KIT | KIT-Bibliothek | Impressum | Datenschutz

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

Sherratt, Katharine; Gruson, Hugo; Grah, Rok; Johnson, Helen; Niehus, Rene; Prasse, Bastian; Sandmann, Frank; Deuschel, Jannik 1; Wolffram, Daniel 1; Abbott, Sam; Ullrich, Alexander; Gibson, Graham; Ray, Evan L.; Reich, Nicholas G.; Sheldon, Daniel; Wang, Yijin; Wattanachit, Nutcha; Wang, Lijing; Trnka, Jan; ... mehr

Abstract:

Background:
Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

Methods:
We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. ... mehr


Download
Originalveröffentlichung
DOI: 10.7554/eLife.81916
Scopus
Zitationen: 18
Web of Science
Zitationen: 15
Dimensions
Zitationen: 34
Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Karlsruher Institut für Technologie (KIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2050-084X
KITopen-ID: 1000159071
Erschienen in eLife
Verlag eLife Sciences Publications
Band 12
Seiten Art.-Nr.: e81916
Vorab online veröffentlicht am 21.04.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page