
Journal of Global Optimization
https://doi.org/10.1007/s10898-023-01283-y

Sparse conic reformulation of structured QCQPs based on
copositive optimization with applications in stochastic
optimization

Markus Gabl1

Received: 9 May 2022 / Accepted: 2 April 2023
© The Author(s) 2023

Abstract
Recently, Bomze et al. introduced a sparse conic relaxation of the scenario problem of a two
stage stochastic version of the standard quadratic optimization problem. When compared
numerically to Burer’s classical reformulation, the authors showed that there seems to be
almost no difference in terms of solution quality, whereas the solution time can differ by
orders ofmagnitudes.While the authors did find a very limited special case, for which Burer’s
reformulation and their relaxation are equivalent, no satisfying explanation for the highquality
of their bound was given. This article aims at shedding more light on this phenomenon and
give amore thorough theoretical account of its innerworkings.We argue that the quality of the
outer approximation cannot be explained by traditional results on sparse conic relaxations
based on positive semidenifnite or completely positive matrix completion, which require
certain sparsity patterns characterized by chordal and block clique graphs respectively, and
put certain restrictions on the type of conic constraint they seek to sparsify. In an effort to
develop an alternative approach, we will provide a new type of convex reformulation of
a large class of stochastic quadratically constrained quadratic optimization problems that is
similar toBurer’s reformulation, but lifts the variables into a comparatively lower dimensional
space. The reformulation rests on a generalization of the set-completely positive matrix cone.
This cone can then be approximated via inner and outer approximations in order to obtain
upper and lower bounds, which potentially close the optimality gap, and hence can give a
certificate of exactness for these sparse reformulations outside of traditional, known sufficient
conditions. Finally, we provide some numerical experiments, where we asses the quality of
the inner and outer approximations, thereby showing that the approximations may indeed
close the optimality gap in interesting cases.
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1 Introduction

Recently, in [5], the authors considered the scenario problem of a two-stage stochastic version
of the standard quadratic optimization problem given by

min
x∈Rn1 ,yi∈Rn2

{
xTAx +

S∑
i=1

pi
(
xTBiyi + yTi Ciyi

)
: (x, yi ) ∈ �, i ∈ [1 : S]

}
, (2St3QP)

where � ⊂ R
n1+n2 is the unit simplex, and pi , i ∈ [1 : S] are probabilities of certain

scenarios occurring. This optimization problem can be exactly reformulated into a copositive
optimization problem based on Burer’s reformulation presented in [6]. The reformulation
forces a lifting of the space of variables into a space of dimension O((n1 + Sn2)2), which
makes this reformulation entirely impractical for the purposes of stochastic optimization since
the number of scenarios S is typically very high and the copostive optimization problemhas to
be approximated with semidefinite optimization problems, which are known to scale poorly.
In an effort to circumvent this issue, the authors introduced a copositive relaxation thatmerely
requires O(S(n1 + n2)2) variables and showed empirically that the approximating SDPs are
practical even if the number of scenarios is high. Somewhat surprisingly, they observed that
the quality of the solutions they found did not substantially differ from the bound obtained by
employing the traditional copositive reformulation. In fact they state that the difference was
small enough to possibly be an artifact of numerical inaccuracies of the sdp-solver. Aside
from an exactness result for a niche case of (2St3QP) no theoretical explanation for this
phenomenon was provided. The present article is chiefly motivated by the question: why
does the cheap relaxation perform so well? While we were not able to fully answer this
question, we are still able to provide valuable theoretical insights that amount to a novel,
practical approach to sparse conic reformulations. In short we introduce a generalization
of the set-completely positive matrix cones that yield conic relaxations that are sparse to
begin with, and which can, much like the traditional set-completely positive matrix cones,
be approximated in order to generate lower and upper bounds, that may certify optimality in
case the gap between them is zero.

To set up our exposition, we will now introduce a more general quadratic optimization
problem and discuss some important context, specifically copositive optimization and sparse
conic reformulations based on matrix completion. To begin with, the class optimization
problems in question is given by:

min
x,yi

xTAx + aTx +
S∑

i=1

[
xTBiyi + yTi Ciyi + cTi yi

]
s.t. : Fix + Giyi = ri , i ∈ [1 : S],

Q j (x, y1, . . . , yS) = 0, j ∈ [1 :K ],
x ∈ K0,

yi ∈ Ki , i ∈ [1 : S],

(1)

where K0 ⊆ R
n1 , Ki ⊆ R

n2 , i ∈ [1 : S], are closed, convex cones, A ∈ Sn1 (i.e. symmetric
matrices of order n1), a ∈ R

n1 , Bi ∈ R
n1×n2 , Ci ∈ Sn2 , ci ∈ R

n2 , i ∈ [1 : S] and Fi ∈
R
mi×n1 , Gi ∈ R

mi×n2 , ri ∈ R
mi , i ∈ [1 : S]. Further, Q j (·) : Rn1+Sn2 → R, j ∈ [1 : K ]

are quadratic functions that do not involve bilinear terms between yi and y j for i �= j . The
special structure in place here is that yi does not interact with y j in a bilinear fashion in neither
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the constraints nor the objective, and the statement stays true even if the linear constraints
are squared.

This setup encompasses not only (2St3QP), but general two-stage stochastic conic QCQPs
over finitely supported distributions, which are important since they are used to approximate
two-stage stochastic conicQCQPswith infinite support. In the context of two-stage stochastic
optimization, S would be the number of scenarios and yi would be variables specific to
scenario i . Hence, the special structure in (1) is native to all two-stage stochastic QCQPs
regardless of the structure of the nominal QCQP.

Under some well known regularity conditions on the functions Qi (.) (see [7, 9,
13]) our structured QCQP can be reformulated into a conic optimization problem with
O ((n1 + Sn2)2

)
variables. This reformulation takes the form:

min
X,Yi ,Zi ,x,yi

Tr(AiX) + aTx +
S∑

i=1

[
Tr(BiZi ) + Tr(CiYi,i ) + cTi y

]
s.t. : Fix + Giyi = ri , i ∈ [1 : S],

diag

((
Fi Gi

) (X ZTi
Zi Yi,i

)(
FTi
GT
i

))
= ri ◦ ri , i ∈ [1 : S],

Q̂ j (x,X, y1, Z1, Y1, . . . , yS, ZS, YS) = 0, j ∈ [1 :K ],⎛
⎜⎜⎜⎜⎜⎝

1 xT yT1 . . . yTS
x X ZT1 . . . ZTS
y1 Z1 Y1,1 . . . Y1,S
...

...
...

. . .
...

yS ZS YS,1 . . . YS,S

⎞
⎟⎟⎟⎟⎟⎠ ∈ CPP(R+ ×S

i=0 Ki ).

(2)

for appropriate linear functions Q̂i j with Q̂i j (x, xxT, y1, y1xT, y1yT1, . . . , yS, ySx
T, ySyTS) =

Qi j (x, y1, . . . , yS), with ◦ denoting the elementwise multiplication of vectors, and the set-
completely positive matrix cone is define as

CPPn(K):=
{
X : X =

k∑
i=1

xixTi , xi ∈ K, i ∈ [1 :k], k ∈ N

}

= clconv
{
xxT : x ∈ K

}
= {XXT : : X ∈ R

n×k , xi ∈ K, i ∈ [1 :k], k ∈ N},
for a closed, convex cone K ⊆ R

n . For example, CPP(Rn) is the positive semidefinite
matrix cone, denoted by Sn+, and CPP(Rn+) is the classical completely positive matrix cone,
extensively discussed in [1]. In the literature, optimization over the set-completely positive
cone and its dual, the set-copositive matrix cone is colloquially referred to as copositive
optimization. In general, set-completely positive matrix cones are intractable and have to be
approximated. For example, it is well known that

CPP(Rn+) ⊆ DNN n :=Sn+ ∩ N n,

where N n is the cone of nonnegative n × n matrices and DNN n is called the doubly
nonnegative matrix cone. In the above set containment, equality holds whenever n ≤ 4.

Whilemany tractable approximations do exist, be it based on positive semidefinite, second
order cone or linear programming constraints, they all have in common that their complexity
increases exponentially with the approximations quality. Even simple approximations, such
asDNN n , typically involve semidefinite constraints of the same order as the set-completely
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positive constraint. As a result the above reformulation is often impractical. Especially in the
context of stochastic optimization, where the number of scenarios S is typically very high,
the size of the psd-constraints, which is of the order O ((n1 + Sn2)2

)
, becomes prohibitive.

Following the basic idea of the authors in [5], we can obtain a lower dimensional relaxation
by replacing the conic constraint by S smaller conic constraints given by⎛

⎝ 1 xT yTi
x X ZTi
yi Zi Yi

⎞
⎠ ∈ CPP (R+ × Ki ) , i ∈ [1 : S], (3)

where Yi,i was relabeled Yi and Yi, j , i �= j were dropped from the model, so that the number
of variables is nowO (S(n1 + n2)2

)
, therefore linear in S. The cost we have to pay is that the

resulting optimization problem is not necessarily equivalent to (2) and hence to (1), as the
conic constraints are clearly a relaxation of the conic constraint of the exact reformulation.
It is, however, this relaxation which performed so inexplicably well when it was applied in
[5].

In searching for an explanation of this performance, one may turn to the literature on
sparse reformulations of conic optimization problems. Results in this field are typically
based on theorems on matrix completion. The central question in that area is, when a given
matrix with non-specified entries, so called partial matrices, can be completed to a matrix
in CPP(K). This is useful in the context of solving a conic optimization problem: if the
problem data is sparse so that some of the entries of the matrix variable only appear in
the conic constraint, one can check if the removal of that entries leaves a partial matrix for
which one can give sufficient conditions so that it is completable to a matrix that fulfills the
original conic constraint. If such conditions are available, they replace the conic constraint
and the spurious entries of the matrix can be dropped entirely. The result is what we will call
a sparse reformulation of the original conic problem. These reformulations can reduce the
number of variables substantially, which eases the computational burden so that otherwise
unmanageable problems become viable.

The classical text on such an approach is [19], where the conic constraint to be massaged
is an sdp-constraint. Their approach utilizes the fact that a partial matrix, where the non-
specified entries exhibit the so called chordal sparsity pattern can always be completed to
a psd-matrix provided all fully specified, principle submatrices are positive semidefinite.
The framework was applied in various contexts such as robust optimization [16] or optimal
power flow [10, 18]. In [20] the authors harnessed sparsifications of SDPs computationally by
exploiting properties of the ADMM algorithm. Another approach was recently put forward
by [12], who applied classical CPP(Rn+)-completion results derived in [8] in the context of
copositive optimization. Their approach necessitates the presence of so called block-clique
sparsity patterns in the problem data, owing to the fact that partial matrices with block-clique
specification pattern can be completed to matrices in CPP(Rn+)whenever the fully specified,
principle submatrices are completely positive. On a related note, [2] explored sparse convex
reformulations of binary quadratic optimization problems based on matrix completion where
the set ofmatrices of interestwas not someversionofCPP but the so calledBooleanQuadratic
Polytope, i.e. the convex hull of matrices xxT where x ∈ {0, 1}n . Interestingly, completion
results for this subset of CPP(Rn+) seem to be stronger than for general matrices in this cone,
which bolsters our hope of finding stronger completion results for other such subsets as well.

Unfortunately, none of these results are able to explain the phenomenon we seek to inves-
tigate and we will spend a full section on discussing their shortcomings and what we can
still learn from them about our object of interest. We will argue that, unless K = R

n , the
required sparsity patterns are, outside of some limited special cases, not the ones present
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in (2), where the sparsity pattern takes the form of an arrow-head. Also, in cases where K
is neither the positive orthant nor the full space, completion results are, to the best of our
knowledge, entirely absent from literature.

Contribution

In an effort to remedy these shortcomings, we propose a new approach to sparse conic
reformulations. Rather than treating completability of a matrix as an abstract concept we
identify a cone that is isomorphic to the cone of completeable partial matrices with arrowhead
sparsity pattern, denotedCMP , as a generalization of the set-completely positivematrix cone.
We show that the geometry of this cone can be used in order to derive a lower dimensional
alternative to the exact reformulation (2). Much the same way one uses inner and outer
approximations in order to solve copositive optimization problems, we derive inner and
outer approximations of CMP in order to obtain upper and lower bounds to this new conic
optimization problem. Numerical experiments show that in practice these approximations
exhibit interesting beneficial properties.

Outline

The rest of the article is organized as follows: In Sect. 2 we will give a short discussion on
existing approaches to sparse conic optimization and discuss the limitations that ultimately
make these techniques unfit to tackle sparse reformulations of (2). Hence, we develop an
alternative approach in Sect. 3, based on the aforementioned convex cone CMP . This new
type of convex reformulation motivates a strategy to sparse optimization that is analogous
to classical copositive optimization techniques, where difficult conic constraints are approx-
imated via inner and outer approximations. In Sect. 4 we present many such approximations
and discuss their limitations. Finally, we asses the efficacy of our approach in extensive
numerical experiments.

Notation

Throughout the paper matrices are denoted by sans-serif capital letters (e.g.Owill denote the
zero matrix, where the size will be clear from the context), vectors by boldface lower case
letters (e.g. o will denote the zero vector, ei will denote a vector of zeros with a one at the
i-th coordinate) and scalars (real numbers) by simple lower case letters. Sets will be denoted
using calligraphic letters, e.g., cones will often be denoted byK. We use Sn to indicate the set
of symmetric matrices and Sn+/Sn− for the sets of positive-/negative-semidefinite symmetric
matrices, respectively. Moreover, we use Nn to denote the set of entrywise nonnegative,
symmetricmatrices.We also use the shorthand notation [l :k]:= {l, l + 1, . . . , k − 1, k} ⊆ N.
For a given setAwedenote its convexhull by conv(A). For a convex setC, the set of generators
of its extreme rays and points is given by ext(C). Also, for a cone K ⊆ R

n we denote as

K∗:=
{
x ∈ R

n : yTx ≥ 0, ∀y ∈ K
}

,

its dual cone. We also make use of the Frobenius product of two appropriately sized matrices
A and B defined as A • B:=trace(ATB), which can be interpreted as the sum of the inner
products of the columns of A and B.
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2 Classical approaches to sparse conic optimization and why they fail

As stated in the introduction, there are alreadymany approaches for utilizing sparsity patterns
in conic optimization problems. At the core of these results lie matrix completion theorems,
which we will discuss shortly. But in order to state them we must introduce some essential
terms first.

A graph G = (V, E) is given by its set of vertices V = {v1, . . . , vn} and its set of edges
E ⊆ {{v, u} : v, u ∈ V}, both of which are finite. A subgraph T = (VT , ET ) of a graph
G is a graph such that VT ⊆ V and ET ⊆ E . Vertex v j is adjacent to v j and vice versa
if
{
vi , v j

} ∈ E . If e = {vi , v j } ∈ E then vi and v j are incident on e. A graph where all
vertices are adjacent to one another is called a complete graph. A path that connects vertex
vi with v j is given by a sequence of edges so that

{{vi , vk1}, . . . , {vkp−1 , v j }
} ⊆ E , vki are

distinct and p > 1 is the length of that path. A graph is connected if any two vertices have a
connecting path. A graph that is not connected is disconnected. A cycle is path that connects
a vertex v to itself. A chord of a cycle with length greater than 3 is an edge that connects two
vertexes who are incident on two different edges of the cycle. A graph is chordal if every
cycle with length greater 3 has a chord. A collection of vertices in V that induce a subgraph
of G that is complete is called a clique. A block B of a graph is a subgraph that is connected,
has no disconnected subgraph that is obtained by removing just one vertex and its adjacent
edges (i.e. a cut vertex) from B, and is not contained in any other subgraph with these two
properties. A block-clique graph is a graph whose blocks are cliques.

A partial matrix of order n is a matrix whose entries in the i-th row and the j-th column
are determined if and only if (i, j) ∈ I ⊆ [1 : n]2 and are undetermined otherwise. A
matrix is said to be partial positive semidefinite/ completely positive/ doubly nonnegative if
and only if every fully determined principal submatrix is positive semidefinite/ completely
positive/ doubly nonnegative. A partial matrix is positive semidefinite/ completely positive/
doubly nonnegative completable if we can specify the undetermined entries so that the fully
specified matrix is semidefinite/ completely positive/ doubly nonnegative.

The specification graph of partial matrix A of order n is a graph G(A) with vertices
V = {vi : i ∈ [1 :n]} and edges E such that

{
vi , v j

} ∈ E if and only if the entry ai j is
specified. A symmetric matrix with G(A) = G is called a symmetric matrix realization of G.

The following three theorems give the key results on matrix completion as far as this text
is concerned:

Theorem 1 All partial positive semidefinite symmetric matrix realizations of a graph G are
positive semidefinite completable if and only if G is chordal.

Proof See [1, Theorem 1.39]. 
�
Theorem 2 Every partial completely positive matrix realization of a graph G is completely
positive completable if and only if G is a block-clique graph

Proof See [1, Theorem 2.33]. 
�
Theorem 3 Every partial doubly nonnegative matrix realization of a graph G is doubly
nonnegative completable if and only if G is a block-clique graph

Proof See [8]. 
�
These theorems can be used in order to establish that a constraint on a high-dimensional

matrix, say X, can be replaced by a number of constraints on certain principal submatrices
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of X without increasing the feasible set. This is achieved by showing that values for the
submatrices of X that fulfill the latter constraints can be completed to a full evaluation of X
that fulfills the original larger constraint. For the sake of illustration we present the following
toy example.

Example 1 Consider the optimization problem

min
X∈Sn+

{Q • X : B • X = 1} , (4)

where (Q)i j = (B)i j = 0 if |i − j | > 1, the remaining entries of B equal one and those of
Q are arbitrary. The entries of X that are outside the inner band of width 1 are not present
in neither the equality constraint nor the objective. Consider the relaxation of (4) where the
psd-constraints is replaced by(

Xii Xi j

X ji X j j

)
∈ S2+ ∀(i, j) : |i − j | = 1, i < j, (5)

and the entries of X outside of the inner band are dropped from the problem. Clearly, we
obtain a relaxation of the original problem since the new condition is necessary for the X to
be positive semidefinite. Also, the fact that we dropped entries of X can be thought of as a
replacement of the matrix X by a partial matrix, say X∗, whose entries outside the inner band
are not specified. In this case the specification graph of X∗ is easily checked to be chordal,
as it doesn’t contain any cycles at all. Hence, if all fully specified submatrices of X∗ are
positive semidefinite, i.e. (5) holds, then it can be completed to positive semidefinite matrix
by Theorem 1. The resulting matrix would be feasible for (4)with the same objective function
value, so that the relaxation turns out to be lossless.

One may attempt to similarly derive a sparse reformulation of (8) by invoking the com-
pletion results we discussed above. This would necessitate to show that a partial matrix of
the following form ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X ZT1 ZT2 . . . ZTS−1 ZTS
Z1 Y1,1 ∗ . . . ∗ ∗
Z2 ∗ Y2,2 . . . ∗ ∗
...

...
...

. . .
...

...

ZS−1 ∗ ∗ . . . YS−1,S−1 ∗
ZS ∗ ∗ . . . ∗ YS,S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

can be completed to a set-completely positive matrix whenever the submatrices(
X ZTi
Zi Yi,i

)
∈ CPP (K0 × Ki ) , i ∈ [1 : S].

Note, that this would coincide with the model in [5], which we discussed in the introduction,
so that the matrix completion theory is a promising contender for the desired explanation for
the effectiveness of themodel. The strategy appears feasible at first, at least for the case where
Ki are nonnegative orthants given that in this case, completion results are readily available.
Unfortunately it is futile, since the arrowhead structure is not block-clique outside of narrow
special cases, as we will now show.

123



Journal of Global Optimization

Lemma 4 Let S > 1 and consider a partial matrix where the specified entries exhibit an
arrow-head structure, i.e.⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X ZT1 ZT2 . . . ZTS−1 ZTS
Z1 Y1,1 ∗ . . . ∗ ∗
Z2 ∗ Y2,2 . . . ∗ ∗
...

...
...

. . .
...

...

ZS−1 ∗ ∗ . . . YS−1,S−1 ∗
ZS ∗ ∗ . . . ∗ YS,S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where X ∈ Sn1 , Yi,i ∈ Sn2 , Zi ∈ R
n2×n1 , i ∈ [1 : S], and let Gspec be its specification

graph. Then Gspec is chordal. If n1 ∈ {0, 1} then Gspec is also a block-clique graph, which
is not the case otherwise.

Proof We start out by showing that Gspec is chordal in general. We group the nodes of the
specification graph into S + 1 groups where the first group g0 = {1, . . . n1} are the nodes
that correspond to the first n1 rows of the matrix and whose internal edges are specified by
the north west entries X. The second group g1 = {n1 + 1, . . . , n1 + n2} corresponds to the
rows n1 + 1 to n1 + n2 whose internal edges are specified by the blocks Y2,2 and whose
external edges, connecting to neighbors outside of g1, are specified by Z1. The construction
of the remaining groups proceeds accordingly. We will now show that any cycle of length
greater 3 must have a chord. Note that all the groups are cliques since the blocks Yi,i are fully
specified. Thus, a cycle of length greater than 3 must have a chord if it is entirely contained in
one of the groups. We therefore only need to consider cycles that are not entirely contained
in one group. Also, any member of g0 is a neighbor to any other node in the graph since the
blocks Zi , i ∈ [1 : S] are fully specified. Thus, if a vertex v of g0 is visited by a cycle, then
the edge to any other node in the cycle that is not the predecessor of v gives a chord. A cycle
that visits more than one group needs to visit g0 since the other groups are not connected to
one another and thus has a chord.

If n1 = 1 then g0 is a singleton. A block cannot contain just vertices from multiple
gi , i ∈ [1 : S] since these groups are pairwise disconnected. A connection can only be
established by adding g0 but then the single node in g0 is a cut vertex, i.e. the subgraph
can become disconnected by deleting a single node and its adjacent edges. Hence, a block
of Gspec must be a subgraph formed from the union of g0 and one gi , i ∈ [1 : S] and the
respective edges. A subgraph formed from all the nodes of such a union, say T , cannot be
contained in any other block since the construction of such a block would require to add
nodes from a third group. Thus, T is a block, but it is also a clique since the qi is a clique
and the node in g0 is adjacent to all the members of gi .

If n1 = 0 then Gspec consists of S subgraphs that are cliques and pairwise disconnected,
hence they are blocks.

Otherwise, the entire graph is its only block since it cannot become disconnected by
deleting a single node and its adjacent edges, but this block is not a clique since gi , i ∈ [1 : S]
have no inter-group edges. 
�

As a consequence of the lemma, the traditional route for sparse conic reformulations
provides little insight: If Ki are positive orthants the completion theorems are not applicable
since (2) lacks the proper sparsity pattern. Also in that case, we cannot compare the DNN
relaxations of (2) and its sparse relaxation based on (3), since the same sparsity pattern would
be required. If Ki are neither the positive orthant nor the full space, we do not even have any
completion results to begin with.
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Still, the present methodology allows for at least some insight into the benefits of working
with (3), namely in the form of the following performance guarantee.

Theorem 5 Let val(SDP) be the optimal value of problem (2) after CPP(R+ ×S
i=0 Ki ) is

replaced by Sn1+Sn2+1
+ and let val(R) be that optimal value after replacing the full conic

constraint with the conic constraints in (3). We have val(SDP) ≤ val(R) and the statement
also holds if we replace the cones CPP(R+ × K0 × Ki ), i ∈ [1 : S] in (3) by any other
subsets of Sn1+n2+1

+ .

Proof Clearly, the twoproblemshave the sameobjective function, soweonly need to compare
the feasible sets. Let (X, Y1, . . . , YS, Zi , . . . , ZS, x, y1, . . . , yS) be such that⎛

⎝ 1 xT yTi
x X ZTi
yi Zi Yi

⎞
⎠ ∈ CPP(R+ × K0 × Ki ) ⊆ Sn1+n2+1

+ , i ∈ [1 : S], (6)

and the linear constraints in (2) are fulfilled, i.e. we have a feasible solution for the opti-
mization problem defining val(R). The setinclusion holds since, CPP(KA) ⊆ CPP(KB)

whenever KA ⊆ KB , and Sn+ = CPP(Rn). All we need to show, is that, after setting
Yi,i = Yi , i ∈ [1 : S], we can find Yi, j , i �= j such that we can construct a positive semidefi-
nite matrix. By Theorem 1 it suffices to show that the specification graph of the partial matrix
where Yi, j , i �= j are not specified is a chordal graph and that all fully specified principal
submatrices are positive semidefinite. So consider the partial matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 xT yT1 yT2 . . . yTS−1 yTS
x X ZT1 ZT2 . . . ZTS−1 ZTS
y1 Z1 Y1,1 ∗ . . . ∗ ∗
y2 Z2 ∗ Y2,2 . . . ∗ ∗
...

...
...

...
. . .

...
...

yS−1 ZS−1 ∗ ∗ . . . YS−1,S−1 ∗
yS ZS ∗ ∗ . . . ∗ YS,S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since in all but the first two columns (we use this word now referring to literal columns
in the above representation) have unspecified blocks one can only obtain fully specified
principal submatrices if one deletes all but one of the partially specified columns and all but
the respective rows (again in the literal sense). The so obtained blocks are precisely the blocks
in (6) and are thus positive semidefinite. The chordality of the specification graph follows
from Lemma 4. This completes the proof. 
�

The theorem states that our sparse, hence low dimensional, relaxation is at least as strong
as the fully dimensional SDP-relaxation and thus gives a theoretical performance guarantee.
It also applies to relaxations of (3) such as the DNN -relaxation since DNN n ⊆ Sn+.

Remark 1 We could have arrived at Lemma 4 by using the results in [11] who describe a
chordality-detection procedure for SDPs with chordal sparsity pattern. The chordality of the
arrow head matrices was also observed in [2, 20]. However, it is more convenient for the
reader if this technical detail is proved here directly. It is nonetheless important to note that
the above result is not the first of its kind, but can be obtained directly from known results
in literature. Still, to the best of our knowledge, the context in which we use this technique is
original.
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Remark 2 At this point we would also like to highlight a specific shortcoming of the above
completion theorems. An inattentive reading of their claims might give the false impression
that, as an example, for a partial psd-matrix to be completable, it needs to have a chordal
specification graph. This assessment is incorrect. A partial psd-matrix M may have a speci-
fication graph G(M) that is not chordal, while still being psd-completeable. All the theorem
says is that not all partial psd-matrices with specification graph G(M) are psd-completable.
But that does not exclude the possibility that some still can be completed. This is significant,
since for a sparse relaxation to be exact it suffices that its optimal set contains just one
appropriately completable matrix. To additionally require that all other feasible matrices, or
more so, all matrices with the same sparsity pattern are completable is needlessly restrictive,
which explains part of the inflexibility of the classical machinery.

3 An alternative approach to sparse reformulations

We have seen that the classical approach to sparse reformulations is limited in several capaci-
ties. It is restrictive with respect to the conesKi and it is inflexible with respect to the sparsity
structure, such that it is ultimately ill-equipped to tackle sparse reformulations of (2). We
therefore propose and alternative strategy, where we provide a convex-conic reformulation
of (1) based on a generalization of CPP that rests on a lifting of the space of variables into
a space that is of lower dimension than required for the classical CPP-reformulation (2).
Hence, the reformulation is already sparse, which comes at the price of having to optimize
over a new, complicated cone. This, however, is just a new guise of an old problem in copos-
itive optimization, and we will meet in a, thus, familiar fashion: by providing inner and outer
approximations, that provide upper and lower bounds on the problem whose gap is hopefully
small or even zero. In order to achieve this we will first introduce some necessary concepts,
that will allow us to state and proof our main reformulation result. After that, we close this
section with a detailed description of our approach.

3.1 The space of connected componentsSS,k
n and the cone of completable,

completely positive, connected components CMP

We define

SS,k
n :=

{[(
X ZT1
Z1 Y1

)
, . . . ,

(
X ZTS
ZS YS

)]
:
(
X ZTi
Zi Yi

)
∈ Sn, i ∈ [1 : S], X ∈ Sk

}
,

i.e. the set of vectors of S symmetric matrices of order n connected by a component of order
k, which we call the space of connected components. In order to distinguish elements of SS,k

n

from normal matrices we use san-serif letters braced by rectangular braces, for example [A].
Note, that SS,k

n is isomorphic to the space of arrowhead matrices by the isomorphism

� : SS,k
n → Sk+Sn, [A] �→ � ([A]) :=

⎛
⎜⎜⎜⎝

X ZT1 . . . ZS
Z1 Y1 . . . O
...

...
. . .

...

ZS O . . . YS

⎞
⎟⎟⎟⎠ ,
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where for the inverse we have

�−1

⎛
⎜⎜⎜⎝

X ZT1 . . . ZS
Z1 Y1 . . . O
...

...
. . .

...

ZS O . . . YS

⎞
⎟⎟⎟⎠ =

[(
X ZT1
Z1 Y1

)
, . . . ,

(
X ZTS
ZS YS

)]
∈ SS,k

n .

Thus, SS,k
n is a vector space with a natural inner product [A] � [B] :=� ([A]) • � ([A]), sum

[A]⊕[B] :=� ([A])+� ([A]) and scalarmultiplication λ [A] :=�−1 (λ� ([A])). For notational
convenience we will expand the meaning of the inverse �−1 so that it is applicable to non-
arrowhead matrices as well, where the nonzero off-diagonal blocks are treated as though
they were blocks of zeros as in the definition above. Also, we define a second, analogous
isomorphism �∗(·) that maps into the space of partial matrices where the blocks of zeros in
the definition of �(·) are not specified. We also will use the shorthand notation

[(
X ZT1
Z1 Y1

)
, . . . ,

(
X ZTS
ZS YS

)]
=
[(

X ZTi
Zi Yi

)]
i∈[1:S]

.

The central object we are interested in is the following subset of SS,k
n :

CMP (K0, . . . ,KS):=conv

{[(
x
yi

)(
x
yi

)T
]
i∈[1:S]

:
(
x
yi

)
∈ K0 × Ki , i ∈ [1 : S]

}
,

where K0 ⊆ R
k, Ki ⊆ R

n−k, i ∈ [1 : S] are convex cones, which we refer to as ground
cones. We often use CMP without its arguments as a colloquial term, in case the respective
ground cones are not important to, or clear from, the context at hand. The same is true for all
abbreviations of its inner and outer approximations that will be discussed later in the text.

We call CMP the cone of completable, completely positive, connected components and
we will justify that name in a latter section. Further, we define genCMP to be the set of its
generators, i.e. the set we obtain by omitting the conv-operator in the definition of CMP .
We also like to note, that for the case S = 1 the cone CMP reduces to CPP , with its ground
cone given byK0×K1. Further, if k = n the ground cone reduces toK0, so that CMP can be
seen as a generalization of CPP . However, we will see later in the text, that in fact a certain
type of correspondence holds between the two objects (see Remark 3).

3.2 Main result: a new type of convex reformulation, with reduced dimension

The derivation of our main result relies heavily on the very general framework from [13], for
achieving convex reformulations for a large array of problems. In the following paragraphswe
will give a small and simplified account of their results in order to make the derivation of our
main result as transparent as possible. The two theoremswe discuss shortly are specializations
of theorems in [13], which we prove here for the readers convenience. To distinguish this
more abstract discussion from the rest of the paper, and to highlight the special role of the sets
we are about to introduce, we diverge from the convention of denoting sets via calligraphic
capital letters and use blackboard bold capital letters.

We start out be investigating a more general question. So, let V be a vector space of
dimension n. For a (possibly nonconvex) cone K ⊆ V, and vectors Q,H0 ∈ V and a convex
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set J ⊆ conv(K). We want to know when we have the equality:

min
X∈V

{〈Q,X〉 : X ∈ K ∩ J, 〈H0,X〉 = 1} = min
X∈V

{〈Q,X〉 : X ∈ J, 〈H0,X〉 = 1}?

Defining H:= {X : 〈H0,X〉 = 1}, we can equivalently ask for conditions for the equality

conv(H ∩ K ∩ J) = H ∩ J.

The following theorem gives an answer based on convex geometry.

Theorem 6 For H,K, J as above, assume that H ∩ J �= ∅ is bounded and that J is a face of
conv(K). Then conv(H ∩ K ∩ J) = H ∩ J.

Proof For the "⊆"-inclusion, since H ∩ K ∩ J ⊆ H ∩ J and the latter set is convex, there is
nothing left to show. For the converse, let X ∈ H∩ J. Then X ∈ conv(K) since J ⊆ conv(K),
so that X = ∑n

i=1 Xi with Xi ∈ K\ {O} but also Xi ∈ J since J is a face of conv(K) so that
Xi ∈ K ∩ J. Now, 〈H0,Xi 〉 > 0 since H ∩ J �= ∅ is bounded. Define λi = 〈H0,Xi 〉. We
have 〈H0,X〉 = ∑

i 〈H0,Xi 〉 = ∑
i λi = 1 and λ−1

i Xi=:X̄i ∈ K ∩ J and thus X = ∑
i λi X̄i ∈

conv(H ∩ K ∩ J). 
�

This theorem motivates the search for a condition that lets us identify faces of convex cones,
which are provided in the following theorem.

Theorem 7 Assume that J = {X ∈ conv(K) : 〈Ai , X〉 = 0, i ∈ [1 :m]} and define Jp:=
{X ∈ conv(K) : 〈Ai , X〉 = 0, i ∈ [1 : p]} so that Jm = J and J0 = conv(K).
If Ap ∈ J

∗
p−1, p ∈ [1 :m] then J is a face of conv(K).

Proof Since a face of a face a convex set is itself a face of that set, the claim will follow by
induction if we can show that

Ap ∈ J
∗
p−1 �⇒ Jp is a face of Jp−1.

So let Jp � X = X1 +X2 with Xi ∈ Jp−1, i ∈ {1, 2}. We have 〈Ap,Xi 〉 ≥ 0 since Ap ∈ J
∗
p−1

so that 0 = 〈Ap,X〉 = 〈Ap,X1〉 + 〈Ap,X2〉 implies that actually 〈Ap,Xi 〉 = 0 and we indeed
have Xi ∈ Jp, i ∈ {1, 2}. 
�

Based on the above theorems, it is quite straight forward to prove the classical result
from [6], at least for the case where the linear portion of the set is bounded, with K =
extCPP(R+ ×K) and J equal to the feasible set of the conic reformulation (we omit laying
out the details here, but the steps required are equivalent to the ones laid out in the proof of
Theorem 8). A natural question is, whether we can execute a similar strategy for proving the
exactness of a conic reformulation of reduced dimension by replacing the cone of extreme
rays of CPP(K) with another appropriately structured object as our choice for K.

In the following theoremweshow that by choosingK = genCMP ((R+ × K0) ,K1, . . . ,KS)

and J and H appropriately we can use Theorem 6 in order to obtain an exact conic reformu-
lation of (1).

Theorem 8 Considering (1), assume Fi := {(
xT, yTi

) ∈ K0 × Ki : Fix + Giyi = ri
}
are

nonempty bounded sets. Further, assume that(
x, yi

) ∈ Fi , i ∈ [1 : S] �⇒ Q j (x, y1, . . . , yS) ≥ 0, j ∈ [1 :K ]. (7)
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Then (1) is equivalent to the following conic optimization problem:

min
[X]∈SS,n1+1

n1+n2+1

[C] � [X]

s.t. : [H0] � [X] = 1,

[Fi ] � [X] = 0, i ∈ [1 : S],
Q̂ j ([X]) = 0, j ∈ [1 :K ],

[X] ∈ CMP ((R+ × K0) ,K1, . . . ,KS) ,

(8)

where [C], [H0], [Fi ] ∈ SS,n1+1
n1+n2+1, i ∈ [1 : S] are defined as

[C]:=�−1

⎛
⎜⎜⎜⎜⎜⎝

0 1
2a

T 1
2c

T
1 . . . 1

2c
T
S

1
2a A 1

2B1 . . . 1
2BS

1
2c

T
1

1
2B

T
1 C1 . . . O

...
...

...
. . .

...
1
2c

T
S

1
2B

T
S O . . . CS

⎞
⎟⎟⎟⎟⎟⎠ , [H0] = �−1

(
e1eT1

)
,

[Fi ]:=�−1
(
(−ri , Fi ,O, . . . ,Gi , . . . ,O)T (−ri , Fi ,O, . . . ,Gi , . . . ,O)

)
.

and Q̂ j (·) : SS,n1+1
n1+n2+1 → R are linear functions such that

Q̂ j

⎛
⎜⎜⎜⎜⎜⎜⎝

�−1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

x0
x
y1
...

yS

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0
x
y1
...

yS

⎞
⎟⎟⎟⎟⎟⎠

T
⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= Q j (x, y1, . . . , yS), j ∈ [1 :K ]
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Proof Consider the following equivalences

Fix + Giyi = ri , yi ∈ Ki , i ∈ [1 : S], x ∈ K0,

Q j (x, y1, . . . , yS) = 0, j ∈ [1 :K ],
�∥∥∥∥∥∥∥∥∥∥∥∥

(−ri , Fi ,O, . . . ,Gi , . . . ,O)

⎛
⎜⎜⎜⎜⎜⎜⎝

x0
x
y1
.
.
.

yS

⎞
⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥

2

= 0, yi ∈ Ki , i ∈ [1 : S], x∈K0, x0≥0, x20 = 1,

Q j (x, y1, . . . , yS) = 0, j ∈ [1 :K ],
�

[X]=�−1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

x0
x
y1
.
.
.

yS

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x0
x
y1
.
.
.

yS

⎞
⎟⎟⎟⎟⎟⎟⎠

T⎞⎟⎟⎟⎟⎟⎟⎠
, [Fi ] � [X] = 0, yi∈Ki , i∈[1 : S], x∈K0, x0≥0, x20 = 1,

Q̂ j ([X]) = 0 j ∈ [1 :K ]
�

[H0] � [X] = 1,

[Fi ] � [X] = 0, i ∈ [1 : S],
Q̂ j ([X]) = 0 j ∈ [1 :K ],

[X] ∈ genCMP ((R+ × K0) ,K1, . . . ,KS) .

Invoking Theorem 6, we specify

K = genCMP ((R+ × K0) ,K1, . . . ,KS) ,

H =
{
[X] ∈ SS,n1+1

n1+n2+1 : [H0] � [X] = 1
}

,

and we need to show that

J =
{
[X] ∈ CMP ((R+ × K0) ,K1, . . . ,KS) : [Fi ] � [X] = 0, i ∈ [1 : S]

Q̂ j ([X]) = 0, j ∈ [1 :K ]
}

,

is a face of CMP ((R+ × K0) ,K1, . . . ,KS). By Theorem 7, this will follow if we can
show that [Fi ] � [X] ≥ 0, ∀[X] ∈ CMP ((R+ × K0) ,K1, . . . ,KS) , i ∈ [1 : S] and that
Q̂ j ([X]) ≥ 0, j ∈ [1 : K ] whenever [X] fulfills the homogeneous and conic constraints in
the description of the feasible set of the conic optimization problem. We will first show, that
the statement of the theorem would hold if the quadratic constraints were omitted. Indeed
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for any of the [Fi ] and any [X] ∈ genCMP ((R+ × K0) ,K1, . . . ,KS) we have

Fi t�[X] =
(
(−ri , Fi , . . . ,Gi , . . . )

T (−ri , Fi , . . . ,Gi , . . . )
)

•

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x20 x0xT x0yT1 . . . x0yTS
x0x xxT xyT1 . . . xyTS
x0y1 y1xT y1yT1 . . . O

...
...

...
. . .

...

x0yS ySxT O . . . ySyTS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (−ri , Fi ,Gi
)T (−ri , Fi ,Gi

) •
⎛
⎝ x20 x0xT x0yTi
x0x xxT xyTi
x0yi yixT yiyTi

⎞
⎠

=
∥∥∥∥∥∥
(−ri , Fi ,Gi

)⎛⎝x0
x
yi

⎞
⎠
∥∥∥∥∥∥
2

≥ 0.

To complete the first part of the argument we need to show that the feasible set is bounded.
To this end we consider its recession cone which by [17, Corollary 8.3.3.] is given by

0+F := {[X] ∈ CMP ((R+ × K0) ,K1, . . . ,KS) : [H0] � [X] = 0, [Fi ] � [X] = 0, i ∈ [1 : S]} .

Take an arbitrary [X] ∈ 0+F , then

[Fi ] � [X] =
k∑

l=1

λl

∥∥∥∥∥∥
(−ri , Fi ,Gi

)⎛⎝x0l
xl
yil

⎞
⎠
∥∥∥∥∥∥
2

= 0, i ∈ [1 : S] and

[H0] � [X] =
k∑

l=1

(
x0l
)2 = 0, implying that x0l = 0, l ∈ [1 :k].

Thus, for any i ∈ [1 : S] and l ∈ [1 :k]we have Fixl+Giyil = o and
(
0, xl , yil

) ∈ R+×K0×Ki

so that we have a element of the recession cone of Fi , which only contains the origin by the
boundedness assumption, so that [X] = [O]. So far our arguments imply that

Ĵ:= {[X] ∈ CMP ((R+ × K0) ,K1, . . . ,KS) : [Fi ] � [X] = 0, i ∈ [1 : S]}

is a face of K, hence its extreme points correspond to extreme rays of K by Theorem 6, that
is genCMP ((R+ × K0) ,K1, . . . ,KS). But then (7) implies that Q̂ j ([X]) ≥ 0, j ∈ [1 :K ]
whenever [X] ∈ Ĵ so that by Theorem 7 the set J is a face ofK and our theorem follows from
Theorem 6. 
�

While the above representation of the conic problem is convenient for the application of
Theorems 6 and 7 and the statement of the proof, we can use [7, Proposition 3] in order to
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present it in a more familiar form:

min
X,Yi ,Zi ,x,yi

Ai • X + aTx +
S∑

i=1

[
Bi • Zi + Ci • Yi + cTi y

]
s.t. : Fix + Giyi = ri , i ∈ [1 : S],

diag

((
Fi Gi

) (X ZTi
Zi Yi

)(
FTi
GT
i

))
= ri ◦ ri , i ∈ [1 : S],

Q̂ j (x,X, y1, Z1, Y1, . . . , yS, ZS, YS) = 0, j ∈ [1 :K ],⎡
⎣
⎛
⎝ 1 xT yTi
x X ZTi
yi Zi Yi

⎞
⎠
⎤
⎦
i∈[1:S]

∈ CMP ((R+ × K0) ,K1, . . . ,KS) .

(9)

Before discussing this new type of conic reformulation, we want to point out, that there
is a another way to prove Theorem 8. First, we make the following observation:

Theorem 9 The partial matrix

M∗:=

⎛
⎜⎜⎜⎝

X ZT1 . . . ZS
Z1 Y1 . . . ∗
...

...
. . .

...

ZS ∗ . . . YS

⎞
⎟⎟⎟⎠ ,

is completable to a matrix in CPP(K0 ×S
i=1 Ki ) if and only if there are decompositions

(
X ZTi
Zi Yi

)
=
(
X̄X̄

T
X̄Ȳ

T
i

Ȳi X̄
T
Ȳi Ȳ

T
i

)
, with

(
X̄
Ȳi

)
∈ Kr

0 × Kr
i , i ∈ [1 : S], r ∈ N,

hence, if and only if[(
X ZTi
Zi Yi

)]
i∈[1:S]

∈ CMP ((R+ × K0) ,K1, . . . ,KS) .

Proof Given said decompositions we can create a matrix

⎛
⎜⎜⎜⎝

X̄
Ȳ1
...

ȲS

⎞
⎟⎟⎟⎠ for which

⎛
⎜⎜⎜⎝

X̄
Ȳ1
...

ȲS

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

X̄
Ȳ1
...

ȲS

⎞
⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎜⎝

X̄X̄
T

X̄Ȳ
T
1 . . . X̄Ȳ

T
S

Ȳ1X̄
T
Ȳ1Ȳ

T
1 . . . Ȳ1Ȳ

T
S

...
...

. . .
...

YS X̄
T
ȲS Ȳ

T
1 . . . ȲS Ȳ

T
S

⎞
⎟⎟⎟⎟⎠ ∈ CPP(×S

i=0Ki ),

is the desired completion of M∗. Conversely, if M∗ has a completion M ∈ CPP(×S
i=0Ki )

then by definition of the latter cone we have

M =

⎛
⎜⎜⎜⎜⎝

X̄X̄
T

X̄Ȳ
T
1 . . . X̄Ȳ

T
S

Ȳ1X̄
T
Ȳ1Ȳ

T
1 . . . Ȳ1Ȳ

T
S

...
...

. . .
...

YS X̄
T
ȲS Ȳ

T
1 . . . ȲS Ȳ

T
S

⎞
⎟⎟⎟⎟⎠ ,
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so that (
X ZTi
Zi Yi

)
=
(
X̄X̄

T
X̄Ȳ

T
i

Ȳi X̄
T
Ȳi Ȳ

T
i

)
, with

(
X̄
Ȳi

)
(K0 × Ki )

r , i ∈ [1 : S], r ∈ N.


�
Remark 3 The theorem is easily derived, but it highlights the key difficulty for the construction
of a completion of the arrow-head arrangement of a set of matrix blocks connected by a
common submatrix X. If all of the blocks have representations as convex-conic combinations
(i.e. nonnegative linear combinations) where the parts of the representations that form the
connecting X-component are identical for all blocks, obtaining the completion is simply a
matter of concatenating the individual factors of the decompositions. However, there is no
guarantee that decompositions that are coordinated in this manner do exist. Nonetheless, we
can now clearly see the correspondence between CMP and CPP hinted at, at the end of
Sect.3.1: From any matrix in CPP , if its ground cone is given by ×S

i=0Ki , one can carve out
an arrow head shaped partial matrixM∗ so that �−1∗ (M∗) is an element of CMP .Conversely,
such an element uniquely corresponds to a partial arrow head matrix that can be completed
to at least one element of CPP .

Now, it is clear that the following optimization problem is equivalent to (2):

min
X,Yi ,Zi ,x,yi

Ai • X + aTx +
S∑

i=1

[
Bi • Zi + Ci • Yi + cTi y

]
s.t. : the linear constraints of (2) hold and⎛

⎜⎜⎜⎜⎜⎝

1 xT yT1 . . . yTS
x X ZT1 . . . ZTS
y1 Z1 Y1 . . . ∗
...

...
...

. . .
...

yS ZS ∗ . . . YS

⎞
⎟⎟⎟⎟⎟⎠ can be completed to a matrix in CPP(R+ ×S

i=0 Ki ),

(10)

but the latter constraint holds whenever the conic constraint in (9) holds. Thus, we can close
the relaxation gap between (9) and (1) by appealing to Burer’s reformulation and Theorem 9.
However, we believe it is valuable to have a direct proof that is solely based on the geometry
of CMP and does not explicitly reference matrix completion. Firstly, we avoid referencing
something abstract, namely completability, by invoking something relatively concrete, i.e.
the geometry of the respective convex cone. Secondly, the proof shows that the homogenized
feasible set of (9) is a face of the respective instance of CMP , which may be a useful insight
for future investigations of this object. Finally, the proof is a somewhat unexpected application
of the theory laid out in [13], which may inspire similar approaches to convex reformulations
where a desired property, in our case completability, is inscribed in the structure of the cone
K.

To summarize, the reformulation we obtained is similar to the one obtainable from [6] in
that it is a linear-conic optimization problem over an appropriately structured convex cone.
The advantageof our reformulation is that the number of variables is S(n1+n2)(n1+n2+1)/2,
while for the traditional approach this number would be (n1+Sn2)(n1+Sn2+1)/2, which is
a bigger number if S is big enough. However, similarly to CPP , we cannot directly optimize
over CMP since no workable description is yet known for this novel object. We therefore
propose the following strategy.
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3.3 A new strategy for sparse conic reformulations

As stated before, optimizing over CMP necessitates the applications of appropriate inner and
outer approximations of that cone. On the one hand, we thus look for necessary conditions
[M] ∈ SS,k

n has to meet lest completing �∗ ([M]) to a matrix in the respective CPP-cone is
impossible, and we denote the subset of connected components that meet these conditions
by Cnes ⊇ CMP . On the other hand we look for subsets Csu f ⊆ CMP , in other words, we
look for sufficient conditions on a connected component [M] ∈ SS,k

n so that �∗ ([M]) is in
fact completable.

As we will show in the next section such necessary and/or sufficient conditions can be
formulated in terms of CPP constraints. Such constraints are again intractable in general so
we need an additional step in order to take advantage of these approximations. Set-compeltely
positive matrix cones are very well studied objects and strong inner and outer approxima-
tions feature prominently in the existing literature (see [3] for extensive discussion). These
approximations can thus be used to find tractable approximations of Csu f and Cnes . More pre-
cisely, whenever we describe Cnes via set-completely postive constraints, we can loosen these
constraints via tractable outer approximation of CPP as to obtain a new set Couter ⊇ Cnes .
Conversely, replacing CPP in the description Csu f with a tractable inner approximation we
obtain an inner approximation Cinner ⊆ Csu f . In total we get:

Cinner ⊆ Csu f ⊆ CMP ⊆ Cnes ⊆ Couter ,

hence, tractable inner and outer approximations of CMP .
The two step nature of our proposed approximation procedure stems from the fact that

there are two sources of difficulty that necessitate resorting to approximations. The first
one is the requirement of completability, which is addressed by the inner two of the above
inclusions. The second one is the requirement of set-completely positivity, addressed by the
outer two of the above inclusions.

Hence, whenever we approximately solve (9) by replacing CMP by its tractable inner
and outer approximations we incur a relaxation gap that consists of two components. The
portion of the gap that results from a failure of meeting the completability requirement we
henceforth refer to as completability gap, while the portion of the gap the stems from the
approximation error caused by the relaxation of the CPP constraints will be refered to as the
completepositivity gap.

In the next section we will mostly be concerned with narrowing the completability gap
by providing promising examples for Cnes and Csu f . Also, most of the discussion in the rest
of the article will focus on the quality of this gap. We will, however, also provide some
references to approximations of CPP , in order to give some orientation on how to narrow
the completepositivity gap as well. In the section on our numerical experiments we will also
show some strategies on how to bypass this gap entirely, albeit in limited cases.

4 Inner and outer approximations of CMP based on set-completely
positive matrix cones

Our goal in this section is to identify conditions on an element [M] ∈ SS,k
n that are either

sufficient or necessary for �∗([M]) to have a set-completely positive completion. In the
following discussion we will show that many such conditions can be given in terms of set-
completely positive cone constraints.
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4.1 An outer approximation via necessary conditions

For a vector of ground cones K̄:= (K0, . . . ,KS), we define yet another generalization of the
set-completely positive matrix cone

CPI (K̄):={[( X ZT1
Z1 Y1

)
, . . . ,

(
X ZTS
ZS YS

)]
:
(
X ZTi
Zi Yi

)
∈ CPP(K0 × Ki ), i ∈ [1 : S]

}
,

for which we can prove the following.

Theorem 10 We have that CPI (K̄) ⊇ CMP (K̄).
Proof By setting X = xxT, Zi = yix, Yi = yiyTi we see that the generators of CMP are
contained in CPI and by convexity CMP itself is contained. 
�

We thus have an outer approximations of CMP in terms of set-completely positive matrix
blocks, which is convenient for approximately optimizing of over CMP since set-completely
positive optimization is a well researched field.

4.2 Inner approximations via sufficient conditions

We define

CPS (K̄):=
{[(

X ZTi
Zi Yi

)]
i∈[1:S]

:
(
Wi ZTi
Zi Yi

)
∈ CPP(K0 × Ki ), i ∈ [1 : S],

S∑
i=1

Wi = X

}
.

While it is not immediately obvious, the above cone is in fact a subset of CMP . In fact the
generators of CPS are a subset of the generators of CMP as we will now show.

Theorem 11 CPS (K̄) ⊆ CMP (K̄) if Ki , i ∈ [1 : S] contain the origin.

Proof Let [X̄] ∈ CPS, we need to to show that(
X ZTi
Zi Yi

)
=

r∑
k=1

(
xk

yki

)(
xk

yki

)T

, with

(
xk

yki

)
∈ K0 × Ki , k ∈ [1 :r ], i ∈ [1 : S].

for some fixed r ∈ N. The important aspect is that the decomposition of the X-component
does not change across i ∈ [1 : S]. We have(

Wi ZTi
Zi Yi

)
=

ri∑
k=1

(
wk
i

yki

)(
wk
i

yki

)T

with

(
wk
i

yki

)
∈ K0 × Ki , k ∈ [1 :ri ], i ∈ [1 : S].

We can set r = ∑S
i=1 ri and we have X = ∑S

i=1 Wi = ∑S
i=1

∑ri
k=1 w

k
i (w

k
i )

T so that

(
X ZTi
Zi Yi

)
=

ri∑
k=1

(
wk
i

yki

)(
wk
i

yki

)T

+
∑

j∈[1:S]\{i}

r j∑
k=1

(
wk

j
o

)(
wk

j
o

)T

.

with (
wk
i

yki

)
∈ K0 × Ki , k ∈ [1 :ri ],

(
wk

j
o

)
∈ K0 × Ki , k ∈ [1 :r j ], j ∈ [1 : S] \ {i} ,

where the last inclusion holds, since Ki contain the origin. 
�
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For obtaining a second approximation, we can use a slight generalization of known results
onmatrix completion to obtain another inner approximation for the caseK0 = R

n1+ .We define

CBCk
(K̄):=

{[(
X ZTi
Zi Yi

)]
i∈[1:S]

:
(
x zTi
zi Yi

)
∈ CPP(R+ × Ki ),

Zi = zieTk
X = xekeTk

, i ∈ [1 : S]
}

,

and

CBC (K̄) := n1∑
k=1

CBCk
(K̄) .

Then we can prove the containment

Theorem 12 CBC (K̄) ⊆ CMP (K̄) for K0 = R
n1+ .

Proof Since convex cones are closed under addition the statement will follow if we show
that CBCk

(K̄) ⊆ CMP (K̄) for any k ∈ [1 :n1]. For an element of CBCk consider the partial
matrix

M:=

⎛
⎜⎜⎜⎝

x zT1 . . . zTS
z1 Y1 . . . ∗
...

...
. . .

...

zS ∗ . . . YS

⎞
⎟⎟⎟⎠ , for which by construction

(
x zTi
zi Yi

)
∈ CPP (R+ × Ki ) holds.

If x = 0 then it follows that zi = o, i ∈ [1 : S] in which case a completion of M to a
matrix in CPP(R+ ×S

i=1 Ki ) is easily constructed by concatenating the zero vector with the

decompositions of Yi = Ȳi Ȳ
T
i , Ȳi ∈ Kri

i , i ∈ [1 : S], where we can insert columns of zeros
in case ri are not all identical. Thus, we can assume x = 1. We will proof thatM can still be
completed to a member in CPP(R+ ×S

i=1Ki ). The desired inclusion then follows since zero
rows and columns can be added in order to obtain a member of CPP(R

n1+ ×S
i=1 Ki ).

Our proof involves merely a slight adaptation of the argument used for the completion
of partial completely positive matrices given in [8], who considered the case where Ki are
all positive orthants. We show that such an assumption is unnecessary. Let us proceed by
induction and start by showing that the first (2n2 + 1) × (2n2 + 1) principal submatrix ofM
can be completed to a matrix in CPP (R+ × K1 × K2). After a permutation, this matrix can
be written as

M̄:=
⎛
⎝Y1 z1 XT

zT1 1 zT2
X z2 Y2

⎞
⎠

where we replaced the unspecified entries by X. Observe that the submatrices

M1:=
(
Y1 z1
zT1 1

)
∈ CPP (K1 × R+) , M2:=

(
1 zT2
z2 Y2

)
∈ CPP (R+ × K2) ,

so that

M1 =
m1∑
l=1

(
fl
f 0l

)(
fl
f 0l

)T

with

(
fi
f 0i

)
∈ K1 × R+,

M2 =
m2∑
k=1

(
g0k
gk

)(
g0k
gk

)T

with

(
g0k
gk

)
∈ R+ × K2.
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Let us define m1m2 vectors as follows:

vlk :=
⎛
⎝ g0k fl

f 0l g
0
k

f 0l gk

⎞
⎠ ∈ K1 × R+ × K2, l ∈ [1 :m1], k ∈ [1 :m2]. (11)

Then the matrix
∑

k,l vlkv
T
lk is the matrix M̄ with X = z2zT1. Hence, after undoing the per-

turbation, we generate the desired completion. For the j-th induction step we can repeat the
argument with K1 replaced by × j−1

i=1K1 and K2 replaced by K j . 
�
Finally,we present a simple, yet, aswewill see in the numerical experiments, very effective

inner approximation, which is applicable whenever Ki ∈ {Rn2+ , R
n2
}
, i ∈ [1 : S]. Again,

we express it as the sum of simpler cones given by

DDCk,s
(K̄):=

⎧⎪⎪⎨
⎪⎪⎩
[(

X ZTi
Zi Yi

)]
i∈[1:S]

:
(
X z
zT y

)
∈ CPP(K0 × R+),

Zs = zeTk ,
Ys = yekeTk ,
Yi = O, i ∈ [1 : S] \ {s} ,

Zi = O, i ∈ [1 : S] \ {s}

⎫⎪⎪⎬
⎪⎪⎭ .

We can then define

DDC (K̄) := S∑
s=1

n2∑
k=1

DDCk,s
(K̄) ,

about which the following statement is easily proved.

Theorem 13 We have DDC (K̄) ⊆ CMP (K̄) if Ki ∈ {Rn2+ , R
n2
}
, i ∈ [1 : S].

Proof Since CMP is convex, it is enough to proof that DDCs,k
(K̄) ⊆ CMP (K̄) for any

k ∈ [1 : n2], s ∈ [1 : S]. For any [M] ∈ DDCs,k
(K̄) the required completion of �∗([M]) is

easily obtained by filling out the unspecified entries with zeros. 
�
Note, that the statement remains true if we merely work with a selection of DDCk,s in order
to alleviate some of the numerical burden.

All these inner and outer approximations we now discussed represent an effort to tackle
the completability gap. But, as we laid out at the beginning of this section, they all have
it in common that they are constructed using set-completely positive matrix cones, over
which we cannot optimize directly. In this text we will discuss some instances where the
completepositivity gap can be bypassed conveniently, so that we can focus on assessing the
extent of the completability gap.

4.2.1 Limitations of the inner approximations of CMP

We will now critically asses the strength of the inner approximations discussed above. Of
course, an obvious limitation ofCBC andDDC is that theX and theYi components respectively
can only be diagonal matrices. In case of CBC, this has some undesirable consequences when
approximating an exact reformulation of (1) based on Theorem 8.

Obviously, if CMP is replaced by CBC, then x = o, since these values reside in
off-diagonal of the north-west blocks. But then Theorem 8 implies that x is the convex
combination of some x j , j ∈ [1 :k] that are part of a feasible solution to (1). Since the feasi-
ble set is bounded we get x j = o as well, which eventually yields Zi = ∑k

j=1 λ jyijx
T
j = O,

so that the approximations eliminates these components entirely.
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A similar deficiency can be identified for CPS. To see this, note the from the proof of
Theorem 11 we have that all extreme rays of CPS are in fact rank one, in the sense that all
matrix components are rank one matrices. In other words the generators of CPS are a subset
of the generators of CMP . Hence, if CMP is replaced by CPS in (8) the extreme points of
the feasible set can be shown to be rank one as well, by invoking a similar argument as in
Theorem 8. If Yi , yi ,Wi , i ∈ [1 : S] are part of feasible extremal solution of the respective
approximation we get

(
wi
0 yTi

yi Yi

)
∈ Sn2+1

+ , i ∈ [1 : S],
S∑

i=1

wi
0 = 1,

where wi
0 are the north-west entries of Wi , i ∈ [1 : S]. By Schur complementation we get

Sn2+ � wi
0Yi − yiyTi = wi

0yiy
T
i − yiyTi , for any fixed i ∈ [1 : S], which implies that either

w0
i = 1 or yi = o. Thus, the approximations based on CPS eliminates all but one of the Yi

components and as a consequence all but one of the Zi components. Depending on the model
at hand, this can be an advantage as we will see in the numerical experiments in Sect. 5.
However, in case (Fi , Gi , ri ) is identical across i ∈ [1 : S], the approximations actually
eliminates all Yi and Zi components. To see this, consider that in said case we have that
diag(GiYiGT

i ) = O for one i forces the same for all i , which by boundedness implies Yi = O,
entailing Zi = O for all i ∈ [1 : S].

Despite these limitations we have found instances of (1) where the inner approximations
yield favorable results. We will discuss these instances in the next section, where we conduct
numerical experiments assessing the efficacy of the inner and outer approximations.

5 Numerical experiments

As discussed in the introduction, the authors of [5] tried to solve (2St3QP) using copositive
reformulations, where they compared the traditional model akin to (2), with what we can
now conceptualize as the CPI relaxation of the CMP reformulation of (2St3QP). For both
models, they used their respective DNN relaxations in order to produce solutions. For the
purpose of certifying optimality, they exploited the fact that either relaxation also produces
feasible solutions, hence upper bounds, since both leave the original space of variables in
tact. For many instances, these bounds alone closed the optimality gap, but for some gaps
persisted, even though they were narrowed by extensive polishing procedures, about which
we will not go into detail here. What we are setting out to do in this section is revisiting these
instances and new variants of them, in order to see if the bounds we introduced in this article
can further narrow the optimality gap.

In what follows we will use Mosek 9.2 as a conic optimization solver, and Gurobi 9.1 as
a global optimization solver, to both of which we interface via the YALMIP environment in
Matlab (see [14]). All experiments were run on a Intel Core i5-9300H CPU with 2.40GHz
and 16GB of ram.

In our experiments consider the following problem

v(F):= min
x∈Rn1 ,yi∈Rn2

{
xTAx +

S∑
i=1

pi
(
xTBiyi + yTi Ciyi

)
: (x, ȳ) ∈ F,

}
, (12)

123



Journal of Global Optimization

with the following specifications for F :

F1:=
{(

x
ȳ

)
∈ R

n1+Sn2+ : eTx + eTyi = 1, i ∈ [1 : S]
}

,

F2:=
{(

x
ȳ

)
∈ {0, 1}S × R

Sn2 : eTx = (S − 1),
S∑

i=1

yTi yi = 1, yi xi = o, i ∈ [1 : S]
}

,

F3:=
{(

x
ȳ

)
∈ R

n1+ × R
Sn2 : xTx+

S∑
i=1

yTi yi = 1

}
.

where ȳ:= (y1, . . . , yS).
The data for the objective functions coefficients were generated using the same two

approaches as in [5]. Next to setting pi = 1/S, i ∈ [1 : S], the following two schemes
for generating the problem data have been implemented:

Scheme 1: For the first one, we sample n1 + n2 points from the unit square. The first
n1 points are fixed and their mutual distances are used to populate the entries in A. For
the other n2 points we assume that they are only known to lie in square with side length
2ε, where their position follows a uniform distribution. For these points S samples are
generated and for the s-th sample, the distances between them and the first n1 points
populate the entries of Cs and Bs respectively.
Scheme 2: For the second one, we choose Ai j ∼ U{0,1}, Bi j ∼ U[0:10], Ci j ∼ U[0,0.1],
independently of each other, where UM is the uniform distribution with support M.

It was observed in [5] that Scheme 2 consistently produced instances where the gap generated
via the CPI-approximationwas large. Note, that in the experiments there, the authors focused
exclusively on F1.

We will now proceed with a discussion of the different instances of Fi , i ∈ [1 : 3],
where we present the respective conic reformulations/relaxations and the inner and outer
approximations of its sparse counterpart. Regarding the inner approximations, note that one
could combine them by using Minkowski sums of the different cones. However, for a given
problem there will only ever be one non-redundant approximation. The reason is that the
linear functions attain the optimum at an extreme point of the feasible set and the extreme
rays of a sum of cones are a subset of the extreme rays of the individual cones. Thus, for every
Fi , i ∈ [1 :3] we will discuss the merits of only one specific inner approximation at a time.
The lower bounds will be obtained by using CPI by default. The focus of the discussion
will be the quality of the bounds obtained. Specifically, we are interested in assessing the
completability gap, which necessitates guaranteeing a completepositivity gap of zero. We
will discuss how the latter was achieved case by case.

5.1 UsingDDC underF1

By choosing F = F1 we are recovering the scenario problem for the two-stage stochastic
standard quadratic optimization problem introduced in [5]. In the experiments conducted
there, a conic lower bound was used that is equivalent to the outer approximation of (8)
based on CPI. Since the original space of variables is preserved, the conic relaxation also
yielded an upper bound that conveniently closed the optimality gap for all instances generated
by sc heme 1. However, the gaps generated by the CPI-approximation were typically large.

In this section we will test whether the gap can also be improved by using the inner
approximations introduced here.
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Due to the limitations discussed in Sect. 4.2.1, the only inner approximation that is mean-
ingfully applicable here is the one based on DDC. Thus, the approximation will involve
Sn2 constraints involving CPP(R

n1+1
+ × R+). In case n1 + 2 ≤ 4 these constraints can be

represented via semidefinite constraints, since CPP(Rn+) = Sn+ ∩ N n=:DNN n whenever
n ≤ 4, so that the completepositivity gap can be conveniently bypassed. If n1 + 2 > 4
the relaxation based on DNN is an outer approximation of DDC, which itself is an inner
approximation of CMP so that we cannot qualify the resulting approximation as neither
outer nor inner. However, the original space of variables stays in tact regardless so that in
cases where n1 + 2 > 4 we can still obtain another upper bound that potentially narrows the
optimality gap.

5.2 Using CPS underF2

Themodel encodes selecting one out of S groups of variables to be nonzero and optimizing the
objective using just these variables. The activation and deactivation of the different groups is
modeled via the variable x, so that n1 = S in thismodel.While there aremore straightforward
ways of encoding this process, the one presented here is the one for which the conic bounds
behaved most favorably.

In order to obtain a CMP reformulation for computing v(F2) via Theorem 8 we would
have to do some prior adaption of the problem. First of all, xi ∈ {0, 1}, i ∈ [1 : S] can be
reformulated as quadratic constraints x2i − xi = 0, so that in order for the assumptions of the
theorem to hold, we would have to introduce redundant constraints and additional variables
given by xi + si = 1, si ≥ 0, i ∈ [1 : S]. Secondly, in order for yi xi = 0 to fulfill said
assumptions we would have to split each yi into a positive and a negative component and
enforce the constraints for both components. Lastly, the quadratic constraints would need
to be absorbed into a second order cone constraint. Due to the introduction of this many
variables, we would have no chance at bypassing the completepositivity gap. Thus, we will
merely work with the the following CMP based relaxation:

min
X,Yi ,Zi ,x,yi

Ai • X +
S∑

i=1

pi [Bi • Zi + Ci • Yi ]

s.t. : eTx = (S − 1),

eeT • X = (S − 1)2,

diag (X) = x,
S∑

i=1

I•Yi = 1,

Ziei = 0, i ∈ [1 : S],⎡
⎣
⎛
⎝ 1 xT yTi
x X ZTi
yi Zi Yi

⎞
⎠
⎤
⎦
i∈[1:S]

∈ CMP
(
R
n1+1
+ ,Rn2 , . . . ,Rn2

)
.

(13)

When working with the CPS based upper bound, we obtain a problem with S conic
constraints involving CPP(R

n1+1
+ × R

n2). Here we can use a result from [15, Theorem 1],
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which states that

CPP(R
n1+1
+ × R

n2) =
{(

M1 MT
2

M2 M3

)
∈ Sn1+n2+1

+ : M1 ∈ CPP(R
n1+1
+ )

}
. (14)

This allows us to bypass the completepositivity gap whenever n1 + 1 ≤ 4.
However, while the above problem is clearly a lower bound, we cannot proof that it is

tight based on the theory we have discussed in this text. Thus, when we calculate the optimal
values obtained based on inner and outer approximations of CMP we merely bound the
optimal value of the the CMP relaxation. Nonetheless, the space of original variables x and
yi , i ∈ [1 : S] stays in tact for any of these approximations so that we can obtain upper
bounds to the original problem and hence a valid optimality gap. It is however not as straight
forward as in the previous model since the values of x and yi , i ∈ [1 : S] obtained from
approximations of the CMP relaxation do not necessarily fulfill the nonlinear constraints in
F2, as their counterparts in the relaxation are only imposed on the lifted variables.

We therefore have to employ some rounding in order to obtain feasible solutions. In order
for x to be feasible for F2 all entries have to be equal to one except for a single one, say the
j-the entry, that is equal to zero. Also, all yi , i ∈ [1 : S]\ { j} are zero so that yTjy j = 1. For
a solution obtained from a relaxation we therefore round the smallest entry of x, again say
the j-th entry, down to zero, while the rest is rounded up to one. Similarly, all yi are set to
zero except for y j . We obtain a feasible value for this variable by dividing it by its norm so
that eventually yTjy j = 1 holds.

We also want to point out that in this specific case the rounding procedure can actually
improve the upper bound obtained from x and yi , i ∈ [1 : S] compared to their infeasible
pre-rounding values. This is counter intuitive at first, since usually, when we take optimal
solutions of a relaxation, we have to sacrifice some performance in order to turn them into
feasible solutions of the original problem. However, this intuition leads us astray in this
instance. Remember that x and yi , i ∈ [1 : S] do not appear in the objective of the CMP
relaxation and its approximations. They are just some values that are needed in order to
make the optimal choices one the other variables feasible and that do not have any specific
relation with the optimal value of the approximation itself beyond that. Thus, changing these
variables may take their implied objective function value of the original problem in either
direction.

5.3 Using CBC underF3

In order to bypass the weakness of CBC outlined in Sect. 4.2.1 we will work with a simplified,
sparse, conic reformulation given by

min
X,Yi ,Zi ,x,yi

Ai • X +
S∑

i=1

pi [Bi • Zi +Ci • Yi ]

s.t. : I • X +
S∑

i=1

I • Yi = 1,

[(
X ZTi
Zi Yi

)]
i∈[1:S]

∈ CMP (Rn1+ ,Rn2 , . . . ,Rn2
)
.

(15)

Note, that we cannot apply Theorem 8 directly here since the single quadratic constraint does
not fulfill the assumption of the theorem as it can, after the constant is put on the left-hand
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side, take both positive and negative values over the remaining feasible set. However, the
fact that this is in fact a valid reformulation and not just a lower bound can be deduced from
Theorem 6 by choosing H to be the hyperplane corresponding to the one linear constraint
that is present in (15), and J to be all of CMP . The boundedness of J ∩ H follows from the
fact that the identity matrix I is positive definite. In this reformulation x is absent so that the
problem lined out in Sect. 4.2.1 is mute. Of course, this comes at the cost, of having merely a
single upper bound given by the optimal solution of the CBC approximation. However, since
Ki = R

n2 , i ∈ [1 : S] we can use the fact that CPP(R+ × R
n) = Sn+ (see [4, Section 2])

in order to close the completepositivity gap regardless of the dimension of the problem. We
also like to note, that in our experiments, the lower bound was often very close to zero, which
leads to optimality gaps being reported as ∞. In order to avoid this inconvenience we added
1 as a constant to the objective function.

5.4 Design of the experiments and results

Based on the models discussed above we conducted three experiments. In the first one, we
wanted to assess the quality of the bounds obtained from our approximations. This was done
by evaluating the global optimality gaps obtained from these bounds, but also by comparing
these gaps to the global optimality gaps that a benchmark solver, namely Gurobi, can produce
in a reasonable amount of time. Gurobi is a commercial solver that employs branch and bound
and related strategies to solve QCQPs globally, which makes it a good benchmark for our
procedures, as they produce bounds on the global solution as well.

As it turned out that the conic bounds can be calculated very time efficiently, we conducted
a second experiment where we set the time limit for Gurobi to the time it took for the conic
approach to produce the respective optimality gaps. This allows us to assess a potential gain in
efficiency for global solvers, if they employed the bounds derived in this text as a pre-solving
step.

Finally, we compared the sparse bounds with the bounds obtained from relaxations of the
full model, i.e. the model where the full CPP constraint was present, as in (2), rather than
its sparse counterpart based on CMP . In [5], these experiments have been conducted for
instances of F1, where the authors observed close to no gap between the full models and
the sparse models. We repeat these experiments for instances of F2 and F3 to test whether
this phenomenon persists, but also to test whether the advantage of the sparse models with
respect to computation time is also maintained for the inner approximations.

5.5 Quality of the bounds

For each of the models we generated two types of instances. For the first one we choose the
dimension of the problem such, that the completepositivity gap could be bypassed and one
where that is not the case. For the latter instances, we worked with outer approximations
of the respective set-completely positive constraints. Hence, the CPI relaxation was further
relaxed, so that the resulting problemcan be qualified as a valid lower bound. The relaxation of
the inner approximation does not allow for such a qualification, since we obtain lower bound
to an upper bound. However, the relaxation yields valid upperbounds as a byproduct since
the original space of variables stays in tact for all but the CBC approximation ofF3. However,
for the latter the completepositivity gap can be bypassed regardless of the dimension of the
problem data. For every choice on (n1, n2, S) and Fi , i = 1, 2, 3 we generated 10 instances
from scheme 1 and 2 respectively. For every instance we calculated the CPI lower bound,
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the bounds and approximations based on the respective inner approximations, and in addition
we used upper and lower bounds achieved by Gurobi within a 5min time limit (Tables 1, 2,
3).

The results are summarized in Table 4. The “instance-types” are indicated by a quadruple
of the form n1_n2_S_s, where s ∈ {1, 2} indicates the scheme by which we constructed the
instances. In the multi-column "Conic Gaps" we report the average gap between the CPI
lower bound and the feasible solution generated from the CPI bound (UB), the optimal
value of the inner approximations (I) and the feasible solution generated from the latter
approximations (IUB). Note, that we also considered instances of sizes for which we could
not guarantee that the completepositivity gap is eliminated. In these cases the bounds based
on the inner approximations are not valid upper bounds, since they stem from relaxations
of inner approximations. For these cases we still report the gaps, but they appear in the
table in parenthesis. However, we do like to mention at this point that these "invalid upper
bounds" never fell below any of the lower bounds we calculated, which suggests that the
completepositivity gap is small at least for our experiments. For "Gurobi Gaps" we calculate
these gaps with respect to the lower bound found by Gurobi instead of the one obtained
from CPI. In addition we present the gap between the CPI based lower bound and the
upperbound generated by Gurobi (O), and we also report the optimality gap obtained by
Gurobi itself within the 5min time limit (G). All the gaps are reported in percentages relative
to the respective lower bound. Finally, in the last two multi-columns, we count the number
of times the conic and the Gurobi gaps were smaller then 0.01%, at which point we consider
the instance solved.

For the experiments onF1 we see that the phenomenon already documented in [5] persists:
instances from scheme 1 are regularly solved via CPI alone, while that is not the case for the
scheme 2 instances. However, for these instances the solutions from theDDC approximation
yield excellent bounds, revealing that both approximations are very good, albeit not quite
good enough to solve the instances on a 0.01% tolerance threshold. The feasible solutions
produced by viaDDC are only slightly better, than the ones produced by CPI, and sometimes
even worse. We also note that CPI on average yields a much better lower bound than Gurobi
doeswithin the time limit, sometimes even certifying optimality ofGurobi’s feasible solution.
The upper bound provided byDDC performs worse to Gurobi’s upperbound, whenmeasured
relative to Gurobi’s lower bound.

Regarding F2, we see that the conic gaps were narrowed quite substantially by the inner
approximation and regularly closed. Gurobi on its own performed similarly except for the
largest instance types, for which it was outperformed quite substantially. What is remarkable
is the fact that the upper bounds of the approximations of the CMP relaxation seem to also
upper bound Gurobi’s lower bounds. Conversely, Gurobi’s upper bounds seem to live close
to the CPI based lower bounds on average. This might indicate that the CMP relaxation
may in fact be tight despite the fact that Theorem 8 is not applicable. We hope we can address
this phenomenon in future research. Again, instances from scheme 2 seemed to be a greater
challenge. Note that the smallest gaps are regularly produced by the feasible solution of the
inner approximation.

Finally we can see that for F3 the upper bound based on CBC, unfortunately, performed
quite poorly, which is surprising, given that the derivation of CBC is the one that is closest
to classical results in matrix completion. On the brighter side, we see that the CPI produced
good lower bounds that narrow the gap to Gurobi’s feasible solution better than Gurobi itself.

We also recorded the average time spent on the different approaches in Table 5. We
decomposed these running times into the time the respective solver used to produce the
bounds (solver time), the internal model-building time reported by Yalmip (yalmip time) and
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Table 1 Comparison with Gurobi under a time limit

Instance-types Conic gaps Gurobi gaps
UB I IUB G O

F1 10_10_10_1 0.00 (2.57) 2.19 71.01 16.60

20_20_20_1 0.00 (3.42) 3.21 175.97 37.68

2_10_10_1 0.00 18.36 17.66 176.46 18.25

2_5_5_1 0.00 16.97 16.21 33.80 4.36

10_10_10_2 39.57 (0.29) 36.92 185.61 53.12

20_20_20_2 67.37 (0.32) 46.35 359.74 67.32

2_10_10_2 1.66 0.25 23.42 100.60 25.00

2_5_5_2 2.53 0.18 18.67 77.26 16.29

F2 3_10_3_1 0.00 0.00 0.00 4.43∗ 0.44∗
3_5_3_1 0.00 0.00 0.00 0.00 0.00

3_10_3_2 2.66 2.66 2.66 2.17∗ 2.70∗
3_5_3_2 1.21 1.21 1.21 0.00 1.21

the time our implementation used for building the model that is passed to Yalmip (model
time). We like to point out a couple of things. Firstly, for the majority of the instance types
Gurobi ran into the time limit on average. Also, on average the DDC approximations are
more demanding for Mosek than the other approximations. Still, the models were solved
quite quickly, certainly quicker than 5min. Hence, our methods can produce good bounds
with reasonable effort. Finallywewould like to point out that there are also spikes in themodel
time for some of the inner approximations. This, however, is an artifact of our implementation
that can potentially be avoided with better programming.

5.6 Restricting Gurobi’s time limit to the conic solution time

For this experiment we used the same setup as in the previous section, but this time Gurobi’s
time limit was set to the time it took the conic solver to produce both the solutions of the
inner and the outer approximations. This was done on a per instance basis, but the average
solution times can be gathered from Table 5. The results are summarized in Table 1, where
the nomenclature is as in the previous section.

The first thing, that stands out is that we omitted results on F3 and on the larger instances
ofF2. For these instances Gurobi was not able to obtain optimality gaps within the time limit
because it could not find a feasible solution and/or was not able to produce a lower bound.
The issue was not resolved even after the time limit was expanded by several seconds. For
the gaps marked with an asterisk in Table 1, the same issue was present, but was resolved by
expanding the time limit by an additional second. Of course this biases the respective results
in favor of Gurobi, but we decided to include these results anyway, since the question what
a slight loosening of the time limit could achieve is also interesting.

From the results we did include we see several things. First, we observe that the gaps
produced via the conic approach were often much better than what Gurobi could achieve in
the same time. Only in some of the instances ofF2 did Gurobi show an advantage, but only in
cases where Gurobi operated under an extended time limit. Moreover, the feasible solutions
generated by the conic approach were of better quality on average than the ones produced
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Table 2 Comparison with the full model

Instance-types Gaps # Gaps
M F UB I UB I

F1 10_10_10_1 0.00 0.00 0.00 (2.57) 10 (0)

2_10_10_1 0.00 0.00 0.00 18.36 10 0

2_5_5_1 0.00 0.00 0.00 16.97 10 0

10_10_10_2 0.04 22.12 27.52 (0.31) 0 (6)

2_10_10_2 0.00 0.04 1.66 0.25 1 0

2_5_5_2 0.00 1.88 2.53 0.18 2 1

F2 10_10_10_1 0.00 0.11 0.01 (0.01) 8 (8)

3_10_3_1 0.00 0.36 0.00 0.00 9 9

3_5_3_1 0.00 5.48 0.00 0.00 6 6

10_10_10_2 0.00 1.77 1.34 (1.21) 9 (1)

3_10_3_2 0.00 5.73 2.66 2.66 8 8

3_5_3_2 0.00 2.73 1.21 1.21 9 9

F3 10_10_10_1 0.00 – – – – –

10_3_10_1 0.00 – – – – –

5_3_5_1 0.00 – – – – –

10_10_10_2 0.00 – – – – –

10_3_10_2 0.00 – – – – –

5_3_5_2 0.00 – – – – –

by Gurobi. It is therefore highly plausible, that a conic pre-solver could benefit the running
time of global solvers such as Gurobi.

5.7 Comparing the sparse and the full conic models

In our final experiments, we calculated the lower bounds obtained from relaxations of the full
model (2), where the entire completely positive constraint was present, rather than its sparse
surrogate. In cases where the original space of variables was preserved, we also calculated the
associated upper bounds. For models F2 and F3 we considered the full model to be given by
(13) and (15) where the CMP constraint was replaced by the respective full CPP constraint.
These conic constraints were approximated using [15, Theorem 1] as depicted in (14), where
the completely positive constraints on the submatrices were relaxed to doubly nonnegative
constraints. The results are summarized in Table 2.

In the first column (M) we report the gap between the lower bound from the full model
and the lower bound based on CPI. The second one (F) gives the gap between the lower
bound of the full model and the upper bound associated with the feasible solution that the full
model produced. The other two columns (UB, I) are calculated as in the other experiments.
The final two columns report the number of times the optimality gap of the full model was
worse than the one produced by either CPI alone (UB) or by CPI and the respective inner
approximation (I).

We see that there is almost no difference between the lower bounds generated by the full
and the sparse models. This is an observation already made for F1 in [5], and it is replicated
here for F2 and F3 as well. However, for the upper bounds the picture is more complicated.
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Table 3 Running times including the full model

Instance-types Solver time Yalmip time Model time
Full Inner Outer Full Inner Outer Full Inner Outer

F2 10_10_10_1 17.973 0.141 0.157 0.100 0.106 0.090 0.098 0.166 0.089

3_10_3_1 0.051 0.012 0.012 0.080 0.080 0.084 0.027 0.042 0.025

3_5_3_1 0.011 0.006 0.006 0.077 0.078 0.077 0.026 0.041 0.025

10_10_10_2 41.611 0.130 0.296 0.088 0.092 0.085 0.081 0.140 0.082

3_10_3_2 0.188 0.014 0.044 0.077 0.078 0.077 0.026 0.042 0.024

3_5_3_2 0.025 0.007 0.013 0.077 0.085 0.077 0.025 0.041 0.024

F3 10_10_10_1 18.368 0.170 0.093 0.112 0.190 0.102 0.090 0.765 0.064

10_3_10_1 0.170 0.062 0.027 0.114 0.327 0.147 0.069 0.631 0.061

5_3_5_1 0.016 0.010 0.008 0.102 0.117 0.103 0.037 0.146 0.030

10_10_10_2 14.511 0.161 0.089 0.091 0.156 0.085 0.066 0.542 0.051

10_3_10_2 0.161 0.049 0.031 0.105 0.171 0.103 0.061 0.541 0.059

5_3_5_2 0.017 0.012 0.008 0.107 0.116 0.107 0.035 0.143 0.028

For instances of F1 generated with scheme 1 the upper bounds from the full model and CPI
are similar while the upper bounds from the inner approximation lack behind. But the latter
at least sometimes produces superior upperbounds when it comes to instances produced by
scheme 2. For instances ofF2 the upperbounds produced by the sparsemodels are often better
than what the full model is capable of producing. For F3 no upperbounds were produced by
the full model since the space of the original variables is absent. Thus, we also omitted the
other upper bounds since there was nothing to compare them to.

As in [5], we again see that the bounds based on CPI can be computed much faster than
the bounds from the full model. This holds true for the newly tested instances of F2 and F3

as well. On top of that, the same holds true for the inner approximations to the point where it
is almost always faster to evaluate both the inner and the outer sparse approximations than it
is to solve the full model. Disadvantages exist for the overall model building time, but this is
a matter of implementation that is avoidable, at least in principle, by better implementations.

Conclusion

In this textwepresented a newapproach to sparse conic optimizationbasedon ageneralization
of the set-completely positivematrix cone, whichwasmotivated by the study of the two-stage
stochastic standard quadratic optimization problem. Using innner and outer approximations
of said cone allows for certificates of exactness of a sparsification outside of traditional matrix
completion approaches. We demonstrate in numerical experiments, that this approach can
close or at least narrow the optimality gap in interesting cases. We think that this provides a
proof of concept thatmaymotivate future research. Interesting questions remain, for example,
about the quality of the inner approximations and whether they can be proven to be exact for
special cases.
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