KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation of Different Fault Diagnosis Methods and Their Applications in Vehicle Systems

Li, Shiqing 1; Frey, Michael ORCID iD icon 1; Gauterin, Frank ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

A high level of automation in vehicles is accompanied by a variety of sensors and actuators, whose malfunctions must be dealt with caution because they might cause serious driving safety hazards. Therefore, a robust and highly accurate fault detection and diagnosis system to monitor the operational states of vehicle systems is an indispensable prerequisite. In the area of fault diagnosis, numerous techniques have been studied, and each one has pros and cons. Selecting the best approach based on the requirements or usage scenarios will save much needless work. In this article, the authors examine some of the most common fault diagnosis methods for their applicability to automated vehicle systems: the traditional binary logic method, the fuzzy logic method, the fuzzy neural method, and two neural network methods (the feedforward neural network and the convolutional neural network). For each approach, the diagnosis algorithms for vehicle systems were modeled differently. The analysis of the detection capabilities and the suitable application scenarios of each fault diagnosis approach for vehicle systems, as well as recommendations for selecting different methods for various diagnosis needs, are also provided. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159046
Veröffentlicht am 19.06.2023
Originalveröffentlichung
DOI: 10.3390/machines11040482
Scopus
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2075-1702
KITopen-ID: 1000159046
Erschienen in Machines
Verlag MDPI
Band 11
Heft 4
Seiten Art.-Nr.: 482
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 17.04.2023
Schlagwörter evaluation; fault diagnosis; vehicle systems; traditional binary logic; fuzzy logic; neuro-fuzzy; machine learning; CNN (convolutional neural network); sensors; actuators; causes of failure in PMSM (permanent-magnet synchronous motor)
Nachgewiesen in Scopus
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und WohlergehenZiel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page