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Preface

Writing a thesis naturally raises the question, which grammatical person shall be used.

Clearly, the thesis itself is authored by a single person. However, in the research community

of the doctoral candidate, the convention is to use we (i.e., first-person plural), independent

of the number of authors. We stick to this convention.
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Abstract

The collection and processing of complex data, like structured data or infinite streams,

facilitates novel applications. At the same time, it raises privacy requirements by the data

owners. Consequently, data administrators use privacy-enhancing technologies (PETs) to

sanitize the data, that are frequently based on indistinguishability-based privacy definitions.

Upon engineering PETs, a well-known challenge is the privacy-utility trade-off. Although

literature is aware of a couple of trade-offs, there are still combinations of involved entities,

privacy definition, type of data and application, in which we miss valuable trade-offs.

In this thesis, for two important groups of applications processing complex data, we

study (a) which indistinguishability-based privacy and utility requirements are relevant,

(b) whether existing PETs solve the trade-off sufficiently, and (c) propose novel PETs

extending the state-of-the-art substantially in terms of methodology, as well as achieved

privacy or utility. Overall, we provide four contributions divided into two parts. In the

first part, we study applications that analyze structured data with distance-based mining

algorithms. We reveal that an essential utility requirement is the preservation of the

pair-wise distances of the data items. Consequently, we propose distance-preserving

encryption (DPE), together with a general procedure to engineer respective PETs by

leveraging existing encryption schemes. As proof of concept, we apply it to SQL log

mining, useful for database performance tuning. In the second part, we study applications

that monitor query results over infinite streams. To this end,𝑤-event differential privacy is

state-of-the-art. Here, PETs use mechanisms that typically add noise to query results. First,

we study state-of-the-art mechanisms with respect to the utility they provide. Conducting

the so far largest benchmark that fulfills requirements derived from limitations of prior

experimental studies, we contribute new insights into the strengths and weaknesses of

existing mechanisms. One of the most unexpected, yet explainable result, is a baseline

supremacy. It states that one of the two baseline mechanisms delivers high or even the

best utility. A natural follow-up question is whether baseline mechanisms already provide

reasonable utility. So, second, we perform a case study from the area of electricity grid

monitoring revealing two results. First, achieving reasonable utility is only possible under

weak privacy requirements. Second, the utility measured with application-specific utility

metrics decreases faster than the sanitization error, that is used as utility metric in most

studies, suggests. As a third contribution, we propose a novel differential privacy-based

privacy definition called Swellfish privacy. It allows tuning utility beyond incremental

𝑤-event mechanism design by supporting time-dependent privacy requirements. Formally,

as well as by experiments, we prove that it increases utility significantly. In total, our thesis

contributes substantially to the research field, and reveals directions for future research.
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Zusammenfassung

Die Erfassung und Verarbeitung komplexer Daten, wie strukturierte Daten oder unend-

liche lange Datenströme, ermöglicht neuartige Anwendungen. Da viele dieser Daten

privatheitskritische Informationen über die Eigentümer der Daten enthalten können, stel-

len die Dateneigentümer gleichzeitig Datenschutzanforderungen. Folglich verwenden

Datenadministratoren Technologien zur Verbesserung der Privatsphäre. Diese werden

privacy-enhancing technologies (PETs) genannt. Eine solche PET bereinigt die Daten gemäß

einer Privatheitsdefinition. Da klassische Definitionen wie 𝑘-Anonymität keine Angrei-

ferressourcen berücksichtigen, sind diese häufig Ziel von erfolgreichen Angriffen. Daher

konzentriert sich die Wissenschaft derzeit auf Privatheitsdefinitionen auf Basis von Un-

unterscheidbarkeit. Beispiele hierfür sind kryptografische Definitionen auf Basis von

kryptografischen Spielen, oder Differential Privacy (englisch für differentielle Privatheit).
Eine bekannte Herausforderung bei der Entwicklung von PETs ist der Zielkonflikt zwischen

Privatheit und Nutzbarkeit der Daten. Obwohl die Literatur einige Kompromisslösungen

für diesen Zielkonflikt kennt, gibt es immer noch Kombinationen von Umgebung, Privat-

heitsdefiniton, Datentyp und Anwendung, bei denen uns geeignete Kompromisslösungen

fehlen. In dieser Arbeit untersuchen wir auf Ununterscheidbarkeit basierende Privatheits-

definition für zwei wichtige Gruppen von Anwendungen, die komplexe Datenbestände

verarbeiten. Insbesondere untersuchen wir, (a) welche Privatheits- und Nutzbarkeitsanfor-

derungen relevant sind, (b) ob bestehende PETs den Zielkonflikt ausreichend lösen und (c)

schlagen neue PETs vor, die den Stand der Technik sowohl methodisch, als auch bezüglich

der erreichten Privatheit und Nutzbarkeit wesentlich erweitern. Insgesamt liefern wir vier

Beiträge, die in zwei Teile gegliedert sind.

Teil A. Distanzbasiertes Data Mining von verschlüsselten, komplexen Datenbeständen Heut-

zutage analysieren Dienstleister Datenbestände zum Beispiel für Unternehmen, die nicht

über die Methodenkompetenz verfügen, um die Analyse selbst durchzuführen. Da Ge-

schäftsdaten privatheitskritische Daten sind, ist es wichtig, dass der Dienstleister selbst

nicht in der Lage sein darf, sensible Informationen aus den von ihm analysierten Daten

abzuleiten. Da die Verschlüsselung ein gut etabliertes und allgemein akzeptiertesWerkzeug

zum Schutz der Privatsphäre ist, untersuchen wir, wie die Mining-Ergebnisse für distanz-

basiertes Data Mining Algorithmen bei der Verschlüsselung erhalten bleiben können.

Da viele Mining-Algorithmen distanzbasiert sind, schlagen wir den Begriff der distan-

zerhaltenden Verschlüsselung (DPE) vor. DPE formalisiert die Nutzbarkeitsanforderungen,

dass die Distanz der Datenelemente bei der Verschlüsselung beibehalten werden sollte.

Dieser Begriff hat genau die richtige Strenge — wir zeigen, dass wir ihn nicht lockern

können, sowohl mit formalen Argumenten als auch mit Experimenten. Das Entwerfen

eines DPE-Schemas ist schwierig, da das Schema sowohl vom Datenbestand als auch vom
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Zusammenfassung

verwendeten spezifischen Distanzmaß abhängt. Wir schlagen ein Verfahren zur Entwick-

lung von DPE-Schemata für strukturierte Datenbestände vor, das als DisPE bezeichnet wird.
In einer Fallstudie instanziieren wir DisPE für SQL-Logs, die beispielsweise zum Zweck

der Performance-Verbesserung von Datenbanken analysiert werden. In dieser Studie ent-

werfen wir DPE-Schemata für alle SQL-Distanzmaße aus der wissenschaftlichen Literatur.

Wir zeigen formal, dass man zu diesem Zweck eine Kombination bestehender sicherer

Verschlüsselungsschemata verwenden kann, die bereits bewiesene Sicherheitslevel haben.

Abschließend diskutieren wir die Verallgemeinerbarkeit unserer Ergebnisse anhand zweier

weiterer Datenbestände. DPE wird in späteren Forschungsarbeiten für Sprachverschlüsse-

lung angewendet.

Teil B. Differential Privacy zur Überwachung von Datenströmen Während Verschlüsselung

ein allgemein anerkanntes Werkzeug zum Schutz der Privatheit ist, sind die Verarbeitungs-

möglichkeiten verschlüsselter Daten stark begrenzt. Dies gilt insbesondere für Anwendun-

gen, die Datenströmen kontinuierlich überwachen. Folglich konzentrieren wir uns bei der

Datenstromüberwachung auf𝑤-event Differential Privacy, den aktuellen Goldstandard in

der Literatur. Wir liefern drei zusammenhängende Beiträge wie folgt:

B.i) Leistungsvergleich von Differential Privacy Mechanismen für Datenströme In der

Literatur wurden verschiedene𝑤-event Differential Privacy Mechanismen vorgeschlagen.

Aus Sicht eines Datenadministrators stellt sich die Frage, welcher Mechanismus für ein

PET zu verwenden ist. Bei einer umfassenden Literaturrecherche stellen wir fest, dass

die Ergebnisse heutiger Studien jedoch kaum vergleichbar und teilweise in sich wider-

sprüchlich sind. Unsere Recherchen legt jedoch nahe, dass alle bestehenden empirischen

Studien zu𝑤-event Differential Privacy Mechanismen durch ein Tupel aus vier Elementen

beschrieben werden können: Mechanismen, Datenströme, Privatheitsanforderungen und

Nutzbarkeitsmetriken. Für jedes Element skizzieren wir Limitationen bisheriger Studien

und leiten Anforderungen ab, die die Vergleichbarkeit der Ergebnisse gewährleisten. Mit

einer großangelegten empirischen Studie tragen wir neue Erkenntnisse zu den Stärken

und Schwächen bestehender Mechanismen bei. Eines der unerwartetsten, aber dennoch

erklärbares Ergebnis ist eine grundlegende Überlegenheit der Baselines. Diese besagt,

dass basierend auf den Eigenschaften eines Datenstroms, die Verwendung einer der bei-

den Baseline-Mechanismen in eine gute, oder sogar die beste, Nutzbarkeit resultiert. Ein

zweites wichtiges Ergebnis ist, dass der sogenannte mittlere Fehler, der die mittlere Diffe-

renz zwischen den wahren Daten und den bereinigten Daten beschreibt und häufig als

Nutzbarkeitsmetrik verwendet wird, wenig über die Erhaltung der Eigenschaften von

Datenströmen wie Saisonalität aussagt, die von vielen Anwendungen ausgenutzt werden.

Abschließend formulieren wir Schritte für Praktiker, wie man sinnvolle Mechanismen

auswählt, und Optionen für Forscher, wie man die Überlegenheit der Baselines durchbricht.

B.ii) Fallstudie: Nutzbarkeitsmetriken für die Überwachung von Stromverteilnetzen Das

Ergebnis unseres Leistungsvergleichs wirft zwei Anschlussfragen auf. (1) Ist der mittlere

Fehler eine angemessene Nutzbarkeitsmetrik, und (2) bieten die Baseline-Mechanismen

bereits eine angemessene Nutzbarkeit. Diesen Fragen gehen wir daher anhand einer Fallstu-
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die aus dem Bereich Stromnetzüberwachung nach. Ein Netzüberwachungssystem besteht

aus mehreren Anwendungen, die Leistungsmessungen von Privatkunden verwenden, die

private Informationen enthalten. In unserer Studie betrachten wir eine Reihe von Kandi-

daten für Nutzbarkeitsmetriken, die von Experten auf diesem Gebiet verwendet werden.

Darüber hinaus spezifizieren wir realistische Privatheitsanforderungen, die den Schutz

von typischen Stromnutzungsmustern formalisieren. Für unsere Experimente verwenden

wir ein reales Stromnetz und Messungen, die mit einem bekannten Simulator generiert

wurden. Die Studie zeigt zwei Ergebnisse: (1) Das Erreichen einer angemessenen Nutzbar-

keit ist nur unter schwachen Privatheitsanforderungen möglich. (2) Der Nutzbarkeit der

Netzüberwachung nimmt schneller ab, als es der mittlere Fehler vermuten lässt.

B.iii) Swellfish Privacy: Ausnutzung zeitabhängiger Privatheitsanforderungen Da unsere

Fallstudie zeigt, dass es schwierig ist, einen angemessenen Nutzen unter𝑤-event Diffe-

rential Privacy zu erreichen, schlagen wir eine neuartige Differential Privacy-basierende

Definition namens Swellfish Privacy vor. Mit Swellfish Privacy können Dateneigentümer

feiner abgestufte Privatheitsanforderungen spezifizieren, die es ermöglichen, den Nutzen

über das inkrementelle Mechanismendesign hinaus zu verbessern. Dabei stellen wir fest,

dass die Privatheitsanforderungen für Datenströme im Allgemeinen zeitabhängig sind.

Beispielsweise könnte eine Dateneigentümerin verheimlichen wollen, ob sie während

der Mittagszeit (gesundes) Essen selbst gekocht, oder (ungesundes) bestellt hat. Es ist

definitionsbedingt nicht möglich, solche Anforderungen in𝑤-event Differential Privacy zu

spezifizieren, was letztendlich zu weniger Nutzbarkeit als möglich führt. Daher schlagen

wir Swellfish Privacy vor, das zeitabhängige Datenschutzanforderungen berücksichtigt.

Anhand einer großen Fallstudie aus dem Bereich der Stromverbrauchsüberwachung zeigen

wir, dass Swellfish-private Mechanismen bei zeitabhängigen Privatheitsanforderungen

einen signifikant besseren Nutzen erzielen als aktuelle𝑤-event Differential Privacy Me-

chanismen.

Insgesamt trägt unsere Dissertation wesentlich zum Forschungsfeld bei und zeigt Rich-

tungen für zukünftige Forschung auf.
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1. Motivation

The automatic processing of complex data, like structured data or infinite streams, facil-

itates a plurality of novel applications that improve our life significantly. One example

are electricity grid monitoring applications processing power measurement streams that

are essential to enable the energy transition [Dem+10; Str16; Sch+21]. This advent of

data-driven applications, however, raises legitimate requirements of the data owners re-

garding data privacy. To tackle this, a common approach is to use privacy-enhancing

technologies (PETs) [TM01] that sanitize the data to achieve privacy. To engineer a PET, a

fundamental prerequisite is an implementable formal privacy definition. However, from

society perspective, definitions are usually rather vague. For instance, asking Alan Furman

Westin, the father of data privacy, privacy is “the claim of individuals, groups, or institu-

tions to determine for themselves when, how, and to what extent information about them

is communicated to others” [Wes67]. In the research community, this resulted in a plenty

of definitions and PETs, that, in the end, are tailored to specific data types, applications

and use cases [WE18]. Specifically, in the early days, researchers focus on definitions that

measure properties of the sanitized data, like the number of data owners having the same

attribute value. Examples are k-anonymity [Swe02] or l-diversity [Mac+07]. However,

since they do not consider adversary capabilities or background knowledge, they are prone

to certain attacks [Agg05; LLV07]. As a consequence, indistinguishably-based privacy

definitions have been proposed. Here, an adversary should not be able to distinguish

between, e.g., the true and sanitized data, with high probability. Examples for such def-

initions are provable security based on cryptographic games [Bel98; AL83], or statistic

indistinguishably based on differential privacy [Dwo08; Mir17]. Consequently, we focus

in this thesis on privacy definitions based on indistinguishably, namely, cryptographic

definitions and differential privacy.

However, achieving “perfect privacy” with respect to these definitions is practically

unfeasible. Specifically, perfect cryptographic security that presumes an adversary with

unlimited computing capabilities [Sha49], is only achievable with one-time usable encryp-
tion keys having the same length as the data itself [Sha49]. The required key exchange is as

hard as transmitting the data itself. Similarly, perfect differential privacy for numeric data,

claiming exhaustive indistinguishability is only achievable by adding an infinite amount

of noise to the data [Dwo+11], making any application using the sanitized data practically

useless. Consequently, instead of aiming at perfect privacy, one aims at a trade-off between

privacy and utility, known as the privacy-utility trade-off in literature [SRP13; AAL14;

Deu+21]. Intuitively, the utility measures the usability of the sanitized data. Presuming

indistinguishably-based privacy definitions, there are usually two options to instantiate

the trade-off: (1) Fixing privacy requirements, and optimizing utility [SD13; GV15; BW18],

or (2) fixing utility requirements, and optimizing privacy [ALN87; Pop+11; SEJ14]. Which
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Figure 1.1.: Scope of this thesis.

option is appropriate not only depends on the scope, but also the specific privacy definition

used, as we outline in the remainder.

In this thesis, we study PETs that provide valuable trade-offs between privacy and

utility for indistinguishably-based privacy definitions, namely, cryptographic definitions

and differential privacy. Although literature is aware of a couple of trade-offs [LBB15;

EF15; SMA21], there are still combinations of scope, privacy definition, type of data and

application in which we miss valuable trade-offs. Consequently, subsequently, we first

state the scope of this thesis. Afterwards, we outline the open challenges with respect

to this scope for both privacy definitions and different groups of application. Finally, we

present our contributions that tackle these challenges.

1.1. Thesis Scope

Figure 1.1 illustrates the scope of this thesis. The dashed line separates two worlds, namely,

the trusted and the untrusted world. Below, we describe both worlds.

The trusted world contains up to three entities: Data owners, data administrators

and possibly service users. Data owners own the data that should be processed by an

application. In line with related work on differential privacy [Pap+07; KBB15; DR+14], we

name the data owned by the data owners true data. The data owners may have privacy

requirements, stating under which prerequisites the data can be used by untrusted entities.

An example for a privacy requirement in context of differential privacy is “the survey

results containing my answers compared to survey results that do not contain my answers

should be difficult to distinguish”. Data administrators manage the true data of the data

owners. They are responsible to ensure that the data usage by service providers is in line

with the privacy requirements of the data owners. In line with related work on differential
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Table 1.1.: Part structure of this thesis.

Part Service User Indisting.-based Privacy Def. Application Group

Part II Trusted Cryptographic Distance-based data mining

Part III Untrusted Differential privacy Stream monitoring

privacy [DR+14], we name this process data sanitization. To this end, they use a privacy-

enhancing technology that sanitizes the true data, such that the sanitized data complies

with the privacy requirements. The data administrator transmits the sanitized data to

the untrusted world. There, service providers offer applications used by service users.

To get valuable application results, the service users may have utility requirements with

respect to the sanitized data. The service users can be trusted or untrusted. An example

for trusted service users are the data owners itself. In this case, the data administrator can

use PET that optimizes privacy for given utility requirements. A cryptographic PET is a

frequent choice [ALN87; Pop+11; SEJ14]. An example for untrusted service users we find

in the area of electricity grid monitoring. Here, the residential households are the data

owners, but distribution grid operators are the service users. Here, to comply with law,

the data administrator needs to select a PET that implements all privacy requirements,

but optimizes utility. A PET based on differential privacy is a common choice here [SD13;

GV15; BW18].

1.2. Challenges

In this thesis, for two important groups of applications processing complex data, we focus

on solving the privacy-utility trade-off with respect to indistinguishably-based privacy defi-

nitions. These groups are applications using distance-based data mining algorithms [Def77;

Est+96; PJ09; KNT00] to analyze structured data, as well as stream monitoring applica-

tions [SFY07; Zhu+00; PSW09]. For both groups, we outline the challenges below.

A. Distance-based Data Mining of Encrypted Structured Data As stated in Section 1.1, in

use cases featuring trusted service providers, data administrators use PETs that optimize

privacy with respect to utility requirements by using cryptographic PETs. Consequently,

the first challenge is to identify the utility requirements that distance-based mining al-

gorithms impose. Examples for potential utility requirements are preserving the exact

or an approximation of the pairwise distances. Having defined a utility requirement, we

need to engineer a PET that provide the best possible security while complying with the

utility requirement. Engineering an encryption scheme for structured data in a way that

service providers can analyze the encrypted data using distance-based mining algorithms

is, however, challenging for two reasons. Namely, (i) unclear subject of encryption and (ii)

distance-measure variety, that may influence each other. To illustrate, think of application

analyzing SQL query logs for performance tuning reasons. Each SQL query has an inner

structure. For encrypting a query, a PET would usually encrypt the whole query as a

string. This results in arbitrary strings. However, data mining algorithms may request
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valid SQL queries as input. The latter depends certainty on the distance measure used by

the service providers. Existing distance functions are conceptually different, imposing

different requirements on the encryption scheme. For instance, for string distance on

SQL queries, an encryption scheme that encrypts every character in the string might be

suitable. In contrast, for distance measures depending on the result tuples of the queries, a

fundamental requirement is the executability of the encrypted query.

B. Differentially Private Monitoring of Infinite Streams As stated in Section 1.1, when

considering untrusted service providers, data administrators use PETs that optimize utility

with respect to privacy requirements that are frequently based on differential privacy.

This imposes the following challenges. First, in literature, various differential privacy

mechanisms for streams are known. Consequently, data administrators have to select

one of them. Selecting a mechanism is however challenging, because we lack consistent

evaluation standards in literature. For various reasons, like usage of different data and

preprocessing, studies are hardly comparable. Second, as mentioned, for a comparison

of the utility of mechanisms, a utility metric is needed. Selecting a meaningful one is

however challenging. In literature dominating metrics use the sanitization error that

is given by the distance between true and sanitized data [BLR13; SRP13; Kel+14]. The

drawback of the sanitization error is that it does not allow to draw conclusions about the

influence of data sanitization of the application results. For instance, think of a sanitization

mechanism that smooths a time series. While the distance between true and sanitized time

series might be low, applications that detect outlier in the time series achieve far worse

results on the sanitized time series. A natural alternative, that has also been considered

in literature, is to use application-specific utility metrics [AS00; KFB15]. However, since

individual applications feature different utility requirements on the sanitized data to

achieve valuable results, the results are hard to generalize. Third, data owners have to

specify privacy requirements the data administrator has to ensure. For differential private

streammonitoring, the privacy requirements are expressed with two parameters: A privacy

level 𝜖 specifying the level of indistinguishability, and the window size𝑤 specifying the

maximum length of private pattern to be protected. They are fixed for the whole life-time

of the stream. Selecting reasonable values for these parameters in studies is challenging.

Additionally, it is not known whether PETs can achieve reasonable utility with these

inflexible parameters, and how to make them more customizable to allow utility tuning by

helping data owners to specify their privacy requirements more precisely.

1.3. Contributions

In this thesis, we tackle the challenges identified for each application group by studying (1)

which indistinguishability-based privacy or utility requirements are relevant, (2) whether

existing privacy-enhancing technologies solve the trade-off satisfactory within a case study,

(3) and, if this is not the case, propose novel PETs and privacy definitions extending the

state-of-the-art in terms of methodology, as well as achieved privacy or utility, substantially.

Our contributions for each applications group are as follows:

6



1.3. Contributions

A. Distance-based Data Mining of Encrypted Structured Data Nowadays, services providers

offer analysis-as-a-service applications, e.g., in the cloud. Here, service providers analyze

structured data relying on data mining algorithms, for example, for business organizations

that do not have the methodological skills to conduct the analysis on their own. Since

business data is privacy critical data, it is essential that the service provider itself must not

able to infer sensitive information from the data that they analyze. Since encryption is

a well-established and commonly accepted tool to preserve privacy, we investigate how

to preserve the mining results for such algorithms upon encryption. Since many mining

algorithms are distance-based, we propose the notion of distance-preserving encryption

(DPE). DPE formalizes the utility requirement that the distance of the data items should be

preserved upon encryption. This notion has just the right strictness – we show that we

cannot relax it, using formal arguments as well as experiments. We propose a procedure

to engineer DPE schemes, dubbed DisPE. Motivated by the fact that service users rely on

the analysis of SQL query logs for, e.g., performance tuning [Sil+09; ASB17], in a case

study, we instantiate DisPE for SQL query logs. In this study, we design DPE schemes for

all SQL query distance measures from the scientific literature. We formally show that

one can use a combination of existing secure property-preserving encryption schemes to

this end. Finally, we discuss on the generalizability of our findings using two other data

sets as examples. Our notation is leveraged in subsequent research and adopted to speech

encryption [KLM21; Kra21; KLM22].

B. Differentially Private Monitoring of Infinite Streams While encryption is awell-established

and commonly accepted tool to preserve privacy, the processing capabilities of encrypted

data are highly limited. This is in particular the case for applications that monitor statistics

of streaming data continuously. Consequently, for streammonitoring, we focus on𝑤-event

differential privacy, the current gold standard [Kel+14]. In this part, we provide three

coherent contributions as follows:

B.i) Benchmarking Differential Privacy Mechanisms for Streams Following the propo-

sition of 𝑤-event differential privacy, various mechanisms have been proposed. From

perspective of a data administrator, this raises the question which mechanism to use.

Similarly, scientific progress requires comparable empirical studies. Conducting a compre-

hensive literature survey, we find that the results of today’s studies are hardly comparable

and partially intrinsically inconsistent. However, our survey suggests that all existing em-

pirical studies can be described by a tuple of four elements: mechanisms, streams, privacy

requirements and utility metrics. For each element, we outline limitations of prior studies

and derive requirements ensuring the comparability of results. Conducting a large-scale

empirical study, we contribute new insights into the strengths and weaknesses of existing

mechanisms. The most unexpected, yet explainable, result is a baseline supremacy. It

states that one of the two baseline mechanisms is expected to deliver high or even the best

utility measured by the sanitization error. A second important result is that the sanitization

error, that is usually used as utility metric, reveals little about the preservation of stream

properties that are usually exploited by applications. Finally, we propose steps for data

administrators how to select a mechanism, and options for researchers how to break the

baseline supremacy.
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B.ii) Case Study: Utility Metrics for Electricity Distribution Grid Monitoring The result

of our benchmark poses two follow-up questions. (1) Is the sanitization error an appro-

priate utility metric, and (2) do baseline mechanism provide already reasonable utility.

Consequently, we tackle these questions by a case study from the area of electricity grid

monitoring. A grid monitoring system consists of a plurality of applications using power

measurements from residential customers containing private information. In our study,

we consider a set of candidates for utility metrics, that are used by experts in the field.

Additionally, we specify realistic privacy requirements that formalize the protection of

power patterns. For our experiments, we use a real-world grid and measurements gen-

erated with a commonly used simulator. The study reveals two results: (1) Achieving

reasonable utility is only possible under weak privacy requirements. (2) The utility of grid

monitoring decreases faster than the sanitization error suggest, indicating that the utility

of an application is frequently worse than literature indicates.

B.iii) Swellfish Privacy: Exploiting Time-Dependent Privacy Requirements Since our case

study indicates that it is hard to achieve reasonable utility under 𝑤-event differential

privacy, we propose a novel differential privacy-based privacy definition called Swellfish

Privacy. With Swellfish privacy, data owners can specify finer-grained privacy require-

ments allowing to tune utility beyond incremental mechanism design. Towards this, we

observe that privacy requirements are generally time dependent. E.g., a data owner might

aim to hide whether she cooked or had (unhealthy) food delivered during lunchtime

only. By design, it is not possible to specify such requirements in 𝑤-event differential

privacy, ultimately resulting in less utility than possible. Therefore, we propose Swellfish

privacy, which takes time-dependent privacy requirements into account. By means of a

large case study from the area of power consumption monitoring, we show that, given

time-dependent privacy requirements, Swellfish-private mechanisms achieve significant

better utility than state-of-the art𝑤-event differential privacy mechanisms.

1.4. Thesis Outline

The remainder of this thesis consists of three further parts. In Part II, we focus on distance-

based mining of encrypted data. To this end, Chapter 2 states fundamentals regarding

encryption and SQL queries. Chapter 3 proposes our novel notion of distance-preserving

encryption and performs a case study on SQL query logs. Next, Part III focuses on

monitoring of differentially private streams. To this end, Chapter 4 states the notation used

in this part and introduces differential privacy. Chapter 5 compares existing differential

privacy mechanisms for streams within a comprehensive benchmark. In Chapter 6, we

conduct a case study on differentially private electricity grid monitoring. The results

indicate that it is hard to achieve reasonable utility. Consequently, in Chapter 7, we propose

Swellfish privacy, our novel differential privacy-based privacy definition. Respective

mechanisms achieve significantly higher utility by allowing data owners to specify time-

dependent privacy requirements. Finally, in Part IV, we conclude with a summary in

Chapter 8 and discuss open questions for future research in Chapter 9.
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Distance-based Mining of Encrypted
Structured Data
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2. Fundamentals and Related Work

In the first part of the thesis, we motivated the privacy-utility trade-off and the scope of

this thesis. One challenge we have discussed is how to engineer PETs that optimize privacy

given utility requirements in case the data owners are the service users. In this part, we

focus on how to optimize cryptographic privacy achieved with encryption for applications

that are based on distance-preserving data mining algorithms. To this end, we justify the

utility requirement that the PET must preserve the pair-wise distances of all data items,

named distance-preserving encryption. The case study focuses on applications analyzing

SQL query logs [Sil+09], used to tune the performance of an existing database [ASB17], or

to engineer an SQL query recommendation system [AB21].

Consequently, in this chapter, we first introduce fundamentals and notation of SQL

queries. Second, we state fundamentals and notation on encryption, and relate previ-

ous work on encryption to distance-preserving encryption. Table 2.1 summarizes the

introduced notation and the links to the scope of this thesis.

Table 2.1.: Important notation used in Part II.

SQL query logs

Notation Meaning in Part II

Rel set of names of all relations referred to by at least one query

Attr set of names of all attributes referred to by at least one query

A.Const a constant referring to attribute 𝐴 ∈ Attr
Encryption schemes

Notation Meaning in Part II Link to Thesis Scope

𝐷 unencrypted/plain-text data set true data

D set of all possible data sets

Gen key generation algorithm

Enc encryption algorithm PET

Enc(𝐷) encrypted/cipher-text data set sanitized data

Dec decryption algorithm

2.1. SQL Queries

Subsequently, we introduce SQL queries, and explain which kind of private information

SQL queries can contain. We only explain them so far as needed for the understanding of

the current thesis part, and refer to [EN00; SKS02] for further details.
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Table 2.2.: An example for a database relation.

Customer

CustomerID FirstName LastName Town Debts

1 Michael Smith Maryland 0

2 Michael Wright Orlando 1,200

3 Corinna Wine Vienna 3.5

Table 2.3.: Concepts with respect to SQL queries.

Concept Example query

Arithmetic aggregate function SELECT MAX(Debts) FROM Customer

Relation-valued aggregate function SELECT COUNT(*) FROM Customer

Subquery SELECT * FROM Customer WHERE EXISTS(SELECT ..))

Duplicate elimination SELECT DISTINCT FirstName FROM Customer

SQL, also known as Structured Query Language, is a data manipulation (DML), query

(DQL), definition (DDL), and control (DCL) language for relational databases. The language

is standardized by ISO/IEC [Sta16], although most present-day database systems do not

implement the standard in full. Generally, a relational database is a set of relations and

links between relations. A relation is a table consisting of columns, also called attributes,

and rows. Usually, one or more columns of a table feature as row-identifying primary key.

Columns that refer to columns of other tables are called foreign keys. Table 2.2 shows an

example for a relation with four attributes and three rows.

There are different syntaxes of SQL queries, depending on whether one uses SQL as

data manipulation, query, definition or control language. Our case study involves all of

them, except DCL, but can easily be extended to this. Most known, and therefore used for

illustration in this part, are DQL queries. They query data from a database, and are also

known as SELECT queries. Example 1 shows an example of such a SELECT query with a

predicate in the WHERE clause. Table 2.3 shows example queries containing SQL constructs

we refer to in this part.

Example 1 (SQL Query). The SQL query

SELECT FirstName FROM Customer WHERE Town LIKE ’Vienna’

selects the first name of all customers from Vienna.

Considering Example 1, we observe that the query also information about the underlying

database. For instance, the name of the relation: Customer. Considering the definition

of relational databases and the SQL standard, each SQL query can contain at most the

following kind of information about a database: (1) a subset of the relations in the database

and foreign key relationships between them, (2) a subset of attributes of the relations in

(1), and (3) information about expected values of the attributes. The reason for the latter
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are filtering conditions, for example in WHERE-clauses. All three kind of information must

generally not be revealed to an untrusted entity for the following reasons. First, developing

a good data model, that involves the definition of relations and attributes, is challenging.

Therefore, the relations and attributes are usually a company secret. Second, information

about expected values of the attributes reveals information about the database rows, that

contain confidential information.

To tune the performance of an existing database [ASB17], or to engineer an SQL query

recommendation system [AB21], one relies on the analysis of SQL logs [Sil+09]. An SQL

log 𝐷 is a set of valid SQL queries executed over one database in a specific period of time.

A query is valid iff (1) it follows the syntax used by the underlying database system and

(2) refers only to relations and attributes actually existing in the underlying database. An

SQL log is a list of SQL queries that have been executed over a database in a specific time

period. Given an SQL log, we notate with (1) Rel the set of the relation names and (2) Attr
of attribute names queried in any query in the log. Additionally, with A.Const, we notate a
constant referring to attribute 𝐴 ∈ Attr. For instance, for the query log consisting only

of the query stated in Example 1, it holds: Rel = {Customer}, Attr = {Customer.Town} and

Customer.Town.Const = {Vienna}. In the remainder, D is the set of possible SQL logs over a

database.

2.2. Encryption

In this section, first, we introduce background knowledge on encryption schemes together

with notation, and relate it to the scope of this thesis. Second, we review related work on

property-preserving encryption schemes, since we leverage them to engineer distance-

preserving encryption schemes.
1

2.2.1. Encryption Schemes

In this thesis part, encryption schemes are used to sanitize the true data. Subsequently, we

introduce encryption schemes as far as needed for this thesis part. For more details, we

refer to [Gol09].

In order to, e.g., cluster data items, the PET must preserve the intrinsic structure of the

data. Consequently, we encrypt not the whole data set as a block, but each individual item

in the data set separately. In consequence, a sanitized data set is a set of sanitized data items.

Definition 1 states the definition of an encryption scheme that encrypts individual data

items of a data set 𝐷 . Since literature on cryptography refers to true data as unencrypted
or plain-text data, and to sanitized data as encrypted or cipher-text data, we stick with this

notation in this part of this thesis.

1
The following text is based on the fundamentals section in Christine Tex, Martin Schäler, and Klemens

Böhm. “Towards meaningful distance-preserving encryption”. In: Proceedings of the 30th International
Conference on Scientific and Statistical Database Management (SSDBM). ACM, 2018, pp. 1–12.
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Figure 2.1.: Taxonomy of property-preserving encryption schemes, inspired by [Pop+11;

Li+15b].

Definition 1 (Encryption Scheme). An encryption scheme is a Tuple (Gen, Enc, Dec) where

• Gen is a key-generation algorithm that outputs a tuple consisting of two Keys (𝐾Enc, 𝐾Dec),
• Enc𝐾Enc is an encryption algorithm that encrypts a plain-text value using Key 𝐾Enc,
• Dec𝐾𝐷𝑒𝑐

is a decryption algorithm that decrypts cipher-text value using Key 𝐾Dec.

According to Definition 1, an encryption scheme consists of three algorithms: (1) Key

generation, (2) encryption and (3) decryption algorithm. The key generation algorithm

generates two keys. One key is used by the encryption algorithm, and the other one by

the decryption algorithm. Both keys are owned by the data administrator. He uses the

same key to encrypt all data items in one data set. While the encryption algorithm is

used for data sanitization, the decryption algorithm can revert the encryption. In the

scope of this thesis, the latter is only needed if the mining results, like clusters consisting

of encrypted data items, need to be decrypted to take advantage of the service. If so,

the trusted service user requests the decrypted results from the data administrator. For

readability, in the remainder, we abbreviate Enc𝐾Enc
with Enc and Dec𝐾Dec

with Dec. With

this notation, Enc(𝐷) = {Enc(𝑥) | 𝑥 ∈ 𝐷} is the encrypted data set.

Specifications of Encryption Schemes We classify encryption schemes by the specification

that they have. An example for a specification is being asymmetric or symmetric. In

the following, we review the relevant specifications from literature and relate them to

distance-preserving encryption.

Asymmetric vs. Symmetric In symmetric key encryption schemes, there is one key

for encryption and decryption (i.e., 𝐾Enc = 𝐾Dec), while in asymmetric (or public key)
schemes, 𝐾Enc ≠ 𝐾Dec holds. Symmetric key encryption schemes are more time efficient

than asymmetric ones [AM12], but have the disadvantage that a key exchange is needed.

In this part, symmetric schemes are suitable, since encryption and decryption are done

by the same entity (the data administrator), i.e., no key exchange is needed. However,

using a more powerful asymmetric scheme is possible as well. Our considerations in the

remainder hold for both, and we do not differentiate between them.

Stateful vs. Stateless In stateful encryption schemes, the encryption algorithm has,

next to the plain-text value and the encryption key, an additional input and output pa-

rameter – the state of the scheme [Bel+97]. For instance, considering stateful encryption
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in combination with property-preserving encryption, the state is often the set of all data

items that have been encrypted so far [Agr+04]. In the most use cases, for instance in

database encryption [Pop+11], the values to be encrypted are not known in advance. State-

ful schemes are unpractical there. In our scenario, however, the data set to be encrypted

is fixed, as the data administrator shares an already existing data set with the service

provider. Therefore, we can rely on stateful schemes.

2.2.2. Security of Encryption Schemes

A PET that is based on encryption ensures privacy in the form of security. Different

encryption schemes provide different levels of security, i.e., shield against different attacks.

In cryptography, we differentiate between active and passive attacks. In an active attack, the
adversary has access to a decryption oracle, i.e., can decrypt certain cipher-texts to some

extent. A passive adversary does not have this ability. In our context, we see the service

provider as a passive adversary, meaning that he must not ask the data administrator for the

decryption of cipher-text values. There typically are three types of passive attacks [SK13]:

• Cipher-Text-Only Attack: The adversary has access to several cipher-texts someone
else has selected. The adversary is successful if he can decrypt (any) randomly selected

cipher-text.

• Known-Plain-Text Attack: The adversary has access to several cipher-texts someone else
has selected and the corresponding plain-texts. He is successful if, given one cipher-

and two possible plain-texts, he can determine the correct plain-text.

• Chosen-Plain-Text Attack: The adversary can ask an oracle for cipher-texts of plain-

texts chosen by himself. He is successful if, given one challenge cipher- and two possible

plain-texts, he can determine the correct plain-text. The adversary is not allowed to

ask the oracle for the encryption of the challenge cipher-text.

We come back to these attacks in Section 3.2.1.1, when turning them to attacks on SQL

query logs in our case study. The highest security level for passive attacks is semantic

security [DH76], which is security against the chosen-plain-text attack described above.

2.2.2.1. Property-Preserving Encryption

Preserving properties of a data set (e.g., the order of the data items) upon encryption is a

common utility requirement. Property-preserving encryption schemes are classified by the

plain-text properties they preserve. For such a scheme, “perfect security” against passive

attacks, i.e., semantic security, cannot be guaranteed for most properties. The reason is

that the scheme intentionally leaks (at least) the property of the plain-text preserved. Since

different classes preserve and leak different properties, different classes provide different

security. In the following, we briefly explain different classes of property-preserving

encryption schemes, to apply them to distance-preserving encryption. Figure 2.1 (a)

depicts a taxonomy showing the relationships and the security levels of the various classes.

The rows stand for the security levels, higher is better. For classes in the same row, because

of incomparable, class-specific security notions, a security ranking is not possible.
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Probabilistic Encryption (PROB). Encryption schemes are probabilistic if, in general, two

equal values are mapped to different cipher-texts. PROB schemes without any additional

assumption do not preserve any property of the data. But they feature semantic security

and even security against active attacks.

Homomorphic Encryption (HOM) [FG07]. Homomorphic encryption schemes are proba-

bilistic schemes allowing for arithmetic aggregate functions, e.g., sums, over encrypted

data. As this property opens a way for active attacks, the security level is lower than

for PROB schemes. However, beside probabilistic encryption, HOM is the only class that

provides semantic security. The reason is that the leaked property is the homomorphism

(e.g., regarding addition), but no information on the semantics of the actual values.

Searchable Encryption (SEARCH) [Bon+04; SWP00]. Searchable encryption allows for key-

word search on encrypted data (e.g., LIKE ’%unicorn%’). Thus, the property leaked is

the occurrence of keywords in the plain-text.

Deterministic Encryption (DET). A scheme is deterministic if two equal values are mapped

to the same cipher-text. Therefore, DET schemes allow for equality checks over encrypted

data.

Order-Preserving Encryption (OPE) [Agr+04]. Order-preserving encryption schemes are

deterministic and preserve the order of the data. Thus, one is able to perform range

queries.

Join-Preserving Encryption (JOIN/JOIN-OPE) [Pop+11]. JOIN is a special usage mode of a

DET scheme (JOIN-OPE of OPE, respectively), to allow for joins over encrypted databases.

Particularly, the same encryption scheme and key encrypt the primary and foreign key.

For every encryption class, different encryption schemes exist. See Figure 2.1 (b) for the

commonly used schemes. As mentioned in Section 2.2.1, we can use stateful schemes in

this chapter. To our knowledge, except for the OPE-class, no meaningful stateful scheme

exists.
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In the last chapter, we introduced the basics of encryption. One of the issues that we

discussed is how to engineer PETs that sanitize data such that applications based on

distance-based data mining algorithms have high utility.
1
This chapter proposes and

justifies the novel notion of distance-preserving encryption, and examines how to engineer

distance-preserving encryption (DPE) schemes for structured data of arbitrary complex

types. For data sets consisting of items with a complex inner structure this is challenging

for the following reasons that we illustrate below: (1) unclear subject of encryption and

(2) distance-measure variety. We now illustrate these challenges using SQL query logs as

a use case; this is also our running example in this part. Since query logs contain valuable

information about data owner interests [ASB17; Ngu+15], they are a valuable resource

to tune the performance of an existing database [ASB17], or to engineer an SQL query

recommendation system [AB21].

Since SQL query log mining is far from trivial, it is reasonable to outsource it to a service

provider or an external researcher. We now illustrate the challenges. First, SQL queries

have a complex inner structure. For data items with a complex structure, it tends to be

unclear what “encryption of the data items” actually means, see Example 2.

Example 2 (Unclear Subject of Encryption). Consider a set of SQL queries, i.e., an SQL
query log. Which parts of the query should be encrypted? For example, one may encrypt the
query string as a whole or only the tokens within the query string.

Thus, when designing a DPE scheme, one must specify a security model tailored to the

type of data considered and an encryption scheme in line with this model. Second, for any

type of data, there exist different distance measures. Example 3 illustrates that distance-

preserving encryption depends on the measure in use.

Example 3 (Distance-Measure Variety). For distance-based data mining over an SQL query
log, one needs a distance measure. Different such measures exist. For instance, we can use
a string distance measure like the Levenshtein distance or a measure that depends on the
overlap of the tuples in the results of the queries. These measures are conceptually different:
For example, two queries may lead to the same result even if the query string is different.
Therefore, different distance-preserving encryption schemes are needed: For string distance, it

1
The remainder of this chapter bases on the articles Christine Tex, Martin Schäler, and Klemens Böhm.

“Distance-Based Data Mining Over Encrypted Data”. In: 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE. 2018, pp. 1264–1267 and Christine Tex, Martin Schäler, and Klemens Böhm.

“Towards meaningful distance-preserving encryption”. In: Proceedings of the 30th International Conference
on Scientific and Statistical Database Management (SSDBM). ACM, 2018, pp. 1–12. Compared to the articles,

the sections have been shortened to be less repetitive, contain minor corrections, as well as formatting

and notation changes to be in line with the format and structure of this thesis.
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might be reasonable to encrypt every character in the query string. In contrast, for distance
measures depending on the result tuples of the queries, a fundamental requirement is the
executability of the encrypted query. The reason is that the result tuples and their overlap
cannot be computed otherwise.

Thus, when designing a DPE scheme, one must differentiate between the different distance

measures.

Contributions and Outline In this chapter, we examine how to engineer distance-preserving

encryption schemes for structured data. To this end, we split this chapter into three sec-

tions: In Section 3.1, we define distance-preserving encryption for arbitrary data sets and

distance measures. Using formal arguments and experiments, we justify that our notion

has just the right strictness. In addition, we specify a general procedure for designing

distance-preserving encryption schemes named DisPE. This procedure describes the steps
necessary to arrive at a distance-preserving encryption scheme for a certain data set. In

Section 3.2, we examine which property-preserving encryption schemes introduced in the

previous chapter, data administrators can apply when implementing distance-preserving

encryption schemes for SQL logs. As result, we find DPE schemes for four well-known

SQL query distance measures. The schemes have a higher security level than the ones

CryptDB [Pop+11] would generate, i.e., shield against more attacks. Finally, by means of

two further use cases, namely XQuery and relational data, we say to which extent our

case-study results can be leveraged, and what remains to be done. Finally, in Section 3.3,

we provide a summary of this chapter.

3.1. Definition and Engineering of Distance-Preserving
Encryption Schemes

In this chapter, we examine how to design distance-preserving encryption schemes for

complex-structured data. First, we define distance-preserving encryption for arbitrary

data sets and distance measures. Second, we show formally and by experiments that it

would not make sense to work with a notion that is less strict. Third, we specify a general

procedure for designing distance-preserving encryption named DisPE. This procedure
describes the steps necessary to arrive at a distance-preserving encryption scheme for a

certain data set. We review well-known property-preserving encryption schemes from

literature to illustrate (a) that one can apply them to instantiate our DisPE procedure (b) to
assess the security of the resulting distance-preserving encryption scheme.

3.1.1. Definition

With distance-preserving encryption (DPE), the pairwise distances for the plain-text and
the cipher-text data items must be the same.
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Algorithm 1 k-medoids

1: procedure k-medoids(𝑑 , 𝑘 , 𝐷)

2: 𝑀 ← ∀𝑥,𝑦 ∈ 𝐷 : pairwise distance 𝑑 (𝑥,𝑦)
3: select 𝑘 data items as medoids

4: for 𝑥 ∈ 𝐷 do

5: associate 𝑥 with the closest medoid

6: end for

7: cost← ∑
{medoid 𝑀 }

∑
{all items 𝑥 associated to𝑀 }

𝑑 (𝑀,𝑥)

8: while cost decreases do

9: for Medoid𝑀 and Associated Item 𝑥 do

10: swap the role of𝑀 and 𝑥

11: recompute cost

12: if cost increased then

13: redo swap

14: end if

15: end for

16: end while

17: end procedure

Definition 2 (Distance-Preserving Encryption (DPE)). Let 𝐷 be a data set, d be a distance
measure and Enc an encryption algorithm for data items in 𝐷 . Then, Enc is d-distance
preserving if

∀𝑥,𝑦 ∈ 𝐷 : 𝑑 (Enc(𝑥), Enc(𝑦)) = 𝑑 (𝑥,𝑦).
Distance-preserving encryption enables distance-based data mining on encrypted data

sets. This means that the mining results on cipher-text and plain-text data are the same.

For instance, the same data items are assigned to clusters. To justify our definition, we

explain its usefulness with the help of the k-medoids clustering algorithm [PJ09], a very

common distance-based clustering algorithm. Algorithm 1 is the k-medoids clustering

algorithm. It works as the k-means algorithm [HPK11], with the difference that the cluster

centers always are objects occurring in the data set.

Theorem 1. If Enc is d-distance-preserving, given the same initialization in Line 2, it holds
that

Enc(k-medoids(𝑑, 𝑘, 𝐷)) = k-medoids(𝑑, 𝑘, Enc(𝐷)) .
Proof. In the k-medoids algorithm stated in Algorithm 1, the only information extracted

from the data set are the pairwise distances of the data items (Line 2). □
As the argumentation of Theorem 1 holds for all distance-based data mining algorithms,

Theorem 1 holds for any of them.

3.1.2. Inadequacy of Relaxed Notions

The equality condition regarding all pairwise distances in Definition 2 is a strict require-

ment. One may ask whether an 𝛼-approximation of the distance value such as

|𝑑 (Enc(𝑥), Enc(𝑦)) − 𝑑 (𝑥,𝑦) | ≤ 𝛼 · 𝑑 (𝑥,𝑦),
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or preserving the relative ordering such as

𝑑 (𝑥,𝑦) < 𝑑 (𝑥, 𝑧) ⇐⇒ 𝑑 (Enc(𝑥), Enc(𝑦)) < 𝑑 (Enc(𝑥), Enc(𝑧))

is sufficient. This is not the case. First, we illustrate this with individual counterexamples,

and second with experiments.

3.1.2.1. Counterexamples

First, to understand that using an approximate value is not sufficient, consider Example 4.

Example 4 (Approximative Distance-Values). Consider a data set 𝐷 = {𝑤, 𝑥,𝑦, 𝑧} where
the pairwise distance between the data items is given by the following distance matrix:

𝑀 =

©­­­«
𝑤 𝑥 𝑦 𝑧

𝑤 0 0.1 0.11 0.11

𝑥 0.1 0 0.11 0.11

𝑦 0.11 0.11 0 0.1

𝑧 0.11 0.11 0.1 0

ª®®®¬.
A k-medoids clustering with 𝑘 = 2 results in the following clusters: {𝑤, 𝑥} and {𝑦, 𝑧}.

An approximation of the distances with 𝛼 = 0.1 may result in a distance matrix where the
distance between all data items is given by

𝑀 =

©­­­«
𝑤 𝑥 𝑦 𝑧

𝑤 0 0.11 0.1 0.1

𝑥 0.11 0 0.1 0.1

𝑦 0.1 0.1 0 0.11

𝑧 0.1 0.1 0.11 0

ª®®®¬.
The Items 𝑤 and 𝑥 are not in the same cluster, as well as 𝑦 and 𝑧, because their pairwise
distances are higher than the other pairwise distances. Thus, the result of the clustering on
encrypted data is different.

To understand why preserving the order of the pairwise distance is not sufficient, see

Example 5.

Example 5 (Preserving Relative Order). Consider the example distances in Table 3.1. Again,
we perform a k-medoids clustering with 𝑘 = 2 on the plain-text data. This results in the
following clusters: {𝑤, 𝑥} and {𝑦, 𝑧}. Now we encrypt the data set. As we see in Table 3.1, the
order of the distances is the same for the plain-text and the encrypted items. Now consider a
variant of the k-medoids algorithm having a threshold for increasing the outlier robustness:
If a data item 𝑥 has, say, a distance ≥ 0.9 to all medoids, 𝑥 is deemed an outlier and not
assigned to a cluster. As we see, this is the case for item 𝑦 in the cipher-text data, but not in the
plain-text data, as 𝑑 (𝑦, 𝑧) differs. Thus, the result of the k-medoids algorithm differs, because
it outputs an outlier when performed on cipher-text data, but not on the plain-text data.

To conclude, the pathological examples in this section indicate that ensuring the equality

of the distances upon encryption is necessary to guarantee that mining results on plain-text

and cipher-text data are the same. In Section 3.1.2.2, we also show this for real data with

experiments.
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Table 3.1.: Example of preserving the order of the pairwise distances upon encryption;

distances in ascending order.

item pair distance on distance on

plain-text data cipher-text data

(𝑤, 𝑥) 0.1 0.1

(𝑦, 𝑧) 0.11 0.95

(𝑦,𝑤) 0.5 0.96

(𝑦, 𝑥) 0.51 0.97

(𝑤, 𝑧) 0.52 0.98

(𝑥, 𝑧) 0.53 0.99

3.1.2.2. Experiments

The last section shows with counterexamples that ensuring the equality of distances upon

encryption is necessary to guarantee that we have the same mining results on plain-text

and cipher-text data. Now, we substantiate these findings with experiments on real data.

Specifically, we show that preserving the exact distances upon encryption is necessary to

deploy encryption schemes independent of the specific data-mining algorithm in use. In

the following, we first describe our experimental setup, then the results.

Experimental Setup We describe the experiments, the data and algorithms used.

ExperimentsWe conduct two Experiments E1 and E2 on both alternative notions:

(E1) We quantify how much preserving an 𝛼-approximation of the distances upon

encryption falsifies the results of distance-based data mining.

(E2) We quantify how much preserving the relative order of distances upon encryp-

tion falsifies the results of distance-based data mining.

Both experiments follow the following procedure: First, we determine the distance matrix

of the items of our data sets. We name this matrix the reference matrix. Then we generate

distorted matrices as follows: In E1, we distort the values in the reference matrix by adding

noise so that we have approximations of the distances, for different approximation values

𝛼 . In E2, inspired by [Won+09], we distort the values by using the 𝑖-stretching Function

𝑠𝑖 (𝑣) = 𝑣𝑖 . Since 𝑑 (𝑥,𝑦) ≥ 0, the Function 𝑠𝑖 (𝑑 (𝑥,𝑦)) increases monotonically, thus,

distortion preserves the relative order of the distances. Finally, we compare the results of

different distance-based mining algorithms on (a) the reference matrix and (b) distorted

matrices. We always use the same parameter settings of the algorithms for (a) and (b).

Data Sets In total, we conduct both experiments on three data sets. We use two synthetic

data sets – a Uniform and a Gaussian-distributed data set – as well as one real-world data

set [AA96; Sch+13]. All three have dimensionality dim = 16 and consist of 10,992 data items.

We normalize the distances with min/max normalization to the interval [0,1]. Figure 3.1 (a)

graphs the distribution of the distances in the reference matrices. The distributions in

the reference matrices are different for our three data sets. This indicates that our results

are somewhat general. To get an intuition regarding the influence of the distortion in
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Figure 3.1.: Distribution of the distances in the reference matrices, and the distorted matri-

ces for the real-world data set. The graphs share the same y-axis.

our experiments, see Figure 3.1 (b) for Experiment E1 and 3.1 (c) for Experiment E2. The

distortion in E1 leads to a Uniform distribution of the distances, the one in E2 to denser

distribution of the data items. The Figures 3.1 (b) and (c) only graph the distributions for

the real-world data set, but the distributions of the distorted distance matrices for the

Uniform and Gaussian distributed data set are similar.

Data-Mining Algorithms We conduct the experiments with two types of distance-

based data mining algorithms: clustering and outlier detection. For clustering, we use

the k-medoids [PJ09] algorithm with Euclidean distance and Parameter 𝑘 = 10. For

outlier detection, we use the OPTICS-OF [Bre+99] algorithm. We select the parameters of

OPTICS-OF so that they are optimal for the original data.

Results Figure 3.2 graphs the results of our experiments for all algorithms and data sets.

We use the following error measures: For k-medoids algorithm, we determine the fraction

of data items assigned to the wrong cluster. For OPTICS-OF algorithm, we use the false

negative rate (FNR), i.e., the rate of outlier classified as inlier. – We now describe the

results of both experiments, followed by a discussion.

Experiment E1 Figure 3.2 (a) graphs the results of E1. As expected, for almost all data

sets and algorithms, the error increases with increasing distortion, i.e., 𝛼-values, from 0

until (nearly) 1. An error value of 1 is the highest possible error value. Thus, even for

small values of 𝛼 , the falsification of the clustering result is high.

Experiment E2 Figure 3.2 (b) shows the results of E2. Again, the error increases with

higher distortion. Differently from E1, the error values do not exploit the full range of [0,1].

In particular, the error of k-medoids clustering remains small, i.e., ≤ 0.3. In contrast, the

error with OPTICS-OF is nearly constantly 1, i.e., maximal. The reason is that stretching

leads to smaller distances (cf. Figure 3.1 (c)), i.e., denser regions. The data items are moving

closer together, and the outliers move inwards as well.

Discussion Preserving approximation distances or the relative ordering of the distances

upon encryption falsifies the results of distance-based data mining algorithms, but to very
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Figure 3.2.: Results of our experiments. Each sub-figure, i.e., box, encloses one experiment.

For each sub-figure, the first graph shows the results for k-medoids, and the

second one for OPTICS-OF. All graphs share the same legend.

different extents. While preserving approximation distances leads to high falsification

for both algorithms, the falsification if preserving the relative ordering depends on the

specific algorithm. This implies that, if the PET does not preserve the exact distances upon

encryption, finding an appropriate encryption scheme not only depends on the distance

measure, but also on the specific algorithm in use. This is undesirable: Organizations

typically need different analyses, with different algorithms, from a service provider, and

the necessity of transmitting several encrypted variants of the data would be difficult to

impossible to convey. Our conclusion is that distance-preserving encryption is the only

feasible option.

3.1.3. Distance-Preserving Encryption with DisPE

In the current part, we aim at finding secure distance-preserving encryption schemes for

complex-structured data. To this end, we introduce the general procedure for designing

distance-preserving encryption DisPE for structured data sets. We instantiate it for SQL

queries in Section 3.2. Now, in turn, we remain on an abstract level. The four steps of

DisPE are:

1. Definition of the SecurityModel: In the first step, one has to specify the security goals

one wants to achieve with encryption, e.g., “the SQL log should not reveal information
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on the content of the database”. To this end, one has to (1) specify the threat model, i.e.,

the attacks to shield against, and (2) define a high-level encryption scheme for the type

of data considered, e.g., “encrypt all constants in the query”.

2. Finding a Suitable Equivalence Notion: Our aim is to implement the high-level

encryption scheme defined in the first step so that it is distance-preserving. The

distance between data items is defined for pairs of items, but encryption is done item-

wise. Therefore, we introduce an intermediate notion defined for single data items: For

a given distance measure, an equivalence notion captures the characteristics of a single

data item that should be preserved upon encryption.

Definition 3 (c-Equivalence). Let 𝐷 ∈ D be a data set and c : 𝐷 → 𝐷 a function
(characteristic). In addition, let Enc be an encryption algorithm for data items in 𝐷 . Then
Enc ensures 𝑐-equivalence if

∀𝑥 ∈ 𝐷 : Enc(𝑐 (𝑥)) = 𝑐 (Enc(𝑥)).
In Definition 3, D is the set of all possible subsets of existing data items. For instance,

when encrypting graph data, D is the set of all possible sets of graphs. Here, a Char-

acteristic c to be preserved could be the number of incoming edges of vertices in the

graph.

3. Ensuring the Equivalence Notions: In this step, one has to implement the high-level

encryption scheme defined in Step 1 so that it ensures the equivalence notion defined

in the second step. To this end, we deploy property-preserving encryption classes

introduced in Section 2.2.2.1. Instead of specifying concrete schemes, we specify the

corresponding encryption class, as the property to preserve is defined at class level

and holds for all schemes belonging to the class. The data administrator then selects a

scheme in the class (cf. Figure 2.1 (b)). In general, there are several encryption classes

which can ensure an equivalence notion. We always select the appropriate encryption

class according to Definition 4. As encryption-class taxonomy, we use the one from

Figure 2.1.

Definition 4 (Appropriate Encryption Class). For a given equivalence notion and en-
cryption algorithm, an encryption class is appropriate according to an encryption-class
taxonomy if
a) it ensures the equivalence notion and
b) provides the highest security possible.

4. Security Assessment: Finally, we have to assess the security of the encryption scheme

implemented. If one uses only schemes whose security is known from the literature,

the security assessment is given; this is the desired case. Otherwise, a security analysis

as in [BCO11] is needed.

3.2. Case Study: Distance-Preserving Encryption of SQL Query
Logs

In this study, we examine which property-preserving encryption schemes one can apply

when implementing distance-preserving encryption schemes for SQL logs. First, we
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instantiate our DisPE procedure with SQL query logs. As a result, we find DPE schemes for

four well-known SQL query distance measures. The schemes have a higher security level

than the ones CryptDB [Pop+11] would generate, i.e., shield against more attacks. Second,

by means of two further use cases, namely XQuery and relational data, we say to which

extent our results can be leveraged and what remains to be done.

3.2.1. Instantiating DisPE for SQL Query Logs

Subsequently, we instantiate our DisPE procedure with SQL query logs as our use case.

After this, we explain which parts of our instantiation of DisPE one can reuse when dealing

with types of data other than SQL logs.

3.2.1.1. Security Model

Next, we introduce the threat model for attacks on SQL query logs considered in this

chapter and a high-level encryption scheme for SQL queries.

Threat Model Below, we (1) explain a general threat model and (2) instantiate it for SQL

query logs. For the instantiation, we leverage the solution in [SK13]. In the scenario

addressed here, an organization and a service provider share an encrypted SQL log. The

service provider has the opportunity to perform certain attacks on the encrypted log.

Our goal is to ensure security in the form of confidentiality for the underlying database.

This means that we want to limit the information one can infer from the log about (1)

names of relations occurring in the database, (2) names of attributes of the relations and

(3) the content of the database. As stated in Section 2.2.2, one has to shield against passive

attacks only. Hence, it is necessary to transform the abstract passive attacks explained in

Section 2.2.2 to query logs. Literature already features this [SK13], and the transformations

are as follows:

• Cipher-Text Only Attack→ Query-Only Attack: In a Query-Only Attack, the adversary

only has access to the encrypted query log and tries to infer the plain-text values

of constants, relation names as well as attribute names
2
of a given encrypted query.

For instance, the adversary has access to an encrypted query log and tries to learn

information from this that helps him to decrypt a constant in a specific query.

• Known-Plain-Text Attack→ Known-Query Attack: In a Known-Query Attack, the

adversary has access to a number of plain-text/cipher-text query pairs, and has to

distinguish between two new cipher-text queries.

• Chosen-Plain-Text Attack→ Chosen-Query Attack: In a Chosen-Query Attack, the

adversary has black-box access to an encryption oracle, i.e., the ability to encrypt queries,

and has to distinguish between two cipher-text queries that he must not encrypt by

using the oracle.

2
Strictly speaking, the threadmodel in [SK13] is only defined for constants, but the model can be generalized

to relation and attribute names.
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Encryption of SQL Queries Intuitively, SQL queries can be encrypted in various ways, for

instance by encrypting the query string as a whole. However, if we want to hide the names

of relations, attributes and values of the attributes in the database only, it is sufficient

to encrypt only these parts of the queries. This encryption technique for SQL queries is

also known as “encryption-aware query rewriting” and has the feature that it even hides

the fact that the log is encrypted [Pur+16]. While the idea of encryption-aware query

rewriting has been around, it has not been studied so far how to instantiate it so that the

encryption scheme for SQL queries is distance preserving.

Definition 5 (Encryption Scheme for SQL Queries). For

𝑖 ∈ {Rel,Attr} ∪ {𝐴.Const | 𝐴 ∈ Attr},

let the Tuple
S𝑖 = (Gen𝑖, Enc𝑖, Dec𝑖)

be an encryption scheme. An encryption scheme for SQL queries is a Tuple (Gen, Enc, Dec)
where

• Gen = (GenRel, GenAttr, {Gen𝐴.Const | 𝐴 ∈ Attr}),
• Dec = (DecRel, DecAttr, {Dec𝐴.Const | 𝐴 ∈ Attr}) and
• Enc = (EncRel, EncAttr, {Enc𝐴.Const | 𝐴 ∈ Attr}).

The scheme S𝑖 in Definition 5 is used to encrypt 𝑖 ∈ {Rel,Attr} ∪ {𝐴.Const | 𝐴 ∈ Attr},
i.e., the names of relations, attributes and the constants belonging to different attributes in

an SQL string.

Example 6. For 𝑄 = ’SELECT 𝐴1 FROM 𝑅 WHERE 𝐴2 > 5’
the encrypted query is

Enc(𝑄) =’SELECT EncAttr(𝐴1)
FROM EncRel(𝑅)
WHERE EncAttr(𝐴2) > Enc𝐴2.Const(5)’.

Observe that an encryption scheme for SQL queries as in Definition 5 is not limited to

SQL strings, but works on any string. We use this generalization to encrypt query results.

3.2.1.2. Suitable Equivalence Notions

In this section, we define suitable equivalence notions (cf. Definition 3) for different SQL

query distance measures. We first define all notions, before we investigate how to imple-

ment encryption schemes for SQL queries that fulfill the notions in Section 3.2.1.3. By doing

so, we follow the DisPE procedure. Table 3.2 gives an overview of query distance measures

from literature and the core results of this and the following section. The measures follow

a natural ordering: Within query-string distance, an SQL query is considered simply as a

string. Query-structure distance then takes the structure of the query into account. Finally,

query-result and query-access-area distance are based on the semantics, i.e., result and

execution, of the query. To compute the latter two measures, it is not sufficient to only
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Table 3.2.: Overview of query distance measures.

Distance Measure Shared Information Equivalence Notion 𝑐 EncRel EncAttr Enc𝐴.Const

Log Content Domains

Token-Based Dist. ✓ ✗ ✗ Token Equi. tokens DET DET DET
Query-Structure Dist. ✓ ✗ ✗ Structural Equi. features DET DET PROB
Query-Result Dist. ✓ ✓ ✗ Result Equi. result_tuples DET DET via CryptDB [Pop+11]

Query-Access-Area Dist. ✓ ✗ ✓ Access-Area Equi. access𝐴 DET DET via CryptDB, excp. HOM

share the query log. For instance, to calculate query-result distance, the content of the

database is needed as well (cf. Table 3.2). We discuss this issue when introducing the

measures.

Token-Based Query-String Distance We now introduce token-based query-string distance

and its underlying equivalence notion called token equivalence.

To define query-string distance, one interprets an SQL query as a string and uses a

String-Distance Measure string_dist to calculate the distance, cf. Definition 6.

Definition 6 (Query-String Distance). Let 𝑄1 and 𝑄2 be SQL queries. The query-string
distance of 𝑄1 and 𝑄2 is

𝑑String(𝑄1, 𝑄2) = string_dist(𝑄1, 𝑄2).

There are different types of string-distance measures [CRF+03], but not all of them are

adequate for SQL queries:

Edit Distance. The edit distance 𝑑edit(𝑠1, 𝑠2) is the minimum number of edit operations

(insert, delete, substitute) needed to transform 𝑠1 in 𝑠2. However, intuitively, the edit

distance is not appropriate for SQL strings. For example, the edit distance of two SQL

queries which only differ in the ordering of the relations in the FROM-clause may be

very high. Therefore, we exclude the edit distance from our further considerations.

Token-Based. Token-based distance measures divide a string into tokens (words). Thus,

every Query 𝑄 is represented as a set of tokens, short tokens(𝑄), cf. Example 7. We

summarized predicates of the form 𝐴 Θ 𝐵 to one token to avoid the intuitive issue

that predicates like 𝐴 < 𝐵 and 𝐴 > 𝐵 results in the same token set. Then set distance

measures such as the Jaccard coefficient or cosine distance (via text-to-vector) are used.

Example 7. The token set of the Query

𝑄 = ’SELECT𝐴 FROM 𝑅 WHERE 𝐵 > 5
′

is given by
tokens(𝑄) = {SELECT, 𝐴, FROM, 𝑅, WHERE, 𝐵 > 5}.

In the remainder of this chapter, we focus on token-based query-string distance, short

token-based distance, as stated in Definition 7.

Definition 7 (Token-Based Query-String Distance). Let 𝑄1, 𝑄2 be SQL queries. Then the
token-based query-string distance between 𝑄1 and 𝑄2 is
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𝑑Token(𝑄1, 𝑄2) = 1 − |tokens(𝑄1)∩tokens(𝑄2) ||tokens(𝑄1)∪tokens(𝑄2) | .

Obviously, to calculate this distance, only the queries itself (i.e., the log file) must be shared.

For token-based query-string distance, the characteristic to be preserved is the token set

of the queries, i.e., 𝑐 = tokens. Note that in Definition 8, the encryption algorithm Enc for

SQL queries is used to encrypt a token set. Token-wise encryption using the corresponding

scheme according to Definition 5 implements this. For instance, in Example 8, the Token𝐴

is encrypted using EncRel.

Definition 8 (Token Equivalence). Let 𝑄 be a query. Then Enc ensures token equivalence
for 𝑄 if the following holds:

Enc(tokens(𝑄)) = tokens(Enc(𝑄)).
Lemma 3.2.1. Let Enc be an encryption algorithm for SQL queries. If Enc ensures token
equivalence, then it is token-based query-string distance-preserving.

Proof. Let 𝑄1 and 𝑄2 be SQL queries. If token equivalence holds, we get the same (en-
crypted) token set if we compute it on the plain-text or on cipher-text queries. Obviously, the
cardinalities |tokens(𝑄1) ∩ tokens(𝑄2) | and |tokens(𝑄1) ∪ tokens(𝑄2) | remain the same.
Hence, 𝑑Token remains the same. □

Query-Structure Distance The next distance measure for SQL queries is query-structure

distance. We now state its definition and underlying equivalence notion.

In [Kho+10], the authors extract semantically important features from a query, dubbed

features(𝑄). A feature of a query is a tuple representing a part of its structure. Table 3.3 is

a complete list of features an SQL query can have and Example 8 shows an example.

Example 8. Consider the Query 𝑄 from Example 7. The feature set of 𝑄 is given by

features(𝑄) = {(SELECT, 𝐴), (FROM, 𝑅), (WHERE, 𝐵 >)}.
Now, query-structure distance is defined as stated in Definition 9.

Definition 9 (Query-Structure Distance). Let 𝑄1, 𝑄2 be SQL queries. Then the query-
structure distance between 𝑄1 and 𝑄2 is

𝑑Struc(𝑄1, 𝑄2) = 1 − |features(𝑄1)∩features(𝑄2) ||features(𝑄1)∪features(𝑄2) | .

To calculate query-structure distance, only the queries themselves (i.e., the log file) must

be shared between the organization and the service provider.

Structural equivalence ensures that there is no difference if we first compute the features

of a query and then encrypt the feature set or vice versa. In Definition 10, we encrypt

features of queries, which is realized as explained for token equivalence in Section 3.2.1.2.

Definition 10 (Structural Equivalence). Let𝑄 be a query. Enc ensures structural equivalence
for 𝑄 if the following holds:

Enc(features(𝑄)) = features(Enc(𝑄)).
Lemma 3.2.2. Let Enc be an encryption algorithm for SQL queries. If Enc ensures structural
equivalence, then Enc is query-structure distance-preserving.

Proof. Analogously to the proof of Lemma 3.2.1, as the same arguments regarding set
cardinalities hold. □
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Table 3.3.: Features of an SQL query [Kho+10].

Feature Explanation

(FROM, 𝑅) for every relation, view and relation-valued aggregate function 𝑅 in the FROM-clause

(C, 𝐴) for every attribute 𝐴 in the clause C ∈ {SELECT, WHERE, GROUP BY}
(SELECT, aggr(𝐴1, .., 𝐴𝑛) for every aggregate function aggr and list of attributes 𝐴1, .., 𝐴𝑛 in the SELECT-clause

(WHERE, 𝐴1Θ𝐴2) for every pair of attributes 𝐴1, 𝐴2 and operator Θ that appears in the WHERE-clause

(WHERE, 𝐴Θ) for every predicate 𝐴 Θ const with attribute 𝐴 and operator Θ in the WHERE-clause

(subquery, 𝑜) for every subquery subquery that appears in WHERE-clause in combination with

a set operator 𝑜 ∈ {All, Any, Some, In, Exists} in a predicate

Query-Result Distance The third SQL query distance measure proposed in the literature

is query-result distance. We now state its definition and underlying equivalence notion.

An SQL Query 𝑄 can be represented as the set of tuples in its result [Akb+10]. This

set is given by result_tuples(𝑄). A result tuple is defined by the unique combination of

attribute values. Since result_tuples(𝑄) is a set, there are no duplicates. Every query is

interpreted as a query with the DISTINCT-operator. Query-result distance is defined as

stated in Definition 11.

Definition 11 (Query-Result Distance). Let 𝑄1, and 𝑄2 be two SQL queries. Then the
query-result distance between 𝑄1 and 𝑄2 is

𝑑Res(𝑄1, 𝑄2) = 1 − |result_tuples(𝑄1)∩result_tuples(𝑄2) ||result_tuples(𝑄1)∪result_tuples(𝑄2) | .

It is important that the tuples in result_tuples(𝑄) depend on the state of the database. To

calculate them, we must requery the database. Thus, besides the query log itself, it is

necessary to share parts of the encrypted database as well. In particular, one needs to share

the content of all attributes that are accessed by at least one query in the log. I.e., indices

and constraints are not needed. In Table 3.2, we refer to the part of the database that needs

to be shared as Content.

For query-result distance, the Characteristic 𝑐 to be preserved is 𝑐 = result_tuples.

Definition 12 (Result Equivalence). Let 𝑄 be a query. Then Enc ensures result equivalence
for 𝑄 if

Enc(result_tuples(𝑄)) = result_tuples(Enc(𝑄)) .
Lemma 3.2.3. Let Enc be an encryption algorithm for SQL queries. If Enc ensures result
equivalence, it is result distance-preserving.

Proof. Intuitively, in case result equivalence holds, the number of tuples in the two sets
result_tuples(𝑄1) ∩ result_tuples(𝑄2) and result_tuples(𝑄1) ∪ result_tuples(𝑄2) is the
same for plain-text and cipher-text queries. Thus, the analogous argumentation as stated in
Lemma 3.2.1 holds here as well. □

Query-Access-Area Distance The last query-distance measure from literature is query-

access-area distance, which is based on the part of the data space accessed by a query.

The access area of a Query 𝑄 is the part of the data space accessed by 𝑄 . Hence, it is a

generalization of the result of a query that is independent from the current state of the

database.
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Definition 13 (Access Area [Ngu+15]). Let 𝑄 be a query. The access area of 𝑄 , acccess(𝑄),
contains all tuples that (1) might exist in at least one state allowed by the database, and (2)
whose removal from at least one state would change the result of 𝑄 .

Definition 14 (Attribute-Access Set of a Query [Ngu+15]). An Attribute 𝐴 is in the
Attribute-Access Set Attr𝑄 of a Query 𝑄 if 𝐴 occurs in the FROM-(as join attribute), WHERE-,
GROUP BY-, HAVING- or ORDER BY-clause of 𝑄 .

Definition 13 defines the access area of one query. With the query-access-area distance, we

want to compare the access areas of two queries. According to [Ngu+15], this comparison

takes place attribute-wise, and every attribute that is in the attribute-access set of one

query is considered. Note that Definition 14 leaves aside attributes that occur only in the

SELECT-clause of a query. Next, we compare access areas regarding the attributes in the

access sets.

Definition 15 (Access Area Regarding Attribute). For a Query𝑄 , the access area regarding
an Attribute A, acccess𝐴 (𝑄), is the part of the domain of 𝐴 accessed by 𝑄 .

To compare the access areas regarding attributes, we distinguish between three cases, as

given in Definition 16, with an overlap-quantification Value 𝑥 , which is a design parameter.

Definition 16 (Query-Access-Area Distance). Let 𝑄1, 𝑄2 be SQL queries and Attr𝑄1,𝑄2 the
set of attributes accessed by 𝑄1 or 𝑄2. Then the access-area distance of 𝑄1 and 𝑄2 is

𝑑AE(𝑄1, 𝑄2) = 1

|Attr𝑄1,𝑄2 | ·
∑

𝐴∈Attr𝑄1,𝑄2

𝛿𝐴 (𝑄1, 𝑄2)

where

𝛿𝐴 (𝑄1, 𝑄2) =


0 if acccess𝐴 (𝑄1) = acccess𝐴 (𝑄2)
𝑥 if acccess𝐴 (𝑄1) ∩ acccess𝐴 (𝑄2) ≠ ∅
1 otherwise

for 𝑥 ∈ (0, 1) with a default value of 0.5.

To calculate access-area distance, in contrast to result distance, the content of the underly-

ing database is not needed, but the constraints defining the domain of the attributes. See

Table 3.2 and Example 9.

Example 9. Consider the Queries 𝑄1 and 𝑄2 defined as follows:

𝑄1 =’SELECT * FROM 𝑅 WHERE 𝐴 > 5’,
𝑄2 =’SELECT * FROM 𝑅 WHERE 𝐴 > 3’.

If the domain of Attribute 𝐴 in the database is given by 𝑑𝑜𝑚(𝐴) = [0, 100], then it holds
𝑑𝐴𝐸 (𝑄1, 𝑄2) = 𝛿𝐴 (𝑄1, 𝑄2) = 𝑥 . In case𝑑𝑜𝑚(𝐴) = [10, 100], it is𝑑AE(𝑄1, 𝑄2) = 𝛿𝐴 (𝑄1, 𝑄2) =
0.

With access-area equivalence, it does not matter whether we first encrypt the query

and then compute its access area regarding all attributes or vice versa.
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Definition 17 (Access-Area Equivalence). Let𝑄 be a query and acccess𝑄 its attribute-access
set. Then Enc ensures access-area equivalence for 𝑄 if the following holds:

∀𝐴 ∈ Attr𝑄 : Enc(acccess𝐴 (𝑄)) = acccess𝐴 (Enc(𝑄)) .

Lemma 3.2.4. Let Enc be an encryption algorithm for SQL queries. If Enc ensures access-area
equivalence, then Enc is query-access-area distance-preserving.

Proof. Definition 16 states that Enc is query-access-area distance-preserving if 𝛿𝐴 (𝑄1, 𝑄2) =
𝛿𝐴 (Enc(𝑄1), Enc(𝑄2)) for every Attribute 𝐴. If Enc ensures access-area equivalence, this
equality is given, with the analogous arguments as in Lemma 3.2.1. □

3.2.1.3. Ensuring Equivalence Notions

In this section, we show how to select the appropriate property-preserving encryption

class (cf. Definition 4) to ensure all equivalence notions. To this end, we implement the

encryption algorithms Enc𝐴.Const, EncAttr and EncRel for each equivalence notion.

Token Equivalence For token-based string-distance-preserving encryption, we must en-

sure token equivalence. Lemma 3.2.5 lists the appropriate encryption classes.

Lemma 3.2.5 (Appropriate Encryption Classes for Token Equivalence). To ensure token
equivalence, the following encryption classes are appropriate:

• Enc𝐴.Const = DET,
• EncAttr = DET and
• EncRel = DET.

Proof. For every encryption algorithm, according to Definition 4, we have to show that (1)
the class ensures token equivalence, and that (2) we cannot use an encryption class with a
higher security level. We show this as follows:

Algorithm Enc𝐴.Const. A constant in a query is an element of the token set of the query, as
illustrated in Example 7. To facilitate token equivalence, which is an equality check of
two sets, we cannot rely on the most secure probabilistic classes (i.e., PROB, SEARCH or
HOM), because two constants with the same value result in different cipher-texts. Thus, the
constants must be encrypted with a deterministic scheme, and Enc𝐴.Const = DET for every
Attribute 𝐴 is appropriate.

Algorithm EncAttr. With analogous arguments as for Enc𝐴.Const, EncAttr = DET is appropriate.
Algorithm EncRel. With analogous arguments as for Enc𝐴.Const and EncAttr, EncRel = DET is

appropriate.

Thus, we can find appropriate classes for all three algorithms. □

Structural Equivalence Lemma 3.2.6 states the appropriate encryption classes for struc-

tural equivalence.

Lemma 3.2.6 (Appropriate Encryption Classes for Structural Equivalence). To ensure
structural equivalence, the following encryption classes are appropriate:
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• Enc𝐴.Const = PROB,
• EncAttr = DET and
• EncRel = DET.

Proof. For the three algorithms, the following arguments hold:

Algorithm Enc𝐴.Const. As Table 3.3 shows, features of queries do not contain constants. In
particular, feature extraction removes the constants from the predicates. Thus, since
constants are irrelevant for feature sets of queries, the choice of Enc𝐴.Const = PROB for any
Attribute 𝐴 is appropriate, which is the encryption class with the highest level of security.

Algorithm EncAttr and Algorithm EncRel. Attribute and relation names are part of features (cf.
Table 3.3). Analogously to token equivalence, deterministic schemes are appropriate.

Thus, we can find appropriate classes for all three algorithms. □

Result Equivalence A recent proposal dubbed CryptDB proposed in [Pop+11] already

ensures result equivalence. A core observation in [Pop+11] is that the selection of the

encryption class of Enc𝐴.Const depends on Attribute 𝐴 and its use in query predicates.

Example 10 (Ensuring Result Equivalence). Consider the Predicate ’𝐴 = 5’. Here, a
deterministic encryption scheme for Enc𝐴.Const is sufficient. Next, consider the Predicate ’𝐴 ≤ 5’.
Now, an order-preserving scheme is needed. If 𝐴 is used within the SUM-aggregate function,
i.e., SUM(𝐴), and in a range query, a homomorphic and an order-preserving scheme is needed.
In this case, Enc𝐴.Const consists of two schemes. I.e., in the database, the attribute is encrypted
with both encryption schemes, and during encrypting the query, the correct scheme depending
on the predicate is used.

To conclude, we can use CryptDB to find appropriate encryption classes for Enc𝐴.Const.

However, CryptDB is a database encryption approach and supports ad-hoc queries over

encrypted data. As we encrypt fixed SQL logs, we can modify CryptDB’s approach,

resulting in a higher level of security, as we describe later on. For instance, we can use

stateful schemes to instantiate the classes.

Lemma 3.2.7 (Appropriate Encryption Classes for Result Equivalence). To ensure result
equivalence, the following encryption classes are appropriate:

• Enc𝐴.Const as stated in CryptDB [Pop+11],

• EncAttr = DET and
• EncRel = DET.

Proof. For the three algorithms, the following arguments hold:

Algorithm Enc𝐴.Const. Acording to the occurrences of attribute 𝐴 in predicates, as described in
CryptDB [Pop+11].

Algorithms EncAttr and EncRel. To ensure result equivalence, one must preserve the names of
relations and attributes, to ensure that query execution accesses the correct relations and
attributes. Thus, a deterministic scheme is appropriate.
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Thus, we can find appropriate classes for all three algorithms. □
Query-result distance differs from the previous measures: For the previous ones, one

only has to share the log. For result distance in turn, the encrypted content of the database

must be shared as well. To this end, it is necessary to encrypt not only the log, but also

the database. Thus, we use Enc𝐴.Const, EncAttr and EncRel for database encryption as well.

As we see in Section 3.2.1.4, our security model captures the security of the log file and
the database.

Differences to CryptDB We see two differences to our approach that give way to achieve

a higher level of security:

• As stated in Section 2.2.1, we can use stateful or stateless encryption schemes. In turn,

CryptDB cannot rely on stateful encryption schemes. For attributes encrypted with

an OPE scheme, this yields a higher security level. Experimental results in [Pop+11]

indicate that up to 15.4% of the attributes occurring in real-world logs are encrypted

with an OPE scheme.

• In our setting, the organization does not have to encrypt/share the whole database, but

only the relations/attributes accessed by queries in the log.

Discussion. In contrast to token and structural equivalence, not all SQL queries allowed

by the SQL standard can be encrypted in a way that ensures result equivalence [Pop+11].

This is an inherent issue we must be aware of. For instance, queries containing arbitrary

pattern-matching LIKE predicates besides keyword search, i.e., predicates that SEARCH
schemes can handle, are not supported. However, the results in [Pop+11] suggest that this

affects only a small share of queries occurring in a real-world log. Experiments conducted

there show that, except for a query log over a calendar database containing many string

operations, at most 1.2% of the attributes in the database cannot be encrypted, over five

data sets.

Access-Area Equivalence In contrast to result equivalence, to ensure access-area equiva-

lence, one has to preserve the result tuples of every query with regard to every possible

state of the database. Nevertheless, we can choose nearly the same encryption classes as for

result equivalence, see Lemma 3.2.8. The only special cases are attributes that occur only

in the arithmetic aggregate functions SUM and AVG in the SELECT-clause, i.e., not anywhere

else in a query in the log. Hence, this generally leads to a higher security level. However,

as described in Section 2.2.2.1, the difference is only relevant when considering active

attacks.

Lemma 3.2.8 (Appropriate Encryption Classes for Access-Area Equivalence). To ensure
access-area equivalence, the following encryption classes are appropriate:

• Enc𝐴.Const =

{
PROB if 𝐴 occurs in SUM/AVG in SELECT only

as stated in CryptDB [Pop+11] otherwise

• EncAttr = DET and
• EncRel = DET.
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Proof. The same arguments as in Lemma 3.2.7 apply, as the proof is based on the semantics
of the operators of the relational algebra (e.g., selections) whose access space is independent
from the state of the database. The only exception from Lemma 3.2.7 is the first case of
Enc𝐴.Const. The reason is as follows: For result equivalence, we must choose the HOM-class, if
an arithmetic aggregate function is used in a query in the log. For access-area equivalence,
we do not have to and can use (the most secure) PROB-class, because the semantics of the
aggregate function in the SELECT-clause does not have any influence on the access area. This
area only depends on the grouping applied. This also holds if there is no grouping. Thus, in
case of an attribute to which only queries with an aggregate function in the SELECT-clause
refer to, we use the PROB class. □
As for result equivalence, we can use stateful encryption to instantiate the encryption

classes. In contrast to result equivalence, we do not have to encrypt the content of the

database, but only need to include the minimum and maximum values of the attribute

domains of the attributes, see Example 9.

3.2.1.4. Security Assessment

As we have used known property-preserving encryption schemes from literature, their

level of security is known, and we can reduce the security of the schemes to the security

of the encryption schemes for SQL queries we have just specified.

Example 11 (Security Assessment). As the Figure 2.1 (b) and Table 3.2 show, we often use
the DET-class for encryption and recommend the AES scheme to instantiate it. As mentioned in
Section 2.2.2.1, DET schemes are not secure against chosen-plain-text attacks. But so far, there
does not exist any successful Known-Plain-Text or Cipher-Text-Only Attack against AES3 that
is executable in reasonable time, so we can use the scheme here without any disadvantage.

In particular, as shown in [SK13] and stated once more in Lemma 3.2.9, an encrypted

database is as least as secure against a query log attack as our SQL query encryption

schemes are against attacks on the database. In other words, if the same encryption

schemes are used, an adversary cannot infer more information from the encrypted query

log than from an encrypted database.

Lemma 3.2.9 (Security Assessment of Query Log Attacks [SK13]). Let A ∈ {Cipher-Text-
Only Attack, Known-Plain-Text Attack, Chosen-Plain-Text Attack}. Then a database is at
least as secure against A in terms of query-log attacks as against A in terms of database
attacks.

As we have used property-preserving encryption schemes known from literature, their

level of security is known. Thus, we can reduce the security of the schemes to the security

of the encryption schemes for SQL queries we have just specified [SK13]. In particular,

one can adapt the results from [NKW15] analyzing the security of databases encrypted

with property-preserving encryption schemes. This is intended – executing a full security

analysis for organizations that want to outsource data analysis is practically impossible.

To conclude, we have achieved distance-preserving encryption for every distance mea-

sure with the highest security level possible.

3 https://www.schneier.com/blog/archives/2012/03/can_the_nsa_bre.html (accessed 09/2017)
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3.2.2. Generalization of our Study

Now, we examine how to reuse our concepts when designing distance-preserving encryp-

tion schemes for data different from SQL logs. Our main objective is to see which parts of

the proof are generally applicable, and which extra effort is necessary to apply DisPE. We

illustrate our thoughts by strictly following the steps of DisPE with two types of data sets.

The first one is a query log in another language, namely, XQuery [Cha+03]. The second

one is data stored in a database relation, called relational data in the remainder.

3.2.2.1. Security Model

As mentioned, the security model definition step consists of two parts: (1) specifying the

threat model, and (2) definition of a high-level encryption scheme containing all algorithms

one has to implement. Regarding the first part, the justification why we consider passive

adversaries only is independent of the data and only depends on the scenario. Hence, it is

generally valid.

The high-level encryption highly depends on the type of data considered. However,

a structured data item consists of two parts: (a) a complex type consisting of several

elements, which in turn may have a complex or atomic type and is formed according to a

grammar and (b) the data associated with the atomic elements. In the most use cases, it is

sufficient to encrypt (b), e.g., the relation and attribute names and the constants in an SQL

query, as they contain the confidential information. Examples 12 and 13 illustrate this.

Example 12 (High-Level Encryption Scheme for XQuery). An XQuery statement contains
names of XML-elements and attributes as well as attribute values that are confidential. Thus,
we define the high-level encryption scheme for (1) XML-element names, (2) attribute names
and (3) attribute values for all attributes. As a result, we have a tuple of encryption schemes
with three components, the same as for SQL queries.

Example 13 (High-Level Encryption Scheme for Relational Data). Think of customer
data stored in a table with relation and attribute names as well as attribute values that are
confidential. Thus, we specify the high-level encryption scheme consisting of an encryption
scheme for (1) relation names, (2) attribute names and (3) values of every attribute. As a
result we have a tuple of encryption schemes with three components, very similar to the one
for SQL queries.

3.2.2.2. Suitable Equivalence Notions

An equivalence notion is always defined for a specific distance measure. However, as

Examples 14 and 15 illustrate, the distance measures for SQL queries may be useful for

other data sets as well in many cases, or variations are used, as Example 16 illustrates.

In other words, the equivalence notions introduced earlier are meaningful in broader

contexts.

Example 14 (Equivalence Notions for XQuery.). Token-based string distance, structure
and result distance also are suitable distance measures for XQuery logs. Therefore, we can
leverage the respective equivalence notions. Access-area distance in turn is not suitable here:
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In general, there is no underlying schema. Hence, it is not obvious at all how to generalize the
notion of “access area” for XQuery.

Example 15 (Equivalence Notions for Relational Data – Same Distance Measures). For
relational data, token and structure equivalence are applicable, while result and access-area
equivalence are specific for query languages.

Example 16 (Equivalence Notions for Relational Data – New Distance Measure). Suppose
that one wants to use the token-based distance to analyze the data, but Attribute 𝐴 should be
excluded, i.e., is not part of the token set. Thus, we have a variant of the token-based distance
measure and need a variant of token equivalence.

3.2.2.3. Ensuring Equivalence Notions

We cover three cases, describing the relationship of the equivalence notions defined in Step

2 to our SQL equivalence notions, ordered by the extent of reuse options, in a decreasing

manner:

a) Same Equivalence Notions If the token or structural equivalence is used, one can use

the same encryption schemes as in our case study in Section 3.2. For instance, this is the

case for all distance measures or equivalence notions for the customer data. For result

and access-area equivalence, one cannot directly adapt the schemes for Enc𝐴.Const for SQL

queries, i.e., the CryptDB-approach, because of different execution semantics.

Example 17 (Ensuring Equivalence Notions for XQuery). A core difference between SQL
and XQuery is the use of path expressions, i.e., XPath. For result equivalence, one must ensure
that the evaluation of XPath location steps is the same on plain-text and on cipher-text data.
As we preserve the tree structure of the XML-trees (cf. Example 12), “preserving the locations
steps” only implies the usage of deterministic schemes for relation and attribute names and
ensuring the correct evaluation of predicates, as for SQL.

b) Variants of the Equivalence Notions As Example 16 illustrates, one tends to use variants

of the equivalence notions introduced in our study. In this case, one can reuse parts the

encryption schemes the high-level scheme consists of.

Example 18 (Ensuring Equivalence for Relational Data). Consider the equivalence notion
from Example 16. It differs from token equivalence in that the distance measure does not use
Attribute 𝐴. Thus, we can encrypt the attribute values of the Attribute 𝐴 with a probabilistic
scheme, i.e., Enc𝐴.Const = PROB, and the other encryption algorithms are the same as for SQL
queries.

c) Other Equivalence Notions In case other equivalence notions are used, one must imple-

ment the encryption scheme anew. To this end, one can rely on our notions of appropri-

ateness (Definition 4) and encryption-class taxonomy.
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3.2.2.4. Security Assessment

As long as one uses well-known security schemes to ensure the equivalence notions, such

as the ones in our taxonomy in Figure 2.1, the assessment of the security is known. In

particular, one can adapt the reduction of Lemma 3.2.9 to other types of data. Otherwise, a

full-fledged security analysis is needed, as, for instance, in [BCO11] for order-preserving

encryption.

3.3. Summary

In this chapter, we study how to engineer the highest possible secure encryption schemes

for structured data, such that applications that use distance-based data mining algorithms

deliver the same results on encrypted as on true data. To this end, we propose the notion

of distance-preserving encryption (DPE). With formal arguments, as well as experiments,

we justify that preserving the exact distances upon encryption is the only feasible option.

To engineer (DPE) schemes, we present the DisPE-procedure. It says how to design a

DPE scheme for arbitrary data and distance measures. The procedure involves defining

and ensuring equivalence notions, which capture a characteristic of data that should be

preserved upon encryption. We then instantiate this procedure for SQL query logs. In this

study, we find appropriate DPE schemes for all four prominent distance measures from

literature. For all distance measures, we use well-known property-preserving encryption

classes to implement the DPE schemes and assess their security. This is different from

approaches supporting ad-hoc queries like CryptDB [Pop+11] and gives a way to higher

security levels. Finally, we demonstrate how to reuse of parts of our study by the examples

of XQuery and of relational data.
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Part III.

Differentially Private Monitoring of Infinite
Streams
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4. Fundamentals

In the first part of the thesis, we motivated the privacy-utility trade-off and the scope of

this thesis. One challenge we discussed is how to optimize the utility differentially private

PETs in case the service users are not trusted. In this part, we focus on solutions of this

challenge for PETs processing infinite streams.

This chapter introduces the fundamentals of this part. First, we introduce notation that

is in line with literature and used consistently through this part. Second, we introduce

differential privacy. Table 4.1 summarizes important notation that we introduce in the

remainder, and the links to the scope of this thesis.

Table 4.1.: Important notation used in Part III.

Notation Meaning in Part III Link to Thesis Scope

Static Databases

𝐷 static database with 𝑛 rows & cols A
D set of all static databases with cols A
𝐷𝑡 static database at time 𝑡 true data at time 𝑡

𝐷𝑡 [𝑖] data of row 𝑖 at time 𝑡 (event)

Streams

𝑆 = (𝐷1, .., 𝐷𝑡 , ..) data stream true data

𝑆 [𝑖] = (𝐷1 [𝑖], ..) stream reduced to row 𝑖

𝑆𝑝 = (𝐷1, .., 𝐷𝑝) stream prefix of length 𝑝

𝑆 𝐽 =[𝑡,𝑡 ′ ] = (𝐷𝑡 , .., 𝐷𝑡 ′) sub-stream, a static snapshot of stream 𝑆

𝜋 = [𝜋1, .., 𝜋𝑇 ] sequence of 𝑇 events (pattern)

Queries

𝑄 : 𝐷 → Rdim dim-dimensional query

𝑄 (𝐷) true query result

𝑄 (𝑆) = (𝑄 (𝐷1), · · · ) true query result stream

Δ𝑄 global sensitivity of query 𝑄

Privacy Mechanisms

M : D𝑝 → R𝑝
a mechanism sanitizing stream prefixes PET

M𝑡 : D → R a sub-mechanism ofM at time 𝑡 PET at time 𝑡

𝑟𝑡 =M𝑡 (𝐷𝑡 ) released data at time stamp 𝑡 sanitized data at time 𝑡

𝑅 = (𝑟1, .., 𝑟𝑝) ∈ R𝑝
released stream prefix of length 𝑝 sanitized data
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Stream 𝑆


Individual 𝑡 = 1 𝑡 = 2 𝑡 = 3 · · ·

𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 · · ·
S[1] 1 0 1 1 1 1 · · ·
S[2] 0 0 0 1 0 1 · · ·

Result 𝑄 (𝐷𝑡 ) · · · · · · · · · · · · · · · · · · · · ·

Database Event Pattern

Figure 4.1.: Continuous monitoring of query results.

4.1. Notation

In this section, we introduce notation on static databases, streams and queries. Figure 4.1

illustrates these three concepts and how they relate to each other. It shows that a stream

is an infinite sequence of databases. At each time stamp, the same query is executed over

the database. The application uses these query results continuously.

Static Databases Let 𝐼 = {1, .., 𝑛} be a set of individuals and A = {𝑎1, .., 𝑎𝑘} a set of

activities, like physical activities or appliance usages. The respective static database 𝐷

is a table with column set (cols) A and row set 𝐼 . In accordance with related work on

differential privacy [Dwo+10; Kel+14], we use the term individual, which is, in most cases,

equivalent to the term data owner. A database 𝐷 contains the data of multiple owners.

Nevertheless, there are also cases in which the whole database 𝐷 , i.e., all “individuals”,

belong to only one data owner (see Chapter 6). A static database is not updated over

time [DR+14]. Databases may fulfill a set of deterministic constraints 𝐶 of arbitrary nature,

ensuring the validity of the database with respect to the use case. For instance, one may

constrain the attribute values of one row (intra-individual constraints), or of different

rows (inter-individual) [Zhu+14; LCM16; Cao+18]. An example for the former is that the

two activities running and sitting cannot both be performed at the same time stamp. As

usual, we assume that constraints are public knowledge, meaning that an adversary knows

them [HMD14; Zhu+14; LCM16; Cao+18].

Streams A stream 𝑆 = (𝐷1, 𝐷2, .., 𝐷𝑡 , ..) is an infinite sequence of static databases. For

1 ≤ 𝑖 ≤ 𝑛, row 𝑖 corresponds to the stream 𝑆 [𝑖] = (𝐷1 [𝑖], .., 𝐷𝑡 [𝑖], ..). As Figure 4.1

illustrates, each 𝐷𝑡 [𝑖] is a use-case specific event consisting of states of activities 𝑎1, .., 𝑎𝑘
individual 𝑖 performed, that fulfills the constraints𝐶 . Additionally, a pattern 𝜋 = [𝜋1, .., 𝜋𝑇 ]
a sequence of 𝑇 events. Typically, in streams, the values of databases at different time

stamps are correlated. For instance, in case an individual performs the activity running at

𝑡 = 1, it is very likely that he or she performs it at 𝑡 = 2 as well. In the context of streams,

we use the notions active window and stream prefix first introduced in [Kel+14], and the

term sub-stream, that are defined as follows. The active window of size𝑤 of time stamp

𝑡 spans from time stamps 𝑡 −𝑤 to 𝑡 . A stream prefix 𝑆𝑝 = (𝐷1, .., 𝐷𝑝) is a finite prefix of
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stream 𝑆 having length 𝑝 . A sub-stream of a stream 𝑆 restricted to interval 𝐽 = [𝑡, 𝑡 ′] is a
static snapshots 𝑆 𝐽 = (𝐷𝑡 , .., 𝐷𝑡 ′) of 𝑆 .

Queries A query 𝑄 : D → Rdim maps a static database 𝐷 to dim values being monitored.

Examples are histograms queries reflecting the number of individuals per location (dim =

number of bins), or the sums of the power consumption values of all individuals (dim = 1).

𝑄 (𝑆) stands for the application of 𝑄 to every static database of stream 𝑆 , i.e.,

𝑄 (𝑆) = (𝑄 (𝐷1), 𝑄 (𝐷2), · · · ).

4.2. Differential Privacy

Differential privacy (DP) [Dwo11] and its extensions [Kel+14; HMD14; KM14] is the

current state-of-the-art privacy definition for databases and streams [MHH17]. Originally

developed for static databases containing privacy-critical data about individuals, the idea

is to protect every individual, while allowing to analyze the results of queries executed of

a database as a whole. Therefore, it is also called user-level privacy. However, intuitively,
the more queries the data administrator executes over the same or correlated database, the

higher is the amount of noise the PET needs to add to the result of each query [DR+14].

This results in an infinite amount of noise for infinite query result streams. Consequently,

for streams, PETs rely on rolling window approaches, relaxing the original definition of

differential privacy. The respective definition is called𝑤-event differential privacy.

Subsequently, we first introduce the original definition for static databases, and then

𝑤-event differential privacy for streams.

4.2.1. Differential Privacy for Static Databases

In the remainder, we first provide the formal definition of differential privacy, which

specifies a condition on a so-called mechanism that computes the query results. Second,

we state important mechanisms satisfying this definition. Third, we state properties of

differential privacy that we exploit in this part.

4.2.1.1. Definition

Let D be a set of static databases featuring the same column set A. As stated in Defini-

tion 4.2.1, two databases 𝐷 , 𝐷′ ∈ D are neighbors if one obtains one from the other by

removing or adding one individual, i.e., one row.

Definition 4.2.1 (Neighboring Databases [DR+14]). Let 𝐷,𝐷′ ∈ D be two databases. The
databases are neighboring, short 𝐷,𝐷′ ∈ N , if 𝐷 differs from 𝐷′ by adding, removing or
changing one row.

Differential privacy (DP) requests that the output of a mechanism should be indistin-

guishable, up to a factor of 𝑒𝜖 , for any possible existing pair of neighboring databases, as

stated in Definition 4.2.2. The data administrator sets the desired privacy level 𝜖 , that is
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also known as privacy budget, given by the data owners. It usually lies between 0.1 and

1.0. A smaller value means better privacy.

Definition 4.2.2 (Differential Privacy [Dwo11]). A randomized mechanismM : D → R
gives 𝜖-differential privacy if for all neighboring databases 𝐷 and 𝐷′ and all 𝑅 ∈ R holds,

Pr[M(𝐷) = 𝑅] ≤ 𝑒𝜖 · Pr[M(𝐷′) = 𝑅] .

There exist multiple extensions of this definition. Particularity important extensions

are local differential privacy [Cor+18] and approximate differential privacy [DR+14] as

follows. In local differential privacy, a database belongs to a single data owner, and each

data owner sanitizes its own data. This is useful in scenarios without a trusted, central

data administrator. If not stated otherwise, we rely on the classical, also called global,
definition. Approximate, or (𝜖, 𝛿)- differential privacy [DR+14], allows for an additional

additive factor 𝛿 at the right-hand side of the equation in Definition 4.2.2. Since using too

high (order of
1

| |𝐷 | |1 ) values for 𝛿 is risky (a mechanism releasing a few rows of 𝐷 would be

“private”), and even negligible values of 𝛿 the provided guarantee is weaker [DR+14], we

focus on 𝜖-differential privacy.

4.2.1.2. Mechanisms

Having defined differential privacy, the question is how to engineer a mechanism that

satisfies this definition. In literature, there are a few mechanisms that are usually used

as a building block to implement more complex mechanisms. Particularly relevant are

the Laplace mechanism for numeric [DR+14], and the exponential mechanism [MT07] for

categorical query results. While the primer is based on adding noise to the query results,

the latter is based on sampling. In this part, we use the Laplace mechanism as a building

block, as the query results considered are numeric. Consequently, we now introduce the

Laplace mechanism.

The Laplace mechanism adds data-independent noise to the query results that follows a

zero-mean Laplace distribution. Particular interesting is how the scale of the distribution

is computed. By the definition of the distribution, the higher the scale, the higher is the

expected noise. The scale depends on two factors. First, intuitively, the scale must be

higher if 𝜖 becomes smaller. Second, the scale depends on how much the query results can

vary for neighboring databases. The latter is formalized by the global sensitivity stated

in Definition 4.2.3. For instance, for count queries, i.e., queries that count the number of

row matching a condition, the global sensitivity is 1. The rationale is that the query result

changes by at most 1, in case one row changes.

Definition 4.2.3 (Global Sensitivity [DR+14]). The global sensitivity of a query𝑄 is defined
as

Δ𝑄 := max

𝐷,𝐷 ′∈N
| |𝑄 (𝐷) −𝑄 (𝐷′) | |1.

With that notion, the Laplace mechanism is stated in Theorem 2.

44



4.2. Differential Privacy

Theorem 2 (Laplace Mechanism [DR+14]). For a query 𝑄 , the Laplace mechanism defined
as

M𝐿 (𝑄,D, 𝜖) := 𝑄 (D) + Lap(𝜆)

with 𝜆 =
Δ𝑄
𝜖

provides 𝜖-differential privacy.

4.2.1.3. Properties

Differential privacy features three important properties that we leverage in this part. These

properties are post-processing immunity, sequential and parallel composition, as well as

group differential privacy.

Post-Processing Immunity Post-processing immunity relates to applications that use

sanitized data. As stated in Theorem 3, an application 𝑓 that uses, and potentially modifies,

query results that are computed with a differentially private mechanism still satisfies

differential privacy. This property differentiates differential privacy from other definitions

like k-anonymity [Swe02].

Theorem 3 (Post-Processing Immunity [DR+14]). LetM : D → R be a 𝜖-differentially
private mechanism, and 𝑓 : R → R′ an arbitrary randomized mapping. Then, 𝑓 ◦ M is
𝜖-differentially private.

Sequential and Parallel Composition Composition relates to the execution of more than

one mechanism on the same database. Since every mechanism releases information about

the database, the question is whether and how the privacy level decreases. To answer this

question, we differentiate between (1) running multiple mechanisms on all rows of the

database, and (2) on disjoint horizontal partitions of the database. (1) is called sequential

composition. As stated in Theorem 4, the 𝜖 sum up. (2) is called parallel composition. As

stated in Theorem 5, the overall privacy level equals the worst one.

Theorem4 (Sequential Composition [DR+14]). For 𝑖 ∈ 1, .., 𝑘 , letM𝑖 be an (𝜖𝑖)-differentially

private mechanism. Then, (𝑀1(𝐷), .., 𝑀𝑘 (𝐷)) is (
𝑘∑
𝑖=1

𝜖𝑘)-differentially private.

Theorem 5 (Parallel Composition [McS09]). Let 𝐷1, .., 𝐷𝑘 be a horizontal partitioning
of 𝐷 into partitions, such that each row of 𝐷 is in maximally one partition. Further, for
𝑖 ∈ 1, .., 𝑘 , letM𝑖 be a (𝜖𝑖)-differentially private mechanism. Then, (𝑀1(𝐷1), .., 𝑀𝑘 (𝐷𝑘)) is
( 𝑘
max

𝑖=1
𝜖𝑘)-differentially private.

Group Differential Privacy Group differential privacy is a generalization of Definition 4.2.2.

Here, neighboring databases differ not only in one, but in 𝑘 > 1 rows. For instance, due

to correlation between rows. Theorem 6 states that in this case, the guarantee decreases

to 𝑘 · 𝜖 . Consequently, in order to protect, e.g., 𝑘 = 2 rows, the data administrator has to

double the noise to achieve differential privacy.
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Theorem 6 (Group Differential Privacy [DR+14]). Let M be a 𝜖-differentially private
mechanism. Then, it is (𝑘 · 𝜖)-differentially private for groups of size 𝑘 . That is, let 𝐷,𝐷′ be
two databases that differ in maximum 𝑘 rows. Then, it holds

Pr[M(𝐷) = 𝑅] ≤ 𝑒𝑘 ·𝜖 · Pr[M(𝐷′) = 𝑅] .

Relatedwork generalizes this concept further to arbitrary neighborhood definitions [Cha+13;

HMD14; KM14].

4.2.2. 𝑤 -Event Differential Privacy for Streams

For streams, the𝑤-event differential privacy (DP) is the currently most advanced privacy

definition for streams [Kel+14]. Subsequently, we outline𝑤-event differential privacy, by

stating its definition and how to design mechanisms.

4.2.2.1. Definition

Similar to static differential privacy,𝑤-event DP is based on a neighborhood definition.

Since𝑤-event DP focuses on streams, it leverages the notion of neighboring databases to

define neighboring stream prefixes. Specifically, according to Definition 18, two stream

prefixes are𝑤-neighbors, if (1) the databases collected at each time stamp are pairwise the

same or neighbors, and (2) all neighboring databases fit in a window of size𝑤 . In contrast

to Definition 4.2.1, for constructing neighboring databases, only adding and removing

of rows is allowed, but not the change of a row [Kel+14]. For𝑤 →∞, this definition of

neighboring stream prefixes degenerates to the definition of neighboring databases from

static DP. For𝑤 = 1, it degenerates to event-level DP [Dwo+10].

Definition 18 (𝑤-Neighboring Stream Prefixes [Kel+14]). Let𝑤 be a positive integer, and
𝑡, 𝑡1, 𝑡2 ≤ 𝑝 three time stamps. Two stream prefixes 𝑆𝑝, 𝑆′𝑝 are 𝑤-neighboring, if

1. for each 𝐷𝑡 , 𝐷′𝑡 with 𝐷𝑡 ≠ 𝐷
′
𝑡 , it holds that 𝐷𝑡 , 𝐷

′
𝑡 are neighboring

2. for each 𝐷𝑡1, 𝐷𝑡2, 𝐷
′
𝑡1
, 𝐷′𝑡2 with 𝑡1 < 𝑡2, 𝐷𝑡1 ≠ 𝐷

′
𝑡1
and 𝐷𝑡2 ≠ 𝐷

′
𝑡2
, it holds that 𝑡2−𝑡1+1 ≤ 𝑤 .

With that,𝑤-event differential privacy is given if the query results of all𝑤-neighboring

stream prefixes are hard to distinguish, see Definition 19.

Definition 19 (𝑤-Event 𝜖-Differential Privacy [Kel+14]). LetM : D𝑝 → R𝑝 be a random-
ized mechanism that takes as input a stream prefix of arbitrary size. We say thatM satisfies
𝑤-event 𝜖-differential privacy if for all 𝑅 ∈ Range(M), all𝑤-neighboring stream prefixes
𝑆𝑝, 𝑆

′
𝑝 , and all 𝑝 , it holds that

Pr[M(𝑆𝑝) = 𝑅] ≤ 𝑒𝜖 · Pr[M(𝑆′𝑝) = 𝑅] .

4.2.2.2. Mechanisms

To design mechanisms, Theorem 7 is frequently used [Wan+16b; Kel+14]. It states that

a PET can implement𝑤-event DP by using independent DP mechanisms for each static

databases 𝐷𝑡 at time stamp 𝑡 . For instance, the PET can use the Laplace mechanisms
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for releasing each 𝑄 (𝐷𝑡 ), as long as it ensures that the budget spend by 𝑤 consecutive

mechanisms does not exceed 𝜖 . That is, we can distribute the total budget spend per time

stamp in each rolling window. To illustrate, one important𝑤-event DP mechanism is the

Uniform mechanism [Kel+14] that adds Laplace noise with scale 𝜆(Δ𝑄,𝑤, 𝜖) = Δ𝑄 ·𝑤
𝜖

to

the query results at each time stamp.

Theorem 7 (Composition [Kel+14]). LetM be a mechanism processing a stream prefix
𝑆𝑝 = (𝐷1, .., 𝐷𝑝), and outputting a transcript 𝑅 = (𝑟1, .., 𝑟𝑝). If we can decomposeM into 𝑝
sub-mechanismsM1, ..,M𝑝 , s.t. M𝑡 (𝐷𝑡 ) = 𝑟𝑡 , eachM𝑡 has independent randomness and
achieves 𝜖𝑡 - differential privacy, then,M satisfies𝑤-event differential privacy if

∀𝑡 ∈ [𝑤, 𝑝] :
𝑡∑︁

𝑘=𝑡−𝑤+1
𝜖𝑘 ≤ 𝜖.

4.2.3. Utility Metrics

In this part, we aim at engineering mechanisms that optimize utility. To measure the

achieved utility, metrics are needed.

Generally, there exist two types of utilitymetrics: First, the sanitization error that is given

by the distance between the released and the query result stream [FX14; Kel+14; Li+15a;

Wan+16a; Wan+19; CY15]. Second, utility metrics based on the accuracy of application

results [KBB15; Eib+18]. While the former might not provide enough informative value to

assess the utility in a specific application, the latter might be not be generic enough. In

this part, we use both types of utility metrics.

To quantify the sanitization error, themean absolute error (MAE), andmean relative error

(MRE) are commonly used [FX14; Kel+14; Li+15a; Wan+16a; Wan+19; CY15]. Additionally,

the root mean squared error (RMSE) is used rarely [EL18]. The mean absolute error is

defined by

MAE(𝑄 (𝑆𝑝), 𝑅) =
1

𝑝

𝑝∑︁
𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |,

and the root mean squared error by

RMSE(𝑄 (𝑆𝑝), 𝑅) =

√√√
1

𝑝

𝑝∑︁
𝑡=1

(𝑄 (𝐷𝑡 ) − 𝑟𝑡 )2.

Similar, for 𝛾 ≥ 0, the mean relative error is defined by

MRE(𝑄 (𝑆𝑝), 𝑅) =
1

𝑝

𝑝∑︁
𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |
max {𝑄 (𝐷𝑡 ), 𝛾}

.

Here, 𝛾 is a sanity bound to mitigate the effect of small query results. In this part, for

streams with𝑄 (𝐷𝑡 ) > 0 for all 𝑡 ∈ [1, 𝑝], if not stated otherwise, we use𝛾 = 0. Additionally,

we omit the input parameters of the metrics, if they are clear from the context.
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5. Benchmarking Differential Privacy
Mechanisms for Streams

In the previous chapter, we introduced the fundamentals of𝑤-event differential privacy

(DP).
1
Literature proposes various mechanisms that data administrators can use to san-

itize streams to achieve 𝑤-event differential privacy [Che+17; Li+15a; Che+16; Nie+16;

Wan+16c; Wan+16b]. All of them have in common that they sanitize the stream by adding

noise to the query results. Consequently, the design goal of such mechanisms is to mini-

mize the error the mechanism introduces. That is, one aims at providing high data utility.

There are mechanisms specifically designed at exploiting certain stream properties, such

as sparse streams [Wan+16b]. However, for most mechanisms there is little knowledge

for what stream properties they provide high utility. Consequently, a logical follow-up

question for data administrators is: What mechanism is expected to deliver suitable utility?

A similar question arises for researchers aiming at proposing novel mechanisms to ad-

dress shortcomings of existing ones. Since a theoretical examination mostly targets at the

worst case, to determine the expected utility, they need to rely on empirical studies. For

conducting empirical studies on static data, like relational databases [CSJ15], established

benchmarks exist [Hay+16]. However, for streams, these guidelines hardly help. The

reason is that𝑤-event mechanisms work significantly different using, e.g., rolling window

techniques to keep track of the available budget for each window of size𝑤 . This means

that there is no generally accepted way of benchmarking𝑤-event mechanisms. Instead,

we find that existing studies deviate significantly regarding all relevant elements of a

study, like data streams and competitor mechanisms, making the results hard to compare

as we sketch below. This, in final consequence, limits practical application as well as it

delays scientific progress.

Limitations of Previous Studies Conducting research on𝑤-event differential privacy, we

observe limitations in prior studies referring to all relevant elements of a study: Data

streams, mechanisms used, and interpretation of the computed errors indicating mecha-

nism utility. Specifically, most studies focus on a small set of real-world streams [Che+17;

Li+15a; Che+16; Nie+16; Wan+16c; Wan+16b]. Studies that use artificial data to study the

influence of relevant data properties are only known for static [Hay+16] and finite time

series [FXS13]. Concerning real-world streams, we observe that not all streams are publicly

1
The remainder of this chapter bases on the article Christine Schäler, Thomas Hütter, and Martin Schäler.

Benchmarking the Utility of 𝑤-event Differential Privacy Mechanisms – When Baselines Become Mighty
Competitors. Tech. rep. Karlsruhe Institute of Technology, KIT Scientific Working Papers 194, 2022.

Compared to the article, the sections have been shortened to be less repetitive, contain minor corrections,

as well as formatting and notation changes to be in line with the format and structure of this thesis. After

thesis submission, a revised version of the article was accepted at the VLDB conference [SHS23].
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5. Benchmarking Differential Privacy Mechanisms for Streams

available. Furthermore, in case they are available, mostly a preprocessing is necessary

in order to use them in the study. However, the preprocessing differs highly among

the publications using the same streams [Paw+19; Che+19]. Furthermore, analyzing the

available streams indicates that, especially multi-dimensional streams, are often sparse.

That is, they mainly contain zero values. Thus, publishing the same value all the time,

which one of the baseline mechanisms in essence does [Kel+14], yields good utility at first

sight according to the error metrics most commonly used. Next, quantifying the benefit

the data administrator can achieve if using, e.g., the latest𝑤-event mechanism compared

to a baseline mechanism is virtually impossible, since many studies do not compare to both

baselines. Therefore, it is hard to decide whether an easy-implementable baseline mecha-

nism suffices for the current use case, or whether a sophisticated mechanism is needed.

Moreover, state-of-the-art mechanisms are highly complex and subtle differences in the

implementation or initialization parameters can have a significant effect on mechanism

utility. Unfortunately, for most of them, no implementation is publicly available.

Contributions and Outline Motivated by the above illustrated limitations of previous

experimental studies, we present the following three contributions: First, our literature

analysis reveals the insight that all existing𝑤-event mechanisms follow the same abstract

framework simplifying comparison at qualitative level. We introduce this framework

in Section 5.1.2. Second, in Section 5.2, we identify requirements of a benchmark. The

result of a comprehensive literature survey suggests that all existing empirical studies of

𝑤-event mechanisms can be described by a tuple of four elements: mechanisms, streams,

privacy requirements, and utility metrics. For each element, we outline limitations of prior

studies. Based on that, we propose and justify requirements on the elements, ensuring

the comparability of results. Third, Section 5.3, we show how to instantiate the four-tuple

forming a comprehensive benchmark satisfying the requirements defined before. Fourth,

in Section 5.4, we conduct, the so far largest empirical study comprising 252,000 single

experiments that reveals new insights into the strengths and weaknesses of existing mech-

anisms. Analyzing the results yields three main insights as follows. (1) We systematically

analyzed which stream properties have a high influence on mechanism utility. We observe

that the amplitude, but not the period length, is decisive. (2) We observe an unexpected

baseline supremacy. That is, for every combination of stream and privacy requirements,

one out of two baseline mechanisms is among the mechanisms with the highest utility. (3)

We observe that so-called data-adaptive sampling does not yield a utility improvement

if the amplitudes of the stream is large. Third, considering the benchmark results, we

discuss valuable findings for practitioners, i.e., data owners and administrators, as well as

for the research community. They not only help data administrators to select mechanisms

for their data, but also reveal research directions for future work. Finally, we provide a

summary of this chapter.

5.1. Specific Fundamentals

In this section, we first outline the methodology of our literature survey. Second, we

present the mechanism framework that all identified𝑤-event mechanisms follow.
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Table 5.1.: Overview of identified publications.

BA, BD, FAST𝑤 [Kel+14] PeGaSuS [Che+17]

Retroactive Grouping [CSJ15] Local DP [EL18]

DSAT𝑤 [Li+15a] STBD [Liu+18]

SecWeb [Wan+16c] DPS [Eza+19]

G-event [Che+16] AdaPub [Wan+19]

RGP [Nie+16] DADP [Wan+18]

RescueDP [Wan+16b; Wan+16a] ToPS [Wan+21]

Re-DPoctor [Zha+17] LPD-IDS [Ren+22]

5.1.1. Methodology of Literature Survey

We identify limitations of previous studies by means of a comprehensive survey analyzing

the available 𝑤-event differential privacy literature. Our methodology to identify all

relevant publications is as follows. We search through all publications originating from,

i.e., citing, the original work of 𝑤-event differential privacy [Kel+14]. Additionally, we

scanned the proceedings of the VLDB and ACM SIGMOD conference from the years 2020

to 2022, as well as and ACM CCS conference from the years 2020 to 2021, separately to

not miss the most recent research results in the field. We included all publications that

(i) perform an experimental evaluation on streams (i.e., not only finite time series) and

(ii) are published at notable peer-reviewed conferences or journals. This also includes

publications focusing on event-level differential privacy or own privacy definitions, that

generalize event-level differential privacy or 𝑤-event differential privacy. In total, we

included 17 publications listed in Table 5.1, whereby [Wan+16a] is a journal extension

of [Wan+16b]. Consequently, in the remainder, we condense these two publications into

one publication, and therefore speak about 16 publications.

5.1.2. The𝑤 -event Mechanism Framework

For all identified 𝑤-event differential privacy mechanisms of our literature study, the

individual sub-mechanismsM𝑡 follow one abstract framework shown in Algorithm 2. To

ease up comparison of mechanisms and experimental results, we introduce this framework.

A sub-mechanism has four inputs
2
: The privacy requirements 𝜖 and𝑤 , the database 𝐷𝑡

that shall be queried, as well as the last time stamp 𝑙 where a sub-mechanism released

a sanitized query result. The latter suggests that not at every time stamp the current

query result is sanitized. Instead, previously released ones can be released multiple times.

The output of the sub-mechanism is the released query result 𝑟𝑡 . Intrinsically, the sub-

mechanism implements four functions that are described below. For illustration, Table 5.2

provides example implementations of these functions.

2
Note, individual mechanisms may use additional input parameters intoM𝑡 or the functions, but the idea

remains the same.
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5. Benchmarking Differential Privacy Mechanisms for Streams

Algorithm 2𝑤-event Mechanism Framework

1: functionM𝑡 (𝜖,𝑤, 𝐷𝑡 , 𝑙)

2: if isSamplingPoint(𝜖,𝑤, 𝐷𝑡 , 𝑙) then

3: 𝜖𝑡 ← budgetAllocation(𝜖,𝑤, 𝐷𝑡 , 𝑙)
4: 𝑝𝑡 ← pertubation(𝜖𝑡 ,Δ𝑄, 𝐷𝑡 )
5: 𝑟𝑡 ← filtering(𝑝𝑡 ) ⊲ sanitized query result

6: 𝑙 ← 𝑡

7: else 𝑟𝑡 ← 𝑟𝑙 ⊲ approximation

8: end if

9: return 𝑟𝑡
10: end function

ISSAMPLINGPOINT-Function. At each time stamp, the mechanism decides whether to

sample the time stamp. Sampling means to sanitize the current query result, spending

a portion of the privacy budget 𝜖 to perturb the query result. Then, M𝑡 releases this

sanitized query result. The alternative to sampling is called approximation. Here, the
mechanism approximates the current query result with the one(s) sanitized last at time

stamp 𝑙 . The rationale for approximation is to save budget in case the query results change

only marginally over time.

BUDGETALLOCATION-Function. In case the mechanism decides to sample, this function

determines and allocates the share of privacy budget used for perturbation. Here, the

strategies used among the mechanisms differ highly.

PERTURBATION-Function. In this function, firstly, the mechanism calculates the true query

result. Secondly, it perturbs the query result using the allocated budget. To this end, all

identified mechanisms leverage the Laplace mechanism.

FILTERING-Function. The post-processing immunity of differential privacy stated in Theo-

rem 3 allows to modify the perturbed query results 𝑝𝑡 in an arbitrary way without spending

budget or loosing the privacy guarantee, as long as no private information computed on

𝐷𝑡 is used. Consequently, sub-mechanisms take advantage of this property within the

filtering function to increase utility. A straight-forward filtering function is to truncate

the perturbed query result, such that it fits in the domain Range(𝑄) of the query 𝑄 . For in-

stance, for count queries, Range(𝑄) contains all non-negative integers. During truncating,

the mechanism takes the perturbed query result 𝑝𝑡 and releases𝑚𝑎𝑥 (0, round(𝑝𝑡 )), where
round is a function that rounds a floating point number to the next integer.

5.2. Literature Survey and Benchmarking Requirements

In this section, we state and justify requirements on the elements each empirical study

on 𝑤-event mechanisms consists of. As a result of our survey, we describe a 𝑤-event

differential privacy benchmark with a 4-tuple (M, S, P,E):
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Table 5.2.: Computation of the return values for all functions of the𝑤-event mechanism

framework of the baseline mechanisms Uniform and Sample [Kel+14].

Function Uniform Sample

isSamplingPoint true if w%t=0 then true else false

budgetAllocation 𝜖𝑡 ← 𝜖
𝑤

𝜖𝑡 ← 𝜖

pertubation 𝑝𝑡 ← 𝑄 (𝐷𝑡 ) + Lap( Δ𝑄𝜖𝑡 )
filtering 𝑝𝑡

• M is a set of mechanisms compared,

• S is a set of streams (i.e., data sets),

• P is a set of privacy requirements, i.e., (𝑤 ,𝜖)-tuples,

• E is a set of (error) metrics to quantify mechanism utility.

In the remainder of this section, we describe the elements in more detail. We furthermore

sketch the results of our literature study, illustrating how differently these elements are

instantiated in related work. This makes comparing multiple empirical studies an almost

futile endeavor.

5.2.1. Mechanism SetM

Below, we state five requirements (M-R1) to (M-R5) that the mechanism setM needs to

fulfill. Furthermore, we state how well these requirements are addressed in previous work

proposing or comparing mechanisms. The latter is summarized in Table 5.3.

5.2.1.1. (M-R1) Proofing the Desired Privacy Definition

Upon selecting a mechanism, the most fundamental requirement is that the mechanism

provides the desired privacy guarantee. In our case, this is the𝑤-event differential privacy

definition. To this end, two options exist: (1) The publication leverages the definition

directly. Then the authors need to proof that this definition is satisfied. (2) The publication

proposes a new guarantee, e.g., a generalization of 𝑤-event differential privacy. Then,

the authors need to prove that the proposed mechanism satisfies this new guarantee, and

state how their mechanism can be parameterized such that it fulfills𝑤-event differential

privacy. Though this appears to be self-evident, our survey reveals (cf. Table 5.3) that there

are mechanism propositions without a privacy proof.

5.2.1.2. (M-R2) Inclusion of Baseline Mechanisms Uniform and Sample

In the original publication introducing𝑤-event differential privacy [Kel+14], the authors

propose two baseline algorithms: Uniform and Sample. The proposition is based on the

observation that any mechanism introduces two different types of errors into the stream,

namely, the perturbation and approximation error. As we outline below, for each baseline,

one of them is dominant. Specifically, the perturbation error occurs in the Perturbation

function that perturbs𝑄 (𝐷𝑡 ) by adding noise. The perturbation error thus is the difference
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5. Benchmarking Differential Privacy Mechanisms for Streams

Table 5.3.: Analyzed publications and addressing of Requirements (M-R1) to (M-R5) (✓yes,

✗no, ✓partially). Note, (M-R4) and (M-R5) are not applicable.

Reference Privacy (M-R1) (M-R2) (M-R3)

Definition Proof Baselines Sources

BA, BD, FAST𝑤 [Kel+14] 𝑤-event ✓ Sample, Uniform ✓a

Retroactive Grouping [CSJ15] event-level ✓ Uniform ✗

DSAT𝑤 [Li+15a] 𝑤-event ✓ none
b ✗

SecWeb [Wan+16c] 𝑤-event ✓ Uniform ✗

G-event [Che+16] 𝑤-event ✗ Sample ✗

RGP [Nie+16] 𝑤-event ✓ Uniform ✗

RescueDP [Wan+16b; Wan+16a] 𝑤-event ✓ none ✗

Re-DPoctor [Zha+17] 𝑤-day event ✗c
none ✗

PeGaSuS [Che+17] event-level ✓ Uniform ✗

Local DP [EL18] local𝑤-event ✓ none ✗

STBD [Liu+18] (𝑤 ,𝑛)-DP ✓ Uniform ✗

DPS [Eza+19] local𝑤-event ✗d
Uniform ✗

AdaPub [Wan+19] 𝑤-event ✓ none ✗

DADP [Wan+18] distr. 𝑤-event ✓ none ✗

ToPS [Wan+21] event-level ✓ none ✗

LPD-IDS [Ren+22] local𝑤-event ✓ Sample, Uniform ✗

a
FAST used for FAST𝑤 : http://www.mathcs.emory.edu/ lxiong/aims/FAST/

b
Only the user-level mechanism is compared to Uniform.

c
Relationship to𝑤-event DP missing.

d
Privacy proof missing.

of the true query result 𝑄 (𝐷𝑡 ) to the perturbed one 𝑝𝑡 . The approximation error occurs

when a mechanism decides to not sample and approximates the current𝑄 (𝐷𝑡 ) with the last
released sanitized result 𝑟𝑙 . It is quantified by the difference of the true query result 𝑄 (𝐷𝑡 )
to the last released one 𝑟𝑙 . Especially if query result fluctuation is small, the approximation

error is also small.

Regarding the baseline mechanisms, the mechanism Uniform samples every time stamp

by allocating 𝜖𝑡 =
𝜖
𝑤
budget for perturbation. Therefore, it only introduces perturbation

error. By contrast, the mechanism Sample samples a new query result every 𝑤 th
time

stamp only, and approximates the query results at the remaining time stamps. Thus, it

has the total budget, i.e., 𝜖𝑡 = 𝜖 , for perturbation. Therefore, its error is dominated by

the approximation error. As a result, we suggest including both baseline mechanisms, as

they allow studying the dominant error type and help quantifying the improvement of

a newly proposed mechanism. However, our literature study reveals that 5 out of of 16

publications do not include any of these baselines, while 7 compare to only one baseline.
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5.2.1.3. (M-R3) Availability of Mechanism Implementations

Most mechanisms proposed in literature are intrinsically complex. For instance, for

deciding when to sample multiple mechanism rely on a proportional–integral–derivative
(PID) controller [FXS13; Wan+16b; Li+15a; Bel15] or Kalman filter [FXS13; Wan+16b;

WB95]. At the same time, aiming at validating experimental results, we find that, for a

couple of mechanisms, subtle differences in the implementation or initialization parameters

can have a significant effect on mechanism utility. An example is whether the mechanism

rounds the query result in the Filtering function to the query domain or not. Therefore,

we advocate to make all used implementations available online. However, our literature

survey reveals that for only one out of 16 publications, access to an implementation of

one mechanism is given. Moreover, for the mechanism used in the original 𝑤-event

publication [Kel+14], we got access to re-implemented sources by contacting the authors,

which highly helped to validate our own mechanism implementations.

5.2.1.4. (M-R4) Private Parameter Determination

Generally, all parameters of any mechanism that are computed on the true stream need to

be computed in a private way [Hay+16]. An example is the number of rows in the stream,

which is private information. None of our surveyed publications addresses this requirement

explicitly, even though not all mechanisms sanitize these parameters. However, verifying

this requirement without having access to the concrete mechanism implementation (M-R3)

is practically impossible. In our benchmark later on, we identified that three out of 10

𝑤-event mechanism do not fulfill this requirement. To solve this issue, [Hay+16] suggests

to use mechanism repair functions. We follow this proposal.

5.2.1.5. (M-R5) Homogeneity of Background Knowledge

Most mechanisms use components, like PID controllers [Bel15], that have parameters as

well. Background knowledge of the domain is required to set them optimally. However, in

the benchmark, for comparability, it is important to use them consistently in all mecha-

nisms [Hay+16]. For instance, all mechanisms using a PID controller use it with the same

parameters for the same streams. For the surveyed publications, this does not apply.

5.2.2. Data Stream Set S

Ideally, an empirical comparison consists of two parts. Firstly, researchers conduct a

sequence of micro benchmarks on artificial data to study how stream properties may affect

mechanism utility. Secondly, they use a canon of real-world streams reflecting real-world

use cases.

(S-R1) Artificial Streams Reflecting Stream Properties The survey reveals that artificial

streams are only used in [Ren+22], that uses linear, sine and log streams. However,

although related work [Kel+14; Wan+19; FX14; Ren+22] indicates that mechanism perfor-

mance depends on fluctuations and sparsity of the stream, literature lacks of systematical
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Table 5.4.: Addressing of Requirement (S − 𝑅2): Public availability of real-world streams

used in the publications (✓yes, ✗no/removed, ✓with limitation).

Stream Publicly References Limitation

avaiable in which used

APASCologne ✓ [Eza+19] -

DNS ✗ [Wan+21] -

Fare ✓ [Wan+21] raw data only

Flu Death ✓ [Wan+19] different season

Flu Outpatient ✓ [FX14] different ages & years

Foursquare ✓ [Ren+22] -

GeoLife ✗ [Liu+18] -

Heart rates ✗ [Zha+17] -

Kosarak ✓ [Wan+21] raw data only

Montreal traffic ✗ [CSJ15] -

Nice ride ✓ [Wan+18] -

POS ✗ [Wan+21] -

Retail ✓ [Wan+19] -

Rome traffic 1 ✗ [Kel+14] -

Rome traffic 2 ✗ [Nie+16] -

San Joaq./Oldenburg ✓ [Wan+16a; Wan+16b; Li+15a] data generator only

State Flu ✓ [Wan+19] -

TDrive ✓ [Li+15a; Ren+22] -

Taobao ✓ [Ren+22] requires account

Taxi Porto ✓ [Wan+16a; Wan+16b; Li+15a;

Liu+18; Wan+18]

raw data only

Traffic Seattle ✗ [FX14] -

Unemployment ✓ [FX14] -

US census ✓ [Li+15a] raw data only

WiFi traces 1 ✗ [Che+17] -

WiFi traces 2 ✗ [EL18] -

WorldCup ✓ [Kel+14; Wan+16c; CSJ15;

Che+16; Wan+16a; Wan+16b]

raw data only
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investigations which stream properties are relevant for either mechanism utility or re-

flecting real-world data, and how to define them. In the next section, we propose relevant

properties when instancing the benchmark.

(S-R2) Publicly Available Real-World Streams with Reproducible Prepossessing Our liter-

ature survey reveals that most approaches focus on real-world streams from a specific

use case, such as location monitoring. Even though multiple publications use the streams

(see Table 5.4), the respective study results are not necessarily comparable. The reason

is that, in most studies, the true query result stream is prepossessed and the prepossess-

ing varies highly. We illustrate this by two examples referring to the most frequently

used stream: the WorldCup stream. The underlying raw data set contains the logs of

89,997 URLs of the FIFA 1998 Soccer World Cup website. The first example results from

comparing [Kel+14] with [Wan+16b]. While [Kel+14] refers to all 89,997 web pages, i.e.,

dimensions, [Wan+16b] samples 2,000 of them. The reported mechanism utilities in both

publications indicate that the same mechanisms may have a highly different utility de-

pending on the conducted prepossessing. The second example results from a Bachelor

Thesis project [Wei19]. When trying to reproduce the results of [Kel+14], only after

having access to the prepossessed query result stream kindly provided by the original

authors, we find that the authors conducted an additional preprocessing normalizing the

counts. Note, in both examples, we could verify the hypothesis that the deviation of study

results may originate from stream preprocessing. In many other cases, this remained a

hypothesis. Since we are aware that due to license issues most publications must not

publish their preprocessed streams, it is particularly important that all preprocessing steps

are documented [Paw+19; Che+19].

5.2.3. Privacy Requirements Set P

With𝑤-event differential privacy, data owners express their privacy requirements by a

tuple (𝜖,𝑤). In this tuple, 𝜖 is the available privacy budget and𝑤 is the window length.

Regarding the range of examined privacy budgets, window sizes, and combinations of them,

there is no clear consensus in the literature (see Table 5.5). At least, in each publication

the authors conduct two types of experiments:

(P - R1) Vary-𝜖 The authors examine the influence of 𝜖 for a fixed value of𝑤 . Mostly, 𝜖

between 0.1 and 10 is used.

(P - R2) Vary-𝑤 The authors examine the effect of𝑤 for a fixed value of 𝜖 . Researchers

usually fixes 𝜖 = 1.0.

However, for both types of experiments, there is no consensus at all regarding the

window size𝑤 . The𝑤-values even differ for the same stream. The overall tendency is that

the lower border of𝑤 > 10 holds and the upper border usually is in the low hundreds.
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Table 5.5.: Overview of analyzed publications and addressing of requirements with respect

to P and E (𝑢 unknown, 𝑑 dimension, n.a. not applicable, - not performed).

Reference (P - R1) (P - R2) (E - R)

Vary-𝜖 Vary-𝑤 Utility metrics

(𝜖,𝑤) (𝑤, 𝜖)

[Kel+14] - ([40,200], 1) MAE, MRE 𝛾 = 𝑢

[CSJ15] ([0.02,0.1], 1) n.a. MAE, MRE 𝛾 = 𝑢

[Li+15a] ([0.5,1], 800) ([200,1000], 𝑢) total sum of squared error

[Wan+16c] ([0.01,1], 120) ([40,240], 1) MAE, MRE 𝛾 = 1

[Che+16] ([0.5,1.5], 𝑢) ([40,200], 𝑢) MAE, MRE 𝛾𝑑 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑]

[Nie+16] ({0.5,1.0}, 1) ({10,50}, 𝑢) MRE 𝛾 = 𝑢

[Wan+16b; Wan+16a] ([0.1,1], 200) ([40,240], 1) MAE, MRE 𝛾𝑑 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑]

[Zha+17] ([0.5,1.5],14) ([7,35],1) MAE, MRE 𝛾 = 0.05% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 )

[Che+17] ({0.01, 0.1},1) n.a. MAE, true positive rate

[EL18] ({1.1,1.9},4) ([10,100],1) MAE, RMSE

[Liu+18] ([0.2,1.0],120) ([40,200],1) MAE

[Eza+19] - ([0.01,1], 𝑢) unspecified “average error”

[Wan+19] ([0.1,0.9], 100) ([40,200], 1) MRE 𝛾𝑑 = 1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑]

[Wan+18] ([0.1,1],40) (1.0, [20,200]) MAE, MRE 𝛾 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 )

[Wan+21] ([0.01,0.5],1) n.a. mean squared error

[Ren+22] ({0.5, 2.5},20) ({10, 50},1) MRE 𝛾𝑑 = 𝑢, event monitoring ratio

5.2.4. Error Metrics Set E

As Table 5.5 shows, to determine the utility of a mechanism, researchers usually quantify

the error between the true and sanitized stream according to an error metric. As shown in

Table 5.5, most studies use the mean absolute error (MAE) or the mean relative error (MRE),

as defined in Section 4.2.3. However, there are subtle differences in the error calculation.

This applies in particular to the selection of the sanity bound of the MRE. For instance,

[Wan+16b] uses a data-dependent sanity bound 𝛾 , whereas [Che+16] fixes 𝛾 = 1.0 for the

WorldCup stream. In three publications, the sanity bound is not stated at all, even though

the used streams contain query results of 0, requiring 𝛾 > 0. Moreover, since mechanisms

rely on random values, two runs of the same mechanism using the same combination of

stream and privacy requirements may result in a highly different error. Consequently,

[Hay+16] suggests to run each combination multiple times, and compare the average and

the 0.95-quantile of the error.

5.3. Benchmark Definition

The subject of this section is the definition of the benchmark, we conduct in the next section.

It is based upon the 4-tuple representation introduced in Section 5.2. Table 5.6 shows a

brief overview of the selection of the elements, resulting in the so far largest empirical

study, comprising 252,000 single experiments, i.e., mechanism runs. In the remainder

of this section, for each of the elements, we explain how to address the requirements
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Table 5.6.: Instantiation of the 4-Tuple (M, S, P,E).
Elem. Instantiation

M (1) Baselines: Sample [Kel+14], Uniform [Kel+14];

(2) Competitors: FAST𝑤 [Kel+14], BD [Kel+14], BA [Kel+14], DSAT𝑤 [Li+15a],

RescueDP [Wan+16b; Wan+16a], AdaPub [Wan+19], PeGaSuS [Che+17]

S (1) 20 artificial seasonal streams with dim = 1

(2) 8 real-world streams from Table 5.4:

WorldCup, Taxi Porto, Flu Outpatient, TDrive, State Flu, Flu Death, Retail, and

Unemployment

P (1) Vary-𝜖 : 𝜖 ∈ [0.1, 1.0],𝑤 = 120

(2) Vary-𝑤 : 𝑤 ∈ [40, 200] , 𝜖 = 1.0

E (1) Average MAE over 100 runs

(2) Average MRE with 𝛾𝑑 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑] for dimension 𝑑 over 100 runs

(3) Comparison of average error with 0.95 quantile of error

associated to each element as well as how we ensure validity and comprehensiveness of

study results.

5.3.1. Mechanism SetM

Below, we explain how to select the mechanisms for our empirical study. We specifically

outline that the selection ensures comprehensiveness and validity of the intended results.

To this end, we state how we address the requirements identified in Section 5.2.

5.3.1.1. (M-R1)-(M-R2) Considered Mechanisms

We include (1) the baseline mechanisms Sample and Uniform, as well as (2) all mechanisms

found in our literature study that either (a) support (global)𝑤-event differential privacy

directly or can be parameterized such that they achieve𝑤-event differential privacy. We

exclude mechanisms providing local or distributed𝑤-event differential privacy, since, by

the nature of the privacy definition, their utility is lower than the one of pure 𝑤-event

differential privacy mechanisms [Cor+18; Wan+18; Ren+22]. We furthermore include (b)

all mechanisms used as competitors in one of the publications that propose a mechanism

in (a). According to Table 5.3, criterion (a) applies to FAST𝑤 [Kel+14], DSAT𝑤 [Li+15a],

SecWeb [Wan+16c], RGP [Nie+16], RescueDP [Wan+16b; Wan+16a] andAdaPub [Wan+19].

Since SecWeb is a prequel of RescueDP, we do not include SecWeb in our experimental study.

We additionally exclude RGP because it is only applicable to specific query streams, namely,

to hierarchic location count streams. The second criterion (b) suggests including PeGaSuS

as well, because [Wan+19] that proposes AdaPub uses it as competitor. However, we do

not include Uniform with backwards smoothing used in the PeGasuS publication [Che+17]

explicitly, as preliminary experiments revealed that it does not yield a substantial utility

improvement compared to Uniform. Since PeGaSuS provides event-level DP only, we adjust
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5. Benchmarking Differential Privacy Mechanisms for Streams

it such that it provides𝑤-event differential privacy. Inspired by the Uniform mechanism,

we do this by providing a budget of 𝜖𝑡 =
𝜖
𝑤
per time stamp 𝑡 . Analogously to the proof

in [Kel+14], PeGaSuS then fulfills𝑤-event differential privacy.

5.3.1.2. (M-R4) Private Parameter Determination

A pivotal requirement is that all mechanism determine data-dependent parameters in a

private way. As discussed in Section 5.2, we use mechanism repair functions whenever we

find parameters that are not determined in a private way. Specifically, we use the following

repair functions.

DSAT𝑤 Repair Function. This mechanism uses the number of rows, i.e., total count at

each time stamp, in the stream. Since streams that feature a different number of rows are

neighboring, this is private information. We repair DSAT𝑤 as follows: We calculate the

total counts at the first time stamp, and perturb it by spending 10% of the privacy budget

allocated for 𝑡 = 1. To keep the privacy guarantee, we reduce the perturbation budget

allocated at time stamp 𝑡 = 1 accordingly. If the sanitized total count equals zero, the

repair function uses the value 5,000 also used in the original publication [Li+15a].

BD/BA – Column Partitioning Repair Function Mechanisms BA and BDmay use an optimiza-

tion requiring to group the dimensions based on their correlation. Since non-coincidental

correlation among dimensions is private information, it needs to be determined in a private

way. This also holds despite the observation in the original publication [Kel+14] that both

mechanisms are very sensitive towards this parameter. The original results indicate the

number of groups should be rather small. For instance, on the WorldCup stream, they

achieve the best results with 150 groups for 89,997 dimensions [Kel+14]. Consequently,

we repair BD by using 0.2% of the dimensions as number of groups. We do not group in

BA, because initial tests suggest no significant improvement.

5.3.1.3. (M-R5) Homogeneity of Background Knowledge

Except Uniform, Sample, BD and BA, all mechanisms use components, like a PID controller

relying on configuration parameters. If a mechanism is the only one using a specific

parameter, we set it as given in the publication. If mechanisms share parameters, we set

these parameters consistently in all mechanisms. Specifically, there are two parameters

used in more than one mechanism: (1) The desired sampling rate used in FAST𝑤 and DSAT.

The FAST publication [FXS13], a subroutine of FAST𝑤 [Kel+14], uses a rather high (15%)

sampling rate, while the publication proposing DSAT𝑤 uses a rather small one (1%). As

preliminary experiments revealed that both mechanisms tend to provide higher utility for

higher rates, we use 15% as desired sampling rate in both mechanisms. (2) The parameters

of the PID controller, that is used in FAST𝑤 , RescueDP and DSAT𝑤 . While the publications

proposing RescueDP [Wan+16b; Wan+16a] and FAST [FXS13] suggest the same parameter

values, the values used in [Li+15a] proposing DSAT𝑤 differ from them. However, while

in DSAT𝑤 , the PID controller controls the change in the sampling rate, in RescueDP and

FAST𝑤 , it controls the change in the sanitized values. Consequently, the operational
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purpose of the use of the PID controller is different. As a result, for each mechanism, we

use the parameters suggested in the respective publication.

5.3.1.4. (M-R3) Mechanism Implementation

A correct implementation of the mechanisms is a key factor to ensure result validity.

We ensure validity of our results by the following four key principles: (i) favor original

implementation, (ii) re-use of well-known mechanism parts, (iii) consistency checks of

independent implementations, and (iv) contact original authors if necessary. Next, we

explain these principles in more detail: First, in case the publication proposing amechanism

offers an implementation, we use this implementation. However, as shown in Table 5.3,

this only holds for one mechanism, namely, FAST𝑤 . Second, multiple mechanisms use the

same component (e.g., the sampler), which is itself available open source. For instance,

FAST𝑤 uses a Kalman filter and PID controller. In such cases, we use this component

consistently in all mechanisms. Third, all mechanisms are implemented redundantly

and independently by up to three different people, eventually all leading to consistent

results. Nevertheless, our results do partially highly deviate from the results in the original

publications. Consequently, we contacted the original authors of [Kel+14] proposing

𝑤-event differential privacy and thankfully received implementations from them. This not

only helped to ensure that all baselines and advanced mechanisms proposed in [Kel+14]

are correct, but also for principle (ii) since we had more mechanism parts for re-usage.

5.3.2. Data Streams Set S

Concerning the data streams, we follow the requirements from Section 5.2 as follows:

Firstly, to account for (S-R1), we conduct a series of micro benchmarks with artificial data.

Secondly, to account for (S-R2), we conduct experiments on a comprehensive set of data

streams used in literature.

5.3.2.1. (S-R1) Artificial Streams Reflecting Stream Properties

The intention behind using artificial data is to study the influence of relevant stream

properties on mechanism utility in a structured way. Generating meaningful artificial

data is a challenge. For streams in general, there are various properties known to have an

influence on data processing. This includes their dimensionality, as well as the compo-

nents seasonality, level, and trend [HA18]. However, so far, it has not been investigated

systemically which properties the real-world streams used in previous studies have, and

howmuch these properties influence the mechanism utility. In the remainder, we first state

for each property, (a) which of these properties do occur in the real-world streams from

Table 5.4, and (b) how we design our artificial data generator such that we can investigate

each of the properties in isolation. Then, we present the generator itself.

Dimensionality The streams in Table 5.4 so far have dimensionality between 1 and

80,000. In our micro benchmark, however, we consider univariate query result per time

stamp (i.e., dim = 1). The rational is that we aim to understand how well a mechanism
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(b) Flu Death stream.

Figure 5.1.: Comparison of an artificially generated data stream and a real-world stream.

retains the utility of the stream using clever budget allocation, sampling, and filtering,

leveraging the inertia of the stream. By using dim = 1, we intentionally exclude in the

micro benchmarks the additional utility improvement some mechanisms gain by taking

advantage of correlated dimensions. The reason is that introducing known correlations in

multi-dimensional streams is highly challenging.

Level Most seasonal streams feature inter-seasonal downtimes, where 𝑄 (𝐷𝑡 ) is close
to zero (cf. Figure 5.1 (b)). The minimum query result is usually also the most frequent

one. To decouple the level from the seasonality, we quantify the level by the minimum

query result 𝑞min. The minimum query result of the stream influences mechanism utility in

case the mechanism uses the filtering technique truncating (cf. Section 5.1.2). For queries

like Count and Histogram, truncating rounds negative perturbed query results to zero.

Consequently, whenever the Laplace mechanism adds a negative amount of noise of, e.g.,

−10, which holds in half of the cases, the mechanism releases the true query result instead.

By contrast, if 𝑄 (𝐷𝑡 ) = 10, the mechanism introduces a relative error of 100%.

Seasonality We observed that most real-world streams have a seasonality, with an expo-

nential growth and shrinking phase. The maximum query result 𝑞max the stream reaches

varies highly from stream to stream. The perturbation and approximation error are however

clearly influenced by the length of the seasons 𝑠 , and the difference between minimum and

maximum query result, named amplitude. Thus, we test the mechanism utility with respect

to both. Since we use 𝑞min = 0, for the amplitude 𝑎, generally described by 𝑎 = 𝑞max −𝑞min,

the following holds: 𝑎 = 𝑞max. In the micro benchmarks, we generate streams for every

combination of 𝑠 ∈ {40; 60; 80; 10; 120} and 𝑎 = 𝑞max ∈ {10; 100; 10, 00; 10, 000} reflecting
values observed in real-world streams.

Trend We do not observe a trend in the sanitized streams from Table 5.4 used so far.

Therefore, we discard this property.
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Algorithm 3 Data Generator

1: function generateStream(𝑝, 𝑠, 𝑎)

2: 𝑡 ← 1, 𝑒 ← 1.5

3: while 𝑡 < 𝑝 do ⊲ Each loop generates one season

4: sl← G(𝑠, 2) ⊲ Dice season length

5: val← G(8, 2) ⊲ Dice season minimum, close to 0

6: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +
7: for 𝑖 = 1 to sl/2 do
8: 𝑣𝑎𝑙 ← 𝑒 ·𝑄 (𝐷𝑡−1) ⊲ Exponential growth

9: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +
10: end for

11: . . . ⊲ Symmetric shrinking phase

12: end while

13: max← max{𝑄 (𝐷1), .., 𝑄 (𝐷𝑝−1)}
14: for 𝑖 = 1 to 𝑝 do

15: 𝑄 (𝐷𝑖) ← 𝑄 (𝐷𝑖)/max · 𝑎 ⊲ Ensure desired amplitude

16: end for

17: return 𝑄 (𝐷1), .., 𝑄 (𝐷𝑝) ⊲ Ensure correct length

18: end function

Data Generator. Figure 5.1 shows example data, we generated using our data generation

algorithm shown in Algorithm 3. Generally, the artificial data shall be similar to one-

dimensional streams used in other studies. For the depicted data, we use 𝑝 = 400 time

stamps, amplitude 𝑎 = 𝑞max = 600, and an average season length 𝑠 = 40. Since in

reality, not all periods have exactly the same length, we dice the length of each seasonal

with G(𝑠 = 40, 2). For the growing phase, we use an exponential growth function with

𝑄 (𝐷𝑡 ) = 𝑒 · 𝑄 (𝐷𝑡−1) with 𝑒 = 1.5. The, shrinking phase is symmetric to the growing

phase. Next, we also mimic inter-seasonal downtime by dicing the season minimum with

G(𝑠 = 8, 2), i.e, some value close to zero. Since, the maximum value of the stream generated

this way depends on the actual length of the season and the diced minimal values, we

need to normalize it to the desired amplitude 𝑎. Finally, because the algorithm generates

the stream season-wise, it may be to long. Thus, we return the stream prefix until time

stamp 𝑝 .

5.3.2.2. (S-R2) Publicly Available Real-World Streams with Reproducible Prepossessing

For comprehensiveness, we use all real-world streams that are freely available and used at

least once to evaluate a𝑤-event differential privacy mechanism. According to Table 5.4,

these are: WorldCup, Taxi Porto, Flu Outpatient, TDrive, State Flu, Flu Death, Retail

and Unemployment. All of them use a query 𝑄 with Δ𝑄 = 1. As far as possible, we post-

processed them according to one of the respective publications. To encourage comparability

and reproducibility and post-processing details at our project website
3
.

3 https://dbresearch.uni-salzburg.at/projects/dpbench/index.html
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5.3.3. Privacy Requirements Set P

Inspired by the experimental studies from related work, we conduct the vary-𝜖 and vary-𝑤

experiments, fulfilling (P-R1) and (P-R2). For the vary-𝜖 experiment, we select a reasonably

large value for parameter𝑤 , which is𝑤 = 120. For the range of 𝜖 values to test, we use,

in accordance with most studies, 𝜖 ∈ [0.1, 1] with an increment of 0.2. For the vary-𝑤

experiments, we use 𝜖 = 1 as most studies do. Furthermore, we vary𝑤 ∈ [40, 200] with a

𝑤 increment of 40, like various previous studies.

5.3.4. Error Metrics Set E

Since the mechanisms rely on randomness, for the same combination of privacy require-

ments and stream, the utility can differ highly in two mechanism runs. In accordance with

various studies from related work, we run each experiment 100 times, and use the average

MAE and average MRE (with 𝛾𝑑 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑] for dimension 𝑑) to quantify the

error the mechanisms introduce into the sanitized data. Besides the average error, we

additionally quantify the variance of the error as suggested by [Hay+16] for static (i.e.,

standard) differential privacy. To this end, we measure the 0.95 quantile of the MAE and

MRE reflecting a “risk averse” data owner.

5.4. Results

In this section, we present and interpret the results of our study. First, we present the

results of the artificial streams aiming at understanding the influence of stream properties

on the mechanism utility. Second, we show the results of one-dimensional and multi-

dimensional real-world streams to confirm our results on artificial streams and reveal

insights on the preservation of stream properties in the released query results. Finally,

we conclude the section with a discussion of our findings giving recommendations for

practitioners and future research.

5.4.1. One-dimensional Artificial Streams

With the artificial streams, we aim at understanding how the two identified stream proper-

ties seasonal period length 𝑠 and amplitude 𝑎 affect the mechanism utility. Specifically, we

are interested in the perspective of a data administrator aiming at selecting a mechanism

for a given stream and privacy requirement. Consequently, we ask two research questions:

(RQ1) Are the stream properties decisive for mechanism selection?

(RQ2) If yes: Given a seasonal period length 𝑠 , an amplitude 𝑎 and privacy require-

ments (𝜖,𝑤 ), can we recommend a mechanism and/or function design?

For brevity, we subsequently focus on the meanMAE denoted with MAE to answer these

questions. This is valid, because the result patters for the 0.95 quantile of MAE and the

MRE are similar. To make the mechanisms MAEs comparable over all streams and privacy

requirements, we consider the MAE deterioration 𝛿MAE(𝑐) for a specific combination

𝑐 = (𝑚 ∈ M, (𝑠 , 𝑎), (𝜖,𝑤) ∈ P) of mechanisms, stream properties, and privacy requirements.
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Uniform Sample AdaPub

a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 120.6 62.0 16.4 2.0 0.1 1.0 1.0 2.1 2.6 0.1 150.5 77.5 20.4 2.5

0.3 102.7 25.8 6.0 1.1 0.3 1.0 1.1 2.3 4.1 0.3 127.8 32.3 7.4 1.3

0.5 88.6 26.4 3.8 1.0 0.5 1.0 1.8 2.4 6.4 0.5 110.0 33.2 4.7 1.2

0.7 73.4 21.8 2.9 1.0 0.7 1.0 2.0 2.6 9.0 0.7 91.8 27.1 3.6 1.2

0.9 64.7 19.1 2.2 1.0 0.9 1.0 2.3 2.6 11.5 0.9 81.1 24.0 2.8 1.2

1 61.3 17.4 2.1 1.0 1 1.0 2.3 2.6 12.8 1 76.4 21.7 2.6 1.2

BA BD DSATw
a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 90.2 46.1 12.3 1.7 0.1 393.0 199.1 49.3 6.6 0.1 89.1 47.1 12.5 2.0

0.3 76.3 19.1 4.5 1.0 0.3 311.1 77.6 18.0 4.5 0.3 81.1 21.3 5.0 1.7

0.5 66.5 19.8 3.0 1.0 0.5 277.1 84.1 12.0 4.8 0.5 70.3 22.0 3.4 2.5

0.7 54.7 16.1 2.3 1.1 0.7 247.4 66.8 9.9 6.0 0.7 62.1 17.7 2.7 3.2

0.9 48.5 14.1 1.8 1.1 0.9 205.5 61.5 7.4 6.3 0.9 54.9 15.6 2.2 4.0

1 45.1 12.9 1.7 1.1 1 199.9 52.0 6.7 6.9 1 50.3 13.2 2.0 4.5

FASTw PeGaSuS RescueDP

a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 8.2 4.2 1.5 1.0 0.1 150.3 77.3 20.3 2.5 0.1 6.7 3.2 1.0 25.7

0.3 6.8 1.9 1.0 1.5 0.3 127.6 32.4 7.5 1.3 0.3 5.9 1.0 1.6 625.7

0.5 5.6 2.0 1.0 2.4 0.5 109.8 33.0 4.7 1.3 0.5 5.2 1.0 3.9 1,768

0.7 4.8 1.8 1.0 3.3 0.7 92.0 27.0 3.6 1.2 0.7 4.1 1.0 9.6 1,585

0.9 4.2 1.6 1.0 4.3 0.9 80.7 23.9 2.8 1.3 0.9 3.0 1.0 27.0 3,201

1 3.9 1.5 1.0 4.7 1 76.4 21.6 2.6 1.3 1 3.2 1.0 39.0 1,977 1
1
,0
0
0

δMAE

(a) Vary-𝜖 experiments with𝑤 = 120.

Uniform Sample AdaPub

a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 20.1 4.8 1.1 1.0 40 1.0 1.9 4.0 37.5 40 25.1 6.1 1.3 1.2

80 66.6 17.5 2.0 1.0 80 1.0 1.0 1.0 4.9 80 83.2 21.9 2.5 1.2

120 60.7 17.4 2.1 1.0 120 1.0 2.3 2.6 12.8 120 76.0 21.8 2.6 1.2

160 133.1 35.3 4.0 1.0 160 1.0 1.0 1.0 2.5 160 168.0 44.2 5.0 1.3

200 96.7 26.3 4.2 1.0 200 1.0 2.0 3.2 7.5 200 120.5 32.9 5.3 1.2

BA BD DSATw
a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 14.7 3.7 1.0 1.3 40 22.7 5.4 1.4 2.3 40 17.6 4.3 1.8 11.6

80 49.9 13.3 1.7 1.2 80 142.2 37.8 4.7 6.6 80 58.6 14.5 2.7 10.6

120 44.6 13.1 1.7 1.1 120 180.7 54.6 7.3 6.7 120 51.1 14.8 2.1 4.4

160 99.4 26.1 3.2 1.1 160 552.2 137.7 17.3 9.4 160 103.7 28.3 3.8 4.6

200 71.9 19.4 3.3 1.0 200 411.7 126.4 20.6 8.7 200 74.4 21.6 4.0 3.3

FASTw PeGaSuS RescueDP

a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 2.2 1.0 1.6 14.3 40 25.3 6.1 1.3 1.2 40 1.4 1.0 1.2 1.6

80 4.9 1.9 1.1 4.9 80 83.5 21.9 2.5 1.3 80 3.9 1.5 9.0 32.3

120 4.0 1.5 1.0 4.7 120 75.3 21.7 2.6 1.2 120 3.0 1.0 37.1 2,572

160 8.4 2.6 1.1 2.5 160 167.1 44.2 5.0 1.2 160 6.5 1.6 281.3 2.8•105

200 6.1 1.9 1.0 2.1 200 120.3 32.8 5.3 1.2 200 3.2 1.0 117.7 2.0•107 1
1
,0
0
0

δMAE

(b) Vary-𝑤 experiments with 𝜖 = 1.0.

Figure 5.2.: 𝛿MAE values of the vary-𝜖 and vary-𝑤 experiments for a period length of 𝑠 = 80.
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The MAE deterioration specifies how worse the MAE of a specific combination 𝑐 is,

compared to the best mechanisms for this combination of stream properties and privacy

requirements:

𝛿MAE(𝑚, (𝑠, 𝑎), (𝜖,𝑤)) =
MAE(𝑚, 𝑠, 𝑎, 𝜖,𝑤)

min{MAE(𝑚′, 𝑠, 𝑎, 𝜖,𝑤) |𝑚′ ∈ M} .

In Figure 5.2, we use a color gradient marking small values, i.e., relatively high utility,

in green and large values in red. Subsequently, we present and discuss the results with

respect to the two research questions.

5.4.1.1. (RQ1) Are the Stream Properties decisive for Mechanism Selection?

For answering this question, we investigate the influence of the stream properties amplitude

𝑎 and period length 𝑠 on the MAE, and compare the influence to the influence of the privacy

requirements 𝜖 and 𝑤 . Firstly, the raw MAE results (not illustrated) of the vary-𝜖 and

vary-𝑤 experiments indicate that for the most mechanisms, utility behaves as expected.

Specifically, they show a proportional MAE increase or decrease, towards a change of the

privacy requirements. That is, for instance, in case we fix 𝑎 and 𝑠 and double the available

budget 𝜖 , keeping 𝑤 constant, we observe that the MAE declines by roughly Factor 2.

The only notable exception is RescueDP, which has issues benefiting from higher budget

in case the amplitude 𝑎 > 1, 000 holds. However, RescueDP is specifically designed for

publishing multi-dimensional data with small amplitudes, explaining this result.

Regarding the influence of the period length 𝑠 , we observe that, in case we fix 𝑎, 𝜖 and

𝑤 , the MAE deterioration 𝛿MAE is equivalent for each 𝑠 . Consequently, the period length is

not decisive. By contrast, as Figure 5.2 showing 𝛿MAE for a period length 𝑠 = 80 illustrates,

the amplitude 𝑎 is highly decisive. Here, we observe that e.g. for 𝑎 = 10 and 𝜖 = 0.1,

Sample has the lowest MAE. However, for 𝑎 = 10, 000 and 𝜖 = 1.0, AdaPub has the lowest

MAE. The general observation is that, independent of all other investigated parameters

like, season length 𝑠 , 𝜖 or𝑤 , there are mechanisms featuring high utility either for small,

or for large amplitudes.

5.4.1.2. (RQ2) Can we Recommend a Mechanism for Specific Stream Properties and Privacy
Requirements?

Considering Figure 5.2, we observe that for every combination of stream properties and

privacy requirements, either Sample or Uniform is among the mechanisms delivering

the smallest MAE. This is surprising, since it means that baseline mechanisms frequently

beat sophisticated mechanisms. Subsequently, we first explain for which combinations of

amplitude and privacy requirements Uniform, or Sample, respectively, deliver the smallest

MAE. Secondly, we outline issues regarding hypersensitive data-adaptive sampling that

sophisticated mechanisms face explaining the observed results. In the remainder of this

chapter, we are particularly interested to examine whether this unexpected observation

also holds for real-world streams.
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Uniform Supremacy Our results suggest that mechanism Uniform is among the best

mechanisms in case the amplitude 𝑎 is large (i.e, 𝑎 ≥ 1, 000) and the privacy requirements

are not restrictive (i.e., large 𝜖 , small𝑤 ). The larger 𝑎 is, the less important is the restric-

tiveness. The expected MAE of Uniform is data-independent, given by MAE =
𝑤
𝜖
. Thus, in

case Uniform is among the best mechanisms, this tells us little about the MAE of Uniform.

Instead, the message is that the budget more sophisticated mechanisms invest, e.g., for

data-adaptive sampling does not pay off, as they have an MAE exceeding
𝑤
𝜖
. In addition,

for combinations in which Uniform is among the best, we expected that AdaPub and

PeGaSuS consistently have a lower error than Uniform. The reason for this expectation

is that they differ from Uniform only in an additional Filtering-function smoothing the

perturbation noise. However, the results do not confirm our expectation. The reason that

their filtering requires a fraction of the privacy budget 𝜖 . This investment pays off only in

the downtimes between the seasons, where the query results are fairly stable. However,

within the growing or shrinking phase of a season, the groups usually contain only a

single time stamp and the mechanism has less budget for perturbation.

Sample Supremacy Comparing Uniform with Sample reveals that the MAE of Sample

is smaller than Uniforms’ if 𝑞max is small and the privacy requirements are restrictive.

Similar, as for Uniform, we can give a guarantee on the expected MAE. Recapitulate, for

Uniform, the guarantee of the expected MAE is independent of the data. For Sample, the

guarantee is independent of𝑤 , depending only on theminimum andmaximum query result

[𝑞min, 𝑞max], as well as 𝜖 . In our case, the minimum value is 𝑞min = 0. So, the maximum

approximation error converges towards 𝑞max. This worst case occurs, for example, if at all

time stamps that we sample, 𝑄 (𝐷𝑡 ) = 0 holds, whereas, at all non-sampling time stamps,

𝑄 (𝐷𝑡 ) = 𝑎 = 𝑞max holds. Moreover, the perturbation error is
1

𝜖
. In sum, the MAE bound

thus is 𝑞max + 1

𝜖
. This means, e.g., that the bound for 𝑎 = 10 and 𝜖 = 1 is 11, independent of

𝑤 . For Uniform, with𝑤 = 100, the corresponding bound is 100, i.e., Factor 10 larger. Our

results furthermore reveal that we hardly observe this bound. In practice, the observed

MAE of Sample is several factors smaller. The rational is that Sample has a tendency to

publish the most frequent query results very accurately.

Hypersensitive Data-Adaptive Sampling The small MAEs of Sample for small amplitudes

and restrictive privacy requirements suggest that one needs to minimize the perturbation

error via sampling. The mechanisms BD, BA, DSAT𝑤 , FAST𝑤 and RescueDP all feature

data-adaptive sampling. The idea is compelling: Instead of hoping that the last release

approximates the next time stamps well, the mechanism invests a fraction of the budget 𝜖

to monitor the stream. In case the mechanism monitors a large enough change, it releases a

new query result. However, our results suggest that data-adaptive sampling does not beat

sampling with a data-independent rate (conducted by Sample) consistently. Instead, they

are in essence only better than Sample, in case Uniform is better than Sample. The rational

is that they feature a hyper-sensitivity for small changes in the query result. Specifically,

we observe the following tendency. In case the growing phase of a new season starts,

such mechanisms reflect the initial changes of the query results well. In addition, they

usually sample at a time point close to the peak of the first season. Thereby, they spend a
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(a) Flu Outpatient stream (Unif.:

115; Sample: 3, 056).
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(b) Flu Death stream (Unif.: 76;

Sample: 35).
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(c) Unemployment stream (Unif.:

116; Sample: 61).

Figure 5.3.: Plots of the one-dimensional true query result streams and the streams released

by baseline mechanisms Uniform and Sample for 𝜖 = 1.0 and 𝑤 = 120. For

each stream, the caption states the mean absolute error (MAE) of the streams

released by the mechanisms. The mechanism with the lower error is high-

lighted in bold.

large fraction of their available budget already in the growing phase. Thus, they are much

more reluctant spending budget in shrinking phase. This means they still publish large

query results in the shrinking phase, incurring a high MAE. That becomes worse, in case

multiple seasons fit into one window of size𝑤 . This usually holds for all commonly used

window sizes𝑤 and streams.

5.4.2. One-dimensional Real-World Streams

Next, we present our evaluation results of all one-dimensional real-world streams. Thereby,

we have two objectives discussed in separate subsections. Firstly, we are interested whether

the results of real-world streams are consistent with the ones of the artificial streams. This

holds specifically for the observed baseline supremacy. Secondly, we aim at understanding

what the sanitization error (i.e., the MAE) means in context of the data streams. In a

nutshell, our key results are: Firstly, the results on real-world streams are consistent

with the ones obtained in the micro benchmarks. Secondly, the error metrics, though

widely used, are not well-suited in the streaming setting. For example, despite Sample

delivers a good MAE (and MRE), it entirely destroys the seasonality of the stream. Even

constantly publishing the most frequent query results usually yields better utility than

most sophisticated mechanisms have.

5.4.2.1. Confirmation of Micro Benchmark Results

In Figure 5.4, we depict the MAE for all considered mechanisms and one-dimensional

real-world streams. The baseline mechanisms are marked with ◦. We discuss our key

observations next. The results of the real-world streams confirm the result of the micro

benchmarks as follows. Flu Death and Unemployment are two medium-amplitude streams
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Figure 5.4.: Average MAE of 𝑤-event mechanisms for each one-dimensional real-world

stream in the vary-𝑤 and vary-𝜖 experiments. The legend is the same for all

graphs. The baseline mechanisms are marked with ◦.

with 𝑎 < 1, 000 (cf. Figure 5.3). The Flu Outpatient stream has a large amplitude, with

a maximum of about 2 · 104. As expected, for the large amplitude stream, Uniform has

the lowest MAE. Notably, the MAE is significantly smaller than the expected MAE
𝑤
𝜖
. For

instance, on the Unemployment stream where 𝑄 (𝐷𝑡 ) is frequently close to 0, the MAE is

almost only half as large as expected. The reason is the truncating. Interestingly, for the

Unemployment stream, we do observe a slight utility improvement by PeGaSuS towards

Uniform. On the medium amplitude streams, usually, Sample has the lowest MAE. Only

in case the privacy requirements are not restrictive, i.e., 𝜖 = 1 and𝑤 = 40, Uniform and

most other mechanism have slightly lower MAE. As in the micro benchmarks, we observe

that conducting data-adaptive sampling is not superior to equidistant data-independent

sampling. Finally, as in the micro benchmarks, we observe an anomalous behavior of

RescueDP: For streams with large amplitude, increasing the available budget does not

improve utility. Instead, it has the opposite effect.

5.4.2.2. Semantics of the Sanitization Error

So far, most studies used MAE and MRE metrics for determining mechanism utility

(see Table 5.3). Considering our results on these error metrics, we observe intrinsic

anomalies. For instance, the utility of Sample appears to be almost independent of the

privacy requirements. Thus, we examine the semantics of the error values next. To do
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so, we consider common applications performed on data streams. Common objectives

on streams are forecasting or change detection algorithms. For them, the preservation

of the stream properties from Section 5.3.2 is highly relevant. However, there is little

understanding how the MAE and MRE relate to them. To this end, we subsequently

examine the sanitized query results of mechanism Sample and Uniform with respect to

seasonality (i.e., period length and amplitude) and level. This way, we ensure that there is

one mechanism having a low MAE for every stream due to the baseline supremacy. For

the explanation of our results, we use exemplary the sanitized real-world streams shown

in Figure 5.3. We verified that our explanations hold in general.

Maintaining Seasonal Growing and Shrinking of the Stream The exemplary results in Fig-

ure 5.3 reveal, that independent of the observed MAE, using mechanism Sample means

that the stream entirely loses its seasonality. This also holds for streams where Sample is

the best mechanism. In case the mechanism does not sample multiple times per season,

one approximates an entire season with a single value for every time stamp. Thus, a small

MAE of Sample suggests that the stream contains a large amount of similar query results,

which the mechanism likely hits upon data-independent sampling. Simply releasing the

sanitized query result at the first time stamp for every subsequent time stamp yields a

similar utility for all streams used in studies so far (i.e., MAE and MRE).

The mechanism Uniform maintains the seasonality well, in case amplitudes are large

compared to the noise introduced for sanitization. As the expected noise is
𝑤
𝜖
, one only

needs to know the amplitude to decide whether Uniform delivers acceptable utility for the

data administrator. However, this is not reflected by the MAE (nor MRE). For instance,

in Figure 5.3 (b) the MAE is smaller than in Figure 5.3 (a). This holds despite one can

clearly observe the seasonality in (a), but not in (b). That is, the MAE has no meaning for

maintaining seasonality. It has a meaning how well Uniform maintains the level, as we

discuss next.

Maintaining Level and Amplitude of the Stream Recapitulate, that the true level of the

stream is defined by 𝑞min, and the true amplitude 𝑎 by 𝑞max−𝑞min. The level and amplitude

of the sanitized stream released by Uniform depend on the true level and amplitude. In

case 𝑞min > 𝑤
𝜖
holds, i.e., it is higher than the expected noise of Uniform, the sanitized

stream released by Uniform features the domain [𝑞min − 𝑤
𝜖
, 𝑞max + 𝑤

𝜖
]. We observe this

well in Figure 2(c). There, the measured MAE = 115.6 fairly equals the expected MAE of

𝑤=120
𝜖=1

= 120. By contrast, in Figure 2(b), 𝑞min is close to 0, i.e., the minimum possible value

of a count query. Thus, conducting a truncate for count queries means that the expected

level change is [max(𝑞min − 𝑤
𝜖
, 0), 𝑞max + 𝑤

𝜖
].

Since Sample has a low perturbation error, it does not enlarge the domain. That means,

Sample does hardly publish smaller values than the original min value or larger values

than the original max value. However, the sanitized streams usually miss the seasonal

peaks of the true streams. Large MAE values, specifically values exceeding the MAE of

Uniform, indicate that the stream contains large amplitudes, poorly reflected in the stream

released by Sample. Small MAE values, in turn, indicate that are no large seasonal changes

and Sample approximates small counts very accurately.
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Table 5.7.: Properties of the multi-dimensional streams after preprocessing. The query

result distribution states the distribution of the true query results over all

sampled dimensions.

Stream 𝑆 Dimensionality Length 𝑝 Query result distribution

𝑞min 𝑞max 90% quantile

StateFlu 51 492 0 11,452 924

TDrive 100 672 0 39,871 1,772

Retail 1,298 374 0 372,306 15,089

Taxi Porto 1,298 672 0 317 2

WorldCup 1,298 1,320 0 16,928 0

5.4.3. Multi-dimensional Real-World Streams

Next, we present our results of all multi-dimensional streams. Their properties after

preprocessing, that partially included a dimension sampling, are shown in Table 5.7. The

mechanism utility in Figure 5.5. Below, we aim at confirming the results we obtained on

the one-dimensional streams. In addition, we focus on studying the effect of adaptive

dimension grouping as an option to improve utility for multi-dimensional streams. The

core idea of adaptive dimension grouping is to find a group 𝑔 of dimensions that have

currently a similar query result (i.e., that are correlated). This can be exploited in two

ways. First, in case of BD, the sampling decision is taken per group. Then, the groups in

which the query result changes more frequently are sampled more frequently than groups

in which the query result is more constant. For AdaPub and RescueDP, the grouping is

exploited in the perturbation function. Specifically, the mechanism perturbs the sum of

the query results over all dimensions in group 𝑔, and then assigns each dimension the

average of the perturbed sum. This reduces the expected perturbation error from
1

𝜖𝑡
to

1

𝜖𝑡 ·|𝑔 | [Wan+16a]. Hence, with increasing dimensionality, this is expected to highly reduce

the perturbation error.

For the one-dimensional streams, we observed a baseline supremacy with amplitude

and privacy requirements as decisive factor between Uniform and Sample, as well as

hypersensitive data-adaptive sampling. Generally, the Figure 5.5 confirms together with

Table 5.7 both observations.
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(b) TDrive (100 dim.)
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(c) Retail (1,289 dim.)
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(d) World Cup (1,289 dim.)
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Figure 5.5.: Average MAE of𝑤-event mechanisms for each multidimensional stream for

the vary-𝑤 and vary-𝜖 experiments. The streams are ordered from the smallest

to the highest number of dimensions. The legend is the same for all graphs.

The baseline mechanisms are marked with ◦.
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On the State Flu, TDrive and Retail stream having an amplitude > 10, 000, as expected,

Uniform is among the best mechanisms. Only on the stream State Flu for small 𝜖-values,

a couple of other mechanism outperform Uniform. On the Wold Cup and Taxi Porto

stream, Sample is among the best mechanisms. However, AdaPub has a low error, too,

and even outperforms Sample for individual values of 𝜖 . This is interesting, because

for the one-dimensional streams, AdaPub has low error iff Uniform is among the best

mechanisms. This suggests that these two streams differ significantly from the first three

streams. Table 5.7 reveals that both streams are sparse. Specifically, for most time stamps

and dimensions, the query result is very small or even zero, i.e., minimal. We observe that

AdaPubs error is for seven experiments nearly constant. For one experiment, this is the

case for RescueDP, too. The rationale is that over time, the number of groups converges

to 1, meaning that the mechanism releases the same query result for all dimensions. If

all dimensions are in one group, the perturbation error is low, meaning that the mean

error is only slightly influenced by 𝑤 and 𝜖 . Additionally remarkable is the mean error

of BD for these two streams. In the micro benchmark, and on the one-dimensional real-

world streams, there is no stream for which BD is among the best mechanisms for all

privacy requirements. However, BD is among the best mechanisms for WorldCup and

Taxi Porto streams. Whether the rational lies in the grouping is however with our results

not decidable.

5.4.4. Takeaways

The primary outcomes of our study are takeaways for practitioners, as well as for re-

searchers. We discuss them next.

5.4.4.1. Takeaways for Practitioners

Our takeaway for practitioners forms a catalog of recommendations that aim at under-

standing and controlling the expected utility of differentially private stream monitoring.

It contains three recommendations and targets at data owners, as well as administrators

not being experts in differently privacy, but having a sophisticated background in data

analysis.

Data Owners: Meaningful Window Size The data owner is responsible for selecting the

privacy requirements 𝜖 and𝑤 . By definition of𝑤-event differential privacy, the window

size𝑤 refers to the length of the longest event-sequence the mechanism aims to protect

with privacy budget 𝜖 . The selection of 𝑤 is clearly use-case dependent. However, our

literature study suggests that there is a tendency for investigating unnaturally large values

of𝑤 , which causes large perturbation noise. For the seasonal data, the length of a season 𝑠

may serve as a natural upper bound for𝑤 . Our specific recommendation for data owners

is specifying the event-sequence the data owner aims to protect, such as the maximum

length of a trajectory in location monitoring use case. This way one can determine a

meaningful value for𝑤 .
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Data Administrator: Meaningful Utility Metrics The data administrator is responsible for

selecting a mechanism. Our results suggest that the sanitization error hardly allows conclu-

sion whether one is still able to conduct frequent analysis tasks on streams, like forecasting

or anomaly detection. So, we recommend data administrators to select mechanisms that

provide high utility with respect to an application specific metric, or to understand the

semantics of the sanitization error with respect to the application better.

Data Administrator: Consider the Selection of Baselines Our study indicates that, regarding

data utility and predictability of the expected error, there is little a data administrator can

do wrong with the Uniform or a Uniform-Sample hybrid mechanism as explained below.

Specifically, if an expected error of
𝑤
𝜖
is sufficient and the application requires query results

for each time stamp, e.g., because one targets at instant change detection, we recommend

to use Uniform. In case one does not need to detect the change instantly, one can trade

time to minimize the perturbation error using a Uniform-Sample hybrid mechanism.

Such mechanism samples every 𝑥 th time stamp releasing more accurate query results at

sampling time stamps than Uniform. Specifically, it decreases the perturbation error at

sampling time stamps compared to Uniform from
𝑤
𝜖
to

𝑤
𝜖 ·𝑘 . In particular, in combination

with selecting a meaningful value for𝑤 , this mechanism may provide sufficient utility for

many applications.

5.4.4.2. Takeaways for Researchers

Our takeaway for researchers target primarily at the way how to design the four functions

of the𝑤-event mechanism framework. We discuss the functions according to their order

in Algorithm 2.

ISSAMPLINGPOINT-Function Currently, in case the mechanism does not sample, it ap-

proximates the current query result with the last sanitized query result. This works well

at the time stamps between the seasons, when the counts remain stable. However, it

yields high error in case the stream is in a growing or shrinking phase. Consequently, we

propose to investigate on mechanisms that consider the seasonal nature of streams upon

approximation. For instance, the mechanism could invest time and budget when starting

to release a new stream, to learn a model of the stream, e.g., using machine learning in

a differentially private way. The model can not only be used for the sampling decision,

but also to predict whether the stream is currently in a growing or shrinking phase. If

the change in the stream is not large enough that it provokes the mechanism to sample,

the mechanism can correct the approximation based on the latest trend. Observe that

this is orthogonal to filtering based on time-grouping, because the filter is only applied at

sampled time stamps.

BUDGETALLOCATION-Function We observe that today’s mechanisms rather optimistically

allocate budget trying to accurately reflect small changes in the stream. For instance,

mechanism BD allocates half of its remaining budget per sampled time stamp. However,

our results indicate that this yields low utility in case the stream contains large amplitudes.
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Our results suggest that targeting at homogeneously distributing the budget over sampling

time stamps usually results in the best utility. To this end, the mechanism may limit the

number of sampling time stamps in the current active window.

PERTURBATION-Function Our recommendation regarding perturbation refers to mecha-

nisms using the dimension grouping. We frequently observe that the dimensions "lump

together" into few or even a single group. Then, they remain in their group even if they

are not correlated anymore. Thus, we recommend computing the grouping not only on the

sanitized query results and explicitly consider a functionality to ungroup dimensions not

correlated anymore. Additionally, we also propose to question whether researchers should

focus on dimension grouping in future work. The rationale is that using the dimension-

grouping approach does only not violate privacy, in case the correlation of the dimension

query results is spurious. Otherwise, correlated dimensions result from an event the data

owner intends to hide that may affect multiple rows in a database 𝐷𝑡 , and not only a single

one as presumed in the original definition of differential privacy [Dwo08]. The extension

of differential privacy capturing this group-differential privacy [DR+14]. It states that the

increase of Δ𝑄 entirely nullifies the benefit of dimension grouping.

FILTERING-Function Our results indicates that grouping over time stamps with a grouping

function that requires budget does not yield a utility improvement. Consequently, we

suggest to conduct research on filtering functions that do not require budget.

Finally, in case a researcher proposes a novel mechanism, we strongly recommend

conducting an empirical evaluation based on the principles, we introduced in Section 5.2.

We argue this is the only way to ensure that future studies have a better comparability

than most studies known so far. Most urgently, we recommend including both baseline

mechanism.

5.5. Summary

In this chapter, we perform a large-scale literature survey revealing not only the generic

𝑤-event differential privacy mechanism framework, but also limitations of previous ex-

perimental studies comparing𝑤-event mechanisms, preventing the comparability of the

studies. These limitations prevent data administrators from selecting the best mechanism,

and slows down future research. Consequently, we identify requirements on each element

of a typical experimental study, and conduct a benchmark that fulfills these requirements

and consists of 252,000 single experiments. We discuss the insights of our benchmark, as

well as takeaways for data administrators and researchers. One insight is the unexpected

baseline supremacy, saying that for each combination of mechanism and stream, one of

the two baselines is among the mechanisms with the highest utility.
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6. Case Study: Utility Metrics for Electricity
Distribution Grid Monitoring

In the previous chapter, we observed that the baseline mechanisms Sample and Uniform

provide at least competitive utility to state-of-the-art mechanisms. Consequently, in

this chapter, we ask whether they provide already enough utility to provide reasonable

application results. To this end, we perform a case study on the application grid monitoring
system.1 The background is that smart meter roll-out in Europe comes with availability

of quarter-hourly power measurement streams of customers, that are the data owners

considered in this study. Distribution system operators (DSOs), serving as service users in

this study, aim to turn these data streams into value by using them to monitor the low-

voltage grid continuously. To this end, DSOs use a plurality of automated grid analyses, like

voltage and line loading analysis, that link measurements with additional data, like the grid

topology from a geographic information system [Iov+21; Maa+15; Nie+17]. They either

deploy the system by themselves, or do make use of a service. However, it is well-known

that active as well as reactive power measurements facilitate everyone who has access

to this data to inference daily habits of the customers [Mol+10; FLC17]. Consequently,

customers may have privacy requirements regarding their measurements. A prominent

example is hiding certain power patters like appliance usage cycles [KBB15]. To tackle

these requirements, a trusted data gateway serving as data administrator, that is locally

deployed at each customer connection, sanitizes the measurements with respect to the

privacy requirements. After that, the gateway transmits the sanitized measurements to

the DSO or service provider running the grid monitoring system.

In this chapter, we study the utility of differentially private PETs for grid monitoring.

Specifically, we are interested to answers the following research questions:

(RQ1) Which utility metrics are appropriate to measure the utility of grid monitoring?

For instance, is the sanitization error of the measurements, frequently used in related

work on𝑤-event differential privacy, meaningful, or do we need a separate metric for

each grid analysis.

(RQ2) How does the utility of differentially private grid monitoring under reasonable

privacy requirements behave? Can we give an intuition whether the utility is low or

high?

1
The remainder of this chapter bases on the article Christine Schäler and Hans-Peter Schwefel. Studying
Utility Metrics for Differentially Private Low-Voltage Grid Monitoring. Tech. rep. Karlsruhe Institute of
Technology, KIT Scientific Working Papers 193, 2022. Compared to the article, the sections have been

shortened to be less repetitive, contain minor corrections, as well as formatting and notation changes to

be in line with the format and structure of this thesis.
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Answering these research questions is challenging for three reasons. First, to answer

them, candidates for utility metrics are required. This is challenging due to the plurality of

results [Pom+18] a grid monitoring system usually outputs. Second, given a utility metric,

a subsequent challenge is identifying utility thresholds stating that the grid monitoring

results are accurate enough for DSOs. They should be DSO-independent to support the

generality of our results. Third, it is essential to study the utility for reasonable privacy

requirements. Intuitively, reasonable privacy is given if realistic privacy requirements

are fulfilled. However, selecting them and studying the utility with respect to a plural-
ity of realistic requirements is challenging without conducting an unlimited number of

experiments.

Contributions and Outline In this chapter, we provide the following three contributions.

First, we identify three steps of differentially private grid monitoring, namely, (1) measure-

ment sanitization with the PET, (2) load-flow analysis as first step in each grid monitoring

system, (3) subsequent analyses like voltage and line loading analysis in Section 6.1, and

candidates for utility metrics for all three in Section 6.2. For each step, the metrics are in

line with the metrics used by experts for the individual steps. To give an intuition on the

utility of grid monitoring results, we consider the frequent case in which measurement

devices are not fully accurate, since the DSOs already accept this reduced utility. Second,

in Section 6.3, we identify realistic power patterns from literature and decode them into

privacy parameters. To study the utility for a plurality of them with a limited number

of experiments, we leverage the baseline mechanism Uniform mechanism that unpacks

multiple requirements into one scaling parameter. Third, to answer our research ques-

tions, we perform experiments on a real-world grid topology with realistic measurements

in Section 6.4. With respect to the first question, our study indicates that the utility of

grid monitoring decreases faster than metrics measuring the sanitization error suggest,

indicating that grid monitoring specific metrics are needed to assess utility meaningfully.

With respect to the second one, we observe that the utility of grid monitoring decreases

faster than the sanitization error suggests, indicating that the utility of an application is

frequently worse than literature indicates. Finally, we provide a summary of this chapter.

6.1. Specific Fundamentals and Related Work

In this section, we first sketch fundamentals on grid monitoring systems, resulting in re-

quirements on the data used in our study. Then, we introduce related work on differentially

private grid monitoring.

6.1.1. Grid Monitoring Systems

In this section, we first sketch fundamentals on grid topologies and measurements serving

as an input into grid monitoring systems. Second, we introduce grid monitoring systems

as detailed as needed to identify requirements on study data and to define utility metrics

in the remainder.
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6.1.1.1. Grid Topologies and Measurements

Subsequently, we sketch fundamentals on grid topologies, relevant measurands and mea-

surement scenarios together with notation.

Grid Topology A low-voltage grid topology is given by

1. a grid topology graph 𝐺 = (𝑁, 𝐸) in which the edges 𝐸 are the lines, and 𝑁 the nodes,

2. a function typeN : 𝑁 → {Trafo, customer connection box, junction box, sleeve} as-
signing nodes a type, and

3. a function typeE : 𝐸 → R4 assigning lines quintuples of resistance (R1), reactance (X1),

capacitance (C1) and ampacity (Imax) in ampere.

Without loss of generality, we assume that 𝐺 is a tree, as this simplifies explanations and

applies for most grids. A feeder is a single branch in the tree. Each node and line has a

specific type. For nodes, it holds that the unique root of the tree is of type Trafo. It serves

as connection point to the parent medium-voltage grid. The leaf nodes of the grid are

customer connection boxes (CCBs) connecting residential and industrial customers with

the grid. The nodes between the substation and the customer connection boxes are either

junction boxes or sleeves. The type of a line specifies its electrical parameter resistance,

reactance, capacitance and ampacity.

Measurands In a grid, DSOs deploy measurement devices at nodes that measure specific

measurands. Typically, they are measured per phase. However, grid monitoring systems

usually consider a one-phase representation of the three-phase grid [Pom+18].

Let 𝑛 ∈ 𝑁 be a node, and 𝑒 ∈ 𝐸 be a line. We denote with V(𝑛, 𝑡) the average voltage
magnitude in volts at the secondary side of node 𝑛 in a time interval ending at time stamp 𝑡 .

Similarly, with P(𝑛, 𝑡) and Q(𝑛, 𝑡), we denote the total active power in kilowatts (kW) and

reactive power in kilovar (kVar) injected at time 𝑡 and node 𝑛 into the grid. Additionally,

I(𝑒, 𝑡) is the average current magnitude in ampere in a time interval ending at time stamp

𝑡 at the secondary side of line 𝑒 . In case they are clear from the context, we omit the

parameters 𝑛 and 𝑒 .

Measurement Scenarios The measurement scenario of a grid specifies which measurands

are measured at which grid node or line. Considering real-world scenarios, we identified

twomeasurement scenarios, namely PQ and Ponly, imposing different privacy requirements

of a PET. Subsequently, we describe them.

Measurement Scenario PQ This is the measurement scenario stated in Table 6.1. Here, the

voltages at the Trafo, as well as active and reactive power at all customer connection

boxes are measured.

Measurement Scenario P only In contrast to scenario PQ, the meters at the customer con-

nection boxes measure only active power, but not reactive power. This is a frequent

setting in real-world. For instance, Smart Meters in Germany are, by default, configured

accordingly [Bun21].
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Figure 6.1.: Illustration of the two-step process of grid monitoring.

Table 6.1.: Measured measurands, and the ones calculated by load-flow analysis. Reactive

power at CCBs are only measured in scenario PQ, and are replaced by pseudo-

measurements in scenario P only.

Node Type V P Q I

Transformer measured - - -

Junction box calculated - - -

CCB calculated measured measured (in PQ) -

Lines - - - calculated

6.1.1.2. Grid Monitoring Systems

As illustrated in Figure 6.1, a gridmonitoring system usually implements a two-step process:

A load-flow analysis determining non-measured measurands followed by a plurality of

subsequent grid analyses calculating system indicators. Below, we sketch both steps briefly

based on [Iov+21], and state specifics relevant for ensuring the reproducibility of our

results.

Step 1 – Load-flow Analysis The load-flow analysis calculates voltages at all nodes except

the Trafo, and the currents at all lines. The algorithm is stated in Algorithm 4. There,

based on grid topology and measurements, the algorithm obtains a set of linearized,

originally non-linear, power balance equations. The unknown variables correspond to

voltages at non-Trafo nodes, and the known ones to active and reactive power at the

customer connection boxes. By solving this system with the iterative Newton-Raphson

method [Ben66] that minimizes the mismatches in active and reactive power at customer

connection boxes, the algorithm obtains the voltages of all nodes. Based on the obtained

voltages, the algorithm calculates the currents. In a grid, except the power at the Trafo,

the power, voltage and current measurements in one feeder are independent of the mea-

surements in another feeder. Consequently, the load-flow analyses on different feeders
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Algorithm 4 Load-flow Analysis at timestamp 𝑡 [PG20]

1: function loadFlow𝑡 (𝐺, typeN, typeE, Vin𝑡 , P
in

𝑡 ,Q
in

𝑡 )

2: Vinit𝑡 ← Vin𝑡
3: for 𝑐 ∈ 𝑁 with typeN (c) == CCB do

4: V𝑡 (𝑐, 𝑡) ← 0 ⊲ Initialization

5: Vinit𝑡 ← Vinit𝑡 ∪ {V(𝑐, 𝑡)}
6: end for

7: Vout𝑡 ← Newton-Raphson(𝐺, typeE, Vinit𝑡 , Pin𝑡 ,Q
in

𝑡 )
8: Iout𝑡 ← {

|V(𝑐,𝑡)−V(𝑐 𝑗 ,𝑡) |
typeE(𝑒𝑖, 𝑗 ).𝑅1 | 𝑒𝑖, 𝑗 ∈ 𝐸}

9: return Vout𝑡 , Iout𝑡

10: end function

are independent. In our study, we use the load-flow analysis that is implemented in a

grid model developed in [Pom+18], and successfully validated in [Nai+21]. It is based on

the MATLAB implementation in [PG20]. We stop as soon as the mismatches are smaller

than 10
−5
, or after 100 iterations otherwise. Reactive power measurements are a necessary

input into the load-flow analysis. Consequently, in measurement scenario P only, so-called
pseudo measurements are generated using background knowledge on the customer con-

nection [Man+12]. Since this background knowledge is private information as well, in our

study, we use for reactive power the pseudo-measurement 0 kilovar, which is a common

choice in case no background knowledge is available.

Step 2 – Subsequent Grid Analyses For a low-voltage feeder, two grid analyses, namely,

voltage analysis and line loading analysis are relevant [Iov+21]. Subsequently, we introduce

both analyses.

Voltage Analysis By European standards [Eur19], the DSO must ensure that the voltage

magnitudes fluctuates at maximum +/−10% of the nominal voltage of 400 V. To alert

DSOs before they violate this hard limit, the voltage analysis verifies whether the

voltages at all nodes are in range +𝑥% (overvoltage violation) and −𝑦% (undervoltage
violation) of 400 V, and reports violations in case they are not. In line with industry

standards, we use 𝑥 = 𝑦 = 5.

Line Loading Analysis Lines can manage a certain nominal current, that is given by their

ampacity. If the actual current is higher, they overheat. The line loading analysis

therefore calculates for 𝑒 ∈ 𝐸 the load in percent by

Load(𝑒, 𝑡) = | (I(𝑒, 𝑡) |
typeE(𝑒).Imax

and alerts the DSO in case the load is above a certain limit. That way, DSOs can react

before the lines overheat. A common load limit that we use is 90% [Sch+21].
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Table 6.2.: Comparison related work on differential privacy for measurement data with

respect to the DP variant considered.

Ref. 𝑤 = 1 𝑤 ∈ [2,∞) 𝑤 →∞
[KBB15] ✓ ✗ ✗

[Eib+18] ✓ ✗ ✗

[EE17] ✗ ✗ ✓

[ÁC11] ✓ ✓ ✗

[SDT15] ✓ ✗ ✗

[FV18] ✓a ✗ ✗

This chapter ✓ ✓ ✓

a
Privacy potentially violated by using faithfulness value 𝛽 computed on the measured data during post

processing.

6.1.2. Differentially Private Grid Monitoring

In this section, we sketch related work on differentially private PETs for measurements,

utility metrics for them, as well as orthogonal work on security and privacy with respect

to additional data used in grid monitoring systems.

Differentially Privacy for Measurement Streams Event-and user level differential privacy

has been investigated for measurement data before (see Table 6.2). However, event-level

DP features only limited privacy for streams [Cao+18; ÁC11], and user-level differential

privacy limited utility, already for finite time series [EE17]. 𝑤-event DP for𝑤 ∈ [2,∞)
has proven its worth for, e.g., location streams [Wan+16a; Li+15a; Liu+18], so far, it has

been only sparsely investigated for measurement data. [ÁC11] considers the concept

even before the proposal of 𝑤-event DP. However, it features only a limited number of

experiments with respect to𝑤-event DP. Additionally, it considers a special mechanism

called distributed differential privacy, that generally results in lower utility than other

differential private mechanisms.

Measuring Utility of PETs Related work focusing on𝑤-event DP for measurement streams

assesses this error either by the sanitization error [Bar+14; EE17; ÁC11], or by the error

of a specific analysis. The latter includes local energy market analysis [KBB15], specific

forecasting algorithms [Eib+18], peak-load analysis [Lia+14] or state estimation [SDT15].

To the best of our knowledge, these two types of utilitymetrics have not been systematically

related to each other before, nor intuitions on "high enough" utility are given.

Security and Privacy with Respect to Additional Data Besides privacy with respect to

measurements, customers may have additional privacy requirements, like secure data

transmission [Lyu+17; RN13]. Additionally, in case an untrusted service provider hosts

the grid monitoring system, DSOs have to transmit the additional data, like grid topology

data, needed as input for grid monitoring systems. In this context, [Nan+19; FMV20]
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Figure 6.2.: Identified utility metric types together with associated error metrics. The gray

metrics are not considered in Section 6.4.

focus on differential privacy for grid topology data, like line parameters. However, these

approaches are orthogonal to our research questions.

6.2. Study Design – Grid Monitoring

In this section, we first define candidates for utility metrics for grid monitoring. In our

experiments, we investigate which of them are appropriate. Second, we state how we

generate measurement errors used to give an intuition on the utility achieved by a PET.

Finally, select the data for our study data based on in the identified requirements.

6.2.1. Measuring Utility – Candidate Utility Metrics

Considering Figure 6.1, we identified three types of utility metrics serving as candidates

for our study shown in Figure 6.2. These are the sanitization error, load-flow analysis error

as well as subsequent analysis error. In the remainder of this section, we identify the

specific metrics commonly used in related work for each of the types, and propose due

to lack of related work novel subsequent analysis error metrics. We state them by using

the following notation: E is a measurand or system indicator (like line loading), and X
is a set of lines or nodes. Measurands or system indicators with superscript ∗ belong to
sanitized measurements or system indicators calculate by using sanitized measurements.

Consequently, e.g., P and Q are the measured powers, and P∗ and Q∗ the sanitized ones.

Additionally, 𝑝 is the number of time intervals in the measurement stream prefix.

Sanitization Error Metric To measure the sanitization error, as identified in Chapter 5,

related work on𝑤-event differential privacy frequently uses the mean absolute error. For

measurand E and set of lines or nodes X it is defined by

Er
(E,X)
L1

=
1

𝑝 · |X|

𝑝∑︁
𝑡=1

∑︁
𝑥∈X
|E(𝑥, 𝑡) − E∗(𝑥, 𝑡) |,

i.e., the average over the L1-norm between E and E∗ at each time stamp and node or line.

Since we sanitize active and reactive power of residential customers, in our study, we
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focus on Er
(P,CCBres)
L1

and Er
(Q,CCBres)
L1

, in which CCBres is the sub-set of customer connection

boxes of 𝑁 belonging to residential customers.

Load-flow Analysis Error Metric The load-flow analysis calculates the voltages and currents

that are subsequently used in voltage and line loading analysis. This suggests measuring

the utility of load-flow analysis by the error in calculated voltages and current. To define

these errors, power engineers usually rely on the maximum norm [NI20]. Consequently,

to quantify the voltage and current error, we use

Er
(E,X)
∞ =

1

𝑝

𝑝∑︁
𝑡=1

max

𝑥∈X
|E(𝑥, 𝑡) − E∗(𝑛, 𝑡) |.

Note that our study, measurement streams contains the measured voltages and currents

at all nodes and lines, facilitating us to calculate this error. Since the load-flow analysis

calculates the voltages at all nodes except the Trafo, we are interested in Er
(V,𝑁 \{Trafo})
∞ . For

currents, we are interested in the current error at all lines, i.e., Er
(I,𝐸)
∞ .

Subsequent Analyses Error Metrics To the best of our knowledge, there is no related work

measuring the utility of voltage and line loading analysis. Consequently, we propose novel

error metrics considering the benefit of the DSO of both analyses.

Voltage Analysis Let the variable hasVoltVio(𝑛, 𝑡) indicate whether there is a voltage
violation at node 𝑛 and time stamp 𝑡 . With that notation, we measure the error in the total

number of voltage violations that is given by 𝐸
(hasVoltVio,𝑁 )
L1

.

Line Loading Analysis The line loading analysis first calculates the load of each line,

and then whether the load is below the defined limit. We define an error metric for each

of the two steps. First, we define loading error in percentage points (% P) by Er
(load,𝐸)
∞ .

Second, let hasLoadVio(𝑒, 𝑡) be the indicator variable for a line loading violation of line 𝑒

at time stamp 𝑡 . With that notation, we measure the error in the total number of loading

violations by Er
(hasLoadVio,𝐸)
L1

.

6.2.2. Assessing Utility – Measurement Errors

A PET is not the only influence factor that may reduce the utility of grid monitoring system.

Specifically, measurement devices are typically not completely accurate, meaning that

even the analysis results on measured data are erroneous. Consequently, to assess whether

the utility provided by the PET is reasonable, we propose to compare the utility of the

PET with the utility that can be achieved if measurement errors are present. This utility

is already accepted by DSOs. As measurement error, in line with previous work [NI20],

we use measurement-dependent Gaussian noise with 𝜎 = 0.01. Specifically, let G be

the Gaussian distribution. Then, the resulting active and reactive power measurement

containing measurement errors are given by (1 + G(0, 𝜎)) · P(𝑡) and (1 + G(0, 𝜎)) · Q(𝑡).
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6.2.3. Selection of Study Data

In this section, we select the grid topology and measurement data for our study. For each

of them, we first state requirements we impose on the data to be used in our study based

on the previous sections. Then, we state our selection. A natural overall requirement is

that the grid topology and measurements match, meaning that a data set containing only

measurements or only a grid topology is not appropriate.

Grid Topology We derive the following requirements on a low-voltage grid topology

used in the study. First, we need the grid topology of at least one feeder of a low-voltage

grid. A single feeder is also sufficient, because the results of the load-flow analysis are

independent for each feeder. Second, to ensure the validity of our results, there should exist

a successfully validated digital representation. Third, ideally, it should be a real-world grid

to support the validity of our results. Considering these requirements, as grid topology, we

use a feeder of a real-world grid topology from the Danish DSO Thy Mors Energi
2
(TME).

Several studies before [IC19; Nai+21] use it as a reference grid model as well. The grid

contains 25 customer connection boxes. Four of them correspond to industrial customers

(e.g., a farm), the others correspond to residential customers. Additionally, the feeder

contains one Trafo and 10 junction boxes.

Measurements We derive the following requirements on measurements used in the study.

First, to be able to calculate utility metrics, a fully-measured measurement scenario (i.e., all

measurands are measured) is needed. Second, as indicated in previous work on differential

privacy for measurement data [EE17], measurement streams of one day are needed and

also sufficient. Third, ideally, violations should be present in order to study the relationship

between privacy requirements and violations in the voltage analysis. Considering these

requirements, we use the to quarter-hourly values aggregated measurements from the

undervoltage trace of 25 hours described in [Nai+21]. It features a fully-measured mea-

surement scenario (i.e., all electrical parameters are measured) and contains undervoltage

violations. The measurements are simulated with the hardware-in-the-loop simulator

OPAL-RT
3
, and were also used in previous studies [Nai+21]. For details regarding the

simulation process, we refer to [Nai+21; IC19].

6.3. Study Design – Privacy

In this case study, we aim to protect the data of each residential customer 𝑐 , meaning that

we consider local differential privacy [Cor+18]. Nevertheless, the streams we consider are

in line with the general stream model illustrated in Figure 4.1. Specifically, “individuals”

𝑖 ∈ 𝐼 belong to generators and consumers, like appliances. The set of “activities” A =

{P,Q} consists of the active and reactive power consumed (positive value) or generated

(negative value). The query 𝑄 is the sum over active as well as reactive power. That is,

𝑄 (𝐷𝑡 ) = (P(𝑐, 𝑡),Q(𝑐, 𝑡)).
2
www.thymors.dk

3
www.opal-rt.com
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Algorithm 5 PET: Uniform Mechanism at timestamp 𝑡

1: function Uniform𝑡 (P(𝑡), Q(𝑡), 𝜖,𝑤,ΔP,ΔQ, 𝛼P, 𝛼Q)
2: 𝜖P ← 𝛼P · 𝜖
3: 𝜖Q ← 𝛼Q · 𝜖
4: 𝜆P ← 𝜆P(ΔP,𝑤, 𝛼P, 𝜖) = ΔP·𝑤

𝜖 ·𝛼P

5: 𝜆Q ← 𝜆Q(ΔQ,𝑤, 𝛼Q, 𝜖) = ΔQ·𝑤
𝜖 ·𝛼Q

6: return Perturbation(P(𝑡),Q(𝑡), 𝜆P, 𝜆Q)
7: end function

8: function Perturbation(P(𝑡),Q(𝑡), 𝜆P, 𝜆Q)
9: P∗(𝑡) ← P∗(𝑡) + Lap(𝜆P) ⊲ Laplace mechanism

10: Q∗(𝑡) ← Q∗(𝑡) + Lap(𝜆Q)
11: return P∗(𝑡),Q∗(𝑡)
12: end function

Below, we first select the𝑤-event mechanism used in our study based on Chapter 5. Sec-

ond, we identify realistic privacy requirements from literature corresponding to appliance

usages, that we use in our study.

6.3.1. Selection of Mechanism

In Chapter 5, we identified a couple of mechanisms satisfying𝑤-event DP. For this study,

we leverage the Uniform mechanism. Subsequently, we justify this selection and state

details on the mechanism specific for measurement streams.

For grid monitoring purpose, it is essential to keep the seasonality of the stream. Ac-

cording to Chapter 5, this suggests using the Uniform mechanism. This mechanism has

the additional advantage that multiple privacy requirements result in the same noise

scale, allowing to investigate the utility with respect to an infinite number of privacy

requirements by one PET run. The details of the Uniform mechanism used are stated in

Algorithm 5. Compared to the Uniform mechanism stated in Chapter 5, it uses additional

parameters and sanitizes two correlated query results. Specifically, at each time stamp 𝑡 , it

sanitizes the power measurements P(𝑡) and reactive Q(𝑡) of a customer according to given,

time-invariant, privacy requirements. In addition to the typical privacy requirements 𝜖

and𝑤 , in the current use case, we have four additional parameters. These are the power

shares ΔP and ΔQ, as well as the noise splitting parameters 𝛼P, 𝛼Q satisfying 𝛼P + 𝛼Q = 1.

The noise splitting parameters split the available budget 𝜖 between active and reactive

power. This is required because active and reactive power are correlated [KOV15]. Note

that in this case study, we do not apply truncate filtering. The rational is that active

and reactive power can both be negative. For instance, active power is negative in case

generation dominates.

6.3.2. Assessing Privacy – Privacy Requirements

To limit the number of experiments, we aim to perform experiments for different noise

scales. To this end, we focus on noise scales representing appliance usages from residen-
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tial customers. Consequently, we sanitize only the measurements from the residential

customers. In the remainder, we select the requirements and then state the resulting noise

scales used in our study.

6.3.2.1. Selection of Privacy Requirements

Below, we select the privacy requirements. Table 6.4 provides an overview of the require-

ments we discuss. In compliance with related work, we keep 𝜖 ∈ (0, 1.0].

Selection of Window Size𝑤 We focus onwindow sizes that correspond to typical appliance

usage cycles. As stated in Table 6.3, we consider individual appliance usages, as well as

combinations. An example for an individual appliance usage is the usage of the washing

machine. According to [Got+11], it usually runs for 2 hours and 15 minutes. Considering

that our measurement streams feature an interval length of 15 minutes, this corresponds

to𝑤 = 2ℎ15𝑚
15𝑚

= 7. We consider additionally combinations of appliances, because appliance

usages are typically correlated. An example is that the dryer usually runs after the washing

machine. To cover this, we have to select the sum of the cycle duration of both appliances.

For instance, if the washing machine runs 7 time stamps, and the dryer 9 time stamps, we

have to select𝑤 = 16. If two appliances run in parallel, we have to select the maximum

of both cycle durations. For compliance with related work, we integrate the respective

window size for ensuring event-level (𝑤 = 1) and user-level (𝑤 = ∞) DP in our study (see

Table 6.3). For user-level DP, that is not implementable for infinite streams, we consider a

so-called flattened variant in which we interpret the stream as a finite time series. Then,

we choose𝑤 = 𝑝 = 100, which is the number of time stamps of our measurement stream

prefix.

Selection of Shares ΔP and ΔQ
Related work uses shares according to the classical local

setting that protects the existence of all producer and consumer. To calculate these shares,

we rely on the highest difference in active and reactive power of two residential customers

at one time stamp that can occur in our measurement trace. Specifically, for E ∈ {P,Q},
the share [ÁC11] is given by

ΔE = | max

c∈CCBres,𝑡
E(𝑡, 𝑐) − min

c∈CCBres,𝑡
E(𝑡, 𝑐) |. (6.1)

For our study data introduced in Section 6.2.3, these shares are given by ΔP = 4.85 kW

and ΔQ = 3.37 kVar. With respect to appliance usages, the shares must be selected in line

with the power usually consumed by the appliances or appliance combination as stated in

Table 6.3. Since we are not aware of any publication stating the reactive power consumed

by appliances, we consider privacy requirements with respect to appliance usages only in

combination with measurement scenario P only, in which reactive power is not given.

Selection of Splitting Parameters 𝛼P, 𝛼Q
In line with related work [Kel+14], in the mea-

surement scenario PQ, we use 𝛼P = 𝛼Q = 0.5. In the measurement scenario P only, in which

we do not need to hide Q, we use the full budget for sanitizing active power. This means

that we use 𝛼P = 1.
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Table 6.3.: Overview of shares and window sizes.

Requirement ΔP ΔQ w

Measurement Scenario PQ

user-level DP Eq. 6.1 (E = P) Eq. 6.1 (E = Q) 𝑝

𝑤-event DP Eq. 6.1 (E = P) Eq. 6.1 (E = Q) [2,p)

event-level DP Eq. 6.1 (E = P) Eq. 6.1 (E = Q) 1

Measurement Scenario P only

Individual appliance 𝑖 power_share(𝑎) -
cycle_duration(𝑖 )

15 min.

𝑖1 followed by 𝑖2 max

𝑖∈{𝑖1,𝑖2}
{power_share(𝑖)} -

∑
𝑖∈{𝑖1,𝑖2}

cycle_duration(𝑖 )
15 min.

𝑖1 parallel to 𝑖2
∑

𝑖∈{𝑖1,𝑖2}
power_share(𝑖) - max

𝑖∈{𝑖1,𝑖2}
{ cycle_duration(𝑖 )

15 min.
}

Table 6.4.: Privacy requirements and resulting minimum and maximum noise scales.

Name Measrmt. Requirement 𝜖 𝛼P 𝛼Q 𝜆P 𝜆Q

Scenario min max min max

user PQ user-level DP [0.1, 1.0] 0.5 0.5 970 9.700 674 6,740

event PQ event-level DP [0.1, 1.0] 0.5 0.5 9.70 97 6.74 67.40

app P only indiv. appliances [0.1, 1.0] 1.0 0.0 0.14
a

980
b

- -

app’ P only app reduced [0.1, 1.0] 1.0 0.0 0.14 9.7
c

- -

a
Refrigerator cycle with cycle_duration= 15 min. (𝑤 = 1) [Got+11], power_share=140 W (ΔP = 0.14

kW) [Got+11] and 𝜖 = 1.0.
b
Space heating with cycle_duration= 210 min. (𝑤 = 14) [Got+11], power_share=7,000 W (ΔP = 7

kW) [Got+11] and 𝜖 = 0.1.
c
Maximum noise scale from event-level DP.

6.3.2.2. Resulting Noise Scales

Table 6.4 states the resulting minimum and maximum noise scales per measurement sce-

nario. For the measurement scenario P only, we only consider hiding individual appliance

usages explicitly, as the maximum noise scale in this case is already similar to the minimum

one for achieving user-level DP measurement scenario PQ. In case we do not achieve rea-

sonable utility for user-level nor event-level DP, we consider reduced noise scales, limiting

the maximum noise scale in scenario P only to the minimum noise scale needed to achieve

event-level DP in scenario PQ. Note that we cover combinations of appliances implicitly,

since the noise scales lie in the range between user-level privacy and consideration of

individual appliances.
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(a) Voltages at all nodes determined by load-

flow analysis and the violation es deter-

mined by voltage analysis.
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(b) Currents at all lines determined by load-

flow analysis.
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(c) Line loads at all lines determined by line-

loading analysis.

Violation threshold(s)

Number of identified violations:

(a) Voltage violations 1,555

(c) Line loading violations 0

(d) Sums of violations identified by voltage and

line loading analysis.

Figure 6.3.: Grid monitoring results in the ground truth measurement scenario PQ. In (a),

each curve represents one node. In (b) and (c), each curve represents one line.

6.4. Results

In this section, we present and discuss the results of our study regarding our two research

questions. Before that, we present grid monitoring results in the ground truth scenario to

give an intuition on grid monitoring results in general. Second, we answer our first research

question (RQ1) by relating the utility metrics of different types identified in Section 6.2.2 to

each other. Finally, we state the results with respect to our second research question (RQ2)

using the appropriate utility metrics identified. Note, as our experiments depend on

random numbers, in line with the benchmark requirements proposed in Chapter 5, we

execute each experiment multiple times, and report the average errors. As preliminary

experiments revealed that the average error converges after 10 runs, we stick to this

number of runs.

6.4.1. Illustration of Grid Monitoring Results

Below, we present grid monitoring results in the measurement scenario PQ to give an

intuition on grid monitoring results in general. The grid monitoring results in scenario
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Table 6.5.: Overview of utility in all experiments. Error ranges relate to parameter varia-

tions. Non-integer violation numbers relate to reported mean errors over 10

experiment repetitions.

Scenario Er
(V,𝑁 \{Trafo})
∞ Er

(hasVoltVio,𝑁 )
𝐿1

Er
(I,𝐸 )
∞ Er

(load,𝐸 )
∞ Er

(hasLoadVio,𝐸 )
𝐿1

Measurement Scenario with P and Q measured

SC
PQ

———————————————– Ground Truth ———————————————–

SC
PQ
𝜎=0.01

0.013 V 0.2 0.13 A 0.24 %P 0

SC
PQ
event

[25; 17·103] V [299; 1,756] [113; 9 ·106] A [201; 7 ·106] %P [1; 3 ]·103

Measurement Scenario with P measured only

SC
P only

0.23 V 13 2.64 A 1.55 %P 0

SC
P only
𝜎=0.01

0.24 V 4.8 4.0 A 3.1 %P 0

SC
P only
app’

[0.4; 24.4] V [17; 236.9] [3.3; 95.4] A [1; 245.5] %P [0; 751]

serve as ground truth for all subsequent experiments. Additionally, we state the errors

in measurement scenario P only compared to scenario PQ, and give an intuition on the

sensitivity of the metrics. They serve as a lower bound on the errors we can achieve with

a PET in scenario P only.

Figure 6.3 shows the results of the load-flow analysis as well as the subsequent analyses.

These are the voltages and currents calculated by the load-flow analysis, as well as the

resulting line loadings, and voltage respectively line loading violations determined by

subsequent analyses. We observe that the voltages at all nodes are between 360 and 400

V, which is expected. Additionally, we see the voltage drop that was provoked during

the simulation of the undervoltage trace. In total, we have 1,555 undervoltage violations:

All 25 customer connections and 10 junction boxes have at either 44 or 45 time stamps

voltages below 380 V. The line currents are between close to zero and 23 A. The highest

currents occur for the lines near the Trafo when the voltages in the nodes drop. This is

expected, as the measurements are simulated by an online modification of the secondary
voltages at the transformer [Iov+21]. Consequently, the loads of the lines increase during

the voltage drop as well. However, the line load violation limit (90%) is never exceeded,

meaning that no line loading violations are present. Using pseudo-measurements for

reactive power as in scenario P only reduces utility. Below, beside the pure error numbers,

we give a first intuition on the high sensitivity of the subsequent analyses error metrics.

Table 6.5, Line SC
P only

, shows the errors with respect to all defined metrics in the measure-

ment scenario P only. We observe a small voltage Er
(V,𝑁 \{Trafo})
∞ and current Er

(𝐼 ,𝐸)
∞ error.

Additionally, we observe an error in the number of voltage violations, but not in the line

loading violations. The rationale for the former is that, as Figure 6.3 (a) reveals, many

voltage values are close to the undervoltage violation threshold. Consequently, even a

small error in the voltages results in a difference in the number of violations. Inversely, a

high current error is required to achieve a difference in the number of loading violations.
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6.4.2. (RQ1) Relations of Utility Metrics

The DSO is interested in the results of the subsequent analyses. However, in literature,

the utility of mechanisms with respect to sanitization error are known. This raises Ques-

tion (RQ1) asking how the sanitization, or the error of load-flow analysis as an intermediate

step, relate to the subsequent analysis error. Considering the increasing number of subse-

quent analyses that exist, using the sanitization error or load-flow analysis error would

be preferred if appropriate. Consequently, as illustrated in Figure 6.2, we subsequently

relate these three types of utility metrics to each other. Ideally, they have a pairwise linear

relation. In this case, the metrics are would be interchangeable, and all are appropriate to

measure the utility of grid monitoring. To this end, we consider measurement scenario P
only, because we have a higher variety of privacy requirements identified than for PQ.
The key results indicate the following. First, the relations between the metric types

are highly non-linear. Second, the subsequent analysis errors are more measurement

data dependent than the load-flow analysis errors. Consequently, we propose to use the

load-flow analysis error in future work.

6.4.2.1. Sanitization Error vs. Load-flow Analysis Error

Below, we relate the sanitization error to both error metrics used to measure the load-flow

analysis error, namely, the voltage and the current error. For the Uniform mechanism, it

holds that the sanitization error with respect to active power converges towards 𝜆P [Kel+14].

Consequently, we consider 𝜆P as the sanitization error. Figure 6.4 (a) reveals that the load-

flow analysis errors increase, as the sanitization error increases. However, not in a linear

way. Both, the voltage and current error increase faster than the sanitization error. This

means that the higher the sanitization error is, the less meaningful is it to assess the utility

of grid monitoring. This applies especially to the current error increasing even faster than

the voltage error. We consequently propose to use not only the sanitization error to assess

the utility of newly proposed 𝑤-event DP mechanisms, but to use an analysis-specific

metric in addition.

6.4.2.2. Load-flow Analysis Error vs. Subsequent Analysis Error

Knowing that the sanitization error is not appropriate, it remains the question whether

the load-flow analysis error is the appropriate, or whether subsequent analysis metrics

should be used. The reason is that subsequent analyses process the outputs of the load-flow

analysis before the results are useful for the DSO.

Consequently, we now discuss the relationship of the voltage and current error (output

of load-flow analysis) on the difference in the voltage and line loading violations (output

of subsequent analyses). They are illustrated in Figure 6.4 (b). Generally, we observe that

the relationship is again non-linear. In contrast to Figure 6.4 (a), the relationship is even

more complex. Specifically, regarding the voltage violations, for voltage errors < 10, the

subsequent analyses errors change only slightly. The reason is that for many time stamps

and nodes, the voltages are next to the violation limit (see Figure 6.3). Regarding the line

loading violations, we observe that even for a current error of 7 A, the violations are still

correctly identified. The reason is that the loads in the undervoltage trace are far below
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(a) Sanitization error vs. load-flow analysis error.
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Figure 6.4.: Relations between error metrics of different types.

the violation thresholds (see Figure 6.3). This indicates that errors of subsequent analyses

are highly sensitive with respect to measurements and chosen thresholds. This imposes,

however, the question of how useful they are for DSO-independent utility assessments at

all. As a consequence, we propose to use load-flow analysis error metrics as a compromise.

6.4.3. (RQ2) Privacy-Utility Trade-Off

Subsequently, we first assess reasonable utility by determining the utility if measurement

errors are present. Second, we compare this utility with the utility achieved by the PET.

To this end, we focus, but not limit ourselves, to load-flow analysis utility metrics, as

the previous section suggests. Table 6.5 gives an overview of the results discussed in

this section. The scenarios are notated with SC
Measurement Scenario

Noise
. The superscript states

the measurement scenario ∈ {PQ, P only}. The subscript states which noise is introduced

into the measurements, if any. In this context, 𝜎 = 0.01 stands for noise relating to

measurement errors. Additionally, for noise resulting from a PET, the names are in line

with Table 6.4. Note that both dimensions, i.e., measurement scenario and introduced

noise, are orthogonal to each other. All errors are computed by comparing the analysis
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results with the ground truth SC
PQ
. Key outcome is that it is hard to achieve reasonable

utility while keeping reasonable privacy.

6.4.3.1. Utility in the Presence of Measurement Errors

In this experiment, for each measurement scenario, namely, PQ and P only,we determine

the utility if we inject measurement errors. We only use this utility to give an intuition on

the utility achieved by a PET in the remainder. The utility in scenario P only is stated in

Table 6.5, Lines SC
PQ
𝜎=0.01

and SC
P only
𝜎=0.01

. For themeasurement scenario PQ, we observe that the
measurement errors cause only a small error in voltages and currents. Additionally, they do

not affect the number of line loading violation. Specifically, the voltage, current and loading

errors are a magnitude smaller than the errors in SC
P only

. For the measurement scenario P
only, we compare the error in SC

P only
and SC

P only
𝜎=0.01

, since the former is a lower bound of the

latter. It reveals that the measurement errors have only a marginal impact on the voltage

error, but nearly double the current and loading error. Interestingly, the difference in the

number of voltage violation error decreases, which is unexpected. However, the reason is

that the voltages calculated deviate more upwards to the ground truth, because there are

more imbalances in the measurements than in SC
P only

. Consequently, less undervoltage

violations are present.

6.4.3.2. Intuition on the Utility of the PET

Subsequently, we compare the utility with the utility that can be achieved if measurement

errors are present.

Measurement Scenario PQ For measurement scenario PQ, we first considered event-level

differential privacy, since we expect higher utility than from a user-level differentially

private PET. The noise scales used in our experiment are compliant with Table 6.4, Line 2.

In Table 6.5, the Line SC
PQ
event

shows the resulting errors. The lower numbers apply to

𝜖 = 1.0, and the higher numbers to 𝜖 = 0.1. We observe that already for 𝜖 = 1.0 inducing

the lowest privacy guarantee, the voltage and current errors are three orders of magnitudes

higher than for the measurement error scenario SC
PQ
𝜎=0.01

. Additionally, we observe over-
voltage violations, that are not in line with the undervoltage trace (not visible in the table).

As a result, we assess the errors are too high to achieve reasonable utility in this scenario.

Measurement Scenario P only The maximum noise scale Table 6.4 for hiding individual

appliances is with 𝜆P = 980 two orders of magnitudes larger than the minimum noise

scale for event-level DP, that already does not yield reasonable utility. Consequently, in

our experiments, we consider the reduced setting and limit the upper bound to 𝜆P = 9.7,

hiding the total power at one time stamp only.

To investigate whether the PET achieves reasonable utility, we now compare the error

in SC
P only
app’

with the ones in SC
P only
𝜎=0.01

. Figure 6.5 shows both. We observe that all considered

privacy requirements yield a higher voltage error than in SC
P only
𝜎=0.01

by far. This means

that the usage of a PET yields – even for low privacy requirements – worse utility than

the utility resulting from measurement errors. However, if a higher error is acceptable
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(a) Voltage error for varying noise scales.
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(b) Current error for varying noise scales.

Figure 6.5.: Utility for varying noise scales.

for the DSO, the figures are useful to derive the achievable privacy requirements for a

predefined error value, and vice versa. For example, as illustrated in Figure 6.5 (a), if a

voltage or current error that is one order of magnitude higher than the errors in SC
P only
𝜎=0.01

is still acceptable, 𝜆P = min{1.0, 4.5} = 1.0 is the maximum possible noise scale, that in

turn corresponds to, e.g., the privacy requirement “protecting one refrigerator cycle with

𝜖 = 0.14”. To sum up, the results suggest that it is hard to achieve reasonable privacy and

utility, because the utility with respect to all considered utility metrics for weak privacy

requirements is already low.

6.5. Summary

In this chapter, we study the utility of differentially private grid monitoring. Specifically,

we ask (1) which utility metrics are appropriate and (2) and how utility of a PET relates to

utility under measurement errors. To this end, we identify candidates for utility metrics for

all three steps of differentially private grid monitoring. To define reasonable privacy, we

use privacy requirements relating to appliance usages given in literature. Based on these

definitions, we perform a case study on a real-world grid and realistic measurements. With

respect to the first question, we observe that the utility of grid monitoring decreases faster

than the sanitization error, that is frequently used in related work on differentially privacy

as utility metric, suggests. With respect to the second question, the study indicates that

already under weak privacy requirements, the utility is worse than under measurement

errors.
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7. Swellfish Privacy: Exploiting
Time-Dependent Privacy Requirements

The results in the previous chapters indicate that 𝑤-event mechanism do not provide

reasonable utility. Consequently, in this chapter, we ask how to tune utility beyond

incremental𝑤-event mechanism design. The running example is the monitoring of the

active power consumption in a local area.
1
Towards this, we observe that 𝑤-event DP

is not customizable enough to consider the versatile nature of every-day human life,

limiting the achievable data utility. Put simply, streams have a time domain, and privacy

requirements of data owners may change frequently over time [MVW09]. We call this

time-dependent relevance. However, today it is not possible to add new or to delete no

longer required patterns from being protected. Instead, upon mechanism initialization

time, one needs to estimate the worst combination of patterns to protect. This has two

fundamental drawbacks. First, one needs to hope that one indeed found the worst case.

Second, one accepts that the mechanism adds high noise to the query result at every time

stamp, even if the worst case is currently not relevant. We illustrate the potential for

improving utility with the following examples.

Example 1 (Time-Dependent Relevance). Suppose that a smart meter records the power
consumption2 every minute, and that one aims to monitor the Sum of power consumed in a
city. Now think of an data owner with two privacy requirements: First, he wants to hide
whether he took a shower in the morning. Second, he wants to hide whether he cooked at
lunch time or had (unhealthy) food delivered. He does not aim to hide anything else.

In the example, the data owner aims to hide two different appliance usages, i.e., shares

of his power consumption, during two different time periods of the day. We call such time

periods relevance intervals, and an appliance usage together with a relevance interval a

privacy requirement. Time-dependent relevance of privacy requirements has two effects,

time-variant share (TeS) and number of affected time stamps (TeNAT). They allow to tune

data utility beyond designing new mechanisms for existing privacy definitions.

Example 2 (TeS: Time-Variant Share). The amount of power consumed to warm up water
for showering, and thus to be hidden in the morning, is larger than the one needed for cooking
at lunch time.
1
The remainder of this chapter bases on the article Christine Tex, Martin Schäler, and Klemens Böhm.

“Swellfish privacy: Supporting time-dependent relevance for continuous differential privacy”. In: Informa-
tion Systems 109 (2022), p. 102079. Compared to the article, the sections have been shortened to be less

repetitive, contain minor corrections, as well as formatting and notation changes to be in line with the

format and structure of this thesis.

2
In this chapter, with power consumption, we refer to positive active power. We assume that residential

customers do not have generators.
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Example 3 (TeNAT: Time-Variant Number of Affected Time Stamps). Taking a shower
lasts 10 minutes at best, while cooking takes, say, at least an hour.

Example 2 reveals that the share of the power consumption to be hidden is smaller at

lunch time than in the morning. Furthermore, there is even nothing to hide in the evening

and afternoon. This is the time-variant share effect. Example 3 indicates that there are

fewer power-consumption values monitored that are affected by the respective appliance

usage in the morning than at lunch time. This is the time-variant number of affected time
stamps effect.
To use𝑤-event DP, as shown in Section 6, the data administrators have to instantiate

these two parameters with the worst share and number of affected results over all time

stamps. This means that𝑤-event DP cannot exploit time-dependent relevance by design.

Contributions and Outline In Section 7.1, we introduce fundamentals and related work.

After that, first, in Section 7.2, we define Swellfish privacy, including the concepts of

stream policies and policy collections. A stream policy enables an data owner to specify

a privacy requirement. A policy collection allows to dynamically add or remove several

privacy requirements, possibly with different relevance intervals, from being protected.

We define Swellfish privacy by using these concepts, including an iterative definition of

neighboring streams to allow for concurrent privacy requirements. Additionally, we prove

that Swellfish privacy is a generalization of Blowfish privacy [HMD14] to the streaming

setting. Second, in Section 7.3, to design Swellfish-private mechanisms exploiting the

effects, we propose two tools. Each one corresponds to one effect. The first tool, the

TeS sensitivity, allows designing mechanisms that protect the current relevant share of

the query result. The second one, the TeNAT composition theorem, allows designing

mechanisms that protect the current number of affected time stamps, that are generally

not consecutive in time. With these tools, we adjust existing, and design new mechanisms

featuring different sampling and budget allocation techniques. Third, in Section 7.4,

we design and perform a realistic case study from the domain of power consumption

monitoring. We evaluate the utility of exploiting each effect in isolation and compare our

mechanisms to the state-of-the-art. The study reveals that exploiting the effects improves

data utility up to three orders of magnitude, and that our mechanisms feature the best

utility. Additionally, we show how to estimate the strength of the effects for arbitrary use

cases. Finally, we provide a summary of this chapter.

7.1. Specific Fundamentals and Related Work

In this section, we introduce fundamentals specific to this chapter. To this end, first, we

introduce and illustrate time-variant privacy requirements in multiple use cases. Second,

we briefly introduce policy-based privacy definitions for static databases, that Swellfish

privacy generalizes, and state why they cannot exploit time-dependent relevance of privacy

requirements. Third, we state the latter for further related privacy definitions based on

differential privacy.
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7.1.1. Typical Privacy Requirements in Different Use Cases

We use three use cases, namely, physical activity [YH10; SWC17], power consump-

tion [Nai+21; Eib+18; Tex+18], and location monitoring [FX14; Wan+19]. In each of

them, one continuously monitors query results over a stream 𝑆 = (𝐷1, 𝐷2, .., 𝐷𝑡 , ..). Here,
each 𝐷𝑡 [𝑖] is a use-case specific event consisting of states of activities 𝑎1, .., 𝑎𝑘 that individ-
ual 𝑖 (i.e., a data owner) performed (see Figure 4.1). However, use cases differ in whether

individuals can perform concurrent activities.

Location Monitoring As an individual is typically only at one location at a time, in this

use case, the event 𝐷𝑡 [𝑖] is a label stating at which location loc𝑥 ∈ {𝑎1, .., 𝑎𝑘} individual 𝑖
is at time 𝑡 . One typically monitors histograms over 𝑆 stating how many individuals are at

which location at each time stamp. A typical privacy requirement in this use case is to

hide whether an individual performed one or another trajectory [loc𝑥 , loc𝑦 , .., loc𝑧] during

a specific time interval. For instance, whether one went jogging in the city park or to the

bar, on Friday evening.

Physical Activity Monitoring In this use case, the event 𝐷𝑡 [𝑖] is a vector stating which

physical activities {𝑎1, .., 𝑎𝑘}, like running or eating, individual 𝑖 performs at time 𝑡 (see

Figure 4.1). As generally, in contrast to the first use case, one individual can perform

several physical activities at a time, like sitting and eating, it records a vector rather than
only activity labels. However, it is, e.g., not possible to sit and run at the same time. One

typically monitors histograms over 𝑆 stating how many individuals perform which activity

at each time stamp. In this use case, a typical privacy requirement is hiding whether one

or another sequence of vectors was performed during a specific time interval. For instance,

whether one sat and ate (cake), or went for a walk, in the afternoon.

Power Consumption Monitoring In this use case, the event 𝐷𝑡 [𝑖] is a real number stating

how much power an individual household 𝑖 consumed at time 𝑡 . The power consumed at

time 𝑡 is the sum of the power consumed by the appliances {𝑎1, .., 𝑎𝑘} that run at time 𝑡 .

Generally, more than one appliance runs at a time. An application typically monitors sums

over 𝑆 stating the total power consumed, e.g., in a city, at each time stamp. In this use case,

a typical privacy requirement is to hide whether an individual used specific appliances

during a specific time interval (see Chapter 6). For instance, whether he cooked by using

the stove and oven at lunch time.

7.1.2. Policy-Driven Privacy

SinceDP often is too strong causing low data utility, policy-driven privacy definitions [KM14;

HMD14] for static databases (i.e., not for streams) are proposed. However, as the time

dimension is missing, they do not feature time-dependent relevance. Policy-driven privacy

definitions generalize DP, allowing individuals to specify their privacy requirements with

one policy. To define Swellfish privacy, one of its building blocks relies on the same idea,

but features multiple policies associated with time intervals to account for time-dependent

relevance. To prepare this, we now review discriminative secret pairs [KM14; HMD14]
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and privacy policies [HMD14]. Further, we introduce Blowfish privacy [HMD14], which

is generalized by Swellfish privacy.

7.1.2.1. Discriminative Secret Pairs

A secret is a statement of arbitrary nature on the values, e.g., events, in a database, which

can or cannot be true for a specific database. A discriminative secret pair (𝑠, 𝑠′) is a tuple
of two secrets 𝑠 and 𝑠′ that are mutually exclusive, i.e., cannot both be true. It describes

properties of databases an adversary should not be able to distinguish between. An example

is (”Christine consumes 1kW at time 𝑡”, ”Christine consumes 5kW at time 𝑡”). For more

examples, we refer to [HMD14; KM14]. Particularly relevant for our case study are sets of

discriminative secret pairs defined by a distance measure and threshold [HMD14]: If the

domain of the database is associated with a distance measure 𝑑 , such as the Manhattan

distance, a distance-based set of discriminative secret pairs based on threshold 𝜃

𝑃𝑑,𝜃 = {(𝑠𝑖 (𝑥), 𝑠𝑖 (𝑦)) |𝑑 (𝑥,𝑦) ≤ 𝜃 }

formalizes that an adversary should not be able to distinguish between secrets 𝑠𝑖 (𝑥), 𝑠𝑖 (𝑦)
about data values 𝑥,𝑦 of individual 𝑖 that are close to each other. To illustrate, an adversary

should, say, not be able to distinguish between events differing by at most 𝜃 activities. Or,

they should not be able to infer whether individual 𝑖 used an appliance that consumes ≤ 𝜃
kW.

7.1.2.2. Privacy Policies

A set of discriminative secret pairs 𝑃 and activities A are two of three inputs of a privacy

policy 𝜙 = (A,𝐶, 𝑃). The third input𝐶 is a set of database constraints serving as auxiliary

knowledge (see Section 7.1.1).

7.1.2.3. Blowfish Privacy

Blowfish privacy is satisfied if an adversary cannot distinguish between query results

computed on two databases that are neighboring with respect to a privacy policy, see

Definition 7.1.1. In consequence, the policy-specific sensitivity is generally lower than the

global one needed in the DP definition. This in turn means that the mechanism needs less

noise to achieve the desired privacy level.

Definition 7.1.1 (Neighboring databases w.r.t. a policy [HMD14]). Let 𝜙 = (A,𝐶, 𝑃) be
a policy and 𝐷, 𝐷′ two databases. Further, let T (𝐷,𝐷′) ⊆ 𝑃 be the set of discriminative
secret pairs (𝑠, 𝑠′) so that secret 𝑠 is true in 𝐷 , and secret 𝑠′ is true in 𝐷′, and Δ(𝐷, 𝐷′) =
𝐷1\𝐷2 ∪ 𝐷2\𝐷1. Then 𝐷 and 𝐷′ are neighbors, i.e., 𝐷,𝐷′ ∈ N (𝜙), if
1. T (𝐷,𝐷′) ≠ ∅
2. they both fulfill the constraints in 𝐶 ,
3. there is no database 𝐷′′ fulfilling 𝐶 so that

• T (𝐷, 𝐷′′) ⊂ T (𝐷, 𝐷′), or
• T (𝐷, 𝐷′′) = T (𝐷,𝐷′) and Δ(𝐷′′, 𝐷) ⊂ Δ(𝐷′, 𝐷).
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The intuition of Definition 7.1.1 is that Blowfish privacy holds, if an adversary cannot

distinguish between query results computed on two databases that differ in at least a

single, but arbitrary, discriminative secret pair (𝑠, 𝑠′) (item 1.). For instance, in the database

𝐷 , the secret 𝑠 is true, but 𝑠′ is not. Furthermore, in 𝐷′ the opposite holds. In addition, the

definition demands that all constraints are satisfied in 𝐷 and 𝐷′ (item 2.). The latter has

no consequences for the location monitoring use case, as one can only be in one location

at the same time. By contrast, it affects the activity monitoring use case. In this use case,

there may be constraints as follows: in case secret 𝑠 is true, a third secret 𝑠′′ is true as well.
For example, if one is running, i.e, 𝑠 = 𝑡𝑟𝑢𝑒 , secret 𝑠′′ indicating whether the current speed
is larger than 0 is true as well. This increases the sensitivity, which in turn increases the

required noise. Thus, the definition additionally requests that the set of secrets 𝐷 and 𝐷′

differ in is minimal (item 3).

7.1.3. Further Related Work

To tune utility, related work either bounds the share in the static setting, or the number of

affected time stamps. Using Swellfish privacy, we combine both in a time-variant manner.

Bounding Share Bounding the share has been done before in the static setting only. The

smoothed sensitivity [NRS07] is a smooth upper bound on the local sensitivity. We show

that Swellfish privacy is a generalization of Blowfish [HMD14] to streams. Following results

from [HMD14], in the absence of constraints, this also holds for Pufferfish privacy [KM14;

KBB15]. [Cao+20] focuses on releasing single trajectories under policies. Metric-based

privacy [Cha+13] features distance-based policies. However, all these approaches are

defined for the static setting and do not take time-variance into account.

Bounding Number of Affected Time Stamps Bounding the number of time stamps one has to

protect has been done before in the streaming setting. However, event-level DP [Dwo+10]

hides only one event, and𝑤-event DP [Kel+14] hides all possible patterns anywhere in

the stream. Both definitions are time-invariant. Much work exists on designing new

𝑤-event mechanisms. The latest approaches exploit special features of the streams, such

as small query results [Wan+19]. Many of them use sampling [Wan+19; Li+15a] and

filtering [Wan+19; Che+17] techniques. We can show that Swellfish privacy inherits

post-processing immunity from the DP definition, and therefore filtering techniques can

be used. However, they are orthogonal to exploiting time-variance.

7.2. Swellfish Privacy

In this section, we propose Swellfish privacy. It is a privacy definition for differentially

private continuous monitoring of infinite streams that takes time-dependent relevance

into account. We use the power consumption use case as a running example, as we use it

in our case study as well.

This section is structured as follows: In Section 7.2.1, we first propose our notion

allowing individuals to specify multiple privacy requirements. In Section 7.2.2, we define
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Table 7.1.: Additional notation used in Chapter 7.

Notation Meaning

Secret pair 𝑠𝑝 𝑗 (𝜋, 𝜋 ′) = (𝑠 𝑗 (𝜋), 𝑠 𝑗 (𝜋 ′)) two secrets starting at time 𝑗 one should not be able

to distinguish between

Stream policy 𝜙 = (A,𝐶, 𝐽 , 𝑃) formalizes one privacy requirement featuring rele-

vance interval 𝐽

Set of secret pairs 𝑃 contains one secret pair 𝑠𝑝 𝑗 (𝜋𝑞, 𝜋 ′𝑞) for each equal-

length pattern pair (𝜋𝑞, 𝜋 ′𝑞) and possible start time

stamp 𝑗 in 𝐽

Policy collection Φ = {𝜙1, .., 𝜙 |Φ |} set of stream policies, formalizes multiple privacy

requirements

Secret pair sp(𝜋, 𝜋 ′):
Defines and locates two

patterns starting at the

same timestamp one

shall not be able to dis-

tinguish whether one of

them is in the stream.

Stream Policy 𝜙 :

Formalizes a single pri-

vacy requirement usu-

ally requiring multiple

secret pairs.

Policy Collection Φ:
Required to define multi-

ple, possibly concurrent

privacy requirements to

protect.

N:1 N:1

Figure 7.1.: Relationship between secret pairs, stream policies, and policy collections. ’N:1’

is a many-to-one relationship.

neighboring stream prefixes, such that the definition copes with concurrent privacy

requirements. Section 7.2.3 contains our definition of Swellfish privacy. In Section 7.2.4,

we show that Swellfish privacy generalizes Blowfish privacy. Table 7.1 summarizes the

notation we introduce in this section.

7.2.1. Notion for Specifying Privacy Requirements

We now propose two concepts our notion is built on: stream policies and policy collections.

First, stream policies are a deployment of general policies [HMD14; KM14] (see Sec-

tion 7.1.2) for the streaming setting. With them, an individual can formalize a single
privacy requirement referring to one relevance interval. Second, to allow for multiple,
possibly concurrent, privacy requirements, we propose policy collections consisting of

multiple stream policies (see Figure 7.1). Generally, there are no privacy requirements

publicly available that can be used, e.g., in a case study. Therefore, to illustrate our concepts

in this section and prepare our case study, we outline how we instantiate these concepts

in our case study.

7.2.1.1. Stream Policies

A stream policy allows to define a single privacy requirement. To this end, a stream policy

consists of pairs of secrets. We adopt the general idea of indistinguishable secrets from
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Blowfish, but must additionally consider that secrets have a temporal dimension. Therefore,

a secret 𝑠𝑖𝑗 (𝜋) states that individual 𝑖 performs pattern 𝜋 in the time interval [ 𝑗, 𝑗 + 𝑇 ].
Here, 𝑗 is called the start time, and 𝑇 := |𝜋 | is the length of the pattern. To illustrate,

consider the pattern

𝜋 =

[
𝑎1 = 1 𝑎1 = 0

𝑎2 = 1 𝑎2 = 1

]
of length 𝑇 = 2. The columns represent the events and the rows the activities configured

in the event. Further, consider the example stream in Figure 4.1. There, the secret 𝑠𝑖=2𝑗=2(𝜋)
is true, as the above pattern starts at time 𝑗 = 2. In contrast, the secret 𝑠2

1
(𝜋) is not true.

In the remainder, in line with related work [HMD14], we assume that all considered

secrets belong to the same individual 𝑖 , and we omit the superscript. Now, a discriminative

stream secret pair sp 𝑗 (𝜋, 𝜋 ′) is a pair of two secrets, referring to different equal-length

patterns 𝜋, 𝜋 ′, but the same start time 𝑗 ensuring that the secrets are mutually exclusive.

For readability, in the remainder, secret pair, abbreviates discriminative stream secret pair.

Definition 7.2.1 (Pattern Pairs and Discriminative Stream Secret Pairs). A pattern pair
(𝜋, 𝜋 ′) refers to two equal-length patterns 𝜋 ≠ 𝜋 ′ one should not be able to distinguish
between. In addition, a discriminative stream secret pair sp 𝑗 (𝜋, 𝜋 ′) := (𝑠 𝑗 (𝜋), 𝑠 𝑗 (𝜋 ′)) is a
tuple of two secrets referring to a specific pattern pair, both starting at time 𝑗 .

A single secret pair may not be enough to specify a privacy requirement. Imagine

the privacy requirement is to hide whether one walks one of the three trajectories 𝜋 ,

𝜋 ′, or 𝜋 ′′ at some time during 𝐽 . Formally, this means the following. First, one requests

indistinguishability of three pattern pairs, namely (𝜋, 𝜋 ′), (𝜋, 𝜋 ′′), and (𝜋 ′, 𝜋 ′′). Second,
for each of these pattern pairs, one needs a secret pair for every start time stamp in 𝐽 . This

leads to Definition 7.2.2.

Definition 7.2.2 (Stream Policy). A stream policy 𝜙 = (A,𝐶, 𝐽 , 𝑃) is a four-tuple containing
a set of activities A, secret pairs 𝑃 , a relevance interval 𝐽 , and deterministic constraints 𝐶 s.t.

𝑃 = {sp 𝑗 (𝜋𝑞, 𝜋 ′𝑞) | ∀1 ≤ 𝑞 ≤ 𝐿 ∀𝑗 ∈ 𝐽𝑇𝑞 }

and all patterns 𝜋𝑞, 𝜋 ′𝑞 having length 𝑇𝑞 fulfill 𝐶 . Here, 𝐽
𝑇𝑞 ⊆ 𝐽 is the interval that begins at

the same time stamp as 𝐽 , but ends 𝑇𝑞 − 1 time stamps earlier.

For numeric streams, like in the power consumption use case, typical sets of secret pairs

are distance-based (see Section 7.1.2), and all pattern pairs contained have the same length.

Below, in Example 4 we give an intuition on the introduced notation explaining how we

generate stream policies for the evaluation in the remainder.

Example 4 (Case Study – Intuition of Stream Policies and their Generation). Recapitulate,
in the power consumption use case one aims at hiding appliance usages. Therefore, each
possible appliance usage an individual wants to hide in a certain period 𝐽 becomes a stream
policy. The appliance usage is visible as share of the power consumption in the stream. In this
use case, we rely on the simplification of using distance-based secret pairs meaning that we
do not need to specify two mutually exclusive secrets, but only their distance threshold 𝜃 . For
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instance, 𝜙1 = (A,𝐶, 𝐽1 = [3, 6], 𝑃𝑑,𝜃=2.2𝑇=2
) states that we aim at hiding an appliance usage

having an energy consumption of 2.2, lasting for two timestamps anywhere in the relevance
interval 𝐽1 = [3, 6].
Similarly, as observed in Chapter 6, literature reveals that there are no freely available

stream policies. However, we identified in in Chapter 6 the generator [Got+11] simulating
realistic usage patterns of appliances in residential households, i.e., potential secrets. Thus,
we use this generator to generate stream policies. These generated appliance usages do not
necessarily need to occur in the streams. However, in case they do occur, they must not be
visible in the query result, i.e., in the aggregated energy consumption.
In the evaluation, the stream policy 𝜙 = (A,𝐶, 𝐽 , 𝑃) per appliance usage is generated as

follows: The set A of activities is given by the appliances in the household, and we have no
constraints (𝐶 = ∅). We set 𝑃 = 𝑃

𝑑,𝜃

𝑇
, where threshold 𝜃 is the power an appliance consumes,

and 𝑇 is the length of the respective appliance usage pattern. The relevance interval 𝐽 is 4 ·𝑇
time stamps long and is located around the usage time scheduled by the generator.

7.2.1.2. Policy Collections

A policy collection is a set of stream policies with possibly different relevance intervals.

If relevance intervals of two stream policies overlap, we say that the underlying privacy

requirements are concurrent.

Definition 7.2.3 (Policy Collection). A policy collection Φ is a set of stream policies
{𝜙1, · · · , 𝜙 |Φ|} such that the policies contain the same activities A and constraints 𝐶 .

The individuals may modify a policy collection, e.g., by adding new stream policies

dynamically, as long as the relevance interval of the modified stream policy has not started

yet. It is also possible to have the same stream policy w.r.t. different individuals multiple

times in a collection. In the latter, our privacy definition behaves like group DP [DR+14].

Example 5 (Case Study - Policy Collection). By using the generator from [Got+11], we
generate several households. For each of them, we generate one policy collection. The more
stream policies are contained in a policy collection, the more challenging it is to fulfill the
policy collection. In our case study, we aim to challenge our mechanisms. Consequently,
in each policy collection, each single appliance-usage scheduled by the generator becomes
one separate stream policy. Multiple concatenated appliance-usages are considered as one
usage. Concurrent used appliances usage (e.g., stove and oven) become concurrent privacy
requirements.

In the remainder, we use the notion of relevant stream policies and time stamps. In

context of this notion, it is particularly important to observe that at a time stamp 𝑡 , or –

more generally – during a relevance interval 𝐽 , not only one, but multiple stream policies

can be relevant.

Definition 7.2.4 (Relevance of Stream Policies and Time Stamps). For a time stamp 𝑡 , a
stream policy 𝜙 is relevant if 𝑡 ∈ 𝐽 . Similarly, time stamp 𝑡 is relevant if there is at least one
relevant policy at time 𝑡 . For a policy collection Φ, the set Φ𝑡 ⊆ Φ contains all stream policies
from Φ that are relevant at time 𝑡 .
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· · · · · ·

𝑆6 = 𝑆
0

6

𝑡 = 1 2 3 4 5 6

𝑖 = 1 0.2 0.3 0.2 0.4 0.3 1.4

· · · · · · · · · · · · · · · · · · · · ·
Sum(𝐷𝑡 ) 259 313 192 221 953 889

(𝑆0
6
, 𝑆1

6
) ∈ N (𝜙0)

𝑆1
6

𝑡 = 1 2 3 4 5 6

𝑖 = 1 0.2 0.3 1.2 0.4 0.3 1.4

· · · · · · · · · · · · · · · · · · · · ·
Sum(𝐷𝑡 ) 259 313 193 221 953 889

(𝑆1
6
, 𝑆2

6
) ∈ N (𝜙1)

(a) 𝑆2
6
= 𝑆 ′

6

𝑡 = 1 2 3 4 5 6

𝑖 = 1 0.2 0.3 3.4 2.6 0.3 1.4

· · · · · · · · · · · · · · · · · · · · ·
Sum(𝐷𝑡 ) 259 313 195.2 223.2 953 889︸          ︷︷          ︸
Theorem 10: 𝐽0,

∑
TOP2{𝜖2,𝜖3}

𝜖𝑡 ≤ 𝜖︸                            ︷︷                            ︸
𝐽1,

∑
TOP3{𝜖3,· · · ,𝜖6}

𝜖𝑡 ≤ 𝜖

(b) 𝑆2
6
= 𝑆 ′

6

𝑡 = 1 2 3 4 5 6

𝑖 = 1 0.2 0.3 1.2 0.4 2.5 3.6
· · · · · · · · · · · · · · · · · · · · ·
Sum(𝐷𝑡 ) 259 313 193 221 955.2 891.2︸          ︷︷          ︸
Theorem 10: 𝐽0,

∑
TOP2{𝜖2,𝜖3}

𝜖𝑡 ≤ 𝜖︸                            ︷︷                            ︸
𝐽1,

∑
TOP3{𝜖3,· · · ,𝜖6}

𝜖𝑡 ≤ 𝜖

Figure 7.2.: Illustration of our iterative definition of neighboring stream prefixes with

respect to the following policy collections Φ = {𝜙0, 𝜙1} containing the stream

policies 𝜙0 = (A,𝐶, 𝐽0 = [2, 3], 𝑃𝑑,𝜃=1𝑇=1
) and 𝜙1 = (A,𝐶, 𝐽1 = [3, 6], 𝑃𝑑,𝜃=2.2𝑇=2

).
The blue time stamps correspond to 𝐽0, the green ones to 𝐽1, and red values are

values that changed in any iteration step.

7.2.2. Neighboring Stream Prefixes

The secret pairs in a stream policy define a set of stream prefixes containing them. We

must provide indistinguishability for every possibly existing pair of neighboring stream

prefixes. Basically, two stream prefixes are neighbors if they are neighbors with respect

to a single policy. This concept is similar to Blowfish’s concepts of neighboring static

databases. However, with Swellfish privacy, stream prefixes can also be neighbors with

respect to several policies. In the worst case, neighboring streams differ in one secret pair

from each stream policy in a policy collection. Generally, not all combinations of secret

pairs from different stream policies result in neighboring streams. This is, e.g., the case if

two secrets from different policies cannot be true at the same time. But, in case they can

be true, we argue that the individual intends to hide the respective secret pair combination,
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i.e., the concatenation of secrets from different policies. Secret pair combinations may

result in additional secret pairs to be hidden, as Example 6 illustrates.

Example 6 (Location Monitoring Use Case – Combining Secret Pairs). Suppose that the
secret pairs 𝑠𝑝 𝑗1=1(𝜋1, 𝜋 ′1) and 𝑠𝑝 𝑗2=3(𝜋2, 𝜋 ′2) belong to different stream policies. Further, let
𝜋 ′
1
= [𝑙𝑜𝑐1, 𝑙𝑜𝑐2, 𝑙𝑜𝑐3] and 𝜋2 = [𝑙𝑜𝑐3, 𝑙𝑜𝑐4] be given. In these patterns, the last location in

𝜋 ′
1
is equal to the first location in 𝜋2. This means that the secrets 𝑠 𝑗1=1(𝜋 ′1) and 𝑠 𝑗2=3(𝜋2)

can be true at the same time. This in turn means that the individual intends to hide the
specified secret pairs, as well as additional ones, in particular, (𝑠1(𝜋1), 𝑠1(𝜋combi)) with 𝜋combi =

[𝑙𝑜𝑐1, 𝑙𝑜𝑐2, 𝜋 ′2].

The following definition of neighboring stream prefixes ensures that there is a pair of

neighboring stream prefixes for every possible combination of secret pairs.

Definition 7.2.5 (Neighboring Stream Prefixes w.r.t. a Policy Collection). Let Φ be a policy
collection. The stream prefixes 𝑆𝑝, 𝑆′𝑝 are neighbors with respect to Φ, i.e., 𝑆𝑝, 𝑆′𝑝 ∈ N (Φ) iff
there exists

1. a sequence [𝜙0, .., 𝜙𝑘] of stream policies from Φ containing each stream policy at most
once,

2. a sequence [𝑆0𝑝 = 𝑆𝑝, .., 𝑆
𝑙
𝑝, .., 𝑆

𝑘+1
𝑝 = 𝑆′𝑝] of stream prefixes, starting with 𝑆𝑝 and ending

with 𝑆′𝑝 ,

such that for all 0 ≤ 𝑙 ≤ 𝑘 it holds that (𝑆𝑙𝑝, 𝑆𝑙+1𝑝 ) ∈ N (𝜙𝑙 ).

Example 7 (Neighboring Stream Prefixes without Constraints). Consider Figure 7.2. It
contains a policy collection, together with stream prefixes. Let 𝐶 = ∅. Assuming that the
stream policies belong to individual 𝑖 = 1, it shows that 𝑆6, 𝑆′6 ∈ N (Φ) for Case (a) and (b).
For instance, consider Case (a). The stream prefixes 𝑆0

6
and 𝑆1

5
6 are neighbors with respect

to policy 𝜙0, as they differ by a pattern of length 𝑇 = 1 consuming 𝜃 = 1 kW at time stamp
𝑡 = 3 ∈ 𝐽0. Similarly, 𝑆1

6
and 𝑆2

6
are neighbors with respect to policy 𝜙1.

Example 7 assumes that the policy collection does not feature any constraints. But recall

that policy collections feature constraints, and that stream prefixes are neighbors w.r.t.

a single policy if they differ in the minimal number of secret pairs. We now explain the

effects of intra- and inter-individual constraints on neighboring databases on the basis of

Example 7. First, as the events in the secrets already fulfill the intra-individual constraints,

Example 7 would not change if 𝐶 contains such constraints only. However, second, if

𝐶 contains intra-individual constraints, neighboring streams may additionally differ in

the data of individuals that are different from 𝑖 = 1. Formally, this is because we require

subsequent streams to be neighbors w.r.t. a policy as defined in Definition 7.1.1.

7.2.3. Swellfish Privacy

Based on the notion of neighboring stream prefixes, we now define Swellfish privacy.
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Definition 7.2.6 ((𝜖,Φ)-Swellfish Privacy). LetM be a randomized mechanism that has as
input a stream prefix 𝑆𝑝 of arbitrary size, Φ be a policy collection, 𝑆𝑝, 𝑆′𝑝 ∈ N (Φ) and 𝜖 > 0.
The mechanismM gives (𝜖,Φ)-Swellfish privacy iff

𝑃𝑟 [M(𝑆 𝐽 ) = 𝑅] ≤ 𝑒𝜖 · 𝑃𝑟 [M(𝑆′𝐽 ) = 𝑅]

for every relevance interval 𝐽 of a stream policy 𝜙 ∈ Φ.
It says that one has 𝜖 budget for each relevance interval 𝐽 . This also holds if multiple

policies are relevant at a time stamp 𝑡 ∈ 𝐽 . As a result, one must consider two aspects: (1)

The share of the query result to be protected, as well as (2) the number of time stamps one

distributes the budget between during 𝐽 depends on all policies that are relevant at any
time stamp in 𝐽 .

7.2.4. Generalization of Blowfish Privacy

Before we discuss the relationship to other privacy definitions in the remainder, we

highlight that Swellfish privacy generalizes Blowfish privacy.

While Blowfish privacy is defined for the static setting and allows for one policy only,

Swellfish privacy is defined for the streaming setting and allows for policy collections.

However, reduced to the static setting, Swellfish privacy is equivalent to Blowfish privacy.

To prove this, we show (1) that one can implement (𝜖, 𝜙𝐵)-Blowfish privacy with Swellfish

privacy, and (2) vice versa. To this end, we consider a definition of Swellfish privacy

restricted to a static database given in Definition 7.2.7.

Definition 7.2.7 (Static (𝜖𝑡 ,Φ𝑡 )-Swellfish privacy). LetM𝑡 be a randomized mechanism
that has as input a static database 𝐷𝑡 . The mechanismM𝑡 gives (𝜖𝑡 ,Φ𝑡 )-Swellfish privacy iff
for all neighboring databases (𝐷𝑡 , 𝐷′𝑡 ) ∈ N (Φ𝑡 ), and all 𝑅 ∈ Range(M), the following holds:

𝑃𝑟 [M𝑡 (𝐷𝑡 ) = 𝑅] ≤ 𝑒𝜖 · 𝑃𝑟 [M𝑡 (𝐷′𝑡 )) = 𝑅] .

We now show both directions separately.

Swellfish→Blowfish Privacy Let𝜙𝐵 = (A, 𝑃,𝐶) be a Blowfish policy, and𝜙𝑆 = (A, 𝑃,𝐶, 𝐽 )
with 𝐽 = [𝑡, 𝑡] be a stream policy. Both policies contain the same activities, constraints

and set of secret pairs. The relevance interval of 𝜙𝑆 is restricted to the time stamp 𝑡 , i.e.,

to one time stamp only. Then, providing (𝜖𝑡 ,Φ𝑆 )-Swellfish privacy for the policy collec-

tion Φ𝑆 = {𝜙𝑆 } is equivalent to providing (𝜖𝑡 , 𝜙𝐵)-Blowfish privacy, as Φ𝑡 = Φ𝑆 . As result,
a Swellfish private mechanism provides Blowfish privacy.

Blowfish→ Swellfish Privacy Let Φ𝑆 be a policy collection. W.l.o.g., assume that at time 𝑡 ,

the two stream policies Φ𝑆,𝑡 = {𝜙, 𝜙∗} are relevant. Let 𝑠𝑡 (𝜋), 𝑠∗𝑡 (𝜋∗) be any two secrets

from 𝜙 , 𝜙∗, that can be simultaneously true at time 𝑡 . For each such two secrets, we

construct a new secret covering both of them, i.e., both are true. Then, we replace the

secrets 𝑠𝑡 (𝜋) and 𝑠∗𝑡 (𝜋∗) with this new secret in all stream secret pairs. That way, we obtain

a new set of secret pairs 𝑃𝐵 and respective policy 𝜙𝐵 = (A, 𝑃𝐵,𝐶, 𝐽 = [𝑡, 𝑡]). For this policy
𝜙𝐵 , it holds that Swellfish neighbors (𝐷𝑡 , 𝐷∗𝑡 ) ∈ N (Φ𝑆,𝑡 ) are also Blowfish neighbors, i.e.,

(𝐷𝑡 , 𝐷∗𝑡 ) ∈ N (𝜙𝐵).

105



7. Swellfish Privacy: Exploiting Time-Dependent Privacy Requirements

7.3. Mechanism Design

After defining Swellfish privacy, we now design mechanisms providing it. First, in Sec-

tion 7.3.1, by formally defining the effects featured in the introduction, we derive two

tools, each one allowing to exploit one of the effects. Second, in Section 7.3.2, we propose

baseline mechanisms that cannot exploit the effects and discuss how to improve them by

using our proposed tools. Third, based on this discussion, in Section 7.3.3, we propose

a framework for mechanism design and three concrete mechanisms. In contrast to the

baseline, the latter ones exploit the TeS and TeNAT effect.

7.3.1. Definition and Exploitation of the Effects

To allow for the continuous publishing of query results, our aim is to design mechanisms

that consist of independent (𝜖𝑡 ,Φ𝑡 )-Swellfish private sub-mechanismsM1, ..,M𝑝 , where

M𝑡 outputs the private query result at time 𝑡 . In this section, we formally define the TeS

and TeNAT effect, and derive tools to exploit these effects. To this end, the first tool to

exploit the TeS effect is the TeS sensitivity, used to implement a sub-mechanism. The

second tool is the TeNAT composition theorem, used to determine budget 𝜖𝑡 for each

sub-mechanism.

7.3.1.1. TeS Effect and Sensitivity

To ensure DP, one typically adds Laplace noise to the query result that is proportional to

the sensitivity of the query. In the Swellfish framework, the sensitivity depends on the

share of the query result to be hidden and therefore tends to be different for each time

stamp 𝑡 . The share for a specific 𝑡 depends on all policies that are relevant at 𝑡 . Formally,

it is defined by the TeS sensitivity of a query as given in Definition 7.3.1.

Definition 7.3.1 (TeS Sensitivity). Let Φ be a policy collection. For a query 𝑄 : 𝐷 → Rdim,
the TeS sensitivity at time 𝑡 is

Δ𝑡𝑄 (Φ) = max

(𝑆𝑝 ,𝑆 ′𝑝 )∈N (Φ)
| |𝑄 (𝐷𝑡 ) −𝑄 (𝐷′𝑡 ) | |1.

The TeS effect is defined by the fraction of the TeS sensitivity compared to the global

sensitivity, as given in Definition 7.3.2.

Example 8 (TeS Sensitivity). Consider again the policy collection from Figure 7.2. There, at
time 𝑡 = 3, in the worst case, neighboring stream prefixes differ by |Sum(𝐷𝑡 ) − Sum(𝐷′𝑡 ) | = 3.2

kW. Namely, both stream policies 𝜙0 and 𝜙1 featuring thresholds 1.0 and 2.2 are relevant. In
contrast, at 𝑡 = 4, the TeS sensitivity is 2.2, as only policy 𝜙1 is relevant. At 𝑡 = 1, the TeS
sensitivity is 0, as no policy is relevant.

Definition 7.3.2 (TeS effect). Given a policy collection, the time-variant share effect is
defined by

∅𝑡
Δ𝑡
𝑄

Δ𝑄
,

where ∅𝑡 is the average over time stamps 𝑡 ∈ [1, 𝑝].
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Theorem 8 states that adding noise that is proportional to the TeS sensitivity at time 𝑡

yields (𝜖𝑡 ,Φ𝑡 )-Swellfish privacy for a specific time stamp 𝑡 . Thus, one exploits this effect

by using the TeS sensitivity for adding noise.

Theorem 8. Let 𝑡 be a time stamp. The mechanismM𝑡 given by

M𝑡 (𝐷𝑡 ) = 𝑄 (𝐷𝑡 ) + Lap(
Δ𝑡
𝑄
(Φ)
𝜖
)

provides (𝜖𝑡 ,Φ𝑡 )-Swellfish privacy at time 𝑡 .

Proof. As Swellfish privacy is equivalent to Blowfish privacy in the static setting, this holds
due to Theorem 5.1 from [HMD14]. □
Generally, calculating the exact TeS sensitivity is challenging, because one iteration

step in our definition of neighboring streams can influence previous and subsequent steps

in different ways. But we can give an upper bound formalized in Theorem 9. The intuition

is that in the worst case, all policy-specific sensitivities of all relevant policies add up. This

upper bound is tight if we have policies that do not share secret pairs and do not feature

inter-individual constraints. However, e.g., if one has a single policy collection containing

two policies containing the same secret pairs, this upper bound is not tight: In this case,

the TeS sensitivity is given by the maximum of the policy-specific sensitivities. This holds,

e.g., for the power consumption use case.

Theorem 9. The TeS sensitivity is bounded by

Δ𝑡𝑄 (Φ) ∈ [max

𝜙∈Φ𝑡

Δ𝑡𝑄 (𝜙),
∑︁
𝜙∈Φ𝑡

Δ𝑡𝑄 (𝜙)] .

Proof. First, neighboring stream prefixes differ in at least one stream policy. Therefore,
Δ𝑡
𝑄
(Φ) ≥ max

𝜙∈Φ𝑡

Δ𝑡
𝑄
(𝜙). Second, neighboring stream prefixes differ mostly in all policies from

Φ𝑡 . Therefore, Δ𝑡𝑄 (Φ) ≤
∑
𝜙∈Φ𝑡

Δ𝑡
𝑄
(𝜙). □

7.3.1.2. TeNAT Effect and Composition Theorem

Two stream policies generally feature different patterns. For exploiting the TeNAT effect,

it is important that the patterns usually have different length. Intuitively, one needs less

noise to hide shorter patterns than longer ones. Put simply, the TeNAT effect measures

the fraction of the maximum pattern length of currently relevant policies, compared to the

maximum pattern length of all policies, i.e.,𝑤 . However, it is not as simple as that, as it does

not only come down to pattern length, but also to overlaps of relevance intervals. This is

captured in our definition of the number of policy-affected time stamps 𝛿 (𝐽 ) below. Unlike
patterns, the policy-affected time stamps are generally not consecutive in 𝐽 . Consequently,

to exploit the TeNAT effect, one needs a composition theorem that takes this into account.
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Algorithm 6 Bounding 𝛿 (𝐽 )
1: function CalcDeltaJ(Φ, 𝜙 = (𝐴,𝐶, 𝐽 , 𝑃))
2: 𝛿 (𝐽 )←max{|𝜋 | | 𝑠𝑝 𝑗 (𝜋, 𝜋 ′) ∈ 𝑃}
3: for 𝜙∗ = (𝐴,𝐶, 𝐽 ∗, 𝑃∗) ∈ Φ𝐽 do
4: if 𝜙∗ ≠ 𝜙 then

5: 𝑜 ← |𝐽 ∩ 𝐽 ∗ |
6: 𝑇max ← max{|𝜋 | | 𝑠𝑝 𝑗 (𝜋, 𝜋 ′) ∈ 𝑃∗}
7: 𝛿 (𝐽 ) +=min{𝑜,𝑇max}
8: end if

9: end for

10: if 𝛿 (𝐽 ) > |𝐽 | then
11: 𝛿 (𝐽 )←|𝐽 |
12: end ifreturn 𝛿 (𝐽 )
13: end function

Definition 7.3.3 (TeNAT effect). Given a policy collection Φ, let𝑤 be the maximum pattern
length of all policies contained in Φ, and 𝛿 (𝐽 ) the maximum number of policy-affected time
stamps. Then, the time-variant number of affected time stamps effect is

∅𝑡
max𝜙∈Φ𝑡

𝛿𝜙 (𝐽 )
𝑤

,

where ∅𝑡 is the average over time stamps 𝑡 ∈ [1, 𝑝].

Defining and Determining Policy-Affected Time Stamps Given two specific neighboring

stream prefixes, we refer to a time stamp 𝑡 that is affected by any policy as policy-

affected time stamp.

Definition 7.3.4 (Policy-Affected Time Stamp). Let Φ be a policy collection, and 𝑆𝑝, 𝑆′𝑝 ∈
N (Φ). A time stamp 𝑡 is a policy-affected time stamp iff 𝐷𝑡 ≠ 𝐷′𝑡 .

For instance, in Figure 7.2, in both cases, time stamp 𝑡 = 3 is a policy-affected time stamp,

but 𝑡 = 2 is not. Nevertheless, different neighboring streams may feature different policy-

affected time stamps. For instance, 𝑡 = 4 in Case (a) in Figure 7.2 is a policy-affected time

stamp, but not in Case (b). Thus, to provide indistinguishability for all possible neighboring

stream prefixes, one must protect the maximum number of policy-affected time stamps

over all neighboring stream prefixes. For a given relevance interval 𝐽 of a policy Φ, we
abbreviate this number with 𝛿 (𝐽 ), i.e.,

𝛿 (𝐽 ) = max

𝑆𝑝 ,𝑆
′
𝑝∈N (Φ)

|{𝑡 | 𝐷𝑡 ≠ 𝐷′𝑡 , 𝑡 ∈ 𝐽 }|.

If during 𝐽 only one policy is relevant, 𝛿 (𝐽 ) is the length of the longest pattern in the

policy. Otherwise, determining the exact number is challenging, as it varies for different

pairs of neighboring streams. However, one can determine an upper bound on 𝛿 (𝐽 )
as stated in Algorithm 6. The intuition is as follows. First, one initiates 𝛿 (𝐽 ) by the

108



7.3. Mechanism Design

length 𝑇 of longest pattern 𝜋 in 𝐽 . Second, one needs to consider all overlapping stream

policies 𝜙∗ being relevant for at least at one time stamp ∈ 𝐽 . For each of them, we

add to 𝛿 (𝐽 ) the share of longest pattern in 𝐽 ′, which can range into 𝐽 . It is given by

min{|𝐽 ∩ 𝐽 ∗ |,max{|𝜋 | | 𝑠𝑝 𝑗 (𝜋, 𝜋 ′) ∈ 𝑃∗}}. If multiple policies have the same relevance

interval 𝐽 , 𝛿 (𝐽 ) is equal regardless which policy is used as input of Algorithm 6, as the

policies ’see’ each other (Line 3).

Protecting all Possible Policy-Affected Time Stamps With this, we arrive at Theorem 10, the

TeNAT composition theorem. The intuition is as follows. For each relevance interval 𝐽 , one

must protect 𝛿 (𝐽 ) time stamps in this interval. In case many stream policies overlap with

each other, the policy-affected time stamps are distributed arbitrarily over 𝐽 . Therefore,

the theorem presumes that they can lie anywhere in the interval. However, as one knows

that one has to protect only 𝛿 (𝐽 ) time stamps, it is sufficient to ensure that the sum of the

budgets consumed at any 𝛿 (𝐽 ) time stamps does not exceed 𝜖 .

Theorem 10 (TeNAT Composition). LetM be a mechanism having as input a stream prefix
𝑆𝑝 = (𝐷1, .., 𝐷𝑝), and outputting 𝑅 = (𝑟1, .., 𝑟𝑝). Assume that we can decomposeM into 𝑝
sub-mechanismsM1, ..,M𝑝 , s.t.M𝑡 (𝐷𝑡 ) = 𝑟𝑡 , where eachM𝑡 has independent randomness
and achieves (𝜖𝑡 ,Φ𝑡 )- Swellfish privacy. ThenM satisfies (𝜖,Φ)-Swellfish privacy if

∀𝜙 ∈ Φ :

∑︁
𝜖𝑡∈X

𝜖𝑡 ≤ 𝜖, (7.1)

where X = TOP𝛿 (𝐽 ){𝜖𝑡 |𝑡 ∈ 𝐽 } is the set of the highest 𝛿 (𝐽 ) budgets spent during 𝐽 .

Proof. Let 𝑆 𝐽 and 𝑆′𝐽 neighboring snapshots differing in at most 𝛿 (𝐽 ) time stamps, and
P𝛿 (𝐽 ) (𝐽 ) be the set containing all sets from the power set of a relevance interval 𝐽 of size 𝛿 (𝐽 ).
As (1) all mechanisms use independent randomness, (2) are (𝜖𝑡 ,Φ𝑡 )-Swellfish private, and (3)

Eq. 7.1 holds, we have

𝑃𝑟 [M(𝑆 𝐽 ) = 𝑅]
𝑃𝑟 [M(𝑆′

𝐽
) = 𝑅]

(1)

= max

Y∈P𝛿 ( 𝐽 ) (𝐽 )∩[1,𝑝]

∏
𝑡∈Y

𝑃𝑟 [M𝑡 (𝐷𝑡 ) = 𝑟𝑡 ]
𝑃𝑟 [M𝑡 (𝐷′𝑡 ) = 𝑟𝑡 ]

(2)

≤ max

Y∈P𝛿 ( 𝐽 ) (𝐽 )∩[1,𝑝]

∏
𝑡∈Y

𝑒𝜖𝑡

= max

Y∈P𝛿 ( 𝐽 ) (𝐽 )∩[1,𝑝]
exp(

∑︁
𝑡∈Y

𝜖𝑡 )

= exp(
∑︁
𝜖𝑡∈X

𝜖𝑡 )
(3)

≤ exp(𝜖),

which proofs the claim. □

7.3.2. Baseline Mechanisms

In this section, we design mechanisms satisfying Swellfish privacy. To this end, we first

propose a baseline. Then, we discuss how we can do better than the baseline in terms of

utility by exploiting the effects with the tools just introduced.
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7.3.2.1. 𝑤 -Event DP Baseline for Policy Collections without Constraints

Swellfish privacy differs from 𝑤-event DP in the specification of privacy policies and

constraints (see Section 7.1.3). However, in the absence of constraints, a (𝑤 = max

(A,𝐶,𝐽 ,𝑃)∈Φ
|𝐽 |)-

event private mechanism satisfies Swellfish privacy.

Theorem 11. Let Φ be a policy collection without constraints, 𝜖 > 0 and letM be a𝑤-event
DPmechanism using global sensitivity. If𝑤 ≥ max

(A,𝐶,𝐽 ,𝑃)∈Φ
|𝐽 |, thenM provides (𝜖,Φ)-Swellfish

privacy.

Proof. Let 𝜙 = (A,𝐶, 𝐽 , 𝑃) ∈ Φ. Then, |𝐽 | ≤ |𝐽 ′| = 𝑤 where 𝐽 ′ is the relevance interval
that corresponds to

(A,𝐶, 𝐽 , 𝑃) = argmax

(A,𝐶,𝐽 ,𝑃)∈Φ
|𝐽 |.

Let 𝑆 𝐽 , 𝑆′𝐽 be sub-streams of the stream prefixes 𝑆𝑝, 𝑆′𝑝 , which differ during interval 𝐽 only.
Then, 𝑆𝑝, 𝑆′𝑝 are neighboring stream prefixes for𝑤 ≥ |𝐽 |. AsM is𝑤 = |𝐽 ′|-event differentially
private, it follows that

𝑃𝑟 [M(𝑆 𝐽 ) = 𝑅]
𝑃𝑟 [M(𝑆′

𝐽
) = 𝑅] =

𝑃𝑟 [M(𝑆𝑝) = 𝑅]
𝑃𝑟 [M(𝑆′𝑝) = 𝑅]

≤ exp(𝜖),

which proofs the claim. □

7.3.2.2. Improving the Baseline

Due to the TeS and TeNAT effect, we hypothesize that one can have a higher utility than

with𝑤-event DP baseline in many cases.

First, regarding the TeS effect,𝑤-event mechanisms scale Laplace noise proportionally

to the global sensitivity. Since the TeS sensitivity tends to be smaller, scaling Laplace noise

with the TeS sensitivity is expected to improve data utility. In particular, this is the case

for time stamps 𝑡 where no policy is relevant, as one can publish the query results without

perturbation there.

To obtain a Swellfish-privatemechanism exploiting the TeS effect, one can take a𝑤-event

mechanism and replace the global sensitivity with the TeS sensitivity in its Perturbation

function (see Section 5.1.2). We use such mechanisms in our experimental study to

investigate the influence of the TeS effect. However,𝑤-event mechanisms implementing

adaptive isSamplingPoint and budgetAllocation functions may presume that the

sensitivity is constant over time. For such mechanisms, one has to adapt these functions

as well. An example is RescueDP [Wan+16a] whose adaptive isSamplingPoint function

needs the sensitivity of the next, so far unknown sampling point to calculate the sampling

point.

Second, regarding the TeNAT effect, the number of time stamps 𝛿 (𝐽 ) to be protected
in a relevance interval 𝐽 might be different for each interval. So it may be much smaller

than𝑤 . Therefore, distributing the budget in line with the TeNAT composition theorem

that depends on 𝛿 (𝐽 ) should improve data utility further. As the budgetAllocation

function of a mechanism typically builds on its isSamplingPoint function, we now
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Algorithm 7 Swellfish Mechanism-Framework

1: functionM𝑡 (𝜖
𝑠
𝑡 , 𝜖

𝑜𝑝,Φ, 𝑙)
2: if |Φ𝑡 | == 0 then ⊲ no relevant policies

3: return 𝑄 (𝐷𝑡 )
4: else

5: if isSamplingPoint(𝑡, 𝐷𝑡 , 𝑟𝑙 , 𝜖
𝑠
𝑡 ,Φ) then

6: 𝜖
op

𝑡 ←budgetAllocation(𝑡, 𝜖op,Φ)
7: 𝑟𝑡←Perturbation(𝜖op𝑡 ,Δ

𝑄
𝑡 , 𝐷𝑡 ) = 𝑄 (𝐷𝑡 ) + Lap(

Δ𝑄
𝑡

𝜖
op

𝑡

)
8: 𝑙←𝑡 ⊲ 𝜖𝑡 = 𝜖

𝑠
𝑡 + 𝜖

op

𝑡

9: else 𝑟𝑡←𝑟𝑙 ⊲ approximation, 𝜖𝑡 = 𝜖
𝑠
𝑡

10: end if

11: end if

12: return 𝑟𝑡
13: end function

propose Swellfish-private mechanisms featuring typical isSamplingPoint and appropriate

budgetAllocation functions.

7.3.3. Swellfish Mechanisms Exploiting the Effects

We propose a general framework that allows designing Swellfish-private mechanisms that

exploit the TeS and TeNAT effect, as well as three different mechanisms implementing

this framework. They use well-known techniques like dynamic budget allocation and

data-adaptive sampling.

7.3.3.1. Swellfish Mechanism-Framework

To exploit the TeS effect, a mechanism can use the TeS sensitivity for noise scaling. To

design mechanisms exploiting the TeNAT effect, we propose mechanisms that consist of in-

dependent sub-mechanisms structured as in the general Algorithm 7. A sub-mechanismM𝑡

following this algorithm publishes the unperturbed query results if there are no relevant

policies. Otherwise, it decides whether to sample the query results according to its sam-

pling function isSamplingPoint, possibly using some sampling budget 𝜖s𝑡 in case the

function is data-dependent. In case the mechanism decides to sample, it perturbs the query

results with some output perturbation budget 𝜖
op

𝑡 determined by budgetAllocation. It is

subject of the implementation to ensure that the composition theorem is respected. In case

the mechanism does not sample, it approximates the results with the last published query

result. In the following, we propose three mechanisms implementing different sampling

strategies. See Table 7.2 for an overview of how the functions are implemented. We now

explain each proposed mechanism and state how it respects the composition theorem.

7.3.3.2. Mechanism Instances

Based on our framework, we propose three different mechanisms.
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Table 7.2.: Overview of design of our Swellfish-private mechanisms.

Mechanism isSamplingPoint(𝑡, 𝜖𝑠𝑡 ) budgetAllocation()

UnicornIS sample at timestamp 𝑡 iff there does

not exist (A,𝐶, 𝐽 , 𝑃) ∈ Φ𝑡 such that 𝐽

contains a previous sampling point

return 𝜖

UnicornPS return true see Algorithm 9 with 𝜖op = 𝜖

Unicorn see Algorithm 8 see Algorithm 9 with 𝜖op = 0.5 · 𝜖

Predefined-Rate Sampling with UnicornIS UnicornIntervalSample (UnicornIS) samples at

most once per relevance interval. Specifically, it samples at time 𝑡 in case there is no

policy relevant that features a relevance interval containing any sampling point. It does

not need budget for sampling, and thus uses full budget 𝜖
op

𝑡 = 𝜖 for output perturbation.

Therefore, it is Swellfish-private by design. As the mechanism samples infrequently, its

error is dominated by the approximation error at non-sampling time stamps.

Permanent Sampling with UnicornPS In case the query results vary significantly over

time, sampling more frequently may improve utility. So, we propose the mechanism

UnicornPermanentSample (UnicornPS) that samples at every time stamp. That is, isSam-

plingPoint always returns true, and does not consume any sampling budget. The challenge

then is proper output perturbation budget allocation via budgetAllocation.

budgetAllocation-Function The overall aim is to spend in each relevance interval

the entire budget 𝜖 without violating the privacy guarantee. Furthermore, we aim at

distributing the budget preferably homogeneously over each relevance interval, to achieve

constantly high utility over time.

To this end, at each time 𝑡 with at least one relevant policy, the budgetAllocation

function (see Algorithm 9) computes for each policy 𝜙 ∈ Φ𝑡 an output perturbation (op)

budget 𝜖
op

𝜙,𝑡
. Then, it takes the minimum budget over all policies in Φ𝑡 to respect the privacy

guarantee.

Computing the remaining budget per policy The computation of the policy-specific

budget is an ensemble of two strategies, targeting at the fulfillment of our aim. The first

strategy, named uniform, allocates the same budget for every time stamp 𝑡 , similar as the

baseline mechanism Uniform identified in Section 5.2.1. To this end, it divides the entire

budget 𝜖op available for output perturbation for each relevance interval by the number of

affected time stamps 𝛿 (𝐽 ).
To motivate our second strategy, consider again Example 7 and time stamp 𝑡 = 3. There,

𝛿 (𝐽0) = 2, and thus, 𝜖
op

𝜙0,𝑡,𝑠1
= 𝜖op

2
. However, 𝛿 (𝐽1) = 3 and therefore 𝜖

op

𝜙1,𝑡,𝑠1
= 𝜖op

3
< 𝜖

op

𝜙0,𝑡,𝑠1
.

We say 𝜙1 dominates 𝜙0
at time 𝑡 . As result, 𝜖

op

𝑡 = 𝜖op

3
, if one uses Strategy 1 only. This

would, in turn, mean that during 𝐽0, one does not spend the whole budget, which is in

contrast to our aim.

To counter this, we propose the second strategy, named absorb-and-distribute. The
idea is to absorb the remaining budget after 𝐽1 has ended. To this end, one calculates the

remaining budget (Line 8). In case there are already 𝛿 (𝐽 ) release time stamps in 𝐽0, we
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replace the currently lowest budget with a higher one (Line 10). As a result, 𝜖
op

𝜙,𝑡,𝑟𝑚
contains

the remaining budget for this policy, which we distribute uniformly over all remaining

time stamps (Line 13).

Data-Adaptive Sampling with Unicorn Sampling every time stamp might be a waste of

budget if there are times where the query results vary only slightly. So we propose the

mechanism Unicorn that performs data-adaptive sampling. It uses the same budgetAlloca-

tion function as UnicornPS, but implements data-adaptive sampling in isSamplingPoint.

Algorithm 8 Dissimilarity-based sampling of Unicorn.
1: function isSamplingPoint(𝑡, 𝐷𝑡 , 𝑟𝑙 , 𝜖

s

𝑡 ,Φ)

2: 𝜆𝑡,1 ← 1

𝜖s𝑡 ·0.5
·
Δ𝑡
𝑄
(Φ)

dim ⊲ dim = number of dimensions

3: dis← 1

𝑛

𝑛∑
𝑖=1

|𝑟𝑙 [𝑖] − 𝐷𝑡 [𝑖] |
4: dis← dis + Lap(𝜆𝑡,1) ⊲ dissimilarity dis perturbation

5: 𝜆𝑡,2 ← 1

𝜖s𝑡 ·0.5
·
Δ𝑡
𝑄
(Φ)

dim ⊲ expected noise for query result perturbation

6: if dis > 𝜆𝑡,2 then ⊲ decide whether to sample

7: return true

8: else

9: return false

10: end if

11: end function

In the literature, there are two types of data-adaptive sampling. Since PID-based sam-

pling [FX14; Wan+19] presumes constant sensitivity, we rely on dissimilarity-based sam-

pling [Kel+14]. Here, one samples iff the expected approximation error is higher than the

expected perturbation error. To decide this, one determines the dissimilarity between the

published value at the last sampling point and the current, un-perturbed, query result. To

ensure privacy one must sanitize the dissimilarity computation, costing a fraction of the

privacy budget. In line with related work [Kel+14], Unicorn spends half of the budget for
the dissimilarity perturbation, as well as for output perturbation. However, different splits

of the budget are possible. Below, we state why Unicorn fulfills (𝜖,Φ)-Swellfish privacy.

Theorem 12. The mechanism UnicornPS and Unicorn fulfill (𝜖,Φ)-Swellfish privacy.

Proof. Intuitively, the privacy of the Unicorn mechanism holds for the following reason:
Given arbitrary 𝛿 (𝐽 ) time stamps in a relevance interval, at these time stamps, the mechanism
spends at most 𝜖

2
for dissimilarity perturbation, as well as for output perturbation. As UnicornPS

uses the same budgetAllocation function, the following arguments prove that it spends at
most 𝜖 budget for output perturbation at arbitrary 𝛿 (𝐽 ) time stamps in a relevance interval.
Formally, consider Unicorn, and let 𝐽 be a relevance interval, andX = TOP𝛿 (𝐽 ){𝜖𝑡 = 𝜖s𝑡+𝜖

op
𝑡 |𝑡 ∈

𝐽 }. We prove that (1)
∑
𝜖𝑡∈X

𝜖s𝑡 ≤ 𝜖
2
and (2)

∑
𝜖𝑡∈X

𝜖
op
𝑡 ≤ 𝜖

2
. Then, with (1), (2) and Theorem 10, the

claim follows. Eq. (1) holds, as
∑
𝜖𝑡∈X

𝜖s𝑡 ≤
∑
𝜖𝑡∈X

0.5 · 𝜖𝑡

𝛿 (𝐽 ) =
𝜖
2
in the function isSamplingPoint.
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Algorithm 9 Budget allocation of UnicornPS (𝜖op = 𝜖) and Unicorn(𝜖op = 0.5 · 𝜖).
1: function budgetAllocation(𝑡, 𝜖op,Φ)
2: 𝜖

op

𝑡 = ∞
3: for 𝜙 ∈ Φ𝑡 do
4: // Strategy s1 – uniform
5: 𝜖

op

𝜙,𝑡,𝑠1
← 𝜖op

𝛿 (𝐽 )
6: // Strategy s2 – absorb-and-distribute
7: X ← TOP𝛿 (𝐽 ){𝜖op𝑡 |𝑡 ∈ 𝐽 }
8: 𝜖

op

𝜙,𝑡,rm
← 𝜖op − ∑

𝜖
op

𝑡 ′ ∈X
𝜖
op

𝑡 ′

9: if no. sampling time stamps in 𝐽 ≥ 𝛿 (𝐽 ) then

10: 𝜖
op

𝜙,𝑡,rm
− = min{𝜖op |𝑡 ′ < 𝑡, 𝑡 ′ ∈ 𝐽 }

11: end if

12: no_rel_ts← 𝐽 .end − 𝑡 + 1 ⊲ Number of remaining relevant time stamps

13: 𝜖
op

𝜙,𝑡,𝑠2
←

𝜖
op

rm,𝜙

no_rel_ts

14: 𝜖
op

𝜙,𝑡
← max{𝜖op

𝜙,𝑡,𝑠1
; 𝜖

op

𝜙,𝑡,𝑠2
}

15: end for

16: 𝜖
op

𝑡 = min

𝜙∈Φ𝑡

{𝜖op
𝜙,𝑡
}

17: return 𝜖𝑡
18: end function

Concerning 𝜖op𝑡 , we discern between the following cases: If there is only one relevant policy,
and the mechanism samples every time stamp, then the mechanism uses strategy 1 for budget
allocation only. In consequence, Eq. (2) holds for the same reasons as Eq. (1). Otherwise,
strategy 2 distributes the saved or dominated budget over the remaining time stamps. Here,
Line 7 in budgetAllocation ensures Eq. (2). □

7.4. Results

In this section, we firstly evaluate Swellfish privacy experimentally bymeans of a case study

and secondly generalize the case study results for arbitrary use cases. The study contains

two parts. In the intrinsic part, we examine the strength of the TeS and TeNAT effect

for different parameters (e.g., stream and privacy budget). In the extrinsic evaluation, we

compare the utility of our Swellfish-private mechanisms to the ones of𝑤-event competitors

from literature, including the state-of-the-art.

7.4.1. Intrinsic Evaluation

We now comprehensively examine the strength of the TeS and TeNAT effect concerning

relevant parameters. The parameter space contains four dimensions: data stream, policy

collection, mechanism, and privacy budget. In the first experiment, we examine how

combinations of the first three dimensions influence the two effects. Then, we generalize
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these results for different values of 𝜖 . Before presenting the results, we introduce how we

instantiate the dimensions indicating validity and comprehensiveness of our results. Note,

as all mechanisms use random noise, in line with Chapter 5, we repeat every experiment

for each dimension value combination 100 times to eliminate statistical bias. To measure

utility, we use the mean relative error (MRE) defined in Section 4.2.3. Because the streams

feature only query results greater than zero, we use sanity bound 𝛾 = 0. In addition, to

allow for easy reproducibility, all data (including privacy policies) and implementations

are available online
3
.

7.4.1.1. Dimension Parameters

We instantiate the dimensions as follows.

Data Streams We use 20 data streams from the GEFCom 2012 data set [HPF14]. It is one of

largest energy data sets available often used for such evaluations [Eib+18]. It compromises

the hourly power consumption values of the entire US over 4.5 years (𝑝 = 152, 277),

partitioned into 20 zones. For each zone, there is one stream. The data set is well suited as

the streams have different average query results over time. For instance, zone 4 has the

smallest (0.5 MW), while zone 18 has the highest one with 213.57 MW.

Policy Collections To evaluate the influence of policy collections, we rely on data gener-

ators creating realistic usage patterns of appliances in residential households [Got+11]

as stated in Section 7.2.1. As stated there, we create the worst case of a very privacy

affine user aiming at protecting every application usage. In sum, we generate 55 policy

collections being a realistic number of households in a neighborhood according to a recent

project
4
. In line with related work [HMD14], we assume that there are no inter-individual

constraints. Table 7.3 states statistics of the 55 policy collections generated. In the first

two rows, it provides the parameters for the𝑤-event competitors. We estimate the global

sensitivity by the sum of consumption if all appliances are running at the same time

stamp. It is equal for all policy collections. The window size 𝑤 is different per policy

collection. We therefore state the distribution as a boxplot. It varies between 240 and

40,553. The latter two rows provide a data-independent indicator that show that the effects

should be visible in the study. The indicator for TeS Effect is the fraction of temporal

sensitivity and global sensitivity of a policy collection. The given boxplot indicates that,

for a given time stamp, the temporal sensitivity is up to two orders of magnitudes smaller

than the global one, indicating that TeS effect might be visible in the study results. The

indicator for TeNAT effect is the fraction of number of true neighboring time stamps 𝛿 (𝐽 )
to window length𝑤 , i.e., the number of neighboring time stamps assumed in𝑤-event DP.

We determine an average value over time, to respect the length of the relevance intervals

either. The indicator shows that 𝛿 (𝐽 ) is by orders of magnitude smaller than𝑤 .

3 https://github.com/chryenix/swellfish-public
4
www.esquire-project.de, www.net2dg.eu
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Table 7.3.: Statistics of generated policy collections (∅𝑡 = average over time).

Parameters𝑤-event competitors

Parameter Value

Global sensitivity Δ𝑄 27.57

Window size per policy collection Φ 𝑤

10
3

10
4

Estimation of MAE Improvement of Uniform by Effect

Effect Calculation Value

TeS effect ∅𝑡
Δ𝑡
𝑄

Δ𝑄

10
−2

10
−1

10
0

TeNAT effect ∅𝑡
max𝜙∈Φ𝑡 𝛿 (𝐽 )

𝑤

Mechanisms To evaluate the TeS effect, we modify the Perturbation function of existing

𝑤-event mechanisms, leaving all other functions identical. This is not possible for every𝑤-

event mechanism (see Section 7.3.2.2), meaning that we cannot use any𝑤-event mechanism.

Table 7.4 states knownmechanisms we can use. These are the mechanisms Sample, Uniform,
Budget Distribution (BD) and Budget Allocation (BA) proposed in the original article on𝑤-

event DP [Kel+14] featuring different sampling or budget allocation. We use all of them

and notate the corresponding mechanism using TeS sensitivity with prefix “TeS”.
As the TeNAT composition theorem is not constructive, there is no general rule how to

adapt the sampling and budgetAllocation function of a𝑤-event mechanism, such that

it exploits the TeNAT effect. To this end, we use𝑤-event mechanisms where only minimal

adaptions of one of these functions are needed, such that the mechanism exploits the effect.

This is the case for the Uniform and Sample mechanism, as they either have a sampling

or a budgetAllocation function. To adjust Uniform, we replace its budgetAllocation
function with Strategy 1 of UnicornPS. To adjust Sample, we replace its isSamplingPoint
function with the one of UnicornIS. We use the prefix “TeNAT” for the adapted mechanisms.

Privacy Budgets To evaluate the effect of different budget sizes, we conduct one exper-

iment using the following values: 0.01, 0.1, 1.0, and 10. If not stated otherwise, we use

𝜖 = 1.0.

7.4.1.2. Experiment 1: Influence of Stream, Policy Collection, and Mechanism

We now state and discuss the results of this experiment. In each of the following figures,

the data stream dimension is reflected by the different zones on the x-axis. The zones

are ordered by increasing average query result over time. The mechanisms are encoded

using different colors and we use box plots displaying the distribution of the utility among
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Table 7.4.: Mechanisms compared in the intrinsic evaluation.

TeS Effect

𝑤-event vs. Swellfish Implementation

Uniform [Kel+14] vs. TeSUniform  use Δ𝑄𝑡
Sample [Kel+14] vs. TeSSample
BD [Kel+14] vs. TeSBD
BA [Kel+14] vs. TeSBA

TeNAT Effect

𝑤-event vs. Swellfish Implementation

Uniform [Kel+14] vs. TeNATUniform UnicornPS using Δ𝑄 + Strategy 1 only

Sample [Kel+14] vs. TeNATSample UnicornIS using Δ𝑄

𝑧4 𝑧8 𝑧5 𝑧1 𝑧13 𝑧14 𝑧16 𝑧10 𝑧17 𝑧15 𝑧9 𝑧19 𝑧20 𝑧11 𝑧12 𝑧2 𝑧6 𝑧3 𝑧7 𝑧18

10
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−3

zone (stream) 𝑧𝑖 (asc. order by avg. value of query result)
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R
E
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e
c
r
e
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e

Uniform vs. TeSUniform Sample vs. TeSSample BD vs. TeSBD
BA vs. TeSBA

Figure 7.3.: Results of the intrinsic evaluation – TeS effect.

the privacy collections. On the y-axis, we show the increase of utility measured by the

decrease of the mean relative error (MRE) , i.e.,
MRE Swellfish

MRE𝑤−event . A value of 1 means that both

mechanisms provide the same data utility. A smaller value indicates a decrease of the MRE

caused by exploiting the corresponding effect.

TeS Effect Figure 7.3 illustrates the results regarding the TeS effect. We observe three

key findings from the experiments: (1) General large error decrease, (2) no decrease

if a fixed sampling rate is used, and (3) highest decrease for BD. Regarding (1), for all

mechanisms except for Sample, the MRE decreases by one to three orders of magnitude.

The decrease tends to become smaller for zones with higher power consumption. This

is expected and is in line with previous results [Eib+18]. Regarding (2), exploiting the

TeS effect does not influence the utility of Sample. The rationale is as follows. Generally,
mechanisms profit from the TeS effect at sampling time stamps only. The mechanism

Sample samples every 𝑤-th time stamp only. In consequence, its MRE is dominated by
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Figure 7.4.: Results of the intrinsic evaluation – TeNAT effect.

Table 7.5.: Average MRE over all zones and Φ for different values of 𝜖 .

MRE

mechanism 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 1 𝜖 = 10

TeSBD 180.80 18.10 2.09 0.43

TeSBA 112.82 11.33 1.14 0.12

Unicorn 29.07 2.91 0.29 0.03

the approximation error at non-sampling time stamps, which is nearly independent from

the sensitivity used. Regarding (3), BD profits most from the TeS effect. Namely, as a result

of its budget-allocation strategy, BD samples at the beginning of each window only. As the

windows are long, it samples infrequently, meaning that its MRE is also dominated by the

approximation error. While TeSBA samples infrequently as well, it additionally publishes

true query results in the meantime, if the temporal sensitivity is zero. As the mechanism

does not have to approximate these time stamps, this reduces the total approximation error

significantly. However, though BA has the same sampling strategy as BD, BA profits much

less from the TeS effect. Namely, after sampling, due to its budget-allocation strategy, BA
has to skip various time stamps where it must not publish, and thus, cannot publish true

query results.

TeNAT Effect Considering Figure 7.4, we first observe an MRE decrease by an order of

magnitude for the Uniform mechanism. This is expected, as it samples every time stamp

with a reduced noise scale. Second, we observe a small MRE decrease for Sample for most

policies. This is because TeNATSample samples more often than Sample, which generally

decreases the MRE. However, it samples at most once per relevance interval, which is

rare, leading to a small improvement only. Despite this general MRE decrease, there is

an increase of MRE in a few cases. The reason is as follows: The sampling time stamps

of TeNATSample are different from the ones of Sample. As the sampling strategy of both

mechanisms is not data-adaptive, Sample may select the better sampling time stamps by

chance, leading to a lower MRE.
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7.4.1.3. Experiment 2: Influence of Privacy Budget

We now examine the influence of parameter 𝜖 using all values ∈ {0.01, 0.1, 1, 10}. For the
data independent mechanism TeSUniform, TeNATUniform, TeSSample, and TeNATSample,
by definition, the average noise and therefor the MRE is proportional to the size of 𝜖 .

The same holds for two of our proposed mechanisms UnicornPS and UnicornIS. This is
different for the data-dependent mechanisms. The respective MRE values for a varying

privacy budget are stated in Table 7.5. The results reveal that increasing or decreasing the

privacy budget 𝜖 leads to a proportional change in the corresponding MRE as well. As a

consequence, we can safely use 𝜖 = 1.0 in the extrinsic evaluation.

7.4.2. Extrinsic Evaluation

Next, we compare the utility of our proposed mechanisms to the state-of-the-art. To this

end, we use the same streams, policy collections, and methodology as in the intrinsic

evaluation. As mechanisms, we however compare our proposed mechanisms UnicornIS,
UnicornPS and Unicorn to (1) the current state-of-the-art 𝑤-event DP mechanism Res-
cueDP [Wan+19], and (2) the best adjustment of the 𝑤-event mechanisms used in the

intrinsic evaluation, i.e., TeSBD and TeSBA. In addition, to assess the influence of sampling

on mechanism utility, we add the mechanism Unicorn* into our study. It is a non-private

variant of Unicorn featuring perfect sampling. In other words, it uses the budget only for

query result perturbation, i.e., 𝜖op = 𝜖 , and does not perturb the dissimilarity value in the

function isSamplingPoint.

Figure 7.5 shows the MRE of the competitors (upper plot) and of Swellfish-framework

mechanisms (bottom plot). We observe three key findings, which we now discuss: (1) Best

utility by mechanisms from Swellfish framework, (2) UnicornIS is best for publishing small

query results, and (3) marginal difference in utility of Swellfish framework mechanisms

performing dynamic budget allocation. Regarding (1), in general, the competitors from the

literature perform worse than our mechanisms except for UnicornIS. This is expected, as
they exploit only the TeS (TeSBD, TeSBA) or even none of the effects (RescueDP). Regarding
(2), considering our mechanisms only, we observe that UnicornIS performs worst for all

zones except for Zone 4, having the smallest average query result. For this zone, it also

performs better than the𝑤-event competitors. As, additionally, the MRE of UnicornIS is
almost independent from the zone, this mechanism is suitable for continuous publishing

query results that are small. Regarding (3), by comparing UnicornPS with Unicorn and

its non-private variant Unicorn*, we observe small utility differences. This indicates that

almost perfect sampling decisions yield only little utility improvement in the Swellfish-

framework.

Summing up, exploiting the TeS and TeNAT effect improves the utility of adjusted

existing mechanisms by orders of magnitude and allows to design novel high-utility

Swellfish-private mechanisms with even higher utility. The results indicate that, to design

a high-utility Swellfish-private mechanism, good budget allocation is more important than

the sampling strategy.
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Figure 7.5.: Results of the extrinsic evaluation.

7.4.3. Generalization of Case Study

The results from the case study indicate that – in the power-consumption use case –

exploiting the effects improves data utility from one to three orders of magnitude. However,

it is natural to ask what improvement to expect for other use cases. Abstractly, for non-

sampling mechanisms, we can estimate the mean absolute error improvement of TeS

knowing the average TeS sensitivity, i.e., predict the improvement of TeSUniform over

Uniform. The mean absolute error (MAE) defined in Section 4.2.3.

Theorem 13. Given a policy collection Φ, the improvement of the MAE of TeSUniform over
Uniform is given by

MAE TeSUniform
MAE Uniform

= ∅𝑡
Δ𝑡
𝑄

Δ𝑄
.

Proof. According to its definition, the mechanism Uniform adds Laplace noise with scale 𝜆𝑈𝑡 =
Δ𝑄 ·𝜖
𝑤

to the query result at time 𝑡 . Here,𝑤 = max𝜙∈Φ 𝛿 (𝐽 ). Similarly, TeSUniform uses scale

𝜆TSU𝑡 =
Δ𝑡
𝑄
·𝜖

𝑤
. As the scales equal the expected MAE, we obtain the claim by dividing both

scales. □
Similarly, with the average size of the maximum 𝛿 (𝐽 ) over all time stamps, one can estimate

the improvement of the TeNAT effect.

Theorem 14. Given a policy collection Φ, the improvement of the MAE of TeNATUniform
over Uniform is given by

MAE TeNATUniform
MAE Uniform

= ∅𝑡
max𝜙∈Φ𝑡

𝛿 (𝐽 )
𝑤

,

where𝑤 = max𝜙∈Φ 𝛿 (𝐽 ).

Proof. According to its definition, the mechanism Uniform adds Laplace noise with scale 𝜆𝑈𝑡 =
Δ𝑄 ·𝜖
𝑤

to the query result at time 𝑡 . Similarly, TeNATUniform uses scale 𝜆TIU𝑡 =
Δ𝑄 ·𝜖

max𝜙∈Φ𝑡
. As the

scales equal the expected MAE, we obtain the claim by dividing both scales. □
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The respective values for the case study are given in Table 7.3. The MAE values we

obtained in our study are in line with them. We now give an intuition regarding the

expected TeS sensitivity and number of policy-affected time stamps we expect in the

location and physical activity monitoring use case. To illustrate, the TeS effect tends to be

high if the global sensitivity of the query is high, and if there are few sensitive privacy

policies. In the location-monitoring use case, the global sensitivity equals 1, as there are no

concurrent activities. The temporal sensitivity is either 0 (no relevant policy) or 1. Thus,

one profits from the TeS effect if there are few relevant policies. However, we expect a

smaller improvement than in the case study, as the difference between global and TeS

sensitivity is smaller. This is different in the physical-activity-monitoring use case, as the

global sensitivity is given by the number of activities an individual can perform, and we

expect that an individual usually wants to hide only a few activities. Further, the TeNAT

effect is high if relevance intervals are – compared to the number of policy-affected time

stamps – long. An example is short trajectories to be hidden in long relevance intervals.

7.5. Summary

To tune utility beyond incremental 𝑤-event mechanism design, we propose Swellfish

privacy for continuously publishing differentially private query results. It allows to dy-

namically add or to remove time-dependent policies a data owner aims to hide adapting to

changing privacy needs. A consequence of the customizability is that Swellfish privacy

offers two effects, namely time-variant share and number of affected time stamps. Appropri-

ately exploited, both effects allow tuning data utility by reducing the noise added by privacy

mechanisms significantly. Consequently, we show how to exploit these effects in privacy

mechanisms by proposing two tools. The first one, namely the TeS sensitivity, allows

exploiting the time-variant share effect. The second one, the TeNAT composition theorem,

allows exploiting the time-variant number of affected time stamps effect. We prove the

significant utility improvement by a realistic case study in the power-consumption use

case, as well as theoretic proofs.
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8. Summary

The collection and processing of complex data, like structured data and infinite streams,

facilitates novel data-driven applications. As many service users do not have the method-

ological skills to conduct the analysis on their own, they outsource them to services

providers. As the service providers are usually not trusted, data administrators tackle

these concerns by sanitizing the data with a privacy-enhancing technology (PET). Such

a PET is frequently based on an indistinguishably-based privacy definition. However,

the sanitization usually implies a loss of application utility. Consequently, data admin-

istrators aim for PETs that provide a valuable trade-off between privacy and utility. For

indistinguishably-based privacy definitions, depending on the use case, the trade-off is

usually achieved by either (1) optimizing utility for given privacy requirements or (2)

optimizing privacy for given utility requirements. In this thesis, we study privacy-utility

trade-offs for indistinguishably-based privacy definitions for two important groups of

applications. Specifically, we investigate (a) which indistinguishability-based privacy and

utility requirements are relevant, (b) whether existing PETs solve the trade-off sufficiently,

and (c) propose novel PETs extending the state-of-the-art in terms of methodology, as well

as achieved privacy or utility substantially. In total, we provide four contributions divided

into two parts as follows.

In Part II, that wraps our first thesis contribution, we focus on distance-based datamining

applications, such as k-medoids clustering, processing structured data. Additionally, we

consider instances of the thesis scope in which data owners equal service users. Therefore,

we optimize privacy for given utility requirements. We reveal that to achieve reasonable

application results, a fundamental utility requirement is that the pair-wise distances of the

data items are preserved upon data sanitization. Since encryption is a well-accepted privacy

enhancing technology, we aim for a PET that is based on encryption. To engineer distance-

preserving encryption (DPE) schemes used by a PET, we present the DisPE-procedure. It
states how to design a DPE scheme for arbitrary data and distance measures. The procedure

involves defining and ensuring equivalence notions, which capture a characteristic of data

that should be preserved upon encryption. We then instantiate this procedure for SQL

query logs, which are a valuable resource for database performance tuning. In this study,

we find appropriate DPE schemes for all four prominent SQL query distance measures from

literature, and generalize it by the examples of XQuery and of relational data.

In Part III, we focus on monitoring applications for streaming data, such as electricity

grid monitoring. Since the processing capabilities of encrypted data are highly limited,

we focus on data sanitization according to the 𝑤-event differential privacy framework.

Additionally, we focus on instances of the thesis scope in which data owners and service

users are two different entities. This means that data owners are usually less willing to

lower their privacy requirements. Therefore, we focus on optimizing utility for fixed

privacy requirements. In the first contribution of this part, we compare state-of-the-art
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mechanisms that are used to implement a PET with respect to the utility they provide. We

reveal limitations of previous studies resulting in requirements on the typical elements of

an experimental study. Subsequently, we conduct the so-far largest experimental study

that fulfills the requirements. Considering the results of this study, we reveal insights

about the strength and weaknesses of mechanisms. From them, we derive takeaways

for practitioners (data owners, data administrators) as well as researchers. One insight

is the baseline supremacy, saying that one of the two baseline is for every combination

of stream and privacy requirement among the mechanisms with the highest utility. A

second one is that the sanitization error, that is frequently used to measure utility, is not

meaningful for applications that analyze the seasonality of the stream. Consequently, in

the second contribution of this part, we conduct a case study from the area of electricity

grid monitoring that aims at answering the following two research questions: (1) Which

utility metrics are appropriate to measure the utility of grid monitoring? (2) How does

the utility of differentially private grid monitoring under reasonable privacy requirements

behave? The study reveals that achieving reasonable utility is only possible under weak

privacy requirements, and that the utility measured with application-specific utility metrics

decrease faster than the sanitization error suggests. Considering this result, as a third

contribution of this part, we propose the novel Swellfish privacy framework, that allows

to tune utility beyond incremental mechanism design. It is based on the observation that

privacy requirements of the data owners are usually time-dependent, while the𝑤-event

differential privacy framework assumes them to be constant. Consequently, the Swellfish

framework allows data owners to specify fine-granular privacy requirements that may

vary over time. We show how to exploit two resulting effects upon mechanism design. By

experiments from the area of power consumption monitoring, as well as formal proves,

we show that exploiting these effects yields significant utility improvement compared to

𝑤-event DP.

In total, our thesis contributes substantially to the research field, and reveals directions

for future research.
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In this thesis, we focus on the privacy-utility trade-offs a trusted data administrator has

to take when configuring a privacy-enhancing technology (PET). Such a PET sanitizes

true data before transmitting it to an untrusted service provider. Understanding these

trade-offs is a fundamental prerequisite to use untrusted services serving privacy critical

data in practice. Our contributions focus on selected trade-offs, but there are other, still

unexplored, privacy-quality trade-offs. In the following, we elaborate on open research

questions that are closely related to our contributions.

Part II: Distance-preserving Encryption – Leveraging and Transfer In Chapter 3, we de-

signed for distance-preserving encryption schemes to allow for distance-based mining of

encrypted data. In our case study, we engineered such encryption schemes for various

SQL query distance measures. There are three directions for future work: (1) Levering

exactly the encryption schemes used in our case study to allow for additional applications

processing SQL logs. (2) Using the notation for data that is different from SQL logs. (3)

Finding similar notions and encryption scheme engineering procedures for applications

for which distance-preserving encryption is not the right notion. With respect to (1), while

distance-based data mining algorithms are quite common, there exist additional mining

algorithms that do not rely on pair-wise distances only [HPK11]. Examples are association-

rule mining, classification or regression algorithms. Additionally, there are algorithms

specifically designed for SQL logs, like cleaning an SQL from antipatterns [ASB17] and

SQL query recommendations [AB21]. In this context, particularly interesting is whether

one can leverage the engineered distance-preserving encryption schemes to allow for

mining data encrypted data according to other groups. For instance, we know that result

equivalence for SQL queries is also useful for association-rule mining over encrypted SQL

logs [Ali+11], and token equivalence is appropriate for cleaning SQL antipatterns [ASB17].

Considering points (2) and (3), there is already recent work adopted our notion to speech

encryption [KLM21; Kra21; KLM22]. However, considering the wide spectrum of use cases,

the question in which use cases our notion imposes interesting novel research questions.

Part III: Utility Metrics In Part II, we measured utility with respect to various metrics.

These include the sanitization error, as well as application-specific metrics. Except for

the metrics that measure the difference in violations that the grid monitoring systems

computes, they all have in common that they consider the query results at each time stamp

separately. However, this is usually not the case for typical stream applications, like change

detection applications [Agg07]. Such applications analyze the progression of the stream,

and rely on stream properties like seasonality. In Chapter 5, we observed, that state-of-the-

art𝑤-event mechanisms do not preserve these stream properties. Consequently, we see
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two open questions for future work. The first question is how to define utility metrics that

measure the error in the stream properties. The second one is how to engineer mechanisms

that explicitly target at preserving these properties.

Part III: Private Privacy Requirements & Constraints in Swellfish Privacy For policy-based

differential privacy frameworks like Blowfish [HMD14], Pufferfish [KM14] and Swellfish

privacy (Chapter 7), policy collections are presumed to be public knowledge. However,

since they are detailed, individuals may deem their policy collections sensitive information,

and no trusted entity is available for the aggregation. To tackle this, one possibility is

to focus on the local setting, in which each data owner sanitizes its own data [Cor+18].

Second, generally, not only static databases itself feature constraints, but there also might

be dependencies between static databases at different time stamps [Cao+18; ZKL22]. Such

constraints may, e.g., affect non-relevant time stamps. We aim at investigating how to

consider such constraints in our framework.

Part III: Instantiation of Trade-Off for Streams In Chapter 1, we identified and leveraged the

two options to trade privacy and utility: Optimizing privacy given utility requirements, or

vice versa. Here, either privacy or utility requirements can be defined, but not both. There,

a few works that allow requirements on both [LBB15; EF15; SMA21]. They achieve them by

solving an optimization problem. However, they are only applicable to static data [LBB15;

SMA21], or do not support indistinguishability-based privacy definitions [EF15; SMA21].

An important direction for future work is consequently to engineer respective PETs for

streams. One challenge is that the PET does not “see” the complete stream, making it hard

to give utility guarantees. Here, probabilistic utility requirements that may additionally

depend on a rolling window might be a first approach.

Overall Thesis: Theory and Practice In Chapter 1, we discussed that by law, data owners

have the right to decide who has access to their data and for which purposes it is used.

However, we still lack of PETs generally accepted by data owners. Therefore, researches,

data administrators and service providers do not know where to focus on. For instance,

whether it is worth for service providers to focus on services that feature high utility

under differential privacy. One issue is the non-awareness of data owners which kind of

privacy requirements they have, and which PETs could tackle them in which way. For

instance, a recent study [CKR21] indicates that data owners are, in principle, more willing

to share their data if a differential privacy mechanism is applied, but we lack descriptions

of differential privacy for data owners, that are usually not experts in the research field.

Here, educational work is needed.

128



Bibliography

[AA96] Fevzi Alimoglu and Ethem Alpaydin. “Methods of combining multiple clas-

sifiers based on different representations for pen-based handwritten digit

recognition”. In: Proceedings of the 5th Turkish Artificial Intelligence and
Artificial Neural Networks Symposium (TAINN). Bogazici University Press.

1996.

[AAL14] Shahab Asoodeh, Fady Alajaji, and Tamás Linder. “Notes on information-

theoretic privacy”. In: Proceedings of the 52nd Annual Allerton Conference
on Communication, Control, and Computing (Allerton). IEEE. 2014, pp. 1272–
1278.

[AB21] Natalia Arzamasova and Klemens Böhm. “Scalable and data-aware SQL query

recommendations”. In: Information Systems 96 (2021), p. 101646.

[ÁC11] Gergely Ács and Claude Castelluccia. “I have a dream! (differentially pri-

vate smart metering)”. In: Proceedings of the 13th International Workshop on
Information Hiding (IH). Springer. 2011, pp. 118–132.

[Agg05] Charu C Aggarwal. “On k-anonymity and the curse of dimensionality”. In:

Proceedings of the 31st International Conference on Very large Data Bases
(VLDB). Vol. 5. VLDB Endowment, 2005, pp. 901–909.

[Agg07] Charu C Aggarwal. Data streams: models and algorithms. Vol. 31. Springer,
2007.

[Agr+04] Rakesh Agrawal et al. “Order preserving encryption for numeric data”. In:

Proceedings of the 2004 ACMSIGMOD International Conference onManagement
of Data. ACM, 2004, pp. 563–574.

[Akb+10] Javad Akbarnejad et al. “SQL QueRIE recommendations”. In: Proceedings of
the VLDB Endowment (PVLDB) 3.1-2 (2010), pp. 1597–1600.

[AL83] Dana Angluin and David Lichtenstein. Provable security of cryptosysterns: A
survey. Tech. rep. TR-288. Yale University, 1983.

[Ali+11] Julien Aligon et al. “Mining preferences from OLAP query logs for proactive

personalization”. In: Proceedings the 15th International Conference on Advances
in Databases and Information Systems (ADBIS). Springer. 2011, pp. 84–97.

[ALN87] Niv Ahituv, Yeheskel Lapid, and Seev Neumann. “Processing encrypted data”.

In: Communications of the ACM 30.9 (1987), pp. 777–780.

[AM12] Monika Agrawal and Pradeep Mishra. “A comparative survey on symmetric

key encryption techniques”. In: International Journal on Computer Science
and Engineering 4.5 (2012), p. 877.

129



Bibliography

[AS00] Rakesh Agrawal and Ramakrishnan Srikant. “Privacy-preserving data min-

ing”. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data. ACM, 2000, pp. 439–450.

[ASB17] Natalia Arzamasova, Martin Schäler, and Klemens Böhm. “Cleaning antipat-

terns in an SQL query log”. In: IEEE Transactions on Knowledge and Data
Engineering (TKDE) 30.3 (2017), pp. 421–434.

[Bar+14] Pedro Barbosa et al. “Lightweight privacy for smart metering data by adding

noise”. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting (SAC). 2014, pp. 531–538.

[BCO11] Alexandra Boldyreva, NathanChenette, andAdamO’Neill. “Order-preserving

encryption revisited: Improved security analysis and alternative solutions”.

In: Proceedings of the 31st Annual Cryptology Conference (CRYPTO). Springer.
2011, pp. 578–595.

[Bel+97] Mihir Bellare et al. “A concrete security treatment of symmetric encryption”.

In: Proceedings 38th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 1997, pp. 394–403.

[Bel15] Richard E Bellman. “Adaptive control processes”. In: Adaptive Control Pro-
cesses. Princeton university press, 2015.

[Bel98] Mihir Bellare. “Practice-oriented provable-security”. In: School organized by
the European Educational Forum. Springer. 1998, pp. 1–15.

[Ben66] Adi Ben-Israel. “A Newton-Raphson method for the solution of systems of

equations”. In: Journal of Mathematical analysis and applications 15.2 (1966),
pp. 243–252.

[BLR13] Avrim Blum, Katrina Ligett, and Aaron Roth. “A learning theory approach to

noninteractive database privacy”. In: Journal of the ACM (JACM) 60.2 (2013),
pp. 1–25.

[Bol+09] Alexandra Boldyreva et al. “Order-preserving symmetric encryption”. In: Pro-
ceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT). Springer. 2009, pp. 224–241.

[Bon+04] Dan Boneh et al. “Public key encryptionwith keyword search”. In: Proceedings
of the 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer. 2004, pp. 506–522.

[Bre+99] Markus M Breunig et al. “Optics-of: Identifying local outliers”. In: Proceedings
of the Third European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD). Springer. 1999, pp. 262–270.

[Bun21] Bundesamt für Sicherheit in der Informationstechnik. Technische Richtlinie
BSI TR-03109-1 Anforderungen an die Interoperabilität der Kommunikation-
seinheit eines intelligenten Messsystems. Tech. rep. Bonn: BSI, 2021.

130



Bibliography

[BW18] Borja Balle and Yu-Xiang Wang. “Improving the gaussian mechanism for

differential privacy: Analytical calibration and optimal denoising”. In: Pro-
ceedings of the 35th International Conference on Machine Learning (ICML).
Proceedings of Machine Learning Research. 2018, pp. 394–403.

[Cao+18] Yang Cao et al. “Quantifying differential privacy in continuous data release

under temporal correlations”. In: IEEE Transactions on Knowledge and Data
Engineering (TKDE) 31.7 (2018), pp. 1281–1295.

[Cao+20] Yang Cao et al. “PGLP: Customizable and Rigorous Location Privacy through

Policy Graph”. In: Proceedings of the 25th European Symposium on Research
in Computer Security (ESORICS). Springer. 2020, pp. 655–676.

[Cha+03] Don Chamberlin et al. “XQuery: A query language for XML”. In: Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data.
Vol. 682. ACM, 2003, p. 50.

[Cha+13] Konstantinos Chatzikokolakis et al. “Broadening the scope of differential

privacy using metrics”. In: Proceedings of 13th International Symposium on
Privacy Enhancing Technologies Symposium (PETS). Springer. 2013, pp. 82–
102.

[Che+16] Mian Cheng et al. “An event grouping approach for infinite stream with dif-

ferential privacy”. In: Proceedings of the 10th Asia-Pacific Services Computing
Conference (APSCC). Springer. 2016, pp. 106–116.

[Che+17] Yan Chen et al. “Pegasus: Data-adaptive differentially private stream process-

ing”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM. 2017, pp. 1375–1388.

[Che+19] Xiaoli Chen et al. “Open is not enough”. In:Nature Physics 15.2 (2019), pp. 113–
119.

[CKR21] Rachel Cummings, Gabriel Kaptchuk, and Elissa M Redmiles. “’I need a

better description’: An Investigation Into User Expectations For Differential

Privacy”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2021, pp. 3037–3052.

[Cor+18] Graham Cormode et al. “Privacy at scale: Local differential privacy in prac-

tice”. In: Proceedings of the 2018 ACM SIGMOD International Conference on
Management of Data. ACM, 2018, pp. 1655–1658.

[CRF+03] WilliamWCohen, Pradeep Ravikumar, Stephen E Fienberg, et al. “A Compar-

ison of String Distance Metrics for Name-Matching Tasks”. In: Proceedings
of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03). 2003,
pp. 73–78.

[CSJ15] Rui Chen, Yilin Shen, and Hongxia Jin. “Private analysis of infinite data

streams via retroactive grouping”. In: Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge Management (CIKM).
ACM. 2015, pp. 1061–1070.

131



Bibliography

[CY15] Yang Cao and Masatoshi Yoshikawa. “Differentially private real-time data

release over infinite trajectory streams”. In: Proceedings of the 16th IEEE
International Conference on Mobile Data Management (MDM). IEEE. 2015,
pp. 68–73.

[Def77] Daniel Defays. “An efficient algorithm for a complete link method”. In: The
Computer Journal 20.4 (1977), pp. 364–366.

[Dem+10] Erhan Demirok et al. “Evaluation of the voltage support strategies for the

low voltage grid connected PV generators”. In: Proceedings of the 2010 IEEE
Energy Conversion Congress and Exposition (ECCE). IEEE. 2010, pp. 710–717.

[Deu+21] Daniel Deutch et al. “On optimizing the trade-off between privacy and utility

in data provenance”. In: Proceedings of the 2021 ACM SIGMOD International
Conference on Management of Data. 2021, pp. 379–391.

[DH76] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In:

IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654.

[DR+14] Cynthia Dwork, Aaron Roth, et al. “The Algorithmic Foundations of Differ-

ential Privacy”. In: Foundation and Trends R⃝ in Theoretical Computer Science
9.3-4 (2014), pp. 211–407.

[Dwo+10] Cynthia Dwork et al. “Differential privacy under continual observation”.

In: Proceedings of the forty-second ACM symposium on Theory of Computing
(STOC). 2010, pp. 715–724.

[Dwo+11] Cynthia Dwork et al. “Differential privacy—a primer for the perplexed”. In:

Joint UNECE/Eurostat work session on statistical data confidentiality 11 (2011).

[Dwo08] Cynthia Dwork. “Differential privacy: A survey of results”. In: Proceedings
of the 5th International Conference on Theory and Applications of Models of
Computation (TAMC). Springer. 2008, pp. 1–19.

[Dwo11] Cynthia Dwork. “Differential Privacy”. In: Encyclopedia of Cryptography and
Security. Springer, 2011.

[EE17] Günther Eibl andDominik Engel. “Differential privacy for real smartmetering

data”. In: Computer Science-Research and Development (CSRD) 32.1 (2017),

pp. 173–182.

[EF15] Murat A Erdogdu and Nadia Fawaz. “Privacy-utility trade-off under continual

observation”. In: Proceedings of the 2015 IEEE International Symposium on
Information Theory (ISIT). IEEE. 2015, pp. 1801–1805.

[Eib+18] Günther Eibl et al. “The influence of differential privacy on short term electric

load forecasting”. In: Energy Informatics 1.1 (2018), pp. 93–113.

[EL18] Fatima Zahra Errounda and Yan Liu. “Continuous location statistics sharing

algorithm with local differential privacy”. In: Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data). IEEE. 2018, pp. 5147–5152.

[EN00] Ramez Elmasri and Shamkant B Navathe. Fundamentals of Database Systems.
Springer, 2000.

132



Bibliography

[Est+96] Martin Ester et al. “A density-based algorithm for discovering clusters in

large spatial databases with noise.” In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD). Vol. 96. 34. AAAI
Press. 1996, pp. 226–231.

[Eur19] European Committee for Electrotechnical Standardization. DIN EN50160:
Voltage characteristics of electricity supplied by public distribution systems.
Berlin: Beuth Verlag, 2019.

[Eza+19] Soheila Ghane Ezabadi et al. “Differentially private streaming to untrusted

edge servers in intelligent transportation system”. In: 2019 18th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communi-
cations/13th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE). IEEE. 2019, pp. 781–786.

[FG07] Caroline Fontaine and Fabien Galand. “A survey of homomorphic encryption

for nonspecialists”. In: EURASIP Journal on Information Security (2007), pp. 1–

10.

[FLC17] Jingyao Fan, Qinghua Li, and Guohong Cao. “Privacy disclosure through

smart meters: Reactive power based attack and defense”. In: Proceedings of
the 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE. 2017, pp. 13–24.

[FMV20] Ferdinando Fioretto, Terrence W K Mak, and Pascal Van Hentenryck. “Differ-

ential Privacy for Power Grid Obfuscation”. In: IEEE Transactions on Smart
Grid 11.2 (2020), pp. 1356–1366.

[FV18] Ferdinando Fioretto and Pascal Van Hentenryck. “Constrained-based dif-

ferential privacy: Releasing optimal power flow benchmarks privately”. In:

Proceedings of the 15th International Conference on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR
2018). Springer. 2018, pp. 215–231.

[FX14] Liyue Fan and Li Xiong. “An Adaptive Approach to Real-Time Aggregate

Monitoring With Differential Privacy”. In: IEEE Transactions on Knowledge
and Data Engineering (TKDE) 26.9 (2014), pp. 2094–2106.

[FXS13] Liyue Fan, Li Xiong, and Vaidy Sunderam. “FAST: differentially private real-

time aggregate monitor with filtering and adaptive sampling”. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data.
ACM, 2013, pp. 1065–1068.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge University Press, 2009.

[Got+11] Sebastian Gottwalt et al. “Demand side management—A simulation of house-

hold behavior under variable prices”. In: Energy Policy 39.12 (2011), pp. 8163–

8174.

133



Bibliography

[GV15] Quan Geng and Pramod Viswanath. “The optimal noise-adding mechanism

in differential privacy”. In: IEEE Transactions on Information Theory 62.2

(2015), pp. 925–951.

[HA18] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and
practice. OTexts, 2018.

[Hay+16] Michael Hay et al. “Principled evaluation of differentially private algorithms

using dpbench”. In: Proceedings of the 2016 ACM SIGMOD International Con-
ference on Management of Data. 2016, pp. 139–154.

[HMD14] Xi He, Ashwin Machanavajjhala, and Bolin Ding. “Blowfish privacy: Tuning

privacy-utility trade-offs using policies”. In: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data. ACM. 2014, pp. 1447–

1458.

[HPF14] Tao Hong, Pierre Pinson, and Shu Fan. “Global energy forecasting competi-

tion 2012”. In: International Journal of Forecasting 30.2 (2014), pp. 357–363.

[HPK11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

[IC19] Florin Iov and Catalin Ciontea. Net2DG Deliverable D5.1 – First integrated
deployment at Lab and Testbed. Tech. rep. Net2DG, 2019.

[Iov+21] Florin Iov et al.Net2DG Deliverable D5.3 - Final Consolidated Results. Tech. rep.
Net2DG, 2021.

[KBB15] Stephan Kessler, Erik Buchmann, and Klemens Böhm. “Deploying and evalu-

ating pufferfish privacy for smart meter data”. In: Proceedings of the IEEE 12th
Intl Conf on Ubiquitous Intelligence and Computing and IEEE 12th Intl Conf on
Autonomic and Trusted Computing and IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom).
IEEE. 2015, pp. 229–238.

[Kel+14] Georgios Kellaris et al. “Differentially private event sequences over infinite

streams”. In: vol. 7. 12. VLDB Endowment, 2014, pp. 1155–1166.

[KFB15] Stephan Kessler, Christoph M Flath, and Klemens Böhm. “Allocative and

strategic effects of privacy enhancement in smart grids”. In: Information
Systems 53 (2015), pp. 170–181.

[Kho+10] Nodira Khoussainova et al. “SnipSuggest: Context-aware autocompletion for

SQL”. In: Proceedings of the VLDB Endowment (PVLDB) 4.1 (2010), pp. 22–33.

[KLM21] Piotr Krasnowski, Jerome Lebrun, and Bruno Martin. “Introducing an ex-

perimental distortion-tolerant speech encryption scheme for secure voice

communication”. In: arXiv preprint arXiv:2102.09809 (2021).

[KLM22] Piotr Krasnowski, Jerome Lebrun, and Bruno Martin. “A novel distortion-

tolerant speech encryption scheme for secure voice communication”. In:

Speech Communication (2022).

134



Bibliography

[KM14] Daniel Kifer and Ashwin Machanavajjhala. “Pufferfish: A framework for

mathematical privacy definitions”. In: ACM Transactions on Database Systems
(TODS) 39.1 (2014), 3:1–3:36.

[KNT00] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. “Distance-based out-

liers: algorithms and applications”. In: The VLDB Journal 8.3 (2000), pp. 237–
253.

[Knu98] Lars R Knudsen. “Block Ciphers—a survey”. In: State of the Art in Applied
Cryptography. Springer, 1998, pp. 18–48.

[KOV15] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. “The composition theo-

rem for differential privacy”. In: Proceedings of the 32nd International confer-
ence on Machine Learning (ICML). Proceedings of Machine Learning Research.

2015, pp. 1376–1385.

[Kra21] Piotr Krasnowski. “Joint source-cryptographic-channel coding for real-time

secure voice communications on voice channels”. PhD thesis. Université

Côte d’Azur, 2021.

[LBB15] Fabian Laforet, Erik Buchmann, and Klemens Böhm. “Individual privacy

constraints on time-series data”. In: Information Systems 54 (2015), pp. 74–91.

[LCM16] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. “Dependence

Makes You Vulnberable: Differential Privacy Under Dependent Tuples”. In:

Proceedings of the Annual Network and Distributed System Security Symposium
(NDSS). Vol. 16. The Internet Society, 2016, pp. 21–24.

[Li+15a] Haoran Li et al. “Differentially private histogram publication for dynamic

datasets: an adaptive sampling approach”. In: Proceedings of the 24th ACM
international Conference on Information and Knowledge Management (CIKM).
ACM. 2015, pp. 1001–1010.

[Li+15b] Jin Li et al. “L-EncDB: A lightweight framework for privacy-preserving data

queries in cloud computing”. In: Knowledge-Based Systems 79 (2015), pp. 18–
26.

[Lia+14] Xiaojing Liao et al. “Towards secure metering data analysis via distributed

differential privacy”. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE. 2014, pp. 780–785.

[Liu+18] Xiang Liu et al. “Trajectory Privacy Protection on Spatial Streaming Data

with Differential Privacy”. In: 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE. 2018, pp. 1–7.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-closeness:

Privacy beyond k-anonymity and l-diversity”. In: Proceedings of the 23rd
International Conference on Data Engineering (ICDE). IEEE. 2007, pp. 106–115.

[Lyu+17] Lingjuan Lyu et al. “Privacy-preserving aggregation of smart metering

via transformation and encryption”. In: Proceedings of the 2017 IEEE Trust-
com/BigDataSE/ICESS. IEEE. 2017, pp. 472–479.

135



Bibliography

[Maa+15] Heiko Maaß et al. “Data processing of high-rate low-voltage distribution

grid recordings for smart grid monitoring and analysis”. In: EURASIP Journal
on Advances in Signal Processing 2015.1 (2015), pp. 1–21.

[Mac+07] Ashwin Machanavajjhala et al. “l-diversity: Privacy beyond k-anonymity”. In:

ACM Transactions on Knowledge Discovery from Data (TKDD) (2007), pp. 106–
115.

[Man+12] Efthymios Manitsas et al. “Distribution system state estimation using an

artificial neural network approach for pseudo measurement modeling”. In:

IEEE Transactions on Power Systems 27.4 (2012), pp. 1888–1896.

[McS09] Frank D McSherry. “Privacy integrated queries: an extensible platform for

serving data analysis”. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data. 2009, pp. 19–30.

[MHH17] Ashwin Machanavajjhala, Xi He, and Michael Hay. “Differential privacy in

the wild: A tutorial on current practices & open challenges”. In: Proceedings
of the 2017 ACM SIGMOD International Conference on Management of Data.
ACM. 2017, pp. 1727–1730.

[Mir17] Ilya Mironov. “Rényi differential privacy”. In: Proceedings of the 30th IEEE
Computer Security Foundations Symposium (CSF). IEEE. 2017, pp. 263–275.

[Mol+10] Andrés Molina-Markham et al. “Private memoirs of a smart meter”. In: Pro-
ceedings of the 2nd ACM workshop on embedded sensing systems for energy-
efficiency in building (BuildSys). ACM, 2010, pp. 61–66.

[MT07] Frank McSherry and Kunal Talwar. “Mechanism design via differential pri-

vacy”. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE. 2007, pp. 94–103.

[MVW09] Simon Moncrieff, Svetha Venkatesh, and Geoff AW West. “Dynamic privacy

in public surveillance”. In: Computer 42.9 (2009), pp. 22–28.

[Nai+21] Karthikeyan Nainar et al. “Experimental validation and deployment of ob-

servability applications for monitoring of low-voltage distribution grids”. In:

Sensors 21.17 (2021), p. 5770.

[Nan+19] L. Nandakumar et al. “Protecting the grid topology and user consumption

patterns during state estimation in smart grids based on data obfuscation”.

In: Energy Informatics 2.1 (2019), pp. 1–23.

[Ngu+15] Hoang Vu Nguyen et al. “Identifying User Interests within the Data Space-a

Case Study with SkyServer.” In: Proceedings of the 18th International Con-
ference on Extending Database Technology (EDBT). Vol. 2015. 2015, pp. 641–
652.

[NI20] Karthikeyan Nainar and Florin Iov. “Smart Meter Measurement-Based State

Estimation for Monitoring of Low-Voltage Distribution Grids”. In: Energies
13.20 (2020), p. 5367.

136



Bibliography

[Nie+16] Yiwen Nie et al. “Geospatial streams publish with differential privacy”. In: In-
ternational Conference on Collaborative Computing: Networking, Applications
and Worksharing. Springer. 2016, pp. 152–164.

[Nie+17] Jimmy J Nielsen et al. “Secure real-time monitoring and management of

smart distribution grid using shared cellular networks”. In: IEEE Wireless
Communications 24.2 (2017), pp. 10–17.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V Wright. “Inference attacks

on property-preserving encrypted databases”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS).
2015, pp. 644–655.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. “Smooth sensitivity

and sampling in private data analysis”. In: Proceedings of the thirty-ninth
annual ACM Symposium on Theory of Computing (STOC). ACM, 2007, pp. 75–

84.

[Pai99] Pascal Paillier. “Public-key cryptosystems based on composite degree residu-

osity classes”. In: Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques (EUROCRYPT). Springer. 1999,
pp. 223–238.

[Pap+07] Spiros Papadimitriou et al. “Time series compressibility and privacy”. In:

Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB). VLDB Endowment. 2007.

[Paw+19] Mateusz Pawlik et al. “A link is not enough–reproducibility of data”. In:

Datenbank-Spektrum 19.2 (2019), pp. 107–115.

[PG20] Praviraj PG. Newton-Raphson Loadflow. MATLAB Central File Exchange.

https : / / www . mathworks . com / matlabcentral / fileexchange / 21059 -

newton-raphson-loadflow. May 2020.

[PJ09] Hae-Sang Park and Chi-Hyuck Jun. “A simple and fast algorithm for K-

medoids clustering”. In: Expert systems with applications 36.2 (2009), pp. 3336–
3341.

[Pom+18] Daniel Vázquez Pombo et al. Net2DG Deliverable D2.1 – Algorithms for grid
estimation and observability applications. Tech. rep. Net2DG, 2018.

[Pop+11] Raluca Ada Popa et al. “CryptDB: protecting confidentiality with encrypted

query processing”. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP). ACM. 2011, pp. 85–100.

[PSW09] Dane Petersen, Jay Steele, and Joe Wilkerson. “WattBot: a residential elec-

tricity monitoring and feedback system”. In: Extended Abstracts of the 2019
Conference on Human Factors in Computing Systems (CHI). 2009, pp. 2847–
2852.

137



Bibliography

[Pur+16] Detty Purnamasari et al. “Query Rewriting and Corpus of Semantic Similarity

as Encryption Method for Documents in Indonesian Language”. In: Proceed-
ings of the Second International Conference on Electrical Systems, Technology
and Information (ICESTI), Springer. 2016, pp. 565–571.

[Ren+22] Xuebin Ren et al. “LDP-IDS: Local Differential Privacy for Infinite Data

Streams”. In: Proceedings of the 2022 SIGMOD International Conference on
Management of Data (2022), pp. 1064–1077.

[RN13] Sushmita Ruj and Amiya Nayak. “A decentralized security framework for

data aggregation and access control in smart grids”. In: IEEE Transactions on
Smart Grid 4.1 (2013), pp. 196–205.

[Sch+13] Martin Schäler et al. “QuEval: Beyond high-dimensional indexing à la carte”.

In: Proceedings of the VLDB Endowment (PVLDB) 6.14 (2013), pp. 1654–1665.

[Sch+21] Christine Schäler et al. “Increased Renewable Hosting Capacity of a Real Low-

Voltage Grid Based on Continuous Measurements – Results from an Actual

PV Connection Request”. In: Proceedings of the 17th European Dependable
Computing Conference (EDCC) Workshops (2021), pp. 90–98.

[SD13] Jordi Soria-Comas and Josep Domingo-Ferrer. “Optimal data-independent

noise for differential privacy”. In: Information Sciences 250 (2013), pp. 200–
214.

[SDT15] Henrik Sandberg, György Dán, and Ragnar Thobaben. “Differentially private

state estimation in distribution networks with smart meters”. In: Proceed-
ings of the 54th IEEE Conference on Decision and Control (CDC). IEEE. 2015,
pp. 4492–4498.

[SEJ14] Bharath K Samanthula, Yousef Elmehdwi, andWei Jiang. “K-nearest neighbor

classification over semantically secure encrypted relational data”. In: IEEE
Transactions on Knowledge and Data Engineering (TKDE) 27.5 (2014), pp. 1261–
1273.

[SFY07] Yasushi Sakurai, Christos Faloutsos, and Masashi Yamamuro. “Stream mon-

itoring under the time warping distance”. In: Proccedings of the 23rd IEEE
International Conference on Data Engineering (ICDE). IEEE. 2007, pp. 1046–
1055.

[Sha49] Claude Shannon. “Communication Theory of Secrecy Systems”. In: The Bell
System Technical Journal 28.4 (1949), pp. 656–715.

[SHS23] Christine Schäler, Thomas Hütter, and Martin Schäler. “Benchmarking the

Utility of w-event Differential PrivacyMechanisms –When Baselines Become

Mighty Competitors”. In: Proceedings of the VLDB Endowment (PVLDB) 16.8
(2023), pp. 1830–1842.

[Sil+09] Fabrizio Silvestri et al. “Mining query logs: Turning search usage data into

knowledge”. In: Foundations and Trends® in Information Retrieval 4.1–2 (2009),
pp. 1–174.

138



Bibliography

[SK13] Tahmineh Sanamrad and Donald Kossmann. “Query log attack on encrypted

databases”. In: Proceedings of the 10th VLDB Workshop on Secure Data Man-
agemen (SDM). Springer, 2013, pp. 95–107.

[SKS02] Abraham Silberschatz, Henry F Korth, and Shashank Sudarshan. Database
system concepts. Vol. 5. McGraw-Hill New York, 2002.

[SMA21] Chandra Sharma, Bishwas Mandal, and George Amariucai. “A practical

approach to navigating the tradeoff between privacy and precise utility”.

In: Proceedings of the 2021 IEEE International Conference on Communications
(ICC). IEEE. 2021, pp. 1–6.

[SRP13] Lalitha Sankar, S Raj Rajagopalan, and H Vincent Poor. “Utility-privacy trade-

offs in databases: An information-theoretic approach”. In: IEEE Transactions
on Information Forensics and Security 8.6 (2013), pp. 838–852.

[ST01] National Institute of Standards and Technology. FIPS 197 – Advanced En-
cryption Standard (AES). Tech. rep. Washington, D.C.: U.S. Department of

Commerce, 2001.

[Sta16] International Organization for Standardization (ISO)/International Electrotech-

nical Commission (IEC). ISO/IEC 9075-*: Database Language SQL. Beuth Ver-

lag, Berlin, 2016.

[Str16] Bruce N Stram. “Key challenges to expanding renewable energy”. In: Energy
Policy 96 (2016), pp. 728–734.

[SWC17] Shuang Song, Yizhen Wang, and Kamalika Chaudhuri. “Pufferfish privacy

mechanisms for correlated data”. In: Proceedings of the 2017 ACM SIGMOD
International Conference on Management of Data. ACM, 2017, pp. 1291–1306.

[Swe02] Latanya Sweeney. “k-anonymity: A model for protecting privacy”. In: In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
10.05 (2002), pp. 557–570.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. “Practical tech-

niques for searches on encrypted data”. In: Proceedings of the 2000 IEEE
Symposium on Security and Privacy (S&P). IEEE. 2000, pp. 44–55.

[Tex+18] Christine Tex et al. “PrivEnergy: a privacy operator framework addressing

individual concerns”. In: Proceedings of the Ninth International Conference on
Future Energy Systems (e-Energy). ACM. 2018, pp. 426–428.

[TM01] Herman T Tavani and James H Moor. “Privacy protection, control of infor-

mation, and privacy-enhancing technologies”. In: ACM SIGCAS Computers &
Society 31.1 (2001), pp. 6–11.

[Wan+16a] Qian Wang et al. “Real-time and spatio-temporal crowd-sourced social net-

work data publishing with differential privacy”. In: IEEE Transactions on
Dependable and Secure Computing (TDSC) 15.4 (2016), pp. 591–606.

139



Bibliography

[Wan+16b] Qian Wang et al. “RescueDP: Real-time spatio-temporal crowd-sourced data

publishing with differential privacy”. In: Proceedings of the 35th Annual IEEE
International Conference on Computer Communications (INFOCOM). IEEE.
2016, pp. 1–9.

[Wan+16c] QianWang et al. “Secweb: Privacy-preserving web browsingmonitoring with

w-event differential privacy”. In: Proceedings of the 12th EAI International
Conference on Security and Privacy in Communication Systems (SecureComm).
Springer. 2016, pp. 454–474.

[Wan+18] Zhibo Wang et al. “Privacy-preserving crowd-sourced statistical data pub-

lishing with an untrusted server”. In: IEEE Transactions on Mobile Computing
18.6 (2018), pp. 1356–1367.

[Wan+19] Teng Wang et al. “Adaptive differentially private data stream publishing in

spatio-temporal monitoring of IoT”. In: Proceedings of the 38th IEEE Inter-
national Performance Computing and Communications Conference (IPCCC).
IEEE. 2019, pp. 1–8.

[Wan+21] Tianhao Wang et al. “Continuous release of data streams under both central-

ized and local differential privacy”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2021, pp. 1237–
1253.

[WB95] Greg Welch and Gary Bishop. An introduction to the Kalman filter. Tech. rep.
Department of Computer Science, University of North Carolina at Chapel

Hill, 1995.

[WE18] Isabel Wagner and David Eckhoff. “Technical privacy metrics: a systematic

survey”. In: ACM Computing Surveys (CSUR) 51.3 (2018), pp. 1–38.

[Wei19] NicoWeidmann. “Differentially private event sequences over infinite streams”.

Bachlor Thesis (advisor: Christine Tex). Karlsruhe Institute of Technology,

2019.

[Wes67] Alan F Westin. Privacy and freedom. New York: Atheneum, 1967.

[Won+09] Wai Kit Wong et al. “Secure kNN computation on encrypted databases”. In:

Proceedings of the 2009 ACMSIGMOD International Conference onManagement
of Data. ACM, 2009, pp. 139–152.

[YH10] Che-Chang Yang and Yeh-Liang Hsu. “A review of accelerometry-based

wearable motion detectors for physical activity monitoring”. In: Sensors 10.8
(2010), pp. 7772–7788.

[Zha+17] Jiajun Zhang et al. “Re-DPoctor: Real-time health data releasing with w-

day differential privacy”. In: Proceedings of the IEEE Global Communications
Conference (GLOBECOM). IEEE. 2017, pp. 1–6.

[Zhu+00] Zhigang Zhu et al. “VISATRAM: A real-time vision system for automatic

traffic monitoring”. In: Image and Vision Computing 18.10 (2000), pp. 781–794.

140



Bibliography

[Zhu+14] Tianqing Zhu et al. “Correlated differential privacy: Hiding information in

non-IID data set”. In: IEEE Transactions on Information Forensics and Security
10.2 (2014), pp. 229–242.

[ZKL22] Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. “Differentially

Private Real-Time Release of Sequential Data”. In: ACM Transactions on
Privacy and Security (2022).

141


