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Abstract. We use the surface detector of the Pierre Auger Observatory to search for air
showers initiated by photons with an energy above 1019 eV. Photons in the zenith angle range
from 30◦ to 60◦ can be identified in the overwhelming background of showers initiated by
charged cosmic rays through the broader time structure of the signals induced in the water-
Cherenkov detectors of the array and the steeper lateral distribution of shower particles
reaching ground. Applying the search method to data collected between January 2004 and
June 2020, upper limits at 95% CL are set to an E−2 diffuse flux of ultra-high energy
photons above 1019 eV, 2×1019 eV and 4×1019 eV amounting to 2.11×10−3, 3.12×10−4 and
1.72×10−4 km−2 sr−1 yr−1, respectively. While the sensitivity of the present search around
2×1019 eV approaches expectations of cosmogenic photon fluxes in the case of a pure-proton
composition, it is one order of magnitude above those from more realistic mixed-composition
models. The inferred limits have also implications for the search of super-heavy dark matter
that are discussed and illustrated.
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1 Introduction

Photons with energies above 1019 eV can be produced by π0 decays subsequent to the in-
teractions of ultra-high energy cosmic rays (UHECRs) with the photon fields or the dust
permeating the source environments, or the background photon fields in the extragalactic
space. The resulting photon fluxes are attenuated over distances of ∼10Mpc by e± pair pro-
ductions subsequent to the interactions of these photons with those of the cosmic-background,
see e.g. [1–3]. Consequently, the detectable volume of photon sources encompasses only the
local Universe while the UHECR interactions within this volume produce a guaranteed diffuse
photon flux.

The cosmogenic photon flux depends on the nature of the UHECRs. The hadrons that
cause the creation of the π0 mesons, through the process of resonant photopion reaction,
must have energies typically ten times higher than the secondary photons. Such hadrons can
be primary proton CRs, or secondary ones produced from the photo-disintegration of nuclei
interacting inelastically with a cosmic-background photon, which leads to the production
of nucleons inheriting the energy of the fragmented nucleus divided by its atomic number.
Given the steepening of the UHECR intensity with energy, photons are thus more efficiently
produced above 1019 eV by UHE protons. Several mass-sensitive observables are however
providing evidence that the mass composition of UHECRs is gradually getting heavier above
1018.3 eV and is, in particular, not compatible with a pure-proton composition [4–10]. This is
in line with the absence of copious fluxes of cosmogenic photons and neutrinos with energies
ranging from GeV to EeV, as reported in [11] from the extragalactic gamma-ray flux at GeV
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energies and in [12, 13] from neutrino searches above a hundred of PeV. These results provide
important constrains on the sources of protons at UHE [14–18]. Even though scenarios based
on a mixed composition of UHECRs are more demanding in terms of exposure to photons,
the search for these emblematic messengers is thus complementary to complete the multi-
messenger approach aimed at understanding the non-thermal processes producing UHECRs
in the Universe.

While the search for photons above 1019 eV is of primary importance to decipher further
the origin of UHECRs, the detection of photons of even higher energies, above 1020 eV, would
open an unexpected window, revealing either new physics such as Lorentz invariance viola-
tion [19–25] or signatures of axion mixing models [26, 27], or some new particle acceleration
never seen or imagined until now. At the same time, the detection of a flux of UHE pho-
tons could be compelling evidence for dark matter (DM) composed of super-heavy particles.
In cosmological models with an inflation phase, such particles never at thermal equilibrium
could have been produced at reheating after inflation through mechanisms involving gravi-
tation [28–30]. Despite being metastable particles, they can decay through non-perturbative
effects into standard-model particles [28, 31], and hence produce detectable secondaries such
as nucleons and photons. Of particular interest would thus be the detection of UHE photons
from regions of denser DM density such as the center of our Galaxy. The limits on such
photon fluxes translates into constrains on the lifetimes and masses of DM particles [32–35],
or even on the particle-physics properties of the dark sector [36, 37].

In this work we update the search for UHE photons above 1019 eV using the surface
detector (SD) array of the Pierre Auger Observatory [38]. Compared to previous analy-
ses [39–42], this work benefits from the increased exposure cumulated from January 2004 to
June 2020, as well as from a refined search method and data selection. The search for photons
presented here complements and extends previous searches using data from the Pierre Auger
Observatory at lower energies [43, 44]. The paper is organized as follows. In section 2, general
features of photon induced extensive air showers are presented focusing on the differences
expected with respect to the bulk of showers initiated by nuclei that constitute the back-
ground for the search. The Pierre Auger Observatory is also briefly described, with a more
specific emphasis on the SD array used in this analysis. The discriminating variables aiming
at identifying photon showers are introduced in section 3. The Monte Carlo simulations of
photons used in the analysis, the photon energy scale, and the analysis method combining the
discriminating variables to extract photons from the bulk of events are detailed in section 4.
The results of the photon search and the upper limits to the diffuse flux of UHE photons are
presented in section 5. Finally, some astrophysical implications of the results are discussed
in section 6.

2 Photon showers at the Pierre Auger Observatory

The Pierre Auger Observatory is a ground-based instrument designed to detect the extensive
air showers (EAS) induced in the atmosphere by UHECRs. We briefly discuss here the
main features of the photon-induced showers compared to nucleus-induced ones and how the
showers are detected and reconstructed at the Pierre Auger Observatory. A more detailed
description can be found elsewhere for extensive air showers [45, 46], the Observatory [38]
and the reconstruction of EAS [47].
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Figure 1. Main features of photon- and nucleus-induced showers.

2.1 Main features of photon showers

Air showers initiated by high-energy photons in the atmosphere differ significantly from
those from nuclei. For a photon-induced shower, the first interactions and generations are
purely electromagnetic, since the radiation length is more than two orders of magnitude
smaller than the mean free path for photo-nuclear interactions. Yet, the development of the
shower is delayed by the typically small multiplicity of electromagnetic interactions. Thus
the maximum development of the shower is reached at a slant atmospheric depth Xmax larger
for photon primaries than for nuclei, with a difference of ' 200 g cm−2 between photons and
protons at 1019 eV and even larger between photons and heavy nuclei.

Processes in the cascade give rise in general to secondary particles inheriting from a
moderate transverse momentum. Most of the high-energy particles are thus collimated along
the shower axis. However, low-energy particles can extend in a halo up to a few kilometers
from this core. In particular, the electromagnetic part of the halo increases with the slant
depth X before decreasing when the core is no longer active for regenerating the cascade.
Overall, the steepness of the lateral distribution decreases with X so as to get flatter through
the shower development, and the fall-off with the distance to the axis of the shower depends
on the primary mass of the cosmic rays. At ground level, the steepness is thus relevant to
distinguish between nucleus-induced showers and photon-induced ones.

Since the mean free path for photo-nuclear interactions is much larger than the radiation
length, the transfer of energy to the hadron and muon channels is reduced hence only a small
fraction of the electromagnetic component in a photon-induced shower is injected into the
hadronic cascade. Showers induced by photons are thus characterized by a lower content of
muons: on average, simulations show that photon showers have nearly one order of magnitude
less muons than proton showers of the same energy.

These main features of photon showers, depicted in figure 1, are amplified by the Landau-
Pomeranchuk-Migdal (LPM) effect [48, 49] resulting in a suppression of the bremsstrahlung
and pair-production cross sections.
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The picture of UHE photon showers is supplemented by accounting for the influence of
the magnetic field of the Earth, which can allow for the conversion of photons into an e± pair
before they enter the upper atmosphere (“preshowering” effect [50]). The resulting showers
are a superposition of cascades initiated by lower energy electrons and photons, giving rise
to smaller Xmax values on average than photon showers of the same energy not affected by
the preshowering, and, as a consequence, a reduced separation in the average Xmax from
nucleus-induced showers.

2.2 The Pierre Auger Observatory and the events collected with the surface
detector

The Pierre Auger Observatory is located in the province of Mendoza, Argentina, at 1400m
a.s.l. — corresponding to an atmospheric overburden of ' 875 g/cm2. It is designed as a
hybrid cosmic-ray detector using two proven techniques to measure the properties of EAS
by observing their longitudinal development in the atmosphere with a fluorescence detector
(FD) and their lateral spread at ground level with a surface detector (SD) array. The search
for photons presented here makes use of data collected only with the SD, which operates with
'100% duty cycle.

The SD array consists of a triangular grid of about 1600 water-Cherenkov detectors
(WCDs), with a spacing of 1500 m, covering a total area of 3000 km2. Each WCD is a cylinder
with a surface area of 10 m2 and a height of 1.2 m, holding 12 tonnes of ultrapure water
viewed by three 9′′ photomultipliers (PMTs). These detect the Cherenkov light emitted in
water by charged particles and the e± pairs produced in water by secondary photons reaching
the ground. The signals from the PMTs are digitized using 40 MHz 10-bit flash analog-to-
digital converters (FADCs). The signals are normalized to the signal obtained for a vertical
muon and expressed in vertical equivalent muons (VEM). Data are collected in real time by
searching for temporal and spatial coincidences at a minimum of three WCD locations to
build the event triggers. When this occurs, the pulse amplitude and time of detection of
signals are obtained from the FADC data of the PMTs. The data quality is checked by both
an on-line and a long-term continuous monitoring of the detectors.

The arrival direction of the primary particle initiating the EAS is reconstructed using the
start time of the signals recorded in individual detectors and is determined with a resolution
of ' 1◦. To estimate the energy of the primary particle, the total signal amplitude, integrated
in time, of each triggered detector, Si, is used.

The lateral extension of the showers, also known as the lateral distribution function
(LDF), is measured at the ground level. The signal deposit Si in each WCD is adjusted by
scaling the normalisation of an average LDF in a fitting procedure so as to best reproduce
the observed signal amplitudes [47]. The energy estimator is then the signal interpolated
at 1000 m from the shower axis, S(1000). The attenuation of S(1000) in the atmosphere
for showers with same energy but different zenith angle is accounted for with the constant
intensity cut method [51]. The final value of S(1000) is calibrated with the quasi-calorimetric
measurement of the primary energy provided by the fluorescence detector for a subset of
hybrid events [52].

According to the procedure described, the energy Ehad assigned to each event is a
function fhad(S(1000), θ), whose parameters are calibrated with data and represents the
correct energy scale for nuclear primaries. Since photons are characterised by an Xmax and a
muonic content significantly different from the bulk of data, Ehad is not suitable to provide
an accurate estimate of the energy of photon showers, resulting indeed in an overestimate of
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Figure 2. A shower induced by a simulated photon of 39 EeV with a zenith angle of 44◦: (top) the
lateral distribution of signals in the WCDs is steeper than the LDF obtained from data (solid line) and
(bottom) the risetime ti1/2 of the signal in the WCDs is larger than the average data benchmark tbench

1/2
(solid line). The vertical bars in the bottom panel represent the sampling fluctuations σit1/2

of the
risetime, parameterized for data. They are drawn separately for each station as the parameterization
is a function of the total signal in the WCD and cannot be represented as a single band around the
risetime benchmark.

more than a factor two. An alternative procedure is therefore required to assign the correct
photon energy scale, as explained in section 4.2.

3 Observables from the Surface Detector

The main characteristics of an air shower for the identification of the nature of the primary
particle are itsXmax value and the muonic content (section 2.1). WhileXmax can be measured
directly with the FD, this is not possible with the SD that detects the secondary particles
of the air shower reaching the ground. The muon content, as well, cannot be estimated
with WCDs, which record an aggregate signal from muons and other electromagnetic shower
components. We use instead two robust data-driven variables describing the spread in time
of the shower front and the steepness of the lateral distribution of time-integrated signals,
sensitive both to the depth of the shower maximum and the muonic content of the EAS.
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The strategy to search for photons is to identify, in the bulk of events detected, showers
that depart significantly from the average behaviour of data in the direction expected for
photon primaries, i.e. events with a larger spread in the arrival times of the secondaries and
a steeper LDF.

The use only two variables for the classification is aimed at designing the photon can-
didate selection using a small sample of data instead of a large sample of simulated hadron-
induced showers (section 4). A study of several mass dependent observables led us to the
choice of the two variables described in the following on the base of their robustness and best
classification performance.

3.1 Signal risetime
The spread in arrival times of secondary particles in individual WCDs can be measured
through the risetime defined as the time at which the integrated signal in the FADC time trace
rises from 10% to 50% of its total value. The risetime is increased by a larger contribution of
the electromagnetic component as secondary photons and electrons undergo scattering and
attenuation in the atmosphere, unlike muons, which are concentrated in time close to the
shower front. It also increases when the difference in depth betweenXmax and the observation
level becomes smaller, for geometrical reasons [7]. Being sensitive to both the deeper Xmax
and the limited muon content of photon showers, the risetime is a suitable variable for the
search of photons.

A “Data Benchmark” is produced to describe the average risetime of data as a function
of the zenith angle and of the distance to the shower axis, following a procedure similar to
the one described in detail in [7]. A correction for asymmetries in the observed risetime is
obtained from data, accounting for the fact that for non-vertical air showers, the ground
level observation corresponds to different stages of development (or “age”) of the shower
for geometrical reasons. In the following, we will denote the asymmetry corrected risetime
as t1/2. Sampling fluctuations, σt1/2 , are also estimated from the data, using the difference
between the measurements of SD doublets (a WCD in the regular SD grid plus a second one
off-grid deployed close to it) or SD pairs (two WCDs in the same event with similar distance
from the axis and total signal).

The risetime benchmark tbench
1/2 and σt1/2 describe the average thickness of the local

shower disk for the bulk of cosmic rays detected with the SD. For each triggering detector in
an event, the quantity

δi =
(ti1/2 − tbench

1/2 )
σit1/2

(3.1)

is then providing a measurement of the deviation of the risetime in the i-th WCD from
the data benchmark in units of expected standard deviation. An example of δi values for
one simulated photon shower event is shown in figure 2, where large departures from the
benchmark curve are observed.

We can therefore define an observable that measures the departure of an individual
event from the data-averaged behaviour of air-showers as

∆ = 1
N

N∑
i=1

δi, (3.2)

where N is the number of the triggered detectors in the event. ∆ is expected to average to
zero for data by construction and to be positive for air showers initiated by photons.
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3.2 Steepness of the lateral distribution of signals

The reduced muon content of photon showers with respect to data produces, as already
mentioned, a steeper LDF of the signals in the detectors at ground level. At large distances
from the axis, photon showers thus produce typically smaller signals than expected from the
data LDF. This is illustrated in the top panel of figure 2 where the LDF function is

fLDF(r) = S(1000)
(

r

ropt

)β (
r + rs
ropt + rs

)γ+β

, (3.3)

with ropt = 1000 m, rs = 700 m and γ and β are parameterized as a function of S(1000) and
θ to describe the average behaviour of data [47].

We define an observable LLDF measuring the departure of the observed signals from the
average data LDF as the logarithm of the average ratio between the SD signals and fLDF(r):

LLDF = log10

(
1
N

N∑
i=1

Si
fLDF(ri)

)
, (3.4)

where Si is the total signal of the i-th detector and i runs over the N detectors with radial
distance from the shower axis ri >1000m, where the signal for photon showers is expected
to be lower than fLDF. LLDF is expected to be close to 0 for data, as by construction the
LDF function is built to describe the data average behaviour, and negative for photons.

4 Analysis method

The data collected with the SD of the Pierre Auger Observatory between January 1st 2004
and June 30th 2020 are used for the analysis described here. The expected physical differences
between signal and background are quantified using simulations of air showers initiated by
photons. The background of showers induced by nuclei is not simulated; instead a fraction
of the data set is used as a burn sample to define the selection for candidate events. The
search sample will consist of the remaining events.

4.1 Monte Carlo simulations of photon showers

A set of 27,000 photon showers is simulated using CORSIKA [53] with EPOS-LHC [54] as
the high-energy generator of hadronic interactions and FLUKA [55–57] as the low-energy
interaction model. Since showers initiated by photons are almost purely electromagnetic in
nature, no dependence is expected on the choice of the hadronic interaction model [40].

The energy distribution of simulated showers follows a Φgen(E) ∝ E−1 law in the energy
range 1018.5 − 1020.5 eV; the arrival directions are distributed in zenith angle θ between 20◦
and 70◦ according to a cos2(θ) distribution to simulate an isotropic flux impinging on a flat
surface at ground. Any arbitrary energy spectrum other than the one simulated can be
reproduced by weighting the simulated events with w(E) = Φ(E)/Φgen(E).

Both the LPM effect and geomagnetic cascading (preshowering), described in section 2.1,
are considered in the simulations [58, 59].

To reduce the computational resources needed for the simulations, a thinning algorithm
is used [60] with a thinning factor tf = 10−6. The resulting distributions of particles at
ground are de-thinned at the stage of the simulation of the detector response according to
the statistical method described in [61].
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Figure 3. Look-up table used to assign the photon energy Eγ (left) and ratio of Eγ to the energy
Ehad calibrated with data and representing the correct scale for nuclear primaries (right). The ratio is
shown only for Eγ > 10 EeV, corresponding to the range studied in this work. The lines in black show
the contours corresponding to four values of Ehad to facilitate the comparison of the energy scales.

The response of the SD array is simulated using the Offline package [62] providing as
output simulated events in the same format as real events. Each CORSIKA shower is used
five times, placing randomly the shower footprint on the area of the SD array.

4.2 Photon energy scale

To account for the different energy scale of photon showers (see section 2.2), we retain the
standard reconstruction of the shower direction and energy estimator S(1000) and replace
Ehad with a new function of S(1000) and θ calibrated with photon simulations.

Taking advantage of the large statistics of simulated events, a look-up table is built
with the mean value of the logarithm of the Monte Carlo true energy of photons, LE =
log10(E/eV), in bins of S(1000) and θ. Only non-preshowering simulated events triggering
the SD array are used and the photon simulations are weighted to a reference spectrum
∝ E−2. The table, shown in figure 3, serves as the desired function of S(1000) and θ: for
each event the assigned photon energy Eγ is 10LE eV, where LE is the tabulated value for
the bin to which the event belongs.

4.3 Event selection

To ensure events with a good reconstruction and optimize the photon search, we exclude
lightning events and we select only events in which:

• the detector with the highest signal is surrounded by a hexagon of six stations that are
fully operational,

• the reconstructed zenith is in the range 30◦ − 60◦,

• the reconstructed energy in hadronic scale is Ehad > 1018.5 eV.

The second condition ensures that the majority of selected photon-induced showers reach their
maximum development before being detected, as 〈Xmax〉 exceeds the vertical atmospheric
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depth at the Observatory site already at Eγ > 1019 eV and increases with increasing Eγ . The
latter condition reduces the background from low energy showers initiated by nuclei while
not impacting the selection efficiency for photons above 10 EeV when combined with the
observable-related cuts.

The timing and shape of the signal acquired by each PMT of the WCDs is of paramount
importance for the risetime observable ∆ defined in eq. (3.2). The quality criteria applied to
the SD events include the filter of PMTs with hardware and electronics problems, identified
by the continuous monitoring of the SD. Minor and very short-lived problems in the PMT
operation can fall within the tolerance of the monitoring filter as it is designed to avoid
effects on the standard reconstruction. In the case of the photon searches, however, it is
also important to consider the rare cases of events that are already in the highest end of the
∆ distribution being wrongly assigned a larger value because of a single PMT not working
properly: even if they do not impact the mean and standard deviation of the ∆ distribution,
they can potentially be misclassified as photon candidates. Three additional, stricter, filters
have been therefore designed for the photon searches to exclude from the calculation of
∆ individual PMTs with minor and short-lived malfunctions of the same type addressed
by the standard monitoring filter: an oscillating baseline pattern, significant afterpulses,
or a non-physically slow decrease of their signal due to sudden fluctuations in the VEM
peak or Dynode/Anode ratio. For the first problem the tolerance threshold for the baseline
fluctuations is slightly lowered with respect to the standard monitoring, while to search for
the other two effects each PMT trace is compared with the traces of the other two PMTs
in the same WCD, on a event-by-event base, to identify anomalies not compatible with the
normal operation of the PMT in the form of excess signal late in the trace or slow signal
decrease. In this cases only the individual PMT is removed and the risetime for the WCD
trace is recomputed using the other PMTs, with a negligible effect on the number of events
selected, amounting to 24 events less than without additional filters. Only 11 events have
their ∆ value significantly reduced (i.e. with a change >1 in absolute value, where the units
are standard deviations of the sampling fluctuations of the risetime by definition of ∆).1

With the selection criteria described above, the set of air showers detected with the SD
in the time period of interest consists of 105,064 events.

To guarantee a good quality of the observables defined in section 3, additional criteria
are applied:

• only WCDs with non-saturated signal > 6 VEM and radial distance in the range
600− 2000 m are considered in the calculation of ∆, the event being selected when the
resulting number of selected stations N ≥ 4,

• a minimum of one WCD above radial distance 1000 m is required to compute LLDF.

The search is restricted to Eγ > 1019 eV, corresponding to the energy at which photons are
detected by the SD with a trigger efficiency close to 100%.

These criteria reduce the set of selected data to 48,947 events.
The resolution on Eγ for simulated photon events fulfilling the same selection crite-

ria is almost constant over the energy range considered, being ' 30% with no bias for
non-preshowering photons from a E−2 spectrum. Showers undergoing preshowering in the
geomagnetic field, on the other hand, are characterized by a shallower depth of the shower

1We verified a posteriori, after having performed the photon search, that 2 of the 11 events would have
been indeed wrongly classified as photon candidates if the additional PMT filters were not in use.
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maximum with respect to non-preshowering ones of the same primary energy. This results
in an underestimate of their energy of 30% using the look-up table constructed as described
in section 4.2.

4.4 Selection of photon candidates

To combine the information contained in the two discriminating variables and define a cri-
terion for the identification of photon candidate events, a burn sample is extracted from the
set in a way that guarantees a time distribution of events representing a fair sample of the
instantaneous exposure over the time period considered. The burn sample consists of 886
events, corresponding to ∼1.8% of the total selected events. The use of such a subset avoids
reliance on simulations of showers initiated by nuclei, which constitute the background for
the photon search, and the related uncertainties stemming from the assumptions on the mass
composition and the modeling of hadronic interactions.

For photon showers, the distribution of the SD observables ∆ and LLDF described
in section 3 is dependent on the energy and zenith angle of the primary particle (see, e.g.,
figure 4). To define a single selection criterion for photon candidates as independent as
possible from direction and energy, the mean and standard deviation of the distribution of
each initial variable are computed, for non-preshowering photons, in 30 bins of roughly equal
statistics in the (S(1000), θ) space (five in S(1000) and six in θ). The reference spectrum
is ∝ E−2 hence simulations are weighted accordingly. The variables ∆̃ and L̃LDF are then
defined as linear transformations of the initial ones centered around 0 and expressed in units
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Figure 5. Distributions of the variables L̃LDF and ∆̃ of the burn sample (points) and non-
preshowering photons weighted to an E−2 spectrum (contours). The contour levels encompass re-
spectively 10-30-50-70-90% of the distribution. The threshold photon energy is 1019 eV.

of the standard deviation of the corresponding distributions of non-preshowering photons:

∆̃ = ∆− 〈∆〉i
σi∆

, (4.1)

L̃LDF = LLDF − 〈LLDF〉i

σiLLDF

, (4.2)

where i is the index of the bin corresponding to the specific event. The distributions of ∆̃
and L̃LDF are shown in figure 5.

The two variables are combined using a Fisher discriminant analysis [63] with the burn
sample representing the background and photon simulations the signal. The transformation
is normalized as to be equivalent to a rotation in the (∆̃, L̃LDF) plane. The resulting axis is
shown in figure 5.

The photon candidate cut is chosen a priori as the median of the photon sample of
non-preshowering events weighted to a E−2 spectrum. This cut value constitutes a good
compromise between efficiency and purity. Any event falling on the right side of this cut,
shown as a dashed line in figure 5, will be considered as a photon candidate.

5 Results of the photon search

Excluding the burn sample from the final analysis, the search sample consists of 48,061
selected events. Application of the photon search method yields the summary plots shown
in figure 6 for Eγ ≥ 1019 eV. Analyzing the data in the (∆̃, L̃LDF) plane results in the red
points displayed in the left panel, on which are drawn the same contour levels as in figure 5
of the distribution for photons as well as the Fisher axis and the candidate-cut Fisher value.
In the right panel, the corresponding distributions of the Fisher discriminant value are shown
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Figure 6. (Left) Distribution in the (∆̃,L̃LDF) plane of the events of the search sample compared
with the E−2-weighted distribution for non-preshowering photons (same contour levels as in figure 5).
(Right) Distribution of the Fisher discriminant value for the burn sample (grey), search sample (red)
and E−2-weighted photon simulations (non-preshowering in blue and preshowering in light blue). The
search sample and photon distributions are scaled as to have the same integral as the burn sample one.
The vertical line stands for the candidate cut. The dashed line shows the result of the exponential fit
to the 5% of events in the burn sample with larger Fisher values.

as normalized histograms for the burn sample, the search sample, as well as the simulated
photon sample separated in non-preshowering and preshowering. For reference, the candidate
cut is shown as the vertical line, while the result of an exponential fit to the 5% of events from
the burn sample with the largest Fisher values is drawn to guide the eye in the interpretation
of the tail of the Fisher distribution of the search sample.

We find 16 (1) [0] photon candidates above 1019 eV (2×1019 eV) [4×1019 eV]. The number
of observed candidates is in statistical agreement with what is expected from the exponential
fit to the burn sample, with a difference of -0.3 standard deviations. In addition, no peak-like
features above the selection cut that would indicate the presence of a photon population are
observed above the fall-off of the distribution. Overall, therefore, the Fisher distribution of
photon candidates is consistent with the expectations of a background of UHECR events.

To search for further imprints that would be indicative of the presence of photon events,
we have checked that no candidates are coincident in time. We have also searched for small-
scale clustering in arrival directions that would be indicative of repeaters and thus of point-
like sources of photons. No such clustering is observed, and the arrival directions of the
candidates are distributed in accordance with the directional exposure of the cosmic-ray
background events.

From the absence of photon flux measurements, upper limits are derived from the num-
ber of candidates above a minimum energy E0. The signal efficiency of the analysis, εγ , is
estimated by applying the quality cuts and the selection of candidates to a Monte-Carlo set
of photon air showers using the same procedure as for the data. The (weighted) ratio of the
number of selected candidates (preshowering or not) reconstructed in the selected zenithal
range and with assigned photon energy above the threshold E0 to the total number of simu-
lated events with generated zenith and energy in the desired ranges is computed. The weight
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E0 10EeV 20EeV 40EeV 10EeV 20EeV 40EeV
α Efficiency (εγ) Flux U.L. (10−3 km−2 sr−1 yr−1)
1.0 0.37 0.41 0.42 1.48 0.273 0.162
2.0 0.26 0.36 0.39 2.11 0.312 0.172
3.0 0.19 0.34 0.41 2.86 0.332 0.166

Table 1. Efficiencies and upper limits to the integral flux of photons above E0 for different values of
the exponent α in the case of a power-law spectrum. The limits (95% CL) are listed on the right.

is assigned so as to obtain, from the generated E−1 spectrum, the results corresponding to the
spectral shape assumed for the photon flux Φ(E) we want to bind, as explained in section 4.1.

εγ(> E0) =
∫
∆Ω
∫
Eγ>E0

Φobs(Eγ ,Ωrec) dΩrec dEγ∫
∆Ω
∫
E>E0

Φgen(E)w(E) dΩ dE
(5.1)

where ∆Ω is the solid angle corresponding to the analysis selection,

Φobs(Eγ ,Ωrec) =
∫

∆Ωgen

∫
∆Egen

pcand(Eγ ,Ωrec|E,Ω) Φgen(E)w(E) dΩ dE (5.2)

pcand(Eγ ,Ωrec|E,Ω) represents the probability that a shower of true Monte Carlo energy E
generated in the solid angle Ω is selected as candidate photon event with photon energy Eγ
and in the reconstructed solid angle Ωrec. Here the integral is extended to the whole range
of simulations in solid angle ∆Ωgen and energy range ∆Egen. In other words, the efficiency
represents the ratio between the integral spectrum folded into the detector response and the
true underlying one, accounting for any effects due to inaccuracies in the photon energy and
direction assignment (and possible biases for model fluxes different from E−2).

Upper limits to the integrated flux at CL confidence level are derived using the Feldman-
Cousins method [64]:

FCL(Eγ ≥ E0) =
NCL
γ

A(1− ηB)εγ
, (5.3)

with A = 46, 900 km2 sr yr the total exposure in the time period 1 January 2004 to 30 June
2020 and in the zenithal range considered, ηB the exposure fraction corresponding to the
burn sample of data used to set the candidate cut and excluded from the search, and NCL

γ

the Feldman-Cousins upper limit to the number of photon events computed at confidence
level CL in the conservative hypothesis of no background event expected.

While the reconstruction and candidate selection procedure is independent from the
model spectrum, upper limits depend on the spectrum through the efficiency. The values
obtained for both efficiencies and upper limits at 95% CL are listed in table 1 in the case of a
power law spectrum E−α for three different values of the exponent and shown in figure 7 as
a function of E0. The maximum value shown corresponds to Eγ ' 40 EeV where the fraction
of preshowering photons in the detectable flux reaches the level of 5% in the case of α = 2.
For larger values of E0, the interpretation of the meaning of the threshold is complicated
by the co-presence of two populations of photons (preshowering and not) differing in energy
scale (subsection 4.3) and will be discussed in a future work.

The 95% CL upper limits to the integral photon flux with a spectral index α = 2 are
shown in figure 8, together with the results of other photon searches using other components of
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Figure 7. Photon integral efficiency in the case of a power-law spectrum E−α as function of the
threshold energy E0.

the Observatory for lower energy thresholds [43] and those reported from Telescope Array [65].
In the energy region above 1019 eV considered, the limits obtained in this study are the
most stringent currently available in literature. Their astrophysical implications are briefly
discussed in section 6.

6 Discussion

As mentioned in section 1, the interactions of UHECRs with the background photon fields
permeating the Universe, most notably the cosmic microwave background, guarantee the
existence of a cosmogenic diffuse flux of UHE photons. However, the short photon horizon
compared to the cosmic-ray one makes the photon flux lower than the UHECR one by
several orders of magnitude. Moreover, the exact photon flux is further reduced as the
mass composition of UHECRs gets heavier, because the photons produced from primary
heavy nuclei are of lower energies than those from lighter ones. This is evidenced in figure 8
through the grey band standing for the photon flux expected from proton interactions [66],
which is observed one order of magnitude (as well as to extend to higher energies) above
that expected from a mixed composition shown in green [67]. The size of the bands accounts
for several hypotheses necessary for the modeling of the UHECR flux, such as the maximum
acceleration energy of the nuclei at the sources and the shape of the energy spectrum of the
accelerated particles. Note that the mixed-composition case is designed to reproduce the mass
composition and the energy spectrum inferred from the data collected at the Observatory.
The sensitivity of the present search around 2 × 1019 eV approaches the most optimistic
expectations of the cosmogenic photon flux from protons, while it is one order of magnitude
above those from the mixed-composition model. In the future, it will thus be possible to
probe the proton expectations with improved sensitivity to photons, and thus to confirm or
reject indirectly the presence of a mixed composition at the highest energies.

Our upper limits have also consequences for models of super-heavy dark matter (SHDM).
Although the absence of a detectable flux of UHE photons at a level comparable to that of
cosmic rays excludes that SHDM particles could explain the bulk of UHECRs, they can still
contribute in a subdominant way to the all-particle spectrum. For a E−2 photon spectrum,
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Figure 8. Upper limits (at 95 % CL) on the integral photon flux above 1019 eV determined in this
study (red squares). Shown are also previous upper limits reported in [43] (Auger Hybrid, blue circles),
and Telescope Array [65] (grey triangles). The grey band stands for the range of expected photon
fluxes under the assumption of a pure-proton scenario [66], while the green one for the case of a mixed
composition [67]. In addition, several expected photon fluxes from the decay of SHDM particles are
shown (lines). The lines labeled SHDM I (case a and b) [68] and SHDM II [34] have been obtained
through private communication with one of the authors.

and using the flux of cosmic rays measured using the Pierre Auger Observatory [52], the
upper limits (at 95% CL) to the integral photon fraction are: 1.6%, 1.2% and 3.2% above
10 EeV, 20 EeV and 40 EeV respectively.

There are several theoretical motives to search for SHDM related to particle physics in
the early Universe. A recent exploration of the constraints provided by our photon-flux limits
on some models is given elsewhere [36]. Here, we restrict ourselves to illustrate in figure 8 the
discovery potential with searches for UHE photons: we show as the dashed violet line and the
dot-dashed red line the expected photon fluxes in the case of hadronic [68] and leptonic [34]
decay channels, for a mass of the SHDM particles of 1010 GeV and a lifetime of 3×1021 yr.
In addition, we also show as the black dot-dashed line an allowed flux extending to higher
energy for a mass of 1012 GeV and a lifetime of 1023 yr (hadronic decay channel [68]). As
the sensitivity of current photon searches increases, it will be possible to further constrain
the allowed values of mass and lifetime.

In summary, a search for photons using the surface detector of the Pierre Auger Observa-
tory has been performed, leading to the most stringent limits on the diffuse photon flux above
1019 eV and complementing the limits obtained in the lower energy decade. The current limits
are not able to challenge the flux of cosmogenic photons expected for the mixed-composition
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model but start to probe the most optimistic predictions of the pure-proton scenarios. Future
data will enable us to constrain further the different mechanisms expected to produce UHE
photons. In particular, the completion of the upgraded Observatory [69] will allow us to in-
crease the sensitivity of the different discriminating analyses. Finally, the analysis presented
in this study can also serve for directional searches from specific targets or searches in time
coincidence with observations from other messengers.
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