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We study the dynamics of a monitored single particle in a one-dimensional Anderson-localized system. The
time evolution is governed by Hamiltonian dynamics for fixed time intervals, interrupted by local, projective
measurements. The competition between disorder-induced localization and measurement-induced jumps leads
to interesting behavior of readout-averaged quantities. We find that measurements at random positions delocalize
the average position, similar to a classical random walk. Along each quantum trajectory, the particle remains
localized, however, with a modified localization length. In contrast to measurement-induced delocalization,
controlled measurements can be used to introduce transport in the system and localize the particle at a chosen
site. In this sense, the measurements provide a controlled environment for the particle.

DOLI: 10.1103/PhysRevB.107.174203

I. INTRODUCTION

The interplay between unitary time evolution and measure-
ments of varying strength and frequency in different systems
is a recently very active subject of research [1-17]. Exam-
ples for emergent dynamical effects are transitions in the
asymptotics of the entanglement entropy in quantum circuit
models [7] and Hamiltonian systems [8—13], as well as statis-
tical properties of measurement outcomes in quantum lattices
[18,19]. Similar observations are made in related systems with
noise or dissipation instead of measurements [20-22].

If disorder is introduced into a one-dimensional non-
interacting chain, the system becomes Anderson-localized
[23-25]. All eigenstates decay exponentially, and transport
from one end of the chain to the other is exponentially sup-
pressed with the size of the system. Because of this special
property of the eigenstates, it is natural to ask about measure-
ments in this context. In particular, one may wonder whether
the introduction of measurements leads to dephasing, destroy-
ing localization and establishing transport. A related issue of
noise-induced dynamics in a localized system was discussed
in Ref. [26]. Recently, the effect of measurements on the
many-body localized phase was studied [27]. Considering a
single-particle model has the benefit of being more tractable
numerically and intuitively comprehensible. At the same time,
we find interesting physics in the simple model.

In the present work, we consider local projective measure-
ments of the site occupation. If such a measurement occurs
within the localization length of a localized particle, the par-
ticle is often detected at the measured site. In these cases,
the center of the wave function shifts to the measured site as
a consequence of the projection and the wave packet starts
spreading around this site. This spreading may be limited by
the localization volume, by the next detection of the parti-
cle, or by some putative “dephasing” mechanism introduced
by the measurement backaction. Repeated measurements are
therefore expected to induce transport in the system. With
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this idea in mind, we follow two general directions. On the
one hand, we choose measurement locations at random and
investigate the consequent dynamics. On the other hand, we
try to manipulate the state of the system in a controlled way
by designing “measurement protocols” that aim for spatial
steering of the particle. The engineering and manipulation
of quantum states through measurements was explored in
Refs. [28-31].

Based on the fact that a projective measurement collapses
the particle’s wave function to the measured site when occu-
pation one is measured (“click outcome”), there are different
intuitive expectations that one may have for the average be-
havior of the particle position. On the one hand, in the limit
of very frequent measurements, the particle is confined to
its initial site as a consequence of the quantum Zeno effect
[32-35]. On the other hand, if the time between two measure-
ments is sufficiently large for the time evolution to spread the
wave packet to its exponential envelope, diffusion would be a
natural expectation for the spread of an ensemble of particle
positions. The later case of large time intervals between two
measurements is investigated in this work.

While diffusion may first come to mind, thinking about a
click-driven “classical random walk” of the localized wave
function, the distribution of localization lengths may spoil
this behavior. In fact, the site with the largest probability to
host a click event is typically the center of the wave function,
where the previous click has occurred. Depending on the prob-
ability of long successions of click events on the same site,
“waiting” of the particle in rare regions of small localization
lengths may potentially lead to subdiffusion. Indeed, it was
shown in Ref. [26] that rare regions can provide bottlenecks
for the dynamics in the related case of a disordered system
with temporal noise, leading to subdiffusion on intermediate,
parametrically large, timescales.

Another issue is related to the impact of “no-click events”
on the wave function. A no-click event, measuring zero
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occupation on the site, produces a “hole” at the measured
position where the particle is then known to not be. The total
probability to find the particle is consequently redistributed
by the normalization among all other sites. A priori, it is not
clear whether this procedure of making a hole and renormal-
izing the wave function favors localization or delocalization.
Localization may be favored because no-click events are more
likely to occur in the tail of the wave function, removing
weight from the tail and shifting it towards the center via
normalization, such that the probability of a subsequent click
event within the localization volume would increase. Delocal-
ization may be favored because holes close to the center have
a larger impact on the wave function, as a larger portion of
the wave function is redistributed—also into the tails. Overall,
the no-click events could then enhance the probability of large
localization lengths such that long jumps due to click events
become more likely.

In this paper, we formalize and investigate these ques-
tions about the fate of localization of the wave function, as
well as transport in the ensemble of particle positions, under
sequences of repeated projective measurements. We follow
individual quantum trajectories (sequences of measurement
outcomes for given sequences of measurement positions in a
fixed disorder realization) to acquire statistics that allows us
to obtain averaged observables.

In the case of random measurement locations, our key
observation is that, while the particle position is randomized
over the entire system, the wave packet typically remains
exponentially localized around its center site. Considering
averages over measurement outcomes, measurement loca-
tions, as well as over disorder realizations, we investigate the
spread of the ensemble of wave-packet centers throughout
the system and modifications to the localization lengths due
to the measurements. Supported by a connection to a clas-
sical random walk, we argue that the particle trajectories of
different random realizations spread diffusively in the long-
time limit. The idea of measurement-induced random walks
was addressed in Ref. [36]. In Ref. [37], the authors used a
mapping to a classical random walk to model the dynamical
properties of quantum systems subject to measurements and
disorder.

Regarding steering, we analyze and compare different
kinds of protocols, either using the detector readout only at
a designated target site, or at every measurement location.
Having access to all readouts allows us to induce ballistic
transport. In this sense, both types of steering, passive [28]
and active [29], are considered. Diffusion due to random mea-
surements allows for polynomial steering times, even if only
reading out the target site.

The paper is structured as follows. We introduce the time
evolution protocol for random measurements in Sec. II. In
Sec. III, we describe the resulting dynamics qualitatively,
motivating the discussion of particle trajectories and corre-
sponding observables. With these observables, we investigate
“delocalization” due to measurements in Sec. IV. We present
the numerical results on steering by nonrandom measure-
ments in Sec. V. Finally, in Sec. VI, the relation to a classical
random walk is formalized, and, based on that, our numerical
results are further discussed. We conclude in Sec. VIIL

II. HAMILTONIAN AND MEASUREMENT PROTOCOL

We consider an Anderson-localized chain with nearest-
neighbor hopping described by the Hamiltonian
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where |i) denotes a state perfectly localized at site i and the
disordered on-site potentials {¢;} are randomly drawn from a
Gaussian distribution with zero mean and standard deviation
W/+/3. Each eigenfunction |E) of this Hamiltonian is charac-
terized by a center site jy and a localization length &, (i|E) o
exp(—|i — jol/&€) [25]. The disorder average of localization
lengths at the band center attributes an average localization
length £ to a given disorder strength W.

We initialize the state at time r = 0 at site iy, |V (t =
0)) = lio), and study the dynamics following a discrete-time-
evolution protocol. The protocol consists of two steps. In the
first step, the state is subject to unitary evolution for a time
interval At with the Hamiltonian (1). In the second step, with
probability p, a single projective measurement of the number
operator is done at a randomly chosen site. Formally,

(@) = M) = Mee 81yt — A1), (2)

where M; encodes the measurement at time ¢ and t~ =¢ —
0 refers to the time just before the time of measurement z.
The operator carries an index ¢ to make explicit the fact that
it depends on time. In a given realization of the dynamics, we
denote the site that is measured at time ¢ as i, and the sequence
of sites ias, ioasy - - -5 inar aS the measurement path, where N
is the total number of measurements. At any time step, the
measurement site is chosen randomly and equiprobably from
the entire chain.

In the event that a measurement does happen, say at i;, there
are two possibilities. One is that the particle gets detected
(the detector “clicks”), in which case the state collapses into a
perfectly localized (on a single site) state

[Ye(2)) = lir). 3
This happens with a probability p; (t) = |, |> given by the
Born rule, where v; = (i;|¥(¢t~)). The second possibility,
with probability 1 — p; (¢), is that the particle does not get
detected (detector does not click—‘‘no-click” event), in which
case the wave function develops a hole at i, such that

1
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For a given measurement path specified by the locations and
times of the projective measurements, we define the sequence
of clicks and no-clicks as the outcome sequence.

The above makes clear the various sources of stochastic-
ity (both spatial and temporal) in the dynamics, namely, the
disorder realization, the measurement path, and the outcome
sequence. For a given disorder realisation and iy, a particu-
lar measurement path i; and a particular outcome sequence
n; € [0, 1] together uniquely define the quantum trajectory

h”nc(t)) =
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FIG. 1. Time evolution of the probability density starting from
the initial state |51) in a system of 100 sites with & ~ 7, At = 10, and
p = 1. We show 100 intermediate times for each step of the protocol.
We observe both no-click and click events: For measurements at N =
84,179, 207, 258 clicks occur at sites 52, 69, 69, 65 and the particle
is thus projected to these positions. The dark spots correspond to the
no-click outcomes.

{t,i;, n}. It is useful to introduce notation for averages over
each of these stochasticity sources as follows:

(1) (---)q = average over disorder realizations;

(2) (---)p = average over measurement paths;

(3) (---)o = average over outcome sequences.

These averages are defined by varying the corresponding
quantities between runs of the protocol.

In the following, we consider the disorder strengths in the
interval W € [2, 10], corresponding to average localization
lengths £ in the range 0.9 < £ < 7. The system size is chosen
to be larger than the localization length for any of the disor-
der strengths L > £ to avoid finite-size effects. Furthermore,
we consider long unitary time evolution intervals At/p > &,
avoiding the quantum Zeno effect—the particle typically has
enough time to spread over its localization length between two
click events.

III. PARTICLE TRAJECTORIES AND OBSERVABLES

To first get a broad-brush view of the phenomenology of
the dynamics, we simulate a particular quantum trajectory and
plot p;(t) = |¥;(¢)|? as a heat map in the (i, t) space, as shown
in Fig. 1. The state is initialized at the center of the chain, and
we consider W = 2, At = 10, and p = 1 as an example. The
following features are of note in the dynamics: (i) the wave
function remains reasonably localized around its localization
center throughout the dynamics; (ii) the profile of the wave
function is quite robust to a series of several no-click events;
(iii) no-click events are much more likely than click events.

Much of these can be argued for based on the fact that
the unitary dynamics between the measurements is governed
by an Anderson-localized Hamiltonian. This mandates that
in between measurements the state can only spread within
a region of size of order of £ on average around the local-
ization center. Note that our wave function does not exactly
correspond to an eigenfunction at finite disorder because we
initialize on/project to individual sites, which share overlap

with O(&) sites. For this reason, the wave function does not
necessarily have one bright center.

If the consequent measurement is near the localization
center, it is highly likely that the detector clicks and the state
gets further localized to a single site. On the other hand, if
the measurement is away from the localization center, then
the probability of a click is exponentially suppressed in the
distance from the localization center. This, in turn, leads to a
concomitantly small perturbation to the wave function in the
most likely case of a no-click event and, hence, to the robust-
ness of the state to individual no-click events. Finally, note
that the probability of a click decreases with increasing system
size. This can be understood as follows: the probability of a
click, if the measurement is at site i, is simply |1/f,-|2. However,
since every site is equiprobable for it to be the measurement
site (with probability pL~!), the probability that we have a
click measurement outcome is pL~! > || = pL~!, which
is extremely small for large L. This also suggests that the
average time interval between two click outcomes is LAt /p.
In combination with the typical smallness of the perturbation
due to one no-click, this implies the robustness of the wave
function to typical no-click sequences.

The upshot of all of the above is that, since the wave
function behaves like a semiclassical wave packet at all times,
its dynamics can be effectively characterized quantitatively by
the moments of the wave packet which we define as

L

rgt) =Y i) (6)

i=1

For instance, r,—((t) denotes the expectation value of the
position of the wave packet (which we refer to as the particle
trajectory), r(t) — "12 (t) denotes the width of the wave packet
for a given realization, and so on.

Before analyzing different averages of r,(¢) in the follow-
ing section and motivating their physical meaning, we explain
some of the features of r;(¢) for a typical trajectory shown in
Fig. 2. For all data therein we consider W =2, p =1, At =
100, and the disorder realization and measurement path are
held fixed. The upper panel shows r;(¢) for different outcome
sequences (represented by different colors). Note that, for
large intervals of time, O(L/p), ri(¢) only fluctuates weakly
around some value—this is a manifestation of the fact that
each of the measurements are no-click events or click events
very close to/at the center site of the wave function. Impor-
tantly, the probability of such “zero-distance” jumps depends
on the disorder strength, which thus also impacts the typical
timescale between two visible jumps. The weak fluctuations
are brought about by the unitary quantum evolution of the
state with the hole punctured by the no-click events. However,
every O(L/p) time instance, on average, the detector clicks far
from the previous center and r;(¢) jumps to the new location.

This can be illustrated further by considering the probabil-
ity distribution of the wave packet’s expected position over all
outcome sequences. We introduce

1
M) = & > 8o ©)
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FIG. 2. Upper panel: Position expectation values r; () as a func-
tion of time in a system of L = 100 sites, with £2)~ 7, p=1,
and Ar = 100, after initialization at iy = 51. Differently colored
lines correspond to different sequences of measurement outcomes.
Disorder realization and measurement path are fixed. Lower panel:
Color-coded probability to have a particle trajectory at a given site af-
ter N measurements, for a particular random measurement sequence
and disorder realization. Same parameters as in the upper panel. The
particle trajectory positions were rounded to the nearest integer to
obtain this plot.

where [r§°)(t)] denotes the wave packet’s expected position
for outcome sequence o—rounded to the nearest integer—and
N, is the number of such sequences considered. The results
for I1;(t) as a heat map in the (i, ) space are shown in the
lower panel of Fig. 2. The key point that should be noted
from the data is that the distribution of IT;(¢) keeps getting
broader in i as time progresses. This can be attributed to the
click events, albeit rare. This is most noticeable at early times
in the figure, where a click event creates a new stream of
finite I1;(¢), which is spatially separated from other regions
of finite I1;(¢). A click event displaces the localization center
of the wave packet. The probability of having a given dis-
tance between the two localization centers naturally decreases
exponentially with the distance; nevertheless, averaged over
outcome sequences, these rare click events can delocalize the
state in an average sense.

To quantify the spread of the wave packets across the
system, we introduce the displacement

Au(t) = [(r2(®), — (n@)2]", ®)
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FIG. 3. Upper panels: Displacement (left) and effective local-
ization length (right) for a system of L = 1600 sites, with fixed
disorder realization (£ &~ 7), At = 100, and fixed random measure-
ment path and initial site iy = 801. Time is measured in units of At;
t = NAt. The data are averaged over 4 x 10 measurement outcome
sequences. The dashed line in the left panel corresponds to a power
law with A(t) o< t%%. Lower panel: Position expectation value in the
same system. In all panels gray (blue) lines represent p = 0 (p = 1).

where r,(¢) is defined in Eq. (6). Here and in what follows u
denotes averages over runs and can be “d”, “o0”, or “p”, or a
combination thereof. For example, A, ; 4 denotes A, averaged
over outcomes, paths, and disorder realizations. The index u
on the left-hand side indicates that the quantity may depend on
the type of the performed averages. The displacement A cap-
tures contributions from the quantum spreading of individual
wave functions due to time evolution, as well as the spreading
of the ensemble of particle trajectories over the system. If
strongly localized trajectories spread equally over the entire
chain, the spread is given by A(t) = L/+/12 for L >> 1.

While A(t) defined in Eq. 8 has major contributions from
the classical spreading of the wave packet due to the stochas-
ticity in measurement paths or outcome sequences, we show
in Sec. III that, quantum mechanically, the wave function re-
mains reasonably localized within each trajectory, see Fig. 3.

To quantify this, we introduce as a second observable the
“effective localization length”

eff _ & 2
E10 = U= nOPho) ©)

where the notation (. . .)y ) denotes the quantum-mechanical
average with the wave function i at time ¢t. The quantity
£°ff was also studied in Ref. [38] to find the distribution of
localization lengths of eigenstates in Anderson Hamiltonians.
We use it as a dynamical definition of the localization length,
sensitive to changes to the shape of the wave packet due to the
interplay between disorder-induced localization and measure-
ments. For point-like densities £ = 0, for a localized wave
function with localization length & it holds that £ = £/4/2
(if L > & and & 2 1). Note that £ (1) = A(t) if no average
over the measurement runs is performed. In general, the differ-
ence between the displacement and the effective localization
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FIG. 4. Upper panel: Displacement (left) and effective localiza-
tion length (right) for a system of L = 1600 sites, with £ ~ 7 and
At = 100. The data are averaged over 4 x 10° runs, with random
measurement outcomes, paths, and disorder realizations and initial
site iy = 801. The black dashed line in the left panel corresponds
to a power law with A(z) o t%%. Blue and gray lines correspond to
p = 1and p = 0, respectively, in all panels. Middle panel: Position
expectation value in the same system with two-sigma finite sample
size error estimation from a bootstrap procedure (shaded region)
(left). Comparison between displacement and effective localization
length during the initial evolution (right). Lower panel: Classical
displacement (10).

length captures the classical spread of particle trajectories
(39]

JAL O - 1ETOr = J30), - ()2
=: AS™(t) € R. (10)

We illustrate this observable in Fig. 4.

During our simulations, we calculate the observables after
the unitary time evolution intervals, immediately before the
measurements. Therefore, one-site states resulting from click
events, as well as holes from no-click events are spread out by
the unitary evolution before the observables are calculated. In
this convention, a click event contributes O(£) to the effective
localization length, just like a quantum trajectory from p = 0
evolution. This is desirable since a click outcome resets the
time evolution of £°, starting again from a one-site state,
possibly on a different site. Calculating £°T immediately after
the measurement, one would trivially get zero after a click
event. Hence, & eff is calculated immediately before the mea-
surement.

IV. MEASUREMENT-INDUCED DELOCALIZATION

In the previous section, we introduced the observables
A(t)—quantifying the spread of the particle trajectories—and
the effective localization length £°ff (1), In the absence of mea-
surements, these observables assume their final values within
O(&) hopping times, as a consequence of the eigenfunction’s
localization in the Anderson chain. In this case, both ob-
servables measure the usual disorder localization length, as
the particle remains confined to its initial position. In the
following, we quantify the impact of uniformly distributed
measurements on the dynamics of the system through these
observables.

A. Different averages

Figure 3 shows the observables A,, jff, and (ry), obtained

from an outcome average over 4 x 10° runs in a system of
L = 1600 sites, with a fixed disorder realization for W =2
corresponding to € ~ 7 and fixed random measurement path
with p = 1 (blue lines) and Ar = 100. The gray, dashed lines
show the same observables in the nonmeasured case p = 0 for
comparison. Throughout Sec. IV, we use periodic boundary
conditions.

Let us first consider the outcome-averaged position ex-
pectation value. At p = 0 this value fluctuates by O(&) sites
around the initial position. These fluctuations are due to
the unitary time evolution, mediating between |ip) and O(£)
neighboring sites through the localized eigenfunctions. In
contrast, at p = 1, the fluctuations are less pronounced, as
they average out over different quantum trajectories. At N ~
L = 1600, however, the average position starts to slowly drift
away from the initial position, reaching i ~ 810 at N &~ 10°.
The drift velocity is very small v &~ 1/10* < 1. At N > 10°
the average drift continues even more slowly, while fluctua-
tions of magnitude O(1) emerge.

Since p = 0 corresponds to a single quantum trajectory,
only the spread of the wave function contributes to the dis-
placement A. Accordingly, £° and A are equal in this case,
and A = £ ~ E_ This is similar for the measured case up to
N <« L/p = 1600, where again both quantities behave sim-
ilarly (not shown) since all quantum trajectories away from
the initial position are very unlikely—few click events occur
up to this point and there are also few impactful no-click
events up to N ~ L/(p&) =~ 250. In consequence, there is
no classical contribution to A, from the displacement of
the wave-packet center and the shape of the wave packet is
largely determined by the unitary time evolution. At N ~ L,
however, sgff at p = 1 is increased compared to nonmeasured
£°ff while A, continues to grow as an approximate power
law oct” with y &~ 0.59 (close to the diffusive exponent
vairr = 1/2).

At N =L for p=1, we expect O(1) click events for
each trajectory, shifting the positions of the wave packets
and no-click events close to the center of the wave packets,
redistributing the weight, which is projected away from the
measured site. Importantly, however, & « L, validating the
picture of an effective localization length that is still defined
in the presence of measurements. Considering the entire time
interval, we notice slow fluctuations in the local power-law
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exponent of A,; £ reaches a local minimum at ¢ ~ 10* and
slightly increases at later times.

If we redraw the measurement path between runs, in ad-
dition to considering random outcome sequences for every
run, the features of the plots are largely similar to the exclu-
sively outcome averaged case (not shown). This is expected
even for N > L, when measurements play an important role.
The outcome-average alone spatially separates the particle
trajectories over time and at this point different trajecto-
ries experience independent measurement locations in their
vicinities anyway. There may be subtle differences at interme-
diate timescales, where many trajectories are still overlapping.
However, we are mostly interested in the long-time behavior.

Finally, we consider the observables A, p, 4 S(if;d, (r1)o.p.ds

and Af,"‘;fi with averages over outcomes, paths, and disorder
at the same parameters W =2, L = 1600, p = 1, Ar = 100
(Fig. 4). In addition, A, q and & eff p,a are plotted together in
the lower right panel to demonstrate the difference between
Ag‘fl‘;g () (10) and A, pq(¢). Averaging over disorder realiza-
tions and paths, we remove all spatial inhomogeneities from
the averaged quantities. As a result, (r{)op 4 1S constant up
to finite sample fluctuations, also in the measured case. The
remaining fluctuations can be explained as follows by the
finite sample average: Agl‘l‘;:i () growing with time means that
the mean position | of a given trajectory can be considered a
random number sampled from an increasingly broad distribu-
tion (see Sec. VI for details). Thus, we estimate the magnitude
of the finite-sample fluctuations as a function of time by calcu-
lating the variance o2 in a large sample of averages of 4 x 10°
random numbers per sample from a Gaussian distribution of
standard deviation A“““B(t) We observe that (r1(#))op.d 1S
always within £20 (blue shaded area) from zero.
The obtained exponent for the spread y = 0.49 is very
close to the diffusive value. Contrary to the previous cases,
o p 4 saturates after O(10) measurements to a value that does
not further change with time. This is because the introduc-
tion of an average over disorder realizations removes, right
from the outset, correlations between different runs of the
simulation. Regarding the classical displacement, we note that
ACl‘l‘jb ~1>0for p=0as well as p=1 (with N < 10?).
This is due to the spread of the initial wave functlon across
O(1) sites around iy = 801. In different disorder realizations,
the center position r; slightly varies, reflecting in a finite
value of ACI"‘SS At later times, the p = 0 curve remains at
this initial value while the p = 1 curve grows according to
the measurement-induced spread of the particle trajectories.
Fitting Agl‘;;:i at N > 5 x 10° to a power law, we obtain again
y = 0.49. Importantly, the classical contribution to A, ¢ de-
termines its behavior in the long time limit since the effective
localization length converges to a system size’s independent
value, while the trajectories spread over the entire system.
The average number of measurements required to displace
the wave-packet center from a specific site is determined by
the localization lengths of the eigenfunctions peaked close
to this site, which are, in turn, determined by the disorder
realization. If disorder is not averaged over, a region of small
localization lengths (“traps”) slows down all trajectories pass-
ing through that region. Such traps can lead to drifting of
(r1)o,p(t) (partially blocking transport on one side of the sys-
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FIG. 5. Displacement (left) and effective localization length
(right) for a system of L = 1600 sites at £ &~ 7 and At = 100 for
different measurement probabilities. Each curve is averaged over
4 x 10° runs, with random measurement outcomes, paths, and dis-
order realizations. The data are plotted over the expected number of
measurements N - p.

tem), as well as to fluctuations in A, ,(¢) (traps slow down
the average spread) and ngg (t) (the trap corresponds to small

& and, thus, small & ¢ffy. On the other hand, regions of large &
can speed up the spread and lead to upwards fluctuations in
“g‘(fg. In the thermodynamic limit L, N — oo, we expect these
effects to vanish, even if the observables are only averaged
over outcomes, as the trajectories become increasingly spa-
tially distributed and thus less correlated. This suggests, that
the diffusive power-law exponent obtained by performing all
averages should also be seen at long times, if only an average
over outcomes is performed. However, our numerics do not
probe the corresponding timescales. Upon disorder averaging,
there is an immediate average over different £ at every point in
time since the observables are averaged with wave functions
from different disorder realizations, leading to y =~ 1/2 for
a sufficiently large sample average. In contrast, if no average
over disorder realizations is performed, it takes much longer to
reach the diffusive limit. Due to traps, deviating exponents are
observed for different disorder realizations on intermediate
timescales.

Based on the approximation that the trajectories spread
diffusively due to click events, we can estimate the number
of measurements required to achieve a sufficient effective
average over different localization lengths without performing
the disorder average. From Fig. 4, we conclude that ~1000
independent sites are sufficient for the effect of traps to be
averaged out. Therefore, having A, , ~ 103€ without disorder
averaging should facilitate a similar average. This corresponds
tot’ ~ 10°, where t = Np/L is the expected number of click
events. We find N ~ 10°L/p, where we set L > 10°£ to avoid
finite-size effects. We find N ~ 10°£ /p with an additional nu-
merical £-dependent factor taking into account zero-distance
jumps. From this estimate, it is clear that we would have to
go to much larger numbers of measurements to find diffusive
behavior without averaging over disorder realizations.

In Fig. 5, we compare A, pq and £ at different mea-
surement probabilities to demonstrate that the measurement
frequency only rescales the time axis and has no impact on
the diffusive exponent, as long as At >> &. For this purpose,
we plot each quantity as a function of the expected number
of measurements N - p on top of each other. Indeed, after an
initial phase corresponding to few measurements, the curves
lie on top of each other.
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FIG. 6. Displacement (left) and effective localization length
(right) in a system with £ &~ 7 and L = 100. The data are averaged
over 4 x 103 runs, with random outcomes, disorder realizations, and
measurement paths (A¢ = 1 here). The vertical dotted lines mark one
expected click event N, = L/p for p = 0.05.

B. Length and timescales

To separate the influence of measurements on the average
quantities from the nonmeasured time evolution, we consider
small measurement probabilities p € {0.025, 0.05} in a sys-
tem with L = 100 and £ ~ 7 (p = 0 is shown for reference),
averaging over O(10°) runs, see Fig. 6. We choose At = 1,
which does not come with the Zeno effect since At/p > E.
To avoid the related intermediate-scale effects, we average
not only over outcomes and measurement paths, but also over
disorder realizations. Because of the small measurement prob-
ability, it takes many steps of the time evolution protocol for
the measurements to show a pronounced effect on the system,
leading to a separation of the initial timescale, where the ob-
servables basically behave as in the absence of measurements
(gray, dashed lines) from the timescale, where the effect of
measurements sets in. Specifically, for these parameters of
the protocol, N = L/(£p) ~ 300 steps are required until one
measurement within the localization radius has taken place on
average, and about N = L/p ~ 2000 steps (black dotted lines)
until one click is encountered. Consequently, a difference be-
tween the p = 0 and p = 1 curves becomes apparent between
these time steps.

As we observed before, ég’fé, 4(t) increases to its saturated

value § < £°(r — 00) < L while A,pa(f) grows accord-
ing to a power law. The spread of the trajectories is limited
by the system size, which shows as a second plateau with
Aopa =L/ /12 a 30—corresponding to uniform spreading
over the system. Assuming diffusive spreading of trajecto-
ries, driven by click events, the corresponding scale can be
estimated as 1'% ~ L/E, where the time is counted in ex-
pected clicks ¢’ = Np/L, giving N ~ L*/(p€)*> ~ 6 x 10°, in
agreement with the actual time of saturation to the second
plateau. Since £+ — 00) is related to no-click events, the
corresponding plateau sets in when there is averaging over
contributions of all relevant numbers of successive no-click
events. As a rough estimate, the probability of a sequence of
exclusively no-click events decreases exponentially with the
length of this sequence. We thus estimate N ~ L/(p&) ~ 300
with the numerical factor depending on the details of the
effective localization length’s origin.

In the upper panel of Fig. 7, we demonstrate the scaling
of A(t — o) (left) and £°(+ — oo0) (right) with the size
of the system for parameters p =1, W =2, At = 100. In

— —~ 13
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FIG. 7. Upper panels: System size scaling of the time converged
values VI2A(t — o0) (left) and +/2&°T(+ — o) (right) at & ~ 7,
p =1, and Ar = 100. Lower panels: Required number of measure-
ments to reach 90% of the plateau value for A, 4 (left) and &7
(right) in the same system.

agreement with uniform spread over the entire system, we find
V12A(r — 00)(L) ~ L (lower left, dashed line). On the con-
trary, £"(r — oo, L) (lower right) saturates to /2£(r —
00, L — 00) ~ 13 for L 2 250. This further validates that
there are still localized wave functions in the presence of
measurements despite the spread of trajectories. In the lower
panels, we plot the number of measurements required to reach
the plateaus in A, p g (left) and eff (right) thus confirming

s 0.p.d .
the cubic (linear) dependence on the system size.

C. Effective localization lengths

The value of £%(r — o0o) depends nontrivially on W, p,
At, and L. In particular, W determines £ and, thus, £ (tr —
o0)(p = 0). We already observed that finite p leads to an
increase in £°(t — 0o) in the limit A¢/p > E. We do not
consider the Zeno limit At/p — 0, where £ (t — 00) — 0;
however this limit implies that £ (+ — oc0)(A?/p) has a max-
imum at finite A¢/p. In the upper right panel of Fig. 7, we see
the effect of L acting as an upper cutoff on £ (t — o0).

Concerning the effect of measurements on the effective
localization length, we know that every click outcome re-
sets £ — £. A no-click outcome outside of the effective
localization length has an exponentially small effect. A no-
click event within the effective localization length can lead
to enhancement of the wave-function tails and, thus, to a
slight growth in £, resulting in £°(t — o0) > &. To fur-
ther illustrate the effect of measurements on the localization
length, we compare in the upper panel of Fig. 8 the distri-
butions of effective localization lengths in the measured and
nonmeasured case for £ &~ 7, At = 100, L = 300. In this fig-
ure, we histogrammize effective localization lengths obtained
from 4 x 103 random disorder realizations time evolved with
our protocol, at p = 0 and p = 1, respectively. For every in-
stance, we calculate £ at 100 successive time steps between
2.9 x 10° and 3 x 10°.

The p = 0 distribution captures the stochasticity of lo-
calization lengths in the nonmeasured system between dif-
ferent disorder realizations, which was investigated for bulk
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FIG. 8. Upper panel: Probability distribution of effective lo-
calization lengths in measured (p = 1) and nonmeasured (p = 0)
system for & ~ 7, L =300, and At = 100. These effective localiza-
tion lengths were obtained in the time window [2900, 3000] (where
the effective localization length is converged for these parameters,
see Fig. 7) and averaged over 4000 runs with different disorder real-
izations and measurement paths. Lower panel: Comparison of jf;d
with forced no-click only outcomes to usual time evolution according
to our protocol, both at parameters L = 1600, W = 2, At = 100. The
inset shows a close-up of the time interval [1, 2 x 10°].

eigenfunctions in Ref. [38]. As expected, the measurements
enhance the distribution towards larger localization lengths.
Importantly however, the overall shape of the distribution
is qualitatively preserved. While the distribution of inverse
localization lengths of eigenstates at fixed energy is known
to be Gaussian [25] this only approximately describes the
distributions shown in Fig. 8 since our wave functions are
given by linear combinations of a few eigenstates, and states
of all energies are taken into account. Prominent features are
a maximum (typical £°) between quick decay towards small
localization lengths and a long tail towards large localiza-
tion lengths. Since, in the fully averaged case the effective
localization length is still larger than in the free system, we
conclude that the increase of average £° in the presence of
measurements has to be connected to no-click events since
clicks reset the contribution of a wave function to the non-
measured value.

To show this more explicitly, consider the lower panel of
Fig. 8: The gray dashed line shows the already established
result for ’;'(if;d at parameters L = 1600, Ar = 100, W =2,
which converges to £°T(r — 00) &~ 9. The blue solid line is
obtained by forcing a no-click outcome (4) at every mea-
sured site. The inset shows a close-up of the time interval
[1,2 x 10%] to demonstrate that the curves coincide in the
initial phase, where the expected number of click events is
low. In the forced no-click case, in contrast to the Born
rule simulation, “E:,fé,d does not show a plateau, but contin-
ues to increase throughout the observed time window. This

demonstrates again the delocalizing effect of no-click events.
Without occasional click events, the wave functions would
eventually completely delocalize and spread across the entire
system. Note that this delocalization process could take much
longer if we simply postselected trajectories with no-clicks
only. In such a trajectory the measurements would typically
take place in the tail of the wave function, where the impact
on the wave function is smaller. Forcing no-click outcomes,
the measurement position is equally distributed along the
chain. This procedure bears a certain similarity to the “forced
measurements” discussed in Ref. [40], but in that paper all
quantum trajectories (also involving click outcomes) were
forced to be equally likely. In our case, we have “forced mea-
surements with no-click postselection.” When the Born rule
is employed, delocalization induced by no-click outcomes is
stopped by a single click event; as a result, the true effective
localization length saturates.

To summarize the above, we found that randomly dis-
tributed measurements lead to delocalization of particle
trajectories. Each projective measurement transfers the parti-
cle to the measured site. Following this process for a sufficient
time span, the probability to find a particle at a particular site is
equal for all sites. At long times, the spread of particle trajec-
tories due to this process is described by a diffusive power law
A(t) oc t'/? independent of the performed averages. During
this process, the wave functions are still well described by an
effective localization length, as opposed to spreading over the
size of the system, despite the delocalizing impact of no-click
events.

V. STEERING WITH MEASUREMENTS

In the preceding section, we concluded that random mea-
surements all over the system lead to delocalization of
quantum trajectories, while almost all individual trajectories
correspond to localized particles. This raises the question,
if the well-defined location of the particle can be efficiently
manipulated, inducing controlled transport in a “localized”
system by performing measurements according to an appro-
priate steering protocol.

The concept of having localized trajectories with the lo-
cation governed by click events can be applied to steer the
particle from its initial site to a specified target, with the
goal of having a click at the target. The average number of
measurements required to achieve this goal defines efficiency
of the measurement protocol, which dictates the measurement
path. In a localized system, where only the target site is mea-
sured, the expected number of measurements would increase
exponentially with the system size. Contrarily, if the wave
function is completely delocalized, the expected number of
measurements would scale linearly with system size, when
measuring again only the target site. In our localized system,
where all sites may be measured, we expect to find efficient
(subexponential), nontrivial measuring strategies since, on the
one hand, quantum trajectories seem to spread over the system
on a nonexponential timescale, while, on the other hand, still
corresponding to localized wave functions.

To investigate spatial steering, we consider the following
setup. In a system of L sites we initialize the particle at
site ip = 1 and specify a target site iieee = L (using open
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FIG. 9. Scaling of adaptive readout protocol (left panel) and
random blind protocol (right panel) as a function of system size for
W =2, At = 100. The dashed lines show a linear fit (left panel) and
the function f(L) ~ L* (right panel) as a guide for the eye.

boundary conditions). Again, we consider large times between
two measurements At > & (W) to avoid confining or repelling
the particle through the Zeno effect. The goal is to design
a measurement protocol that leads to a click outcome at the
target site after as few measurements as possible. The time of
arrival in a quantum lattice was also studied in Refs. [18,41].
Hereby, we differentiate between two types of protocols:
Adaptive protocols, which may use the readouts from every
performed measurement in determining the position of the
successive measurements, and blind protocols, which may
only use the readout at the target site.

The simplest protocol one may think of is to just repeatedly
measure the target site, until the particle is detected. Since this
protocol requires readout only at the target site, it is a blind
protocol with the termination policy employed. Based on the
localized nature of the system, this protocol typically termi-
nates after an exponentially large number of measurements
N € Olexp(L/&)] upon averaging over disorder realizations.
As this protocol scales exponentially with the system size, it
becomes impractical (also for numerical simulations), if L is
of the order of a couple of localization lengths.

At the same time, there is a simple adaptive protocol, which
is optimal in the sense that (N), ¢ o< L. This protocol works as
follows.

(1) Place the detector at i; = ip + 1.

(2) Measure this site until the particle is detected.

(3) Shift the detector by one site towards the target.

(4) Repeat steps 2 to 4.

Given that the expected number of measurements until
the next click is finite, the total number of measurements
scales linearly with the system size. For numerical simula-
tions, we use a slightly improved version of this protocol:
Instead of always measuring at a distance 1 from the site
where the last click event took place, we randomly measure
sites within one localization length of this site in the direction
of the target site. This has two benefits. Local dips of the
wave function as well as effects of preceding no-click events
are avoided. Indeed, the left panel of Fig. 9 demonstrates
that the simulated expected number of measurements for this
protocol (blue dots) scales approximately linearly with the
system size (black fit line). In this sense, ballistic transport
is realized by this protocol.

Evidently, efficient steering is possible, if the readout is
always accessible. In an experiment, however, this may not
be the case. Therefore, we try to find a blind protocol with an

expected number of measurements that behaves polynomially
with the system size. As an attempt to improve the runtime
of the blind protocol, we perform blind measurements along
the chain at random locations until the particle is detected
at the target site. As we already observed, this leads to ap-
proximately diffusive spread of the trajectories and is thus
much more efficient than only measuring the target site. In
simulations, we are able to steer the particle to a target site
at a distance of several hundred localization lengths, see the
right panel of Fig. 9. The simulation values for (N)q o (blue
dots) scale approximately with f(L) ~ L3 (black dashed line),
as expected in a diffusive system.

We thus demonstrated a possibility of efficiently manipu-
lating (dragging) a particle subject to a random potential in
a one-dimensional chain by means of measurement-induced
steering, using both passive (blind) and active (adaptive) pro-
tocols. This type of steering can be further generalized to more
sophisticated scenarios, as compared to simply moving the
particle through the chain from one end to the other. In par-
ticular, one may envision manipulating several particles in the
disordered background (not necessarily in a one-dimensional
system) to exchange their positions and braid them by mea-
surements.

VI. RELATION TO A CLASSICAL RANDOM WALK

In this section, we describe how the dynamics of the spread
of particle trajectories in our measured system is related to
a classical random walk model. The random walk picture is
useful for several reasons. For a wide variety of random walks,
asymptotic properties are known, allowing us to explain the
long-time behavior of our system. The random walk language
offers a simplified description of the dynamical features of
the ensemble of particle trajectories, which are much more
difficult to calculate analytically when taking its full quantum
nature into account. Our main question is about the asymptotic
behavior of the spread A, (¢) [or, equivalently, the asymptotic
behavior of Aﬂass(t)]. In Sec. IV we argued, that the particle
trajectories spread diffusively in the long time limit, and in
the following we use the random walk picture to back up this
statement analytically.

On the level of particle trajectories, the measurement-
induced dynamics bears immediate similarity to a classical
random walk. Consider a set of states {i} with i € [1, L],
representing the sites of the system. Approximating the po-
sition of a trajectory by the nearest site and limiting our
consideration to the discrete set of time points immediately
after a measurement, every particle trajectory is described by
transitions i — j with i, j € [1, L]. A natural approach is to
describe the ensemble of different particle trajectories in terms
of transition matrices M (n) with n € [1, N], acting on a state
o with g;(n) corresponding to the probability to find a particle
on site 7 at time step n, and

L
oin+ 1) =" M; j(n)o;(n). (1)

j=1
We assume that the transitions are mediated by click events,

with the transition probabilities determined by the wave
functions immediately before the measurement. Indeed, we
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showed in Sec. IV that the effect of no-click events can es-
sentially be viewed as a correction to the localization length.
Since, on average, every Lth measurement produces a click,
one time step in Eq. (11) thus implies L steps of the measure-
ment protocol.

At this point, we need to specify properties of the M; ;(n),
incorporating localization into the classical picture through
the statistics of these matrix elements. Localization implies
that the transition probability decreases exponentially with the
distance. Therefore, we keep only transitions over distances
one and zero [distance one representing unit distance O(£)
jumps] and consider a symmetrical nearest-neighbor transi-
tion matrix

p;(n) p;(n)
M; ;(n) = & jpi(n) + 5(i+1),jp]T + 8i-1),j p,z ;0 (12)

pi=1—pi, i, jellL] (13)
where the respective boundary conditions should be taken into
account.

In this model, at every time step n, the particle either
remains on a given site { with waiting probability p;(n), or
jumps with equal probabilities p;(n)/2 to one of the two
adjacent sites. The waiting probabilities are assumed to be
time independent, p;(n) =: p; Vn (we comment later on this
assumption). They are drawn from a probability distribution
P,(p) which is related to localization and determined in the
following.

The key insight is that the asymptotic behavior of the
spread A, (¢) crucially depends on the probability of zero
distance jumps, corresponding to successive click events at the
same site (waiting on that site). If zero distance jumps never
occurred (p; = 0 Vi), the corresponding random walk would
necessarily give diffusion.

If there was, however, a long tail in the distribution
P,(p) towards large waiting probabilities p — 1, rare regions
with atypically large waiting probabilities could slow down
the jump-facilitated transport (inducing many distance zero
jumps), resulting in subdiffusion. The distribution of waiting
probabilities P,(p) is related to the distribution of inverse
localization lengths y = 1/£ since the probability for the par-
ticle to “wait” on a site | jy) is determined by the peak weight
of the wave function (i|jo(z)). We thus make the connection
to the localized wave functions by choosing the distribution
of the waiting probabilities P,(p) according to the distribu-
tion of inverse localization lengths P, (y)—see Fig. 10 for an
illustration.

The probability distribution of the inverse localization
length y := 1/£ of eigenfunctions at a given energy E and
disorder strenth W is given by a Gaussian [25,38]

1(y—nW,E)\*
Pf(y)=N1eXp|:—§(%) i| y € [0, 00),

(14)
with normalization constant A/}, variance o2, and mean .
For the toy model, we approximate the probability to have a
zero distance jump p; to be given by the center-site maximum
of the localized probability density at time ¢ after the click

p—-—_—_—_—_ I - - .-

=[(illjo(t)|* = N(&)exp(=2]i = jo|/E)

Jo

FIG. 10. Illustration of the relation between localization length &
and waiting probability p: After a click event on site j, and succes-
sive time evolution over period ¢ (without further click events), the
density |(i| jo(¢))|* with localization length £ establishes. The waiting
probability p to have another click event at j, (distance zero jump) is
connected to the localization length via the density on the center site

p = 1{oljo)* = N(§).

event
(il jo(t))|* = N'(&) exp(=2li — jol /&), (15)

_exp(2/§)—1
~exp(2/E)+ 1

This approximation provides a mapping between the random
variables p (representing a waiting probability) and y (rep-
resenting an inverse localization length). After a click on an
arbitrary site jy the waiting probability is given by

P = 1{oljo®))I*. (17)

Since the probability on the center site is given by p =

NEMT = N(1/y), we get

()= TP
P = epan + 1

We use this mapping for the change of variables y — p in
Py(). From y € [0, 00), it follows that waiting probabilities
between 1 and O can be found: p € [0, 1). The probability
distribution for the p; at a given energy takes the form

N (&) L> 1. (16)

(18)

log (F2) — 2]
1-/_\/‘1p2exp _[ g(l—p) I'L] , (19)

E
P, (p) = 202

where the energy dependence is encoded in u, o, and Nj—see
Eq. (14).

Since our time evolution protocol includes all eigenstates,
we average over the band to obtain the waiting probability
distribution

Pp(p) = / dEV(E)P; (p), (20)

with the density of states v. The correspondence between
P,(p) and Py(y) is only approximate since the wave func-
tion in our time evolution protocol is actually a superposition
of eigenfunctions. Due to the exponential decay of the
eigenfunctions we can, however, reasonably replace this su-
perposition by the dominantly contributing eigenfunction (this
becomes exact in the limit & — 0).
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Using the random-walk picture, we can now address the
question of diffusion in A, (#) at asymptotic times. As men-
tioned before the asymptotic behavior of the random walk is
governed by the behavior of P, for p — 1 because sites with
a waiting probability of almost 1 provide bottlenecks for the
dynamics in the system. Sites with large waiting probabilities
correspond to wave functions with small localization lengths.
It is known that spatial randomness in a potential can lead to
anomalous transport via long tails towards waiting probability
one [42]. It was shown in Ref. [43], that a random walk
as specified above behaves diffusively, if the distribution of
7(p) :=2/(1 — p) has a finite mean value. For our distribu-
tion, this mean value exists as it can be easily calculated for
distribution (19).

Thus, we find A, (t) o« N'/? oc t'/? in the asymptotic limit.

As explained in Sec. IV, this expectation is independent
of the performed averages (provided that any average is per-
formed) and holds thus true even if only the average over
outcomes is taken. In this, case however, on intermediate
timescales which are not described by the toy model (N > L,
A, ~ &), few sites have a large impact on the dynamics. This
can lead to apparent sub or even superdiffusive dynamics on
these time scales. If a fraction of trajectories reaches a site
with £ > & (¢°ff < &), there is an increase (decrease) with
time in the effective localization length (see Fig. 3 for an
example). In the random-walk picture, this may be understood
as a time-dependent jump distance distribution, which can
raise or lower the local exponent of the power law in A,.

As a last remark on the model, we reconsider the assump-
tion of time independent p;. In contrast, in our system, the
probabilities p; change due to no-click events altering the
shape of the wave function and oscillating contributions of
different eigenfunctions to the wave function. However, since
we found diffusion including “memory effects”, we would
find the same result if the p;(n) were taken to be completely
uncorrelated in time while drawn from the same distribution.

Below, we give a brief summary of the other simplifications
in the toy model.

(1) We approximate all jumps distances greater than zero
by a unit distance. This is justified because the probability to
jump over a distance x decreases exponentially with x/&.

(2) The model is based on the statistics of the eigen-
states of the Anderson Hamiltonian. However, the actual wave
functions result from time evolution of one-site states. The
approximation is justified by the exponential decay of the
eigenstates, which implies that only O(£) sites overlap sig-
nificantly with the original site.

(3) The effect of no-click events on the shape of the wave
function is not explicitly taken into account. However, we
showed that no-click events can be viewed as a correction
to the (effective) localization length. We can incorporate cor-
rections to this simplification on a phenomenological level
through a modification of the localization length.

In summary, by introducing a classical random walk toy
model of the particle trajectory ensemble, we are able to
confirm that the spread of the ensemble behaves diffusively in
the long time limit, thus supporting our findings from Sec. IV.
In the random walk picture, click events facilitate jumps on the
lattice, with the average localization length setting the typical
jump distance. Since the wave functions fall off exponentially

around a center site, jumps of distance zero are most likely.
However, analyzing the distribution of localization lengths,
we showed that such waiting events do not lead to subdiffu-
sion.

With the insights from the random walk, we take another
look at our measurement steering protocols. Turning first to
the blind protocol with random measurements, we can iden-
tify the average runtime of the protocol with the maximum
expected hitting time of a random walk on a connected graph
[44]. This is the number of steps which the random walker
needs to take, on average, to first arrive on the most distant
site and it scales as L2 for a simple chain [44]. Since we need
o L measurements to induce one step, we find (N) L3 as
seen in the numerics. For the adaptive protocol, the asymp-
totic behavior of the waiting probability distribution confirms
a linear relation between the system size and the expected
number of measurements since the moments of the waiting
times on a site do not diverge. This also implies that there is
a Gaussian probability distribution of the steering times for
sufficiently large system sizes, in accordance with the central
limit theorem.

VII. DISCUSSION AND CONCLUSION

We investigated the dynamics of a single particle in a one-
dimensional Anderson-localized system, subject to projective
on-site measurements. Performing measurements at random
locations, we found that particle trajectories, driven by click
events, spread approximately diffusively over the system. At
the same time, the wave functions remain localized along
individual quantum trajectories, but with a modified effective
localization length IV. These findings suggest that efficient
steering protocols can be formulated, moving the particle
through the system to a predefined target site within a number
of measurements, which is polynomial in the system size. We
demonstrated this in Sec. V. The average spread of localized
entities suggests a random walk picture, which we utilized
in Sec. VI to confirm the long time diffusive nature of the
trajectory spread and to explain the relation between steering
time and system size in the steering protocols.

For future studies, it would be interesting to consider a
generalization to a many-body system in a disordered chain,
which is time evolved with a similar projective-measurement
protocol. First, quantum statistics of measured particles is
expected to influence the dynamics of the system. Second,
the effect of measurements may induce correlations between
the particles, which could mimic a genuine interparticle inter-
action that leads to dephasing and many-body delocalization
transition. In this respect, it is interesting to explore various
types of measurement operators, in particular, those involv-
ing simultaneous measurement of two or more particles in
a given state. The key question here can be formulated as
follows: Is it possible to “measure” a many-body localization
transition in a noninteracting disordered system that would
have been Anderson-localized without measurement? Finally,
while the problem of the measurement-induced entanglement
transition was widely discussed for free fermionic chains
(see the Introduction), understanding the effect of Ander-
son localization on such a transition remains a challenging
problem.
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Note added. Recently, we became aware of a related
preprint, Ref. [45], addressing monitored disordered free
fermions at half-filling.
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