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Abstract
1.	 Current approaches to project spatial biodiversity responses to climate change 

mainly focus on the direct effects of climate on species while regarding land use 
and land cover as constant or prescribed by global land-use scenarios. However, 
local land-use decisions are often affected by climate change and biodiversity on 
top of socioeconomic and policy drivers. To realistically understand and predict 
climate impacts on biodiversity, it is, therefore, necessary to integrate both di-
rect and indirect effects (via climate-driven land-use change) of climate change 
on biodiversity.
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1  |  INTRODUC TION

Biodiversity is under multiple threats, with land use being the main 
current stressor (Bühne et al., 2021; IPBES, 2019) and climate change 
effects likely to intensify it in the future (Pereira et al., 2020). One 
challenge to disentangling the effect of these two stressor groups 
is that while climate is a key determinant of biodiversity patterns in 
general (Kreft et al., 2007), it is also a key driver of human land use 
(Yamaura et al., 2011). Consequently, changes in climate can be ex-
pected to exert manifold effects on biodiversity (Arneth et al., 2020; 
Leclère et al., 2020). These effects can feed back into land use and 
climate, following direct and indirect pathways, such as indirect 
pathways from climate change into biodiversity change via climate-
driven changes in land use (Figure 1).

Most biodiversity and ecosystem assessments focus on the di-
rect effects of climate change. Indeed, following the development 
of climate models and climate change projections at the global scale 
(e.g. Hijmans et al., 2005; Karger et al., 2020), there has been a large 
production of modelling approaches with the purpose to explain, 
understand, predict and explore biodiversity change under climate 

change (see Glossary for definitions of mechanistic vs. phenome-
nological approaches). From now on, we refer to these approaches 
as simply biodiversity models. These models have mostly kept land 
cover and other global change drivers constant (e.g. Anderson 
et al., 2013; Sarmento Cabral et al., 2013; Titeux et al., 2016). Even 
when climate change is combined with land cover change, the latter 
is not modelled as a consequence of the former (e.g. Travis, 2003) 
and land–atmosphere feedbacks have been ignored (Wulfmeyer 
et al.,  2018). Therefore, the indirect effects of climate change on 
biodiversity via its effects on land-use change as well as feedbacks 
into land use and climate (Figure 1) remain relatively underexplored.

Considering that land use is arguably the strongest driver of 
biodiversity change to date (IPBES, 2019), understanding and pre-
dicting the potential effects of climate change on land use is of 
high importance (Titeux et al., 2017). This has promoted the de-
velopment of models intended to understand and predict these 
effects across different scales, from local to global (see reviews 
Agarwal et al.,  2002; Briassoulis,  2020; Camacho et al.,  2018; 
Prestele et al.,  2016; Verburg et al.,  2004, 2019). Indeed, com-
putational advances promote the increasing development of 

2.	 In this perspective paper, we outline how biodiversity models could be better 
integrated with regional, climate-driven land-use models. We initially provide a 
short, non-exhaustive review of empirical and modelling approaches to land-use 
and land-cover change (LU) and biodiversity (BD) change at regional scales, which 
forms the base for our perspective about improved integration of LU and BD 
models. We consider a diversity of approaches, with a special emphasis on mech-
anistic models. We also look at current levels of integration and at model proper-
ties, such as scales, inputs and outputs, to further identify integration challenges 
and opportunities.

3.	 We find that LU integration in BD models is more frequent than the other way 
around and has been achieved at different levels: from overlapping predictions to 
simultaneously coupled simulations (i.e. bidirectional effects). Of the integrated 
LU-BD socio-ecological models, some studies included climate change effects on 
LU, but the relative contribution of direct vs. indirect effects of climate change on 
BD remains a key research challenge.

4.	 Important research avenues include concerted efforts in harmonizing spatial and 
temporal resolution, disentangling direct and indirect effects of climate change 
on biodiversity, explicitly accounting for bidirectional feedbacks, and ultimately 
feeding socio-ecological systems back into climate predictions. These avenues 
can be navigated by matching models, plugins for format and resolution conver-
sion, and increasing the land-use forecast horizon with adequate uncertainty. 
Recent developments of coupled models show that such integration is achievable 
and can lead to novel insights into climate–land use–biodiversity relations.

K E Y W O R D S
agent-based models, biodiversity response, environmental change, indirect effects, integrative 
approaches, mechanistic models, socio-ecological systems, species richness
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high-resolution fine-scale studies up to global extents (e.g. Li 
et al., 2017; Heck et al., 2018; Hurtt et al., 2020). Whereas local 
models tend to ignore spatial and higher-level mechanisms, global 
models often adopt an economic focus and may not account for 
the diversity of farmer behaviours, decision-making strategies 
and governance structures across all regions of the globe (Arneth 
et al.,  2014; Rounsevell et al.,  2014). This produces less precise 
estimates of land conversion rates at the regional scales (Bayer 
et al.,  2020). This is however critical for biodiversity change as-
sessments, as most species have rather regional range distribu-
tions. In addition, profit maximization, as it is assumed in many 
of the models, does not capture the complex socio-ecological 
systems that involve organized sustainable behaviour at the local 
and regional scales (Ostrom, 2009; see also Ceddia et al., 2015 for 
the specific consideration of forest rights). Moreover, as people 
who are generally averse to risks and uncertainties (Pichon, 1997), 
landowners may decide to diversify their land-use types to buffer 
against risk and ambiguity such as that arising from climate change 
(Eisele et al.,  2021; Knoke et al.,  2011). Importantly, these deci-
sions may depend on the regional context, including local tradition 
and culture. Challenges for modelling land-use change and their 

impacts on biodiversity at the regional scale thus lie in plausible 
climate-integrated, socio-economic models to simulate regional 
land allocation (de Chazal & Rounsevell, 2009; Newbold, 2018).

Here, we focus on how approaches at regional scales may pro-
vide insights to tackle the above-mentioned challenges. We adopt 
a broad definition of regional scale, from landscape to continen-
tal extents, to contemplate a variety of modelling strategies (see 
Glossary). This retains aspects of local and global studies while 
limiting our scope to a manageable body of literature. Moreover, 
climate change is spatially heterogeneous (Bowler et al.,  2020), 
and species, ecosystems, political jurisdiction, management pol-
icies, and land users' response and decisions tend to be region 
specific (e.g. Verburg et al.,  2010). Additionally, biodiversity as-
sessments and conservation policies are mostly designed to ad-
dress adaptation and mitigation options at regional scales (e.g. 
Carwardine et al., 2019). Therefore, the effects of climate and land 
use on biodiversity at the regional level can provide direct support 
for conservation policies at the level in which these are adminis-
tratively decided.

We argue for an integration of indirect pathways of climate 
change effects on regional biodiversity via connection between 

F I G U R E  1  Biodiversity change (BDC), land-use change (LUC) and climate change (CC) all interact. In addition to the bidirectional 
interactions (solid arrows), there are additive and multiplicative effects of LUC and CC on BDC (dashed arrows). Studies on biodiversity 
response to climate change have largely focused on the direct link of CC to BDC. Biodiversity assessments considering indirect effects of CC 
on BDC via CC-driven LUC are largely lacking. Numbers in the figure denote references: (1) IPBES (2019); (2) Bühne et al. (2021); (3) Seddon 
et al. (2020); (4) Dale et al. (2011); (5) Chausson et al. (2020); (6) Oliver and Morecroft (2014).
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biodiversity and land-use models. To this end, we first provide a 
short, non-exhaustive review of studies related to climate change 
effects on regional land use (Section 3), followed by studies related 
to land use effects on regional biodiversity (Section 4). The review 
provides insights on aspects not yet modelled, while highlighting 
the variety of approaches for potential integration avenues and 

summarizing their properties, purposes and emergent results. 
These approaches inform our perspective (Section 5) on improved 
integration of land-use and biodiversity models by matching the 
resolution and input/output of the various modelling approaches. 
We focus our perspective on mechanistic approaches to gain 
explicit appraisal of causal relationships while describing more 

Glossar y

Biodiversity measures: any component or aspect defining variability of ecological entities (individuals, populations, communities, eco-
systems), which may happen over space, time or within/across entities (i.e. intraspecific variability, population structure). Important 
ways to quantify aspects of biodiversity involve abundances, species richness, composition and functional metrics. At the regional 
scales, components such as alpha (local), beta (internal turnover) and gamma (regional total) diversity are relevant for the different 
aspects.

Biodiversity models: models defining dynamics of any biodiversity component or aspect. These models should normally integrate 
information on spatial and temporal variation of environmental conditions and of model agents (e.g. individuals, populations, species, 
communities), which drive the variability of ecological phenomena (i.e. biodiversity).

Integrative models: models that integrate models from different fields of research, such as land use, biodiversity and/or climate.
Global scales/models: anything at global spatial extents (e.g. global circulation models). Biodiversity models at global scale often use 

coarse resolution and might focus on entire taxonomic groups, ecological guilds or ecoregions, whereas global land-use models often 
distinguish several world regions.

Hybrid models: models that combine different modelling methods, such as agent-based and correlative components.
Land cover: surface characteristics of land (Haines-Young, 2009). This includes natural and human-dominated classes. However, due 

to existence of a variety of human-dominated land-cover classes (i.e. land-use types) and ubiquitous effects of human activities (includ-
ing in natural classes), we assumed this as a socioeconomic categorization.

Land use: economic and social functions of a land area (Haines-Young, 2009). For simplicity, water use is excluded, but land use can 
affect adjacent water bodies.

Land-use type: large category of land use such as agriculture, forestry or urban settlements and infrastructures, characterized by 
certain types of input and output types and intensity of use. Land-use types are human-dominated land-cover classes. We assumed this 
as a socioeconomic categorization.

Local scales/models: focused on single or small mosaics of populations, communities, stakeholders or habitats (i.e. from a few meters 
to several kilometres). Local models include population viability analysis (PVA) models, metapopulation models in fragmented landscapes 
(within several small or single large debate), all of which typically focus on particular habitats or habitat networks or on particular local 
populations or communities.

Management: diversity of practices applied to a land area to achieve the intended purpose of the land, for example, cutting, fertilizing, 
removing deadwood. Management practices can be classified into input and output categories.

Mechanistic models: models in which the state of a variable is explicitly influenced by factors via causal relationships, often dy-
namic ones. Rule-, equation- and agent-based models as well as cellular automata are typical examples with such relationships. They 
can be also interpreted as bottom-up or first principle models.

Model input: any configuration, parameter value, assumption and data read in during model initialization and iteration.
Model output: values generated by the model and saved for analysis.
Phenomenological models: models in which a variable state is correlated to other variables (e.g. species occurrences to environmental 

factors), which can be done by machine-learning, econometric and statistical relationships. They can be also interpreted as top-down models.
Regional scales/models: from landscape to continental spatial extents, as long as the study region includes environmental gradients 

(i.e. tens to thousands km). Regional scales at broad extents can comprise multiple administrative boundaries at which policy decisions 
are made (e.g. from subnational to national level or even supranational unions). This is an intentionally broad definition to capture a va-
riety of modelling approaches, having elements of both local and global scales at various degrees. Approaches that calculate local vari-
ables but can be projected at any scale (e.g. dynamic vegetation models, species distribution models), including regional grid extents, 
are treated as regional. Most biodiversity models already fall within this category and typically focus on metapopulation dynamics 
across environmental gradients, on species ranges, on diversity distributions or on distribution of ecosystem functions.

 25758314, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/pan3.10472 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5People and NatureCABRAL et al.

responses (e.g. land-use intensity, yields, species abundances and 
landscape connectivity) than phenomenological approaches (e.g. 
transition probabilities or suitability estimates). Moreover, mech-
anistic models are more appropriate for simulating dynamic sys-
tems, particularly under non-equilibrium and transient conditions 
such as climate and land-use change (Cabral et al., 2017; Dormann 
et al., 2012; Urban et al., 2016). We further discuss potential chal-
lenges and opportunities of feeding biodiversity effects back into 
land-use and climate models. This would effectively mean inte-
grating all three modelling approaches at the regional scale, with 
three key (bidirectional) links between climate change, land-use 
change and biodiversity change models (Figure 1). This perspec-
tive will ultimately foster the dialogue between the research com-
munities focusing on predictive land-use and biodiversity research 
to promote integrated assessments at regional scales.

2  |  L AND USE AT REGIONAL SC ALE

2.1  |  Climate change effects on land use

Regional land use, such as agriculture, forestry and hunting practices, 
strongly depends on climatic conditions. This is because different 
plants and animals, including both harvested products and potential 
pests, have different environmental preferences for optimal pro-
ductivity. Consequently, environmental change strongly influences 
productivity and stakeholders' decisions on land use, both of which, 
in turn, affect regional economies. For Europe, climate trends since 
1989 have slightly increased continent-wide maize and sugar beet 
yields, but significantly reduced, albeit with large spatial variability, 
wheat and barley yields (Moore & Lobell, 2015). Such climate-driven 
changes in crop yields directly affect regional land-use patterns. 
According to Zaveri et al. (2020), repeated dry anomalies have been 
responsible for around 9% of the rate of cropland expansion in devel-
oping countries over the last two decades. Furthermore, land-use pat-
terns are likely to be affected by extreme weather events, with some 
current evidence indicating that farmers temporarily and dynamically 
shift land use after weather shocks—for example, away from cash and 
permanent crops one year after a drought, and away from horticul-
ture and permanent crop after a flood (He & Chen, 2022; Olesen & 
Bindi, 2002; Ramsey et al., 2021; Salazar-Espinoza et al., 2015).

Climate change will continue to affect agricultural productivity 
and trigger additional shifts in land-use patterns and crop choice 
(Alexander et al., 2018; Pugh et al., 2016). Strong shifts are likely to 
be caused by changes in precipitation patterns (Malek et al., 2018). 
Whereas irrigation may partially mitigate land-use changes, land-use 
change also depends on soil conditions as well as national or regional 
policies, agricultural prices, subsidies, consumer behaviour, and the 
structure of agricultural and silvicultural actors (the so-called shared 
socioeconomic pathways; O'Neill et al.,  2014). As a consequence, 
changes in these systems are driven by human expectations and 
decisions, which are more difficult to project into the future than 
in natural systems due to the large uncertainties involved (Troost & 

Berger, 2015). For example, Ramsey et al. (2021) found that land-use 
responses to changing weather patterns vary across time and space. 
Hence, it is crucial to determine the temporal scale at which these 
systems are satisfactorily predictable in terms of explicitly including 
the increasing uncertainty with increased temporal extents into the 
future (‘forecasting horizon‘).

2.2  |  Modelling regional land-use change

Regional land-use models include a continuum from phenomeno-
logical to mechanistic approaches (Table  1; see also the Glossary). 
Phenomenological models relate a set of explanatory socio-economic 
or biophysical variables to transitions in local land use without specify-
ing causal relationships, for example via statistical or machine-learning 
models (e.g. Verburg & Overmars, 2009). Some of these approaches 
quantify change via model-specific transition matrices of two his-
torical land-use maps (DINAMICA-EGO; Soares-Filho et al., 2013). In 
other phenomenological top-down approaches, global economic or 
integrated assessment models are applied to determine the region-
level demands (Dyna-CLUE; Verburg & Overmars, 2009). Probability 
maps of land-use changes can be generated by several phenomeno-
logical approaches, including neural networks (Dai et al., 2005; Qiang 
& Lam, 2015). By contrast, mechanistic models emulate processes in 
which drivers of change (e.g. sequence of land uses) interact, some-
times based on rules (Rouget et al., 2003; Stéphenne & Lambin, 2001), 
sometimes based on cellular automata (Clarke,  2008; Diogo 
et al., 2015; Liu et al., 2017). Agent-based models appear to be best 
suited to mechanistically integrate the individual stakeholder behav-
iour, policies and biophysical tags (Murray-Rust, Brown, et al., 2014; 
Murray-Rust, Robinson, et al., 2014). Such models can include regional 
trade-offs among socioeconomic input variables as drivers of land-use 
change. However, they usually do not consider the impacts of climate 
change because their future projections are at short to medium term 
(i.e. few years or decades—Table 1), much shorter than the projection 
horizon of climate models. Moreover, climate change projections are 
generally global in nature with substantially less accuracy at regional 
scales, which is why such projections may have little relevance to in-
dividual land-users (e.g. farmers) and their decision-making process 
(Morton et al.,  2015, 2017). Nevertheless, there are a few regional 
land-use models that have projected long-term land-use trajectories 
integrating climate change (e.g. Mendoza-Ponce et al.,  2018, 2019). 
Finally, most of the selected land-use models can deliver outputs that 
can be relevant inputs for biodiversity models, from the most common 
output ‘land cover’ to more refined variables, such as ecosystem ser-
vice indicators, land-use types with intensification level and areas of 
fuelwood extraction (see column ‘Output variables’ in Table 1).

While most land-use models focus on biophysical and socioeconomic 
drivers, some models have integrated inherent connections to biodiver-
sity. For example, vegetation recovery rates or dynamics can influence 
the use of fuelwood (Kiruki et al., 2019; Stéphenne & Lambin, 2001) or 
management strategies (Murray-Rust, Robinson, et al., 2014; Verburg & 
Overmars, 2009). Other models integrated information on ecosystem 
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TA B L E  1  Examples of regional land-use model implementations, with their respective model type, scales, input variables, climate change  
impact, outputs, ecosystem/biodiversity parameters and key findings. For details on literature search, inclusion criteria and classification,  
see Supplementary Material S1. Note that scales often depend on the input, with provided scales reflecting the study system of the  
particular study or suggested by authors.

Model Type Study Region and Scales Input variables What is modified by CC? CC effects on LU BD-related parameter Output variables

CLUE-S (Verburg et al., 2002) MECHA GE: Sibuyan island (456 km2), Klang-Langat 
watershed (4300 km2); GR: 150m;  
TE: 1997–2017, 1989–1999

BP: altitude, slope, aspect, geology, erosion, 
distance to stream and coast;

SE: population density, distances to roads, 
towns and ports

Nothing NA None Land cover (e.g. forest, grassland, 
urban, coconut and palm oil 
plantations, rice fields)

Dyna-CLUE (Verburg & 
Overmars, 2009)

MECHA GE: Europe (27 countries); GR: 1 km2;  
TE: 2000–2030

BP: water deficit, potential
evapotranspiration, temperature, water 

logging occurrence;
SE: regional demand of agricultural products

Land allocation and
natural succession of 

abandoned lands

Dry or cold climates lower succession 
speed

Natural vegetation 
succession

Abandonment areas linked to 
regrowth of natural vegetation, 
agricultural intensification

SALU (Stéphenne & 
Lambin, 2001)

MECHA GE: Burkina Faso (274,200 km2);  
GR: 2.5 × 3.75°; TE: 1960–1997

BP: precipitation;
Socioeconomic: human population, livestock, 

cereals imports

Yearly changes in land-use 
allocation

Rainfall determines the productivity. If 
it decreases, it is compensated by LU 
expansion.

Vegetation recovery 
rates for producing 
fuelwood

Areas of LU expansion and 
intensification, pastures, fallow, 
fuelwood extraction

FLUS (Liu et al., 2017) MECHA GE: China
(9.56 Mi km2); GR: 1 km2; TE: 2010–2050

BP: soil, elevation, temperature, precipitation;
SE: population, GDP and technological 

innovations

Land allocation Annual precipitation and temperature Ecoregions Extent and location of cultivated 
areas, forests, grassland and 
urban covers.

DINAMICA-EGO (Soares-
Filho et al., 2013)

Hybrid GE: Brazilian amazon (619,946 km2);  
GR: 1 km2; TE: 2003–2050

BP: soil, vegetation, slope, elevation, distance 
to rivers;

SE: distance to deforested areas, roads, 
towns, protected areas

Probability of land use None Distribution of mammals Deforestation area linked to reduced 
mammal distribution and carbon 
emissions

SLEUTH (Clarke, 2008) MECHA GE: Mainly focused on US cities; GR: variable;
TE: variable

Biophysical: slope, hillshade;
SE: distance to roads

Nothing NA None Urban expansion and other LU 
related to cities

Aporia (Murray-Rust, 
Robinson, et al., 2014)

MECHA GE: Aurau Valley, Switzerland (99 km2) and 
Lanan Catchment (132 km2); GR: variable 
(farm); TE: 2000–2020

BP: soil, slope, nitrogen;
SE: farmers' decisions (e.g. biofuel harvest, 

food production, traditional practices, 
diversity of rotation)

Output yields Model presentation Directly via vegetation 
modelling; indirectly 
via biophysical and 
policy tags

Land management practices, 
ecosystem service indicators, 
market data with prices

Agent-based Rural Land Use 
New Zealand (Morgan & 
Daigneault, 2015)

MECHA GE: Hurunui and Waiau Catchments in  
New Zealand; GR: variable (farm);  
TE: 2010–2060

BP: soil, available water;
SE: market prizes, productivity current 

enterprise, social network for imitation 
and endorsement

Productivity of the farm Dairy and forest enterprises will increase None LU, farm net revenue, greenhouse 
gas emissions

CPV Analysis Model (Dai 
et al., 2005)

MECHA GE: Pearl river delta (10,851 km2); GR: -; TE: 
1985–2000

BP: climate, soil water, vegetation, relief;
SE: population, technology, policy, profits

Potential change of land-use 
system

Low CC effects, with LU change driven 
rather mostly by SE drivers

Vegetation, species 
diversity

Dominance of land use, patches, 
fragmentation

Qiang and Lam (2015) Hybrid GE: Lower Mississippi Basin (48,000 km2);  
GR: 30 m; TE: 1996–2006

BP: elevation, soil, distance to water;
SE: distance to roads, human settlements and 

pipelines

Nothing NA None LU maps

Diogo et al. (2015) MECHA GE: Netherlands (41,543 km2); GR: 100 m;  
TE: 2007–2012

BP: climate, soil, elevation, hydrology;
SE: population growth, diet preferences, 

access to financing, technology (rotating 
scheme), political factors, land tenure, 
fertilizer use

Biophysical suitability Changes in crop yields and productivity None LU maps pixelwise

Hietel et al. (2004) PHENO GE: Erda, Eibelshausen (11 km2, 9 km2);  
GR: 1:5000; TE: 1945–1998

BP: elevation, slope, aspect, available water, 
soil texture;

SE: land management

Available water capacity Change from arable land to grassland 
with lower water capacity

None Suitability maps

Rouget et al. (2003) Hybrid GE: Cape Region (129,462 km2); GR: 1′;  
TE: 20 years

BP: habitat, alien species, geology, distance 
to coastline, altitude, slope, roughness, 
bioclimatic variables;

SE: urban area, distance to roads

Nothing NA Broad habitat units, alien 
species threat

Land-cover maps with percentage of 
transformed area

CRAFTY-EU (Brown 
et al., 2019)

MECHA GE: EU together with Norway, Switzerland 
and the UK but excluding Croatia; GR: 10′; 
TE: 2016–2086

SE: five capitals (natural, human, social, 
manufactured, and financial), 
timber demand, meat, crops, carbon 
sequestration, landscape diversity, 
recreation

Natural capital Differences in land systems mainly driven 
by SE scenarios, but also by CC

Ecosystem services, 
including landscape 
diversity and 
recreation value

Transitions between eight land-use 
types

Abbreviations: BD, biodiversity; BP, biophysical; CC, climate change; GE, geographical extent; GR, geographical resolution; LU, land use; MECHA,  
mechanistic (hybrid models entail major phenomenological and mechanistic submodels); NA, not applicable; PHENO, phenomenological; SE,  
socioeconomic; TE, temporal extent.

(Continues)
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    |  7People and NatureCABRAL et al.

TA B L E  1  Examples of regional land-use model implementations, with their respective model type, scales, input variables, climate change  
impact, outputs, ecosystem/biodiversity parameters and key findings. For details on literature search, inclusion criteria and classification,  
see Supplementary Material S1. Note that scales often depend on the input, with provided scales reflecting the study system of the  
particular study or suggested by authors.

Model Type Study Region and Scales Input variables What is modified by CC? CC effects on LU BD-related parameter Output variables

CLUE-S (Verburg et al., 2002) MECHA GE: Sibuyan island (456 km2), Klang-Langat 
watershed (4300 km2); GR: 150m;  
TE: 1997–2017, 1989–1999

BP: altitude, slope, aspect, geology, erosion, 
distance to stream and coast;

SE: population density, distances to roads, 
towns and ports

Nothing NA None Land cover (e.g. forest, grassland, 
urban, coconut and palm oil 
plantations, rice fields)

Dyna-CLUE (Verburg & 
Overmars, 2009)

MECHA GE: Europe (27 countries); GR: 1 km2;  
TE: 2000–2030

BP: water deficit, potential
evapotranspiration, temperature, water 

logging occurrence;
SE: regional demand of agricultural products

Land allocation and
natural succession of 

abandoned lands

Dry or cold climates lower succession 
speed

Natural vegetation 
succession

Abandonment areas linked to 
regrowth of natural vegetation, 
agricultural intensification

SALU (Stéphenne & 
Lambin, 2001)

MECHA GE: Burkina Faso (274,200 km2);  
GR: 2.5 × 3.75°; TE: 1960–1997

BP: precipitation;
Socioeconomic: human population, livestock, 

cereals imports

Yearly changes in land-use 
allocation

Rainfall determines the productivity. If 
it decreases, it is compensated by LU 
expansion.

Vegetation recovery 
rates for producing 
fuelwood

Areas of LU expansion and 
intensification, pastures, fallow, 
fuelwood extraction

FLUS (Liu et al., 2017) MECHA GE: China
(9.56 Mi km2); GR: 1 km2; TE: 2010–2050

BP: soil, elevation, temperature, precipitation;
SE: population, GDP and technological 

innovations

Land allocation Annual precipitation and temperature Ecoregions Extent and location of cultivated 
areas, forests, grassland and 
urban covers.

DINAMICA-EGO (Soares-
Filho et al., 2013)

Hybrid GE: Brazilian amazon (619,946 km2);  
GR: 1 km2; TE: 2003–2050

BP: soil, vegetation, slope, elevation, distance 
to rivers;

SE: distance to deforested areas, roads, 
towns, protected areas

Probability of land use None Distribution of mammals Deforestation area linked to reduced 
mammal distribution and carbon 
emissions

SLEUTH (Clarke, 2008) MECHA GE: Mainly focused on US cities; GR: variable;
TE: variable

Biophysical: slope, hillshade;
SE: distance to roads

Nothing NA None Urban expansion and other LU 
related to cities

Aporia (Murray-Rust, 
Robinson, et al., 2014)

MECHA GE: Aurau Valley, Switzerland (99 km2) and 
Lanan Catchment (132 km2); GR: variable 
(farm); TE: 2000–2020

BP: soil, slope, nitrogen;
SE: farmers' decisions (e.g. biofuel harvest, 

food production, traditional practices, 
diversity of rotation)

Output yields Model presentation Directly via vegetation 
modelling; indirectly 
via biophysical and 
policy tags

Land management practices, 
ecosystem service indicators, 
market data with prices

Agent-based Rural Land Use 
New Zealand (Morgan & 
Daigneault, 2015)

MECHA GE: Hurunui and Waiau Catchments in  
New Zealand; GR: variable (farm);  
TE: 2010–2060

BP: soil, available water;
SE: market prizes, productivity current 

enterprise, social network for imitation 
and endorsement

Productivity of the farm Dairy and forest enterprises will increase None LU, farm net revenue, greenhouse 
gas emissions

CPV Analysis Model (Dai 
et al., 2005)

MECHA GE: Pearl river delta (10,851 km2); GR: -; TE: 
1985–2000

BP: climate, soil water, vegetation, relief;
SE: population, technology, policy, profits

Potential change of land-use 
system

Low CC effects, with LU change driven 
rather mostly by SE drivers

Vegetation, species 
diversity

Dominance of land use, patches, 
fragmentation

Qiang and Lam (2015) Hybrid GE: Lower Mississippi Basin (48,000 km2);  
GR: 30 m; TE: 1996–2006

BP: elevation, soil, distance to water;
SE: distance to roads, human settlements and 

pipelines

Nothing NA None LU maps

Diogo et al. (2015) MECHA GE: Netherlands (41,543 km2); GR: 100 m;  
TE: 2007–2012

BP: climate, soil, elevation, hydrology;
SE: population growth, diet preferences, 

access to financing, technology (rotating 
scheme), political factors, land tenure, 
fertilizer use

Biophysical suitability Changes in crop yields and productivity None LU maps pixelwise

Hietel et al. (2004) PHENO GE: Erda, Eibelshausen (11 km2, 9 km2);  
GR: 1:5000; TE: 1945–1998

BP: elevation, slope, aspect, available water, 
soil texture;

SE: land management

Available water capacity Change from arable land to grassland 
with lower water capacity

None Suitability maps

Rouget et al. (2003) Hybrid GE: Cape Region (129,462 km2); GR: 1′;  
TE: 20 years

BP: habitat, alien species, geology, distance 
to coastline, altitude, slope, roughness, 
bioclimatic variables;

SE: urban area, distance to roads

Nothing NA Broad habitat units, alien 
species threat

Land-cover maps with percentage of 
transformed area

CRAFTY-EU (Brown 
et al., 2019)

MECHA GE: EU together with Norway, Switzerland 
and the UK but excluding Croatia; GR: 10′; 
TE: 2016–2086

SE: five capitals (natural, human, social, 
manufactured, and financial), 
timber demand, meat, crops, carbon 
sequestration, landscape diversity, 
recreation

Natural capital Differences in land systems mainly driven 
by SE scenarios, but also by CC

Ecosystem services, 
including landscape 
diversity and 
recreation value

Transitions between eight land-use 
types

Abbreviations: BD, biodiversity; BP, biophysical; CC, climate change; GE, geographical extent; GR, geographical resolution; LU, land use; MECHA,  
mechanistic (hybrid models entail major phenomenological and mechanistic submodels); NA, not applicable; PHENO, phenomenological; SE,  
socioeconomic; TE, temporal extent.
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8  |   People and Nature CABRAL et al.

TA B L E  2  Examples of biodiversity models which include land use effects, with their respective type, scales, studied taxa, input variables,  
climate change impact, outputs, ecosystem/biodiversity parameters and key findings. Studies that simultaneously apply LU and BD models  
are defined as integrative in the LU approach column. Approaches that combine both phenomenological and mechanistic components are  
termed hybrid. For details on literature search, inclusion criteria and classification, see Supplementary Material S1.

Model LU approach
Type of the 
BD model Study region, scales and group Input variables Output variables What is modified by LU? Key findings (LU effects on BD) CC

CC -driven 
LUC

Travis (2003) No explicit model, 
includes random 
habitat loss

MECHA, HP GE: 2000 grid cells; GR: grid cell;  
TE: 100s gen; TR: gen; SG: virtual 
species

BP: habitat type
SE: habitat or not

Occupied grid cells, spatial 
occupancy

Habitat loss Thresholds to species survival, with 
combined CC and LU showing the 
lowest thresholds

Yes No

LoLiPop (Sarmento 
Cabral 
et al., 2013)

No explicit model, reads 
in habitat loss data

Hybrid, RWS GE: Cape Region (11,000 km2);  
GR: 1′ × 1′; TE: 10s gen; TR: gen; 
SG: plants

BP: climate, soil, suitability
SE: habitat loss percentage

Spatial abundance distribution, 
range size, range filling

Carrying capacity Lower abundances, ranges less 
affected; highlands act as refugia 
under CC due to lower LU

Yes No

RangeShifter 
(Bocedi 
et al., 2014)

No explicit model, reads 
in habitat loss data

MECHA, 
RWS

GE and GR: variable; TE 100s yr;  
TR: yr; SG: virtual species

BP: suitability;
SE: habitat loss

Spatial abundance distribution, 
range size, connectivity

Habitat suitability, movement cost LU affects abundances and 
connectivity between populations

Yes No

FATE-HD 
(Boulangeat, 
Damien, 
et al., 2014)

No explicit model, 
reads-in pasture and 
field data

Hybrid, RWS GE: Écrins NP (2700 km2); GR: 100 m; 
GE: 925 km2; TE: 100s yr;

SG: plants

BP: topo-climatic, climatic, soil 
variables

SE: grazing and mowing intensity

Spatial abundance distribution,
population structure

Habitat area, dispersal, disturbance 
(affects abundances, seed bank, 
fecundity)

LU effects can at least partly be 
simulated through disturbance

Yes No

Kallimanis 
et al. (2005)

No explicit model, 
includes a 
disturbance 
submodel

MECHA, HP GE: 65,536 grid cells: GR: grid cell;
TE: 1000s gen; TR: gen; SG: virtual 

species

BP: habitat
SE: disturbance

Spatial distribution of occupied 
grid cells

Grid cell occupancy Extinction risk higher for low dispersal 
rates, LU pattern affects population 
survival

No No

LandSHIFT (Koch 
et al., 2019)

Integrative: MECHA MECHA, 
RWS

GE: Africa (30.3 Mi km2); GR: 5′ × 5′; 
TE: 2000–2030; TR: yr; SG: 
vertebrates

BP: forest and vegetation types, 
abundance per LU type;

SE: LU suitability, human population

BD Intactness Index (BII) Population
density, livestock density, crop 

production, calories availability, BII

Land sparing more effective for 
conserving biodiversity (and food 
production)

No No

Dullinger 
et al. (2020)

Integrative: MECHA PHENO, RWS GE: Part of Austrian Alps (1426 km2); 
GR: 0.01 km2; TE: current-2050; 
TR: yr; SG: plants

BP: temperature variables, 
precipitation, solar radiation, 
bedrock;

SE: SSP, land cover, LU class

Habitat suitability, species 
richness and LU distribution, 
LU intensification and 
homogeneity

Habitat suitability LU and CC both affect species habitat 
suitability, LU stronger

Yes Yes

Zamora-Gutierrez 
et al. (2018)

No explicit model, reads 
in LU data

PHENO, RWS GE: Mexico (2 Mi km2); GR: 5′ × 5′; 
TE: current-2050; TR: yr; SG: bats

BP: temperature and precipitation 
variables;

SE: LU type, SSP

Habitat suitability Habitat suitability Vulnerability of bats to CC and LUC 
very high

Yes No

Bastos et al. (2018) Integrative: MECHA MECHA, 
RWS

GE: Northeast Portugal (6.6 km2); GR: 
1 km2; TE: current-2050; TR: yr; 
SG: raptors

BP: dispersal corridors, temperature, 
landscape structure, fire, moisture, 
NPP; SE: land cover

Minimum local biomass index Landscape composition, local surface 
temperature

Disruptive effect of LUC in the 
spatiotemporal distribution of top 
predators' biomass

No No

Bonnot et al. (2013) No explicit model, 
applies human 
impacts scenarios

Hybrid, RWS GE: Central Hardwoods Bird 
Conservation (0.3 Mi km2); GR: 
30 × 30 m; TE: 100 yr; TR: yr; SG: 
birds

BP: grid cell and landscape attributes, 
habitat suitability, relative 
productivity;

SE: restoration, communication tower 
strategies

Spatial abundance distribution Carrying capacity, reproductive rate, 
survival rate

Habitat conservation must be 
strategic; source-sink dynamics 
and dispersal influence population 
survival

No No

Faleiro et al. (2013) Integrative: PHENO Hybrid, RWS GE: Cerrado biome (2 Mi km2); GR: 
0.1°; TE: 2002–2050; TR: yr; SG: 
non-flying mammals

BP: climate;
SE: environmental and infrastructure 

variables, past LU

Potential species distribution, 
spatial conservation plan

Spatial conservation prioritization LUC altered spatial location of 
conservation priority sites

Yes No

Struebig et al. (2015) No explicit model, reads 
in land-cover data

PHENO, RWS GE: Borneo (743,330 km2); GR: 1 
km2; TE: 1950–2080; TR: 30 yr; 
SG: orang-utans

BP: climate, ruggedness, distance to 
water and to karst forest;

SE: land cover, human population, 
deforestation rate

Habitat suitability Habitat suitability Most suitable habitat expected to 
decline due to CC, even if LUC 
towards more protection

Yes No

Santos et al. (2016) Integrative: MECHA PHENO, HS GE: Northwest Iberia (100 km2); GR: 
1 ha; TE: 1960–2040; TR: 40 yr; 
SG: birds

BP: patch attributes;
SE: soil use, management strategy, 

human population trend

Cover type, bird diversity 
(richness, specialist richness, 
total abundance)

Cover type LU intensification homogenizes 
landscape, with negative impacts 
on biodiversity.

No No

Redhead 
et al. (2020)

Integrative: MECHA PHENO, RWS GE: Great Britain (209,331 km2); 
GR: 1 km2; TE and TR: 1 yr; SG: 
beneficial insects

BP: climate, suitability factors; SE: 
land cover, protected area, priority, 
cropping intensity

Probability of occurrence; 
potential richness, potential 
functional diversity

Habitat suitability Arable land expansion lowers species 
richness, even under less intensive 
cropping

No No
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    |  9People and NatureCABRAL et al.

TA B L E  2  Examples of biodiversity models which include land use effects, with their respective type, scales, studied taxa, input variables,  
climate change impact, outputs, ecosystem/biodiversity parameters and key findings. Studies that simultaneously apply LU and BD models  
are defined as integrative in the LU approach column. Approaches that combine both phenomenological and mechanistic components are  
termed hybrid. For details on literature search, inclusion criteria and classification, see Supplementary Material S1.

Model LU approach
Type of the 
BD model Study region, scales and group Input variables Output variables What is modified by LU? Key findings (LU effects on BD) CC

CC -driven 
LUC

Travis (2003) No explicit model, 
includes random 
habitat loss

MECHA, HP GE: 2000 grid cells; GR: grid cell;  
TE: 100s gen; TR: gen; SG: virtual 
species

BP: habitat type
SE: habitat or not

Occupied grid cells, spatial 
occupancy

Habitat loss Thresholds to species survival, with 
combined CC and LU showing the 
lowest thresholds

Yes No

LoLiPop (Sarmento 
Cabral 
et al., 2013)

No explicit model, reads 
in habitat loss data

Hybrid, RWS GE: Cape Region (11,000 km2);  
GR: 1′ × 1′; TE: 10s gen; TR: gen; 
SG: plants

BP: climate, soil, suitability
SE: habitat loss percentage

Spatial abundance distribution, 
range size, range filling

Carrying capacity Lower abundances, ranges less 
affected; highlands act as refugia 
under CC due to lower LU

Yes No

RangeShifter 
(Bocedi 
et al., 2014)

No explicit model, reads 
in habitat loss data

MECHA, 
RWS

GE and GR: variable; TE 100s yr;  
TR: yr; SG: virtual species

BP: suitability;
SE: habitat loss

Spatial abundance distribution, 
range size, connectivity

Habitat suitability, movement cost LU affects abundances and 
connectivity between populations

Yes No

FATE-HD 
(Boulangeat, 
Damien, 
et al., 2014)

No explicit model, 
reads-in pasture and 
field data

Hybrid, RWS GE: Écrins NP (2700 km2); GR: 100 m; 
GE: 925 km2; TE: 100s yr;

SG: plants

BP: topo-climatic, climatic, soil 
variables

SE: grazing and mowing intensity

Spatial abundance distribution,
population structure

Habitat area, dispersal, disturbance 
(affects abundances, seed bank, 
fecundity)

LU effects can at least partly be 
simulated through disturbance

Yes No

Kallimanis 
et al. (2005)

No explicit model, 
includes a 
disturbance 
submodel

MECHA, HP GE: 65,536 grid cells: GR: grid cell;
TE: 1000s gen; TR: gen; SG: virtual 

species

BP: habitat
SE: disturbance

Spatial distribution of occupied 
grid cells

Grid cell occupancy Extinction risk higher for low dispersal 
rates, LU pattern affects population 
survival

No No

LandSHIFT (Koch 
et al., 2019)

Integrative: MECHA MECHA, 
RWS

GE: Africa (30.3 Mi km2); GR: 5′ × 5′; 
TE: 2000–2030; TR: yr; SG: 
vertebrates

BP: forest and vegetation types, 
abundance per LU type;

SE: LU suitability, human population

BD Intactness Index (BII) Population
density, livestock density, crop 

production, calories availability, BII

Land sparing more effective for 
conserving biodiversity (and food 
production)

No No

Dullinger 
et al. (2020)

Integrative: MECHA PHENO, RWS GE: Part of Austrian Alps (1426 km2); 
GR: 0.01 km2; TE: current-2050; 
TR: yr; SG: plants

BP: temperature variables, 
precipitation, solar radiation, 
bedrock;

SE: SSP, land cover, LU class

Habitat suitability, species 
richness and LU distribution, 
LU intensification and 
homogeneity

Habitat suitability LU and CC both affect species habitat 
suitability, LU stronger

Yes Yes

Zamora-Gutierrez 
et al. (2018)

No explicit model, reads 
in LU data

PHENO, RWS GE: Mexico (2 Mi km2); GR: 5′ × 5′; 
TE: current-2050; TR: yr; SG: bats

BP: temperature and precipitation 
variables;

SE: LU type, SSP

Habitat suitability Habitat suitability Vulnerability of bats to CC and LUC 
very high

Yes No

Bastos et al. (2018) Integrative: MECHA MECHA, 
RWS

GE: Northeast Portugal (6.6 km2); GR: 
1 km2; TE: current-2050; TR: yr; 
SG: raptors

BP: dispersal corridors, temperature, 
landscape structure, fire, moisture, 
NPP; SE: land cover

Minimum local biomass index Landscape composition, local surface 
temperature

Disruptive effect of LUC in the 
spatiotemporal distribution of top 
predators' biomass

No No

Bonnot et al. (2013) No explicit model, 
applies human 
impacts scenarios

Hybrid, RWS GE: Central Hardwoods Bird 
Conservation (0.3 Mi km2); GR: 
30 × 30 m; TE: 100 yr; TR: yr; SG: 
birds

BP: grid cell and landscape attributes, 
habitat suitability, relative 
productivity;

SE: restoration, communication tower 
strategies

Spatial abundance distribution Carrying capacity, reproductive rate, 
survival rate

Habitat conservation must be 
strategic; source-sink dynamics 
and dispersal influence population 
survival

No No

Faleiro et al. (2013) Integrative: PHENO Hybrid, RWS GE: Cerrado biome (2 Mi km2); GR: 
0.1°; TE: 2002–2050; TR: yr; SG: 
non-flying mammals

BP: climate;
SE: environmental and infrastructure 

variables, past LU

Potential species distribution, 
spatial conservation plan

Spatial conservation prioritization LUC altered spatial location of 
conservation priority sites

Yes No

Struebig et al. (2015) No explicit model, reads 
in land-cover data

PHENO, RWS GE: Borneo (743,330 km2); GR: 1 
km2; TE: 1950–2080; TR: 30 yr; 
SG: orang-utans

BP: climate, ruggedness, distance to 
water and to karst forest;

SE: land cover, human population, 
deforestation rate

Habitat suitability Habitat suitability Most suitable habitat expected to 
decline due to CC, even if LUC 
towards more protection

Yes No

Santos et al. (2016) Integrative: MECHA PHENO, HS GE: Northwest Iberia (100 km2); GR: 
1 ha; TE: 1960–2040; TR: 40 yr; 
SG: birds

BP: patch attributes;
SE: soil use, management strategy, 

human population trend

Cover type, bird diversity 
(richness, specialist richness, 
total abundance)

Cover type LU intensification homogenizes 
landscape, with negative impacts 
on biodiversity.

No No

Redhead 
et al. (2020)

Integrative: MECHA PHENO, RWS GE: Great Britain (209,331 km2); 
GR: 1 km2; TE and TR: 1 yr; SG: 
beneficial insects

BP: climate, suitability factors; SE: 
land cover, protected area, priority, 
cropping intensity

Probability of occurrence; 
potential richness, potential 
functional diversity

Habitat suitability Arable land expansion lowers species 
richness, even under less intensive 
cropping

No No

Continued
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10  |   People and Nature CABRAL et al.

threats, such as alien species, to model transformed rates and areas 
(Rouget et al., 2003). A few examples also consider animal diversity as a 
driver (Dai et al., 2005; Soares-Filho et al., 2013).

3  |  L AND -USE EFFEC TS ON REGIONAL 
BIODIVERSIT Y

3.1  |  Land-use effects on biodiversity

Land use has been the main driver of biodiversity decline over the 
past 50 years (IPBES,  2019; Pereira et al.,  2012). While physical 
actions on land as direct drivers of ecosystem change operate at 
the local level (e.g. agriculture, forestry or urbanization; Lambin & 
Meyfroidt, 2010), impacts of land use also scale up to larger spa-
tial extents (Haines-Young,  2009). The complexity of land-use–
biodiversity relationships arises from the multidimensionality of 
both land use (e.g. type, management, intensity; Erb et al.,  2013; 
Kuemmerle et al., 2013) and biodiversity (e.g. taxonomic, functional 
and phylogenetic diversity; Devictor et al.,  2010), with various 
multidirectional impacts overlapping, reinforcing or mitigating each 
other (Haines-Young, 2009). Ecologists have developed two main, 
but not mutually exclusive, types of approaches to deal with this 
complexity.

The ‘management-oriented’ approaches link the management di-
mensions of land use to biodiversity at local scale (Paillet et al., 2010), 
sometimes integrating the landscape-scale effects of land use 
(Müller et al., 2007). The studies using such approaches usually focus 
on a single land-use type (e.g. agriculture or forestry) and rely on 
detailed evaluation of the management practices and their intensity 
(Herzog et al., 2006; Jeliazkov et al., 2016). For example, taxonomic 
diversity can show strongly decreasing or flat responses to manage-
ment intensity (Allan et al., 2015; Simons & Weisser, 2017; Tsiafouli 
et al., 2015).

The ‘type-oriented’ approaches look for general impacts of 
land use on biodiversity, usually focusing on spatial intensification 
and limiting their description of land use to one (e.g. Clavero & 
Brotons, 2010) or several (e.g. Herrera et al., 2016; Mimet et al., 2014; 
Uhler et al., 2021) land-use types. These approaches often consider 
the landscape effects of land use on biodiversity through the de-
scription of landscape composition, configuration and connectiv-
ity (e.g. Clavero & Brotons,  2010; Fahrig et al.,  2011). It has been 
found that land-use intensification can cause the homogenization 
of the landscape through intensive land use leading to potentially 
lower beta-diversity (Gossner et al., 2016; Jeliazkov et al., 2016), to 
changes in phenology (Barbaro & Halder, 2009; Mimet et al., 2009), 
and to trait evolution (e.g. selecting for higher dispersal ability; 
Martin et al., 2017). Finally, some studies show that land-use type 

Model LU approach
Type of the 
BD model Study region, scales and group Input variables Output variables What is modified by LU? Key findings (LU effects on BD) CC

CC -driven 
LUC

LAMOS-FATE 
(Quétier 
et al., 2007)

No explicit model, 
applies LUC 
scenarios and 
stakeholder 
assessments

MECHA, 
RWS

GE: Romanche River headwater 
(7000 grid cells); GR: grid cell (ca. 
42 × 42 m); TE and TR: Nav; SG: 
plant functional types

BP: productivity;
SE: LU, fertilization, management 

scenario

Abundance of plant functional 
types, ecosystem services to 
people

Dispersal, fecundity, disturbance regime 
(mowing, fertilization, grazing)

Subalpine grasslands is sensitive to 
land-use change

No No

Sales et al. (2020) No explicit model, 
applies LUC 
scenarios

Hybrid, RWS GE: Tropical South America (17.8 Mi 
km2); GR: 10′; TE: 2030–2090; 
TR: yr; SG: terrestrial vertebrates

BP: climate, vegetation and habitat 
types;

SE: land cover and land-use types

Potential species distribution, 
potential alpha and beta 
richness

Potential species distribution Climate and land-use change act 
synergistically, with high turnover 
rates for ecotonal fauna

Yes No

Martinuzzi 
et al. (2014)

Integrative: PHENO PHENO, RWS GE: Contiguous USA (30,700 km2); 
GR: 1 ha; TE: 2001–2051; TR: 5 yr; 
SG: freshwater vertebrates

BP: watershed area, water quality; SE: 
past LU change, economic returns, 
land cover, conversion costs

Land use type, rarity-weighted 
species richness, threat to 
freshwater diversity

Water quality Urban expansion as major threat in 
species-rich regions or severe 
water quality problems

No No

Marshall 
et al. (2021)

Integrative: MECHA PHENO, RWS GE: Belgium (9 Mi km2); GR: 1 km2; 
TE: 2010–2035; TR: yr; SG: 
bumblebees

BP: None;
SE: land-use types, crop type

Habitat suitability Habitat suitability Using more LU predictors improved 
performance. Arable and urban 
land were mostly negative.

No No

RangeShifter-
CRAFTY (Synes 
et al., 2019)

Integrative: MECHA MECHA, HS GE: 10000 grid cells; GR: grid cell (ca. 
500 × 500 m); TE: 50 yr; TR: yr; 
SG: pollinators

BP: productivity;
SE: land use, demand

Spatial abundance distribution,
land-use type, crop yield

Carrying capacity Crop-pollinator system showed greater 
changes in bidirectionally coupled 
models

No No

Graphab (Foltête 
et al., 2012)

No explicit model, reads 
in land cover layers

MECHA, 
RWS

GE: section of Franche-Comté (252 
Mi pixels); GR: 10 × 10 m; TE and 
TR: -; SG: tree frog

BP: habitat characterization;
SE: land cover/LU resistances

Species distribution, landscape 
connectivity metrics

Resistance values; habitat availability; 
carrying capacity

LU intensification can reduce 
connectivity, with negative 
effects on species abundance and 
distribution

No No

Lautenbach 
et al. (2017)

No explicit model, 
applies afforestation 
scenarios

MECHA, 
RWS

GE: Mulde Basin (5744 km2); GR: 
1 km2; TE: 500 yr; TR: 1 yr; SG: 
plants

BP: bioclimatic variables, soil texture;
SE: protected area, land use, land 

cover

Species richness, richness of 
functional groups, carbon 
storage

Habitat suitability Non-linear relationships of species 
richness with afforested area and 
land use configuration.

No No

Abbreviations: BD, biodiversity; BP, biophysical; CC, climate change; GE, geographical extent; gen, generations; GR, geographical resolution; HS,  
hypothetical system; LU, land use; LUC, land-use change; MECHA, mechanistic (hybrid models entail major phenomenological and mechanistic  
submodels); NAv, not available; NP, National Park; PHENO, phenomenological; RWS, real-world system; SE, socioeconomic; SG, study group; SSP,  
socioeconomic pathway; TE, temporal extent; TR, temporal resolution; yr, year.

TA B L E  2  Continued
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seems to mainly drive the functional and taxonomic composition, 
while land-use intensity may rather drive the functional redundancy 
of species (Birkhofer et al., 2017; Laliberté et al., 2010).

3.2  |  Modelling regional biodiversity change

Several approaches have been proposed to model biodiversity at 
regional scales, varying from phenomenological (e.g. macroecolog-
ical analyses, species distributions models) to mechanistic models 
(see Dormann et al., 2012; Zurell et al., 2016 for comparisons in 
the field of niche models). Whereas both types of models can as-
sess potential effects of land-use and climate change, the mecha-
nistic models can further account for transient, non-equilibrium, 
and novel conditions by explicitly simulating eco-evolutionary pro-
cesses (Cabral et al., 2017; Dormann et al., 2012). For instance, eco-
physiological models integrate processes on the basis of metabolic 
theories describing life-history of species, such as energy uptake, 
growth, respiration and thermoregulation (e.g. Cabral et al., 2019; 
Kearney, 2012; Leidinger et al., 2021), and of ecosystem-level pro-
cesses, such as carbon assimilation and metabolic costs (e.g. the 
dynamic vegetation models DVMs; see Sakschewski et al., 2015). 
However, these ecosystem-level ecophysiological models often 
lack cross-region, spatial processes (e.g. disturbances, dispersal). 

To this end, models further based on metapopulation and meta-
community theories can also integrate demographic processes, 
such as reproduction, mortality, density dependence and disper-
sal, as well as biotic interaction processes, such as resource com-
petition and trophic interactions (Cabral & Kreft,  2012; Hagen 
et al., 2021; Harfoot et al., 2014; Urban et al., 2016). Some mod-
els are devoted to understanding region-wide spatial processes, 
such as connectivity, which can be based, for example, on graph 
(e.g. Foltête et al., 2012) or circuit (e.g. McRae et al., 2008) theo-
ries. These mechanistic models predict abundance distributions, 
species richness and connectivity, all of which have a higher in-
formation value than just habitat or presence probabilities from 
phenomenological models (Ehrlén & Morris,  2015; see also the 
output variables in Table 2).

Mechanistic models jointly addressing climate change and 
land-use effects on biodiversity have been proposed almost two 
decades ago (Travis, 2003), but their application to real-world sys-
tems has so far been limited (Table  2), partly due to low species-
specific data availability and computational runtimes which are 
unfeasible for automatic optimization (Cabral et al., 2017; Dormann 
et al., 2012). Still, several models can already use real-world envi-
ronmental data as input (e.g. Hagen et al., 2021; Higgins et al., 2020; 
Malchow et al., 2021; McIntyre & Lavorel, 2007; Sarmento Cabral 
et al., 2013). These models address, for example, temporal dynamics 

Model LU approach
Type of the 
BD model Study region, scales and group Input variables Output variables What is modified by LU? Key findings (LU effects on BD) CC

CC -driven 
LUC

LAMOS-FATE 
(Quétier 
et al., 2007)

No explicit model, 
applies LUC 
scenarios and 
stakeholder 
assessments

MECHA, 
RWS

GE: Romanche River headwater 
(7000 grid cells); GR: grid cell (ca. 
42 × 42 m); TE and TR: Nav; SG: 
plant functional types

BP: productivity;
SE: LU, fertilization, management 

scenario

Abundance of plant functional 
types, ecosystem services to 
people

Dispersal, fecundity, disturbance regime 
(mowing, fertilization, grazing)

Subalpine grasslands is sensitive to 
land-use change

No No

Sales et al. (2020) No explicit model, 
applies LUC 
scenarios

Hybrid, RWS GE: Tropical South America (17.8 Mi 
km2); GR: 10′; TE: 2030–2090; 
TR: yr; SG: terrestrial vertebrates

BP: climate, vegetation and habitat 
types;

SE: land cover and land-use types

Potential species distribution, 
potential alpha and beta 
richness

Potential species distribution Climate and land-use change act 
synergistically, with high turnover 
rates for ecotonal fauna

Yes No

Martinuzzi 
et al. (2014)

Integrative: PHENO PHENO, RWS GE: Contiguous USA (30,700 km2); 
GR: 1 ha; TE: 2001–2051; TR: 5 yr; 
SG: freshwater vertebrates

BP: watershed area, water quality; SE: 
past LU change, economic returns, 
land cover, conversion costs

Land use type, rarity-weighted 
species richness, threat to 
freshwater diversity

Water quality Urban expansion as major threat in 
species-rich regions or severe 
water quality problems

No No

Marshall 
et al. (2021)

Integrative: MECHA PHENO, RWS GE: Belgium (9 Mi km2); GR: 1 km2; 
TE: 2010–2035; TR: yr; SG: 
bumblebees

BP: None;
SE: land-use types, crop type

Habitat suitability Habitat suitability Using more LU predictors improved 
performance. Arable and urban 
land were mostly negative.

No No

RangeShifter-
CRAFTY (Synes 
et al., 2019)

Integrative: MECHA MECHA, HS GE: 10000 grid cells; GR: grid cell (ca. 
500 × 500 m); TE: 50 yr; TR: yr; 
SG: pollinators

BP: productivity;
SE: land use, demand

Spatial abundance distribution,
land-use type, crop yield

Carrying capacity Crop-pollinator system showed greater 
changes in bidirectionally coupled 
models

No No

Graphab (Foltête 
et al., 2012)

No explicit model, reads 
in land cover layers

MECHA, 
RWS

GE: section of Franche-Comté (252 
Mi pixels); GR: 10 × 10 m; TE and 
TR: -; SG: tree frog

BP: habitat characterization;
SE: land cover/LU resistances

Species distribution, landscape 
connectivity metrics

Resistance values; habitat availability; 
carrying capacity

LU intensification can reduce 
connectivity, with negative 
effects on species abundance and 
distribution

No No

Lautenbach 
et al. (2017)

No explicit model, 
applies afforestation 
scenarios

MECHA, 
RWS

GE: Mulde Basin (5744 km2); GR: 
1 km2; TE: 500 yr; TR: 1 yr; SG: 
plants

BP: bioclimatic variables, soil texture;
SE: protected area, land use, land 

cover

Species richness, richness of 
functional groups, carbon 
storage

Habitat suitability Non-linear relationships of species 
richness with afforested area and 
land use configuration.

No No

Abbreviations: BD, biodiversity; BP, biophysical; CC, climate change; GE, geographical extent; gen, generations; GR, geographical resolution; HS,  
hypothetical system; LU, land use; LUC, land-use change; MECHA, mechanistic (hybrid models entail major phenomenological and mechanistic  
submodels); NAv, not available; NP, National Park; PHENO, phenomenological; RWS, real-world system; SE, socioeconomic; SG, study group; SSP,  
socioeconomic pathway; TE, temporal extent; TR, temporal resolution; yr, year.

 25758314, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/pan3.10472 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12  |   People and Nature CABRAL et al.

and coexistence of functional groups under land-use management in 
complex landscapes (Boulangeat, Georges, et al., 2014; Lautenbach 
et al., 2017; Quétier et al., 2007), or the geographical range of focal 
species (e.g. Bocedi et al.,  2014, 2021; Faleiro et al.,  2013; Sales 
et al., 2020; Zamora-Gutierrez et al., 2018). The partial effect of land 
use on biodiversity (i.e. disentangling its effect from climate change) 
has been considered in a few studies. For instance, Travis  (2003) 
showed that the proportion of habitat loss influences the thresh-
old of response to climate change. Sarmento Cabral et al.  (2013) 
compared simulations with and without habitat loss, revealing that 
land use negatively influences local abundances while not strongly 
affecting range size of shrubs. Synes et al. (2019) went further and 
compared unidirectional and bidirectional effects of crop yields on 
pollinator populations, demonstrating that the inclusion of bidirec-
tional feedbacks revealed much stronger loss in crop yields. The dif-
ferent strategies for integrating both climate change and land-use 
effects on biodiversity are discussed in the next sections, as we lay 
out a roadmap for future research avenues.

4  |  THE ROADMAP TO INTEGR ATE 
CLIMATE CHANGE WITH REGIONAL SOCIO -
ECOLOGIC AL SYSTEMS

4.1  |  Integrating climate-driven land-use change 
into biodiversity models

We found four main approaches for the inclusion of land use in bio-
diversity modelling with increasing levels of integration:

1.	 In the first approach, authors perform an overlay of the outputs 
of both land-use and biodiversity models to identify land-use 
change within important biodiversity areas or to identify suitable 
areas for biodiversity (e.g. Faleiro et al.,  2013; Martinuzzi et 
al.,  2014; Sales et al.,  2020). Thus, in this approach, only the 
modelling results are analysed together.

2.	 In the second approach, authors apply land-use field data or land-
use model outputs from previously developed models as input for 
a biodiversity model (e.g. Struebig et al.,  2015). This input may 
include a time series of land-use changes.

3.	 A third approach uses a land-use model where each land-use type is 
associated with biodiversity values calibrated on literature data (e.g. 
Koch et al., 2019; Santos et al., 2016). In this approach, land use itself 
can be interpreted as specific calibration for biodiversity models.

4.	 Finally, we found simulations of land use and biodiversity in the 
same study through model coupling (e.g. Bastos et al.,  2018; 
Marshall et al., 2021; Redhead et al., 2020). This fourth type of 
approach constitutes the most integrative one. Here, model cou-
pling is defined as both models being simulated simultaneously in a 
single framework with variables being exchanged among models. 
This integration remains largely uni-directional, but bidirectional 
feedbacks can be already found (Synes et al., 2019). Simultaneous 
socio-ecological dynamics may thus be the key avenue for 

upcoming research, as bidirectional models revealed greater influ-
ence of land-use change, indicating that uni-directionally coupled 
models may miss important dynamics (Synes et al., 2019).

Most of the identified studies only account for land-use effects 
on habitat availability or suitability (e.g. Travis, 2003). This has also 
been highlighted in recent reviews (e.g. Santos et al., 2021). Land-use 
effects on demography have been considered by Quétier et al. (2007) 
through variation of fecundity rates, dispersal ability and mortality 
(via disturbances) in plant functional groups, while Sarmento Cabral 
et al.  (2013) considered the loss of habitat to reduce local carrying 
capacity of studied species. Effects of land use on dispersal have 
been explored by Bocedi et al. (2014) when looking at how anthropo-
genic disturbance effects vary depending on individuals' settlement 
rules during dispersal. Hence, most land-use models have outputs 
that could be used as input for biodiversity models, in particular land 
cover (compare Tables 1 and 2). For example, land use and land cover 
are common outputs of land-use models (e.g. Dai et al., 2005; Diogo 
et al.,  2015; Liu et al.,  2017; Morgan & Daigneault,  2015; Rouget 
et al., 2003; Verburg et al., 2002) which can be readily used as input 
for biodiversity models (e.g. Bastos et al., 2018; Foltête et al., 2012; 
Lautenbach et al., 2017; Quétier et al., 2007). More refined results, 
such as land-use intensity, emerge from some land-use models (e.g. 
Stéphenne & Lambin, 2001; Verburg & Overmars, 2009) and could be 
also used as biodiversity model input (Boulangeat, Damien, et al., 2014; 
Redhead et al., 2020; Santos et al., 2016). Irrespective of how land 
use affects biodiversity, it has been recently pointed out that land-
use change models and the impacts of land use on biodiversity should 
consider more comprehensively the intensity of land use (Dullinger 
et al., 2021). However, there are some global studies that integrate 
land-use intensity and their impacts on biodiversity in their inputs 
and calculations but not in their projections. For example, Chaudhary 
and Brooks (2018) projected potential species losses from five broad 
land use types (managed forests, plantations, pasture, cropland, 
urban) under three intensity levels (minimal, light and intense use) in 
terrestrial ecoregions. However, the authors used the global land-use 
intensity maps from 2000 (van Asselen & Verburg, 2013) without any 
change through time. Consequently, there is no feedback between 
land-use change and land intensification and between intensification 
and biodiversity change. Allan et al. (2015) also included land-use in-
tensity and the impacts on biodiversity and ecosystem functionality, 
but they do not project the impacts to the future. Hence, there is still 
missing feedbacks between land-use intensity projections and their 
impacts on regional biodiversity integrating climate change.

The inclusion of climate change effects has mainly been done 
through assessment of direct effects on biodiversity (see Struebig 
et al., 2015; Zamora-Gutierrez et al., 2018). We selected one example 
of recent simultaneous inclusion of direct and indirect effects of climate 
change on biodiversity via climate-driven land-use change (Dullinger 
et al., 2020; a study with type 4 approach). However, the incorporation 
of land use in biodiversity dynamics under climate change has not always 
modified results (Dullinger et al., 2020: see Table 2, Figure 2a), possibly 
because climate change-induced effects on land use are not considered. 

 25758314, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/pan3.10472 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Therefore, explicit comparisons as well as relative quantification of di-
rect vs. indirect effects of climate change require further attention.

How can the relative role of direct and indirect effects of climate 
change on biodiversity be quantified? For a start, we suggest increas-
ing focus on model coupling, as this has been successfully done both 
with phenomenological (Dullinger et al., 2020) and mechanistic (Synes 
et al., 2019) biodiversity models. Agent-based models seem a straight-
forward way for this integration, as the methodology is used by both 
the land-use and biodiversity communities (Tables 1 and 2; Figure 2a). 
We consider the following factors to be key to successful model inte-
gration, focusing mostly on mechanistic approaches as these explicitly 
consider processes and can generate a larger range of outputs (Table 2).

4.1.1  |  Spatial resolution and representation

A key direction for improving model integration is the harmonization 
of spatial scales (in units and file formats), but this is not a limiting 

factor since land-use and biodiversity models considerably over-
lap in terms of spatial extents and resolutions with the respective 
relevant processes (Figure  2b,c). Most land-use models do gener-
ate outputs that could be used as input by biodiversity models to 
some extent (compare output variable in Table  1 with input vari-
ables in Table 2). Despite the improvement in relation to the coarse 
resolution used in global models, regional land-use models still vary 
considerably in the spatial resolution and representation (Table 1), 
from polygon-based to raster-based models. Polygon-based mod-
els are particularly used when farmers are the agents, resulting in 
a patchwork or mosaic resolution. This can be problematic as most 
biodiversity models are raster based. In this regard, besides harmo-
nization, increasing resolution remains another research avenue 
in both land-use and biodiversity models. Indeed, high resolution 
seems to improve performance of biodiversity predictions (Marshall 
et al.,  2021). Considering that polygons and raster can be quickly 
converted back and forth, biodiversity models would require a raster 
conversion plugin to downscale for higher resolution and to readily 

F I G U R E  2  Properties of land-use and biodiversity models. (a) Ordination of retrieved models from Tables 1 to 2 with regard to field of 
research (land use or biodiversity), spatial scale (resolution and extent), study system (hypothetical or real world), method (phenomenological 
or mechanistic/agent-based), as well as whether they use climate, climate change (CC) and CC-induced land-use (LU) change. Except for 
spatial scales axes (see panels b and c), all these characteristics were classified with yes/no. Ordination axes are coloured blue, whereas 
studies are given in grey or green font. Green coloured studies highlight integrative approaches, that is simulating both land use and 
biodiversity. Studies fill the ordination space very well, with ordination arrows pointing to different directions (variation explained by 
the first two ordination axes <35%, with five dimensions necessary to reach a stress <0.05 and stress with 11 dimensions = 0.003). This 
indicates a high diversity of proposed models and that relevant modelling and experimental aspects (e.g. integrating climate, climate change 
and climate-change-induced land-use change) are not yet often combined. (b & c) Spatial scale properties of land-use (b) and biodiversity 
(c) models. Note that the scales in (b) and (c) are in orders of magnitude of km. Several models overlap in scale properties and could thus 
be readily integrated. We added jitter in (a) and vertical spacing in (b) to improve visualization. The principal component analysis in (a) was 
performed with ‘smacof’ and ‘vegan’ r packages, using Bray–Curtis dissimilarity matrices.
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14  |   People and Nature CABRAL et al.

use different output and input formats of land-use models. This can 
be easily done, but most current biodiversity models do not have 
such plugins and thus any format and resolution synchronization 
needs to be done before simulation.

4.1.2  |  Temporal resolution and forecasting horizon

Most land-use change studies focus on relatively short temporal 
forecasting horizons (e.g. 20 years), with few time steps. This reflects 
the inherent uncertainty in the development of human societies (in-
cluding behaviour or agents and socioeconomic dynamics), but it 
also limits the utility of such forecasts for biodiversity modelling, 
which often use yearly (and sometimes finer) resolution for longer 
time period (compare temporal extents in Tables 1 and 2). For biodi-
versity models which have generations as time steps (e.g. Sarmento 
Cabral et al.,  2013), matching temporal resolution of biodiversity 
and land-use models require considering particular years or dates 
as references. The best direction here is that both models converge 

to absolute, generation- and agent-agnostic time steps, such as year 
or month. Another characteristic of current land-use models is their 
limited ability to project far into the future, which makes it neces-
sary to consider methods for providing realistic uncertainties for 
forecasts (e.g. Hartig et al., 2012; Oberpriller et al., 2021). Among 
possible uncertainties, accounting for extreme events is a priority. 
Extreme events, such as severe floods or droughts, may represent 
‘black swans’ (Taleb, 2007) for landowners. ‘Black swans’, or extreme 
outlier events, are historically seen as often highly improbable, but 
of utmost economic consequences when occurring.

4.1.3  |  Indirect effects of climate change

Although we have not found studies that have tackled indirect effects 
of climate change using mechanistic approaches, this seems achieva-
ble, as mechanistic land-use models that consider climate input have 
been already coupled with mechanistic biodiversity models (see 
Synes et al., 2019 combining RangeShifter, Bocedi et al., 2014, with 

F I G U R E  3  Examples of how climate and land-use models have been integrated with biodiversity models. Climate models often provide 
the basic drivers for both land-use and biodiversity models (black arrow; see Tables 1 and 2 for climate variables used as input). The 
blue arrow shows an additional one way coupling (uni-directional) between the output of a land-use model which is used as input for 
the biodiversity model (e.g. Dullinger et al., 2020) and the red arrow shows an additional integration of the biodiversity model output as 
additional input for the land-use model. The red and blue arrows together act as a loose bidirectional coupling, therefore creating a feedback 
loop between the models (e.g. Synes et al., 2019). The yellow dashed arrow displays a possible integration from the biodiversity models, back 
to the climate model, creating a wider integrated system. To our knowledge, there are yet no regional studies which integrate such feedback. 
Note that climate models already integrate land-use model output (not illustrated, but see Pongratz et al., 2018); thus, the yellow arrow is 
achievable if climate models use the output of both land-use and biodiversity outputs from bidirectionally integrated models.
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CRAFTY, Murray-Rust, Brown, et al., 2014). Furthermore, an avenue 
to explore such indirect effects at regional level is becoming more 
feasible as mechanistic land-use models that incorporate climate 
scenarios are being applied to larger extents (Brown et al., 2021).

4.1.4  |  Bidirectional feedbacks

The simultaneous simulation of land use and biodiversity with 
process-based models should allow for the inclusion of bidirectional 
feedback between models (Figure 3). This would account for emer-
gent interactions between both systems, something that has been 
recently called for (Urban et al., 2021). Therefore, the current knowl-
edge of land-use effects is in fact mostly based on the uni-directional 
effect from land use on biodiversity. To improve bidirectionality, it 
is, however, important to match inputs and outputs of both land-
use and biodiversity models. While standardizing and matching 
emergent outputs has been touched upon in this section already, 
for bidirectional model coupling it is important to include biodiver-
sity aspects as input for land-use models. Some models simulating 
land-use change can already use biodiversity-related input, which 
could serve as starting point to either direct coupling or to further 
model development. Examples of current inputs are mostly vegeta-
tion or vegetation-related variables (Dai et al., 2005; Stéphenne & 
Lambin, 2001; Verburg & Overmars, 2009), which could then use the 
output of vegetation (Sakschewski et al., 2015), forest (e.g. Petter 
et al., 2021) or plant distribution (e.g. Sarmento Cabral et al., 2013) 
models. A few other models can use more biodiversity-related input 
variables, such as species richness to simulate land use change (Dai 
et al., 2005) or occurrence of invasive plant species to explore loss 
of natural land cover alongside other human-dominated land-cover 
types (Rouget et al., 2003). For land-use models to adequately inte-
grate different aspects of biodiversity as input, the models may need 
further extensions in the decision-making rules (see next section).

4.2  |  Integrating climate-driven biodiversity change 
into land-use models

It seems uncommon for studies of land-use change to consider any 
facet of biodiversity in land-use decisions (Table  1). This should 
change, as land users may not solely prioritize profits, but may also 
consider biodiversity and ecosystem costs, potentially foregoing 
economically attractive alternatives. In fact, it is unlikely that land 
users only respond to prices and costs to maximize land rent—a key 
motivation for developing agent-based land-use models (Berger & 
Troost, 2014). While it is clear that landowners indeed respond to 
economic opportunities and risks, assuming pure profit-maximizing 
behaviour will not suffice to analyse land-use and associated human-
driven biodiversity changes (Berger, 2001; Castro et al., 2018; Lambin 
et al., 2001). For example, subsistence farmers need to sustain their 
families and might not be profit maximizers, but risk minimizers, going 
for guaranteed results. They might even have ecological objectives 

(Knoke et al., 2014). In contrast, industrial-style farmers are mostly 
profit maximizers, which explains the expansion of oil palms (Fisher 
et al., 2011), soy or rubber (Warren-Thomas et al., 2018). Land-use 
change models currently focus on the relationships among farm-
ers decisions and biophysical elements (Table  1). This reflects the 
fact that individual decisions, cultural practices, and regional poli-
cies on subsidies and regulations underlie the land-use change pro-
cesses. In this regard, biodiversity is often not included in land-use 
change models because it is not yet considered a key driver of farmer 
decision-making or even of human population size, dietary prefer-
ences, economy, climate change or technology. Despite this, eco-
logical variables such as species abundances, demographic rates and 
habitat connectivity may be important for land-use decisions. This 
can happen either positively to wildlife when wildlife supports tradi-
tional practices and attracts further revenue (Nelson, 2012) or nega-
tively when there are no incentives to wildlife tolerance (Kinnaird & 
O'Brien, 2012). Land-use models can therefore benefit from moving 
beyond simply including vegetation cover change, to integrating the 
ability of mechanistic biodiversity models to predict these ecological 
variables. Indeed, biodiversity can lead to ecosystem modifications 
at the local level, like influencing the selective extraction of valuable 
species (Cazzolla Gatti et al., 2015; Poudyal et al., 2019) or modifying 
crop yields (Pywell et al., 2015; Synes et al., 2019). Moreover, biodi-
versity loss may affect consumer behaviour if correctly communi-
cated (Schaffner et al., 2015), which has been, for example, used for 
palm oil-free products and many dedicated product certifications. 
Hence, biodiversity change can be integrated in land-use models by 
influencing the decisions of land managers, and by affecting yields, 
product demand and regional policies. Some integration of this sort 
has been already achieved, although not in land-use models address-
ing climate change effects (and thus not featured in Table 1).

Currently, regional land-use change models mainly integrate bio-
diversity in two ways: (1) as a restriction for anthropogenic land-use 
expansion through limitation rules inside protected areas or intact 
forests (Alexander et al., 2018; Schmitz et al., 2014) or (2) as a post 
hoc overlap analysis of model outputs over biodiversity-rich areas 
(Kobayashi et al., 2019; Powers & Jetz, 2019). As an alternative, land 
allocation approaches building on multiple criteria methods allow for 
the integration of biodiversity as an independent objective function, 
for example to represent the preferences of conservationists (e.g. 
Knoke, Gosling, et al.,  2020; Knoke, Paul, et al.,  2020). Moreover, 
mathematical models have been developed to assess forest enrich-
ment with coarse woody debris to elevate biodiversity at minimum 
costs in forest enterprises (Härtl & Knoke, 2019). Further integration 
of biodiversity could be achieved through modelling the expansion 
of common plant species (e.g. via range models; Bocedi et al., 2014, 
2021; Sarmento Cabral et al., 2013) that would directly impact the 
land cover. Another flexible and theoretically coherent framework to 
model land allocation decisions might be the use of household mod-
els (Singh et al., 1986), which account for departures from traditional 
profit-maximization. The household is assumed to maximize utility, 
which is a function of many aspects beyond profit and weather 
such as, for example, cultural practices, subsistence, biodiversity, 
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16  |   People and Nature CABRAL et al.

leisure or environmental protection. This framework allows for the 
integration of biodiversity aspects into land-use modelling from a 
behavioural point of view, which could have positive feedbacks to 
biodiversity. Indeed, landscape management based both on legisla-
tion and traditional agriculture can have positive effects on biodiver-
sity, especially on specialist species (Santos et al., 2016).

Some challenges to integrating biodiversity model output as 
land-use model input lie in the differences and incompatibilities 
of spatial and temporal scales. This demands particular attention 
across land-use models, which often apply and report different 
resolution formats and units (compare geographical resolutions 
across models in Table 1). Besides, a key epistemological issue is 
that many mechanistic biodiversity models run in hypothetical 
landscapes and ecological systems (e.g. Travis, 2003). Moreover, 
in many hypothetical and real-world biodiversity models, the spa-
tial resolution is a grid cell and temporal resolution is a generation. 
To make the output of such biodiversity models useful for land-
use models, the species parameters and landscape scales must be 
adequately calibrated and scaled. For example, explicitly calibrat-
ing a grid cell to 1 km2 to match a given land-use model should 
be accompanied by adequately scaled values of dispersal ability, 
carrying capacity, and local population dynamics of the target 
species, community or functional group. Furthermore, to integrate 
the two modelling approaches, it is necessary to relate individual 
land users' actions and decisions, which may take place at local 
scales (e.g. the field level for farmers), to biodiversity outcomes 
(i.e. extirpation of local populations) that may vary in scale from 
local to regional.

4.3  |  The wider integration: Challenges 
to integrating socio-ecological change into 
climate models

The influence of land use and land-use change on climate is already 
well known (e.g. Deng et al., 2013), but the integration of biodiver-
sity and per extension also of socio-ecological models into climate 
models deserves further attention (see Figure  3). The effects of 
land-use change on regional and global climate have been assessed 
focusing on biogeochemical and biogeophysical feedbacks (Pongratz 
et al.,  2010, 2018). Land-use change impacts climate by affecting 
extreme temperatures (Findell et al., 2017; Wang et al., 2015), pre-
cipitation (Woldemichael et al.,  2012), evapotranspiration (Krause 
et al.,  2017; Nóbrega et al.,  2017) and surface runoffs (Guzha 
et al., 2018; Krause et al., 2017). For example, afforestation can take 
up carbon from the atmosphere, while also cooling down regional 
temperature by absorbing radiation and increasing transpiration 
(Betts,  2011). This effect of vegetation on climate has been stud-
ied and exploited across scales, from decreasing urban heat islands 
to feedbacks between the terrestrial biosphere and the climate. 
Whereas vegetation models typically do not really account for bio-
diversity (see Section 4.2), by simulating forest growth and carbon 
assimilation among other ecosystem-level processes, these models 

consider important ecosystem functions such as net primary pro-
duction. Considering the positive relationships between biodiversity 
and ecosystem functions (see van der Plas, 2019 for a review), we 
can assume that maintaining high biodiversity can be central to car-
bon sequestration and thus also to climate mitigation. In this regard, 
landscape-level forest models (see Petter et al., 2020 for a compari-
son), functional–structural forest models (e.g. Petter et al., 2021) or 
trait-based models in general (see Zakharova et al., 2019 for a review 
and many of the models in Table 2) better capture biodiversity, as 
different trait combinations can represent different species. Hence, 
integrating ecosystem productivity with changes in tree diversity 
and composition is one promising way to integrate biodiversity, 
land-use and climate models. A concept showing how to achieve this 
has recently been recently proposed, linking climatic conditions with 
deforestation, afforestation and agriculture management (Bendix 
et al., 2021). Ultimately, with models integrating bidirectional effects 
(Figure 3), we could explore scenarios considering not only climate 
mitigation, but also biodiversity and sustainable development.

4.4  |  Directions to modelling developments

Current models can already tackle a range of both land-use and 
biodiversity processes. However, the various climate change ef-
fects on land use and land-use effects on biodiversity have not been 
widely integrated into predictive studies, as indicated by the review 
Sections 3 and 4. There are general methodological improvements 
for any modelling study, such as balancing complexity, scale and 
mechanistic detail (see Cabral et al., 2017; Evans et al., 2013 for re-
views and discussions on this topic for biodiversity models) as well 
as calibration, validation and parameter optimization (see Hartig 
et al., 2012). Here we rather identify avenues for more specific de-
velopment in predictive studies that should be done in parallel with 
the integration across research fields.

For land-use models, the current trend remains to identify the re-
gional drivers of land-use change to simulate human-related changes 
in the composition of landscapes, ecosystems, and, as argued in 
previous sections, biodiversity. It is important to note that regional 
land-use models already incorporate a series of explanatory input 
variables, for example, the biophysical and environmental character-
istics such as mean temperature, annual precipitation, slope or alti-
tude (see Table 1). These are linked to parameters (e.g. probability of 
change) as well as to direct or indirect drivers (common crops, popula-
tion growth and demand). However, land-use models rarely consider 
the influence of extreme weather events like droughts, which can be 
regionally restricted and may affect land-use decisions (see Zaveri 
et al.,  2020 for empirical evidence). Probably a key improvement 
would thus be building large databases on types and rules of decisions 
taken by the landowners, which can vary within and across regions. 
This would follow a tendency akin to what is done for biodiversity 
data, such as functional traits (Kattge et al.,  2020) and would ulti-
mately allow improving the relationship between drivers, for exam-
ple, by integrating components that influence farmers' decision about 
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land management (e.g. rotation, expansion, intensification). Such ele-
ments are more commonly considered in agent-based models (Dislich 
et al., 2018) than in other mechanistic or phenomenological models, 
which rather use the population size and the historical rate of change 
as causes of land-use change (see Table 1). Agent functional types 
are indeed already featured in the land-use agent-based models (e.g. 
Murray-Rust, Brown, et al., 2014; Rounsevell et al., 2012). For socio-
economic drivers, this means going beyond simulating agricultural or 
livestock expansion to integrating production of specific commodities 
and addressing possible responses of decision-makers to biodiversity 
changes, as they will consider their livelihood demands (Affholder 
et al.,  2013) and/or economic opportunities and risks (Lambin 
et al., 2001). Via biodiversity–economic value functional relationships 
(Paul et al., 2020), biodiversity could be integrated in such models as 
a factor of production. In addition, biodiversity indices could be used 
to represent the preferences of conservationists (Knoke, Gosling, 
et al., 2020). This understanding will help land-use models to go be-
yond the analysis of historical trends to improve projections, includ-
ing scenarios that integrate farmers' decisions linked to a globalized 
world and have biodiversity elements as inputs (e.g. regional richness, 
functional diversity or abundance of a target species emerging from 
the mechanistic biodiversity models—Table 2). In addition, common 
strategies to deal with increasing uncertainty, such as overproduction 
(Fuss et al., 2015), land-use diversification (Rosa et al., 2019) or the 
diversion of the available labour to obtain off-farm income (Shannon 
& Motha, 2015) will influence land-use change processes and asso-
ciated biodiversity. For instance, off-farm income may reduce crop 
diversification at the farm level (Ochoa et al., 2019). Accounting for 
changes in the objectives of farmers or land-use planners is also in-
fluential for simulating land allocation (Castro et al., 2018). This may 
be particularly important if we want to improve land-use practices 
by considering biodiversity information or other novel decision crite-
ria such as environmental costs when losing biodiversity, something 
commonly disregarded in real-world decision-making.

For biodiversity models, the inclusion of evolutionary dynamics 
at ecological time frames remains understudied (but see Leidinger 
et al., 2021; Vedder et al., 2022), even though human activities can 
trigger evolutionary response (e.g. decrease in reproductive size in 
fish; Heino et al.,  2015). For example, agroforestry may facilitate 
contact between sister Zosterops species, potentially leading to hy-
bridization and evolutionary rescue of endangered endemic species 
(Vedder et al., 2022). Another direction is to integrate the effects of 
climate-driven behaviour of human agents on biodiversity. For ex-
ample, Cabral et al. (2011) assessed the effects of harvesting wild 
flowers by reducing the number of produced offspring. However, it is 
unclear how human behaviour may change in the future. Will humans 
stop harvesting in the wild due to conservation policies, to pressures 
for decreasing carbon footprint via embargoing overseas flower ex-
port or to both? In fact, direct resource exploitation often targets 
demographic or growth processes in biodiversity assessments, for 
example, in fisheries (Melbourne-Thomas et al.,  2011; Salihoglu 
et al.,  2017), forestry (Albert et al.,  2008; Bottalico et al.,  2016), 
sport hunting (Mattsson et al.,  2012) or grassland management 

(Johst et al.,  2006; Rolinski et al.,  2018; Schröder et al.,  2008). In 
forest management, for instance, forest owners will adapt forest 
structure and management to enhance the resistance (by establish-
ing mixed forests) and resilience (by enhancing the structural diver-
sity). Planting mixed forests will positively influence species richness 
(Knoke et al., 2008) and managing forests to increase structural di-
versity will also increase biodiversity (Schall et al., 2018). However, 
the biodiversity impact of climate mitigation policies must also be 
investigated, as typically suggested bioenergy crop expansion can 
actually be detrimental for biodiversity (Hof et al., 2018).

Another important research avenue is to improve harmonization 
of complex input data (i.e. standardizing or fusing data from differ-
ent sources and methodologies). Examples of successful harmoniza-
tion methods can be found for occurrence or occupancy data (e.g. 
Bowler et al., 2019; Stewart et al., 2016). However, harmonization is 
less common for other, less available types of biological data, such 
as demographic rates, dispersal ability traits and genetic diversity. 
This variety of biological data is essential for validation, calibration 
and parameter optimization of mechanistic models, as different 
types of data are useful to constrain different types of integrated 
processes (e.g. demographic data would be useful to constrain de-
mographic processes; Schurr et al.,  2012). As we are experienc-
ing a proliferation and expansion of different types of biological 
data (e.g. COMPADRE and COMADRE for demographic rates—
Salguero-Gómez et al., 2015, 2016; TRY for functional data—Kattge 
et al.,  2020), data harmonization and standard formats should be 
also strived for across biodiversity models. Moreover, biodiversity 
assessments and monitoring practices are now strongly converg-
ing to follow the Essential Biodiversity Variables (EBVs) framework 
(Pereira et al.,  2013; Urban et al., 2021). This means that imple-
menting models that consider input and generate output matching 
current trends in biological data is an important research avenue, 
which should also promote better integration across models. The 
adherence to the EBV framework might be central for empirical and 
modelling agendas to converge, as different EBVs match different 
emergent aspects of mechanistic models, such as abundance, rich-
ness and functional diversity outputs. For example, emergent spe-
cies occurrence and abundance (Table  2) are already part of the 
EBV class ‘species populations’, whereas species richness is part of 
the EBV class ‘community composition’. Other community facets 
typically quantified in biodiversity assessments such as functional 
and phylogenetic diversity are far less common as model output 
(Table 2), although they can be, to some extent, easily derived from 
merging species occurrence metrics with phylogenetic and trait 
data from online databases (e.g. PanTHERIA—Jones et al.,  2009; 
and PHYLACINE—Faurby et al., 2018). Although modelling of such 
components may be challenging as it requires additional input data 
and simulating microevolutionary, niche-based and metabolic-based 
processes, recent advances are making the simulation of such EBV 
classes easier (Leidinger et al., 2021; Zurell et al., 2022).

Another generally necessary development is improving res-
olution at regional scales. Whereas land-use models can already 
generate high-resolution regional data (Figure  2b), output from 
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high-resolution regional climate models are not yet commonly used 
in either biodiversity or land-use modelling, including for stake-
holder decision-making (Gutowski et al., 2020). Hence, there is an 
urgent need to synchronize model developments between the bio-
diversity, land-use and climate change fields.

5  |  CONCLUSIONS

Integration of land use into regional biodiversity models is much 
more common than the other way around. This integration can be 
summarized in four different approaches, with the most integra-
tive level applying simultaneous model coupling. Consideration of 
climate change-induced land-use change into biodiversity models 
is increasing recently, with the appraisal of both direct and indi-
rect climate change effects emerging as a key research avenue. 
To achieve this, important steps include concerted efforts in 
standardizing spatial and temporal resolution (including input and 
output variables), in disentangling direct and indirect effects of cli-
mate change on biodiversity, and in explicitly accounting for bidi-
rectional feedbacks. These avenues can be navigated by matching 
models, plugins for format and resolution conversion, and in-
creases in land-use forecast horizon with adequate consideration 
of uncertainty. Recent developments of simultaneously applying 
biodiversity and land-use models to understand socio-ecological 
systems show that such integration is achievable and can lead 
to valuable insights that would not emerge without bidirectional 
model coupling. The climate–land-use–biodiversity model inte-
gration will ultimately allow the optimization of multiple outputs, 
such as species number, stakeholder profits, carbon balance and 
temperature.
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