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ABSTRACT

Context. The dissipation of tidal inertial waves in planetary and stellar convective regions is one of the key mechanisms that drive
the evolution of star–planet and planet–moon systems. This dissipation is particularly efficient for young low-mass stars and gaseous
giant planets, which are rapid rotators. In this context, the interaction between tidal inertial waves and turbulent convective flows
must be modelled in a realistic and robust way. In the state-of-the-art simulations, the friction applied by convection on tidal waves
is commonly modeled as an effective eddy viscosity. This approach may be valid when the characteristic length scales of convective
eddies are smaller than those of the tidal waves. However, it becomes highly questionable in the case where tidal waves interact with
potentially stable large-scale vortices such as those observed at the poles of Jupiter and Saturn. The large-scale vortices are potentially
triggered by convection in rapidly-rotating bodies in which the Coriolis acceleration forms the flow in columnar vortical structures
along the direction of the rotation axis.
Aims. We investigate the complex interactions between a tidal inertial wave and a columnar convective vortex.
Methods. We used a quasi-geostrophic semi-analytical model of a convective columnar vortex, which is validated by numerical simula-
tions. First, we carried out linear stability analysis using both numerical and asymptotic Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
methods. We then conducted linear numerical simulations of the interactions between a convective columnar vortex and an incoming
tidal inertial wave.
Results. The vortex we consider is found to be centrifugally stable in the range −Ωp ≤ Ω0 ≤ 3.62Ωp and unstable outside this range,
whereΩ0 is the local rotation rate of the vortex at its center andΩp is the global planetary (stellar) rotation rate. From the linear stability
analysis, we find that this vortex is prone to centrifugal instability with perturbations with azimuthal wavenumbers m = {0, 1, 2}, which
potentially correspond to eccentricity, obliquity, and asynchronous tides, respectively. The modes with m > 2 are found to be neutral
or stable. The WKBJ analysis provides analytic expressions of the dispersion relations for neutral and unstable modes when the axial
(vertical) wavenumber is sufficiently large. We verify that in the unstable regime, an incoming tidal inertial wave triggers the growth
of the most unstable mode of the vortex. This would lead to turbulent dissipation. For stable convective columns, the wave-vortex
interaction leads to the mixing of momentum for tidal inertial waves while it creates a low-velocity region around the vortex core and
a new wave-like perturbation in the form of a progressive wave radiating in the far field. The emission of this secondary wave is the
strongest when the wavelength of the incoming wave is close to the characteristic size (radius) of the vortex. Incoming tidal waves can
also experience complex angular momentum exchanges locally at critical layers of stable vortices.
Conclusions. The interaction between tidal inertial waves and large-scale coherent convective vortices in rapidly-rotating planets
(stars) leads to turbulent dissipation in the unstable regime and complex behaviors such as mixing of momentum and radiation of new
waves in the far field or wave-vortex angular momentum exchanges in the stable regime. These phenomena cannot be modeled using a
simple effective eddy viscosity.

Key words. hydrodynamics – convection – instabilities – waves – planet-star interactions –
planets and satellites: dynamical evolution and stability

1. Introduction

Tidal star–planet and planet–moon interactions are one of the
key physical mechanisms that drive the evolution of planetary
systems (e.g., Laskar et al. 2012; Ahuir et al. 2021; Lainey et al.
2020). In the case of stars, as well as fluid (gaseous or liquid)
planetary layers, the tidal force triggers several flows. On the one
hand, the tidal potential induces a large-scale nonwave-like flow
associated with tidal deformation (e.g., Zahn 1966a; Remus et al.

2012; Ogilvie 2013). On the other hand, as this flow is not a com-
plete solution of the hydrodynamical equations, the nonwave-
like flow is completed by tidal waves, the so-called dynamical
tide (Zahn 1975; Ogilvie & Lin 2004). The kinetic and potential
energies of these flows are then dissipated through different fric-
tion mechanisms, such as turbulent friction in convective layers
and heat diffusion in stably stratified regions (e.g., Ogilvie 2014;
Mathis 2019). In this framework, the rate of tidal dissipation in
stellar and planetary convective regions has broad consequences
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for the evolution of star–planet and planet–moon systems. In the
case of star–planet systems, the dissipation of tidal inertial waves
– which have the Coriolis acceleration as a restoring force – in
the convective envelope of low-mass stars during their pre-main
sequence leads to a strong outward(inward) migration if the
planet is above(inside) the corotation orbit (e.g., Bolmont &
Mathis 2016). This shapes the orbital distribution of short-period
gaseous exoplanets (e.g., Benbakoura et al. 2019; Barker 2020;
Ahuir et al. 2021). The efficiency of this tidal friction is due
to the rapid rotation of low-mass stars during this evolutionary
stage (e.g., Gallet & Bouvier 2013, 2015); it leads to an efficient
excitation of tidal inertial waves. In addition, regarding our Solar
System, our understanding of the tidal evolution of the Jupiter
and Saturn systems has been revolutionized. Both planets are
the seat of a tidal dissipation stronger by one or several orders of
magnitude than previous predictions based on scenarios for the
formation of their moons (Goldreich & Soter 1966). This strong
dissipation is necessary to explain their rapid orbital migration,
which was discovered thanks to high-precision astrometric
measurements (Lainey et al. 2009, 2012, 2017, 2020). As in
the case of rapidly rotating young stars, the dissipation of tidal
inertial waves propagating in the convective regions of Jupiter
and Saturn – which are also fast rotators – has been proposed
as one of the possible mechanisms to explain the observed
strong dissipation (Ogilvie & Lin 2004; Wu 2005; Goodman
& Lackner 2009; Lainey et al. 2020). However, this leads us to
two fundamental questions. Firstly, we do understand the nature
of the interaction between tidal flows and turbulent convective
flows, or how they are dissipated. And secondly, the role of rapid
rotation in these processes remains to be explored.

The interaction between tidal and turbulent convective flows
is one of the most challenging and debated topics in the theory
of stellar and fluid planetary tides. The first proposed mod-
elings all adopted the vision of convective small-scale eddies
acting on tidal flows, which have the largest characteristic length
scales. This led Zahn (1966b, 1989), and Goldreich & Keeley
(1977) to use the theory of mixing length to derive an effective
eddy viscosity which is applied to the large-scale nonwave-
like or equilibrium tide (e.g., Zahn 1966b; Barker 2020) and
to tidal inertial waves (Wu 2005). There has been a longstand-
ing debate as to the dependence of this eddy viscosity on the
ratio between the tidal period (PT) and the convective character-
istic turnover time (Pc, Goodman & Oh 1997; Penev et al. 2007;
Ogilvie & Lesur 2012). The most recent state-of-the-art simu-
lations (Duguid et al. 2020b,a; Vidal & Barker 2020b,a) favor
the Goldreich & Keeley (1977) proposition, with a scaling pro-
portional to (PT/Pc)2 for high values of the tidal frequency but
with a more complex behavior at intermediate values. Recently,
Terquem (2021) proposed a more refined formalism leading to
promising results (Terquem & Martin 2021) but these authors
are challenged by the findings of direct numerical simulations
(Barker & Astoul 2021) Notably, these studies do not take into
account the action of rotation on turbulent convective flows.

An initial attempt to study the effects of rotation in this
context was made by Mathis et al. (2016), who used mixing
length theory for rotating convective flows (Stevenson 1979;
Augustson & Mathis 2019), and their findings were supported
by direct numerical simulations (Barker et al. 2014; Currie et al.
2020). This theory allows us to derive characteristic convec-
tive velocity and length scales that take into account the action
of the Coriolis acceleration on convective flows. The Coriolis
acceleration decreases the efficiency of the heat transport, lead-
ing to a decrease in the effective turbulent eddy viscosity acting
on tidal flows. At the same time, there have been breakthroughs

in our understanding of rapidly rotating convective flows in stars
and planets thanks to global nonlinear numerical simulations and
the space missions JUNO and Cassini, which explored Jupiter
and Saturn, respectively. First, stable vortices were discovered at
the poles of Jupiter and Saturn (e.g., Adriani et al. 2018; Godfrey
1988; Sánchez-Lavega et al. 2006; Dyudina et al. 2008; Fletcher
et al. 2018). Their formation can result from deep-seated rapidly
rotating convection (Yadav et al. 2020; Garcia et al. 2020; Cai
et al. 2021). At the same time, Julien et al. (2012) and Hindman
et al. (2020) provide a systematic classification of convective
flows as a function of rotation rate. These studies revealed that
columnar convective turbulent structures are aligned along the
rotation axis direction. This alignment results from the Taylor-
Proudman constraint imposed by the Coriolis acceleration on
convective flows. In the presence of a companion, this leads to
configurations where tidal inertial waves propagate in turbulent,
rapidly-rotating convective flows with structured columnar vor-
tices. In this complex configuration, convective eddies can be of
a greater scale than those assumed in the mixing-length approach
and it becomes necessary to study their complex interactions
with tidal inertial waves.

In this article, we explore this process by studying the prop-
agation of a monochromatic (tidal) inertial wave through a
columnar turbulent convective vortex. In Sect. 2, we formulate
the equations needed to understand the wave–vortex interac-
tion problem. In this framework, we propose a semi-analytical
model for the convective Taylor columnar vortex and describe
the regime where centrifugal instability occurs. We formulate
the equations for the stability analysis and linear evolution of
perturbations for a tidally forced inertial wave interacting with
the vortex. In Sect. 3, we study the stability of the convective col-
umn based on numerical stability computation and compare with
asymptotic results from a detailed WKBJ analysis reported in the
Appendix. In the unstable regime, we verify that an incoming
radial tidal wave can, with other motions, trigger the most unsta-
ble mode. This may lead to turbulence. In Sect. 4, we conduct
numerical simulations to investigate how a tidal inertial wave
interacts with a stable convective column in the linear regime.
In Sect. 5, we propose possible scenarios of the nonlinear inter-
actions between convective vortices and tidally forced inertial
waves. Finally, conclusions, discussions, and perspectives are
provided in Sect. 6.

2. Mathematical formulation for the interactions
between a convective Taylor column and inertial
modes

2.1. Governing equations

To understand how a convective Taylor column interacts with
(tidal) inertial waves (Fig. 1), we first investigate an intrin-
sic property of the convective structure: stability. The stability
analysis allows us to examine how a convective column would
respond to external forcing and when intense instability would
occur because of its interaction with specific perturbations such
as linear eigenmodes of basic states or the optimal perturba-
tion represented as the sum of the eigenmodes (Schmid &
Henningson 2001; Antkowiak 2005). In a local framework rotat-
ing with an angular speed Ωp, which is the global planetary
(stellar) rotation rate, we consider the continuity and momentum
equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)
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Fig. 1. Schematics of the tidal wave-vortex interaction. Left panel: schematic of the interaction between a tidal inertial wave and a single convective
Taylor column in the f -plane. We introduce the cylindrical coordinates (r, θ, z). Right panel: schematic of a meridian cut of a planet or star showing
propagation of a tidal inertial wave (blue lines) in a convective envelope and its interaction with a single Taylor column.

∂u
∂t
+ (u · ∇) u+ f × u+

f
2
×

(
f
2
× r

)
= −

1
ρ
∇P+ g+ ν∇2u+ Fe,

(2)

where ρ is the density, u is the velocity vector, f is the Coriolis
vector, where f = f êz = 2Ωpêz, r is the position vector, P is the
pressure, g is the gravity vector, ν is the kinematic viscosity, ∇
is the vector differential operator, and Fe is the vector of exter-
nal (tidal) forcing. We assume an incompressibility condition by
considering the density ρ as a constant and decompose the pres-
sure P into P = P0+ p, where P0 satisfies the hydrostatic balance
with the centrifugal acceleration taken into account as

1
ρ
∇P0 = g −

f
2
×

(
f
2
× r

)
. (3)

Under these assumptions, Eqs. (1) and (2) reduce to

∇ · u = 0, (4)

∂u
∂t
+ (u · ∇) u + f × u = −∇π + ν∇2u + Fe, (5)

where π = p/ρ is the normalized pressure.
Our study considers a local polar traditional f -plane centered

around the rotation axis of the planet or star, where the rotation
vector and the gravity are aligned, with an associated cylindrical
coordinate system (r, θ, z). In this case, we have the following
set of equations for the velocity u = (u, v, w), the normalized
pressure π, and the forcing Fe = (Fu, Fv, Fw):

1
r
∂(ru)
∂r
+

1
r
∂v

∂θ
+
∂w

∂z
= 0, (6)

∂u
∂t
+ u
∂u
∂r
+
v

r
∂u
∂θ
+ w
∂u
∂z
−
v2

r
− f v

= −
∂π

∂r
+ ν

(
∇2u −

u
r2 −

2
r
∂v

∂θ

)
+ Fu,

(7)

∂v

∂t
+ u
∂v

∂r
+
v

r
∂v

∂θ
+ w
∂v

∂z
+

uv
r
+ f u

= −
1
r
∂π

∂θ
+ ν

(
∇2v −

v

r2 +
2
r
∂u
∂θ

)
+ Fv,

(8)

∂w

∂t
+ u
∂w

∂r
+
v

r
∂w

∂θ
+ w
∂w

∂z
= −
∂π

∂z
+ ν∇2w + Fw, (9)

where the vertical component of the Coriolis acceleration van-
ishes. Being in the polar traditional f -plane allows us to treat a
case where the equations for (tidal) inertial waves propagating
within a vortex with a radial structure are separable.

While the vortex has a polar nature here, the inertial waves
can also propagate in a Cartesian, planar manner, as depicted in
the schematic in Fig. 1 (left panel) of the wave–vortex interac-
tion in the Cartesian coordinate system. To analyze this planar
wave propagation, we need to consider the set of equations for
the velocity u = (ux, uy, w) in Cartesian coordinates (x, y, z) on
the traditional f -plane as follows:

∂ux

∂x
+
∂uy
∂y
+
∂w

∂z
= 0, (10)

∂ux

∂t
+ ux
∂ux

∂x
+ uy
∂ux

∂y
+w
∂ux

∂z
− f uy = −

∂π

∂x
+ν∇2ux + Fux , (11)

∂uy
∂t
+ ux
∂uy
∂x
+ uy
∂uy
∂y
+w
∂uy
∂z
+ f ux = −

∂π

∂y
+ν∇2uy + Fuy , (12)

∂w

∂t
+ ux
∂w

∂x
+ uy
∂w

∂y
+ w
∂w

∂z
= −
∂π

∂z
+ ν∇2w + Fw, (13)

where the following relations among the horizontal velocity
components are satisfied:

ux = u cos θ − v sin θ, uy = u sin θ + v cos θ. (14)

This traditional polar study constitutes the first necessary step
toward understanding the complex wave–vortex interaction. For
example, it is relevant to the study of interactions between tidal
inertial waves and large polar vortices such as those observed in
giant planets. However, one should keep in mind that, in a more
general case away from the poles (e.g., a case with the nontradi-
tional f -plane approximation applicable at a general colatitude;
see e.g., Park et al. 2021), the propagation equation for inertial
waves is no longer separable (Gerkema & Shrira 2005). This
would lead to a more complex situation, where 2D inertial wave
attractors (e.g., Maas 2001; Rieutord et al. 2001) are interacting
with a vertical vortex (Duran-Matute et al. 2013; Boury et al.
2021, see also Fig. 1 right panel). We first focus here on the
already complex polar problem, while the fully 2D problem will
be studied in the future.
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Fig. 2. Profiles of base vorticity ζ(r, black in panel a) and base angular velocity Ω(r, black in panel b) and their first (blue) and second (red)
derivatives for the current model (17, solid lines) and the model (16) from Grooms et al. (2010, dashed lines). Panel c: profiles of the Rayleigh
discriminant Φ(r) for Ω0/ f = −1 (black), Ω0/ f = 0.5 (blue) and Ω0/ f = 2 (red).

2.2. Convective Taylor column

2.2.1. Basics of rapidly rotating flows

Convection plays a fundamental role in stars and planets. Rota-
tion fundamentally modifies the behavior of convection through
the action of the Coriolis acceleration (e.g., Davidson 2013)
and changes the equilibrium structure of the body because of
the centrifugal force (e.g., Wang et al. 2016). This impacts the
interactions and energy exchanges with (gravito-)inertial (tidal)
waves (Mathis et al. 2014; Augustson et al. 2020).

In rotating convection, one of the fundamental flows that
appear even in very turbulent regimes are columnar structures
that result from the interaction between buoyancy-driven con-
vection and the Coriolis acceleration. Rapid rotation tends to
cause those structures to align with the rotation axis of the body.
Indeed, in an inviscid adiabatic fluid, a steady-state solution
obeys the Taylor-Proudman theorem, whereby the fluid veloc-
ity becomes invariant along the rotation vector (e.g., Davidson
2013). However, the entropy gradient is, in general, slightly nona-
diabatic with a density gradient leading to quasigeostrophic flow
in rapidly rotating systems with net heat flux. Such flows can
be modeled using asymptotic methods if the scale separation
along the direction of the rotation axis and the orthogonal direc-
tion is large enough. These dynamically rich nonlinear systems
have been studied in great detail (Veronis 1959; Gough et al.
1975; Julien et al. 1998). Their solutions involve the formation of
columnar flow structures in both laminar and turbulent regimes
in numerical and experimental settings (Stellmach et al. 2014;
Aurnou et al. 2015; Cheng et al. 2015). Exact analytical solu-
tions validated on numerical simulations can be found as well
(Grooms et al. 2010; Grooms 2015). These solutions are separa-
ble; some having a fixed horizontal structure and some having
a varying vertical one, and have been discussed by Julien et al.
(1998, 2012), Sprague et al. (2006), Grooms et al. (2010), and
Grooms (2015). The equations for the vertical structure can be
condensed into a nonlinear boundary value problem. This pro-
vides a robust analytical description of the structure of the flow
with which we investigate their stability and interactions with
incoming tidal inertial waves.

2.2.2. Semi-analytical quasigeostrophic models

Simulations of quasigeostrophic convective flows provide guid-
ance as to the model coherent structures that may exist in
rapidly rotating planets and stars. These simulations range from
near the onset of instability to the most turbulent states that
can be reached thanks to supercomputers, which are still far

from the real planetary and stellar regimes. One characteristic
that appears to bridge laminar and the most turbulent simula-
tions is the formation of large-scale vortical structures that span
the vertical domain. In the laminar regime, these vortices are
long lived (even persistent) and only weakly interact with each
other. In turbulent simulations, they are formed by the advec-
tion of small-scale vortices into domain-spanning larger-scale
structures, representing an inverse cascade of energy into the
largest-scale vortex that can be intermittent. An analogy can be
made between many of the features of the turbulent and the lam-
inar structures, under the assumption that they weakly interact
with each other.

Analytical solutions for such laminar and turbulent structures
were derived by Grooms et al. (2010) and Grooms (2015), respec-
tively. These are solutions to a nonlinear eigenvalue problem that
arises from a simplification of the full quasigeostrophic equa-
tions. First, it is assumed that nonlinear horizontal interactions
between the columnar structures are weak while passive advec-
tion is still allowed. In this regard, each columnar structure is
assumed to be axisymmetric and time-independent, meaning that
there is no horizontal self-interaction, which affects the structure
by itself along its temporal evolution. The equations resulting
from these assumptions are Eqs. (9) and (10) in Grooms et al.
(2010). One solution of these equations is of the separable form
for the poloidal velocity potential ϕ(r, z) = ϕ̂(z)J0(kr), and yields
the vertical component of the vorticity ζ(z, r) = −∂zϕwith J0(kr)
the zeroth-order Bessel function with a radial wavenumber k.
This Bessel function solution is chosen over the better-fitting
Hankel function solution examined in Grooms et al. (2010)
because the latter diverges for r → 0 (we refer the reader to
Abramowitz & Stegun 1972, for the properties of these func-
tions). However, as stated in Grooms et al. (2010), the radial
function must be truncated. We choose to do this exponentially
so that an infinite radial domain may be studied when looking at
the interaction with an incoming tidal inertial wave. Moreover,
the vertical structure is taken to be far from the bounding sur-
faces so that it can be locally approximated as a constant with
ϕ̂(z) = constant. In this case, we can define the local vorticity of
the fluid such that:

ζ =
1
r
∂(r2Ω)
∂r
, (15)

where Ω is the local angular velocity. A comparison of the
approximate solution employed here (solid lines) with the solu-
tion derived in Grooms et al. (2010; dashed lines) is shown in
Fig. 2, where the divergence of the Hankel function can be seen
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as the radius approaches zero but the oscillations are damped,
requiring the exponential damping of the Bessel function. More
specifically, the radial profile of the vorticity ζ(r) in terms of the
Hankel function is

ζ(r) ∼ Re
[
H(1)

0 (kHr)
]
, (16)

where Re denotes the real part, H(1)
0 denotes the Hankel function

of the first kind at the zeroth order, and kH = 1.34 exp(0.153i)/R0
with R0 the reference radial length scale of the structure.
In contrast, the local angular velocity profile used here
is instead

Ω(r) = Ω0 exp
(
−αr2

)
J0(βr), (17)

where Ω0 is the local angular velocity of the convective column
at r = 0, and α and β are constants α = 0.09/R2

0 and β = 0.76/R0,
which are chosen to minimize the error between the vorticity
(16) proposed by Grooms et al. (2010) and our model. As shown
in Figs. 2a,b, the two profiles (16) and (17) match fairly well
and there is no singularity at r = 0 for the second derivative of
the angular velocity (17) or the second derivative of the vortic-
ity. Throughout the paper, we use the angular velocity profile
given in Eq. (17) to derive analytic expressions for the disper-
sion relations, which are crucial for understanding the interaction
between a convective column and tidally forced inertial waves.

2.2.3. Conditions for the centrifugal instability

Hydrodynamics theories on vortices and their instability have
been well established, and they are easily applicable to under-
stand the stability of general convective Taylor columns. In
rotating fluids, columnar convective structures are prone to cen-
trifugal instability, which occurs due to an imbalance between
the centrifugal acceleration and pressure gradient in the radial
direction. The centrifugal instability can be predicted using the
Rayleigh’s criterion, which was initially proposed by Rayleigh
(1917) for an inviscid rotating flow with angular velocity Ω(r),
and was then generalized by Kloosterziel & van Heijst (1991)
for rotating flows on the traditional f -plane. The criterion states
that an inviscid vortex on the f -plane can become centrifu-
gally unstable if there exists a region where the Rayleigh’s
discriminant Φ(r) becomes negative, that is,

Φ = ( f + 2Ω)( f + ζ) < 0. (18)

The necessary and sufficient conditions for the centrifugal insta-
bility were originally derived for axisymmetric perturbations
with m = 0 (Synge 1933), but the follow-up study by Billant
& Gallaire (2005) extended the criterion for general pertur-
bations with m ≥ 0 by deriving the dispersion relation using
the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approxima-
tion. The Rayleigh’s criterion (18) is also applicable for the
centrifugal instability of vortices in rotating and stratified flu-
ids (Park & Billant 2013a) and for the inertial instability of shear
flows in rotating and stratified fluids (Arobone & Sarkar 2012;
Park et al. 2020).

For the convective column with the angular velocity profile
(17), examples of Φ(r) normalized by f 2 are shown in Fig. 2c for
different values of the ratio Ω0/ f . For instance, for Ω0 = − f
or Ω0 = 2 f , there are regions where Φ(r) becomes negative,
and therefore the convective column can become centrifugally
unstable to incoming perturbations such as tidal inertial waves.
At Ω0 = 0.5 f , Φ(r) is always positive for all r and so it is cen-
trifugally stable. In this regime, incoming tidal inertial waves

0 1 2 3 4 5
-2

-1

0

1

2

3

Fig. 3. Sign of the Rayleigh discriminant Φ(r) in the parameter space
(r/R0,Ω0/ f ) where black regions indicateΦ < 0 and white regions indi-
cate Φ ≥ 0. Upper and lower dashed lines represent the upper limit
(Ω0/ f = 1.81) and the lower limit (Ω0/ f = −0.5) that bound the cen-
trifugally stable region.

will interact with stable vortices and this interaction can promote
new radiating waves. This configuration is investigated in detail
in Sect. 4.

Figure 3 displays the sign of Φ in the parameter space
(r/R0,Ω0/ f ). We see that there are regions of negative Φ for
Ω0 < −0.5 f and Ω0 > 1.81 f . In terms of the global plane-
tary rotation rate Ωp, we can divide the regime of Ω0 into two
regimes, as

−Ωp ≤ Ω0 ≤ 3.62Ωp : centrifugally stable,
Ω0 > 3.62Ωp or Ω0 < −Ωp : centrifugally unstable. (19)

2.3. Linear stability equations

While the regime (19) identifies where the base flow is centrifu-
gally stable or unstable, we need to perform the linear stability
analysis to quantitatively compute the growth rate of the cen-
trifugal instability. To our knowledge, this is the first time that
this analysis is performed in the case of the model ofquasi-
geostrophic columnar convective vortex, such that studied here.

In the cylindrical coordinate system presented in Fig. 1 (right
panel), we consider perturbations subject to the base velocity
U = (0, rΩ(r), 0) and pressure Π as follows:

ú = u − U, π́ = π − Π, (20)

where ú = (ú, v́, ẃ) is the velocity perturbation and π́ is the
normalised pressure perturbation. When these perturbations are
infinitesimal, we obtain from Eqs. (6)–(9) the following lin-
earized equations

1
r
∂(rú)
∂r
+

1
r
∂v́

∂θ
+
∂ẃ

∂z
= 0, (21)

∂ú
∂t
+ Ω
∂ú
∂θ
− ( f + 2Ω)v́ +

∂π́

∂r
= ν

(
∇2ú −

ú
r2 −

2
r
∂v́

∂θ

)
+ Fu, (22)

∂v́

∂t
+ Ω
∂v́

∂θ
+ ( f + ζ)ú +

1
r
∂π́

∂θ
= ν

(
∇2v́ −

v́

r2 +
2
r
∂ú
∂θ

)
+ Fv, (23)

∂ẃ

∂t
+ Ω
∂ẃ

∂θ
+
∂π́

∂z
= ν∇2ẃ + Fw. (24)

First, we examine the intrinsic stability of the convective Taylor
column by considering no external tidal forcing (i.e., Fe = 0).
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This problem is closely related to the case with free waves in
a sheared region (Astoul et al. 2021), where the inertial wave
enters and perturbs the base shear flow. The response of the base
flow to (tidal) inertial waves strongly depends on its stability.
Therefore, it is crucial to investigate the stability beforehand to
understand the wave–vortex interaction. In the stability analysis,
we apply the formulation of the normal mode to perturbations as
follows:

ú
v́
ẃ
π́

 =


û(r)
v̂(r)
ŵ(r)
p̂(r)

 exp
[
i(kzz + mθ − ωt)

]
+ c.c., (25)

where û = (û, v̂, ŵ) and p̂ are the mode shapes of velocity and
pressure, kz is the vertical wavenumber, m is the azimuthal
wavenumber, c.c. denotes the complex conjugate, and ω = ωr +
iωi is the complex frequency where the real part ωr denotes
the frequency and the imaginary part ωi denotes the temporal
growth rate, respectively. The use of the normal mode leads to
the following linear stability equations:

1
r

d(rû)
dr
+

imv̂
r
+ ikzŵ = 0, (26)

isû − ( f + 2Ω)v̂ +
dp̂
dr
= ν

(
∇̂2û −

û
r2 −

2imv̂
r

)
, (27)

isv̂ + ( f + ζ)û +
imp̂

r
= ν

(
∇̂2v̂ −

v̂

r2 +
2imû

r

)
, (28)

isŵ + ikz p̂ = ν∇̂2ŵ, (29)

where s = −ω + mΩ is the Doppler-shifted frequency and ∇̂2 =
d2/dr2 + (1/r)d/dr − k2

z − m2/r2 is the Laplacian operator. Due
to the symmetry: ω(m, kz) = ω(m,−kz) = −ω∗(−m,−kz), (Park
& Billant 2013a) where ∗ denotes the complex conjugate, and we
consider hereafter only the non-negative wavenumbers (m ≥ 0
and kz ≥ 0). The linear stability Eqs. (26)–(29) can be solved
numerically with the following simplified eigenvalue problem:

−iωAq̂ = Bq̂, (30)

where q̂ = (û, v̂) andA and B are the operator matrices as

A =

[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
(31)

where

A11 = 1 −
1
k2

z

d
dr

(
1
r
+

d
dr

)
, A12 = −

im
rk2

z

(
d
dr
−

1
r

)
, (32)

A21 = −
im
rk2

z

(
1
r
+

d
dr

)
, A22 = 1 +

m2

r2k2
z
, (33)

B11 = − im
[
Ω −

d
dr

{
Ω

k2
z

(
1
r
+

d
dr

)}]
+ ν

[
∇̂2 −

1
r2 −

1
k2

z

d
dr

{
∇̂2

(
1
r
+

d
dr

)}]
,

(34)

B12 = ( f + 2Ω) −
m2

k2
z

d
dr

(
Ω

r

)
− imν

[
2
r2 +

1
k2

z

d
dr

{
∇̂2

(
1
r

)}]
,

(35)

B21 = −( f + ζ) −
m2

rk2
z

(
1
r
+

d
dr

)
+

imν

r

[
2
r
−

1
k2

z
∇̂2

(
1
r
+

d
dr

)]
,

(36)

B22 = −imΩ
(
1 +

m2

r2k2
z

)
+ ν

[
∇̂2 −

1
r2 +

m2

rk2
z
∇̂2

(
1
r

)]
. (37)

In this eigenvalue problem, we use the Chebyshev spectral
method for a discretization with collocation points in the radial
direction (Antkowiak 2005; Park 2012) to obtain a complete
eigenvalue spectrum from the eigenvalue problem (30).

In the inviscid limit ν = 0, Eqs. (26)–(29) can be further sim-
plified into a single second-order ordinary differential equation
for û:

d2û
dr2 +

(
1
r
−

Q′

Q

)
dû
dr

+

[
−k2

z∆ −
m2

r2 −
mrQ

s

(
f + ζ
r2Q

)′
+ Q

(
1

rQ

)′]
û = 0,

(38)

where prime denotes the radial derivative, and Q and ∆ are the
functions defined as

Q(r) =
m2

r2 + k2
z , ∆(r) = 1 −

Φ

s2 . (39)

In solving the second-order ODE (38), we consider the bound-
ary conditions in the two limits r → ∞ and r → 0 with analytic
asymptotic solutions. For instance, we can find an asymptotic
solution for (38) in the limit r → ∞ as

û(r) ∼ A1H(1)
0 (krr) , (40)

where A1 is the constant amplitude, H(1)
0 is the Hankel function

of the first kind, and kr is the radial wavenumber of the solution
in the far field defined as

kr = kz

√
f 2

ω2 − 1. (41)

The solution (40) in the limit r → ∞ behaves asymptotically as
an inertial wave solution with an exponential decay if | f | > |ω|,
while the solution is evanescent if | f | < |ω|. For the solution
around the center r = 0, we apply the Taylor expansion on
(26)–(29) to have the following asymptotic solutions:

û ∼ O(r), v̂ ∼ O(r), ŵ ∼ O(1), p̂ ∼ O(1), (42)

if m = 0, or

û ∼ O(r|m|−1), v̂ ∼ O(r|m|−1), ŵ ∼ O(r|m|), p̂ ∼ O(r|m|), (43)

if |m| ≥ 1 (see also, Saffman 1992).

3. Stability of the convective column

In this section, we focus on analyzing the stability of the convec-
tive column model (17), which is prone to centrifugal instability.
The stability analysis is the first step toward understanding how
a convective Taylor column responds to external perturbations.
Using numerical and asymptotic methods, we compute the dis-
persion relation (i.e., the expression of the growth rate and
frequency in terms of the wavenumbers) of the modes of the

A6, page 6 of 20



Dandoy, V., et al.: A&A proofs, manuscript no. aa43586-22

-5 0 5

-1

-0.5

0

0.5

1

-4 -2 0 2 4 6 8

-0.5

0

0.5

0 5 10

-0.5

0

0.5

N
cheb

=100

N
cheb

=200

N
cheb

=300

N
cheb

=400

Fig. 4. Eigenvalue spectra for an unstable case at Ω0/ f = 3 and kzR0 = 10 for (a) m = 0, (b) m = 1, and (c) m = 2. Different numbers of the
Chebyshev collocation points Ncheb are tested for convergence.

convective column. Such analyses can identify the most unsta-
ble mode – which is most likely to be observed in the interaction
process between the convective column and inertial waves – and
its characteristic temporal and length scales. In this section, we
consider the inviscid case where ν = 0. This allows us to per-
form an asymptotic analysis with the WKBJ method for the
centrifugal instability in the large-kz limit. Here, we present the
stability analysis results for our convective column model and
the asymptotic expressions of the dispersion relations for neutral
and unstable modes. The details of the WKBJ method are pre-
sented in Appendix A. We also note that the viscosity stabilizes
modes of the convective column, but the dynamics of unstable or
stable modes are not expected to change significantly in the pres-
ence of the viscosity, which is weak in the interiors of stars and
giant planets. The linear evolution of neutral or unstable modes
is discussed below.

3.1. Results of the linear stability analysis

Figure 4 displays spectra of the eigenvalues ω = ωr + iωi at
Ω0/ f = 3 and kzR0 = 10 for various azimuthal wavenumbers m.
The m = {0, 1, 2}modes correspond to the eccentricity, obliquity,
and asynchronous tides, respectively. It is particularly interest-
ing to see how dynamical tides with m > 0 can potentially
destabilize a convective column leading to turbulence and dis-
sipation. For the axisymmetric case (m = 0), eigenvalues are
symmetrically distributed with respect to the origin and we have
neutral modes with the zero growth rate (i.e., ωi = 0) in the fre-
quency range |ωr/ f | < 6, and both stable and unstable modes
with the zero frequency (i.e., ωr = 0) in the growth-rate range
|ωi/ f | < 1. These eigenvalues are numerically well converged
at a relatively low resolution Ncheb = 100. In Fig. 4b, we see
that eigenvalues for m = 1 are no longer symmetric with respect
to the line ωr = 0 and we have neutral modes in the frequency
range −4 < ωr/ f < 8.5 and both stable and unstable modes in
the growth-rate range |ωi/ f | < 0.85 with a nonzero frequency
ωr/ f , 0. While some of these modes are well converged at a
resolution of Ncheb ≥ 200, some modes with a nonzero growth
rate in the frequency range −0.2 < ωr/ f < 0.8 are not well
converged even at a high resolution Ncheb = 400. We verified
that these unconverged modes possess singular points (e.g., the
critical layers at which the incident wave exchanges its angular
momentum with the convective column) and much higher reso-
lutions are required to resolve these modes correctly (see also the
numerical treatment by Astoul et al. 2021). In this paper, we do
not investigate the dynamics of these singular modes but focus
on converged modes that have a high frequency or growth rate.

0 1 2 3 4 5
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-0.5
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0.5

1

0 1 2 3 4 5
-1
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0.5

1

Fig. 5. Real (solid) and imaginary (dashed) parts of (a) the most unsta-
ble mode and (b) the first neutral mode with the highest frequency at
Ω0/ f = 3 and kzR0 = 10 for different azimuthal wavenumbers: m = 0
(black), m = 1 (blue), and m = 2 (red). The gray-shaded region shows
where the Rayleigh discriminant Φ is negative.

The spectral characteristics for m = 2 shown in Fig. 4c are simi-
lar to those for m = 1, but we only observed two unstable modes
that are numerically converged at Ncheb = 400. For the parame-
ters Ω0/ f = 3 and kzR0 = 10 considered in Fig. 4, we find that
the growth rate of the most unstable mode decreases with m and
no unstable mode is observed after m ≥ 3.

Figure 5 displays the mode shape û(r) of the most unstable
modes and the first neutral modes with the highest frequency for
various azimuthal wavenumbers m, which are picked up in the
eigenvalue spectra in Fig. 4. We also plot the gray-shaded area to
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Fig. 6. Frequency ωr as a function of the vertical wavenumber kz of the neutral modes for the four upper branches (panel a) and the four lower
branches (panel b) at Ω0/ f = 3 for m = 0 (black), m = 1 (blue), and m = 2 (red). Frequency ωr (panel c) and growth rate ωi (panel d), respectively,
versus vertical wavenumber kz for the most unstable mode at Ω0/ f = 3 for m = 0 (black), m = 1 (blue), and m = 2 (red). For all panels, solid lines
are numerical results and dashed lines denote the WKBJ predictions for panel a: Eq. (44), panel b: Eq. (45) for m = 0, 1 (core mode) and (A.22)
for m = 2 (ring mode), and panels c and d: Eq. (46).

demonstrate where the Rayleigh discriminant Φ(r) is negative.
The unstable modes have an oscillatory shape inside the region
Φ < 0, while they are evanescent such that they increase expo-
nentially from r = 0 and decrease exponentially as r → ∞. It
is also found that the number of zero crossings for the unstable
modes increases with m. The neutral modes, on the other hand,
have different features; for instance, they have a peak around
r ≃ 0.5 below the region Φ < 0 and decrease exponentially
as r → ∞. From these solution behaviors, we can expect that
the wavelike behavior is observed in the region Φ < 0 when
it is centrifugally unstable. According to the definition by Le
Dizès & Lacaze (2005), a mode that has a wavelike behavior
far from the core r = 0 is called the ring mode, while a mode
with the wavelike behavior around r = 0 is called the core mode.
Therefore, we can distinguish that the unstable modes in Fig. 5a
are the ring mode while the neutral modes in Fig. 5b are the
core mode.

Figure 6 shows how eigenvalues change with the vertical
wavenumber kz for neutral and unstable modes at Ω0/ f = 3.
For the neutral modes, there are countless branches depending
on the number of zero-crossings, but we only display the first
four upper branches in Figs. 6a,b that have the highest frequen-
cies and the four lower branches with the lowest frequencies. In
Fig. 6a, we see that the frequency of the upper branches begins
at ωr = mΩ0 at kz = 0, and increases with kz and reaches an
asymptote as kz → ∞. The asymptotic behaviors in the limit
kz → ∞ can be understood by applying the Wentzel–Krammers–
Brillouin–Jeffreys (WKBJ) approximation (Fröman & Fröman
1965). Referring the readers to Appendix for detailed techni-
cal details of the intermediate steps, here we provide the final
analytic expressions of the dispersion relation for neutral and
unstable modes obtained using the WKBJ approximation. For
upper branches, we find the expressions of the dispersion rela-
tion for the neutral modes in the form of the Taylor expansion
with 1/kz as

ω = mΩ0 +
√
Φ0 −

2
kz

(
n −

1
4

) √
−
Φ′′0

2
− mΩ′′0

√
Φ0, if m , 1,

ω = mΩ0 +
√
Φ0 −

2
kz

(
n +

1
4

) √
−
Φ′′0

2
− mΩ′′0

√
Φ0, if m = 1,

(44)

where n denotes the branch number and the subscript 0 implies
that the variables are evaluated at r = 0. We see good agreement
between the numerical results and asymptotic predictions on the

frequency of the upper branches, especially as kz → 0. The fre-
quency of the lower branches, on the other hand, decreases as kz
increases and reaches an asymptote as kz → ∞. From the WKBJ
analysis, we find the analytical expressions of the dispersion
relation for the lower branches as

ω = mΩ0 −
√
Φ0 +

2
kz

(
n −

1
4

) √
−
Φ′′0

2
+ mΩ′′0

√
Φ0, if m , 1,

ω = mΩ0 −
√
Φ0 +

2
kz

(
n +

1
4

) √
−
Φ′′0

2
+ mΩ′′0

√
Φ0, if m = 1.

(45)

Good agreement is also obtained between the numerical and
asymptotic results for the lower branches, as shown in Fig. 6b.

In Figs. 6c,d, we plot the frequency ωr and growth rate ωi of
the most unstable mode versus kz. The axisymmetric mode (m =
0) has zero frequency and its growth rate ωi increases with kz.
The frequency and growth rate of nonaxisymmetric modes (m ≥
1) increase with kz and approach their asymptotes as kz → ∞.
From the WKBJ analysis, we find the following Taylor expansion
of the complex frequency ω:

ω = ω0 +
ω1

kz
+ O

(
1
k2

z

)
, (46)

where

ω0 = mΩ(r0) + i
√
−Φ(r0), (47)

ω1 =
2n + 1

2
√

2i

√
Φ′′ − 2m2Ω

′2 + 2imΩ′′
√
−Φ

∣∣∣∣∣∣
r=r0

, (48)

and r0 is a double turning point where the radial derivative of
mΩ(r) + i

√
−Φ(r) becomes zero (for more details, see Appendix

and Billant & Gallaire 2005). It is clearly shown in Figs. 6c,d
that the numerical and asymptotic results are in good agreement.
We verified numerically that there is no longer instability for
higher azimuthal wavenumber m ≥ 3 for the convective column
with the angular velocity profile given in Eq. (17). Further-
more, we find an instability at kz = 0 only for m = 2. This
zero-vertical-wavenumber instability is reminiscent of the vor-
tex shear instability reported for other vortex profiles (see e.g.,
Billant & Gallaire 2005).
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Fig. 7. Spatiotemporal diagrams in the space (r, t) for inertial waves entering from r/R0 = 20 at the forcing frequency ωf = 0.3, m = 1, kzR0 = 5,
ν = 0 for an unstable column with Ω0/ f = 3 (panel a) and a stable column with Ω0/ f = 0.5 (panel b). Panel c displays the time evolution of wave
energy E(t) for the unstable case (a, black solid line) and stable case (b, black dashed line). The blue line denotes the energy growth C exp(2ωit)
with a constant C chosen for comparison with the unstable case.

3.2. Linear evolution of unstable modes

In addition to the stability analysis, we also investigate how iner-
tial waves entering from the far field interact with a convective
column. To understand the interaction, the first step is to perform
linear simulations with a tidally forced inertial wave incom-
ing from the far field. Considering the cylindrical coordinates,
the mathematical formulation is similar to that of the stability
analysis when the following ansatz is considered:

ú
v́
ẃ
π́

 =


ũ(r, t)
ṽ(r, t)
w̃(r, t)
p̃(r, t)

 exp
[
i(kzz + mθ)

]
+ c.c., (49)

where ũ = (ũ, ṽ, w̃) and p̃ are the time-dependent mode shapes
of velocity and normalised pressure. Applying the ansatz (49)
to Eqs. (21)–(24) leads to the following linear time-evolution
equation

A
∂q̃
∂t
= Bq̃, (50)

where q̃ = (ũ, ṽ) and A and B are the same operator matri-
ces as in the eigenvalue problem (30). To impose the boundary
conditions around the center r = 0, we consider the conditions
(42)–(43) and use the proper differentiation matrices to match
the boundary conditions (for details, we refer to Antkowiak
2005). To impose the boundary conditions in the far field, we
consider the time-periodic solution as

ũ = A∞ exp (−iωf t) , (51)

where A∞ is the constant amplitude and ωf is the forcing fre-
quency. For the time-marching of Eq. (50), we use the implicit
Euler method. While the stability analysis uses the Chebyshev
spectral method for discretization in the radial direction r to
facilitate the imposition of boundary conditions (Park 2012),
we use the 4th-order finite difference method for the radial dis-
cretization to have a uniform spacing. This allows us to have
more collocation points in the far field and thus we can properly
resolve the incoming inertial waves.

Panels a and b of Fig. 7 display the spatiotemporal diagrams
of the real part of the radial velocity Re [ũr(r, t)] as the inertial
wave is forced at r = 20R0 with the amplitude A∞ = 10−6, fre-
quency ωf = 0.3 f , wavenumbers (kzR0,m) = (5, 1) for two base
flows: unstable and stable convective columns with Ω0 = 3 f and

Ω0 = 0.5 f , respectively. On the one hand, the unstable case in
Fig. 7a shows that the tidally forced wave propagates inwards in
the radial direction. This incoming cylindrical wave has a charac-
teristic whereby the front has a longer wavelength and a smaller
amplitude than the rear part. Although the front of the wave
has a very small amplitude, it can still trigger the most unstable
mode, which grows the fastest in time. If the nonlinearity is taken
into account in this unstable case, a strong interaction with the
convective column can be induced and turbulence can be trig-
gered as a consequence. On the other hand, we see in Fig. 7b
for the stable case that the tidally forced inertial wave propagates
inwards but there is no sign of the strong interaction between the
wave and the convective column. At a much later time f t > 140,
we verified that indeed no unstable mode is triggered for the
stable case.

To quantify the difference between the two regimes, we
define the energy of perturbations:

E(t) =
∫ ∞

0

[
|ũr |

2 + |ũθ|2 + |ũz|
2
]

rdr. (52)

Figure 7c clearly shows that the perturbation energy for the
unstable case increases significantly after f t > 120 and grows
exponentially in time, while the energy for the tidal inertial
wave interacting with the stable convective column does not
increase significantly in time. We find that the sudden increase in
the perturbation energy for the unstable case corresponds to
the emergence of the most unstable mode with the growth rate
ωi,max. This is verified by comparing the slope of the two curves:
the unstable perturbation growth shown with a black solid line
and the exponential growth exp(2ωi,max)t of the most unstable
mode shown as a blue line. In comparing these two cases, we
must consider the exponent 2ωi,max, which can be easily obtained
by putting ũr(r, t) = ûr exp(−iωt) into the energy Eq. (52). It is
not shown here but we also verified that a similar appearance
of the unstable mode occurs when the incoming inertial waves
with different forcing frequencies are considered for unstable
convective columns.

These results are coherent with what is expected from the
stability analysis. Once the instability occurs and triggers turbu-
lence, the vortex will be destroyed and turbulent dissipation will
follow as a consequence (see e.g., the work by Pizzi et al. 2022,
for the case of the precession instability-driven turbulence). It is
important here to underline that the trigger of unstable modes is
not necessarily from tidal inertial waves but any low-amplitude
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noise is likely to cause the instability leading to turbulence. Espe-
cially for the case where the tidal period scaled as |ωf |

−1 is larger
than the characteristic time of the instability scaled as |ωi|

−1

(i.e., the case where |ωf | < |ωi|), one can expect the instability
to develop quickly before the incoming tidal wave starts to inter-
act with the vortex, and therefore other types of low-amplitude
perturbations would be the main trigger of the vortex instability.
A more important configuration is the one where tidal inertial
waves interact with stable convective vortices such as the numer-
ous ones observed for instance at the surface of giant planets.
Whether or not stable vortices would interact with the tidal waves
is less well understood. The current case only considers cylindri-
cal inertial waves propagating in the radial direction. However,
we must also study the general case where a large-scale stable
vortex in planets or stars interacts with an incoming tidally forced
wave that goes through the center of the vortex as depicted in
Fig. 1 (left panel). To understand this regime, in the following
section we examine the interaction between a stable vortex and a
tidal inertial wave in the Cartesian coordinate system.

4. Interaction between a planar inertial wave and
a stable convective column

In the previous section, we examine the interaction between
the convective vortex and inertial wave, both of which are of
a cylindrical nature. A problem that draws more attention from
astrophysicists working on tidal interaction and inertial-wave
propagation (see e.g., André et al. 2017, 2019) is how the tidally
forced inertial wave interacts with complex fluid flow structures.
In the case of convective vortices, this motivates us to con-
sider inertial waves propagating in a plane and going through
the vortex as described in Fig. 1 (left panel). To investigate
this, we formulate the problem in the Cartesian coordinate sys-
tem and conduct two-dimensional linear simulations. This allows
us to examine the vortex interaction with any incoming tidal
waves, and we are not necessarily restricted to the 1D cylindri-
cal waves as in the previous section. A similar configuration was
considered by McIntyre (2019) who analytically examined the
wave-vortex interaction by considering a vortex, which has an
irrotational velocity field outside the vortex core, and a wave
traveling through the vortex center.

We reformulate the base flow by considering the base
velocity in the Cartesian coordinates as U = (Ux,Uy, 0) where
Ux(x, y) = −rΩ sin θ = −Ωy and Uy(x, y) = rΩ cos θ = Ωx are
the base velocity in the x- and y-directions, respectively. Sub-
ject to this base flow, we obtain the linearized equations for
perturbation velocity ú = (úx, úy, ẃ) and pressure π́ as follows:

∂úx

∂x
+
∂úy
∂y
+
∂ẃ

∂z
= 0, (53)

∂úx

∂t
+Ux

∂úx

∂x
+
∂Ux

∂x
úx+Uy

∂úx

∂y
+
∂Ux

∂y
úy− f úy = −

∂π́

∂x
+ν∇2úx,

(54)

∂úy
∂t
+Ux

∂úy
∂x
+
∂Uy
∂x

úx +Uy
∂úy
∂y
+
∂Uy
∂y

úy+ f úx = −
∂π́

∂y
+ν∇2úy,

(55)

∂ẃ

∂t
+ Ux

∂ẃ

∂x
+ Uy

∂ẃ

∂y
= −
∂π́

∂z
+ ν∇2ẃ. (56)

As the base flow U(x, y) is homogeneous only in the z-direction,
we consider the following ansatz for the perturbation in
Cartesian coordinates:

úx
úy
ẃ
π́

 =


ǔ(x, y, t)
v̌(x, y, t)
w̌(x, y, t)
p̌(x, y, t)

 exp (ikzz) + c.c., (57)

where ǔ = (ǔ, v̌, w̌) and p̌ are the two-dimensional time-
dependent mode shapes of velocity and normalised pres-
sure, respectively. Applying the ansatz (57) to the linearized
Eqs. (53)–(56) leads to the following equations:

∂ǔ
∂x
+
∂v̌

∂y
+ ikzw̌ = 0, (58)

∂ǔ
∂t
+Ux

∂ǔ
∂x
+
∂Ux

∂x
ǔ +Uy

∂ǔ
∂y
+
∂Ux

∂y
v̌ − f v̌ = −

∂π̌

∂x
+ ν∇̌2ǔ, (59)

∂v̌

∂t
+Ux

∂v̌

∂x
+
∂Uy
∂x

ǔ +Uy
∂v̌

∂y
+
∂Uy
∂y
v̌ + f ǔ = −

∂π̌

∂y
+ ν∇̌2v̌, (60)

∂w̌

∂t
+ Ux

∂w̌

∂x
+ Uy

∂w̌

∂y
= −ikzπ̌ + ν∇̌

2w̌, (61)

where ∇̌2 = ∂2/∂x2 + ∂2/∂y2 − k2
z . In an operator form, the above

equations can be expressed as

∇̌ · ǔ = 0, (62)

∂ǔ
∂t
+LU(ǔ) = −∇̌p̌, (63)

where LU denotes the linear operator applied to ǔ.
To solve the two-dimensional linearized perturbation

Eqs. (58)–(61) and compute q̌ = (ǔ, p̌) using numerical sim-
ulations, we use the fractional-step method for time marching
and the Fourier spectral method for spatial discretization in the
x− and y− coordinates to impose periodic boundary conditions.
In the simulations, we consider the initial condition in which
an inertial wave is propagating in the horizontal direction x by
imposing ky = 0 (see e.g. Fig. 8 upper left panel). There is no
loss of generality in considering the inertial wave with ky = 0 as
convective columns have a cylindrical geometry.

The inertial-wave solution q̌iw can be obtained by consider-
ing the zero base flow U = 0 in the Eqs. (58)–(61) leading to the
following equations:

∂ǔiw

∂x
+ ikzw̌iw = 0, (64)

∂ǔiw

∂t
− f v̌iw = −

∂π̌iw

∂x
+ ν∇̌2ǔiw, (65)

∂v̌iw
∂t
+ f ǔiw = ν∇̌2v̌iw, (66)

∂w̌iw

∂t
= −ikzπ̌iw + ν∇̌

2w̌iw. (67)

By considering the ansatz

q̌iw =


ǔiw
v̌iw
w̌iw
π̌iw

 =


ûiw
v̂iw
ŵiw
p̂iw

 exp (ikxx − iωt) + c.c., (68)
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Fig. 8. Time evolution of the perturbation velocity ǔ(x, y) illustrating the interaction between an inertial wave with (kxR0, kzR0) = (1, 1) and a stable
vortex with Ω0/ f = 1 at Ek = ν/( f R2

0) = 10−3. The dashed line in each panel denotes r/R0 = 3.16.

we obtain the following dispersion relation for the inertial
wave:

ω =
kz f√
k2

x + k2
z

− iνk2
xz, (69)

where k2
xz = k2

x + k2
z , and the corresponding polarization relations

as follows:

v̂iw =
f

iω − νk2
xz

ûiw, ŵiw = −
kx

kz
ûiw, p̂iw = −

kx

(
ω + iνk2

xz

)
kz

ûiw,

(70)

which are the classical solutions for viscous inertial waves when
ky = 0. We note that the above inertial-wave solution q̌iw is
not a stationary solution of the Eqs. (58)–(61) as U , 0 in the
equations, and therefore the perturbation q̌ evolves in time as it
interacts with the convective vortex.

Figure 8 shows an example of the temporal evolution of per-
turbation interacting with a stable convective column at Ω0/ f =
1. For indication of the vortex center, we use dashed lines to
mark a radius r = 3.16R0 at which the first zero-crossing of
the angular velocity (i.e., Ω(r) = 0) occurs. As the simulations
consider linear equations, the wave–vortex interaction is one
way, that is, inertial waves are affected by convective columns
but not vice versa. We clearly see that the perturbation veloc-
ity ǔ of the inertial wave is mixed by the vortex in the early
stages of the simulation.The mixing of momentum at this stage
is likely due to the advection term (U · ∇̌)ǔ as the perturba-
tion is advected by the rotating base flow. This mixing process
by advection is similar to sweeping (e.g., Clark di Leoni et al.
2014; Campagne et al. 2015), which occurs when the waves are
advected by large-scale flows. However, we note that there is a

difference from the sweeping process, in that the wave–vortex
interaction creates the low-velocity ring region around the vortex
core as the mixing continues. Inside the ring region, a confined
perturbation with an azimuthal wavenumber m = 1 appears as
a result of the interaction. More interestingly, in the far field
away from the vortex core, the interaction promotes radiation
of a progressive wave. Although we impose the inertial wave
in a planar, Cartesian way, it is noteworthy that the new radiat-
ing progressive wave is of a cylindrical nature. These dynamical
behaviors, namely mixing and radiation of a wavelike mode, are
also observed for other wavenumber sets when either a long-
wavelength, fast-moving wave (e.g., kzR0 = 1, kxR0 = 0.25 and
phase speed cx = Re(ω/( f kxR0)) = 3.88) or a short-wavelength,
slow-moving wave (e.g., kzR0 = 1, kxR0 = 2, cx = 0.22) inter-
act with stable convective columns. We also note that such a
new radiating wave is not observed for the cases with 1D cylin-
drical incoming waves studied in Sect. 3. These waves cannot
penetrate the vortex center r = 0 due to the boundary conditions
(A.9) while the 2D planar incoming waves are not restricted by
any boundary conditions and overlap the vortex core, a situa-
tion where a wave scattering (Stone 2000) similar to what we see
in Fig. 8 or a wave-induced mean force (McIntyre 2019) can be
generated.

The appearance of this radiating mode is also well captured
in spatiotemporal diagrams computed by extracting the veloc-
ity component ǔ at x = 0 as shown in Fig. 9. For the case in
panel (a) with (kxR0, kzR0) = (0.25, 1), where the inertial wave
has a long wavelength in the x-direction and fast phase speed
cx = 3.88, we clearly see the low-velocity ring region around
y/R0 ≃ ±2.7 and the structure of the radiating mode, that is, a
perturbation confined within the low-velocity ring region and a
radiating progressive wave in the far field. For the case in panel
(b), with a larger kxR0 = 1 (the same case in Fig. 8), the inter-
ference between the imposed inertial wave and new radiating
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Fig. 9. Spatiotemporal diagrams of ǔ in the space (t, y) extracted at x = 0 for the wavenumber sets (kxR0, kzR0): (a), (0.25, 1); (b), (1, 1); and (c),
(2, 1).
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Fig. 10. Perturbation velocity ǔrm(x, y) of the radiating mode extracted at f t = 40 for the case in Fig. 8 (panel a). Panel b displays the corresponding
wave amplitude |û(kx, ky, t)| in the wavenumber space (kx, ky) at f t = 40. Panel c displays the frequency spectrums û(ω, x, y) for the perturbation
velocity ǔrm extracted at x = 0 for different y locations. The spectrums are normalized by their maximums for comparison.

mode is more apparent. The shape of the perturbation inside
the ring region is also more irregular and it seems that the per-
turbation has a higher azimuthal wavenumber than the mode in
panel (a). A similar tendency, that is, strong mixing and radia-
tion, is observed as kx is further increased to kxR0 = 2 as shown
in Fig. 9c.

The generation mechanism of radiating modes (denoted by
the subscript «rm» in the following) can be understood math-
ematically by considering another perturbation, q̌rm = q̌ − q̌iw,
which satisfies the following equations:

∇̌ · ǔrm = 0, (71)

∂ǔrm

∂t
+LU(ǔrm) = −∇ p̌rm + f̌rm, (72)

where f̌rm is the forcing term induced by the interaction between
the convective column and inertial wave as

f̌rm = −
(
U · ∇̌

)
ǔiw −

(
ǔiw · ∇̌

)
U. (73)

These equations are obtained by substituting q̌ = q̌rm + q̌iw into
the linearized perturbation equations (58)–(61) and subtracting
the inertial-wave Eqs. (64)–(67). The interaction term f̌rm forces
the linear system (72) with a characteristic frequency ω from the
dispersion relation of the incoming inertial wave (69). A stable
convective column has neutral or stable modes with frequencies
close to ω, and therefore the forcing can trigger these modes by
resonance and new radiating modes appear as the sum of these
modes due to the forcing f̌rm triggered by the vortex–wave inter-
action. An example of a radiating mode forced by this interaction

is displayed in Fig. 10a, which clearly shows the structure of
cylindrical radiation. If we apply the 2D Fourier transform to the
velocity field ǔ(x, y, t) in the spatial directions x and y at a given
time t, we can obtain, as shown in Fig. 10b, the wave amplitude
ûrm(kx, ky, t) in the wavenumber space (kx, ky) where

ûrm(kx, ky, t) =
∫ ∞

−∞

∫ ∞

−∞

ǔrm(x, y, t) exp[−i(kxx+kyy)]dxdy. (74)

The largest amplitude is obtained at (kxR0, kyR0) = (1, 0), which
corresponds to the wavenumber set of the initially imposed iner-
tial wave. We note that other wavenumber components also have
amplitudes comparable to this largest one, especially around
the circle (kxR0)2 + (kyR0)2 = 1 where most of the energy of
the radiating mode appears to lie. This implies that the iner-
tial wave–vortex interaction leads to the energy transfer from the
Cartesian wavenumber components kx and ky into the cylindri-

cal wavenumber component kr =
√

k2
x + k2

y . The nature of the
planar wave therefore becomes cylindrical as a consequence. In
Fig. 10c, we also plot the frequency spectrum û(ω, x, y) for the
points at x = 0 with different y by applying the Fourier transform
to ǔ as

û(ω, x, y) =
∫ ∞

−∞

ǔ(x, y, t) exp(−iωt)dt. (75)

We clearly see that the frequency spectra reach their maximum
peaks around the frequency ω ≃ (1/

√
2) f , which corresponds to

the real part of the inertial-wave frequency ωiw from Eq. (69).
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This confirms our above statement that the inertial wave trig-
gers stable vortex modes with frequencies close to ωiw and the
radiating mode appears as the sum of these modes.

It is not shown here but we also verified the excitation
of radiating modes by an interaction between inertial waves
and unstable convective columns. However, for unstable con-
vective columns, their most unstable modes eventually become
dominant as observed in the previous section on the inter-
action between unstable convective columns and cylindrical,
tidally forced incoming waves and they lead to the destruction
of the vortex.

By multiplying the Eq. (72) with ǔ†rm (where † denotes the
complex conjugate) and averaging it over the domain where x ∈
[−Lx, Lx] and y ∈

[
−Ly, Ly

]
, we obtain the following equation for

the perturbation energy of a radiating mode:

∂E
∂t
= Pb + Dv + Pf , (76)

where E is the perturbation kinetic energy of the radiating mode,
Pb is the energy contribution from the direct interaction between
the convective column and the mode, Dv denotes the energy
loss by viscous dissipation, and Pf is the energy production
by the forcing induced by the interaction between the convec-
tive column and the inertial wave, all of which are defined
as follows:

E =
1
2

∫ Lx

−Lx

∫ Ly

−Ly

(
|ǔrm|

2 + |v̌rm|
2 + |w̌rm|

2
)

dydx,

Pb = −

∫ Lx

−Lx

∫ Ly

−Ly

(
∂Ux

∂x
|ǔrm|

2 +
∂Ux

∂y
ǔ†rmv̌rm +

∂Uy
∂x
v̌†rmǔrm

+
∂Uy
∂y
|v̌rm|

2
)

dydx,

Dv = −ν
∫ Lx

−Lx

∫ Ly

−Ly

[∣∣∣∣∣∂ǔrm

∂x

∣∣∣∣∣2 + ∣∣∣∣∣∂ǔrm

∂y

∣∣∣∣∣2 + ∣∣∣∣∣∂v̌rm

∂x

∣∣∣∣∣2 + ∣∣∣∣∣∂v̌rm

∂y

∣∣∣∣∣2
+

∣∣∣∣∣∂w̌rm

∂x

∣∣∣∣∣2 + ∣∣∣∣∣∂w̌rm

∂y

∣∣∣∣∣2 + k2
z

(
|ǔrm|

2 + |v̌rm|
2 + |w̌rm|

2
)]

dydx,

Pf = −

∫ Lx

−Lx

∫ Ly

−Ly
ǔ†rm ·

[(
U · ∇̌

)
ǔiw +

(
ǔiw · ∇̌

)
U
]

dydx.

(77)

Figure 11 shows examples of how perturbation energies of differ-
ent radiating modes change over time. Panel a shows the kinetic
energy E normalized by Eiw(0), the kinetic energy of the inertial
wave Eiw at t = 0, for comparison between cases with different
wavenumbers kx and kz. This normalization allows us a quanti-
tative comparison among different inertial waves by considering
the same wave energy as an input. For the cases at kz = 1, we
find that the energy of new radiating modes increases largely as
a result of the wave–vortex interaction when the imposed iner-
tial waves have the wavenumber kxR0 ∼ O(1), the case where
the wavelength scale is of the same order as the vortex radius
R0. These new radiating modes achieve more than 20% of the
input inertial–wave energy. The number is non-negligible and
therefore highlights the importance of the role of inertial wave–
vortex interaction in creating potential extra turbulent dissipation
in fast-rotating planets or stars. It is also noteworthy that the new
radiating modes gain less energy if the imposed inertial waves
have a longer wavelength (e.g., kxR0 = 0.125) or a shorter wave-
length (e.g., kxR0 = 10) than the vortex length scale R0. For the
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Fig. 11. Perturbation energy E(t) for the radiating modes created
by incoming inertial waves with various wavenumber sets (kxR0, kzR0;
panel a). The energy is normalized by the initial inertial-wave energy
Eiw(t = 0) for comparison among different cases. Panel b displays the
time rates for perturbation energy ∂E/∂t (solid), base shear contribu-
tion Pb (dashed), viscous dissipation Dv (dotted), and power injected by
the incoming inertial wave–vortex interaction Pf (dash-dot) for the case
with (kxR0, kzR0) = (1, 1). The energy rates are normalized by f Eiw(0)
for nondimensionalization.

case with (kxR0, kzR0) = (1, 1), we plot different energy-rate con-
tributions in panel (b), namely Pb, Dv, and Pf , and we compare
with the time rate of perturbation energy ∂E/∂t.

As expected, the viscous dissipation Dv is always negative.
Therefore, it contributes to the decrease in E. However, its mag-
nitude is small compared to other contribution terms. The term
Pb indicating the transfer of momentum between the radiating
mode and the convective column is oscillatory around zero. The
term Pf , on the other hand, is always positive for the case with
kxR0 = 1, and therefore the main contribution to the perturba-
tion energy production comes from Pf , the energy injection by
the forcing induced by the inertial wave–vortex interaction. It is
not shown here but we also verified that the forcing term Pf is
the main source of energy of the new radiating mode for other
cases with different wavenumbers.

In summary, we verified that the interaction between stable
convective columns and planar incoming inertial waves pro-
motes the mixing of momentum around the vortex centre, creates
low-velocity ring regions, and triggers a new wave-like pertur-
bation radiating in the far field with a frequency close to the
characteristic frequency of the primary inertial wave. The energy
of this secondary radiating mode is sourced mainly from the
inertial wave–vortex interaction and the amount of energy from
the perturbation is a non-negligible fraction of the input iner-
tial wave energy, especially when the length scale of the inertial
wave is comparable to that of the vortex radius. This implies that
the convective column can act as an additional source of energy
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Fig. 12. Schematic diagram of possible interactions between tidal iner-
tial waves and convective columnar vortices.

to create more efficient turbulent dissipation by generating the
secondary radiating mode.

5. Towards a complete nonlinear picture

When nonlinear effects are taken into account in the wave–vortex
interaction, interesting behaviors are expected. In the unstable
regime, where vortices are intrinsically unstable, tidal waves, as
in any other disturbance (depending on the relative timescales, as
discussed in Sect. 3.2), can destabilize them leading to fully tur-
bulent states where energy is dissipated at small scales. From the
current study, it is not clear which type of perturbation will most
effectively yield turbulence. Nonlinear simulations can address
this question and help us to understand the evolution of an
unstable convective vortex along its nonlinear interaction with
perturbation such as tidal waves or noise. Then, convection or
the nonlinear interactions between incoming tidal inertial waves
and the vortex (Duran-Matute et al. 2013; Boury et al. 2021) can
trigger new columnar vortices, which can potentially be unsta-
ble or not. In the unstable case, this can potentially lead to a
cycle of creation and destruction of vortices, which was indeed
observed by Barker & Lithwick (2013) in their study of the
dynamics of the tidal elliptic instability in rotating flows. In the
stable case, it is interesting to note that tidal inertial waves can
transfer the momentum they carry to the vortex at critical lay-
ers as identified in Appendix B but also extract energy from the
vortex via an over-reflection or transmission mechanism. These
complex behaviors, which we summarize in Fig. 12, allow us to
point out that the modeling of the interactions between tides and
rotating convection using effective turbulent friction cannot be
applied to describe the interactions between tidal inertial waves
and coherent convective vortices in the general case.

The results obtained with the convective column model pro-
posed by Grooms et al. (2010) can also be applied to other
vortices triggered by rotating double-diffusive convection (Moll
& Garaud 2017) or by the nonlinear interactions of tidal inertial
waves (Astoul & Barker 2022). The inertial wave–vortex interac-
tion is also crucial in other configurations. For instance, a recent
study by Pizzi et al. (2022) investigates the interaction in the
presence of precession turbulence. These authors consider a base
precessional shear flow that is subject to an instability called the
precessional instability (Kerswell 1993). The instability triggers
turbulence and such a turbulent precessional flow contains vor-
tices as 2D structures and inertial waves as 3D structures. Pizzi
et al. (2022) found that the 3D inertial wave becomes stronger
as the precession increases and the nonlinear wave–vortex inter-
action contributes to turbulent dissipation more efficiently. They

also reported a cyclic behavior of the flow where vortices appear
and disappear as a result of the nonlinear interactions (as in
Barker & Lithwick 2013, and de Vries et al., in prep., for the
case of nonlinear evolution of the tidal elliptic instability). These
findings increased our motivation to carry out a future study of
the nonlinear interaction between tidally forced inertial waves
and convective columns to better understand the contribution
of the wave–vortex interaction to turbulent dissipation along the
evolution of rapidly rotating planets and stars.

6. Conclusion and discussion

In this paper, we investigate how tidally forced inertial waves
interact with a convective columnar vortex in rapidly rotating
planets and stars. In Sect. 2, we present our study of the con-
vective column; we used a semi-analytical model proposed by
Grooms et al. (2010), and adapted the model without any math-
ematical singularity around the column center r = 0 to allow us
to make a complete theoretical stability analysis. We find that
the convective columnar vortex (17) is centrifugally stable when
−Ωp ≤ Ω0 ≤ 3.62Ωp (Ωp andΩ0 being the global planetary (stel-
lar) rotation and the rotation of the flow at the center of the
vortex, respectively) and unstable otherwise.

As the stability is closely linked to the dynamics of the
tidal wave–vortex interaction, we studied centrifugally unstable
modes and neutral modes in great detail using linear stability
analysis (Sect. 3). We find that the convective column is unsta-
ble to axisymmetric m = 0 perturbations (which can be induced
by eccentricity tides) and weakly nonaxisymmetric perturba-
tions with azimuthal wavenumbers m = {1, 2} (which correspond
to obliquity and asynchronous tides, respectively). The WKBJ
analysis detailed in the Appendix allows us to derive thoroughly
explicit expressions of the maximum growth rate at a given ratio
Ω0/Ωp for unstable modes and the frequency of neutral modes.
We subsequently present linear simulations of the interaction
between convective columns and tidally forced radial incoming
inertial waves. We verified that such an interaction triggers the
most unstable mode of an unstable convective column.

In Sect. 4, we present a study of the interactions between sta-
ble convective vortices and tidal inertial waves. We provide key
results by conducting linear simulations of tidally forced incom-
ing planar inertial waves interacting with a stable vortex. We
observe that the wave–vortex interaction leads to the mixing of
momentum and the creation of low-velocity regions around the
vortex core. The interaction promotes efficient radiation of a new
wave-like perturbation in the case where the wavelength of the
incoming wave is close to the characteristic vortex length. This
secondary wave can be regarded as the sum of neutral or stable
modes of the vortex and frequencies close to the characteristic
frequency of the primary inertial wave. As the amplitude of the
secondary wave is non-negligible compared to that of the pri-
mary wave, it constitutes a supplementary potential source of
dissipation. Finally, angular momentum exchanges can occur at
critical layers.

As identified in Sect. 5, it will be crucial in the near future
to understand the role of the nonlinearities. Moreover, it will be
necessary to go beyond the simplified traditional polar f -plane
approximation. In particular, the 2D nonseparable dynamics of
tidal inertial wave attractors should be treated. Finally, if the
external convective regions of gaseous giant planets are not the
seat of the magnetic field generation through dynamo action, this
cannot be the case for low-mass stars, and in this latter case, mag-
netic fields should therefore be taken into account (e.g., Barker
& Lithwick 2014; Lin & Ogilvie 2018; Astoul et al. 2019).
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Appendix A: WKBJ approximation for large vertical
wavenumber kz

Previous studies revealed that the centrifugal instability of rotat-
ing flows reaches its maximum growth rate as kz → ∞ in the
inviscid limit (Billant & Gallaire 2005, 2013; Park & Billant
2013a; Park et al. 2017). We also see in Sect. 3 that eigenval-
ues of the convective Taylor column demonstrate asymptotic
behaviors in the large-kz limit. To understand these behaviors and
derive analytic expressions of the dispersion relation, we adopt
the WKBJ approximation for large kz by applying it to û as

û(r) ∼ exp

1
ϵ

∞∑
n=0

ϵnS n(r)

 , (A.1)

where ϵ is a small parameter to be defined. Applying (A.1) to the
second-order ODE (38), we find

ϵ =
1
kz
, S

′2
0 = ∆, S ′1 = −

1
2

(
1
r
−

Q′

Q

)
−
∆′

4∆
. (A.2)

The leading-order term S 0, where S ′0 = ±
√
∆, determines the

exponential behavior of the solution, and it depends on the sign
of ∆. For instance, if ∆ > 0, we express û as an evanescent
solution:

û =
Q

1
2

r
1
2∆

1
4

[
A1 exp

(
kz

∫
r

√
∆(t)dt

)
+ A2 exp

(
−kz

∫
r

√
∆(t)dt

)]
,

(A.3)

or as a wavelike solution if ∆ < 0:

û =
Q

1
2

r
1
2 (−∆)

1
4

[
B1 exp

(
ikz

∫
r

√
−∆(t)dt

)
+B2 exp

(
−ikz

∫
r

√
−∆(t)dt

)]
.

(A.4)

To more easily comprehend the sign of ∆(r) = 1 −
Φ/ (−ω + mΩ)2, it is convenient to define the radial epicyclic
frequencies ω±(r):

ω±(r) = mΩ ± Re
(√
Φ
)
, (A.5)

(see also, Le Dizès & Lacaze 2005; Le Dizès 2008; Park & Bil-
lant 2013b). We also define the critical frequency ωc and radius
rc at which the Doppler-shifted frequency s vanishes:

ωc = mΩ(rc), (A.6)

(i.e., the frequency and radius at which the corotation reso-
nance occurs in the inviscid case; see e.g., Astoul et al. 2021).
In Fig. A.1a, we plot ω± and ωc for Ω0/ f = 3 and m = 1. The
epicyclic frequenciesω± depend on m andΩ0, and their behavior
can be upside-down for anticyclonic cases with Ω0/ f < 0 (see
e.g., Fig. A.1b for Ω0/ f = −2). The gray-shaded area between
ω+ and ω− shows the region where the solution is wave-like
(i.e., ∆ < 0), while the white area denotes the region where
the solution is evanescent (i.e., ∆ > 0). This implies that, for
a given frequency ω, the WKBJ solution is wavelike if ω lies
in the range ω− < ω < ω+ while the solution is evanescent if
ω > ω+ or ω < ω−. The crossings of ωr = ω± indicate where
∆(r) is zero (see also, Park 2012). This implies that they indi-
cate the location of the turning point rt where ∆(rt) = 0 and

Fig. A.1. Epicyclic frequencies ω± (solid lines) and critical frequency
ωc (dashed line) for m = 1 and (a) Ω0/ f = 3 and (b) Ω0/ f = −2. The
gray area denotes the region where the solution is wave-like (i.e.,∆ < 0),
while the white area is the evanescent region (i.e., ∆ > 0). Dotted lines
represent frequencies ωr for neutral modes in the upper (cases I and IV)
and lower (cases II and V) branches, and for unstable modes (case III).

where solution behavior changes from wave-like to evanescent,
or vice versa. Fig. A.1 also shows the typical frequencies of the
neutral modes in the upper and lower branches (cases I, II, IV,
and V) and unstable modes (case III). If the frequency ω lies in
the range ωc(0) < ω < ω+(0), as in case I, we have one turn-
ing point rt and the solution is wave-like in the range 0 < r < rt
while it is evanescent outside the turning point r > rt. At this fre-
quency, we can construct an eigenfunction as the exponentially
decaying solution for r > rt while waves are trapped between
the turning point rt and r = 0 (see also, Le Dizès & Lacaze
2005). For the cases II and V where the frequency lies in the
range ω−(0) < ω < ωc(0), we can construct the eigenfunction in
the same way. For case IV, the frequency ωr crosses ω+, imply-
ing that there are two turning points. Between the two turning
points, the solution is wave-like, while it is evanescent else-
where. This configuration corresponds to the ring mode. Case
III of the unstable mode is different; first, it has a frequency in
the range 0 < ω < ωc(0), implying that there is a critical point rc
where ωc(rc) = 0. The unstable mode also has a positive growth
rate, ωi > 0, and therefore ∆ is no longer real but complex on
the real r-axis. Division of the WKBJ solutions into wavelike
and evanescent solutions around the turning point rt is therefore
not applicable on the real r-axis and we need to investigate the
solution behavior of the unstable mode in the complex plane.

In the following subsections, we present the detailed deriva-
tion of the dispersion relations of the frequency for the upper and
lower branches of the neutral modes (cases I, II, IV, and V) using
the epicyclic frequencies. And for case III, we use the analysis in
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the complex plane used by Billant & Gallaire (2005) to derive
the frequency and growth rate of the unstable modes.

Appendix A.1: Dispersion relations for neutral modes

We first investigate the dispersion relations of the neutral modes
that have a real frequency ω. In Fig. A.1, we display possible fre-
quencies where we can construct the neutral mode. For instance,
in case I, where the frequency lies in the range max(ωc) <
ωr < max(ω+), we have one turning point rt and the solution
is evanescent outside rt:

û =
Q1/2

r1/2∆1/4 A1 exp
(
−kz

∫ r

rt

√
∆(t) dt

)
. (A.7)

In order to impose the decaying boundary condition as r → ∞,
A2 = 0 is imposed in Eq. (A.3). In addition, by considering the
connection around the turning point rt (see also, Olver 1974; Bil-
lant & Gallaire 2005; Le Dizès & Lacaze 2005), we obtain the
wave-like solution in the range 0 < r < rt as

û =
A1

2
Q1/2

r1/2(−∆)1/4

[
exp

(
ikz

∫ rt

r

√
−∆(t) dt − i

π

4

)
+ exp

(
−ikz

∫ rt

r

√
−∆(t) dt + i

π

4

) ]
. (A.8)

This mode is the core mode because the wave is confined
between the core r = 0 and the turning point rt (Le Dizès &
Lacaze 2005). Depending on the azimuthal wavenumber m, we
impose the boundary condition at the center r = 0 as

û = 0 if m , 1 or
dû
dr
= 0 if m = 1, (A.9)

based on the asymptotic relations (42) and (43), (see also,
Saffman 1992). Imposing such conditions to (A.8) leads to the
following quantization relations at leading order:

kz

∫ rt

0

√
−∆(t)dt =

(
n −

1
4

)
π, if m , 1,

kz

∫ rt

0

√
−∆(t)dt =

(
n +

1
4

)
π, if m = 1,

(A.10)

where n is an integer indicating the mode number. We see
that the right-hand-side terms are always finite, and therefore
the integrals on the left-hand side should converge to zero as
kz → ∞. This implies that the turning point migrates to the cen-
ter r = 0 in this limit; this allows us to expand all the functions
around r = 0:

Φ(r) = Φ0 +
Φ′′0

2
r2 + O(r3),

Ω(r) = Ω0 +
Ω′′0

2
r2 + O(r3),

(A.11)

where the subscript 0 represents the fact that the functions are
evaluated in r = 0. Applying the expansions (A.11) to the quanti-
zation relations (A.10), we can also expand the frequency in the
power of kz as

ω = ω0 +
ω1

kz
+ O

(
1
k2

z

)
. (A.12)

After having inserted the expansion (A.12) into the quantization
conditions (A.10), we find the frequency for upper branches as

ω = mΩ0 +
√
Φ0 −

2
kz

(
n −

1
4

) √
−
Φ′′0

2
− mΩ′′0

√
Φ0, if m , 1,

ω = mΩ0 +
√
Φ0 −

2
kz

(
n +

1
4

) √
−
Φ′′0

2
− mΩ′′0

√
Φ0, if m = 1.

(A.13)

From Fig. 6a, we see that there is good agreement between the
asymptotic dispersion relation (A.13) and the numerical solu-
tions, especially for large kz. We note that ω1 is negative for the
upper branches; therefore, the frequency ω increases with kz and
asymptotes to mΩ0 +

√
Φ0 as kz → ∞.

The quantization relations (A.10) can be similarly applied for
lower branches for other core-mode cases II and V in Fig. A.1
where the frequency ω now meets the epicyclic frequency ω−. In
this case, we find the frequency expansion as follows:

ω = mΩ0 −
√
Φ0 +

2
kz

(
n −

1
4

) √
−
Φ′′0

2
+ mΩ′′0

√
Φ0, if m , 1,

ω = mΩ0 −
√
Φ0 +

2
kz

(
n +

1
4

) √
−
Φ′′0

2
+ mΩ′′0

√
Φ0, if m = 1.

(A.14)

For the lower branches, ω1 is now positive, and the frequency
ω decreases and asymptotes to mΩ0 −

√
Φ0 as kz increases. We

see in Fig. 6b that the asymptotic dispersion relations (45) agree
well with numerical results for the lower-branch frequency.

On the other hand, we also have a mode called the ring mode
(Le Dizès & Lacaze 2005) where the wavelike solution is con-
fined between the two turning points rt1 and rt2 where rt1 < rt2
(see e.g., the case IV in Fig. A.1b). In this case, the wavelike
solution (A.8) is connected around rt1 by the evanescent solution
in the range 0 < r < rt1:

û =
Q1/2

r1/2∆1/4 A2 exp
(
−kz

∫ rt1

r

√
∆(t) dt

)
. (A.15)

Matching the solutions (A.8) and (A.15) leads to the following
quantization condition:

kz

∫ rt2

rt1

√
−∆(t)dt =

(
n −

1
2

)
π, (A.16)

(see also, Billant & Gallaire 2005). As kz increases, these turn-
ing points migrate towards the point rmax+ at which ω+ is the
maximum and the derivative of ω+ is zero:

−2mΩ′(rmax+)
√
Φ(rmax+) = Φ′(rmax+). (A.17)

Such a behavior around rmax+ leads to the following expression
for the frequency:

ω = ω0 −
ω1

kz
,

ω0 = mΩ(rmax+) +
√
Φ(rmax+),

ω1 =

(
n −

1
2

) √
−
Φ′′

2
− 3m2Ω

′2 +
2mΩ′Φ′ + mΩ′′Φ
−ω0 + mΩ

∣∣∣∣∣∣∣∣
r=rmax+

.

(A.18)
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The ring mode in the upper branches can be constructed when
ω+(0) < ω+(rmax+), i.e.,

m <

√
Φrmax+ −

√
Φ0

Ω0 −Ωrmax+

. (A.19)

We find numerically that this inequality corresponds to −1.2 <
Ω0/ f < 0 for m = 0, −2.8 < Ω0/ f < 0 for m = 1, and Ω0/ f < 0
for m ≥ 2.

For lower branches, we can have the same quantization
condition as in Eq. (A.16) when ω−(0) > ω−(rmin−) where

2mΩ′(rmin−)
√
Φ(rmin−) = Φ′(rmin−). (A.20)

The inequality ω−(0) > ω−(rmin−) is equivalent to

m <

√
Φ0 −

√
Φrmin−

Ω0 −Ωrmin−

, (A.21)

and it corresponds to −1.2 < Ω0/ f < 0 for m = 0, −0.8 <
Ω0/ f < 0 for m = 1, Ω0/ f > −0.6 for m = 2, and Ω0/ f > 0
for m ≥ 3. We also have the frequency expression evaluated at
rmin− for the ring mode in the lower branches as follows:

ω = ω0 +
ω1

kz
,

ω0 = mΩ(rmin−) −
√
Φ(rmin−),

ω1 =

(
n −

1
2

) √
−
Φ′′

2
− 3m2Ω

′2 +
2mΩ′Φ′ + mΩ′′Φ
−ω0 + mΩ

∣∣∣∣∣∣∣∣
r=rmin−

.

(A.22)

We also checked that the asymptotic frequencies (A.18) and
(A.22) are in good agreement with numerical results.

Appendix A.2: Dispersion relations for unstable modes

For a general azimuthal wavenumber m and complex frequency
ω, the function ∆(r) is complex on the real r-axis and the turning
points rt where ∆(rt) = 0 are in the complex plane. Figure A.2
shows locations of the turning points in the complex plane for
m = 2 andΩ0/ f = 3 when the eigenfrequency ω = 0.778+ 0.45i
at kzR0 = 30 from the numerical computation is considered. Due
to the oscillatory behaviors of the Bessel function J0 of the angu-
lar velocity profile (17) as |r| → ∞ for | arg(r)| < π/2 (see also,
Abramowitz & Stegun 1972), there are many turning points in
the complex plane. But while other turning points are far from
the real r-axis, the two turning points rt1 and rt2 are somewhat
close to the real r-axis and they will influence the WKBJ solu-
tion effectively. To better understand the exponential behavior of
the WKBJ solution, we also draw in Fig. A.2 the Stokes lines
defined as

Re (∆(r)) = 0, (A.23)

(see also, Olver 1974; Billant & Gallaire 2005). The Stokes lines
emanate from the turning points and they delimit the regions of
the WKBJ solutions in the same behavior. The points r̃t1 and
r̃t2, where the Stokes lines cross the real r-axis, also delimit the
solutions on the real r-axis. By the definition (A.23), the WKBJ
solutions on the Stokes line between the two turning points are
wave-like. Furthermore, it is noticeable that a Stokes line ema-
nating from rt1 shows a spiral pattern around the critical point rc,
as ∆ is singular.

4 6 8 10

-6

-4

-2

0

Fig. A.2. An example of the Stokes lines network for ω = 0.778 + 0.46i
at m = 2, kzR0 = 30, and Ω0/ f = 3 (panel a). Black solid lines denote
the Stokes lines, short lines indicate the direction where Re(∆) remains
constant, and a blue-dashed line denotes the progressive path. Panel b
shows he integral ∆̄(r) versus the real part of r along the progressive
path in (a).

The Stokes line network in the complex plane in Fig. A.2 is
very similar to that of the Carton & McWilliams vortex studied
in Billant & Gallaire (2005). We follow their approach by con-
sidering the WKBJ solution that decreases exponentially from
r = rt1 in the range 0 < r < rt1:

û = C1
Q1/2

r1/2∆1/4 exp
[
−kz

∫ rt1

r

√
∆(t) dt

]
. (A.24)

This solutions matches with the wavelike solution in the range
rt1 < r < rt2:

û = 2C1
Q1/2

r1/2(−∆)1/4 sin
[
kz

∫ r

rt1

√
−∆(t) dt +

π

4

]
. (A.25)

Furthermore, we have the evanescent solution after the turning
point rt2:

û =
Q1/2

r1/2∆1/4

[
D1 exp

(
−kz

∫ r

rt2

√
∆(t) dt

)
+D2 exp

(
kz

∫ r

rt2

√
∆(t) dt

)]
. (A.26)

We note that for r > rt2, there are many turning points in the
complex plane as a result of the oscillatory behavior of the vortex
profile in Eq. (17). These turning points, like rt3 in Fig. A.2, are
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Fig. A.3. Real and imaginary parts of the double turning point r0 versus Ω0/ f for different azimuthal wavenumbers: m = 0 (black), m = 1 (blue)
and m = 2 (red; panels a and b). Gray-shaded areas represent the centrifugally stable regime. Panel c displays the movement of the double turning
point r0 in the complex plane as m changes for Ω0/ f = 5 (black) and Ω0/ f = −2 (blue).

far from the real axis. With this characteristic, we can avoid the
multiple-turning-point analysis by choosing a proper progres-
sive path (Le Dizès & Lacaze 2005). More precisely, the idea
is to check whether the integral ∆̄(r) =

∫ r
rt2

√
∆dt is holomorphic

(i.e., complex differentiable) and Re(∆̄) is monotonic along the
progressive path. As we can see in Fig. A.2b, the integral ∆̄ is
monotonically decreasing along the progressive path displayed
in Fig. A.2a. This implies that we can keep the WKBJ solution
(A.26) along the progressive path as r → ∞, and can therefore
impose D2 = 0 to apply the exponentially decreasing boundary
condition.

By connecting the solution (A.25) and the solution (A.26)
with D2 = 0 at r = rt2 , we obtain the following quantization
condition:

kz

∫ rt2

rt1

√
−∆ dr =

(
n +

1
2

)
π, (A.27)

where n is the mode number. This is identical to the quantization
condition obtained by Billant & Gallaire (2005). We see from
Eq. (A.27) that Im

(∫ rt2

rt1

√
−∆dr

)
= 0 (i.e., Re

(∫ rt2

rt1

√
∆dr

)
= 0),

and this implies that the two turning points should be connected
by the Stokes lines as seen in Fig. A.2. Also, it is important to
note that the right-hand side of Eq. (A.27) is always finite while
the integral on the left-hand side should become zero as kz → ∞.
This implies that rt1 and rt2 should collapse to a point as kz → ∞.
From this information, Billant & Gallaire (2005) considered a
double turning point r0 between the two turning points (see also
Fig. A.2), where the radial derivative of ω+ = mΩ(r) + i

√
−Φ(r)

becomes zero, i.e.,

2mΩ′(r0)
√
−Φ(r0) − iΦ′(r0) = 0. (A.28)

In Fig. A.3, we show how the location of the double turning
point r0 changes in the complex plane for both cyclonic and anti-
cyclonic cases for various azimuthal wavenumbers. For cyclonic
cases Ω0/ f > 0, r0 departs from the real axis at m = 0 and lies
in the upper complex plane (Im (r0) > 0) for m > 0, while it lies
in the lower complex plane (Im (r0) < 0) for anticyclonic cases
Ω0/ f < 0. For both cases, we find that the double turning point
r0 disappears for m ≤ 3.

Once the location of r0 is known, we can apply the Taylor
expansion around r0 in the limit kz → ∞ to derive the following
dispersion relation as

ω = ω0 +
ω1

kz
+ O

(
1
k2

z

)
, (A.29)

where

ω0 = mΩ(r0) + i
√
−Φ(r0), (A.30)

ω1 =
2n + 1

2
√

2i

√
Φ′′ − 2m2Ω

′2 + 2imΩ′′
√
−Φ

∣∣∣∣∣∣
r=r0

, (A.31)

(see also, Billant & Gallaire 2005). In Fig. 6(c,d), we see that
the WKBJ prediction (46) is in good agreement with numerical
results for the most unstable eigenvalues (i.e., n = 1) for various
azimuthal wavenumbers m.

Appendix B: Note on the critical layers

There is a certain range of frequency where neutral, stable, or
even unstable modes can possess a critical layer at r = rc where
s = 0. In the inviscid limit ν = 0, the critical radius rc is a pole
of the function ∆ and therefore the second-order ordinary differ-
ential equation Eq. (38) becomes singular. This can also be seen
from the WKBJ solutions such that the divergence of ∆ leads to
the divergence of the leading-order term of the WKBJ solution
(A.4). Therefore, a dedicated analysis of Eq. (38) in the vicin-
ity of rc must be performed. As r goes to rc, Eq. (38) can be
approximated at leading order as

d2û
dr2 +

α2
k(1 + Roc)

Roc
2(r − rc)2

û = 0, (B.1)

where Roc is the shear Rossby number and αk is the ratio of
vertical to azimuthal wavenumbers defined as:

Roc =
rcΩ

′(rc)
f + 2Ω(rc)

and αk =
kzrc

m
. (B.2)

We note that Eq. (B.1) is analogous to the differential equation
for inertial waves close to a corotation resonance when using a
cylindrical differential rotation profile in a local shear box model
in Cartesian coordinates (see in particular Sect. 3.4 of Astoul
et al. 2021, when the box is at the south pole of a spherical shell).
As introduced in Astoul et al. (2021) or Alvan et al. (2013) for
internal gravity waves approaching a corotation resonance, we
define a new parameter R appearing in Eq. (B.1) as

R =
α2

k(1 + Roc)

Ro2
c

. (B.3)
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Applying the Frobenius series to solve the equation (B.1) leads
to the following solutions at leading order:

û ≃ a1(r − rc)
1
2+
√

1
4−R + a2(r − rc)

1
2−
√

1
4−R, (B.4)

if R ≤ 1/4 where a1 and a2 are constants, or

û ≃ b1(r − rc)
1
2+i
√
R− 1

4 + b2(r − rc)
1
2−i
√
R− 1

4 , (B.5)

if R > 1/4 where b1 and b2 are constants.
The solutions (B.5) in the regime R > 1/4 can experience a

strong attenuation as it crosses r = rc. For instance, if we con-
sider the analytic continuity of Eq. (B.5) for r > rc by taking
the lower half in the complex plane1, we obtain the solution for
r < rc as

û ≃ −ic1|r − rc|
1
2+i
√
R− 1

4−ic2|r − rc|
1
2−i
√
R− 1

4 , (B.6)

where c1 = b1 exp
(
π
√
R − 1/4

)
and c2 = b2 exp

(
−π
√
R − 1/4

)
are the amplitudes of the solution for r < rc related to the ampli-
tudes of the solution for r > rc. To determine in which directions
the waves propagate from the corotation, we introduce the wave
action flux A, which is an invariant quantity along the radius
r in the inviscid limit. This quantity is conserved in the whole
domain except at corotation, and is therefore a useful tool with
which to determine the direction of the wave-energy propagation
and quantify the angular momentum flux exchanges between the
waves and the mean flow (e.g., Grimshaw 1975, 1979; Andrews
& McIntyre 1978, in the context of inertial gravity waves). In the
cylindrical coordinates, this invariant can be derived as

A =

〈 rpu
s

〉
θ,z
=

1
2

Re
{

r p̂û∗

s

}
, (B.7)

where ⟨·⟩θ,z denotes the average in the z- and θ-directions and Re
the real part. By taking a linear combination of the momentum
equations (26), (28), and (29) in the inviscid limit, one can get
an expression for the pressure:

p̂ = −i
sû′ + û/r

[
s − m ( f + ζ)

]
Q

. (B.8)

Its substitution into the wave action flux Eq. (B.7) yields

A =
r

2Q
Im{û′û∗}. (B.9)

Injecting the solutions Eqs. (B.5) and (B.6) into Eq. (B.9)
leads to the following wave-action flux above and below the
corotation:

A =
rc

2Qc
µ
(
|b1|

2 − |b2|
2
)
, if r > rc,

A =
rc

2Qc
µ
(
|b2|

2 exp(−2πµ) − |b1|
2 exp(2πµ)

)
, if r < rc,

(B.10)

where µ =
√
R − 1/4, provided again that mΩ′c > 0. In this

framework, the direction of wave propagation in the region r > rc
is given by the sign of sA as this quantity is related to the group

1 because Im{r− rc} ≃ −Im{ω}/(mΩ′c) provided that mΩ′c > 0, and with
the radiation condition Im{ω} > 0 where Im features the imaginary part
(Miles 1961; Booker & Bretherton 1967; Astoul et al. 2021, for a more
detailed description of the mathematical analysis about the connection
of solutions).

velocity (e.g., Grimshaw 1975; Bretherton & Garrett 1968).
From Eq. (B.10) and given that s ≷ 0 for r ≷ rc, the first wave
of amplitude |b1| is traveling outwards because sA > 0 (for both
r > rc and r < rc), while the second wave of amplitude |b2| is
traveling inwards because sA < 0. This implies that both waves
are attenuated as their wave action fluxes are reduced by a factor
of exp(−2πµ) after they move through the corotation, as similarly
reported by Astoul et al. (2021) for inertial waves in a shear box
model with cylindrical differential rotation when R > 1/4. In the
regime R ≤ 1/4, the wave action flux analysis cannot determine
the wave direction unambiguously and therefore a further numer-
ical analysis is required as was carried out by these latter authors.
Depending on the boundary conditions and other internal proper-
ties, such as wave frequency, wavenumbers, or the shear Rossby
number, the inertial waves may experience either damping, over-
reflection, or over-transmission. The latter can ultimately lead to
shear instability if the waves interfere constructively and sustain
their growth as successive over-reflection (or over-transmission)
of the waves occurs (Lindzen 1988; Harnik & Heifetz 2007;
Astoul & Barker 2022).
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