m = 0.3 and T = 0.1.

2.2.2 Gradient-based learning for feasible conductance

A pNN can be trained using gradient-based learning as described in
Section 2.1.5, and we use backpropagation [50] in this work. The
surrogate conductances θ in Equation 2.4 represent the learnable pa-
rameters. However, the values of the surrogate conductances must be
restricted in order to guarantee that the values of all surrogate con-
ductances are eventually fabricable. Hence, we need to reformulate
the process of gradient-based learning.

The range of feasible conductance values is |g| ∈ [gmin, gmax] ∪ {0}
(0 relates to not printing) [23], i.e., |θ| ∈ [gmin, gmax] ∪ {0}. To deal
with the infeasible region [−gmin, gmin], we employ the method used
in another related work [60]. Firstly, we directly project the param-
eters θ ∈ [−gmin, gmin] to 0 in the forward pass of training, because
zero-valued surrogate conductances don’t need to be printed, which re-
duces the amount of material needed and the amount of time needed
for fabrication. However, this would result in the gradient descent
obtaining a zero gradient for the parameters in the corresponding re-
gions. So we leverage the gradient of infeasible region with an estima-
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tor, namely straight-through estimator [8], to perform backpropaga-
tion. More specifically, in the forward pass of training, the function of
straight-through estimator is described by

θste =


0 |θ| < gmin

sign(θ) · gmax |θ| > gmax

θ otherwise

(2.5)

while in the backward pass of training the gradient of a surrogate
conductance θ (w.r.t. θste) is 1, i.e., ∇θste = 1. Through the use of
the straight-through estimator, backpropagation can be applied for
training and all θ remain feasible throughout the training.

2.2.3 Variation model for printed conductance

A resistor’s conductance state changes due to deviations of the geomet-
rical parameters such as length or area, or variations of the material-
related quantity expressed as the conductivity. If an industrial printing
process with perfect alignment of printed resistors is assumed, geomet-
rical changes can be disregarded, leaving only variations in the ma-
terial’s conductivity caused by variations in the material’s properties
or by variations in the environment’s temperature and humidity [23].
This presumption leads to the formulation of a conductance variation
model with a variation level ϵ by

g = g · (1 + r) with r ∼ p(r) (2.6)

where g denotes the intended conductance and r is a random variable
drawn from the distribution p(r). Since the conductance variation is
assumed independent, the joint variation model for the conductances
is simply the product of the individual distributions.

2.2.4 Variation-aware training

Variation-aware training means, that the fabrication errors are taken
into account by using the derived variation models in the training
of pNN. In the training of classic neural network, the loss function
L(θ) is minimized with respect to the parameters θ. However, given
variations model of conductances, the surrogate conductances θ should
be considered as random variables. Consequently, the loss L(θ) should
be also considered as a random variable, and we should reformulate
the loss function with expected loss w.r.t the random variable θ.
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The distribution is given by the variation models (for a set variation
level εθ) and influence which parameters are sampled. Depending on
which nominal values are aimed for, different samples of θ are ob-
tained, i.e. εθθ. the training objective therefore becomes

minθEεθ [L(θ)] =

∫
L(εθθ, x, y)p(εθ)dεθ (2.7)

Nevertheless, since the objective function in Equation 2.7 (and also its
gradients) will usually not have an analytical solution, approximations
via, e.g., Monte Carlo estimates through samples from εθθ have to be
used. Hence, estimating the objective function for a given εθ through
Monte Carlo samples is straightforward, With these reformulations,
the expected loss can be estimated through

Eεθ [L(θ)] ≈
1

N

N∑
n=1

L(x,y, ε
(n)
θ θ)

with ε
(n)
θ ∼ p(εθ), where N is the number of samples drawn from

their distribution in each epoch. In pNN, surrogate conductances θi
is used as learnable parameter [58] [23], and only the conductances of
resistance crossbars are considered as learnable parameter, meanwhile
the other parts of pNN is predefined and fixed [58].

2.2.5 Learnable activation function

There are many researches and papers, show that learnable activation
function can improve the performance of neural network. For example,
Parametric Rectified Linear Unit (PReLU) [22], which achieve 4.94%
top-5 test error on the ImageNet 2012 classification dataset. SPLASH
units [55], which simultaneously improve the accuracy of deep neural
networks while also improving their robustness to adversarial attacks,
and S-shaped rectified linear activation unit (SReLU) [30]. To our
knowledge, there is currently no design framework for printed neu-
romorphics that take the components of Inv and ptanh as learnable
parameter.





3. Learnable nonlinear circuit

In this section, we extend the learnable parameters in pNNs by the
parameters of nonlinear subcircuit. More specifically, we introduce dif-
ferentiable, NN-based surrogate models for the nonlinear subcircuit,
and integrate them into the pNN model (w.r.t their constraints). Ad-
ditionally, we modify the variation-aware training of pNNs with the
proposed learnable nonlinear circuits.

3.1 Modelling of nonlinear suncircuits

Modelling of nonlinear circuitry means to find the mapping from the
circuit components p to the parameters η in the tanh-like function.
This mapping should be differentiable, because we use back-propagation
in the training of pNN. With the inspiration of NC we decide to choose
NN as surrogate models to approximate this mapping.

As shown in Figure 3.1, to model the nonlinear subcircuit, the design
space of circuit components should be firstly defined. Subsequently,
the database that describes how the circuit behavior is established.
Finally, an NN is trained as the approximator from p to η. Here we
briefly introduce the process of modeling of Inv. For ptanh we use
the same circuit as Inv with inverted VDD and VSS, so the process of
modelling of ptanh is analogous to Inv.

3.1.1 Design space

In accordance with printing technology and circuit design experience,
we empirically limited the design parameters in the range [pmin, pmax].
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Figure 3.1: Pipeline for modeling of nonlinear circuits. The blue boxes indicate the
data preparation, the green boxes denote the process of building database, and the
orange box refers to the model approximation.

Moreover, to keep the characteristic curve likely to a tanh-like func-
tion, two inequality constraints are introduced. All constraints are
reported in Table 3.1. It is to be noted that if we vary the ratio of
the resistance parameters, we have one less degree of freedom to learn
the circuit. However, we do not consider the ratio of the resistances,
as the absolute values of the voltage divider resistances matters most.
The resistance R1 and R3 must be sufficiently smaller than R2 and R4

respectively, otherwise the voltage divider cannot meet the assumption
of a constant ratio due to the connections with surrounding circuit ele-
ments. The factors how much one resistance is greater than the other
resistances for correct learning are found empirically by performing
sweep analysis of all the resistance in the simulation tool which leads
to the desired behaviour [58]. If we don’t change the resistances suffi-
ciently, the functionality will not be substantially affected.

R1(Ω) R2(Ω) R3(kΩ) R4(kΩ) R5(kΩ) W (µm) L(µm)
minimal 10 5 10 8 10 200 10
maximal 500 250 500 400 500 800 70
inequality R1 > R2 R3 > R4 - - -

Table 3.1: Feasible design space of non-linear circuit

3.1.2 Database

The database consists mainly of the design parameters p and the pa-
rameters η in tanh-like functions. To obtain a set of p that are rep-
resentative enough for the whole feasible design space, the sampling
way should be considered.

• Sampling ways
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Sampling is a process in statistical analysis where researchers take
a predetermined number of observations from a larger population.
In this work, there are four sampling ways introduced and dis-
cussed to find the suitable values of circuitry components.

Grid search sampling is based on sampling with equidistant, i.e.
the value is sampled with equal distance in each step. Although
the distribution of sampling value is evenly, in some situation
many sampling values have same information, i.e. the values are
not informative. For example, in figure 3.2a many sampling value
have same x-value or y-value.

(a) (b)

(c)

Figure 3.2: Three sampling way, which sample 400 points from a square of length
1. (a) displays the result of Grid search sampling. Figure (b) displays the result of
Monte Carlo sampling. (c) displays the result of Quasi Monte Carlo sampling.

Monte-Carlo sampling is based on random sampling. The basic
principle of the Monte Carlo method is that the probability of
the event can be estimated with the frequency of numerous tests.
When the sample capacity is large enough, the frequency of the
incident is the probability. Although Monte-Carlo sampling is
a random sampling way and the results can be informative, the
distribution of results is not evenly. There is a example to explain
it(see 3.2b).
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Mixed grid-search & Monte-Carlo Sampling combines the two
aforementioned sampling ways. In this work it means, that a
part of values are sampled by grid search sampling meanwhile
the other part are sampled by Monte-Carlo sampling. Although
this way takes the advantages of two sampling ways into account,
it can’t promise the aforementioned effect, i.e, the distribution of
sampled values is evenly and the sampled values are informative.

In contrast to Monte Carlo method, the Quasi-Monte Carlo method
solves problems using low-discrepancy sequences (also called quasi-
random sequences or sub-random sequences) [3], which takes the
distribution of sampled value into account. More specially, not
only this way bases on random sampling, but also the distribution
of sampled value is evenly. there is a example to explain it(see
3.2c).

In this work, we don’t know the concrete distribution of values
of circuitry components, i.e., we don’t know which values are
useful. Based on this premise, we should sample the different
values as many as possible, and the range of sampling values
should be as wide as possible, i.e., the sampling values should be
informative and have high margin. As the pictures of sampling
ways show(see Figure 3.2), Quasi Monte-Carlo sampling meets
these requirements.

Hence, We employ the Quasi Monte-Carlo sampling to draw 10000
points in the feasible design space, which are denoted by pi, i =
1, ..., 10000. Afterwards, we use with Cadence Virtuoso [4] for SPICE
simulation based on a prior developed printed Process Design Kit
(pPDK) [48] to simulate the input and output voltages (Vin, Vout)i.
it is to be noted, that besides input and output voltages, there is a
bias voltage which is to be considered for proper functioning of the
circuit. In theory, we can use any DC bias voltage but in practical, we
have some restrictions. The bias pin is connected to resistors which
are connected to the EGT. If an EGT is applied to a voltage higher
than 2V (it is found empirically), the electrolyte degrades and the
EGT can be destroyed accidentally. So a relative voltage drop at the
EGT (from Drain to Source or from Gate to Source) exceeding 2V has
to be prevented. However, we use zero bias voltage for simplicity. In
simulation, we perform DC sweep of input from 2V to -2V with linear
step size of 0.01, and we capture the data for the transfer characteris-
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tic of input and output voltages (Vin, Vout)i. To extract ηi, we fit the
simulated data (Vin, Vout)i with Equation 2.2 with minimal Euclidean
distance [5], e.g.,

η∗ = argmin
η
∥invη(Vin)− Vout∥2

The green points in Figure 3.3(a) exemplifies a simulation result with a
certain pi. The right curve in Figure 3.3(b) is the corresponding fitted
tanh-like curve. By now, we obtain numerous design parameters pi

and their corresponding parameters in tanh-like functions ηi. In the
next step, an NN-based approximator to imply the transformation
from pi to ηi will be build.

(a) Simulation (b) Fitting

Figure 3.3: (a) illustrates an example of the simulation of ptanh. (b) Contains the
simulation value from (a) and the corresponding fitting function of ptanh.

3.1.3 NN-based Approximator

Inv contains printed electrolyte-gated field-effect transistors [47], and
the relationship between pi and ηi sophisticated. Based on existing
knowledge, an accurate model cannot be built. Hence, we propose
to use an NN as the approximator to approximate the behavior of
Inv. Neural networks are mathematical approximation model consist
of simple primitive operations(weighted-sum and activation function),
meanwhile has high ability to approximate designed functionalities.
Given input X and corresponding output y and in order to get the
correct y, we need to find a specific expression between X and y, which
can be done by training the NN. In this work, the approximator
provide a differentiable mapping from pi to ηi.

In summary, firstly we define feasible design space and constraints for
the circuit components p of Inv. Subsequently, a set of representa-
tive values of these circuit components are obtained with Monte-Carlo
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sampling, then with these sampling values the simulation of Inv are
carried out to get the input and output voltages, and the input-output
curves are parameterized with tanh-like model. Finally the transfor-
mation from component values to the parameters in the input-output
curves are modelled with a NN-based approximator.

3.2 Constraints of nonlinear subcircuits in pNN

To integrate the NN-based approximator into the pNN and make
the design parameters p optimizable, We introduce new learnable pa-
rameters ρ for the pNNs. To simplify the inequality constraints, we
don’t directly R1 and R3 learnable, but their corresponding difference
dR1 = R1 −R2 and dR3 = R3 −R4. thus,

ρ = [R2, R4, R5,W, L, dR1, dR3]

where the seven parameters have the own feasible range, so we clip
them into the feasible range by a straight through estimator [60], i.e.,

ρ := clip(ρ)

After this, We transform them into the value of component with R1 =
dR1 +R2 and R3 = dR3 +R4, i.e.,

p = [R1, R2, R3, R4, R5,W, L]

Since the element R1 and R3 are inferred, We clip them into the fea-
sible range by a straight through estimator. After forcing all design
parameters in feasible space, physical quantities p is extended to p′

by the ratios k1 = R2/R1, k2 = R3/R4, k3 = W/L(explanations see
Section 4.1), i.e.,

p 7→ p′ = [R1, R2, R3, R4, R5,W, L, k1, k2, k3]

Then p′ is normalized to p̃′ by pmin and pmax. The yield p̃′ will be put
into the NN-based approximator, i.e.,

η̃ = Approximator(p̃′)

Finally, η̃ is used to build the tanh-like function after denormaliza-
tion. There is a picture (Figure 3.4) which shows the flowchart for
the processing of the learnable parameters for an approximator of the
nonlinear subcircuit in the pNN.
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Figure 3.4: Flowchart for the processing of the learnable parameters for an approx-
imator of the nonlinear subcircuit in the pNN.
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3.3 Variation-aware training with nonlinear subcircuits

Variation-aware training refers to taking the fabrication error of printed
components into account during the training of pNNs. In Section 2.2.4
only the surrogate conductance θ of crossbars are considered. How-
ever, in this work the components of nonlinear circuits are also con-
sidered. In nonvariation-aware training, the loss function L depends
on the training data (x,y) and the learnable parameters, i.e., the sur-
rogate conductance θ and the ρ for nonlinear circuits. Therefore, the
loss function can be denoted as L(x,y,θ, ρ). In the following text, I
notate nonvariation-aware training as nominal training.

In variation-aware training of this work, the parameters θ and the ρ
are both modelled as stochastic variables θ ∼ p(θ) and ρ ∼ p(ρ).
For simplicity, I model them as εθθ and ερρ respectively, where each
element in εθ and ερ follows the same uniform distribution U{1 −
ε, 1 + ε}. Here, ε can be chosen to reflect the precision of printing
technology. In this situation, the expected value of loss function in
the nominal training is minimized, i.e.,

L = E{L(x,y, εθθ, ερρ)} =
∫

L(x,y, εθθ, ερρ)p(εθ)p(ερ)dεθdερ

However, this integration has no analytical solution, and approxima-
tions via, e.g., Monte Carlo estimates through samples have to be used,
i.e.,

L ≈ 1

N

N∑
n=1

L(x,y, ε
(n)
θ θ, ε(n)ρ ρ)

where ε
(n)
θ and ε

(n)
ρ are sampled values from their distribution p(εθ)

and p(ερ). In this regard, the objective of variation-aware training
becomes

min
θ,ρ

L(x,y,θ, ρ)

Multiple gradient-based algorithms can be employed to solve this op-
timization problem, such as [32].
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In this chapter, we will introduce the design and implementation from
the following parts.

Section 4.1 introduces how to obtain a high-quality NN-based approx-
imator for the nonlinear subcircuits.

Section 4.2 introduces different training frameworks and learning strate-
gies, and explore which framework and strategies are suitable for the
training of pNN in this work.

Subsequently, We integrate the obtained approximator into pNN, and
apply better training framework and learning strategy in the next
parts.

Section 4.3 introduces the design of finding suitable learning rate for
the NN-based approximator during the training of pNNs.

Section 4.4 introduces the design of pNNs with NN-based approxi-
mator to investigate the effectiveness of NN-based approximator for
pNNs.

Section 4.5 introduces the variation-aware training of pNNs with NN-
based approximator. Variation-aware means, that the fabrication error
of the component in crossbars, ptanh and Inv are taken into account
in the training of pNN.

4.1 NN-based approximator

To obtain a high-quality NN-based approximator, we employ data
preprocessing and hyperparameter tuning for the NN. The hyperpa-
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rameters include learning rate and the number of layers of NN. Empir-
ically, data normalization can significantly improve the performance
of a NN, the range of different inputs in Table 3.1 varies greatly up
to 6 orders of magnitude difference. Additionally, by scrutinizing the
circuit schematic in Figure 2.3, we can find that R1 and R2 function
as a voltage divider, therefore, the ratio between R1 and R2 is an im-
portant feature. This is also same for R3 and R4. In fact, the ratio
between W and L is also crucial [48]. If each parameter is normalized
independently, the ratio information will be weakened. Thus, we ex-
tend the physical quantities manually with three additional features,
i.e.,

p′ = [R1, R2, R3, R4, R5,W, L, k1, k2, k3]

where k1 = R2/R1, k2 = R4/R3, k3 = L/W . We normalize the data
p′ to p̃′ as the input of the NN. Similarly, the target output of the
NN is the normalized η, which is denoted by η̃. The minimal and
maximal values, namely ηmin,ηmax,pmin,pmax, in the normalization
process will be saved for denormalization in the later work.

We randomly split the database into three sets, namely training set(70%),
validation set(20%), and test set(10%), and train the NNs with the
training set and stop the training with the validation set using early-
stopping [45]. Afterwards, we use test set to evaluate all trained
NNs and find the best hyperparameter. We use the mean-square-
error(MSE) as the evaluation metric. Since numerical optimization
problems are frequently affected by the initial points, we utilize dif-
ferent random seeds(s = {0, ..., 9}) to vary the location of the initial
solutions. The hyperparameters are the numbers of layers of NN (the
range in [2, 15]) and the learning rate lr ∈ {0, 0.1, 0.01, 0.001}. The
results is in Section 5.1.

4.2 Learning flexibility

In this part, we explore learning flexibility, namely different training
frameworks and learning strategies, to improve the performance of
pNN, which are not considered in previous works. There are three
training frameworks listed, namely neuron-level, layer-level, net-layer.
Neuron-level means that each neuron has independent NN-based ap-
proximator for ptanh and Inv. Layer-level means that the same NN-
based approximator for ptanh and Inv are shared by all neurons in
a layer. Net-level means that the same NN-based approximator for
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ptanh and Inv are shared across all neurons. Figure 4.1 visualizes
the different training frameworks. Learning strategies refers to pa-
rameters of crossbar, ptanh and Inv are updated simultaneously or
alternatively in the training of pNNs. We conduct the experiments to
decide which training framework and learning strategy are applied in
the final experiments.

Figure 4.1: Visualization of different training frameworks. Red, green and purple
colors denote net-level, layer-level, and neuron-level.

Uniformly with [60], we utilize 13 benchmark classification datasets
(see Table 5.3). regarding the topology, we decide #input − 3 −
#output for pNNs, which is also same as [60]. As preprocessing, We
normalize the input data in [0, 1] to simulate the electrical signal mea-
sured by sensors. The datasets are then randomly split into train-
ing(60%), validation(20%), and test(20%). Additionally, we also use
different learning rate, i.e., lr ∈ {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}.
Since numerical optimization problems are frequently affected by the
initial points, we utilize different random seeds(s = {0, ..., 9}) to vary
the location of the initial solutions. There are totally 4680 setups(13×
3× 2× 6× 10, 13 for datasets, 3 for training frameworks, 2 for learn-
ing strategies, 6 for learning rate, 10 for seeds). The results is in
Section 5.2.
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4.3 Hyperparameter tuning for nonlinear subcircuits

Before we conduct the final experiments, we need to find suitable
learning rate for learnable nonlinear circuit in the training of pNNs.
We integrate the obtained approximator into pNN, and apply better
training framework and learning strategy.

Uniformly with [60], we utilize 13 benchmark classification datasets.
regarding the topology, we decide #input − 3 − #output for pNNs,
which is also same as [60]. As preprocessing, we normalize the input
data in [0, 1] to simulate the electrical signal measured by sensors. The
datasets are then randomly split into training(60%), validation(20%),
and test(20%). For θ and ρ, i.e., weights and activation functions, we
choose αθ = 0.1 for θ and αρ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}
for ρ. we use early-stopping strategy with a patience equaling to 5000
epochs as the stop criterion for the training. Since numerical optimiza-
tion problems are frequently affected by the initial points, we utilize
different random seeds(s = {0, ..., 9}) to vary the location of the initial
solutions. There are totally 780 setups(13× 6× 10, 13 for datasets, 6
for learning rate, 10 for seeds). The results is in Section 5.3.

4.4 Learnable nonlinear subcircuits

Learnable nonlinear circuit means, that parameters of ptanh and Inv
are updated in the training of pNN, i.e., the nonlinear subcircuits can
be optimized. In this part we design the final experiments to investi-
gate the contribution of (learnable) nonlinear subcircuits in pNN.

Uniformly with [60], we utilize 13 benchmark classification datasets.
regarding the topology, we decide #input − 3 − #output for pNNs,
which is also same as [60]. As data preprocessing, we normalize the in-
put data in [0, 1] to simulate the electrical signal measured by sensors.
The datasets are then randomly split into training (60%), validation
(20%), and test (20%) sets.

Since θ and ρ represent different underlying content, i.e., weights
and activation functions. we choose different learning rates for them,
namely αθ = 0.1 for θ and αρ for ρ (αρ = 0 refers to nonlearnable non-
linear circuit). we use early-stopping strategy with a patience equaling
to 5000 epochs as the stop criterion for the training. Since numerical
optimization problems are frequently affected by the initial points, we
utilize different random seeds (s = {0, ..., 9}) to vary the location of
the initial solutions. The results is in Section 5.4.
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4.5 Variation-aware training

Section 3.3 introduces variation-aware Training for pNNs, which take
only the resistances of crossbars as learnable parameters into account.
In this work, the parameters of ptanh and Inv are also considered
as learnable parameters. We apply the same variation model with
uniform distribution for the resistance and geometries of transistor
of ptanh and Inv. In this part, we design the final experiments to
investigate the effectiveness of variation-aware training with learnable
nonlinear subcircuits.

Uniformly with [60], we utilize 13 benchmark classification datasets.
regarding the topology, we decide #input − 3 − #output for pNNs,
which is also same as [60]. As data preprocessing, we normalize the in-
put data in [0, 1] to simulate the electrical signal measured by sensors.
The datasets are then randomly split into training (60%), validation
(20%), and test (20%).

Since θ and ρ represent different underlying content, i.e., weights
and activation functions. we choose different learning rates for them,
namely αθ = 0.1 for θ and αρ for ρ. we use early-stopping strat-
egy with a patience equaling to 5000 epochs as the stop criterion
for the training. Regarding the variation, we select ε ∈ 0%, 5%, 10%
(0% refers to nominal training). For Monte-Carlo approximation, we
select Ntrain = 10. Since numerical optimization problems are fre-
quently affected by the initial points, we utilize different random seeds
(s = {0, ..., 9}) to vary the location of the initial solutions. The results
is in Section 5.5.
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5. Evaluation

For artificial neural networks, training relates to finding a network to
express a certain desired behaviour. The desired behaviour is usually
characterized by a dataset D = {(xn, yn)}Nn=0 of pairs of input-output
relationships. After training, i.e., finding suitable parameters, the net-
work should be able to identify the correct yn for a given input xn.
This can be achieved by minimizing the loss function with respect to
the parameters of the network.

However, in contrast to artificial neural networks, the parameters of
the pNN have to respect the technology constraints. Hence, these con-
straints have to be considered in the training procedure. For example,
the fabrication of the respective NC is only possible if the conductance
gi of the pNN satisfy gi ∈ [gmin, gmax]∪{0} (see Section 2.2.2), and the
initialization of parameters should also be considered (see subsubsec-
tion 2.1.6.1). This chapter presents the results of experiments which
are described in Chapter 4.

Section 5.1 introduces the results of experiments (Section 4.1) for NN-
based approximator. The experiments’ aim are to find high-quality
NN-based approximator for the final experiments.

Section 5.2 introduces the results of experiments (Section 4.2) for
training frameworks and learning strategies. The experiments’ aim
are to find suitable training framework and learning strategy for the
final experiments.

Section 5.3 introduces the results of experiments (Section 4.3) for
learning rate of learnable nonlinear subcircuits in the training of pNNs.
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The experiments’ aim are to find a suitable learning rate for learnable
nonlinear subcircuits.

Section 5.4 introduces the results of experiments (Section 4.4) without
variation. The experiment’s aim was to study the performance of the
pNN with learnable nonlinear subcircuits.

Section 5.5 introduces the results of experiments (Section 4.5) with
variation. The experiments aimed to study the performance of variation-
aware training with learnable nonlinear subcircuits.

5.1 Experiment for NN-based approximator

As stated by Section 4.1, we compare the valid loss of each setup,
i.e., each setup has one seed, own numbers of layers and own learning
rate. It is to be noted that we don’t choose the average loss over seed.
Because with this average loss we can’t find an exact NN as an NN-
based approximator. Figure 5.1 shows the validation loss of NNs with
increased layers.

Figure 5.1: Visualization of the results from the validation loss of NNs with increased
layers (learning rate lr = 0.01). The x-axis and the y-axis refer to the layers of NN
and validation loss (ten seeds).

Through the comparison, the best topology of NN-based approxima-
tor is 15 layers NN(# neurons: 10-9-9-8-8-7-7-6-6-6-5-5-5-4) with the
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learning rate 0.01. Figure 5.2 visualizes the results of three sets from
this NN-based approximator. As the picture shows, there is no over-
fitting in the training according to the loss. Hence, this approximator
provides acceptable prediction, and we apply this NN-based approxi-
mator in the following experiments.

Figure 5.2: Visualization of the results of 100 examples from the NN-based approx-
imator. The x-axis and the y-axis refer to the true value η and η̃. Red, blue and
green colors denote the data from training, validation and test sets.

5.2 Experiment for learning flexibility

According to Section 4.2, we compare the average valid accuracy over
related setups to evaluate the effect of training frameworks and learn-
ing strategies for the training of pNN.

As a result, for learning strategies the mean accuracy of training si-
multaneously over all related setups (77.09%) is better than the result
of training alternatively(75.09%). Regarding the training frameworks,
Table 5.1 shows the average valid accuracy under different training
frameworks and learning rates.

It is to be noted that, despite the higher number of learnable parame-
ters, the pNNs with neuron-level and layer-level do not perform signif-
icantly better (sometimes even worse) than the pNNs with net-level,
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Level

Accuracy Learning rate
0.0005 0.001 0.005 0.01 0.05 0.1

Neuron-level 0.8625 0.8679 0.8468 0.8042 0.5926 0.5314
Layer-level 0.8694 0.8647 0.8589 0.8210 0.6014 0.5059
Net-level 0.8708 0.8656 0.8572 0.8362 0.6977 0.5424

Table 5.1: The average valid accuracy under different training frameworks and learn-
ing rates.

and the training of pNN is time-saving. Hence, we decide to apply
the training frameworks of net-level, and the parameters of crossbar,
ptanh and Inv in a pNN are updated simultaneously in the next ex-
periments.

5.3 Hyperparameter tuning for nonlinear subcircuits

In accordance with Section 4.3, we evaluate different setups with the
valid set, since in the final experiments we will select the best pNNs
for each dataset (w.r.t. the loss) on validation sets. The mean accu-
racy and standard deviation from valid set are calculated and reported
under different datasets and learning rate (see Table 5.2). To demon-
strate the results from different experiment setups more intuitively, we
average the accuracies over all datasets to a scalar for each learning
rate. The average values are also reported in this table.

Datasets
Learning rate

0.0001 0.0005 0.001 0.005 0.01 0.05

Acute Inflammation 1.0± 0.0 1.0± 0.0 0.922± 0.165 1.0± 0.0 1.0± 0.0 1.0± 0.0
Balance Scale 0.944± 0.034 0.965± 0.007 0.96± 0.0 0.976± 0.012 0.969± 0.011 0.967± 0.008
Breast Cancer Wisconsin 0.97± 0.005 0.965± 0.009 0.96± 0.005 0.97± 0.006 0.955± 0.009 0.966± 0.006
Cardiotocography 0.885± 0.05 0.854± 0.025 0.853± 0.041 0.76± 0.033 0.796± 0.047 0.812± 0.053
Energy Efficiency (y1) 0.871± 0.019 0.825± 0.026 0.806± 0.126 0.819± 0.037 0.841± 0.039 0.809± 0.024
Energy Efficiency (y2) 0.924± 0.025 0.866± 0.123 0.842± 0.141 0.803± 0.171 0.866± 0.059 0.844± 0.112
Iris 0.986± 0.044 0.986± 0.029 0.955± 0.028 0.976± 0.028 0.91± 0.065 0.941± 0.028
Mammographic Mass 0.833± 0.019 0.791± 0.079 0.666± 0.13 0.827± 0.008 0.818± 0.013 0.825± 0.009
Pendigits 0.474± 0.1 0.478± 0.043 0.424± 0.049 0.209± 0.13 0.366± 0.077 0.37± 0.083
Seeds 0.956± 0.015 0.92± 0.028 0.915± 0.029 0.932± 0.022 0.895± 0.043 0.898± 0.121
Tic-Tac-Toe Endgame 0.909± 0.058 0.816± 0.02 0.795± 0.01 0.819± 0.057 0.757± 0.041 0.769± 0.036
Vertebral Column (2 cl.) 0.867± 0.033 0.823± 0.034 0.816± 0.034 0.726± 0.093 0.718± 0.046 0.854± 0.071
Vertebral Column (3 cl.) 0.859± 0.016 0.831± 0.013 0.843± 0.011 0.744± 0.239 0.841± 0.008 0.828± 0.061
Average 0.883± 0.027 0.855± 0.034 0.827± 0.059 0.812± 0.074 0.826± 0.025 0.837± 0.04

Table 5.2: The mean and standard deviation from valid sets under different datasets
and learning rates.

As the table shows, the mean accuracy of lr = 0.0001 is better than
others. Hence, we decide to take lr = 0.0001 as learning rate for
learnable nonlinear circuit, which will be used in the next parts.
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5.4 Experiment with learnable nonlinear subcircuits

In this part, we investigate the contribution of (learnable) nonlinear
subcircuits in pNN. According to Section 4.4, we select the best pNNs
over ten seeds (w.r.t the loss) on validation sets, since they will be the
ones to printed. Then we evaluate them with the test datasets.

The accuracy from test sets are calculated and reported under different
datasets (see Table 5.3). As the baseline, we report the performance
of nonlearnable nonlinear circuit. Hence, if the pNN gets worse than
this baseline, there is no benefit to considering the learnable nonlinear
circuit anymore. To demonstrate the results from different experiment
setups more intuitively, we average the accuracies over all datasets to a
scalar for each experiment setup. The average values are also reported
in this table.

Dataset
Nominal training

Nonlearnable nonlinear circuit Learnable nonlinear circuit
Acute Inflammation 1.000 1.000
Balance Scale 0.889 0.937
Breast Cancer Wisconsin 0.95 0.971
Cardiotocography 0.894 0.899
Energy Efficiency (y1) 0.948 0.950
Energy Efficiency (y2) 0.896 0.922
Iris 0.968 0.968
Mammographic Mass 0.813 0.815
Pendigits 0.583 0.620
Seeds 0.884 0.907
Tic-Tac-Toe Endgame 0.740 1.000
Vertebral Column (2 cl.) 0.810 0.825
Vertebral Column (3 cl.) 0.796 0.841
Average 0.860 0.896

Table 5.3: Result of the experiment with nonlinear circuits under nominal training
on 13 benchmark datasets

The table shows, that learnable nonlinear subcircuits provide a contri-
bution to the final improvement in accuracy, and the (mean) accuracy
has been increased by 4.20% compare to nonlearnable nonlinear sub-
circuits.

5.5 Experiment with variation-aware training

In this part, we investigate the effectiveness of variation-aware training
with learnable nonlinear subcircuits. According to Section 4.5, we
select the best pNNs over ten seeds w.r.t the loss on validation sets,
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since they will be the ones to printed. Then we evaluate them with the
test datasets. For Monte-Carlo approximation, we select Ntest = 100.

For pNNs from nominal training, we test them with 5% and 10%
variations, respectively. As for pNNs from variation-aware training,
we only test the ε that is identical as they were trained. All pNNs are
tested with Ntest = 100 Monte-Carlo samples. The mean and standard
deviation from Ntest = 100 samples are calculated and reported in the
tables. To demonstrate the results from different experiment setups
more intuitively, we average the accuracies over all datasets to a scalar
for each experiment setup. The average values are also reported in the
tables.

The mean accuracy and standard deviation from test sets are cal-
culated and reported under different datasets and 5% variation (see
Table 5.4).

Dataset
Learnable nonlinear circuit

Nominal training Variation-aware training
Acute Inflammation 1.0± 0.0 1.0± 0.0
Balance Scale 0.911± 0.02 0.889± 0.004
Breast Cancer Wisconsin 0.933± 0.067 0.957± 0.013
Cardiotocography 0.686± 0.256 0.871± 0.005
Energy Efficiency (y1) 0.789± 0.175 0.939± 0.005
Energy Efficiency (y2) 0.82± 0.108 0.902± 0.007
Iris 0.87± 0.105 0.93± 0.046
Mammographic Mass 0.686± 0.118 0.787± 0.013
Pendigits 0.35± 0.113 0.425± 0.028
Seeds 0.888± 0.051 0.917± 0.029
Tic-Tac-Toe Endgame 0.666± 0.208 0.741± 0.017
Vertebral Column (2 cl.) 0.708± 0.086 0.832± 0.026
Vertebral Column (3 cl.) 0.657± 0.15 0.835± 0.026
Average 0.766± 0.112 0.848± 0.017

Table 5.4: Result of the experiment with variation 5% on 13 benchmark datasets

The mean accuracy and standard deviation from test sets are calcu-
lated and reported under different datasets and 10% variation (see
Table 5.5).

The tables show, that for most of the 13 benchmark, variation-aware
training provide a significant contribution to the final improvement in
accuracy and robustness (standard variation) with learnable nonlinear
subcircuits. Regarding the (mean) accuracy and (mean) robustness,
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Dataset
Learnable nonlinear circuit

Nominal training Variation-aware training
Acute Inflammation 0.989± 0.041 1.0± 0.0
Balance Scale 0.879± 0.072 0.887± 0.009
Breast Cancer Wisconsin 0.788± 0.232 0.93± 0.067
Cardiotocography 0.536± 0.326 0.846± 0.019
Energy Efficiency (y1) 0.648± 0.221 0.915± 0.035
Energy Efficiency (y2) 0.708± 0.199 0.886± 0.016
Iris 0.751± 0.157 0.819± 0.124
Mammographic Mass 0.632± 0.12 0.745± 0.074
Pendigits 0.241± 0.119 0.272± 0.012
Seeds 0.787± 0.159 0.858± 0.037
Tic-Tac-Toe Endgame 0.559± 0.182 0.689± 0.032
Vertebral Column (2 cl.) 0.689± 0.086 0.743± 0.043
Vertebral Column (3 cl.) 0.483± 0.201 0.758± 0.053
Average 0.668± 0.163 0.796± 0.04

Table 5.5: Result of the experiment with variation 10% on 13 benchmark datasets

there are an improvement by 10.7% and 84.8% under 5% variation,
19.2% and 75.5% under 10% variation.
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6. Conclusion & Future Work

This final chapter consists of the conclusion as well as an outlook and
suggestions to future projects in this field.

6.1 Conclusion

In this thesis, we concentrate on the nonlinear subcircuits of printed
neuromophic circuits. By sampling feasible design parameters, sim-
ulating and fitting the characteristic curves, and approximating the
transformation from physical quantities to the characteristic curves,
NN-based models of the nonlinear circuits are generated. After we in-
tegrate this model into the pNNs, the transistor sizes and conductances
could then be considered as learnable parameters similar to the con-
ductances of the crossbar resistors, which can promise the on-demand
fabrication of ptanh and Inv individually, and subsequently enhances
the designability of the printed neuromophic circuits greatly. Addi-
tionally, considering the manufacturing variation of the components
in both crossbars and nonlinear subcircuits, we employ the variation-
aware training for pNNs, which aims to minimize the expected loss
for pNNs with given variation model. Additionally, we apply differ-
ent training frameworks and strategies to explore the performance of
pNNs.

The preliminary experiment proved that, by introducing these ap-
proaches, the accuracy of the pNNs with learnable nonlinear subcir-
cuits improves 4.2%, and the accuracy and robustness of the pNNs
with variation-aware training and learnable nonlinear subcircuits are
significantly improved (around 10% - 20% in accuracy and 75% - 85%
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in robustness, depending on the variations). Hence, we consider this
work as an important supplement towards the realization of printed
neuromorphic computing systems.

6.2 Outlook

The experience we have gathered, over the course of writing this mas-
ter thesis, has given us the following ideas that we would like to share
for future work:

(1) we can explore better training frameworks and strategies(see Sec-
tion 4.2) under variation-aware training. In this work, because of lim-
ited time we use exhaustive method to find better training frameworks
and strategies under variation-unaware training.

(2) There are also further sources of variations, such as input varia-
tions, which could be considered. As these variations cannot be in-
fluenced by the learnable parameters, they simply represent training
with noisy training data and do not fundamentally complicate the
procedure.

(3) Aside from variations, other aspects that degrade the performance
of printed NCs may be anticipated in training. One of these could be
accuracy degradation due to aging of the components. Aging mod-
els of the parameters [60] can be combined with learnable nonlinear
subcircuits to explore the performance of printed NCs.

(4) We can do ablation study to study the influence of the learnable
nonlinear circuit and variation-aware training, i.e., solely change αρ

to 0 and observe the change in results; and (b) study the effect of
variation-aware training, i.e., both nominal training and variation-
aware training on pNNs with learnable nonlinear circuit.
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