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Surface-temperature-induced Marangoni effects
on developing buoyancy-driven flow
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To investigate the initial development of the Rayleigh–Bénard–Marangoni (RBM)
instability in a relatively deep domain, direct numerical simulations for a large
range of Marangoni and Rayleigh numbers were performed. In the simulations, the
surface was assumed to be flat and surface cooling was modelled by a constant
heat flux. The small-scale dynamics of the flow and temperature fields near the
surface was fully resolved by using a non-uniform vertical grid distribution. A detailed
investigation of the differences in physical mechanisms that drive the Rayleigh- and
Marangoni-dominated instabilities is presented. To this end, various properties such as
the maturation rate of convection cells, the fluctuating kinetic energy and the surface
characteristic length scale were studied. It was confirmed that buoyancy forces and
surface-temperature-gradient-driven Marangoni forces enhance one another in promoting
the development of the RBM instability. When using a relevant measure of the effective
thermal boundary layer thickness as length scale, both the critical Marangoni and Rayleigh
numbers, obtained for the purely Marangoni- and purely Rayleigh-driven instabilities,
were found to be in good agreement with the literature.
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1. Introduction

The present study is motivated by the problem of heat and mass transfer across the
air–water surfaces of natural water bodies. An example of this is the transfer of heat and
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atmospheric gases (such as oxygen, carbon dioxide, methane) across the water surface
in lakes and reservoirs. An accurate prediction of the transfer rate is important in order
to produce a reliable global heat and greenhouse gas budget. Typically, wind shear is
seen as the main source of turbulence generation that promotes interfacial heat and mass
flux (Wanninkhof et al. 2009; Garbe et al. 2014). Other turbulence sources, especially
buoyancy, are thereby usually neglected. Recently, buoyancy-driven heat and gas transfer
induced by surface cooling, which is particularly important in lakes and ponds at low
wind speeds, has attracted increasing attention (Rutgersson & Smedman 2010; Podgrajsek,
Sahlee & Rutgersson 2014; MacIntyre et al. 2018). In this process, due to surface cooling
(usually by evaporation), plumes and sheets of relatively heavy, cold (gas-saturated)
surface water plunge down and are replaced by warm (unsaturated) bulk water, thereby
promoting heat and gas transfer across the surface.

It is known that surface cooling not only results in unstable density gradients, but also
may induce variation in surface tension due to local changes in surface temperature. Such
variations in surface tension generate so-called Marangoni forces that induce flows from
low-surface-tension (high-temperature) regions to high-surface-tension (low-temperature)
regions. As a result of the buoyancy-induced and/or Marangoni-induced convective
instabilities, convection cells are generated at the surface (e.g. Spangenberg & Rowland
1961; Maroto, Pérez-Muñuzuri & Romero-Cano 2007). The typical footprint of these
convection cells indicates the presence of one or more high-temperature regions in their
interior (Wissink & Herlina 2016), and shows that individual cells are separated by
narrow regions of low temperature. Various theoretical and experimental studies have
been carried out to investigate the onset of the underlying instability and the resulting
pattern formation (see e.g. Pearson 1958; Chandrasekhar 1961; Bodenschatz, Pesch &
Ahlers 2000; Nepomnyashchy, Legros & Simanovskii 2006).

Most of these studies were motivated by chemical engineering applications, and
employed a relatively thin layer of fluid bounded from below by a solid wall
(no-slip boundary). These studies showed that in a thin layer of fluid such horizontal
temperature-gradient-induced Marangoni forces act together with buoyancy forces to
promote mixing of cool surface water with warmer water from the (upper) bulk (e.g. Nield
1964; Toussaint et al. 2008).

Studies of this convective instability in non-shallow water bodies with a free surface,
such as the work carried out by Spangenberg & Rowland (1961), Davenport (1972), Tan &
Thorpe (1996) and Flack, Saylor & Smith (2001), are relatively few. Tan & Thorpe (1996)
reported that surface-tension-driven convection usually only dominates in relatively thin
layers of fluid (up to about 4 mm in thickness), while for layers thicker than 10 mm (as
usually encountered in environmental engineering problems) buoyancy-driven convection
dominates. The former would imply that, especially in a developing convective instability,
Marangoni forces cannot be ignored as the maximum thickness of the thermal boundary
layer (which is the most relevant thermal length scale) tends to be much smaller than
4 mm, irrespective of the water depth.

In previous three-dimensional unsteady numerical simulations of buoyancy-driven heat
transfer across the air–water surface in relatively deep bodies of water, the physical effect
of surface cooling was modelled by prescribing either a constant temperature (Wissink
& Herlina 2016) or a constant heat flux (Handler et al. 1999; Fredriksson et al. 2016).
In contrast to simulations with a constant surface temperature, in constant-heat-flux
simulations variations in surface temperature typically occur which generate Marangoni
forces. Despite their potentially significant contribution to the heat and mass transfer
coefficients, these forces were usually ignored.
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Surface-temperature-induced Marangoni effects

It should be noted that Marangoni forces can also be generated by local concentration
variations of a component in a multicomponent fluid. An example of this can be found
in evaporating binary droplets that contain water mixed with another fluid of different
volatility and density. Here, evaporation of the more volatile component induces density
differences as well as surface tension gradients. As a result, a competition between
buoyant and Marangoni convection is obtained causing a variety of convection patterns
(see Diddens, Li & Lohse (2021) and references therein). Another example are the
surfactant-concentration-induced Marangoni forces studied by, for example, Khakpour,
Shen & Yue (2011) and Wissink et al. (2017). In the latter study, a wide range of
contamination levels was considered. It was shown that the interfacial mass transfer
reduces monotonically with surfactant concentration, and a model was derived that
predicts the interfacial mass transfer from a snapshot of the surfactant concentration
distribution and turbulent flow characteristics of the water.

While surfactant-concentration-induced Marangoni forces were found to significantly
reduce near-surface turbulence (and hence interfacial heat and mass transfer), the
effect of the surface-temperature-gradient-induced Marangoni forces (studied here)
would be to enhance the near-surface convection, thereby working in accord with
the buoyant instability. To carry out a detailed investigation of the importance of
Marangoni forces and their interaction with buoyancy forces in the initial development
of the Rayleigh–Bénard–Marangoni (RBM) instability, fully resolved, three-dimensional,
time-accurate numerical simulations were performed. In the simulations, evaporative
cooling was modelled by a constant heat flux. Care was taken to ensure that the depth
of the computational domain was sufficient to accurately represent the early stages of the
development of the RBM instability in a deep body of water. The size of the computational
domain as well as the interfacial heat flux were chosen in accordance with the typical
set-up of laboratory experiments, such as those of Foster (1965). Direct numerical
simulations (DNS) were performed for a wide range of Rayleigh (RaL) and Marangoni
(MaL) numbers, including cases with RaL = 0 and MaL = 0, representing purely
surface-tension-driven convection and purely buoyancy-driven convection, respectively.

2. Computational aspects

As mentioned above, this study is motivated by the problem of heat transfer across a water
surface. In the range of temperatures considered, the water density varies approximately
linearly with temperature. Because of the very small changes in density, the Boussinesq
approximation is used to describe the flow induced by the unstable stratification near the
surface. The non-dimensional Navier–Stokes equations are solved to determine the fluid
motion. Following Balachandar (1992) the non-dimensionalisation uses a reference length
scale L and velocity scale U = κ/L, where κ is the thermal diffusivity. The resulting
continuity equation reads

∂u∗
i

∂x∗
i

= 0 (2.1)

and the momentum equations are given by

∂u∗
i

∂t∗
+
∂u∗

i u∗
j

∂x∗
j

= −∂p∗

∂x∗
i

+ Pr
∂2u∗

i
∂x∗

j ∂x∗
j

+ RaL Pr T∗δi3 i = 1, 2, 3, (2.2)

where x∗
1, x∗

2 are the horizontal (x, y) directions, x∗
3 is the vertical (z) direction, u∗

1, u∗
2

and u∗
3 are the velocities in the x, y and z directions, respectively, p∗ is the generalised
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pressure, t∗ denotes time and Pr = ν/κ is the Prandtl number corresponding to the
ratio of the momentum and thermal diffusivities. Note that the superscript ‘∗’ denotes
non-dimensionalisation using L and U. The last term on the right-hand side of (2.2)
represents the buoyancy force in the z direction, where δi3 is the Kronecker delta,

T∗ = (TB,0 − T)
q L

(2.3)

is the non-dimensional temperature, in which TB,0 is the initial temperature of the bulk
and q = (∂T/∂z)|S is the constant temperature gradient at the water surface, and

RaL = αqgL4

κν
(2.4)

is the modified macroscale Rayleigh number in which g = −9.81 m s−2 is the gravitational
acceleration and α is the thermal expansion factor.

The non-dimensional transport equation for the temperature T∗ is given by

∂T∗

∂t∗
+
∂u∗

j T∗

∂x∗
j

= ∂2T∗

∂x∗
j ∂x∗

j
. (2.5)

Based on the model presented in Shen, Yue & Triantafyllou (2004), Wissink et al.
(2017) produced a model for the Marangoni forces induced by gradients in the surfactant
distribution using the ratio of the Marangoni and capillary numbers. Here, a similar model,
which is equivalent to the model used by Pearson (1958),

∂u∗
i

∂x∗
3

∣∣∣∣
S

= −MaL
∂T∗

∂x∗
i

∣∣∣∣
S
, (2.6)

is employed for the Marangoni forces induced by gradients in the surface temperature,
where the (modified) Marangoni number

MaL = (dσ/dT) qL2

μκ
(2.7)

replaces the ratio of the Marangoni and capillary numbers, using σ and μ to denote the
surface tension and dynamic viscosity, respectively.

Note that for water at about 293.15 K, dσ/dT = −0.000151 N m−1 K−1, κ = 0.143 ×
10−6 m2 s−1, α = 0.000207 K−1, Pr = 7. With the exception of dσ/dT (which was varied
between −0.000151 and 0 N m−1 K−1), the macro Rayleigh and Marangoni numbers were
based on the aforementioned values, together with the (arbitrarily chosen) fixed macro
length scale L = 0.01 m. The range of parameters used can be seen in Appendix A. In all
cases the size (in particular the depth) of the computational domain was sufficiently large
so as to not affect the development of the instability. Hence, a priori a fixed macro length
scale L was chosen to ensure that both RaL and MaL also become depth-independent. This
is crucial when comparing different simulations with possibly different domain depths.
The true characteristic length scale of a developing instability is, of course, time-dependent
and related to the thermal boundary layer thickness, which is determined a posteriori.
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2.1. Numerical method
To solve the governing equations presented above, the KCFlo solver described in Kubrak
et al. (2013) was employed. The solver was used previously to study the influence of
low-intensity (Herlina & Wissink 2014) and high-intensity (Herlina & Wissink 2016)
isotropic turbulence on interfacial mass transfer as well as the influence of surfactants
(Herlina & Wissink 2016; Wissink et al. 2017) and of a developing buoyant instability,
where the interfacial cooling was modelled using a fixed temperature at the surface
(Wissink & Herlina 2016). When required, the solver allows the usage of a dual, refined
mesh to ensure that the steep gradients occurring in low-diffusivity scalar transport
are fully resolved. For the discretisation of scalar convection, the fifth-order-accurate
WENO scheme of (Liu, Osher & Chan 1994) is used, while for scalar diffusion a
fourth-order-accurate central method is employed. The time integration of the scalar
equations is performed using a three-stage Runge–Kutta scheme.

The discretisation of the three-dimensional incompressible Navier–Stokes equation is
carried out using a fourth-order central kinetic energy conserving discretisation (Wissink
2004) of the convective terms, combined with a fourth-order-accurate discretisation of
the diffusion. The second-order Adams–Bashforth method was employed for the time
integration of the velocity field. For the spatial discretisation, the variables were arranged
on a staggered Cartesian non-uniform mesh, where the scalars (pressure, temperature and
concentration) are all defined in the middle of the grid cells while the velocities are defined
in the middle of the cell faces.

After substituting the momentum equations into the continuity equation, a Poisson
equation for the pressure was obtained which is solved using a conjugate gradient
solver with simple diagonal preconditioning. The code was parallelised by splitting the
computational domain into blocks of equal size, each allocated to its own processing
core. Communication between the resulting processes was done by employing the standard
message passing interface protocol.

2.2. Overview of simulations
A schematic of the computational domain is shown in figure 1. In all simulations, the
domain was discretised using 200 × 200 × 252 grid points in the x, y and z directions,
respectively. Further simulation parameters can be found in table 1. The mesh was
stretched in the z direction in order to obtain a finer resolution near the interface with
a node distribution that reads

z(k) =
[

1 − tanh(zφ)
tanh(ψ/2)

]
z(0)+

[
tanh(zφ)

tanh(ψ/2)

]
z(nz), (2.8)

for k = 1, . . . , nz − 1, with

zφ = kψ
2nz

, (2.9)

where nz is the number of nodes in the z direction and z(nz)− z(0) = Lz is the vertical
extent of the computational domain. The stretching is controlled by the parameterψ , which
is set to ψ = 3 in all simulations. To illustrate the quality of the mesh, a grid refinement
study is presented in Appendix B.

The boundary conditions used in the simulations are illustrated in figure 1. The much
larger horizontal extent, which is typically encountered in natural water bodies, was
modelled by employing periodic boundary conditions in the horizontal directions for
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Bottom: T∗ = 0

Interface: ∂T∗ /∂z∗ = –1

Ly

Lz

Lx

z
y

x

Figure 1. Schematic of computational domain.

Pr α (K−1) RaL MaL Lx = Ly = Lz Mesh size

7 0; 2.07 × 10−4 0–212 000 0–8150 5L 200 × 200 × 252

Table 1. Overview of simulation parameters. The macroscale RaL and MaL are defined in (2.4) and (2.7),
respectively. Note that the RaL = 0 cases were obtained by setting α = 0. In total, 43 simulations were
performed (cf. Appendix A).

all variables. To avoid fluid leaving the computational domain, at the top and bottom
free-slip boundary conditions were used for the velocities. The non-dimensional heat flux
at the top was fixed at ∂T∗/∂z∗ = −1, while at the bottom the temperature was set at
T∗ = 0. Initially, the velocity field was set to zero and the non-dimensional temperature
in (2.3) was initialised by the analytical solution of the unsteady heat transfer in a
semi-infinite domain with a constant heat flux given by (Carslaw & Jaeger 1959)

T∗(ζ ∗, t∗) = −
[

2

√
t∗

π
exp

(−(ζ ∗)2

4t∗

)
− ζ ∗ erfc

(
ζ ∗

2
√

t∗

)]
, (2.10)

where ζ ∗L = Lz − z.
The simulations started at t∗ = 1.4 × 10−2, corresponding to t = t0 = 10 s, at which

instance random disturbances that were uniformly distributed between 0 and 0.0257 were
added to T∗ in (2.3) to trigger the RBM instability. Simulations were performed for
Rayleigh numbers varying between RaL = 0 and 212 000 and Marangoni numbers ranging
from MaL = 0 to 8150 (see table 1).

The bulk temperature TB is evaluated at z = 0.2Lz, which was deemed to be sufficiently
far away from the surface so as to not be influenced by the developing instability. Because
snapshots were stored at intervals of 0.25 s, for presentation purposes it was decided to
display the time in seconds and not in non-dimensional form.
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Water

Air

(a)

(b)

t = t1 t = t2

t = t1 t = t2
Air

Water

Fg

Fg

Fσ Fσ Fσ Fσ

Figure 2. Schematic showing forces driving (a) purely buoyancy- and (b) purely Marangoni-induced flow
patterns. Blue and white colours correspond to relatively cold and warm fluid, respectively. Forces Fg and Fσ
are gravity- and surface-tension-induced forces, respectively. Note that (a) and (b) are scaled differently, t1
corresponds to the time at which the thermal boundary layer thickness is maximum and t2 to the time at which
the surface kinetic energy reaches its first peak.

3. Evolution of temperature field

At the surface, evaporative cooling (negative temperature gradient) results in the
development of a thermal boundary layer, consisting of a cold, relatively heavy fluid
on top of a relatively warm bulk fluid. Initially, the instability is triggered by adding
random disturbances to the temperature field (cf. § 2.2), resulting in small local pockets
of relatively cold fluid.

In the case of purely buoyancy-driven instabilities, gravity causes these relatively heavy
pockets of cold fluids to slightly sink, thereby replacing warmer fluid from the lower
boundary layer. This process results in a convergent flow of water along the surface that
is subjected to evaporative cooling. A schematic, showing the dynamics of this buoyant
instability in a vertical cross-section through two neighbouring convection cells, can be
seen in figure 2(a). The continuous accumulation of cooled surface water results in the
development of a large pocket of cold, heavy water near the surface. At the time of this
snapshot (t = t1 – when the thermal boundary layer is maximum) the amount of cold water
is sufficient to overcome the stabilising effect of diffusion as the buoyancy (gravity) forces
(Fg) have become strong enough to pull the cold fluid away from the boundary layer down
into the bulk. The snapshot in the right-hand panel of figure 2(a) shows the situation at
the later time of t = t2 – when the surface kinetic energy reaches its first maximum. Here,
the cold fluid has been accelerated downwards and transformed into a cold water plume
deeply penetrating into the bulk.

A schematic, showing the dynamics of the purely Marangoni-driven instability, can be
seen in figure 2(b). The pockets of cold and warm fluid near the surface (generated by
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the addition of random disturbances to the temperature field) have relatively high and
low surface tensions, respectively. This difference in surface tension results in Marangoni
forces Fσ (that act parallel to the surface) pushing surface water from the warm pockets
towards the cold pockets. While travelling along the surface the relatively warm water
is subjected to evaporative cooling. As a result, convection cells are formed due to
the continuous supply of warm surface water from the interior that is cooled as it is
transported towards the cell edges. At the edges, where two or more convection cells
meet, opposing streams of cooled water result in a downward momentum, whereby cold
fluid is pushed down into the upper bulk. In time, as the convection cells develop, the
temperature gradients at the cell edges become stronger and stronger. At time t = t1 the
local Marangoni forces have grown sufficiently strong to overcome thermal diffusion. As
a result, a significant amount of cold water is accumulated close to the surface at the edges
of convection cells. In between t = t1 and t = t2 the convection cells rapidly mature, as
the Marangoni forces further increase in strength, and become very effective in pushing
cooled surface water into the upper bulk.

Note that the schematics shown in figure 2 illustrate the evolution of the instabilities
driven by buoyancy and surface tension (Marangoni) at two important time instances t = t1
and t = t2 (see also § 4).

When the surface temperature is non-uniform, the two instabilities described above will
typically act simultaneously. The effect of a changing Marangoni number MaL on the
evolution of the instantaneous surface temperature at a fixed Rayleigh number of RaL =
11 000 is illustrated in figure 3. In time, at each MaL it can be seen that convection cells
rapidly mature as they become more clearly defined by an increase in the diameter of the
areas with enhanced temperature resulting in a narrowing of the low-temperature regions
separating the cells.

Below, it is shown that with increasing Marangoni number the rate at which these
convection cells develop enhances. At t = t0 = 10 s, in all simulations identical random
disturbances were introduced to the temperature field. As a result, at t = 10.25 s the
surface temperature fields were found to be very similar (cf. figure 3a–c).

When comparing temperature fields at t = 30 s, a clear difference can be seen in the
state of development of the convection cells (cf. figure 3d–f ). Even though the vertical
surface heat flux in all three simulations is the same, an earlier development (maturation)
of well-defined convection cells at the larger Marangoni numbers was observed. This is
especially clear for MaL = 2700, where the convection cells are quite well defined when
compared with the more diffusive temperature patterns obtained for the smaller MaL. The
observed enhanced maturation rate is explained by the promotion of RBM convection by
the increasing Marangoni forces that originate from horizontal gradients of the surface
temperature.

The remainder of figure 3 shows the further development of the convection cells at
the two time instances t = t1 (figure 3g–i) and t = t2 (figure 3j–l); see also figure 2. It
can be seen that the time needed to achieve both states reduces with increasing MaL.
This reflects the enhanced maturation rate induced by the increasing Marangoni forces (as
observed at t = 30 s above). The effect of Marangoni forces is non-trivial, as evidenced
by the significant reduction of the time at which the convection cells near the surface
become well developed (mature), from t2 = 143.75 s at MaL = 0 to t2 = 53 s at MaL =
2700. Furthermore, the size of the cells was found to become significantly smaller with
increasing MaL. A more quantitative discussion of the above observations is presented in
the remainder of the paper.
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Figure 3. Normalised surface temperature evolution at a fixed RaL = 11 000 for MaL = 0 (left-hand panels),
MaL = 550 (middle panels) and MaL = 2700 (right-hand panels) at various times: (a) t = 10.25 s, (b) t =
10.25 s, (c) t = 10.25 s, (d) t = 30.00 s, (e) t = 30.00 s, ( f ) t = 30.00 s, (g) t = 122.75 s, (h) t = 101.25 s, (i)
t = 40.25 s, ( j) t = 143.75 s, (k) t = 120.25 s, (l) t = 53.00 s.
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Pure diffusion

Figure 4. Evolution of horizontally averaged thermal boundary layer thickness for various MaL at
RaL = 11 000.

4. Horizontally averaged statistics

4.1. Thermal boundary layer
The local thermal boundary layer thickness is defined by

δ(x, y, t) = T(x, y, zS, t)− TB(t)
q

, (4.1)

where zS is the z coordinate at the surface and TB is the horizontally averaged temperature
in the bulk. The onset of the RBM instability is identified by the time t = t1 at which 〈δ〉 is
maximum, where 〈·〉 denotes horizontal averaging. This time instance is an approximation
of the time at which 〈δ〉 begins to deviate from the analytical solution

δκ(t) = 2
√
κt/π (4.2)

for the purely diffusive case, which happens shortly before thermal plumes start plunging
down. Note that the onset of the instability comes about much earlier than t = t1 but is
initially hidden by thermal diffusion. The development of 〈δ〉 for cases with RaL = 11 000
and varying MaL is shown in figure 4. This figure illustrates the importance of Marangoni
forces in promoting the RBM instability as it shows that at a constant Rayleigh number, t1
decreases significantly with increasing MaL.

4.2. Surface temperature and fluctuating kinetic energy
Figure 5(a,b) shows the temporal evolution of temperature fluctuations (T∗

rms =√
〈(T∗ − 〈T∗〉)2〉) and the fluctuating kinetic energy (K = (〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉)/2)

evaluated at the surface for various MaL at RaL = 11 000. Note that the various values
for MaL were obtained by varying q dσ/dT . As mentioned above, the instability was
triggered by adding random disturbances to the temperature field, which subsequently
induced disturbances in the velocity field through buoyancy and/or Marangoni forces. In
general, three phases were observed:

(i) The transient phase, which is characterised by the diffusive damping of T∗
rms,S (note

that the subscript ‘S’ indicates values at the surface). For MaL > 0, there is an
immediate connection between temperature and velocity gradients at the surface as
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Figure 5. Evolution of (a) surface temperature fluctuations T∗
rms,S and (b) surface fluctuating kinetic energy

KS for various MaL at RaL = 11 000. The cross symbol identifies t1, which is the time at which the first peak
in 〈δ〉 is reached, and the line colours blue to cyan indicate low- to high-MaL cases, respectively (cf. figure 4).

prescribed by the model given in (2.6). This is reflected by the initial (instantaneous)
jump in KS at the start of the simulation, and the subsequent diffusive damping of
T∗

rms,S, leading to the damping of KS. With increasing MaL, the initial damping of
T∗

rms,S (and KS) was found to significantly reduce.
In contrast, in the absence of Marangoni forces (MaL = 0), there is only an
indirect connection (through buoyancy) between temperature gradients and velocity
gradients at the surface. Consequently, despite the initial reduction in T∗

rms,S, the
surface kinetic energy fluctuation was found to increase, with a growth rate that
gradually reduced in time. This reduction in the growth rate comes to an end at
approximately the same time as T∗

rms,S reaches its minimum. Note that for MaL > 0,
this buoyancy-induced gradual increase in KS is masked due to the aforementioned
instantaneous jump in KS.

(ii) Growth phase. After the transient phase, a simultaneous increase of T∗
rms,S and KS

can be observed, indicating an increased growth in the buoyant and/or Marangoni
instability. The growth rate of T∗

rms,S (and KS) can be seen to strongly depend on
the magnitude of MaL. For instance, for MaL = 0 the maximum T∗

rms,S and KS is
achieved only after t ≈ 102 s, while for MaL = 15 700, it is already achieved at t ≈
18 s.

(iii) The end phase begins after both T∗
rms,S and KS almost simultaneously reached their

first (local) peak. At this stage, a quasi-steady state is not yet necessarily achieved,
as for instance the number of convection cells and their topology may still change in
time.

Note that in all simulations, the maximum thermal boundary layer thickness

δ1 = max
t>0

〈δ〉 (4.3)

(cf. figure 4) is reached somewhat before the beginning of the end phase. Hereafter, in each
simulation, the first local peak in KS is denoted by KS2, while KS1 denotes KS at t = t1.

4.3. Surface characteristic length scales
Typical snapshots of the surface temperature, illustrating the growth of convection cell
footprints at various stages of development, are shown in figure 3 for a range of MaL at a
fixed RaL. The observed patterns of these footprints can be linked to the characteristic
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Figure 6. Evolution of the surface characteristic length scale for various MaL at RaL = 11 000. The markers
× and + correspond to t1 and t2, respectively.

length scale of the surface temperature (ΛS, defined in Appendix C). By comparing
figures 3 and 6, it can be seen that ΛS (for at least up to t = t1) is closely correlated to
the average distance between two neighbouring convection cell centres:

λS = √
LxLy/N ≈ 2ΛS, (4.4)

where N = N(t) is the number of cells in the computational domain at time t. Individual
cells were identified by isolated patches at the surface with a surface divergence b ≥ b+

rms,
where b+

rms is the corresponding root mean square of all b ≥ 0.
Figure 6 shows that the surface characteristic length scale ΛS initially increases at

least until t = t1, which corresponds to the time when the horizontally averaged thermal
boundary layer thickness 〈δ〉 reaches its maximum (cf. figure 4). This growth in ΛS, and
thus the reduction in N, indicates the formation of larger convection cells, for instance,
due to the merging of two or more neighbouring cells, as was observed in figure 3. In the
range t1 < t < t2, however, the correlation between ΛS and λS depends on which of the
two forces (buoyancy or Marangoni) dominates.

For the smaller MaL simulations, ΛS can be seen to somewhat reduce until at least
t = t2. This small reduction is not necessarily only associated with the emergence of new
convection cells, but possibly also with the enhanced maturation rate of initially very weak
cells between t1 and t2. In this phase, the dominant buoyancy forces in these simulations
result in a significant acceleration of the falling plumes. This results in an enhanced updraft
of warm fluid that leads to both a thinning of the boundary layer and an increase in
footprint of well-defined convection cells at the surface, separated by relatively narrow
sheets of falling cold fluid (cf. figure 3).

In contrast to the smaller MaL simulations, for the larger MaL simulations, where
the Marangoni effect begins to dominate, the correlation between ΛS and λS remains
strong between t1 and t2. In this period, ΛS significantly increases, which agrees with
the observed reduction in the number of convection cells and an apparent increase in cell
size (cf. figure 3i,l).

Note that as shown in figure 6, the growth rate of ΛS initially decreases with increasing
MaL, while simultaneously the maturation rate of the convection cells significantly
enhances (cf. figure 3). As a result, significantly more (and smaller) convection cells
are formed as MaL increases. The associated decrease in maturation time is reflected
in reductions in both t1 as well as t2 − t1. This can be explained as follows. In the
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Figure 7. Variation in (a) maximum thermal boundary layer thickness δ1 (and corresponding Nusselt number
Nuδ1 ; cf. (5.2)) and (b) maximum surface fluctuating kinetic energy KS2 with MaL for various fixed RaL.

buoyancy-dominated cases, significant time is needed to allow for a sufficient amount
of cold water to accumulate near the surface so that cold plumes can be released. On the
other hand, while Rayleigh forces always act in the vertical direction, Marangoni forces act
parallel to the surface. Therefore, in the Marangoni-dominated cases, there is no need to
achieve a significant thermal boundary layer thickness in order to obtain a well-developed
instability. Given horizontal gradients in the surface temperature, Marangoni forces
continuously push surface water to the edges of the convection cells, thereby sucking
relatively warm, near-surface water upwards to the centre of these cells. The latter results
in an increased temperature in the interior of the convection cells, which enhances their
maturation rate by further strengthening the horizontal surface temperature gradients.

5. Scaling laws

In § 4, the effect of Marangoni forces on the maximum thermal boundary layer thickness
(δ1) and the surface kinetic energy fluctuation peaks (KS2) at a fixed Rayleigh number
of RaL = 11 000 was discussed. While δ1 significantly decreases with increasing MaL,
KS2 was found to increase. Similar results were also observed for other fixed RaL as
shown in figure 7. It can be seen that with increasing MaL all curves tend to approach
the RaL = 0 curves, indicating that the Marangoni forces begin to dominate the evolution
of the instability. These RaL = 0 curves show scalings of δ1 ∝ Ma−0.50

L (figure 7a) and
KS2 ∝ MaL (figure 7b). Note that the RaL = 0 cases were obtained by setting the thermal
expansion factor α to zero, corresponding to water at a temperature of about 4 ◦C.

Similarly, for a number of fixed MaL, the effect of RaL on δ1 and KS2 is summarised in
figures 8(a) and 8(b), respectively. Here, it can be seen that for large RaL, all curves tend
to approach the MaL = 0 curves, from which we can conclude that the Marangoni forces
become negligible compared with the buoyancy forces. Note that the two MaL = 0 curves
indicate scalings of δ1 ∝ Ra−0.25

L and KS2 ∝ Ra0.5
L , respectively.

To explain the scaling of δ1 with MaL at RaL = 0, observed in figure 7(a), we first
evaluate the variation of Marangoni numbers Maδ1 and MaΛS1 (which are obtained using
δ1 and ΛS at t = t1, respectively) with the macrosale Marangoni number MaL. It can be
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Figure 8. Variation in (a) maximum thermal boundary layer thickness δ1 (and corresponding Nusselt number
Nuδ1 ; cf. (5.2)) and (b) maximum surface fluctuating kinetic energy KS2 with RaL for various fixed MaL.

seen in figure 9(a) that for the entire range of MaL investigated, both Maδ1 and MaΛS1 only
fluctuate across relatively small ranges of 200 < Maδ1 < 250 and 410 < MaΛS1 < 440,
respectively. Next, the Nusselt number

Nu = qL
TS − TB

= L
〈δ〉 , (5.1)

where TS = 〈T〉|zS , is introduced. When 〈δ〉 = δ1,

Nuδ1 = L
δ1

=
[

MaL

Maδ1

]0.5

(5.2)

is obtained. By assuming that Maδ1 is constant (as somewhat indicated in figure 9a),

δ1

L
∝ Ma−0.5

L (5.3)

is obtained, which is in excellent agreement with the scaling of δ1/L as seen in figure 7(a).
In figure 9(b), it can be seen that Raδ1 and RaΛS1 are bounded between 450 < Raδ1 <

550 and 10 300 < RaΛS1 < 15 700, respectively. Using a similar derivation as above, i.e.
Nuδ1 = L/δ1 = [RaL/Raδ1]0.25 and assuming that Raδ1 is constant, it can be shown that
δ1/L ∝ Ra−0.25

L , which is in close agreement with the slope of the MaL = 0 curve in
figure 8(a). Note that as Raδ1 is based on the maximum thermal boundary layer thickness
that is reached slightly before the release of cold water plumes, it is thereby strongly related
to the critical Rayleigh number below which the flow would be stable.

To discuss the scaling of the surface kinetic energy fluctuation peak KS2 with MaL for
RaL = 0, the surface Reynolds number

ReS =
√

KS1ΛS1/ν (5.4)

is introduced, which is based on the square root of the surface kinetic energy and the
surface characteristic length scale evaluated at t = t1. In figure 10(a) it can be seen that
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Figure 10. Variation of ReS with (a) MaL at RaL = 0 and (b) RaL at MaL = 0.

ReS remains relatively close to 1. Because both ReS and ν are (approximately) constant, it
follows that

KS1 ∝ ΛS1
−2. (5.5)

Assuming that also MaΛS1 is constant (cf. figure 9a), from NuΛS1 = L/ΛS1 =
(MaL/MaΛS1)

0.5, it immediately follows that
√

MaL ∝ 1/ΛS1 and, hence, KS1 ∝ MaL.
Analogously, for MaL = 0, ReS was also found to be approximately constant (cf.
figure 10b), such that (5.5) remains valid. Furthermore, by assuming that RaΛS1 is constant
(as indicated in figure 9b), it follows that KS1 ∝ Ra0.5

L . Note that KS1 was found to be
approximately proportional to the surface kinetic energy peaks KS2 (not shown here).
Hence, it can be concluded that KS2 ∝ MaL and KS2 ∝ Ra0.5

L , which are in agreement
with the observations made in figures 7(b) and 8(b), respectively.

6. Relative importance of buoyancy and Marangoni forces

The Bond number

BoΛS1 = RaΛS1

MaΛS1

(6.1)

expresses the relative importance of buoyancy and Marangoni forces in promoting
interfacial flow, which results in a vertical heat exchange between the surface and the
bulk. For sufficiently large MaL, it was shown that MaΛS1 is approximately constant (cf.
figure 9a) and KS1 ∝ ΛS1

−2. Hence, for Marangoni-dominated heat transfer, the turbulent
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Figure 11. Bond number versus turbulent Richardson number at t = t1.

Richardson number

RiT = αgq(ΛS1)
2

KS1
∝ νκRaΛS1 (6.2)

is proportional to BoΛS1 . This is evidenced in figure 11, which illustrates the domination
of Marangoni forces approximately up to RiT = 300 and BoΛS1 = 5.

For larger RiT , buoyancy effects become increasingly important as shown by the
continuously increasing growth rate of BoΛS1 , indicating the presence of an asymptote
at RiT ≈ 1000. The presence of this asymptote is a consequence of the earlier
observation (§ 5) that RaΛS1 is bounded by a relatively small interval about 1.3 × 104 for
buoyancy-dominated flows, which combined with (6.2) implies that

RiT ≈ const. (6.3)

Whether the RBM instability is Marangoni- or buoyancy-dominated can be detected, for
example, by studying the evolution of the surface characteristic length scale (cf. figure 12).
The dominating instability can be determined by the ratio rΛ = ΛS1/ΛS2. The smaller
the value of rΛ < 1, the more the Marangoni forces dominate, while buoyancy forces
progressively dominate with increasing rΛ > 1. Furthermore, rΛ ≈ 1 corresponds to the
situation where buoyancy and Marangoni forces are in equilibrium, which is achieved for
300 < RiT < 600. The lower bound of this range identifies the smallest RiT at which BoΛS1
is no longer proportional to RiT (cf. figure 11).

Differences in the statistical properties between developing Rayleigh–Bénard (RB)-
and Bénard–Marangoni (BM)-dominated instabilities can also be seen in the surface
temperature fluctuations (that are a measure of the convection cell strength) at t = t2
(cf. figure 13a). For both purely Marangoni- and purely buoyancy-driven instabilities,
a positive linear correlation T∗

rms,S = cT(T∗
B − T∗

S ) was obtained, with a constant of
proportionality cT that was significantly larger in the purely buoyancy case. Furthermore,
with increasing RaL it was found that both (T∗

B − T∗
S ) and T∗

rms,S tend to become smaller.
A similar observation was made for increasing MaL at fixed RaL, which is especially
clearly visible in the figure at RaL = 21 200 and at RaL = 33 000. To further clarify
these trends, in Appendix D detailed examples are presented for the case with varying
RaL at a fixed MaL = 550, and for the case with varying MaL at a fixed RaL = 21 200.
It can be calculated from figure 13(a) that T∗

rms,S/(T
∗
B − T∗

S ) is approximately 0.23 for
the Marangoni-dominated (low-BoΛS1 ) cases, while for the buoyancy-dominated cases it
would be about 0.37. This is confirmed in figure 13(b), where the normalised surface
temperature fluctuations T∗

rms,S/(T
∗
B − T∗

S ) at t = t2 are shown as a function of BoΛS1 .
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Figure 12. Temporal evolution of the surface characteristic length scale at various RiT . The markers × and +
correspond to ΛS1 and ΛS2, respectively.
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Figure 13. (a) Normalised surface temperature fluctuations versus T∗
B − T∗

S for simulations where RaL is kept
constant and MaL varies (see also figure 23). Also included is the series of simulations where MaL = 0 and
RaL > 0. (b) Variation of normalised surface temperature fluctuations with BoΛS1 ; for the legend, see (a).

It can be seen that all results approximately collapse on one single curve, and that for
BoΛS1 up to ≈1, the instability is Marangoni-dominated, while for BoΛS1 > 20 it is
buoyancy-dominated.

A possible explanation of the significant reduction in T∗
rms,S for the Marangoni-dominated

instabilities is provided in figure 14(a). This figure compares the horizontally averaged
temperature profiles for zero buoyancy and zero surface tension obtained at t = t2 with
the corresponding case with realistic values for RaL and MaL for water at 293.15 K. Both
profiles with MaL = 8150 show an almost uniform local vertical temperature distribution
with 〈T∗〉 ≈ T∗

� = −0.11 (which is only slightly larger than 〈T∗
S 〉 ≈ −0.13) evidencing

extensive mixing. This mixing close to the surface is due to the horizontal acceleration
of fluid at the surface by Marangoni forces. Where two opposing streams meet, (cold)
surface water is pushed down into the boundary layer (even in the absence of buoyancy),
while simultaneously warmer water from the boundary layer moves to the surface. The
continuation of the above process then results in the accumulation of cold water plumes
that remain near the surface due to the lack of buoyancy, explaining the aforementioned
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Figure 14. Horizontally averaged profiles of (a) normalised temperature profiles and (b) normalised
temperature fluctuations, obtained at t = t2 and dT/dz = −77.7 K m−1 for RaL = 0, MaL = 8150; RaL =
11 000, MaL = 0; RaL = 11 000, MaL = 8150.
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Figure 15. Vertical profiles of the horizontally averaged turbulent kinetic energy at t = t2. For the legend, see
figure 14(a).

extensive mixing immediately underneath the surface. In contrast, due to buoyancy forces,
in the purely buoyancy-driven instabilities the bulk of the mixing takes place significantly
farther away from the surface (cf. figure 14a). As a result, both the temperature differences
between the surface and the region of enhanced mixing, as well as the normalised T∗

rms,S
are significantly larger (cf. figure 14b).

Note that figure 14(a) illustrates that in realistic cases the Marangoni forces completely
dominate the developing instability and, as a result, the time for the instability to develop
effective vertical mixing (at t = t2) is significantly smaller than without Marangoni forces.
Because of this much smaller time t2, the near-surface water had been subjected to cooling
for a significantly shorter period which explains the warmer temperature in the upper bulk
compared with the buoyancy-dominated case.

The Marangoni forces, which are generated by gradients in the surface temperature, act
to horizontally accelerate fluid, thereby increasing the turbulent kinetic energy K. As a
result, in the Marangoni-dominated cases, K is maximum at the surface (cf. figure 15).
In the absence of any further forcing below the surface, K very quickly reduces to zero
in the downward direction. In contrast, in the pure buoyancy case the movement of
the fluid at the surface is entirely generated by gravitational sources pulling heavy cold
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Figure 16. Contour maps of normalised surface temperature fluctuations: (a,b) RaL = 70 800, MaL = 0 at
t = t1 and t = t2, respectively; (c,d) RaL = 0, MaL = 2700 at t = t1 and t = t2, respectively.

water downwards. Here, the local K will increase as soon as plumes of cold water start
falling and are accelerated downwards, such that at t = t2 the maximum K is not obtained
at the surface but in the upper bulk.

To study the dynamics of the development of the purely buoyancy- and the purely
Marangoni-driven instabilities, figure 16 shows instantaneous snapshots of the fluctuating
temperatures (T∗′ = T∗ − 〈T∗〉) at t = t1 and t = t2 for RaL = 70 800, MaL = 0 and for
RaL = 0, MaL = 2700. Note that these cases were selected because of their similar t1
(time at which the maximum boundary layer is reached) and t2 (time at which the first
peak in the fluctuating kinetic energy is obtained). While Marangoni forces are generated
by temperature gradients at the water surface, pushing cold water down at locations where
convection cells meet, buoyancy forces work below the surface by pulling cold water into
the bulk. The result of this can be seen in the pure buoyancy case, where at t = t1 cold
water has accumulated into very slow-moving primordial plumes that, in time, further
develop and accelerate giving rise to the falling plumes observed at t = t2. In contrast,
in the pure Marangoni case there is an increase in the variation in size of the relatively
small convection cells, as can be seen at t = t1, while at t = t2 the number of convection
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Figure 17. Variation of the surface characteristic length scale ΛS1 at t = t1 with δ1. Virtually all results are
within the envelope indicated by the dashed lines, defined by ΛS1 = 1.4δ1 and ΛS1 = 2.2δ1.

cells reduces. At both times, the cold water pushed down by Marangoni forces is visible in
the y–z plane as sprout-like structures that remain very close to the surface. The penetration
depth of these structures approximately scales with the average size of the convection cell
footprints at the surface and, hence, with the characteristic length scale ΛS. Compared
with the Marangoni-driven instability, at similar t = t1, the buoyancy-driven instability
typically generates significantly larger convection cells, and hence a largerΛS1, while also
the larger temperature range indicates an increased value of T∗′. The latter is in agreement
with results shown in figure 13(a), while the former is in agreement with the results shown
in figure 17. Note that the smaller structures underneath the surface of the pure Marangoni
instability typically have a short turnaround time, resulting in a more intense mixing.

7. Comparison with previous studies

In this section, the present DNS results – investigating the three-dimensional development
of the RBM instability – are compared with those of previous studies, which mostly
focused on either the RB or BM instability in thin layers of fluid. In such studies, the fluid
depth d is commonly used as a fixed characteristic length scale. However, in non-shallow
simulations, when studying the developing instability, d should be replaced by some
measure of the thermal boundary layer thickness. When using the latter length scale, it
is shown that the present results (obtained in a deep domain) agree well with those of
previous studies.

Note that in all simulations, initially a fixed macro length scale of L = 0.01 m was
used in combination with varying q, α and/or dσ/dT , in order to obtain a range
of RaL and MaL values. The corresponding Crispation (Cr = ρνκ/σδ1) and Galileo
(Ga = gH3/νκ) numbers ranged from 1.22 × 10−7 to 1.95 × 10−6 and from 7 × 104

to 2.85 × 108, respectively. As in the present simulations Cr � 1 and Ga � 1, the flat
surface assumption employed here is justified.

7.1. Purely Marangoni-driven case
Doumenc et al. (2010) conducted a linear stability analysis to study the transient RBM
instability induced by surface cooling. They found that the critical Marangoni number Mac

962 A23-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.263


Surface-temperature-induced Marangoni effects

depends non-monotonically on the Biot number (Bi = hd/κc, where h is the heat transfer
coefficient in W m−2 K−1 and κc is the thermal conductivity) and weakly on the Prandtl
number. For Bi = 1, they obtained Mac ≈ 240, which is within the range 200 < Maδ1 <

250 obtained here at RaL = 0 (cf. figure 9a). A similar result was obtained in the stability
analysis of Smith & Davis (1983), who found that Mac ≈ 250 at Pr = 7 for a fluid layer
subjected to a constant horizontal temperature gradient (with return flow conditions).

It is also interesting to compare the characteristic size of the convection cells at the
critical time t = t1. Using (4.4) and the results shown for RaL = 0 in figure 17, it can be
derived that λS/δ1, which is associated with the non-dimensional critical wavelength, is
about 2.8. This is in agreement with Smith & Davis (1983), who found that λS/d ≈ 2.5,
as well as with the experimental results 2.1 ≤ λS/d ≤ 2.5 obtained by Bénard (cf. Pearson
1958). Furthermore, recently, Toussaint et al. (2008) found a value of λS/d ≈ 2.6 in their
experiments studying instabilities induced by evaporation during the drying of a thin layer
of polymer solution.

7.2. Purely buoyancy-driven case
In this section, the critical Rayleigh numbers Raδ1 obtained in the present simulations are
compared with the critical Rayleigh numbers Rac presented in the literature. Comparable
to Raδ1 , Rac is calculated using some measure of the effective thermal boundary layer
thickness as length scale.

Sparrow, Goldstein & Jonsson (1964) conducted a stability analysis for linear and
nonlinear temperature profiles and various upper and lower boundary conditions. The
largest Rac was found for the upper rigid surface boundary condition with fixed
temperatures at both upper and lower surfaces. It was indicated that Rac reduces (i) when
replacing the rigid by a free upper surface boundary condition, (ii) when replacing the
fixed upper surface temperature by a constant heat flux and (iii) when using a nonlinear
instead of a linear temperature profile. For nonlinear temperature profiles and rigid, fixed
temperature upper and lower surfaces, Rac was found to vary between 560 and 595. A
further reduction in Rac for a free upper surface with a constant heat flux is expected, and
would be in line with the present results, where Raδ1 was found to vary between 450 and
550.

The aforementioned range is also in accordance with the result Rac = 500 obtained
by Davenport (1972) for their n-octanol, deep-pool, free-surface case, considering a
nonlinear temperature profile combined with a constant heat flux (cf. figure VII-2 in
Davenport 1972). To compare the present results with the experiments of Foster (1965) and
Spangenberg & Rowland (1961), the following modified Rayleigh numbers are introduced:

RaβL = αgβL5

νκ2 , (7.1)

Raγ = αgβγ 5

νκ2 , (7.2)

where β is the average cooling rate in K s−1 and

γ = δκ(tc) (7.3)

is the solution for the purely diffusive thermal boundary layer thickness, see (4.2), at the
observed critical time t = tc. The variation of Raγ with RaβL , computed using the β and
tc values reported in Foster (1965), is shown in figure 18, where it is compared with the
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Figure 18. Critical Rayleigh numbers Raγ (and Raδ1 ) versus RaβL .

present results obtained at MaL = 0. Note that for the present DNS, tc was approximated
by t = t1 and β by

β = TS(t1)− TS(td)
t1 − td

, (7.4)

where td = 10 s is the time at which random disturbances were added to the temperature
field (cf. § 2.2). It can be seen that when using Raγ , the present data agree well with those
of Foster (1965) and Spangenberg & Rowland (1961).

The close agreement between the present DNS and the experimental data might
be somewhat coincidental, as it is unlikely that the boundary and initial conditions
are identical. For example, the chosen initial random disturbance level might or
might not be a close match to the experimental condition. At the same time,
even in well-controlled laboratory conditions, it is nearly impossible to maintain
a perfect MaL = 0 condition, which implies a surface without any contamination.
As shown in Herlina & Wissink (2016) and Wissink et al. (2017), even a slightly
contaminated surface, due to the presence of, for example, dust, tracer particles or
surfactants, will lead to a significant damping of near-surface turbulence. Hence, in the
laboratory, horizontal surface-temperature-gradient-induced Marangoni forces (promoting
near-surface turbulence) are likely to be more or less negated by contamination-induced
Marangoni forces.

It is worth mentioning that the RaβL values in the experiments of Foster (1965) are
contained within the range of RaβL values used in the present DNS. Also, Raγ was found
to be similar to Raδ1, demonstrating that (7.3) provides a good estimation for δ1 (see also
figure 4).

7.3. Coupled buoyancy-driven and Marangoni-driven instabilities
Nield (1964) proposed the existence of a tight but imperfect coupling between the
buoyancy and Marangoni instabilities, which can be expressed by

Maδ1

Ma0
+ Raδ1

Ra0
= 1 + ε, (7.5)

where ε ≥ 0 is a dimensionless parameter representing the distance to the threshold of
the instability. Here, the critical Marangoni Ma0 = 200 and Rayleigh Ra0 = 450 numbers
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Figure 19. Normalised Marangoni number versus normalised Rayleigh number, both at maximum boundary
layer thickness (t = t1).

are identified as the minimum of Raδ1 at MaL = 0 and Maδ1 at RaL = 0, respectively (cf.
figure 9a,b). It should be noted (as also mentioned previously) that the values of Raδ1 and
Maδ1 are affected by the prescribed initial conditions used in the simulations, especially
the initial level of random disturbances added to the temperature field combined with the
initial thermal boundary layer thickness (which were kept constant in the simulations).
Note that the study of the specific effects of the initial conditions is beyond the scope of
this paper. Nevertheless, as can be seen in figure 19, the tight coupling between Rayleigh
and Marangoni instabilities, such as found by Nield (1964), also approximately holds in
our transient simulations. Hence, also in the present (deep-domain) developing case, it was
confirmed that both instabilities enhance one another.

8. Conclusions

This paper presents a fully resolved, three-dimensional numerical study of the initial
development of the RBM instability, i.e. up to the time when the surface kinetic energy
reaches its first maximum (at t = t2). It is important to note that the mechanisms of
the surface-tension-gradient-driven (BM) and the buoyancy-driven (RB) instabilities are
different, though they do enhance one another. The latter is evidenced by the increased
maturation rate of convection cells obtained at fixed Rayleigh number, RaL, when
increasing the Marangoni number, MaL. Similarly, such an increased maturation rate was
also observed at fixed MaL when increasing RaL.

Three phases could be identified in the initial evolution of the RBM instability: (i)
the transient phase, (ii) the growth phase and (iii) the end phase. The transient phase is
identified by the diffusive damping of the disturbances added to the temperature field, as
reflected by the initial reduction in T∗

rms,S. In this phase, the immediate connection between
surface temperature and velocity gradients (through the prescribed boundary condition)
was found to result in a significant jump in KS at the start of the simulation only in the
presence of Marangoni forces. In the growth phase, both T∗

rms,S and KS simultaneously
increase, with a growth rate that significantly enhances with increasing MaL. The end
phase begins approximately at t = t2 when both T∗

rms,S and KS have reached their first
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local peak. Even though the convection cells are now well developed, the flow at the
surface is still changing and not yet in a quasi-steady state. Note that the growth phase
is the main focus of this paper.

Both the RB- and BM-dominated instabilities are characterised by an initial rapid
reduction in the number of convection cell centres and an increase in surface characteristic
length scale, ΛS. When using (4.4) for the average distance between adjacent convection
cells (λS), a good correlation was found between λS and the surface characteristic length
scale (ΛS) during the transient phase (up to t = t1). For t > t1, this positive correlation
only persists in the BM-dominated cases, where ΛS grows significantly. In contrast, in the
RB-dominated cases this correlation is lost, as ΛS tends to decline in the growth phase
(between t = t1 and t = t2).

The relatively wide range of RaL and MaL simulated allowed an examination of a
number of scaling laws. For fixed RaL, the following were found:

(i) At RaL = 0 and 550 ≤ MaL ≤ 8150, Maδ1 , MaΛS1 and ReS were shown to remain
approximately constant, and as a consequence, δ1 was found to scale with Ma−0.5

L
and KS2/(κ

2/L2) with MaL.
(ii) For fixed RaL > 0, with increasing MaL, δ1 and KS2 were observed to asymptotically

approach their respective RaL = 0 curve.

When varying RaL at fixed MaL, the following were shown:

(i) At MaL = 0 and for 5700 ≤ RaL ≤ 212 000, Raδ1 and ReS were observed to be
approximately constant. As a consequence, δ1 was shown to scale with Ra−0.25

L and
KS2/(κ

2/L2) with Ma0.5
L .

(ii) For fixed MaL > 0, with increasing RaL, δ1 and KS2 asymptotically approach their
respective MaL = 0 curve.

Note that the ‘critical’ Rayleigh and Marangoni numbers, 450 < Raδ1 < 550 and
200 < Maδ1 < 250, were obtained for the specific (fixed) initial conditions (e.g. initial
temperature profile and initial disturbance level) employed in the present simulations. Any
changes in these initial conditions may affect these parameters.

The RB and BM instabilities were found to be in approximate equilibrium when the
ratio rΛ = ΛS1/ΛS2 ≈ 1. Flows dominated by the BM instability are characterised by a
small rΛ < 1, while increasing values of rΛ > 1 indicate that the flow instability becomes
more and more RB-dominated.

Positive linear correlations T∗
rms,S ∝ (T∗

B − T∗
S ) were obtained for both purely

Marangoni- and purely buoyancy-driven instabilities, where both (T∗
B − T∗

S ) and T∗
rms,S

tend to become smaller with increasing MaL and RaL, respectively. In general, when
both RaL and MaL are non-zero, instabilities were found to be Marangoni-dominated
for Bond numbers BoΛS1 up to ≈1 and buoyancy-dominated for BoΛS1 > 20. The
significant reduction in T∗

rms,S for the Marangoni-dominated simulations was attributed
to the significant mixing induced immediately underneath the surface, in contrast to the
buoyancy-dominated simulations, where the bulk of the mixing was induced much deeper
down. The differences in mixing locations are explained by the fact that buoyancy tends to
promote the formation of cold water plumes that are pulled down by gravitational forces
into the deeper bulk. In contrast, Marangoni forces horizontally accelerate fluid inducing
flows along the surface from low- to high-surface-tension areas, associated with relatively
warm and cold surface temperatures, respectively. The collision of two or more opposing
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flows results in relatively cold surface water being pushed down into the boundary layer,
thereby forming small counterrotating pockets of cold water lingering close to the surface.

In one of the simulations, a heat flux of 46.5 W m−2 was combined with dσ/dT =
0.000151 N m−1 K−1, corresponding to the surface tension gradient for water at
≈293.15 K. As a result, it was found that the Marangoni forces completely dominate the
instability to such a degree that the mean temperature profiles up to t = t2 were very nearly
identical irrespective of the presence of buoyancy forces. Consequently, in any numerical
study of buoyancy-driven interfacial mass transfer, in which surface cooling is modelled
by a constant heat flux, Marangoni forces should be taken into account.
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Appendix A

Table 2 presents key parameters employed and obtained in each simulation.

Appendix B

A grid refinement study was performed for a particularly challenging case with RaL =
212 000 and MaL = 8150. The initial development of the buoyant instability was tracked
up to t = 30 s, covering the instances t = t1 = 17.8 s at which the maximum thermal
boundary layer thickness was reached and t = t2 = 24.2 s at which the surface kinetic
energy peaked. The 5L × 5L × 5L computational domain was discretised using the meshes
listed in table 3, which were used to resolve both the flow and the temperature fields.

In order to make sure that the turbulent flow and the temperature flux induced by the
buoyant instability were well resolved, the local geometric mean of the grid cell size

Δ̄ = 3
√
�x ×�y ×�z (B1)

was compared with the Batchelor scale

ηB = ηPr−0.5, (B2)

where η is the Kolmogorov length scale, defined by

η = (ν3/ε)0.25, (B3)

with

ε = ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
(B4)

being the dissipation rate of turbulent kinetic energy. The local maxima of this ratio Δ̄/ηB
as a function of z/L, shown in figure 20(a), can be seen to be less than 1 for both cases R1
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Run α × 104 q dσ/dT × 105 RaL MaL t1 δ1/L Nuδ1 t2 δ2/L Nuδ2 �̄R
(K−1) (K m−1) (N m−1 K−1) (s) (s)

1 2.07 −40.0 0.0 5700 0 177.00 0.56 1.79 211.25 0.28 3.61 0.38
2 2.07 −77.7 0.0 11 000 0 122.75 0.46 2.16 143.75 0.28 3.52 0.47
3 2.07 −100.0 0.0 14 200 0 107.00 0.43 2.31 125.75 0.26 3.88 0.50
4 2.07 −150.0 0.0 21 200 0 86.00 0.39 2.58 101.75 0.22 4.54 0.40
5 2.07 −233.0 0.0 33 000 0 68.00 0.34 2.91 80.00 0.21 4.88 0.44
6 2.07 −500.0 0.0 70 800 0 45.75 0.28 3.55 54.25 0.17 6.04 0.65
7 2.07 −700.0 0.0 99 100 0 38.75 0.26 3.85 46.00 0.15 6.50 0.58
8 2.07 −1000.0 0.0 141 600 0 32.75 0.24 4.19 38.75 0.14 6.94 0.71
9 2.07 −1500.0 0.0 212 400 0 27.25 0.22 4.59 32.50 0.13 7.89 0.72
10 0.00 −77.7 −0.9 0 500 255.50 0.66 1.51 310.75 0.55 1.83 0.25
11 0.00 −77.7 −1.5 0 800 150.50 0.51 1.97 200.25 0.39 2.55 0.32
12 0.00 −77.7 −1.9 0 1000 120.50 0.45 2.20 150.75 0.37 2.74 0.35
13 0.00 −77.7 −2.5 0 1350 87.50 0.39 2.59 110.00 0.31 3.21 0.40
14 0.00 −77.7 −5.0 0 2700 42.75 0.27 3.71 57.00 0.21 4.66 0.55
15 0.00 −77.7 −9.7 0 5250 24.00 0.20 4.94 33.50 0.15 6.54 0.73
16 0.00 −77.7 −15.1 0 8150 17.50 0.17 5.74 23.50 0.13 7.75 0.89
17 2.07 −40.0 −0.3 5700 50 172.00 0.55 1.82 205.00 0.29 3.49 0.37
18 2.07 −40.0 −0.5 5700 150 166.75 0.54 1.85 197.75 0.29 3.40 0.36
19 2.07 −40.0 −1.0 5700 300 155.50 0.52 1.92 185.00 0.29 3.50 0.30
20 2.07 −40.0 −5.0 5700 1400 75.25 0.36 2.79 94.75 0.25 3.94 0.42
21 2.07 −40.0 −15.1 5700 4200 28.50 0.22 4.54 37.50 0.17 5.83 0.67
22 2.07 −77.7 −0.3 11 000 150 118.25 0.45 2.20 138.75 0.27 3.71 0.42
23 2.07 −77.7 −0.5 11 000 250 113.00 0.44 2.25 133.50 0.26 3.91 0.41
24 2.07 −77.7 −1.0 11 000 550 101.25 0.42 2.38 120.25 0.25 3.98 0.39
25 2.07 −77.7 −5.0 11 000 2700 40.25 0.26 3.81 53.00 0.19 5.16 0.56
26 2.07 −77.7 −9.7 11 000 5250 23.75 0.20 4.97 33.00 0.15 6.79 0.74
27 2.07 −77.7 −15.1 11 000 8150 17.50 0.17 5.75 23.25 0.13 7.83 0.82
28 2.07 −100.0 −0.3 14 200 150 102.50 0.42 2.37 120.75 0.24 4.10 0.46
29 2.07 −100.0 −0.5 14 200 350 97.00 0.41 2.43 114.50 0.24 4.11 0.44
30 2.07 −100.0 −1.0 14 200 700 85.75 0.39 2.59 101.75 0.23 4.26 0.40
31 2.07 −100.0 −5.0 14 200 3500 32.25 0.23 4.26 43.00 0.17 5.78 0.62
32 2.07 −150.0 −0.3 21 200 250 81.25 0.38 2.66 95.75 0.22 4.53 0.40
33 2.07 −150.0 −0.5 21 200 550 75.75 0.36 2.76 89.50 0.21 4.68 0.38
34 2.07 −150.0 −0.8 21 200 800 70.75 0.35 2.85 84.25 0.21 4.82 0.43
35 2.07 −150.0 −1.0 21 200 1050 65.50 0.34 2.97 78.75 0.20 4.93 0.42
36 2.07 −150.0 −2.6 21 200 2700 38.50 0.26 3.90 50.75 0.17 5.75 0.57
37 2.07 −150.0 −5.0 21 200 5250 23.50 0.20 5.00 31.50 0.15 6.84 0.74
38 2.07 −233.0 −0.3 33 000 550 61.75 0.33 3.05 73.25 0.19 5.30 0.54
39 2.07 −233.0 −0.5 33 000 800 58.50 0.32 3.14 70.00 0.18 5.51 0.43
40 2.07 −233.0 −1.0 33 000 1650 48.50 0.29 3.46 61.00 0.16 6.21 0.48
41 2.07 −233.0 −1.7 33 000 2700 36.50 0.25 4.00 47.00 0.16 6.11 0.58
42 2.07 −233.0 −3.2 33 000 5250 23.00 0.20 5.03 31.00 0.14 7.08 0.75
43 2.07 −233.0 −5.0 33 000 8150 17.25 0.17 5.77 22.75 0.13 7.98 0.90

Table 2. Overview of simulations. In all runs, Pr was set to 7. Both RaL and MaL are based on a fixed length
scale L = 0.01 m, using κ = 0.143 × 10−6 m2 s−1 and g = −9.81 m s−2. The instances t1 and t2 correspond
to the times when the thermal boundary layer thickness is maximum and the surface kinetic energy first peaks,
respectively. Each simulation used 10.08 × 106 grid points equally distributed over 384 cores, with Δ̄R defined
in (B5). Typically, 100 core-hours were used to perform 104 time steps with a fixed dt = 10−4 s.
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Run Mesh size Δ̄R

R0 96 × 96 × 126 1.541
R1 200 × 200 × 252 0.892
R2 296 × 296 × 330 0.659

Table 3. Simulations performed for the grid refinement study. Ratio Δ̄R is defined in (B5).

1

2
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4

5

z/L

R0
R1
R2

0 0.5 1.0 1.5 –0.15 –0.10 –0.05 0

4.4

4.6

4.8

5.0(b)(a)

〈Δ̄ /ηB〉x, y 〈T∗〉
Figure 20. (a) Ratio between grid size and Batchelor scale from R0, R1 and R2 as a function of z/L at

t = 30 s. (b) Profile of the horizontally averaged normalised temperature 〈T∗〉 from R1 at t = 30 s.

(corresponding to the mesh used in the actual simulations) and R2. Figure 20(b) shows the
horizontally averaged temperature profile from R1 against z/L at t = 30 s. It can be seen
that there are at least nine grid points inside the thermal boundary layer, which is sufficient
to fully resolve it.

To further illustrate the quality of the mesh employed, in figure 21 instantaneous profiles
of the normalised temperature at t = 30 s are shown. The profiles were extracted at
x/L = 2.5 with vertical locations of z/L = 4.6 and 4.975. Given that the perturbation was
introduced at t = 12 s and was given sufficient time (until t = 30 s) for the instability to
develop, the results obtained on the three meshes are generally in good agreement. This is
especially true when comparing the temperature profiles of simulations R1 and R2, which
almost perfectly overlap. Hence, the 200 × 200 × 252 mesh was deemed to be sufficiently
fine to fully resolve all simulation results presented in this paper. Note that while in the first
step the grid was refined by a factor of 2, in the second step a further refinement of about
1.3 in the z direction and 1.5 in the x,y directions was employed. The latter was chosen to
save computing time, and was judged to be adequate due to the high order of accuracy of
the WENO solver.

Additionally, while post-processing the actual simulation results, further evidence was
obtained by showing that the ratio

Δ̄R = max
z,t

〈
Δ̄

ηB

〉
x,y

(B5)

was less than 1 in all simulations (cf. table 2 and figure 22).

Appendix C

Analogous to the estimation of the characteristic length scale of a turbulent flow field from
the longitudinal integral length scale (cf. Tennekes & Lumley 1972), the characteristic
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Figure 21. Normalised instantaneous temperature profiles obtained at t = 30 s and (a) [x/L, z/L] = [2.5, 4.6]
and (b) [x/L, z/L] = [2.5, 4.975] using various mesh sizes (cf. table 3).
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max〈Δ̄ /ηB〉x, yt

Figure 22. Vertical profiles of the maximum ratio between grid size and Batchelor scale evaluated over the
entire simulation time. The parameters of each simulation are listed in table 2.

length scale of the surface temperature field was estimated by

ΛS(t) = 2
√
Λx(t)Λy(t), (C1)

where the integral length scales in x and y directions are defined by

Λx(t) =
∫ H

0
Rx

TT(h, t) dh, (C2)

Λy(t) =
∫ H

0
Ry

TT(h, t) dh, (C3)

respectively, in which the two-point correlations at the surface are given by

Rx
TT(h, t) = 〈T ′(x, y, t)T ′(x + h, y, t)〉

〈T ′(x, y, t)2〉 , (C4)

Ry
TT(h, t) = 〈T ′(x, y, t)T ′(x, y + h, t)〉

〈T ′(x, y, t)2〉 (C5)

and for each t, H(t) > 0 is the smallest value for which the corresponding two-point
correlation becomes zero.
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0
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Figure 23. Variation of T∗
rms with (T∗

B − T∗
S ): (a) for a variety of RaL (as shown) at MaL = 550 and (b) for a

variety of MaL (as shown) at RaL = 21 200.

Appendix D

To clarify the trends observed in figure 13(a), figure 23 shows the variation of T∗
rms and

T∗
B − T∗

S for one fixed RaL and one fixed MaL.
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