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Abstract

The precision of compartment-based quantification methods is subject to multiple effects, of

which partitioning and subsampling play a major role. Partitioning is the process of aliquoting

the sample liquid and consequently the contained target molecules, whereas subsampling

denotes the fact that usually only a portion of a sample is analyzed. In this work, we present

a detailed statistical description comprising the effects of partitioning and subsampling on

the relative uncertainty of the test result. We show that the state-of-the-art binomial model

does not provide accurate results for the level of subsampling present when analyzing the

nucleic acid content of single specific cells. Hence, in this work we address partitioning and

subsampling effects separately and subsequently combine them to derive the relative

uncertainty of a test system and compare it for single cell content analysis and body fluid

analysis. In point-of-care test systems the area for partitioning and detection is usually lim-

ited, which means that a trade-off between the number of partitions (related to a partitioning

uncertainty) and the amount of analyzed volume (related to a subsampling uncertainty)

might be inevitable. In case of low target concentration, the subsampling uncertainty is dom-

inant whereas for high target concentration, the partitioning uncertainty increases, and a

larger number of partitions is beneficial to minimize the combined uncertainty. We show,

that by minimizing the subsampling uncertainty in the test system, the quantification uncer-

tainty of low target concentrations in single cell content analysis is much smaller than in

body fluid analysis. In summary, the work provides the methodological basis for a profound

statistical evaluation of partitioning and subsampling effects in compartment-based quantifi-

cation methods and paves the way towards an improved design of future digital quantifica-

tion devices for highly accurate molecular diagnostic analysis at the point-of-care.

Introduction

Compartment-based absolute quantification, often implemented as digital polymerase chain

reaction (dPCR), is an advancing method to quantify the amount of specific nucleic acid

sequences in a sample liquid. This method is characterized by an aliquoting of the sample
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liquid into a large number of partitions, resulting in a distribution of the contained target

sequence copies over these partitions. Each of the partitions serves as an independent reaction

compartment for a nucleic acid amplification, usually using fluorescent probes as reporter for

a successful amplification. Assuming ideal amplification, two populations of partitions can be

separated based on the fluorescence signal after the amplification process: Partitions with an

increased fluorescence signal (positive partitions) that initially contained at least one copy of

the target sequence, therefor allowing a successful amplification reaction and partitions with-

out increased fluorescence signal (negative partitions) that contain no copy after the distribu-

tion. Under the assumption that all partitions have the same volume and each copy has the

same probability to be distributed to any of these partitions, the distribution of target copies

can be described with Poisson statistics. The Poisson distribution P kð Þ ¼ lk
.

k
! � e� l gives the

probability for k target copies being in a partition if the mean copy load per partition equals λ.

This equation simplifies for k = 0 resulting in P(k = 0) = e−λ. Since the ratio of positive parti-

tions R can be approximately taken as 1−P(k = 0), the Poisson statistics provides the basis to

estimate the mean copy load per partition λ by measuring the ratio of positive partitions R and

calculating λ = -ln(1—R) [1]. By dividing the mean copy load per partition λ by the partition

volume one can estimate the target copy concentration in the sample liquid. While quantitative

real-time PCR (qPCR) has been the standard quantification method in molecular diagnostics

ever since its development [2,3], dPCR has got more and more attention during the last years

[4,5] facilitated by technological advances in microfluidic systems [6]. Especially its superior

precision makes dPCR an attractive alternative to qPCR in various molecular diagnostic appli-

cations like the monitoring of low pathogenic loads [4,7], monitoring of minimal residual dis-

ease [8–10], the analysis of copy number variations [11] and the detection of rare mutants

[12]. Over the last years dPCR systems have been extensively compared to qPCR systems for

such use cases [13–16] confirming the enormous potential of this technology. The benefits of

dPCR can also be exploited to investigate differences in nucleic acid content of single cells

[17–20].

While the Poisson distribution allows giving an estimation of the concentration of a specific

nucleic acid sequence based on the observed percentage of positive partitions, it does not pro-

vide information on the accuracy of this estimation. Since the target sequence copies are ran-

domly distributed over the partitions, the observation of a given positive rate could originate

from different target concentrations in the sample resulting in an uncertainty of the estimation

which is called partitioning error. To judge the suitability of a certain quantification system for

a given diagnostic application, it is crucial to assess the system’s quantification range and quan-

tification precision. Consequently, Huggett et al. recommend to state the quantification uncer-

tainty according to the Minimum Information for the Publication of Digital PCR Experiments
[21,22].

The main sources of uncertainty described in literature comprise partitioning und subsam-

pling errors, pipetting errors, volume variability between the partitions and misclassification

of partitions [23,24]. Subsampling error occurs when not the whole sample but only a fraction

of it is analyzed. This only allows an assessment of the target concentration in the analyzed

fraction is not necessarily exactly the same as in the whole sample. While strategies to correct

for the effects of volume variability [24,25] and misclassification [26–28] have been published,

the partitioning and subsampling error can only be reduced by appropriate design. The state-

of-the-art approach to determine the uncertainty caused by both these errors is based on

modelling the amount of detected positive partitions as the result of a binomial process in

which the success probability of a partition being positive equals the observed rate of positives

R. The expected value of this binomial distribution then coincides with the number of
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observed positive partitions in the experiment. Still, other success probabilities in the binomial

distribution might lead to the observed experimental result. Consequently, a confidence inter-

val is constructed around the success probability of the binomial process to cover the desired

confidence level. Since the success probability R for partitions being positive is directly linked

to the mean copy load per partition λ, the confidence intervals are also directly connected to

each other, as well as the confidence interval around the number of target copies in the sample

[24,29–33]. One method to define the confidence interval around the success probability in a

binomial distribution is the Clopper-Pearson confidence interval. However, we show that the

results of this model of a binomial process for the combination of partitioning and subsam-

pling error are only accurate if the subsampling effect is sufficiently high. Though, the analysis

of the nucleic acid content of a single specific cell, for instance, the investigation of mRNA

[19], miRNA [18] or mitochondrial DNA [20], subsampling does not occur during sample tak-

ing at the patient’s site but only after cell lysis inside the test system. Still, the partitioning pro-

cess inside the test system might lead to some dead volume [34], especially if the combined

volume of the partitions is smaller than the sample volume that is processed in the test system.

The presented approach is based on two distributions, each addressing either the partition-

ing or the subsampling effect separately. First, the description of the partitioning effect is

derived combinatorically and then verified by Monte Carlo simulations in which the probabil-

ity of a certain experimental outcome was simulated assuming that the copy load in the sample

is known. By applying Bayes’ theorem, a so-called digitization distribution is derived which

gives the probability for different numbers of target copies being in the sample if the amount

of positive partitions is known. This distribution enables an analytical and exact calculation of

the isolated partitioning uncertainty. Subsequently, the analytical description of the partition-

ing uncertainty is combined with a distribution accounting for the subsampling uncertainty to

generate a combined distribution. This combined distribution deviates significantly from the

state-of-the-art binomial model for low percentages of subsampling and low target concentra-

tions while both models converge for large subsampling effects.

In quantification systems restricted to a limited evaluation area, the partition’s structure

size defines the number of available partitions and the amount of sample that can be analyzed.

In such systems, it is not possible to design the partitions in a way to minimize both partition-

ing uncertainty and subsampling uncertainty at the same time for a given processed sample

volume. The combined distribution including both partitioning and subsampling effects pro-

vides the possibility to assess the contribution of these effects to the quantification uncertainty.

In this work, an exemplary micro well-based quantification system is studied regarding the

combined relative uncertainty caused by partitioning and subsampling for different partition

diameters and target copy concentrations. To demonstrate how the combined distribution dif-

fers from the state-of-the-art binomial model if the overall level of subsampling is small, the

results for body fluid analysis and single cell content analysis are compared. As it turns out, the

minimal uncertainty attributed to partitioning and subsampling for low target concentrations

can be much smaller in the latter than in the former if subsampling effects are minimized. As

their high precision is a key feature of compartment-based quantification methods, the pre-

sented findings emphasize the suitability of these methods for the detection of rare targets in

single cell content analysis.

Materials and methods

Monte Carlo simulations

For a verification of the analytically derived distribution of positives, the calculated expected

values for different outcomes were compared to the results of Monte Carlo simulations. The
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Monte Carlo simulations were carried out using MathWorks Matlab R2019b. Typically, systems

designed for compartment-based quantification comprise thousands or even millions of parti-

tions [4,35]. The presented simulations however are limited to a set of 100 partitions to reduce

the needed computational resources. In each simulation, a given number of copies was simu-

lated to be randomly distributed over 100 partitions in 100,000 independent experiments. For

this purpose, each copy was assigned to a random number between 1 and 100 with uniform

probability representing the index of the partition the copy is allocated in. After all copies got a

number assigned, the amount of numbers that occurred at least once, representing the positive

partitions, was determined. The data points in the simulated distributions indicate how many

of the 100,000 experiments showed the respective number of positive partitions. The data of the

Monte Carlo simulations are generated with MC-simulation.m found in S1 File.

Calculation of the confidence interval’s borders

When determining the border of the confidence interval with the digitzation statistic, the Stirling

number of second kindgrows rapidly if the number of subsets is increased. Therefore, it is neces-

sary to use a programming language capable of interpreting very large integer values for the com-

putations. The shown data was generated by employing Python 3.7 on a Lenovo ThinkPad T470

(Intel1 Core™ i5-6300U CPU @ 2.40 GHz, 8 GB RAM) to perform the calculations. Formula (7)

allows to check whether a certain number of target copies C is covered by the confidence interval,

but it does not provide a direct calculation of the upper and lower border of the confidence inter-

val, CU and CL, respectively. Therefore, a successive approximation using multiple iterations was

performed for the determination of the borders. The approximation starts with an estimate Cest

and a chosen initial step length ΔCinitial that is either added to the estimate if the inequality state-

ment in Formula (7) is false or subtracted if it is true. Depending on the choices of Cest and ΔCinitial

it can take multiple steps before the target value CU (or CL) is crossed for the first time, which is

indicated by a change of the Boolean value of the inequality statement. From that point onward

the step length ΔC is halved and rounded to the nearest integer every time, until ΔC = 1. Accord-

ingly, for this iteration process, it is convenient to choose the initial step length to a power of 2. In

this way, it is possible to gradually approach the minimum (or maximum) value of C that fulfills

the inequality and consequently represents the upper (or lower) bound of the confidence interval.

The computation time is dependent on the quality of the initial guess Cest and how large ΔCinitial is

chosen but is in general much lower than summing up all the probabilities that would be needed

for a brute-force calculation using Formula (6).

A numerical issue is given by the fact that the elements of the sum can become very low,

being interpreted as zero by the computation software if the constant factors are factored out.

On the other hand, if nothing is factored out, the provided precision of both the “float” and

“decimal” data format is not sufficient to accurately represent the fractions of the summation

elements and deliver correct results. To avoid this issue, the constant factor (N - 1)! in the

nominator was included during summation, while the constant factors in the denominator

were excluded. Consequently, the elements of the summation become so large that they can be

treated as integers instead of fractions resulting only in a loss of precision in the least signifi-

cant digit. Since the result of the summation is divided by the factored out denominator with a

very large value, this loss of precision is neglectable.

For the successive approximation of a specific mean copy load per partition the partitioning

uncertainty can be calculated with PartitioningUncertainty_singleLambda.py which is pro-

vided in S1 File. If the partitioning uncertainty for all possible mean copy loads should be

determined in a system, PartitioningUncertainty_allLambda.py automatically provides suiting

Cest and ΔCinitial.
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The confidence interval of the binomial model is calculated by means of the Clopper-Pearson

confidence interval. The Clopper-Pearson interval is an exact confidence interval around the suc-

cess probability p of a binomial distribution. In the binomial model it is assumed that ratio of pos-

itive partition R is an approximation of the success probability p for a partition to be classified

positive. Hence, the Clopper-Pearson confidence interval around p can be taken as confidence

interval around R which in turn corresponds to a confidence interval around the mean copy load

per partition λ. The relative uncertainty calculated from the confidence interval around λ is identi-

cal to the one calculated from the confidence interval around the number of copies C or the one

around the target concentration because all these values can be transformed into one another by

multiplication with a factor which cancels out in the calculation of the relative uncertainty.

Results

The digitization distribution and its relevance for partitioning uncertainty

Confidence interval and relative uncertainty. Due to the randomness of the copy distri-

bution process, the measured ratio of positive partitions p generally does not coincide with the

value that is predicted by Poisson statistics for a given mean load per partition λ. Conse-

quently, the result of a digital quantification experiment deviates from the true value of nucleic

acid target copies in the sample. However, statistical analysis allows to define a so-called confi-

dence interval that contains the true value in (1-α) � 100% of the time. The width of the confi-

dence interval correlates with the uncertainty of the test result: A broad confidence interval

indicates a high measurement uncertainty or poor measurement precision while a narrow con-

fidence interval implies a low uncertainty and thus a high precision. Based on the lower and

the upper bound of the confidence interval, CL and CU respectively, the relative uncertainty σ
around the experimental result Ĉ, which is the number of copies in the sample calculated

using Poisson statistics, can be defined as

s ¼
maxðjĈ � CUj; jĈ � CLjÞ

Ĉ
: ð1Þ

In this work, the confidence interval is defined to cover the true value in 95% of the time (α
= 0.05), with the true value being larger than the upper bound in 2.5% of the cases and lower

than the lower bound in the remaining 2.5%. However, all shown methods can be adapted for

other coverages of the confidence interval. Since the bounds are not necessarily symmetric

around the estimator Ĉ, the bound that gives the larger difference will define the uncertainty

according to Formula (1).

The distribution P(C|H), called the digitization distribution, represents the conditional

probability of C copies being in the sample if H positive partitions are observed. It allows calcu-

lating the bounds CL and CU of the (1-α) confidence interval thereby enabling the determina-

tion of the relative uncertainty σ of a digital quantification result according to Formula (1).

The bounds are determined by a summation of the probabilities P(C|H) for a continuously

increasing number of copies in the sample until the specified coverage is achieved:

CL ¼ maxC∗j
XC∗

C¼H

PðCjHÞ �
a

2

CU ¼ minC∗j
XC∗

C¼H

PðCjHÞ � 1 �
a

2
:

ð2Þ
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For an exact calculation of the confidence interval the digitization distribution P(C|H) will

be derived in the next subsection.

Combinatorial derivation of the digitization distribution. In order to derive the digiti-

zation distribution P(C|H), we first have a close look at the partitioning process and the combi-

natorics behind it. The distribution process can be regarded as assigning each of the C copies,

which are continuously numbered, one after another to one of the N distinguishable partitions.

Given a certain amount of copies in the sample, there is a variety of ways to allocate these cop-

ies to specific partitions in a particular order. Since every single copy can end up in one of the

N partitions, there are NC particular orders of distributing C copies. Each of these allocation

orders has the same probability of 1/NC to occur, if the chance for a partition to be filled with a

copy is equal for all partitions. Some of the allocation orders result in the same number H of

partitions that contain at least one copy, consequently being classified as positive. Adding up

the probabilities of these O allocation orders leading to the same number of positive partitions

H allows to form a distribution P(H|C), referred to the distribution of positives. Since the

probability for each single order is the same, the addition simplifies to a multiplication of the

probability 1/NC with the number of orders O. Combinatorial analysis leads to an accurate

description of the size of this subset O of all possible allocation orders.

There are three aspects in which the allocation orders in the subset can differ from each

other: the partitions showing a positive signal, the order in which the partitions become posi-

tive by getting their first copy assigned and lastly which copies end up together in a single posi-

tive partition. The first two aspects, the selection of H positive partitions out of N available

partitions with consideration of the order of selection, can be described by a variation without

repetition with the known value of N! / (N - H)!. The last aspect, the number of ways, in which

C copies can end up in H positive partitions can be calculated by the Stirling number of second

kind S(C, H). For example, S(3, 2) is 3, since {1}{2, 3}, {1, 2}{3} and {1, 3}{2} are the three possi-

bilities to arrange three labeled copies into exactly two non-empty partitions. The order of the

sets included by the Stirling number does not play a role here because it was taken into account

by the variation without repetition already. Multiplying these three terms gives an expression

for O and results in the distribution of positives

P HjCð Þ ¼ O �
1

NC
¼ S C;Hð Þ �

N!

ðN � HÞ!
�

1

NC
ð3Þ

when also including the constant probability of 1/NC for any of these allocation orders to

occur. This expression the mathematically identical to the distribution P HjCð Þ ¼

N
Hð Þ
PH� 1

i¼0
ð� 1Þi H

H� ið ÞðH� iÞ
C½ �

NC Debski et. al used in their work to describe the partitioning and detec-

tion process [36].

Fig 1 shows a comparison of the distribution of positives and a Monte Carlo simulation

plotted for N = 100 partitions and a chosen number of copies of C = 11 (λ = C / N = 0.11) in

panel (a) and C = 230 (λ = 2.3) in panel (b) corresponding to a low and a high percentage of

positive partitions respectively. Additional data for other values of C is provided in S1 Fig. The

distribution of positives matches the simulation tightly in all investigated cases.

A quantitative test result can only be derived for the case that at least one of the partitions

remains negative, meaning it does not contain any target copy. The distribution of positives

found stated in (3) enables to define an upper limit of quantification, a number of target copies

C for which the probability of all partitions showing a positive signal is lower than a certain

threshold value. For example, if there are N = 10,000 partitions available, then the probability

of all of them being positives, resulting in failed quantification, exceeds 5% if the amount of
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copies in the sample is larger than C = 81,140. Consequently, the target load should not be

increased above this value even though the theoretical dynamic range of the test goes up to

about C = 92,100.

Moreover, the distribution of positives is very useful for the calculation of the partitioning

uncertainty of compartment-based quantification methods, as it can be transformed into the

digitization distribution using Bayes’ theorem P(C|H) � P(H) = P(H|C) � P(C). The probability

P(H) is the sum of all probabilities that end up with the result of H positive partitions, no mat-

ter what number of copies C was distributed, and can be calculated with the distribution of

positives. It is reasonable to assume the probability P(C) of C copies being in the analyzed sam-

ple to be a uniform distribution to get an unweighted summation

PðHÞ ¼
X1

C¼H

PðCÞ � PðHjCÞ ¼ PðCÞ �
X1

C¼H

PðHjCÞ: ð4Þ

Inserting Eq (4) into Bayes’ theorem results in the digitization distribution

PðCjHÞ ¼
PðHjCÞ � PðCÞ

PðCÞ �
P1

C¼H PðHjCÞ
¼

SðC;HÞ � N!

ðN� HÞ! �
1

NC
P1

C¼H SðC;HÞ � N!

ðN� HÞ! �
1

NC

¼
SðC;HÞ � 1

NC
P1

C¼H SðC;HÞ � 1

NC

¼
1

L
�
SðC;HÞ

NC
ð5Þ

with L ¼
P1

C¼H SðC;HÞ � 1

NC ¼ ðN � H � 1Þ!=ðN � 1Þ! being the result of one of the generat-

ing functions of the Stirling number of second kind. The digitization distribution derived in

(5) allows to evaluate compartment-based quantification experiments in more detail than the

evaluation based on Poisson distribution could provide. It turns out that the result given by

Poisson statistics is smaller than the statistical mean, but it is a very good estimation of the

result that has the highest probability to occur. Furthermore, the digitization distribution

enables to give exact bounds of the confidence interval therefore allowing an exact and analyti-

cal analysis of the uncertainty associated with the partitioning and detection process for the

first time.

Calculation of confidence interval and relative uncertainty based on the digitization

distribution. Now that the digitization distribution P(C|H) is derived, the condition

Fig 1. Comparison of the distribution of positives and the results of Monte Carlo simulations for N = 100 partitions. (A) Small number of contained

copies C resulting in a low percentage of positive partitions; (B) High number of contained copies C resulting in a high percentage of positive partitions. The

Monte Carlo simulations comprised 100,000 trials each and the amount of trials that result in a certain number of positive partitions was counted. The

probabilities of the distributions are multiplied by the number of trials to obtain the expected values.

https://doi.org/10.1371/journal.pone.0285784.g001
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formulated in (2) can be rewritten to

CL ¼ maxC∗j
ðN � 1Þ!

ðN � H � 1Þ!
�
XC∗

C¼H

SðC;HÞ
NC

�
a

2

CU ¼ minC∗j
ðN � 1Þ!

ðN � H � 1Þ!
�
XC∗

C¼H

SðC;HÞ
NC

� 1 �
a

2
:

ð6Þ

It is sufficient to look at the upper confidence bound CU as it turns out to give the larger

deviation from the result Ĉ provided by Poisson statistics and consequently defines the relative

uncertainty σ (compare Formula (1)). Hence, the shown calculation methods are primarily

focused on finding CU but could be adopted to find the lower confidence bound CL as well.

To improve computational performance, Formula (6) is rewritten using the definition of

the Stirling number and the characteristics of a geometric progression (detailed derivation is

provided in S1 Appendix):

CL ¼ maxC∗j
1

ðN � H � 1Þ! � H! � NC
�
XH

j¼0

ð� 1Þ
H� j
�

H
j

� �

�
jCþ1 � ðN � 1Þ!

N � j
> 1 �

a

2

CU ¼ minC∗j
1

ðN � H � 1Þ! � H! � NC
�
XH

j¼0

ð� 1Þ
H� j
�

H
j

� �

�
jCþ1 � ðN � 1Þ!

N � j
<
a

2

ð7Þ

The formulation in (7) allows to check if a certain C satisfies the condition of being inside

the confidence interval. Nevertheless, the expression is in an implicit form which does not

allow to calculate the bound of the confidence interval directly. For that reason, an iterative

approximation algorithm was used for calculation, which is described in the methods section

2.2.

In Fig 2 the relative uncertainty (α = 0.05) based on the digitization distribution and the

binomial distribution are plotted against the mean copy load per partition for a system with

N = 2,000 partitions as indicated by the black and grey data points, respectively. The uncer-

tainty associated with the binomial distribution is evaluated using the Clopper-Pearson inter-

val. When comparing the confidence interval resulting from the digitization distribution and

the Clopper-Pearson confidence interval, the Clopper-Pearson interval predicts a higher rela-

tive uncertainty if the mean copy number per partition λ is small, while the results of both cal-

culation methods match better as λ is increased. For large mean copy loads however, the

binomial distribution appropriately models the outcome of the classification process. Conse-

quently, the assessment of the relative quantification uncertainty by means of the Clopper-

Pearson confidence interval coincides with the results based on the digitization distribution in

this case. Looking at the inset in Fig 2 one can distinguish three different phases: a counting

phase (1), a phase with one-sided confidence interval (2) and the major phase of a two-sided

confidence interval (3). In the counting phase (1), both the upper and lower bound CL and CU

of the confidence interval are equal to the number of positive partitions H. Hence, the number

of copies C is counted by the number of positive H with the desired confidence and Poisson

statistics is not needed for the calculation of the result. In fact, in this phase the width of the

confidence interval equals zero and a relative uncertainty of zero could be expected. Still, there

is a small relative uncertainty as the experimental result Ĉ is slightly higher than the number of

counted copies due to the correction related to Poisson statistics. For larger mean copy load λ
the upper confidence bound CU starts to increase above the number of positive partitions H
while the lower bound CL remains equal to H. Since it is impossible for the number of copies

to be smaller than the number of positives H, the probabilities below the lower bound add up
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to zero resulting in a one-sided confidence interval (2). Consequently, no allowed value of C
fulfills the condition in the first formula given in (6) and α can be set twice as large in the sec-

ond formula, where the condition for of the upper bound formula is given, without changing

the coverage of the confidence interval. As the lower confidence bound CL also starts to be

larger than the amount of positive partitions H, the graph enters the third phase, the two-sided

confidence interval (3). In this phase the relative uncertainties calculated with the digitization

statistics and the Clopper-Pearson confidence interval converge for larger values of the mean

copy number per partition λ.

Due to the discrete nature of the digitization distribution, the relative uncertainty σ can

only be calculated at certain data points and the bound of the confidence interval has to be an

integer value. Accordingly, the relative uncertainty increases abruptly from time to time, when

the width of the confidence interval is increased to include another integer value. This phe-

nomenon can be seen in the inset of Fig 2 especially in the second phase and the beginning of

the third phase. For the data points with a sufficiently large value of λ the effects of the discrete

nature are less significant, and the digitization distribution predicts the relative uncertainty σ
to keep increasing with larger mean copy load per partition λ approximately following a sev-

enth-degree polynomial.

Based on further analysis an approximation method for the relative uncertainty for arbi-

trary numbers of partitions N and arbitrary mean copy loads per partition λ was developed

which is described in S2 Appendix. It is exploiting the fact, that the relative uncertainty decays

exponentially when increasing the number of available partitions, implying that a larger

Fig 2. Relative uncertainty σ of a system with N = 2,000 partitions in dependence on the mean copy load per partition λ. The uncertainty was calculated

using the digitization distribution (black) and the Clopper-Pearson interval that gives the confidence interval for the parameter p of a binomial distribution

(grey). For large λ both approaches show very similar results. The inset depicts the relative uncertainty σ for λ< 0.3, where three phases can be distinguished: A

counting phase (1), followed by a phase of a one-sided confidence interval (2) and eventually a phase of a two-sided confidence interval (3).

https://doi.org/10.1371/journal.pone.0285784.g002
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number of partitions reduces the relative uncertainty and thus improves the precision of a test

result. Having said that, in a test system not only the partitioning uncertainty characterized by

the digitization distribution, but also other effects contribute to the total quantification uncer-

tainty. Apart from the partitioning uncertainty, the subsampling uncertainty another promi-

nent effect in compartment-based digital quantification systems [30,32,37] that is effected by

the partition design. Hence, the previously derived digitization distribution is combined with a

subsampling distribution in the next section before drawing conclusions on how the partition

size affects the precision of compartment-based digital quantification systems.

Effect of partition size on the precision of digital quantification devices

Subsampling as source of uncertainty. The aliquoting of a sample into a large number of

partitions is a characteristic process step in digital quantification, which is not needed when

using other quantification approaches such as qPCR. Depending on the design and the ali-

quoting method, compartment-based digital quantification systems might have a certain dead

volume, resulting in only a fraction of the loaded sample to be analyzed [34]. If the copies

would always be evenly distributed over the sample volume, the ratio of copies in the analyzed

sample to the copies in the loaded sample would coincide with the volume percentage of the

analyzed sample. However, since the copies are randomly distributed in the sample, the num-

ber of copies in the analyzed fraction not always matches the expected value, resulting in a dif-

ferent concentration in the analyzed sample compared to the loaded sample. This leads to the

so-called subsampling uncertainty since only the concentration in the analyzed partition can

be measured and the concentration in the rest of the loaded sample remains unknown.

The binomial distribution P CjCload; pð Þ ¼ Cload
C

� �
� pC � ð1 � pÞCload � C provides the probability

that C copies are present in a given volume percentage p if Cload copies are contained in the

loaded sample. This distribution P(C|Cload, p) can be transformed into P(Cload|C, p) by using

Bayes’theorem. Again, analogously to the approach described in the derivation of the digitiza-

tion distribution, a uniform distribution for P(Cload) is assumed to get an unweighted summa-

tion. Further, the identity of
P1

Cload¼0
PðCjCload; pÞ ¼ 1=p, which results from one of the

ordinary generating functions of the binomial coefficient, is used to obtain P(Cload|C, p) in the

form

P CloadjC; pð Þ ¼
PðCjCload; pÞ � PðCloadÞ

PðCloadÞ �
P1

Cload¼0

PðCjCload; pÞ
¼

Cload

C

� �

� pCþ1 � ð1 � pÞCload � C: ð8Þ

Comparable to the digitization distribution, the subsampling distribution in Formula (8)

allows the determination of the confidence interval by summation of the individual probabili-

ties. Consequently, an assessment of the relative uncertainty associated with subsampling is

possible. It is intuitive, that the uncertainty increases with a decreasing percentage p of the ana-

lyzed sample volume. As already has been described elsewhere [30,32], the subsampling uncer-

tainty is more prevalent for smaller target copy concentrations. Regarding the influence of the

partition size on the precision of compartment-based quantification devices, both sources of

uncertainty–partitioning and subsampling–should be considered, since the true copy number

C in the analyzed sample is never exactly known. The two distributions can be easily combined

to

PðCloadjH; pÞ ¼
XCload

C¼H

PðCloadjC; pÞ � PðCjHÞ ð9Þ
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which allows the construction of a confidence interval for the estimated number of copies in

the whole sample Cload based on the number of positive partitions H that have been observed.

The combined distribution in Formula (9) allows a detailed analysis but is very laborious in

its computation. Debski et. al came to the conclusion, that the results of the combined distribu-

tion are equal to the outcome of a binomial distribution [36]. However, this is only the case if

the mean copy load per partition is high (compare Fig 2) or the subsampling effect is suffi-

ciently high, as is shown in S2 Fig. In single cell content analysis the subsampling effects are

small in comparison to body fluid analysis and consequently a binomial model might not pro-

vide accurate results. Therefore, a multistep approximation is proposed for the calculation of

the combined relative uncertainty of partitioning and subsampling effects in a compartment-

based digital quantification device in the usecase of single cell content analysis. First, both the

relative uncertainties due to partitioning and subsampling are estimated separately. In case of

the uncertainty caused by the partitioning process, the approximation provided in S2 Appen-

dix was used whereas for the subsampling uncertainty a different approximation presented in

S3 Appendix was exploited. The two relative uncertainties of the partitioning and the subsam-

pling process can be added in quadrature to estimate the combined relative uncertainty:

scombined �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spartitioning

2 þ ssubsampling
2

q
: ð10Þ

The summation in quadrature of relative uncertainties is usually used in error propagation

if two uncorrelated inputs are combined to an output value in a multiplication or division

[38], but can also be used to combine errors in compartment-based digital quantification sys-

tems [32]. For the most cases, this approximation shows good accordance to the calculations

based on the combined distribution and the quality of approximation improves for a larger

number of available partitions N (compare S4 Appendix). The summation in quadrature with

approximated inputs deviates more from the exact results but still gives a good approximation

especially if the number of available partitions N and the number of positive partitions H are

large. The Clopper-Pearson confidence interval on the other hand does only provide accurate

results for low percentages p of analyzed sample indicating strong subsampling effects.

Design parameters of compartment-based quantification systems. Different

approaches exist to realize the aliquoting of a sample liquid into partitions [23]. In all of them,

the number of partitions and their combined volume is defined by certain design parameters.

Hereinafter, we focus on micro well-based systems with hexagonal wells arranged in a honey-

comb shape to get the densest packing, but the presented methods can also be applied to other

designs as well.

Diagnostic systems are usually limited in their size, so the area covered by the partitions

may not exceed a certain area. This is especially true for point-of-care systems and systems

with a parallel optical readout of all partition where the partitions must fit into the field of view

of the detection optic. Fig 3 illustrates the design parameters that define how many partitions

can be packed in the readout area of a micro well-based system. These parameters not only

define the number of partitions, but also the volume that can be analyzed inside the partitions.

For the sake of simplicity, the field for optical readout of the system is assumed to be quadratic

with the side length L.

In a micro well-based setup, the outer diameter d of the hexagonally shaped partitions and

the wall thickness w define the areal density of partitions, while the outer diameter d and the

chip thickness D define the volume of each partition. In contrast, in a droplet-based system,

the wall thickness would equal zero and the diameter d of the droplets would be sufficient to

calculate the areal density of partitions and their volume. An important observation for all

approaches is the fact that the number of partitions increases with smaller dimensions of the
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partitions, whereas the analyzed portion of the sample Vana within a given area decreases. In

systems, where walls separate the partitions, more partitions lead to more walls that take up

some of the space leaving less area and consequently less volume for the liquid inside the parti-

tions. Droplet-based systems have a wall thickness of zero, but in this case the spherical geome-

try of the partitions causes them to take up less volume if the diameter is decreased. This

relation is crucial for the relevance of the two major sources of error: On the one hand, the

subsampling error is reduced when a larger percentage p of the sample is analyzed, meaning

that larger partitions would be favorable in order to reduce the subsampling uncertainty. On

the other hand, however, the partitioning uncertainty is reduced when more partitions are

available for partitioning, meaning that smaller partitions would are preferable to minimize

the partitioning uncertainty. This results in contrary tendencies for both primary sources of

uncertainty. Due to these contrary effects, one cannot state whether smaller or larger partitions

result in a lower relative uncertainty of the result without further considerations. In fact, a

detailed statistical analysis is required to investigate which effect dominates under which cir-

cumstances and if there exists a sweet spot that corresponds to an overall lowest relative uncer-

tainty of the obtained quantification results.

Quantification accuracy of micro well-based systems. Subsequently, such a detailed sta-

tistical analysis is performed for a micro-well based system with hexagonally shaped partition

arranged in a honeycomb pattern. In Fig 4 the use cases of single cell content analysis and

body fluid analysis are compared regarding their overall relative uncertainty. As indicated ear-

lier, the state-of-the-art binomial model does not provide accurate results for application in

single cell content analysis. Consequently, while the data for body fluid analysis is calculated

based on the Clopper-Pearson confidence interval, the data for single cell content analysis is

generated using the previously introduced addition in quadrature. The python script Uncer-

tainty_combinedErrors.py, which is applied for this calculation, is provided in S1 File.

The design parameters illustrated in Fig 3 correspond to L = 10 mm, D = 380 μm,

w = 25 μm and the sample volume loaded to the system was assumed to be Vload = 25 μL. The

minimum partition size considered in the analysis was set to 10 μm in this example, as this

Fig 3. Schematic illustration of a micro well-based approach using hexagonally shaped compartments of outer

diameter d that are arranged on a quadratic chip of side length L and thickness D. The hexagonal shape of the

compartments allows the densest packing with a constant wall thickness w to all adjacent compartments. The side

length L, the wall thickness w and the diameter of the partitions d limit the number of partitions on the chip. The

volume of the partitions is defined by their hexagonal shape, the chip thickness D and the partition diameter d.

https://doi.org/10.1371/journal.pone.0285784.g003
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value represents a reasonable resolution limit of simple optics in point-of-care systems with

a large field of view [39]. Data points are generated in 5 μm steps up to a partition diameter of

d = 125 μm, as d = 127.4 μm is the smallest diameter that allows analysis of the entire loaded

sample volume and further increasing the partition diameter any further would reduce neither

partitioning nor subsampling uncertainty.

The relative uncertainty σ was calculated for four different target concentrations of 10 cop-

ies/μL (cp/μL), 100 cp/μL, 1,000 cp/μL (not shown in Fig 4) and 10,000 cp/μL. For a concentra-

tion of 10 cp/μL, the relative uncertainty σ calculated by the summation in quadrature

decreases monotonically with the size of the partitions. The minimum in the uncertainty is

reached for d = 127.4 μm resulting in N = 6,248 with a value of σ = 0.02 indicating that the rela-

tive uncertainty is dominated by the subsampling error in this case. This behavior can also be

expected for smaller concentrations since the effect of subsampling increases when the concen-

tration is decreased. In comparison, the Clopper-Pearson confidence interval results in higher

values of the relative uncertainty σ, first decreasing with increasing partition diameter and

then asymptotically approaching the value of σ = 0.13.

The curve for a concentration of 100 cp/μL also decline with rising partition diameter at

first for both calculation methods, but this time the minimum is located at d = 119.1 μm and

N = 6,975, while the uncertainty increases again slightly for larger partition sizes. Again, the

Clopper-Pearson confidence interval leads to larger relative uncertainties than the summation

Fig 4. A plot of the relative uncertainty σ in digital quantification for a micro well-based system in dependence on the outer diameter d of the partitions

for three different target concentrations of 10 cp/μL, 100 cp/μL and 10,000 cp/μL. In this example the chip was assumed to have a quadratic shape with side

length of L = 10 mm and a thickness of D = 380 μm. The wall thickness was set to w = 25 μm and the system volume amounted to Vload = 25 μL. The data points

for single cell content analysis calculated by the addition in quadrature of the partitioning and subsampling uncertainties are shown in black, whereas the data

points calculated for body fluid analysis based on the Clopper-Pearson confidence interval are shown in grey. The curves show that the relative uncertainty

achieved in compartment-based quantification devices for low target concentrations can be lower in single cell analysis than for the analysis of body fluids. For

large target concentrations, the results for both applications converge and give similar results.

https://doi.org/10.1371/journal.pone.0285784.g004
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in quadrature, while the difference is not as prominent as for the concentration of 10 cp/μL.

The shift of the minimum relative uncertainty towards smaller partitions and thus a larger

number of partitions can be attributed to the upcoming effect of the partitioning uncertainty

and is more visible when the concentration is increased to 1,000 cp/μL and 10,000 cp/μL,

where the minimum occurs at d = 49 μm (N = 25,308) and d = 21.5 μm (N = 60,685) respec-

tively. As the concentration is increased, the results of provided by the two methods converge

and are nearly identical for the concentration of 10,000 cp/μL. Due to the limitation in the

maximum dynamic range, the number of partitions is not sufficient to provide a quantitative

test result for the concentration of 10,000 cp/μL if the diameter of the partitions is larger than

65 μm. Eventually, the minimum in relative uncertainty is assumed to be obtained at the small-

est considered partition diameter if the concentration is sufficiently high, as the subsampling

uncertainty is negligible for high concentrations whereas the partitioning error is dominant in

this scenario.

In summary, the regimes of low and high target concentration differ regarding the depen-

dence of the relative uncertainty on the partition diameter. In case of a low target concentra-

tion, the minimal relative uncertainty is provided by a system capable of analyzing the entire

loaded sample to avoid subsampling error. In this regime, applications in the field of single cell

analysis profit even more from avoiding subsampling than use cases where a body fluid is ana-

lyzed. For high target concentrations the partitioning error is more prominent, and the relative

uncertainty is minimized by increasing the number of available partitions N at the cost of

increasing subsampling effects.

Discussion and conclusion

The derived digitization distribution allows an analytical calculation of the uncertainty associ-

ated with the partitioning and detection process in compartment-based quantification devices

for the first time. While Debski et al. already presented an approach addressing the uncertainty

due to the partitioning and detection process, in their work they estimated the standard devia-

tion and did not directly calculate the width of the confidence interval. Moreover, it was

shown, that it is important to address the uncertainties caused by partitioning and subsam-

pling independently if subsampling effects are small. This is especially the case when analyzing

the nucleic acid content of single specific cells, where subsampling only occurs after cell lysis

inside the test device but not during sample taking. It is already known, that subsampling

effects are more prominent for small target concentrations but as it turns out the impact is

even stronger in the analysis of single cell content. Consequently, by analyzing the entire avail-

able sample inside the test system and therefor eliminating subsampling effects, the relative

uncertainty for low target concentration can be significantly reduced for these applications.

Even though an analytical calculation of the combined relative uncertainty caused both by

partitioning and subsampling effects is presented and would be possible, an approximative

approach was pursued due to computational effectiveness. While this approximation is not

flawless, it shows close agreement with the exact data if the number of available partitions is

large enough. The fact, that the data generated by the approximation converges with the rela-

tive uncertainty calculated by means of a binomial distribution for larger target concentra-

tions, supports the quality of the approximation.

The overall quantification performance of a compartment-based system could be optimized

for example by increasing the field of view of the optical system in order to use a larger area for

analysis. A better resolution of the detection optics would allow smaller partitions, resulting in

a wider possible dynamic range, but having no influence on the relative uncertainty in the

quantification of low concentrations. Decreasing the wall thickness and increasing the chip
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thickness would enable the analysis of the same volume fraction in smaller and therefore more

partitions, also lowering the overall relative uncertainty of the test system. However, due to

limitations in the aspect ratio of the fabrication process, the chip thickness cannot be chosen

too large, and the wall thickness should not drop below a certain value to ensure a reliable sep-

aration of the partitions.

We used a micro well-based system with arbitrary design parameters as an example for the

application of the presented distributions. However, the described procedure can also be

applied to droplet-based systems or all sorts of partitioning methods with arbitrarily chosen

design parameters used for compartment-based quantification measurements. The results

regarding the impact of the partition size on the relative uncertainty are especially relevant for

systems that use a parallel readout of the partitions on a certain area. A serial fluorescence

detection, for example of droplets flowing in a channel, may not show the same conflict in

minimizing partitioning and subsampling uncertainty since the spatial constraints for the

analysis are not given. Still, every test system can be assessed regarding its relative uncertainty

when considering its number of available partitions and the percentage of analyzed sample.

Furthermore, it is important to note that only the partitioning process and subsampling inside

the system have been included into the calculation of the system’s relative uncertainty as these

are directly influenced by the design of the partitions. For the sake of simplicity, the amplifica-

tion was assumed to be ideal, excluding the effect of false-positives or false-negatives. Further-

more, variations in the partition volume were not considered even though it is reported that

they have a significant influence on the quantification precision [12,40]. Beyond that, there

might be additional sources of uncertainty upstream of the workflow, like pipetting errors or

subsampling steps, whereas the presented analysis only covers the relative uncertainty of the

diagnostic test system itself. For a comprehensive assessment of the uncertainty of a test result

in practical application, all these sources of uncertainty have to be included.

In conclusion, the present work introduced the digitization distribution for a profound sta-

tistical evaluation of the partitioning uncertainty in compartment-based quantification meth-

ods. The combined analysis of partitioning and subsampling uncertainties emphasizes the

importance of avoiding subsampling with a high sample transfer efficiency in single cell analy-

sis and paves the way towards an improved design of future digital quantification devices for

highly accurate molecular diagnostic analysis at the point-of-care in this field.

Supporting information

S1 Fig. Additional data providing a comparison of the distribution of positives and Monte

Carlo simulations for N = 100 partitions. The values of C increase from panel (A) to panel

(D) and result in a certain medium percentage of positive partitions. The Monte Carlo simula-

tion consisted of 100,000 trials and the amount of trials that result in a certain number of posi-

tive partitions was counted. The probabilities of the distribution of positives is multiplied by

the number of trials to get the expected values.

(TIF)

S2 Fig. Percentage of analyzed sample above which the binomial distribution deviates sig-

nificantly from the combined distribution for different mean copy loads per partition. If

the percentage of analyzed sample is larger than the respective data points, then the probability

at the expected value differs more than five percent between the binomial model and the com-

bined distribution. The lower the mean copy load per partition, the higher subsampling effects

must be for the binomial distribution to provide accurate results.

(TIF)
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S1 File. Matlab and Python scripts used for data generation.

(ZIP)

S1 Appendix. Derivation of the equation used in the successive approximation.

(DOCX)

S2 Appendix. Approximation of the relative uncertainty for arbitrary mean copy loads

and number of available partitions.

(DOCX)

S3 Appendix. Approximation of the subsampling distribution with a Gaussian distribu-

tion.

(DOCX)

S4 Appendix. Comparison of the relative uncertainty calculated with the combined distri-

bution, exact summation in quadrature, approximated summation in quadrature and

based on Clopper-Pearson confidence interval for different number of partitions N, num-

ber of positives H and percentages of analyzed sample p.

(DOCX)
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Disease by Digital PCR in ALK-Positive Anaplastic Large Cell Lymphoma: A Step towards Risk Stratifi-

cation in International Trials? Cancers (Basel) 2022; 14(7). https://doi.org/10.3390/cancers14071703

PMID: 35406475.

11. Bell AD, Usher CL, McCarroll SA. Analyzing Copy Number Variation with Droplet Digital PCR. Methods

Mol Biol 2018; 1768:143–60. https://doi.org/10.1007/978-1-4939-7778-9_9 PMID: 29717442.

12. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool.

Clin Chem 2015; 61(1):79–88. https://doi.org/10.1373/clinchem.2014.221366 PMID: 25338683.

13. Whale AS, Bushell CA, Grant PR, Cowen S, Gutierrez-Aguirre I, O’Sullivan DM, et al. Detection of Rare

Drug Resistance Mutations by Digital PCR in a Human Influenza A Virus Model System and Clinical

Samples. J Clin Microbiol 2016; 54(2):392–400. https://doi.org/10.1128/JCM.02611-15 PMID:

26659206.

14. Ricchi M, Bertasio C, Boniotti MB, Vicari N, Russo S, Tilola M, et al. Comparison among the Quantifica-

tion of Bacterial Pathogens by qPCR, dPCR, and Cultural Methods. Front Microbiol 2017; 8:1174.

https://doi.org/10.3389/fmicb.2017.01174 PMID: 28702010.

15. Alikian M, Whale AS, Akiki S, Piechocki K, Torrado C, Myint T, et al. RT-qPCR and RT-Digital PCR: A

Comparison of Different Platforms for the Evaluation of Residual Disease in Chronic Myeloid Leukemia.

Clin Chem 2017; 63(2):525–31. https://doi.org/10.1373/clinchem.2016.262824 PMID: 27979961.

16. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, et al. Comparison of microfluidic digital

PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 2012;

40(11):e82. https://doi.org/10.1093/nar/gks203 PMID: 22373922.

17. Warren L, Bryder D, Weissman IL, Quake SR. Transcription factor profiling in individual hematopoietic

progenitors by digital RT-PCR. Proc Natl Acad Sci U S A 2006; 103(47):17807–12. https://doi.org/10.

1073/pnas.0608512103 PMID: 17098862.

18. Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise Quantitation of MicroRNA in a Single Cell with

Droplet Digital PCR Based on Ligation Reaction. Anal Chem 2016; 88(23):11384–9. https://doi.org/10.

1021/acs.analchem.6b01225 PMID: 27800678.

19. Thompson AM, Gansen A, Paguirigan AL, Kreutz JE, Radich JP, Chiu DT. Self-digitization microfluidic

chip for absolute quantification of mRNA in single cells. Anal Chem 2014; 86(24):12308–14. https://doi.

org/10.1021/ac5035924 PMID: 25390242.

20. O’Hara R, Tedone E, Ludlow A, Huang E, Arosio B, Mari D, et al. Quantitative mitochondrial DNA copy

number determination using droplet digital PCR with single-cell resolution. Genome Res 2019; 29

(11):1878–88. https://doi.org/10.1101/gr.250480.119 PMID: 31548359.

21. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: Mini-

mum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem 2013; 59(6):892–

902. https://doi.org/10.1373/clinchem.2013.206375 PMID: 23570709.

22. Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative

Digital PCR Experiments for 2020. Clin Chem 2020; 66(8):1012–29. https://doi.org/10.1093/clinchem/

hvaa125 PMID: 32746458.

23. Jacobs BKM, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute

quantification using digital PCR. BMC Bioinformatics 2014; 15:283. https://doi.org/10.1186/1471-2105-

15-283 PMID: 25147026.

24. Majumdar N, Wessel T, Marks J. Digital PCR modeling for maximal sensitivity, dynamic range and mea-

surement precision. PLoS One 2015; 10(3):e0118833. https://doi.org/10.1371/journal.pone.0118833

PMID: 25806524.

PLOS ONE Partitioning and subsampling statistics in compartment-based quantification methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0285784 May 15, 2023 17 / 18

https://doi.org/10.1373/clinchem.2019.304048
http://www.ncbi.nlm.nih.gov/pubmed/31704712
https://doi.org/10.1016/j.diagmicrobio.2012.10.009
http://www.ncbi.nlm.nih.gov/pubmed/23182074
https://doi.org/10.1016/j.jmoldx.2015.05.007
https://doi.org/10.1016/j.jmoldx.2015.05.007
http://www.ncbi.nlm.nih.gov/pubmed/26319783
https://doi.org/10.1097/HS9.0000000000000543
http://www.ncbi.nlm.nih.gov/pubmed/33655199
https://doi.org/10.3390/cancers14071703
http://www.ncbi.nlm.nih.gov/pubmed/35406475
https://doi.org/10.1007/978-1-4939-7778-9%5F9
http://www.ncbi.nlm.nih.gov/pubmed/29717442
https://doi.org/10.1373/clinchem.2014.221366
http://www.ncbi.nlm.nih.gov/pubmed/25338683
https://doi.org/10.1128/JCM.02611-15
http://www.ncbi.nlm.nih.gov/pubmed/26659206
https://doi.org/10.3389/fmicb.2017.01174
http://www.ncbi.nlm.nih.gov/pubmed/28702010
https://doi.org/10.1373/clinchem.2016.262824
http://www.ncbi.nlm.nih.gov/pubmed/27979961
https://doi.org/10.1093/nar/gks203
http://www.ncbi.nlm.nih.gov/pubmed/22373922
https://doi.org/10.1073/pnas.0608512103
https://doi.org/10.1073/pnas.0608512103
http://www.ncbi.nlm.nih.gov/pubmed/17098862
https://doi.org/10.1021/acs.analchem.6b01225
https://doi.org/10.1021/acs.analchem.6b01225
http://www.ncbi.nlm.nih.gov/pubmed/27800678
https://doi.org/10.1021/ac5035924
https://doi.org/10.1021/ac5035924
http://www.ncbi.nlm.nih.gov/pubmed/25390242
https://doi.org/10.1101/gr.250480.119
http://www.ncbi.nlm.nih.gov/pubmed/31548359
https://doi.org/10.1373/clinchem.2013.206375
http://www.ncbi.nlm.nih.gov/pubmed/23570709
https://doi.org/10.1093/clinchem/hvaa125
https://doi.org/10.1093/clinchem/hvaa125
http://www.ncbi.nlm.nih.gov/pubmed/32746458
https://doi.org/10.1186/1471-2105-15-283
https://doi.org/10.1186/1471-2105-15-283
http://www.ncbi.nlm.nih.gov/pubmed/25147026
https://doi.org/10.1371/journal.pone.0118833
http://www.ncbi.nlm.nih.gov/pubmed/25806524
https://doi.org/10.1371/journal.pone.0285784


25. Vynck M, Thas O. Reducing Bias in Digital PCR Quantification Experiments: The Importance of Appro-

priately Modeling Volume Variability. Anal Chem 2018; 90(11):6540–7. https://doi.org/10.1021/acs.

analchem.8b00115 PMID: 29739189.

26. Jacobs BKM, Goetghebeur E, Vandesompele J, Ganck A de, Nijs N, Beckers A, et al. Model-Based

Classification for Digital PCR: Your Umbrella for Rain. Anal Chem 2017; 89(8):4461–7. https://doi.org/

10.1021/acs.analchem.6b04208 PMID: 28350455.
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