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Abstract: The aim of this study was to prepare and characterize the glasses made of x(Fe2O3·V2O5)·
(100 − x)[P2O5·CaO] with x ranging of 0–50%. The contribution of Fe2O3 and V2O5 amount on the
structure of P2O5·CaO matrix was investigated. The vitreous materials were characterized by XRD
(X-ray diffraction analysis), EPR (Electron Paramagnetic Resonance) spectroscopy, and magnetic
susceptibility measurements. A hyperfine structure typical for isolated V4+ ions was noticed to all
spectra containing low amount of V2O5. The XRD spectra show the amorphous nature of samples,
apart x = 50%. An overlap of the EPR spectrum of a broad line without the hyperfine structure
characteristic of clustered ions was observed with increasing V2O5 content. The results of magnetic
susceptibility measurements explain the antiferromagnetic or ferromagnetic interactions expressed
between the iron and vanadium ions in the investigated glass.

Keywords: calcium phosphate glasses; XRD; EPR; magnetic susceptibility

1. Introduction

Studies of phosphate glasses have attracted great interest from science, engineering,
and technological fields due to their valuable physical properties, which are different from
silicate and borate glasses [1,2]. These properties include a lower melting temperature,
high transparency in the UV domain, reduced viscosity, low glass transition temperatures,
and elevated thermal expansion coefficients [1,2]. Phosphorus-based glassy materials have
a disordered and partially disordered structure and by doping with different transition
metal ions acquire some special electrical, optical and magnetic properties [3–7] compared
to crystalline materials. In this way, they become useful in many fields such as electronics,
optics, sealing materials, bio-glass fabrication, and also in some cases in microbiological
and biomedical applications [8–11]. By adding various elements and transition metals such
as iron, vanadium, and copper oxides to the phosphate glass network, the dissolution rate
of the new compounds decreases while their chemical durability increases [12].

The addition of elements such as calcium, sodium, and lithium also make the com-
pounds suitable as biomaterials [13–17]. Calcium phosphate materials are currently known
as materials used by the human body to build bone or to automatically produce ma-
terial for bone repair and regeneration. Some of them are osteoconductive and others
are osteoinductive [18].
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The forming oxide in phosphate glasses is P2O5. It has a different structure compared
to other glass formers due to the existence of a terminal oxygen on each network cation.
This exhibits a covalent P=O double bond and influences the additional valence electron.
In fact, the P2O5 glass structure consists of a network in which three of the oxygens are
bridged (P-O-P) and one is non-bridged (P=O). The basic elements of the network are
PO4 tetrahedra linked by covalent oxygen bridges to form different phosphate anions [19].
The number of oxygen bonds present in the phosphate tetrahedra are used to define the
structure of the phosphate glasses.

The properties of phosphate glasses can be modified by adding alkali and alkaline-
earth oxides, such as CaO or Li2CO3, to the glass network, thereby achieving a partial
structural modification [20,21]. In this way, non-bridging oxygens are created at the expense
of bridging oxygens, leading to depolymerization of the phosphate network.

Ferric or ferrous oxides (e.g., Fe2O3 or FeO) confer interesting effects on the structure
and properties of the phosphate-based glasses. Among the two iron ions, only Fe3+ shows
EPR absorptions at room temperature, although both Fe3+ and Fe2+ display paramagnetic
properties [22]. Although Vanadium ions incorporated in the phosphate glasses present
two oxidation states, V4+ and V5+, only vanadium in its +4 oxidation state is paramagnetic.
In the oxide matrix of the glass, the V4+ ions tend to form their specific VO2+ complexes.
As a consequence of hopping an unpaired 3d1 electron from the V4+ site to the V5+ site,
electrical conduction occurs. The possibility of the vanadium ion to change its oxidation
state during the melting and quenching process of glass preparation was reported in the
literature [23–26]. The data reveal structural changes of the units due to the formation
of bonds between non-bridging oxygen and iron atoms in different coordination, while
the increase in the content of vanadium ions in the samples leads to the decrease of the
activation energy [23–26].

The present paper reports structural and magnetic investigations on new calcium
phosphate glasses systems. The synthesis, structural, and magnetic properties of these
glass systems, based on CaO and P2O5 as network formers doped with Fe and V ions,
were investigated by XRD, EPR, and magnetic susceptibility measurements in a large
concentration range with x varying between in the range 0 ≤ x ≤ 50%.

XRD analyzes have been employed to characterize the short-range order and electronic
structures of the samples, as well as earlier for other types of glassy materials [27,28].

The EPR spectroscopy and magnetic susceptibility measurements are used to obtain
complementary data regarding the influence of Fe2O3·V2O5 content on the local symmetry,
and interactions between iron and vanadium ions in the P2O5·CaO glass matrix.

Investigations by the EPR technique have been reported on similar phosphate glasses
to provide the most direct and accurate descriptions of the ground states and neighborhood
effects on the energy levels of the paramagnetic centers, and to make it possible to determine
the crystal field parameters [29,30].

The concentration of the 3D transition metal ions combined with the ratio of valence
states and the structure of the glassy matrix influence the magnetic properties of sample.
Through magnetic susceptibility measurements, the valence states of transition metal ions
and the type of interactions involving them can be measured [31]. An antiferromagnetic
coupling of Fe2O3-P2O5-CaO and Fe2O3-V2O5-P2O5-CaO can be considered responsible
for the super-exchange interaction of the iron ions in the oxide glasses. The magnetic
properties and the antiferromagnetic coupling between iron ions in different phosphate,
borate, aluminosilicate, and oxide glasses have been reported previously [32–35].

The sample preparation conditions, the structure of the glass matrix, and the Fe3+/Fe2+

ratio determine the concentration range in which antiferromagnetic interactions occur.

2. Results and Discussion
2.1. XRD Data

The X-ray powder diffraction pattern for x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] glass
systems are presented in Figure 1a,b. It is observed that apart from sample x = 50 mol%,
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all the other samples do not show characteristic diffraction peaks for crystalline phases,
these being in an amorphous state. The diffraction lines for sample x = 50mol% (Figure 1b)
are attributed to the crystalline phase V3O5 (PDF: 72-0524), which crystallizes in the mono-
clinic system having the space group Cc and the following lattice parameters: a = 9.98 Å,
b = 5.03 Å, c = 9.84 Å, and β = 138.80. For all other samples with 0 ≤ x < 50 mol%, it can
be noted that they each have a diffraction halo characteristic for the amorphous phase,
which reflects the local order. The location of this broadening halo is difficult to determine
precisely, but it can be stated that the position of its maximum moves to bigger angles when
the sample changes from x = 0, 1, 3, 5, 10, 20, 35 mol%.
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The average distance between the atoms in the first coordination sphere R can be evalu-
ated from the position of the halo diffraction maximum using the relation R = (5λ)/(8 sinθ).
From this relationship, it was found that when Fe and V ions are introduced into the
matrix containing Ca and Fe ions, the average distance between the ions increases from
approximately 4 Å to 4.5 Å.

It can be seen that the diffraction halos are a little more prominent, which means that
the local order also decreases with x increasing.

2.2. EPR Data

The glass systems x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] were investigated by applying
the EPR technique for x values in the range 0–50 mol%. The EPR spectrum of the prepared
samples is presented in Figure 2.

As illustrated in Figure 2, there is a strong dependence between the absorption spectral
structure and transition metal content parameters.

At low concentrations of Fe2O3·V2O5, 0.5 ≤ x ≤ 10 mol %, the resulting spectra can
be considered as an overlay of two EPR signals: (i) one with a well-resolved hyperfine
structure typical of isolated V4+ ions; (ii) the other, with a broad line without hyperfine
structure, typical for associated ions (Fe3+ and/or V4+).

For 20 ≤ x ≤ 50 mol %, the hyperfine structure and line resolution is significantly
reduced, leaving only a broad line, as a result of the increase in the number of ions associated
with the Fe2O3·V2O5 content.

The g~4.3 line disappears for x ≥ 20% of transitional oxides, indicating that isolated
Fe3+ ions form either Fe3+-O-Fe3+ bonds or Fe3+-O-V4+ interaction pairs.
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Figure 2. The first derivative of EPR absorption for x(Fe2O3·V2O5)·(100− x)[P2O5·CaO] glasses systems.

The appearance of the g~2 line may be caused by the dipole-dipole interactions
between Fe3+ ions attributed to the formation of Fe3+-O-Fe3+ bonds. These interactions
lead to the formation of iron ions clusters.

The g~2 line for x ≥mol% content is also unresolved due to the presence of Fe3+→ V4+

electron transitions, but V4+ → V5+ transitions cannot be neglected.
The resonance line evolution with the increasing of iron and vanadium ions content

in the samples can be determined using the approximate relation J = I(∆H)2, where I
represents the amplitude of the resonance line, and ∆H is the line-width.

The intensity of the resonance line, J, indicates the number of active species in resonant
absorption, ∆H reflects the competition between different broadening mechanisms: dipole-
dipole interactions, increasing disorder in the matrix structure, and interactions between
ions with different valence states. The resonance lines centered at g~4.3 and g~2.0 in the
spectra are typically for Fe3+ and V4+ ions present in the oxide glasses, their prevalence
depending on x concentrations (Figure 3a,b).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 9 
 

 

  

(a) (b) 

Figure 3. Correlation between intensity (J) of resonance line and the line-width (ΔH) for 

x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO]glass systems: (a) g~4.3, (b) g~2.0. 

The typical line-width (ΔH) increases with increasing of (Fe2O3·V2O5) content for x ≤ 

10 mol% (Figure 3a) and similarly for x ≤ 1% (Figure 3b), suggesting that the di-

pole-dipole interactions prevails among V4+ ions even for clustered ions. 

The decrease in the line-width with the increase in (Fe2O3·V2O5) content to more than 

10 mol% (Figure 3a) and x > 1% (Figure 3b) shows that, in this composition range, the 

super-exchange interaction become dominant between resonance centers. 

The increase in the concentration of Fe and V ions in the system can explain the J = 

f(x) dependence. The increase in the intensity of the resonance line (J) in the low concen-

tration range 0–5%, (Figure 3a) and 0–10% (Figure 3b) indicates that the number of ab-

sorption centers is increasing. The decrease of J in the concentration range 5–50% (Figure 

3a) and 10–50% (Figure 3b) shows the formation of iron and vanadium clusters. 

2.3. Magnetic Susceptibility Data 

The correlation between temperature and the reciprocal magnetic susceptibility for 

the glass samples with x varying in the range 0 < x < 50 mol% is presented in Figure 4. 

 

Figure 4. Relation between temperature and the reciprocal magnetic susceptibility for 

x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO] glasses with 0 < x < 50 mol %. 

Figure 3. Correlation between intensity (J) of resonance line and the line-width (∆H) for
x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO]glass systems: (a) g~4.3, (b) g~2.0.



Int. J. Mol. Sci. 2023, 24, 7366 5 of 9

The typical line-width (∆H) increases with increasing of (Fe2O3·V2O5) content for
x ≤ 10 mol% (Figure 3a) and similarly for x ≤ 1% (Figure 3b), suggesting that the dipole-
dipole interactions prevails among V4+ ions even for clustered ions.

The decrease in the line-width with the increase in (Fe2O3·V2O5) content to more than
10 mol% (Figure 3a) and x > 1% (Figure 3b) shows that, in this composition range, the
super-exchange interaction become dominant between resonance centers.

The increase in the concentration of Fe and V ions in the system can explain the J = f(x)
dependence. The increase in the intensity of the resonance line (J) in the low concentration
range 0–5%, (Figure 3a) and 0–10% (Figure 3b) indicates that the number of absorption
centers is increasing. The decrease of J in the concentration range 5–50% (Figure 3a) and
10–50% (Figure 3b) shows the formation of iron and vanadium clusters.

2.3. Magnetic Susceptibility Data

The correlation between temperature and the reciprocal magnetic susceptibility for
the glass samples with x varying in the range 0 < x < 50 mol% is presented in Figure 4.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 9 
 

 

  

(a) (b) 

Figure 3. Correlation between intensity (J) of resonance line and the line-width (ΔH) for 

x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO]glass systems: (a) g~4.3, (b) g~2.0. 

The typical line-width (ΔH) increases with increasing of (Fe2O3·V2O5) content for x ≤ 

10 mol% (Figure 3a) and similarly for x ≤ 1% (Figure 3b), suggesting that the di-

pole-dipole interactions prevails among V4+ ions even for clustered ions. 

The decrease in the line-width with the increase in (Fe2O3·V2O5) content to more than 

10 mol% (Figure 3a) and x > 1% (Figure 3b) shows that, in this composition range, the 

super-exchange interaction become dominant between resonance centers. 

The increase in the concentration of Fe and V ions in the system can explain the J = 

f(x) dependence. The increase in the intensity of the resonance line (J) in the low concen-

tration range 0–5%, (Figure 3a) and 0–10% (Figure 3b) indicates that the number of ab-

sorption centers is increasing. The decrease of J in the concentration range 5–50% (Figure 

3a) and 10–50% (Figure 3b) shows the formation of iron and vanadium clusters. 

2.3. Magnetic Susceptibility Data 

The correlation between temperature and the reciprocal magnetic susceptibility for 

the glass samples with x varying in the range 0 < x < 50 mol% is presented in Figure 4. 

 

Figure 4. Relation between temperature and the reciprocal magnetic susceptibility for 

x(Fe2O3∙V2O5)∙(100 − x)[P2O5∙CaO] glasses with 0 < x < 50 mol %. 

Figure 4. Relation between temperature and the reciprocal magnetic susceptibility for
x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] glasses with 0 < x < 50 mol %.

The temperature correlation with the reciprocal magnetic susceptibility involves a
Curie–Weiss-type behavior (χ = C/T − θ) with negative paramagnetic Curie temperature,
and suggests that magnetic transition ions are isolated and/or participating in dipolar
interactions in this concentration range. Therefore, we can consider that these ions are
randomly distributed in the vitreous matrix, being located at distances that do not allow
for the magnetic overload interaction through oxygen ions.

This shows that in all the studied concentration ranges, iron, and vanadium ions par-
ticipate in different proportions depending on x, in super-exchange magnetic interactions,
of antiferromagnetic type, behaving magnetically similar to other oxide glasses [36–38].
However, the ferric oxide concentration above which magnetic super-exchange interactions
occur is lower.

In this way, one can conclude that the concentration range of transition metal ions
in which these interactions occur depends on the nature of the glass matrix. Using the
representation 1/χ = f(T), we calculated the molar Curie constant, CM, for each sample. CM
values increase with the increase in the content of transition metals.

The presence of magnetic ions: V4+ (µeff = 1.8 µB), Fe3+ (µeff = 5.9 µB), Fe2+ (µeff = 5.1 µB) is
confirmed by experimental Curie constants. Next, using the relation µeff = 2.827[Cm/2x]1/2,
the magnetic moments of the samples under study were calculated.
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The obtained results are for x = 10 mol%, µeff = 5.3 µB (where µB is magneton Bohr),
while for the samples with higher concentration, µeff decreases to µeff = 3.67 µB. In Table 1,
the obtained values of CM and µeff are given for samples with x ranging from 0–50 mol%.

Table 1. CM, µeff for x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] with x ranging from 0–50 mol%.

x
[%]

CM
[u.e.m./mol]

µeff
[µB]

5 0.73 5.40
10
20
35

1.41
2.54
3.10

5.3
5.03
4.20

50 3.38 3.67

3. Materials and Methods

Glasses of the x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] system were prepared. For the
systems studied, reagent grade purity substances were used for analysis. Samples were ob-
tained by a proportional weighing of components, mixed, and melted in sintered corundum
crucibles at 1523 K for a 5 min timeframe, and sudden cooling (Figure 5). Eight samples of
x(Fe2O3·V2O5)·(100 − x)[CaO·Li2O] with x = 0, 1, 3, 5, 10, 20, 35 mol% were obtained.
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The structural analysis did not reveal any crystalline formations in the samples up to
50 mol% Fe2O3.

Diffraction data were obtained using a Bruker D8 Advance diffractometer using a Cu
X-ray tube, the diffractometer being equipped with a germanium (1 1 1) monochromator in
the incident beam and a LINXEYE position detector.

The EPR studies were conducted with a Portable Adani PS8400 spectrometer, at room
temperature, in the X-ray frequency band.

For EPR investigations the samples were milled and inserted into sample tubes of the
same caliber to ensure the same filling factor of the resonant cavity of the spectrometer for
all samples. The mass of all samples was 100 mg.

The determination of the magnetic susceptibility (χ) of the samples was achieved by
measuring the force with which a magnetic field acts on each of these glass systems, using
a Faraday balance, in the temperature range 80–300 K.

For this purpose, the sample connected to an analytical balance, placed in a quartz
cup attached to the end of a quartz rod, was introduced into the magnetic field of an
electromagnet. The mass of the sample was measured using the analytical balance with
and without the field. In order to obtain the real magnetic susceptibility of iron ions in
the studied glass compounds, due to the diamagnetism of the P2O5, CaO, and Fe2O3,
corrections were considered.
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4. Conclusions

A new system of phosphate glasses doped with transition ions such as x(Fe2O3·V2O5)·
(100 − x)[P2O5·CaO] was obtained and investigated in a large concentration range, i.e.,
0 ≤ x ≤ 50%.

In this matrix system, P-O bonds are broken and P-O-Fe bonds are formed when iron
ions are added. The gradual decrease in the number of bridging oxygen ions between
Fe-O-Fe and Fe-O-V is determined by the increase in the iron ions content of the samples.

In calcium phosphate glasses, vanadium is found as isolated V4+ ions in C4V coordi-
nation for small transitional metal oxide content.

The XRD spectra of the glass systems x(Fe2O3·V2O5)·(100 − x)[P2O5·CaO] show that,
apart from the x = 50%mol sample, all the other samples do not show diffraction peaks
characteristic of crystalline phases, those being in an amorphous state.

EPR measurements show that at low concentrations of Fe2O3·V2O5, we find the
presence of the two species of magnetic ions Fe3+ and V4+ in isolated positions, respectively,
with the resolved hyperfine structure, the dominant interaction being the dipole-dipole
one. With the increase in the concentration, the interactions of super-exchange and pair
formation become dominant. The binding of isolated Fe3+ ions is carried out either through
Fe3+-O-Fe3+ bridges, or they interact as Fe3+-O-V4+ pairs.

The magnetic measurements show that the transition ions in the glasses of the system
x(Fe2O3.V2O5)·(100 − x)[P2O5·CaO] are in the valence states V4+, V5+, Fe3+, and Fe2+. For
increased concentrations, the inverse of the magnetic susceptibility is determined by a
Curie–Weiss-type law with negative Curie temperature.

In the preparation of the new phosphate glasses, the addition of transition metal, such
as iron and vanadium ions, at various concentrations, increases the chemical resistance
of the new compound. Compared to other types of phosphate glass, we believe that
the new compounds containing calcium oxide as network modifiers could become good
candidates for applications in various fields such as, for example, biomedical application,
and tissue engineering.
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