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Abstract—In our connected world, ensuring the confidentiality
of the software systems we build becomes increasingly difficult.
Model-based design time confidentiality analyses have been pro-
posed to cope with this complexity early. However, the usefulness
of such analyses is limited due to uncertainty about the software
architecture itself and the software’s execution environment.
This leads to conclusions about confidentiality violations that
lack both precision and comprehensiveness. Although there exist
approaches to deal with design time uncertainty, existing research
lacks precise statements about the impact of uncertainty on
confidentiality. To address this, we include uncertainty as part of
our software architectural model. We extend a data flow-based
analysis to include the impact of uncertainty on confidentiality
violations. The results of the case study-based evaluation show
high accuracy with typical design time uncertainty. Also, our
analysis yields more precise statements about the impact of
uncertainty on confidentiality than the state of the art.

Index Terms—Model-driven Security, Software Architecture,
Uncertainty, Confidentiality, Data Flow Analysis, Access Control

I. INTRODUCTION

Software systems are becoming increasingly complex, e.g., in
Industry 4.0 [6] or automotive systems [1]. Thus, ensuring
security-related quality properties like confidentiality becomes
a major challenge. Confidentiality demands that “information
is not made available or disclosed to unauthorized individuals,
entities, or processes” [21]. Violations cannot only have legal
consequences [20] but also affect user acceptance [46]. As
proposed by Privacy by Design [35], confidentiality should
be considered early to avoid costly repairs [5]. This has
been addressed with design time confidentiality analyses. By
analyzing data flows [38] or potential attack paths [44] in
modeled software architectures, confidentiality requirements
[18] can be evaluated early.

However, in early development and complex systems of
systems, uncertainty exists about the software architecture
and its environment [1]. Uncertainty describes “any departure
from the unachievable ideal of complete determinism” [42].
Examples are uncertain component choices and deployment,
or system behavior and user behavior. The high degrees

of uncertainty in software architecture while making design
decisions are also referred to as the cone of uncertainty [30].
This affects both the precision and comprehensiveness of the
results of confidentiality analysis [16].

The handling of uncertainty can either be included as part
of the analysis in a white-box manner or delegated to an
uncertainty-aware framework [1]. Although uncertainty-aware
analyses of software architectures exist [11], they usually focus
on other quality properties like performance [39] or are limited
to selected uncertainty types [7]. There is also an approach to
combine confidentiality analysis with uncertainty [45], but due
to its black-box nature, this approach lacks precision.

In this paper, we extend an existing model-based confiden-
tiality analysis [38] to make it uncertainty-aware, increasing
both its precision and comprehensiveness. We model uncer-
tainty using software architecture variation [43] that can ex-
press uncertainties as their impact on the software architecture
and its environment. Following the white-box approach, we
interpret the modeled uncertainty as well as the analysis results
for more detailed statements about the impact of uncertainty
on confidentiality. This shall simplify phase containment, i.e.,
fixing defects in the same phase as they appear.

We start by classifying and modeling uncertainty in Sec-
tion II and present the contributions of this paper thereafter.
C1 First, we discuss in Section III how information available

in the modeling and analysis of software architecture
models can be used for increasing uncertainty awareness.

C2 Second, we present an uncertainty-aware confidentiality
analysis that considers the impact of uncertainty on
confidentiality violations by analyzing the data flow of
architectural variants in Section IV.

Our evaluation in Section V is based on three case studies
already used in other work [38], [45]. The results indicate a
high accuracy while only using information that is already
available to software architects at design time. Our interpreta-
tion of confidentiality analysis results shows a higher precision
regarding the impact of uncertainty than state of the art, which
is discussed in Section VI. Section VII concludes this paper.



II. EXPRESSING UNCERTAINTY AS MODEL VARIATION

In this section, we discuss the modeling of uncertainty for
analyzing software architecture. Uncertainty can have many
different forms, such as lack of knowledge, imperfect or
incorrect information, or natural variability [40]. To cope with
this complexity, uncertainty should be considered a first-class
concern in software architecture [12]. A variety of modeling
approaches have been proposed, including Bayesian networks,
fuzzy values, automatons, and petri nets [40].

Design uncertainty is “normally represented in software
models by variability models” [40]. These are closely related
to architectural design using Architectural Design Decisions
(ADDs) [22] and design space exploration [28], where de-
cisions are intentionally left open to form degrees of free-
dom. The underlying uncertainty—the gap between the model
and the real world—is sometimes also referred to as model
structural uncertainty [31]. In previous work, we presented
a classification to describe software-architectural uncertainty
more precisely regarding its impact on confidentiality [17].

In the following, we demonstrate how to classify and model
uncertainty using a running example. This example represents
a simplified online shop under uncertainty and is based on
other work [15], [17]. It consists of three components and
two possible deployment locations, as shown in Figure 1.
Users access the Online Shop component to list and buy
available products. The Product Database Service and the
User Database Service are responsible for storing product and
user data, respectively. Both can either be deployed on an EU
Cloud server or a Non-EU Cloud server.

We assume that the online shop will be used from inside
the EU by EU customers. Thus, legal restrictions apply, e.g.,
as defined by the GDPR [9]. We define two simplified confi-
dentiality requirements for the running example: Personal user
data shall only be stored on servers within the EU. Addition-
ally, personal user data must never be stored on a cloud server
without encryption. In this example, multiple uncertainties
(U1 – U3) exist that can have an impact on these confiden-
tiality requirements. First, the component developers of the
Online Shop have not yet specified whether user data will
be encrypted (U1). The allocation of the Product Database
Service (U2) and the User Database Service (U3) is also not
defined. In this simplified example, one can quickly see the
potential violation of the confidentiality requirements. While
the allocation of the product database (U2) is noncritical, the
uncertainties U1 and U3 can affect the system’s confidentiality.
With larger systems that are developed by multiple experts or
teams, this can quickly become unmanageable without help.

To understand these uncertainties, we first describe them
more precisely using a classification [17]. The encryption of
user data (U1) is located in the system behavior, and the alloca-
tion (U2 and U3) affects the system structure. All uncertainties
are directly related to components and are at least partially
reducible. They can be described by a finite set of possibilities,
so the type of these uncertainties is Scenario Uncertainty. This
enables scenario-based mitigation using model variation [17].
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Figure 1. Component and deployment diagram of the Online Shop example

Table I
MODELED UNCERTAINTIES OF THE RUNNING EXAMPLE

Uncertainties Modeled variants

U1: User Data Encryption Forward data only, Encrypt data
U2: Product Database Allocation EU Cloud, Non-EU Cloud
U3: User Database Allocation EU Cloud, Non-EU Cloud

Model variation can be used to describe possible outcomes
of Scenario Uncertainty. Each uncertainty is represented by
a variation point, e.g., by modeling a selection of alternative
architectural elements. This description results in a variation
model [43] of the software architecture. Table I shows the
three uncertainties (U1 – U3) of the running example and
the resulting variants in the variation model. The user data
encryption in the Online Shop (U1) is represented by two
different behaviors, i.e., only forwarding or also encrypting
the data. The allocation of the Product Database (U2) and the
User Database (U3) is modeled with the two possible servers
inside or outside the EU.

Based on the variation model, architectural variants can be
generated by permutation. In our example, three uncertainties
exist, with two variants each. The automated generation [43]
would yield 2× 2× 2 = 8 variants that represent all possible
outcomes of the modeled uncertainty. The resulting variants
can be analyzed by existing analyzes that do not yet account
for uncertainty. This enables software architects to focus on
critical variants, e.g., variants that violate confidentiality.

III. INCREASING THE UNCERTAINTY AWARENESS

In this section, we discuss which information is available
at design time to model and analyze software architectures.
This enables the comparison of the uncertainty awareness of
different confidentiality analysis approaches. Table II shows
information categories regarding confidentiality and uncer-
tainty. Note that this list shall not be comprehensive but rather
represent current research in the related domains.



Table II
AVAILABLE INFORMATION CATEGORIES IN MODELING AND ANALYSIS

Domain Information categories

Confidentiality 1. Confidentiality violation occurrence, 2. Violated con-
fidentiality requirements, 3. Location within the model,
4. Analyzed data flow, 5. Variable state at the violation

Uncertainty 6. Uncertainty source, 7. Uncertainty properties and
classification, 8. Uncertainty impact within the model,
9. Uncertainty mitigation, 10. Uncertainty interaction

A. Available Information Categories

The confidentiality information categories are derived from
data flow-based analyses of architectural models [37]. These
analyses transform modeled software architectures into data
flows and search for violations of confidentiality requirements
by propagating modeled data variables. The results include
knowledge about the existence of confidentiality violations (1.)
and the related violated requirements (2.). Also, such analyses
can point to the location within the architectural model (3.)
and the analyzed data flow (4.) where the violation occurred.
The state of related data variables (5.) at this point is included.
In our running example, a violation (1.) of the confidentiality
requirement concerning user data (2.) can be found. It can
occur in the data flow (4.) to the User Database Service
component (3.) because it contains personal information (5.).

The uncertainty information categories are derived from
the uncertainty management in self-adaptive systems [19] and
cyber-physical systems [1] and are based on the handling of
uncertainty regarding confidentiality [17]. By investigating an
uncertainty source (6.) in the model or its environment [1], it
can be described more precisely, e.g., based on a classifica-
tion (7.). Also, the uncertainty’s impact (8.) on the software
architecture can be derived and modeled. By analyzing the
architectural model, mitigation techniques (9.) can be chosen
already at design time [19]. This process can be applied to one
uncertainty source or by also considering the interaction (10.)
of multiple uncertainties [8]. In the running example, a source
of uncertainty (6.) is the encryption of user data (U1) that
has been classified (7.) in Section II. The uncertainty impact
(8.) is modeled as a variation of the behavior of the Online
Shop component. This uncertainty can be mitigated (9.), e.g.,
by enforcing an ADD regarding the component’s realization.
However, there could be uncertainty interactions (10.), e.g.,
with the allocation of the User Database Service.

B. Confidentiality Analysis and Uncertainty Awareness

Based on these categories (1. – 10.), we discuss existing and
potentially possible uncertainty-aware confidentiality analyses.
Regarding model-based confidentiality analysis, showing vio-
lations (1.) with the related reason (2.) and (3.) location to
software architects is considered to be the minimum viable
information [18]. The analysis results become more expressive
by also showing the analyzed data flow (4.) and variable state
(5.). Still, they do not consider uncertainty and thus lack

precision and comprehensiveness [15]. This becomes visible
in over-estimations and also in missing violations [36].

The naive approach to handling uncertainty is to model its
impacts (8.)—e.g., as model variation, see Section II—and
to reject a software architecture if there exist confidentiality
violations in at least one variant. While this yields more com-
prehensive results, it still highly lacks precision [4]. Scenario-
aware analyses build on this approach and reject only such
architecture variants that violate confidentiality. An example
is the black-box combination of the software architecture
optimizer PerOpteryx [28] with model-based confidentiality
analysis [45]. However, this approach still lacks precision
because it only considers the existence of violations (1.). By
also considering the location where the violation occurred (3.)
and the affected data flow (4.), the confidentiality violation
can be related to the modeled uncertainty impacts (8.). This
also enables filtering modeled uncertainty impacts to those that
actually affect confidentiality. The data flow-aware approach
presented in this paper realizes this concept and thus uses
the available information more efficiently. In the running
example, the naive approach would directly reject the model
because confidentiality violations occur. The scenario-aware
analysis yields a number of architecture variants that maintain
confidentiality but without further explanation. The data flow-
aware analysis additionally relates identified violations to their
originating uncertainty, e.g., the encryption of user data (U1).

This approach can be further enhanced by mapping the
uncertainty impacts (8.) to their originating sources (6.), e.g.,
an ADD that has multiple impacts on the software architecture
[1]. This enables the use of uncertainty classifications (7.) and
also simplifies mitigation (9.). Here, considering the impact
within the model is required to understand the consequences
while also considering the source helps in understanding the
underlying problem of uncertainty. This can help in prioritiz-
ing ADDs [17] to resolve issues, recommending mitigation
approaches, and enabling self-adaption. Last, uncertainty in-
teraction (10.) can be considered in the analysis. Here, we can
reuse the information about data flows (4.) and the mapping
of uncertainty sources and impacts (6.). Still, there could be
complex relationships between multiple uncertainties that go
beyond our current analysis capabilities [8].

IV. UNCERTAINTY-AWARE CONFIDENTIALITY ANALYSIS

This section presents our data flow-aware approach for model-
based confidentiality analysis under uncertainty. With this ap-
proach, identified confidentiality violations are associated with
potential influencing uncertainty impacts and are displayed to
the software architects. Additionally, uncertainties that are not
responsible for a specific violation can be filtered.

Our approach is based on an existing data flow-based confi-
dentiality analysis [38]. The analysis receives an architectural
model described in the Architectural Description Language
(ADL) Palladio [33] and automatically transforms it into a
data flow diagram [10] by extracting possible data flows of the
modeled behavior. Figure 2 shows the data flow diagram that
corresponds to the running example presented in Section II.
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Figure 2. Data flow diagram of the running example with multiple uncertainty impacts that are annotated as question marks

Data flow diagrams consist of processes (e.g., buy or store),
data stores (e.g., Database), and data flows (e.g., the arrows
annotated with user data). We use the data flow meta model
by Seifermann et al. [37]. Input and output pins represent in-
coming, and outgoing data flows of one specific type (e.g., the
pins of the store process). They are used to decouple processes
from data flows. Last, labels can be assigned to processes
and data stores to represent characteristics that can affect the
system’s confidentiality. All the required information is already
available in the architectural model and can automatically
be extracted. In the running example, one important node
characteristic type is the location (e.g., EU Cloud). Processes
can alter the characteristics of incoming data, which represents
their behavior (e.g., Encrypt Behavior).

The extended confidentiality analysis [38] is based on
label propagation. For each transformed data flow, labels are
propagated and updated along the sequence of processes and
data stores. In each node, the assignment of labels is compared
against data flow constraints that represent confidentiality
requirements [18]. A confidentiality violation occurs if at least
one data flow constraint cannot be satisfied. In the running
example, a violation occurs if user data that is labeled as per-
sonal information flows to a Database that is labeled as being
allocated in the Non-EU Cloud. This constraint originates from
one GDPR confidentiality requirement presented in Section II.

When users buy products using the Online Shop component,
product data and user data flow through the system. The data
is stored by the store process of the Database Services. The
diagram also demonstrates the uncertainty impacts (U1 – U3)
as part of the data flow. This is achieved by mapping the
uncertainty impacts from the annotated architectural elements
to the corresponding elements of the data flow [17]. In the
case of both data types, it is uncertain which allocation is
chosen (U2 and U3). This is represented as uncertainty in the
data flow toward the store process of all possible architectural
variants. In the case of user data, it is additionally unclear
whether the data is encrypted (U1) which is represented as
two alternative process behaviors.

Our approach combines variation modeling with data flow-
based confidentiality analysis [38]. By generating variants of
the software architecture, as explained in Section II, we get a
set of data flows without uncertainty for each variant. These
variants represent all possible outcomes of the uncertainty
impacts, which can be traced back from the variant to the
variation model. For each variant, we analyze which uncer-
tainties could be responsible for confidentiality violations. The
confidentiality analysis [38] automatically yields places where
confidentiality violations occur. By starting at the violation and
following the data flow in the reverse direction, we identify
uncertainty that affects elements that are part of the data flow.
This information is part of the variation model and can be
traced for every architectural element. We filter uncertainty
impacts that are not responsible for confidentiality violations,
i.e., uncertainties that do not affect elements contained in
data flows with violations. Compared to existing black-box
approaches [45], our approach uses information that emerges
during the analysis in a white-box manner, see Section III.

In the following, we explain the analysis with one of the
eight possible variants generated using the variation model.
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Figure 3. Data flow diagram of one variant of the running example



In this variant, user data is encrypted in the Online Shop
component (U1) before storing it. The Product Database
Service is allocated on an EU Cloud server (U2), and the User
Database Service is allocated in the Non-EU Cloud (U3). The
resulting data flow diagram is shown in Figure 3. We also
display which elements of the data flow are related to the
uncertainty impacts (U1 – U3). In this variant, a violation
occurs in the data flow toward the Database. The violation is
caused by user data flowing to the Non-EU Cloud, which has
been forbidden by a confidentiality requirement. It is marked in
Figure 3 with an exclamation mark. A scenario-aware analysis
would thus simply reject this variant. Our data flow-aware
approach additionally analyzes the impact of uncertainty on
critical data flows.

Starting from the point of violation at the Database, we
traverse the data flow of the variant in reverse order of nodes
and edges. In the example variant, this means going back from
the Database to the store, process, and buy processes. We save
which elements have been traversed and also which are the
corresponding elements of the modeled software architecture.
For each element, we check whether it has been varied by a
variation point from the variation model and thus is related to
an uncertainty impact. In Figure 3, this is demonstrated with
dotted arrows. Any uncertainty impact that varies elements
traversed on the data flow is flagged as potentially influencing.
In the example variant, this is the case for the User Database
Allocation (U3) that affects the flow between the process and
store processes. We continue to traverse the data flow and
also identify the User Data Encryption (U1) as potentially
influencing. This second impact cannot be safely excluded as
we cannot make any statements on the role of single impacts
in the confidentiality violation. Additionally, there could be
potential uncertainty interaction effects [8].

This procedure is repeated for each variant and all identified
confidentiality violations. This gives us, for each variant, a set
of uncertainties potentially involved in violations and a set of
uncertainties not involved in any violations. An uncertainty
impact is not involved iff there is no violation after the varied
architectural element on any data flow. In our example, the
uncertainty regarding the allocation of the Product Database
Service (U2) is filtered out as being unproblematic.

The individual results are combined to form an overall
statement about the architecture’s confidentiality under uncer-
tainty. This enables us to check which modeled uncertainty
impacts have no impact on confidentiality at all and need
not be considered. Also, we get architecture variants without
any confidentiality violation. In the running example, this
would be the variant with the encryption of user data (U1)
and the allocation in the EU Cloud (U3). The allocation of
the Product Database (U2) does not affect confidentiality in
any variant. The information obtained about the uncertainty
impacts can save valuable time for software architects by
giving them a direct indication of which uncertainties should
be prioritized [17]. This is achieved by adding traceability
between modeled uncertainty impact, architecture variation,
data flow, and confidentiality violations.

V. CASE STUDY-BASED EVALUATION

In this section, we show the evaluation of our approach. We
present the evaluation plan, evaluation design, and evaluation
results. Afterward, we discuss potential threats to validity and
limitations of our approach.

A. Evaluation Goals, Questions, and Metrics

We use a Goal Question Metric plan [2] to evaluate the
presented approach. We define the following goals:
G1 Evaluate the accuracy of the analysis results regarding

uncertainty, also compared to the state of the art.
G2 Evaluate the usability of the analysis by software archi-

tects, e.g., by reducing effort and complexity.
We motivate our work with the lack of precision and compre-
hensiveness of existing and closely related analyses [38], [45].
Goal G1 shall evaluate the accuracy of the analysis results of
our approach, also compared with the different analysis types
discussed in Section III. This represents a typical approach to
design time analysis evaluation [26]. This includes evaluating
the behavior of the analysis in different variants with and
without uncertainty and confidentiality violations. We ask:
Q1.1 Does our analysis at least have the same accuracy as the

naive approach?
Q1.2 Does our analysis at least have the same accuracy as the

scenario-aware analysis?
Q1.3 Does our analysis accurately identify uncertainties that

have an impact on confidentiality violations?
The evaluation is based on three case studies with an existing
gold standard. We measure precision P = TP

TP+FP (M1.1)
and recall R = TP

TP+FN (M1.2) [32].
Goal G2 considers the usability of our analysis. This

includes the feasibility of uncertainty-aware confidentiality
analysis and whether software architects already have enough
knowledge at design time. Also, the modeling complexity and
required effort should be reduced in comparison to a manual
analysis conducted by an expert. We ask:
Q2.1 Is the required information to use our analysis available

to software architects at design time?
Q2.2 Does our analysis reduce the effort of confidentiality

analysis under uncertainty compared to manual analysis
and the state of the art?

To answer these questions, we consider the availability of the
information categories presented in Section III at design time.
Also, we discuss the required steps in the evaluated approaches
to conducting uncertainty-aware confidentiality analysis.

B. Evaluation Design

Our evaluation of Goal G1 is using three case studies that are
summarized in the following. Afterward, we describe how we
use these case studies to answer our evaluation questions.

All case studies originate from other work [15], [24], [38].
They have been previously used to evaluate confidentiality
analysis under uncertainty [45]. In total, the three case studies
consist of 36 architectural variants. All variants contain data
flows that can lead to confidentiality violations.



Table III
PROPERTIES OF THE CASE STUDIES USED IN THE EVALUATION

Confidentiality requirements Variation points

Travel Planner [24], [38], [45]

Credit card information may only
be used as the user agrees to

Credit card information can be used
with or without user consent

Distance Tracker [24], [38], [45]

GPS-Data may only be processed
on the user’s smartphone

GPS-Data can be processed on the
smartphone or a server

Online Shop [15]

Personal user data may only be
stored encrypted and inside the EU

Users can enter personal data, this
data can be encrypted, and both the
data and its backup database ser-
vices can be allocated on different
servers which are deployed either
in the EU or non-EU cloud

Table III summarizes the case studies’ confidentiality require-
ments and variation points. The Travel Planner offers users a
tool to find flight connections for an airline that are paid with
a credit card. When booking, users give the airline their credit
card information and permission to use this data for billing.
The possibility that the airline may handle the user’s credit
card information differently adds an element of uncertainty.
The Distance Tracker is an app to keep track of the covered
distance while jogging. As the user’s GPS data is sensitive, the
user’s smartphone should be the only location where the GPS
data is processed. In some cases, this data may be processed on
external servers which adds uncertainty. With the Online Shop,
users can browse available offers and buy selected products.
Our running example represents a simplified version of this
case study. The original [15] and the adapted version [4]
consist of more uncertainty impacts, e.g., in the user behavior.

To evaluate Goal G1, we used existing architectural models
of all three case studies together with an implementation of our
data flow-aware analysis. For the comparison, we additionally
implemented a naive and scenario-aware approach, according
to Walter et al. [45]. All used models and implementations
are available online [3]. To evaluate Goal G2, we discuss the
availability of modeling information and knowledge based on
other work [17], [38]. Then, we compare the effort to use
our approach to manually modeling architectural variants for
confidentiality analysis [38] and scenario-aware analysis [45].

C. Evaluation Results and Discussion

We present and discuss our evaluation results. For Question
Q1.1 and Question Q1.2, we compared the analysis results
of our data flow-aware approach with the naive and scenario-
aware approaches discussed in Section III. Our hypothesis was
that all three analysis approaches should have the same recall
R but differ in precision P. This has also been shown by the
analysis results that are presented in Table IV.

The naive approach can analyze confidentiality under uncer-
tainty with high recall. However, as an architectural model is
directly rejected in the case of a confidentiality violation, the

Table IV
RESULTS OF THE ACCURACY EVALUATION FOR Q1.1 AND Q1.2

Case study #Variant #Violation Naive Scenario
aware

Dataflow
aware

P, R P, R P, R

Travel Planner 2 1 0.5, 1.0 1.0, 1.0 1.0, 1.0
Distance Tracker 2 1 0.5, 1.0 1.0, 1.0 1.0, 1.0
Online Shop 32 18 0.6, 1.0 1.0, 1.0 1.0, 1.0

precision is inferior. For example, the Online Shop case study
only has 18 of 32 variants that violate confidentiality. The
naive approach only reaches a precision of 18

32 = 0.56. In cases
with more infrequent violations, the precision can become
much worse. Both the scenario-aware and the data flow-
aware analysis have the expected high recall and precision.
The values of 1.0 indicate a perfect match to the gold standard.

The difference between these approaches becomes visible
in answering Question Q1.3. Here, only the results of the
Online Shop case study are relevant, as the others only contain
one uncertainty impact. While the recall is equal at 1.0, the
precision between both approaches differs. Here, scenario-
aware analysis cannot distinguish between the five uncertainty
impacts shown in Table III and thus only reaches a precision
of 4

5 = 0.8. Our approach accurately detects the product data
as not critical and reaches a precision of 1.0.

To answer Question Q2.1, we discuss whether the infor-
mation required for uncertainty-aware confidentiality analysis
is available at design time. The availability of architectural
models and confidentiality-related information (1. – 5.) can be
assumed as this information belongs to the requirements and
the design phase of software systems [36], [38]. Uncertainty
sources (6.), their classification (7.) and mitigation (9.) can be
derived from existing collections [17] already at design time
without special knowledge. Only annotating the uncertainty
impact (8.) could require additional expertise. However, this
is also the case for the other considered approaches. The in-
teraction of uncertainties (10.) also represents a new challenge
and requires additional insights beyond our current research.
Regarding Question Q2.2, directly using a confidentiality
analysis [38] would require software architects to manually
model each variant. With a growing number of uncertainties
to model and analyze, this quickly becomes unpractical. Also,
changes in the software architecture have to be manually
applied to each variant which is not feasible. Compared to
the state of the art [45], which uses degrees of freedom to
model uncertainty [27], we assume that our variation model
[43] requires similar effort due to an automated generation
and analysis. This shall be improved in the future by mapping
uncertainty sources to impacts in the architectural model [17].

D. Threats to Validity

We briefly discuss the threats to validity based on the scheme
proposed by Runeson and Höst [34]. Regarding internal
validity, a threat is the reimplementation of the scenario-aware
analysis using the variation model [43]. Here, we minimized



the risk by comparing our results to the original analysis [45]
and by using the same case studies and the same gold standards
for the evaluation. Regarding external validity, the biggest
threat originates from the selection of case studies, which
limits generalizability. To that end, we included differently
classified uncertainties [17], e.g., uncertainties that affect the
system’s structure, behavior, and deployment. To maximize
construct validity, we used a Goal Question Metric plan [2]
and oriented our evaluation plan to similar approaches [7],
[45]. Konersmann et al. [26] state the lack of replication
packages and the availability of tools used for the evaluation.
To overcome this limitation and to increase reliability, we
published a data set containing all evaluation data [3].

E. Limitations

We are aware of two limitations of our approach. First, our
analysis depends on a model-based confidentiality analysis
[38] and an architectural variation model [43]. Our anal-
ysis capabilities are restricted by the performance and the
expressiveness of these approaches, i.e., by the analyzable
confidentiality requirements [18] and uncertainty types. In
particular, our approach can only model and analyze Scenario
Uncertainty where a finite set of possible outcomes exist [17].
In future work, we plan to expand the modeling capabilities,
e.g., by mapping Statistical Uncertainty to distinct scenarios.
Second, our approach requires the annotation of uncertainty
impacts in the architectural model instead of relating to the
uncertainty sources. While this does not affect our analysis
capabilities, we assume that this requires experienced software
architects. We plan to automate the mapping of uncertainty
sources to potential impact locations in future work.

VI. RELATED WORK

In this section, we give an overview of related work and
compare it to our approach based on the categories presented
in Section III. We divide the work into three parts: Design
time confidentiality analysis, architecture-based uncertainty
analysis, and uncertainty-aware confidentiality analysis.

Design time confidentiality analysis: Confidentiality is
included in the system architecture design processes using
methods like Privacy by Design [35]. A wide range of model-
based confidentiality analyses exist. Examples are the analysis
of access control and information flow policies using data
flow diagrams [38] or the pattern-based detection of design
flaws [41]. Model-checking has also been proposed to evaluate
information flow security [13]. Other approaches use theorem
proving based on annotating UML diagrams [25] or by uti-
lizing UML profiles [23]. However, none of these approaches
considers uncertainty in the architectural modeling.

Architecture-based uncertainty analysis: Current re-
search on uncertainty in software architectures often analyzes
uncertainty with detailed inputs to the uncertainty model.
Troya et al. [40] give an overview of the modeling of uncer-
tainty. Sobhy et al. [39] provide an overview of the handling
of uncertainty in the analysis of software architecture. Values
such as the probability that a particular component is used,

or the reliability of a component contribute to the analysis of
uncertainty [14]. Other approaches use reusable architecture
design decisions and fuzzy logic to derive the quality of
software architecture under uncertainty [29]. GuideArch [11]
also uses fuzzy values for design space exploration under
uncertainty. PerOpteryx [28] represents another approach for
design space exploration based on defining degrees of freedom
in software architecture models. While these approaches can
analyze a wide variety of quality properties, they are not
appropriate to consider confidentiality as they lack the required
expressiveness to consider data processing and constraints.

Uncertainty-aware confidentiality analysis: By consid-
ering both uncertainty and confidentiality in the analysis,
expressiveness can be enhanced. Walter et al. [45] present an
approach that combines PerOpteryx [28] with a model-based
confidentiality analysis [38]. This enables the rejection of
architecture variants that violate confidentiality, i.e., scenario-
aware analysis. Boltz et al. [7] represent environmental un-
certainty by fuzzy values and incorporate them in design time
confidentiality analysis [38]. These approaches are closest to
our work. However, they either lack precise analysis results or
expressiveness in representing different types of uncertainty.

VII. CONCLUSION

In this paper, we presented an approach for confidentiality
analysis under uncertainty. We described which information
categories are available in the design regarding confidentiality
and uncertainty. This enables the identification and categoriza-
tion of existing and possible uncertainty-aware confidentiality
analyses. Afterward, we presented a data flow-aware analysis
that combines aspects both of uncertainty and confidentiality
analysis. Based on modeling uncertainty impacts as variation
in the software architecture, model variants are generated. Af-
ter analyzing each variant, identified confidentiality violations
are related to potential uncertainty impacts. Our approach is
not only able to yield variants with and without violations but
also filters uncertainties by their impact on the system’s confi-
dentiality. The evaluation of our analysis showed an increased
precision compared to the state of the art while maintaining
or even reducing the required effort and knowledge.

The results of our analysis utilize the available informa-
tion within architectural models more efficiently and shall
enable an easier interpretation by software architects. This is
especially true for large models with specific confidentiality
violations that have to be traced through the complete system
to become manageable. Here, our analysis’ precision becomes
a major advantage compared to the also considered naive and
scenario-aware approaches. Additionally, the variation model
was designed to be extended with uncertainty types.

In future work, we want to tackle several limitations of the
presented analysis. First, we want to connect the presented
data flow-aware approach to an Uncertainty Impact Analysis
[17]. This shall bridge the gap between uncertainty sources in
the software architecture and its environment and the impact
on the architectural model. This would enable us to connect
our analysis to existing classifications [1], [17] of uncertainty



to simplify prioritization and mitigation. Second, we imagine
moving the variability modeling from the architectural abstrac-
tion to data flow diagrams. Due to the simplified meta model
of data flow diagrams, this would decrease the complexity
while maintaining expressiveness. Third, we aim to support
more uncertainty types. Starting with the modeling of more
uncertainty locations [17], we also want to support the analysis
of Statistical Uncertainty. Here, one approach is the mapping
of uncertainty characteristics to a finite number of classes [7].
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