KIT | KIT-Bibliothek | Impressum | Datenschutz

Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

Corceiro, Ana; Alibabaei, Khadijeh ORCID iD icon 1; Assunção, Eduardo; Gaspar, Pedro D.; Pereira, Nuno
1 Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Karlsruher Institut für Technologie (KIT)

Abstract:

The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159048
Veröffentlicht am 07.06.2023
Originalveröffentlichung
DOI: 10.3390/pr11041263
Scopus
Zitationen: 20
Web of Science
Zitationen: 9
Dimensions
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2227-9717
KITopen-ID: 1000159048
Erschienen in Processes
Verlag MDPI
Band 11
Heft 4
Seiten Art.-Nr.: 1263
Vorab online veröffentlicht am 19.04.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein HungerZiel 3 – Gesundheit und WohlergehenZiel 6 – Sauberes Wasser und Sanitär-EinrichtungenZiel 9 – Industrie, Innovation und InfrastrukturZiel 13 – Maßnahmen zum KlimaschutzZiel 17 – Partnerschaften zur Erreichung der Ziele
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page