

Karlsruhe Institute of Technology

Institute for Quantum Materials and Technologies

Soft Phonons in CDW Phase Transitions from first principles

Rolf Heid

Motivation

Structural phase transitions and anomalous lattice dynamics properties are often interrelated. Charge-density wave (CDW) transitions are typically accompanied by the presence of soft phonons, which become unstable at the transition temperature. DFT based linear-response techniques provide insight into the softmode properties and the underlying mechanism driving the CDW phase transition.

Ni-based Arsenides

BaNi₂As₂ [5]: T_{I-CDW}=137 K, Q_c=(0.28,0,0)

Approach

- Density functional perturbation theory, implemented in the mixed-basis pseudopotential method [1,2]
- Provides phonon dispersion without phenomenological parameters and full momentum structure of the electron-phonon coupling (EPC) matrix elements g(k, k + q)

Key quantities

- Phonon linewidth: $\gamma(q) = 2\pi\omega_q \sum_k |g(k, k+q)|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+q})$
- Joint density of states: $JDOS(q) = \sum_k \delta(\varepsilon_k) \delta(\varepsilon_{k+q})$

TM Dichalcogenides

- Soft mode: transverse vibration of Ni and As
- Near Q_c, slightly enhanced EPC matrix elements
- Doping/pressure: Complex phase diagram and CDW orders
- Ni-Ni bond ordering: local orbital fluctuations?

Dirac Semimetal

2H-NbSe₂ [3]: T_{CDW} =33 K, Q_{c} =(0.329,0,0)

- Extended momentum range of soft modes
- Enhanced EPC near critical wavevector Q_c
- No enhanced JDOS -> No Fermi surface nesting
- Q_c determined by momentum dependence of EPC

1T-TiSe₂ [4]: T_{CDW}=200 K, Q_c=(0.5,0,0.5)

LaAgSb₂ [6]: $T_{CDW1/2}$ = 207 K/187 K; $Q_{c1/2}$ = (0.026,0,0)/(0,0,0.16)

- Dirac semimetal, layered tetragonal structure
- Q_{c1} due to nesting in FS #3 in combination with enhanced EPC
- Parallel FS originate from Dirac-like points in band structure
- Diffuse scattering mimics intra-sheet susceptibility of FS #3

- Commensurate CDW; soft mode at BZ boundary
- Critical wavevector Q_c determined by Fermi surface nesting
 Excitonic insulator?

[1] B. Meyer *et al.*, MPI for Metal Research, Stuttgart
[2] R. Heid *et al.*, PRB **60**, R3709 (1999); PRB **81**, 174527 (2010)
[3] F. Weber *et al.*, PRL **107**, 107403 (2011); PRB **87**, 245111 (2013)
[4] F. Weber *et al.*, PRL **107**, 266401 (2011); M. Maschek et al., PRB **94**, 214507 (2016)
[5] A.R. Pokharel *et al.*, Commun. Phys. **5**, 141 (2022); S.M. Souliou *et al.*, PRL **129**, 247602 (2022); C. Meingast *et al.*, PRB **106**, 144507 (2022)
[6] A. Bosak *et al.*, PR Research **3**, 033020 (2021)

