KIT | KIT-Bibliothek | Impressum | Datenschutz

Reaching strong absorption up to 700 nm with new benzo[ g ]quinoxaline-based heteroleptic copper( i ) complexes for light-harvesting applications

Bruschi, Cecilia ORCID iD icon 1; Gui, Xin 2; Fuhr, Olaf ORCID iD icon 3,4; Klopper, Wim ORCID iD icon 2,3; Bizzarri, Claudia 1
1 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)
2 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Heteroleptic copper(I) complexes, with a diimine as a chromophoric unit and a bulky diphosphine as an ancillary ligand, have the advantage of a reduced pseudo Jahn–Teller effect in their excited state over the corresponding homoleptic bis(diimine) complexes. Nevertheless, their lowest absorption lies generally between 350 to 500 nm. Aiming at a strong absorption in the visible by stable heteroleptic Cu(I) complexes, we designed a novel diimine based on 4-(benzo[g]quinoxal-2′-yl)-1,2,3-triazole derivatives. The large π-conjugation of the benzoquinoxaline moiety shifted bathochromically the absorption with regard to other diimine-based Cu(I) complexes. Adding another Cu(I) core broadened the absorption and extended it to considerably longer wavelengths. Moreover, by fine-tuning the structure of the dichelating ligand, we achieved a panchromatic absorption up to 700 nm with a high molar extinction coefficient of 8000 M$^{-1}$ cm$^{-1}$ at maximum (λ = 570 nm), making this compound attractive for light-harvesting antennae.


Verlagsausgabe §
DOI: 10.5445/IR/1000159125
Veröffentlicht am 28.06.2023
Originalveröffentlichung
DOI: 10.1039/D3DT00902E
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Institut für Physikalische Chemie (IPC)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1477-9226, 0300-9246, 1364-5447, 1472-7773, 1477-9234
KITopen-ID: 1000159125
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Dalton Transactions
Verlag Royal Society of Chemistry (RSC)
Band 52
Heft 23
Seiten 7809-7818
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page