
Evaluating Architectural Safeguards for
Uncertain AI Black-Box Components

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Max Scheerer

aus Kehl

Tag der mündlichen Prüfung: 09. Mai 2023

Erster Gutachter: Prof. Dr. Ralf Reussner

Zweiter Gutachter: Prof. Dr. J. Marius Zöllner

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

There have been enormous achievements in the field of Artificial Intelligence (AI) which has
attracted a lot of attention. Especially, Deep Learning (a subfield of AI) employs so-called

Deep Neural Networks (DNNs) that have been successfully applied to various complex

learning tasks, e.g. autonomous driving or human-robot-interaction. However, the tremen-

dous data dependency and complexity of DNNs revealed significant vulnerabilities. More

specifically, DNNs react sensitively to particular environmental factors (e.g. brightness or

contrast variations in input images) which can result in incorrect predictions. However,

since AI (and especially DNNs) is applied in safety-critical systems, such erroneous be-

haviour may result in physical or economical damage. As a result, research branches have

emerged that approach the unreliable nature of AI.

One of the major issues of AI models is that they reached a high complexity which makes

it either impossible to understand their internals or to explain why particular predictions

have been made. Thus, they are also referred to as Black-Boxes. Existing works address
this problem by runtime approaches that can detect either potentially malicious input

data or wrong predictions made by the AI model. Although such approaches enable the

detection of possible unsafe states, they do not discuss any countermeasures. Consequently,

several approaches at the architectural or system level have been elaborated that deal with

the unreliable or uncertain nature of AI (e.g. N-Version Programming Pattern or Simplex
Architectures). Moreover, there is a growing requirement for AI-enabled systems to adapt

at runtime in order to deal with changing environmental conditions. Systems with such

capabilities are known as Self-Adaptive Systems. We denote such architectural or system-

level approaches (e.g. n-version programming or self-adaptive systems) as Architectural
Safeguards. Software engineers are now facing the challenge to identify the architectural

safeguard that satisfies the non-functional requirements best. Each architectural safeguard,

however, impacts the quality attributes of the system differently. It is crucial to resolve

such design decisions as early as possible in the development process (i.e. at design-time)

to avoid changes after the system has been implemented as they are associated with

high costs. In addition, safety-critical systems in particular must satisfy strict (quality)

requirements that need to be addressed at the architecture level of the software system.

This thesis presents a model-based approach that supports software engineers in the

development of AI-enabled systems. More specifically, the approach allows the evaluation

of architectural design decisions specifically dealing with AI-induced uncertainties (i.e.

architectural safeguards). In particular, an approach for reliability prediction of AI-enabled

systems based on established model-based techniques is presented. In the next step, we

describe how the reliability prediction approach is generalised to self-adaptive systems.

i

Abstract

The core of the approach is an environment model to describe (𝑖) AI-specific uncertainties
and (𝑖𝑖) the operating environment of a self-adaptive system. Finally, a classification

structure or taxonomy is presented which, based on various dimensions, classifies AI-

enabled systems into four possible classes. Each class is associated with a certain degree

of dependability assurance that can be made for the given system.

The thesis encompasses four central contributions:

1. Domain-agnostic modelling of AI-specific environments: In this contribution,

a metamodel was elaborated for the modelling of AI-specific uncertainties and their

temporal expansion which form the operative environment of a self-adaptive system.

2. Reliability prediction of AI-enabled systems: The presented approach extends

an existing Architectural Description Language (namely the Palladio Component
Model) for modelling component-based software architectures and an associated

reliability prediction tool (for classical software systems). The problem of the black-

box property of an AI component is addressed by a sensitivity model that, depending

on various uncertainty factors, models the Predictive Uncertainty of an AI component.

3. Evaluation of self-adaptive systems: This contribution presents a framework

for evaluating self-adaptive systems that act as architectural safeguards, i.e. they

safeguard an AI component. The concepts presented in this contribution generalises

the concepts of contribution 2.

4. Classes of architectural dependability assurance: The contribution describes

a classification structure that describes the extent to which assurances (w.r.t. a

dependability-related system-level property) can be made for a given AI-enabled

system.

Contribution 2 was validated in the context of a case study from automated driving. More

precisely, we validated whether our reliability prediction approach preserves plausibility

assertions that can be observed in the case study. Moreover, we demonstrated the general

possibility to evaluate design decisions at design-time. For the validation of contribution 3,

plausibility assertions were validated in the context of the aforementioned case study and a

case study from the field of human-robot-interaction. In addition, two further community

case studies have been considered, in which (based on simulators) quality attributes of

self-adaptive systems were evaluated and compared with the results of our framework. In

both cases, it could be shown that on the one hand all plausibility assertions are preserved

and on the other hand, our approach produces the same results as the domain-specific

simulators. Furthermore, we could demonstrate that our approach supports software

engineers in evaluating design decisions that are relevant when developing self-adaptive

systems. Contribution 1 was implicitly validated with contribution 2 and 3. For the fourth

contribution, the classification structure is applied to well-known and representative AI

systems. We were able to classify each AI system into one of the classes such that the

general applicability of the classification structure was shown.

ii

Zusammenfassung

Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt und ist im-

mer stärker in den Fokus geraten. Insbesondere Methoden desDeep Learning (ein Teilgebiet
der KI), in dem Tiefe Neuronale Netze (TNN) zum Einsatz kommen, haben beeindrucken-

de Ergebnisse erzielt, z.B. im autonomen Fahren oder der Mensch-Roboter-Interaktion.

Die immense Datenabhängigkeit und Komplexität von TNN haben jedoch gravierende

Schwachstellen offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der

Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu falschen

Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen Systemen eingesetzt

werden, kann solch ein Verhalten zu lebensbedrohlichen Situationen führen. Folglich

haben sich neue Forschungspotenziale entwickelt, die sich explizit der Absicherung von

KI-Verfahren widmen.

Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr Verhalten oder

Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt bzw. nachvollzogen werden

können. Solche KI-Modelle werden auch als Black-Box bezeichnet. Bestehende Arbeiten

adressieren dieses Problem, in dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder

auf Basis von Ein- und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten

in diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen, machen

allerdings keine Aussagen, inwiefern mit solchen Situationen umzugehen ist. Somit ha-

ben sich eine Reihe von Ansätzen auf Architektur- bzw. Systemebene etabliert, um mit

KI-induzierten Unsicherheiten umzugehen (z.B. N-Version-Programming-Muster oder Sim-
plex Architekturen). Darüber hinaus wächst die Anforderung an KI-basierte Systeme sich

zur Laufzeit anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen

zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive Systeme.
Software-Ingenieure stehen nun vor der Herausforderung, aus einer Menge von Architek-
turellen Sicherheitsmechanismen, den Ansatz zu identifizieren, der die nicht-funktionalen

Anforderungen bestmöglich erfüllt. Jeder Ansatz hat jedoch unterschiedliche Auswirkun-

gen auf die Qualitätsattribute des Systems. Architekturelle Entwurfsentscheidungen gilt es

so früh wie möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung des

Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden sind. Darüber hinaus

müssen insbesondere sicherheitskritische Systeme den strengen (Qualitäts-) Anforderun-

gen gerecht werden, die bereits auf Architektur-Ebene des Software-Systems adressiert

werden müssen.

Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-Ingenieure bei

der Entwicklung von KI-basierten System unterstützt, um architekturelle Entwurfsentschei-

dungen (bzw. architekturellen Sicherheitsmechanismen) zum Umgang mit KI-induzierten

iii

Zusammenfassung

Unsicherheiten zu bewerten. Insbesondere wird eine Methode zur Zuverlässigkeitsvor-

hersage von KI-basierten Systemen auf Basis von etablierten modellbasierten Techniken

erforscht. In einemweiteren Schritt wird die Erweiterbarkeit/Verallgemeinerbarkeit der Zu-

verlässigkeitsvorhersage für Selbst-Adaptive Systeme betrachtet. Der Kern beider Ansätze

ist ein Umweltmodell zur Modellierung (𝑖) von KI-spezifischen Unsicherheiten und (𝑖𝑖) der
operativen Umwelt des Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur

bzw. Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen, KI-basierte

Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit einem bestimmten Grad

an Verlässlichkeitszusicherungen assoziiert, die für das gegebene System gemacht werden

können.

Die Dissertation umfasst vier zentrale Beiträge.

1. Domänenunabhängige Modellierung von KI-spezifischen Umwelten: In die-

sem Beitrag wurde ein Metamodell zur Modellierung von KI-spezifischen Unsicher-

heiten und ihrer zeitlichen Ausdehnung entwickelt, welche die operative Umgebung

eines selbstadaptiven Systems bilden.

2. Zuverlässigkeitsvorhersage vonKI-basierten Systemen:Der vorgestellte Ansatz
erweitert eine existierende Architekturbeschreibungssprache (genauer: Palladio Com-
ponent Model) zurModellierung von Komponenten-basierten Software-Architekturen

sowie einem dazugehörigenWerkzeug zur Zuverlässigkeitsvorhersage (für klassische

Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-Komponente

wird durch ein Sensitivitätsmodell adressiert, das, in Abhängigkeit zu verschiedenen

Unsicherheitsfaktoren, die Prädektive Unsicherheit einer KI-Komponente modelliert.

3. Evaluation von Selbst-Adaptiven Systemen: Dieser Beitrag befasst sich mit

einem Rahmenwerk für die Evaluation von Selbst-Adaptiven Systemen, welche für

die Absicherung von KI-Komponenten vorgesehen sind. Die Arbeiten zu diesem

Beitrag verallgemeinern/erweitern die Konzepte von Beitrag 2 für Selbst-Adaptive

Systeme.

4. Klassen der Verlässlichkeitszusicherungen: Der Beitrag beschreibt eine Klassifi-

kationsstruktur, die den Grad der Zusicherung (in Bezug auf bestimmte Systemei-

genschaften) eines KI-basierten Systems bewertet.

Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des Autonomen

Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaften bei der Zuverlässig-

keitsvorhersage erhalten bleiben. Hierbei konnte nicht nur die Plausibilität des Ansatzes

nachgewiesen werden sondern auch die generelle Möglichkeit Entwurfsentscheidungen

zur Entwurfszeit zu bewerten. Für die Validierung des dritten Beitrags wurden ebenfalls

Plausibilitätseigenschaften geprüft (im Rahmen der eben genannten Fallstudie und einer

Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus wurden

zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis von Simulatoren)

Selbst-Adaptive Systeme bewertet und mit den Ergebnissen unseres Ansatzes verglichen

wurden. In beiden Fällen konnte gezeigt werden, dass zum einen alle Plausibilitätsei-

genschaft erhalten werden und zum anderen, der Ansatz die selben Ergebnisse erzeugt,

wie die Domänen-spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass

iv

Zusammenfassung

unser Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidungen, die

für die Entwicklung von Selbst-Adaptiven Systemen relevant sind, unterstützt. Der erste

Beitrag wurde implizit mit Beitrag 2 und mit 3 validiert. Für den vierten Beitrag wurde

die Klassifikationsstruktur auf bekannte und repräsentative KI-Systeme angewandt und

diskutiert. Es konnte jedes KI-System in eine der Klassen eingeordnet werden, so dass die

generelle Anwendbarkeit der Klassifikationsstruktur gezeigt wurde.

v

Danksagungen

Im Laufe meiner Dissertation haben mich viele Menschen begleitet und unterstützt. An

dieser Stelle möchte ich die Gelegenheit nutzen, um meine Dankbarkeit auszudrücken.

Zu Beginn möchte ich mich bei meinem Doktorvater Prof. Dr. Ralf Reussner bedanken, der

mir es nicht nur ermöglicht hat diese Dissertation zu verfassen, sondernmich auchwährend

meiner ganzen Zeit fachlich und vor allem mental unterstützt hat. Insbesondere seine

freundliche, offene und empathische Art hat maßgeblich zum Erfolg dieser Dissertation

beigetragen. Ebenfalls möchte ich mich bei Herrn Prof. Dr. J. Marius Zöllner für die

Übernahme des Korreferats meiner Arbeit bedanken. Sein konstruktives Feedback hat mir

dabei sehr geholfen, meine Arbeit aus einer anderen Perspektive zu betrachten.

DesWeiteren möchte ich Axel Busch für die tolle Betreuung meiner Masterarbeit und Emre

Taspolatoglu für die Betreuung während meiner Zeit als Hiwi am FZI Forschungszentrum

Informatik danken. Beide haben mein Interesse am wissenschaftlichen Arbeiten geweckt

und letztlich dazu beigetragen, dass ich die Promotion begonnen habe.

Ein großes Dankeschön geht an meine Kolleginnen und Kollegen am FZI sowie an den

Lehrstuhl Software Design and Quality für die gute Zusammenarbeit über die Jahre. Insbe-

sondere möchte ich hierbei vom FZI Jonas Klamroth, Martina Rapp und Sebastian Weber

danken, die mich durch Ihre zahlreichen Anmerkungen zu dieser Arbeit unterstützt haben.

Ebenfalls möchte ich mich bei den von mir betreuten Student Dennis Bäuml bedanken

für seine Unterstützung bei verschiedenen Implementierungsarbeiten. Ich möchte auch

meinem Abteilungsleiter Jörg Henß und meinem Bereichsleiter Oliver Denninger meinen

Dank aussprechen. Sie haben es mir ermöglicht, während meiner Arbeitszeit am FZI Raum

für meine Dissertation zu schaffen.

Mein größter Dank gilt meiner Familie. Meinen Eltern Sybille und Heinz danke ich für ihre

unermessliche Unterstützung und Liebe. Schließlich möchte ich meiner Ehefrau Michaela

danken, die mir in meinem Leben (und insbesondere im Laufe der Dissertation) so viel

Kraft, Liebe und Stabilität gibt. Ohne euch wäre ich niemals an dem Punkt in meinem

Leben angelangt, an dem ich jetzt stehe; ich bin unendlich dankbar, euch in meinem Leben

zu haben.

vii

Contents

Abstract . i

Zusammenfassung . iii

Danksagungen . vii

List of Figures . xv

List of Tables . xix

List of Listings . xxi

Notations . xxiii

I. Prologue 1

1. Introduction . 3
1.1. Motivation . 3

1.2. Research Gaps . 6

1.3. Challenges and Research Questions . 9

1.3.1. Modelling and Simulating Adaptation Strategies of Self-Adaptive

Systems . 9

1.3.2. Evaluation of Architectural Safeguards Regarding Reliability At-

tributes . 10

1.3.3. Dependability Assurance of AI-enabled Systems 12

1.4. Contributions . 13

1.5. Example Systems . 15

1.5.1. Load Balancer . 15

1.5.2. DeltaIoT . 16

1.5.3. Human-Robot-Interaction . 18

1.6. Outline . 20

II. Foundations and Related Work 23

2. Foundations . 25
2.1. Self-Adaptive Software Systems . 25

ix

Contents

2.2. Model-driven Software Development . 26

2.2.1. Models and Metamodels . 26

2.2.2. Model Transformation . 27

2.2.3. EMF Profiles . 28

2.3. The Palladio Approach . 28

2.3.1. Modelling Component-based Software Architectures 29

2.3.2. Simulating Component-based Software Architectures 32

2.4. Markov Models . 35

2.4.1. Discrete-time Markov Chain . 35

2.4.2. Markov Decision Process . 36

2.4.3. Partially Observable Markov Decision Process 37

2.5. Dynamic Programming . 37

2.5.1. Policy Evaluation . 38

2.5.2. Monte Carlo Prediction . 39

2.6. Probabilistic Graphical Models . 40

2.6.1. Bayesian Networks . 40

2.6.2. Dynamic Bayesian Networks . 42

2.6.3. Template-based Probabilistic Models 43

2.7. A Brief Introduction to Artificial Intelligence 46

2.7.1. Machine Learning . 47

2.7.2. Deep Learning . 48

2.8. Validation Preliminaries . 50

2.8.1. Goal-Question-Metric Approach 50

2.8.2. Validation Levels . 51

2.8.3. Bhattacharyya Distance . 52

3. Related Work . 53
3.1. Dealing with AI-induced Uncertainty . 53

3.1.1. Algorithmic Approaches . 53

3.1.2. System-level Approaches . 58

3.2. Quality Assurance of AI-enabled Systems 63

3.2.1. Engineering Processes . 63

3.2.2. Classifying AI-enabled Systems 64

3.3. Analysing Self-Adaptive Systems . 65

3.3.1. Using Markov Models for Decision-Making 65

3.3.2. Model-based Analysis of Self-Adaptive Systems 66

III. Design-time Evaluation of Self-Adaptive System 71

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective 73
4.1. Environmental Dynamics . 74

4.2. The Deterministic Adaptation Process . 75

4.3. Considering Self-Adaptive Systems as Stochastic Processes 77

4.3.1. Mapping Self-Adaptive Systems to Markov Decision Processes . 78

x

Contents

4.3.2. The Interdependency of Software Architecture and Environment 80

4.4. Problem Statement . 85

4.4.1. State Space Complexity . 85

4.4.2. The Engineering Problem of Self-Adaptive Systems 88

4.5. Assumptions . 89

4.6. Summary . 90

5. Using Bayesian Modelling to Capture the Environmental Dynamics 91
5.1. Requirements . 93

5.2. The Environmental Dynamics Metamodel 94

5.2.1. Representing Environmental Dynamics with Dynamic Bayesian

Networks . 95

5.2.2. Overview of the Metamodel . 96

5.2.3. Modelling Domain-Independent Template Variables and Template

Factors . 97

5.2.4. Modelling the Static Environment 104

5.2.5. Modelling the Dynamic Environment 109

5.2.6. Modelling Probability Distributions 113

5.2.7. Discussion . 117

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts . . . 119

5.3.1. Instantiation of Template-based Structures 119

5.3.2. Semi-Automated Generation of the Structural Environment Model

by Annotation-based Instantiation 120

5.4. Implementation . 124

5.5. Assumptions and Limitations . 125

5.6. Summary . 127

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method 129
6.1. Evaluating Adaptation Strategies at Design-time 130

6.2. A Formal Framework for Evaluating Adaptation Strategies 133

6.2.1. Using Dynamic Programming to Evaluate Adaptation Strategies 134

6.2.2. Using Monte-Carlo-Methods to Generate Simulated Experience . 137

6.3. Simulating Experience by Model-based Quality Analysis 137

6.3.1. Modelling Self-Adaptive Systems 137

6.3.2. Evaluating Adaptation Strategies by Generating Simulated Expe-

rience . 140

6.4. Implementation . 147

6.5. Assumptions and Limitations . 148

6.6. Summary . 150

xi

Contents

IV. Safeguarding Uncertain AI Black-Box Components 151

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems . . . 153
7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty 155

7.1.1. Represention of Architectural Safeguards with Architectural Tem-

plates . 157

7.1.2. Sensitivity Analysis of AI Components 161

7.1.3. Reliability Prediction of AI-Enabled Systems 164

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components 178

7.2.1. Problem Statement . 178

7.2.2. Decoupling of the Observation Process 179

7.2.3. Analysing the Monitorable Space 182

7.2.4. Evaluating Adaptation Strategies 184

7.3. Implementation . 186

7.4. Assumptions and Limitations . 187

7.5. Summary . 188

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems 191
8.1. Classes of Architectural Dependability Assurance 193

8.1.1. Static Analysability . 194

8.1.2. Monitor Analysability . 195

8.1.3. A-posteriori Analysability . 196

8.1.4. Non-Analysability . 197

8.2. Classification Structure . 197

8.2.1. Classification Dimensions . 197

8.2.2. Overview of the Classification Structure 205

8.2.3. Deriving Dependability Assurance Cases 207

8.3. Classifying AI-enabled Systems . 209

8.3.1. AI-supported Assistance in Automated Driving 210

8.3.2. Human-Robot-Interaction Systems 219

8.3.3. Aircraft Collision Avoidance Systems 221

8.3.4. Discussion . 224

8.4. Summary . 226

V. Validation 227

9. Validation . 229
9.1. Overview . 229

9.1.1. Validation Goals, Questions and Metrics 229

9.1.2. Case Study Systems . 235

9.1.3. Validation Process . 236

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems 241

9.2.1. DeltaIoT . 241

9.2.2. Load Balancing . 257

xii

Contents

9.3. Reliability Analysis of AI-enabled Systems 264

9.3.1. Udacity Self-Driving Car Challenge 265

9.3.2. A Generic Software Architecture for Self-Driving Cars 267

9.3.3. Sensitivity Model and Analysis 269

9.3.4. Generating Synthetic Data . 273

9.3.5. Experiment Setup . 274

9.3.6. Experiment Results . 276

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components 283

9.4.1. Udacity Self-Driving Car Challenge 284

9.4.2. Human-Robot-Interaction . 288

9.5. Discussion of Results and Research Questions 295

9.5.1. Goal Achievement . 295

9.5.2. Answering the Research Questions 299

9.5.3. Threats to Validity . 304

VI. Epilogue 307

10. Conclusion . 309
10.1. Summary . 309

10.2. Central Limitations and Assumptions . 313

10.3. Future Work . 315

Bibliography . 319

A. Results of Architectural Configurations Predicted by SimExp for the DeltaIoT Case
Study System . 335

xiii

List of Figures

1.1. The load balancer system . 16

1.2. The DeltaIoT System . 17

1.3. The human-robot-interaction system . 19

2.1. The MAPE-K feedback loop . 25

2.2. The various meta-levels . 27

2.3. Example of a Bayesian network . 41

2.4. Example of a dynamic Bayesian network . 42

2.5. Plate model encoding . 45

2.6. Schematic structure of a convolutional neural network 49

2.7. Example structure of a recurrent neural network 50

2.8. The goal-question-metric approach . 51

5.1. Overview of the EnvDyn metamodel packages 97

5.2. The template package of the EnvDyn metamodel 98

5.3. Plate model representation of the environmental variables of the DeltaIoT

system . 102

5.4. An excerpt of the TemplateVariableDefinitions-instance of the template

metamodel package applied to the DeltaIoT system 103

5.5. The two-time-slice structure of the dynamic Bayesian network representing

the environmental variables of the DeltaIoT system 104

5.6. The static package of the EnvDyn metamodel 105

5.7. An excerpt of the ground Bayesian network model of the static metamodel

package applied to the DeltaIoT system. 108

5.8. The dynamic package of the EnvDyn metamodel 110

5.9. An example structure of a two-time-slice Bayesian network. 111

5.10. An excerpt of the dynamic environment model of the dynamic metamodel

package applied to the DeltaIoT system. 112

5.11. Overview of the ProbDist metamodel. 114

5.12. An example Bayesian network with tabular-based parameter representation 116

5.13. The InstantiationTag stereotype . 121

5.14. Dependency graph of the EnvDyn components 125

6.1. The SimExp framework . 133

6.2. An example trajectory sampled from SimExp 142

6.3. The generalised model transformation of the environment- and architecture

model . 146

xv

List of Figures

6.4. Dependency graph of the SimExp components 148

7.1. Overview of the reliability prediction approach for AI-enabled systems . . . 156

7.2. The pipe and filter architectural pattern . 158

7.3. The n-version programming pattern . 159

7.4. The EMF profile of the filtering pattern . 159

7.5. The action of the filtering pattern completion 160

7.6. The EMF-profile of the n-version programming pattern 161

7.7. The action of the n-version programming pattern completion 162

7.8. The probabilistic structure of the sensitivity model 162

7.9. The oracle approximation of AI black-box components 163

7.10. The sensitivity model of the HRI example system 164

7.11. Uncertainty-based extension of PCM-Rel . 165

7.12. Metamodel of the uncertainty-induced failure types 167

7.13. The sensitivity model of the HRI example system after applying the filtering

pattern . 170

7.14. Activity diagram of the prediction process 172

7.15. Pruning process of the uncertainty model 173

7.16. The MAPE-phases when considering the missing at random assumption . . 183

7.17. Illustration of the internal simulation process of SimExp when evaluating

adaptation strategies for safeguarding AI components 186

7.18. Dependency graph of the components of the reliability prediction approach 187

8.1. The classic formal verification process . 193

8.2. The adapted dependability assurance process 194

8.3. The adapted dependability assurance process for partial analysis 195

8.4. Dynamic Bayesian network representation of a Markov decision process . . 199

8.5. Overview of the analytic capacity and its dimensions 203

8.6. Overview of the classification structure . 206

8.7. Illustration of a dependability assurance case 208

8.8. Overview of the AI-enabled automatic emergency braking system 210

9.1. The essential environmental variables of the DeltaIoT system 243

9.2. Comparison of the packet loss results of DeltaIoT and SimExp 252

9.3. Comparison of the energy consumption results of DeltaIoT and SimExp . . 253

9.4. Comparison of the accumulated rewards of DeltaIoT and SimExp 254

9.5. Comparison of DeltaIoT and SimExp results of the quality-based strategy

taking into account the bounds 𝛽−, 𝛽 and 𝛽+ 255

9.6. The environmental variable of the load balancer system 258

9.7. Comparison of the usage evolutions in SimuLizar and SimExp 261

9.8. Comparison of SimuLizar and SimExp results 263

9.9. Comparison of the accumulated rewards of SimuLizar and SimExp 265

9.10. An excerpt of the generic software architecture of a self-driving car 268

9.11. The sensitivity model of the steering angle prediction models 269

xvi

List of Figures

9.12. Comparison of the sensitivity model of the Chauffeur steering angle predictor

with the reliability predictions . 278

9.13. Comparison of the sensitivity model of the Rambo steering angle predictor

with the reliability predictions . 279

9.14. Comparison of the sensitivity model of the n-version steering angle predictor

with the reliability predictions . 279

9.15. Comparison of the sensitivity model of the perfect steering angle predictor

with the reliability predictions . 280

9.16. Comparing the success probabilities of the sensitivity models and reliability

predictions . 281

9.17. The SimExp evaluation results of each adaptation strategy safeguarding dis-

tinct AI models in the udacity self-driving car case study 287

9.18. The SimExp evaluation results of each adaptation strategy safeguarding dis-

tinct AI models in the human-robot-interaction case study 293

9.19. The SimExp evaluation results of each adaptation strategy safeguarding dis-

tinct AI models in the human-robot-interaction case study considering multi-

ple quality attributes . 294

xvii

List of Tables

2.1. An example of a formulated goal of the goal-question-metric approach . . . 51

8.1. Classification result of the automatic emergency braking system 213

8.2. Classification result of the automatic emergency braking system in terms of

reliability . 215

8.3. Classification result of a perception system of a self-driving vehicle 216

8.4. Classification result of an AI-based steering angle prediction system of an

autonomously driving vehicle in terms of reliability 218

8.5. Classification result of a robotic system for manipulation tasks in human

environments . 221

8.6. Classification result of the HRI example system in terms of reliability 222

8.7. Classification result of an aircraft collision avoidance system 224

9.1. Overview of the assignment of validation level to question of goal 1 236

9.2. Overview of the assignment of validation level to question of goal 2 237

9.3. Overview of the assignment of validation level to question of goal 3 238

9.4. Overview of the assignment of validation level to question of goal 4 239

9.5. Initial architectural configuration of the DeltaIoT system 242

9.6. Overview of the individual mote activations 244

9.7. Overview of the individual SNR and wireless interference probabilities . . . 245

9.8. Overview of the parameter setting for the DeltaIoT case study system . . . 251

9.9. Overview of the different thresholds used in the evaluation of the quality-

based strategy . 253

9.10. Overview of the expected rewards of the DeltaIoT case study 254

9.11. Overview of the parameter setting for the load balancer case study system . 262

9.12. Overview of the parameter setting for the Udacity self-driving car case study

system . 274

9.13. An overview of the steering angle prediction models, their sensitivity models

and root-mean-square error values . 277

9.14. Comparison of the steering angle prediction models with the reliability pre-

dictions . 278

9.15. Comparing the similarity of the success probabilities of the sensitivity models

and the reliability predictions . 282

9.16. Overview of the expected and total rewards of the Udacity self-driving car

case study . 286

9.17. The sensitivity models of the human-robot-interaction case study 291

xix

List of Tables

9.18. Overview of the parameter setting for the human-robot-interaction case study

system . 292

9.19. Overview of the expected and total rewards of the human-robot-interaction

case study . 294

A.1. Comparing the average architectural configurations of DeltaIoT and SimExp
considering strategy 𝜋𝐷 . 335

A.2. Comparing the average architectural configurations of DeltaIoT and SimExp
considering strategy 𝜋𝑄 . 336

xx

List of Listings

6.1. The adaptation strategy interface . 139

6.2. The reward function interface . 139

9.1. Default adaptation strategy 𝜋𝐷 . 245

9.2. Quality-based adaptation strategy 𝜋𝑄 . 248

9.3. Adaptation logic of strategy 𝜋𝑅𝑒𝑙 . 290

xxi

Notations

This section gives an overview of the most common notations used in this thesis. In some

places, we deviate from the notations to introduce context-specific notations.

Set Theory

𝐴 or A Capitalised letters denote a set of elements

{𝑎, 𝑏, 𝑐} A set consisting of the elements 𝑎,𝑏 and 𝑐

|𝑋 | The cardinality of set 𝑋 , e.g. |{𝑎, 𝑏, 𝑐}| = 3

𝐼𝑁 The set of natural numbers

Z The set of natural numbers

𝐼𝑅 The set of real numbers

[𝑎, 𝑏] The real interval: {𝑥 ∈ 𝐼𝑅 | 𝑎 ≤ 𝑥 ≤ 𝑏}

{𝑥 | Φ(𝑥)} Set-builder notation: the set of all values of 𝑥 that satisfy predicate

Φ(𝑥)

(𝑥1, ..., 𝑥𝑛) A tuple consisting of 𝑛 elements

∼ Equivalence relation

[𝑥]∼ Equivalence class of 𝑥 ∈ 𝑋 , i.e. {𝑦 ∈ 𝑋 | 𝑦 ∼ 𝑥}

𝑋/∼ Quotient set, i.e. {[𝑥]∼ | 𝑥 ∈ 𝑋 }

Model & Graph Theory

G A graph

𝑀 Capitalised m denotes a model

𝑀𝑋 Model-based representation of the set 𝑋

MM(𝑀) Defines the metamodel of model𝑀

xxiii

Notations

Probability Theory

𝑋 A random variable (always written with a capital x)

X := {𝑋1, ..., 𝑋𝑛} Bold 𝑋 defines a set of random variables

𝑋𝐴 Relates a set 𝐴 with a random variable such that 𝑉𝑎𝑙 (𝑋𝐴) =

𝑉𝑎𝑙 (𝐴)

𝑋𝐴 ⊥⊥ 𝑋𝐵 The random variables 𝑋𝐴 and 𝑋𝐵 are independent

(𝑋𝐴 ⊥⊥ 𝑋𝐵 | 𝑋𝐶) The random variables 𝑋𝐴 and 𝑋𝐵 are conditionally independent

given 𝑋𝐶

𝑃𝑟 (𝑋𝐴 = 𝑎) The probability of event 𝑎

𝑃𝑟 (𝑋𝐴 = 𝑎 | 𝑋𝐵 = 𝑏) The conditional probability of event 𝑎 given 𝑏

𝑃 (𝑋𝐴) A probability distribution over a discrete random variable 𝑋𝐴

𝑃 (𝑋𝐴 | 𝑋𝐵) A conditional probability distribution over the discrete random

variables 𝑋𝐴 and 𝑋𝐵

𝐼𝐸 [𝑋] The expected value of a random variable 𝑋

(𝑋𝑡)𝑡∈𝐼𝑁 A stochastic process for a family of random variables

𝑥 ∼ 𝑃 (𝑋) Indicates that value 𝑥 is generated or sampled from probability

distribution 𝑃 defined over random variable 𝑋

𝑃 |= G Indicates that distribution 𝑃 satisfies the independence assump-

tions encoded by graph G

Miscellaneous

1𝑐 The indicator function evaluates to 1 if condition 𝑐 is true, 0

otherwise

𝑉𝑎𝑙 (·) Returns the value space of a function or set

𝑚𝑎𝑥
𝑥∈𝑋

𝑓 (𝑥) Returns the value of 𝑓 (𝑥) maximizing function 𝑓

argmax

𝑥∈𝑋
𝑓 (𝑥) Returns the argument 𝑥 ∈ 𝑋 maximizing 𝑓 (𝑥)

∃=1 Restricts the existential quantifier ∃ to exactly one element

𝑚𝑎𝑥 (𝑎, 𝑏) Returns 𝑎 if 𝑎 ≥ 𝑏 and 𝑏 otherwise.

xxiv

Notations

(𝑓 ◦ 𝑔) (𝑥) Function composition, i.e. (𝑓 ◦ 𝑔) (𝑥) = 𝑓 (𝑔(𝑥))

xxv

Part I.

Prologue

1. Introduction

This thesis presents an approach to evaluate Architectural Safeguards for dealing with

uncertainty induced by Artificial Intelligence (AI). With AI-induced uncertainty, we pri-

marily mean Predictive Uncertainty, i.e. the confidence associated with a prediction of an

AI component itself [89]. Moreover, we consider architectural or system-level approaches

(e.g. architectural patterns or self-adaptive systems) that aim to reduce the predictive

uncertainty of AI components as architectural safeguards. Our approach supports soft-

ware engineers in the decision-making process of selecting appropriate architectural

safeguards for AI-enabled systems w.r.t. non-functional requirements (e.g. reliability and

performance). AI-enabled systems refer to software systems that, in addition to classic

software components, include AI components that have been trained for specific tasks

(e.g. object detection). In this chapter, we motivate the importance of safeguarding AI

components and the capability of assessing and comparing architectural safeguards in early

development stages. We provide a broad overview of the current state of research in this

area before discussing the research gap we have identified. Furthermore, we enumerate

several challenges one must take into consideration to close this gap and formulate the

research questions of this thesis accordingly. On this basis, we provide an overview of

our contributions. Before presenting the outline of this work, we discuss some example

systems that we use as running examples in this thesis.

1.1. Motivation

In the past years, AI made tremendous progress. Especially, methods from the field of

Machine Learning/Deep Learning (a subfield of AI) gained much attention and opened a

multitude of application scenarios. Deep learning methods employ so-called Deep Neural
Networks (DNNs) that learn various concepts or tasks based on training examples. For

example, there is successful work on the application of AI in autonomous driving (e.g.

[43]), robot manipulation (e.g. [74]), or smart manufacturing (e.g. [196]).

AI (and ML in particular) is often used to learn complex behaviours or to approximate

functions that are difficult to program explicitly using large datasets of training examples.

Depending on the learning scenario, the function to be approximated becomes very com-

plex (e.g. in self-driving cars or robot manipulation scenarios). Consequently, the capacity

of the learned AI models goes hand in hand with increasing complexity. However, this has

serious consequences and comes at the expense of the interpretability and transparency of

the AI models. As a result, the internal behaviour of an AI model can neither be understood

3

1. Introduction

nor can it be explained why certain predictions were made. For this reason, AI models

with high complexity are also considered Black-Boxes [76].

Moreover, the increased complexity of AI models demands more training data to learn

specific concepts accurately. In practice, it is quite difficult to obtain large datasets that

are of high quality, e.g. including representative examples (i.e. cover sufficient training

examples that represent the concepts to be learned). However, the quality of datasets is

crucial because it strongly correlates with the accuracy of the trained AI models. Con-

sequently, the inherent dependency of AI models on training data, coupled with their

high complexity and black-box nature, can potentially lead to undesirable behaviours.

For instance, so-called adversarial examples exploit small variations of the input space

along the decision boundary of an AI model to force misclassification, while appearing

unmodified to human observers [135, 71]. According to Hanif et al. [79] small errors of

individual weights (simulated by injected bit flips) in the first layer of a DNN can result

in unacceptable accuracy loss. Moreover, it has also been observed that AI models make

wrong predictions for certain input data but are still fairly confident in their prediction [89].

Tian et al. [186] have shown that artificially inserting different environmental conditions

(such as changes in brightness or harsh weather conditions) into images that were correctly

classified before may drastically change the prediction result.

The unreliable nature of AI components is of particular concern in safety-critical ap-

plications. Tian et al. [186] enumerate three reported incidents in automated driving

that resulted in crashes due to incorrect predictions of DNNs. One of the incidents even

ended fatally because the AI component used was unable to recognise a white truck in a

scene with bright contrast [210]. A promising approach is therefore to verify or certify

AI components by applying formal verification approaches. However, providing formal

guarantees for AI components is challenging and hardly scales for complex AI models

[99]. Although various approaches aim to improve properties such as safety (e.g. [195]) or

robustness (e.g. [99]) of AI models, it is arguably challenging to fully verify AI models due

to their inherently probabilistic and nonlinear nature.

To deal with AI-related uncertainties, various approaches have been developed in the past

years. For example, [99, 100, 172] represent approaches for verifying properties in DNNs

(e.g. robustness properties) to deal with adversarial examples. [76] describes a class of

approaches that generate explanations for predictions made by an AI component. The

explanations, for example, can be checked against some formal constraints at runtime and

suitable countermeasures can be taken in case of violation. In [1, 81] out-of-distribution

approaches are presented that determine whether a new input data (observed at runtime)

is likely to be generated by the same probability distribution as the training data. If this

is not the case, the input potentially leads to wrong predictions. Similarly, Cheng et al.

[46] introduce an approach to monitor neuron activation patterns of neural networks at

runtime. Activation patterns for newly arriving input data are generated. The patterns are

compared to the ones generated from the training data (by an upstream pattern generation

process). Thus, input for which no similarity exists is considered to be potentially malicious.

What all these approaches have in common is that they provide means to detect potentially

unsafe states of AI components but do not define what to do in case of detection, i.e. no

4

1.1. Motivation

countermeasures are discussed. Additionally, in the context of ML testing (see Zhang et al.

[213] which provides a comprehensive overview of machine learning testing approaches)

several methods are discussed that try to identify corner cases for which ML models tend

to produce wrong predictions. However, although ML testing methods provide insights

to specifically retrain the ML model, they still do not guarantee that the model operates

reliably.

Therefore, new research directions emerged in the field of software engineering that fo-

cused on applying or adopting established methods to deal with AI-induced uncertainties at

the architecture or system level. Work in this line of research does not only describe coun-

termeasures or architectural safeguards in general but also approaches that incorporate

methods outlined before (e.g. neuron activation patterns or out-of-distribution approaches

to detect unsafe states). For instance, Shafaei et al. [167] outline an architectural pattern

that relies on an input checker component to detect potentially malicious inputs. The

input checker can be implemented according to one of the approaches described above.

Moreover, [77, 211, 119] adopt the N-Version Programming pattern to reduce predictive

uncertainty, i.e. 𝑁 distinct AI models are used, and a more reliable output is generated by

combining the 𝑁 results (e.g. majority voting). Another example is provided by Musau et

al. [131], that adopt Simplex Architectures to deal with unreliable AI models. In AI-enabled

systems, however, not only the requirement to deal with AI-related uncertainties at the

architectural level emerged but also the requirement of self-adaptation [114, 216, 11, 128,

41]. More specifically, so-called Self-Adaptive Systems provide an established software

engineering approach that is primarily concerned with maintaining quality objectives

(or non-functional requirements such as performance or reliability) [153]. Self-adaptive

systems generalise traditional static software systems in that they allow the structure or

behaviour of a system to be adapted at runtime in response to environmental conditions

that the current system configuration cannot cope with. This makes them predestined

safeguarding mechanisms for AI components, as they can intervene in safety-critical states

at runtime, e.g. by transitioning the system into a fail-safe mode or switching the AI

component with a more conservative but functionally equivalent component.

When engineering AI-enabled systems, however, software engineers are facing various

design options related to architectural safeguards, which are preferably resolved at design

time, i.e. before the system is implemented. In concrete terms, different design decisions

have to be compared and evaluated in the decision-making process. For example, should

one use a self-adaptive system as an architectural safeguard or is there an architectural

pattern that meets the requirements just as well? Although self-adaptive systems are quite

powerful in terms of their adaptive capabilities, they are also more complex compared

to static software systems because they are associated with more uncertainties [57] and

their temporal evolution corresponds to stochastic processes (see e.g. [126, 40]). Therefore,

software engineers are better advised with static architectural safeguards. At design-time,

however, it is hard to assess whether for a given application context a self-adaptive system

or a non-adaptive solution is more advisable. Assuming the software engineers have

chosen a static solution, there are still numerous decisions and options to consider. For

example, shall one use an n-version programming pattern or rather consider a simplex

architecture? Both solutions affect the quality attributes of the system differently. The n-

5

1. Introduction

version programming pattern arguably improves the reliability of the system but degrades

performance attributes at the same time. In some application contexts, the performance

loss might be not acceptable such that n-version programming is not applicable (e.g.

autonomous driving). For software engineers, however, this is hard to assess at design-

time because quality attributes are usually only observable at runtime. The same applies

to self-adaptive systems in which various design decisions exist, each of which effecting

the quality attributes differently.

The lack of tools to evaluate design decisions of software architectures is not a new

problem in software engineering and has already been addressed in some domains by using

techniques of Model-driven Software Development (MDSD). In performance engineering,

for example, Reussner et al. [149] describe a model-based approach in which component-

based software architectures are modelled and simulated to predict performance attributes

(e.g. response time). Based on the predictions, design decisions can be evaluated and

compared at design-time. The goal of this thesis follows the same underlying concern, i.e.

to support software engineers in the decision-making process by evaluating and comparing

architectural safeguards w.r.t. their impact on system-level quality attributes. Moreover,

we provide a model-based reliability prediction approach for AI-enabled software systems

which accounts for the predictive uncertainty of an AI component. Our approach can

be complemented by existing prediction approaches (e.g. [149]) to assess architectural

safeguards under the perspective of multiple quality attributes. Additionally, we generalise

the approach to self-adaptive systems. More precisely, software engineers can evaluate

(𝑖) whether self-adaptation is necessary at all (as opposed to a static solution), (𝑖𝑖) design
decisions within an adaptation strategy family and (𝑖𝑖𝑖) distinct adaptation strategies.

Complementing our tool support, we present a classification structure that allows software

engineers to assess the level of assurance that can be assigned to an AI-enabled system

w.r.t. a specific system-level property. The assessment takes place prior to the design and

development of the system and not only provides intuition about the engineering and

domain problem itself but also indicates whether systems can be realistically engineered

given the system-level property under consideration.

1.2. Research Gaps

We have identified four research gaps that are not addressed at all or not sufficiently by the

current state of research. With this thesis, we contribute to the current state of research

by addressing the following research gaps:

Analysing the impact of architectural safeguards on reliability attributes considering the
predictive uncertainty of AI components: Architectural safeguards have various mani-

festations, e.g. n-version programming pattern, simplex architecture, filtering methods,

self-adaptive systems, etc. What they have in common is that they aim to reduce the

predictive uncertainty of an AI component. Predictive uncertainty in turn is affected by

other uncertainty factors or environmental variables, e.g. brightness variations in images

6

1.2. Research Gaps

(or disturbances in input data in general), lack of knowledge of the AI model (due to

insufficient training data), etc. Depending on the application context, some architectural

safeguards are better suited than others (e.g. filtering approaches to reduce input dis-

turbances or n-version programming to compensate for the lack of knowledge of an AI

model). At design-time, however, it is hard to determine which safeguard is better suited

in a given context. In the current research, there is currently no approach that connects

the impact of architectural safeguards to predictive uncertainty. Thus, it is not even hard

to determine how an architectural safeguard acts on predictive uncertainty but also how

it impacts the overall reliability of the AI-enabled system, i.e. a system which includes an

AI component with high predictive uncertainty is arguably operating less reliably.

Decision support regarding the use of self-adaptive or static software systems: Comple-

mentary to the first research gap, the question arises if a self-adaptive system or, say, an

architectural pattern (and thus a non-adaptive solution) should be used as an architectural

safeguard. The great advantage of self-adaptive systems is (in case of quality objective

violation) to dynamically change the system configurations whenever the system cannot

deal with the current state of the operating environment (harsh weather conditions, sensor

noise, hardware failure and so forth). On the other hand, self-adaptive systems are more

complex compared to static software systems (due to the temporal aspect). Therefore,

software engineers tend to prefer static software systems. If software engineers opt for

a static system solution, they implicitly assume that there must be a single system con-

figuration (or software architecture) for the given operating environment that meets all

non-functional (or quality) requirements. At design-time, this is difficult to assess, and

the assumption needs to be well justified. For example, if one decides to implement a

self-adaptive system, it must be convincingly demonstrated that there is no static solution

that performs comparably and whether the self-adaptive system performs significantly

better (in terms of quality objectives) such that the higher effort is justified. However,

such decisions are crucial and, if taken incorrectly, can lead to a massive waste of human

resources or costs. Moreover, it seems fairly challenging to compare the two types of

systems which are inherently different. To the best of our knowledge, no work supports

software engineers in making such well-informed design decisions which in turn is of

great importance when engineering software systems.

Evaluation of MAPE-K-based adaptation strategies at design-time: In addition to the

second research gap, there remains the challenge to evaluate the quality of adaptation

strategies when software engineers have decided to deploy self-adaptive systems as an

architectural safeguard. In this thesis, we focus on so-called MAPE-K-based self-adaptive

systems. In section 2.1 we discuss the general framework of MAPE-K feedback loops; for

the moment, however, it is sufficient to know that MAPE-K-based self-adaptive systems

decompose the adaptation process into the phases Monitor, Analyse, Plan and Execute,
which are continuously run through. After each cycle either an adaptation is made

or not. Although there are approaches that allow for design-time evaluation of self-

adaptive systems, they tend to focus on evaluating specific scenarios for a given domain

7

1. Introduction

(e.g. [15]), the impact of adaptations itself (e.g. [38]), synthesise adaptation strategy

repertoires at design-time (e.g. [39]) or do not aim to evaluate MAPE-K-based adaptation

strategies (e.g. [20]). However, there are no approaches that evaluate adaptation strategies

more comprehensively. More specifically, the dynamics of self-adaptive systems induce a

multitude of different state sequences, each of which represents a particular trajectory

of how a self-adaptive system moves through the space w.r.t. the operating environment

and the adaptations made by the strategy. Analysing the distinct trajectories, however,

is crucial to determine the quality of the adaptation logic which is implemented by the

adaptation strategy.

Moreover, according to Esfahani and Malek [57], self-adaptive systems must account for

the uncertainty Parameter over time which relates to the uncertainty of adaptation impact

in the long-term. To evaluate the quality of an adaptation strategy, it is crucial to do so in

terms of Parameter over time because strategies that select adaptations that seem to work

well in a given state may perform poorly in the long run.

Cross-domain analysis of architectural safeguards: In practice, AI models are applied in

various domains. The used AI models or components vary in their predictive uncertainty

(e.g. due to the amount and quality of available training data) in each domain. Moreover,

also the environmental variables (which affect predictive uncertainty) are different, e.g. in

some domains harsh weather conditions are jeopardizing the prediction accuracy; other

domains may indicate various levels of sensor noise. From an analytical point of view,

the cross-domain application of AI is challenging because the environmental variables

of each domain are different. Therefore, a domain-independent approach is required to

analyse architectural safeguards independent of the application context and to causally

relate domain-specific environmental variables to the predictive uncertainty of an AI

component. With such a modelling approach, it is possible to analyse how an architectural

safeguard impacts predictive uncertainty. Furthermore, as we consider self-adaptive

systems as architectural safeguards, we also need to consider a temporal component. That

is, the modelling approach must not only take into account the causal relationships of

the environmental variables and predictive uncertainty but also how the variables evolve.

Modelling and describing the temporal evolution of the environmental variables is crucial

to analyse how the adaptation strategy responds to different environmental states. To the

best of our knowledge, there exists no modelling approach that allows for the description

of environmental variables, their impact on predictive uncertainty and their temporal

expansion. Although several approaches in the literature allow modelling the operating

environment of self-adaptive systems in general, they are either applicable to a specific

domain or not suitable for modelling environmental state spaces flexibly and compactly.

Addressing this research gap must be seen as a prerequisite for addressing the research

gaps mentioned above.

8

1.3. Challenges and Research Questions

1.3. Challenges and Research Questions

To support software engineers in evaluating distinct architectural safeguards at design-

time and to address the research gaps outlined in section 1.2, we identified three challenges.

In the following, we discuss the challenges and the related research questions.

1.3.1. Modelling and Simulating Adaptation Strategies of Self-Adaptive
Systems

As we already pointed out in section 1.2, there are currently no approaches that evaluate

adaptation strategies of MAPE-K-based self-adaptive system sufficiently, i.e. in terms of

multiple quality objectives and the uncertainty Parameter over time. Note, however, that
we aim to evaluate three aspects when considering self-adaptive systems as architectural

safeguards, namely (𝑖) design decisions within adaptation strategies, (𝑖𝑖) the quality of dis-
tinct adaptation strategies for comparison, and (𝑖𝑖𝑖) the potential advantage/disadvantage
of using self-adaptive systems as opposed to static architectural safeguards. Therefore,

the first challenge that emerges relates to the modelling and simulation of self-adaptive

systems w.r.t. several quality objectives. We formulate the first main research question as

follows:

Research Question 1: How to evaluate adaptation strategies of self-adaptive

systems at design-time regarding the ability to meet quality objectives?

To answer research question RQ1, several sub-questions need to be considered which, if

answered individually, will allow RQ1 to be answered.

Self-adaptive systems operate in dynamic environments that transition into states the

system is not able to deal with or for which the current system configuration violates the

quality objectives (e.g. the response time of the system exceeds a given threshold). Thus,

it is essential to model the operating environment to simulate and evaluate adaptation

strategies. Moreover, as we discussed in section 1.2, there is a requirement for cross-domain

analysis. More specifically, the environments of self-adaptive systems differ depending on

the application context, e.g. in some applications hardware failures and the number of user

requests determine the main variables of the environment, while others are characterised

by sensor noise or harsh weather conditions. Consequently, the dynamics of the operating

environment must be modelled domain-independently:

Research Question 1.1: How can environmental dynamics be formalised domain-

independently at design-time?

A second issue refers to the potential complexity of such environments. In addition to the

temporal aspect that must be described, environments may also exhibit large state spaces

that must be modelled flexibly and compactly:

9

1. Introduction

Research Question 1.2: What is an appropriate level of abstraction to represent

the environmental dynamics domain independently? By appropriateness, we mean

that

• adaptation strategies can be analysed at design-time with sufficient accuracy.

• environmental state spaces can be described flexibly and compactly.

Finally, the question of an appropriate analytical model arises which serves as a foundation

to evaluate adaptation strategies. For example, Reussner et al. [149] transform architecture

models to Queuing Networks to predict performance attributes. Finding proper analytical

models for self-adaptive systems, however, is especially challenging because the analytical

model must capture the adaptation process (i.e. the various changes of the system config-

uration), account for the uncertainty Parameter over time and the inclusion of multiple

quality objectives as basis of quality assessment:

Research Question 1.3: What is an appropriate analytical model to enable design-

time analyses of self-adaptive systems?

Research Question 1.4: Are the predictions sufficiently accurate to yield plausible

results?

Note that we have deliberately formulated research question RQ1 (and its associated

sub-questions) in general terms. More precisely, we have formulated the questions in-

dependently of the actual intention to evaluate self-adaptive systems as architectural

safeguards. Suppose there is an approach that allows the evaluation of self-adaptive sys-

tems as architectural safeguards, how far is this approach from being a generic method for

evaluating any type of self-adaptive system (or its strategy) regardless of its actual intended

use? Therefore, answering the research questions not only provides the foundation for

evaluating self-adaptive systems as architectural safeguards but also examines how such

an approach can be generalised.

1.3.2. Evaluation of Architectural Safeguards Regarding Reliability
Attributes

The next central challenge relates to the evaluation of architectural safeguards. Because we

focus in this thesis on the evaluation of reliability attributes, we aim to predict reliability

for AI-enabled systems. We formulate the corresponding research question as follows:

Research Question 2: How can software systems that contain AI black-box

components be evaluated in terms of meeting reliability attributes at design-time?

10

1.3. Challenges and Research Questions

There already exist approaches that enable reliability prediction of modelled software

systems at design-time, e.g. Brosch [33]. However, there is no approach taking into account

systems with uncertain AI black-box components and their predictive uncertainties. The

systematic consideration of AI components in reliability prediction is associated with two

sub-challenges.

The first challenge refers to the black-box property of AI components themselves. Not

knowing the true state of an AI component is not only an issue at runtime but also at

design-time because without being able to determine whether the AI component exhibits

erroneous behaviour, we cannot draw any conclusions about predictive uncertainty. In

the further course of this work, we refer to the problem of not being able to determine the

true state of an AI component (induced by the black-box property) as the Hidden State
Problem. We consider the following sub-question:

Research Question 2.1: How to deal with the hidden state problem of AI black-box

components?

The second challenge refers to the systematic consideration of environmental variables

that are correlated with the predictive uncertainty of an AI component in the reliability

prediction process. Seshia et al. [165] enumerate several challenges to achieving formally-

verified AI-enabled systems. Hereby, the authors pointed out that the modelling of the

AI system and its operating environment is challenging due to potentially large input

spaces AI components may encounter (e.g. the pixel space). However, this applies not

only to verification but to any model-based analysis, since both concepts must be taken

into account to some extent in reliability prediction. We tackle this problem by abstracting

away the irrelevant details and focusing only on the variables in the environment which

are causally related to the predictive uncertainty of an AI component. Eventually, these

correlations must be systematically integrated into the reliability prediction. We consider

the following sub-questions:

Research Question 2.2: How to systematically consider the influence of pre-

dictive uncertainty and causally related environmental variables in the reliability

prediction?

Finally, the last research question of this section is about how to evaluate self-adaptive

systems for safeguarding uncertain AI components at design-time and generalises the

reliability prediction approach of RQ2 to self-adaptive systems:

Research Question 3: How can adaptation strategies of self-adaptive systems that

safeguard uncertain AI black-box components be evaluated in terms of reliability at

design-time?

In principle, however, the research question is mainly concerned with how the insights

gained from RQ2 (and its sub-questions) can be combined with the results of RQ1 from

section 1.3.1.

11

1. Introduction

1.3.3. Dependability Assurance of AI-enabled Systems

Our research focus is on the evaluation of architectural safeguards. In doing so, we

consider reliability (more precisely, the success probability of the system) as system-level

property. Nonetheless, there are other system properties of AI-enabled systems for which

software engineers would like to give assurances. More generally, software dependability

encompasses a wide range of system-level properties. According to Sommerville [173],

dependability encompasses four principle dimensions, namely Safety, Reliability, Security
and Availability. However, is it always possible to give assurances for any system property?

And at which level can they be given? Clearly, it is desirable to provide assurances at

design-time so that we can ensure that the modelled software architecture of the AI-

enabled system satisfies the system property. However, this seems difficult to achieve in

practice, as there might be various possible system-level properties which are more or

less difficult to assure. Instead, it seems to make more sense that some properties can be

assured at design-time, while others can only be assured at runtime and still others cannot

be assured at all.

The last challenge and research focus of this thesis address exactly the previous discussion.

More specifically, the idea is to assess an AI-enabled system, its operating environment,

used AI component and other factors to reason about the extent of assurances that can be

given regarding a particular dependability-related system-level property:

Research Question 4: How to assess the extent to which dependability assurances

can be given for an AI-enabled system?

Before that, however, there must be classes into which an AI-enabled system can be

classified. We call these Classes of Architectural Dependability Assurance because each of

which determines whether assurances can be given at design-time, runtime or not at all

w.r.t. a system-level dependability property:

Research Question 4.1: What are appropriate classes of architectural dependabil-

ity assurances?

There are various possible factors one can take into account to assess an AI-enabled

system. However, these factors may also vary depending on the considered application

context. Therefore, appropriate classification dimensions need to be identified which are

sufficiently generic to classify a broad class of AI systems but also concise enough to allow

classification into one of the classes of architectural dependability assurance:

Research Question 4.2: What are the suitable dimensions for classification?

In summary, the result of RQ4 is a classification structure which classifies AI-enabled

systems w.r.t. a system-level property. The classification is conducted by considering the

dimensions of RQ4.2 based on which an AI system is assigned to a particular class of

architectural dependability assurance from RQ4.1.

12

1.4. Contributions

1.4. Contributions

The contribution of this thesis results directly from the identified research gaps. We make

four contributions to the current state of research:

Contribution 1: Domain-agnostic instantiation of probabilistic environment models. Re-

call that AI is applicable in many contexts or use cases. Consequently, our approaches

must be applicable regardless of the domain. To describe the architecture of a software

system, we use the Palladio Component Model (PCM) as modelling language from Reussner

et al. [149]. PCM is a very powerful and expressive formal language for component-based

software architectures which allows modelling a broad class of cross-domain systems and

which we consider sufficient for our purposes. When evaluating architectural safeguards,

the most crucial aspect that makes the application domain-specific is, on the one hand,

the environmental variables that affect the predictive uncertainty of an AI component

and, on the other hand, the operating environment if we consider a self-adaptive system

as an architectural safeguard. In terms of self-adaptive systems, however, the operating

environment is strongly connected to the environmental variables that affect the predic-

tive uncertainty. In effect, they describe the same concept with the difference that their

temporal expansion must be added to fully describe the operating environment.

To model and instantiate environmental variables (that form the operating environment)

in a domain-agnostic way, we provide a metamodel of a formal modelling language. The

modelling language unifies the requirements of describing environmental variables and

operating environments of a self-adaptive system into a single environment model which

can be instantiated in any domain. We consider a probabilistic relationship between the

environmental variables and the predictive uncertainty of an AI component. We employ

Probabilistic Graphical Models (see section 2.6) to describe the relationship by a network

of connected discrete random variables (representing the environmental variables and

predictive uncertainty) and a set of multinomial probability distributions. Again, we

reuse probabilistic graphical models to describe how the variables probabilistically evolve.

The temporal expansion allows the modelling of the Environmental Dynamics a system
encounters and represents what we consider to be the operating environment of a self-

adaptive system. Finally, to account for the domain-independent application, the formal

semantics of our modelling language build upon the formal semantics of Template-based
Probabilistic Models (see section 2.6.3) which describe a general framework to instantiate

probabilistic structures domain-independently.

Contribution 2: Reliability prediction of AI-enabled systems at design-time. Our next con-

tribution refers to the design-time support for software engineers to make well-informed

design decisions when choosing between multiple architectural safeguards. Therefore,

we introduce an approach which allows predicting reliability attributes of an AI-enabled

system such that multiple variants of the system (each including a different architectural

design choice) can be evaluated and compared. In this contribution, we focus on static

13

1. Introduction

software systems but describe in the next contribution how the approach is generalised to

self-adaptive systems.

Predicting quality attributes at design-time is, in fact, not new in research. There are

various approaches (e.g. [149, 15, 33, 106]) that make use of model-based techniques

to abstract the software system and to predict quality attributes such as performance,

reliability or costs. Therefore, we build upon these concepts and work that exists so far

in research. More specifically, our reliability prediction approach extends an existing

approach from Brosch [33] for predicting reliability attributes of software systems not

including AI components. The approach of Brosch builds upon PCM, i.e. the formal

language that we mentioned in the first contribution to model component-based software

architectures. In our extension, we represent an AI component by a sensitivity model

which is obtained by an upstream sensitivity analysis. The environment model of our

first contribution provides the required means to model such sensitivity models. Based on

the sensitivity model, the reliability of the system is evaluated by considering different

manifestations of the environmental variables (which affect predictive uncertainty).

Contribution 3: Evaluation of adaptation strategies of self-adaptive systems at design-time.
The third contribution of this thesis is twofold: The first part of the contribution generalises

the concepts from the second contribution to self-adaptive systems; the second part relates

to the general ability to evaluate adaptation strategies for any type of self-adaptive systems

(not only considering AI safeguards). The foundation forms the environment model from

the first contribution that allows modelling the stochastic dynamics of the operating

environment. We consider a self-adaptive system as an Agent responding to changes in

the environment. More specifically, we define a self-adaptive system as Markov Decision
Process (MDP) which is a prevalent theoretical concept to view self-adaptive systems more

formally (e.g. [126, 40, 55]). In simple terms, MDPs are stochastic processes satisfying the

Markov Assumption (see section 2.4). The mathematical framework of MDPs provides the

necessary building blocks for evaluating adaptation strategies. More precisely, we employ

Dynamic Programming and Monte Carlo Methods (which builds upon MDPs) to evaluate

adaptation strategies.

In the first part of the contribution, we investigate whether there is a general approach

for evaluating adaptation strategies of any type of self-adaptive system in any domain.

The second part of the contribution integrates the concepts of our reliability prediction

approach of the second contribution to evaluate adaptation strategies that are specifically

engineered to safeguard AI components. In doing so, we embed the reliability prediction

into the reward function (which resembles a utility function for evaluating decisions made

by the adaptation strategy) of the MDP to account for reliability attributes in the overall

assessment of a strategy.

Contribution 4: Classification structure to assess AI-enabled systems regarding assurances
that can be given for system-level dependability properties. The last contribution of this

thesis relates to the classes of architectural dependability assurance and its corresponding

14

1.5. Example Systems

classification structure. The contribution supplements the other contributions by assessing

AI-enabled systems (that are to be engineered) before the design and implementation w.r.t.

a particular system-level property. The classification structure not only provides an initial

intuition about the problem domain and the assurances that can be given but also guides

software engineers in system design and during the assurance process.

We elaborated four classes of architectural dependability assurance into which a system

can be classified. Moreover, we identified several classification dimensions to classify

(self-adaptive and static) AI-enabled systems into one of the classes. However, it should

be mentioned here that the classes are highly subjective. Therefore, we could not fully

evaluate their appropriateness. Considering the amount of work that has been done in the

other contributions, a comprehensive evaluation of the classes was not possible. Therefore,

a more comprehensive evaluation is planned for future work.

1.5. Example Systems

In this thesis, we illustrate complex and theoretical concepts with examples to make

them more amenable. Therefore, this section presents the example systems that we

refer to repeatedly in this work. We consider several example systems because a single

example system is not sufficient to support all concepts with illustrations. Moreover,

some example systems are classical software systems (i.e. without AI components), which

might seem somewhat contradictory concerning our planned contributions. However,

some parts of the first and third contributions are not limited to AI-enabled systems

(in particular, in the third contribution we investigate how the approach of evaluating

adaptation strategies can be generalised to arbitrary application contexts). Therefore, we

also consider software systems without AI components, which are more suitable for other

concepts of our approach.

1.5.1. Load Balancer

As the first running example, we consider the Znn.com system [48] which is a prevalent

exemplar in the self-adaptive system research community. As shown in Figure 1.1 the

system comprises three components, namely a load balancer component deployed on a

web server node and two application server components deployed on two application

server nodes. In principle, the system is exposed to varying amounts of user requests.

Consequently, the system might experience overload scenarios in which the number

of user requests cannot be handled by the system, i.e. the performance of the system

(measured by the response time) degrades. However, the load balancer component controls

the distribution factor (i.e. the factor which is responsible for distributing the incoming

load on the available servers; see 𝛼 ∈ [0, 1] in Figure 1.1) which can be adjusted by a

self-adaptive system. Besides overload scenarios, hardware failures can arise, e.g. a server

node is temporarily not available.

15

1. Introduction

LoadBalancer

AppServer1

Application Server 2

CPU

User

<<ExternalCall>>
AppServer1

<<calls>>

#Replicas = 1
Processing
rate = 1000

Request/s = 4

<<implements>>

<<allocated>>
Usage Model

Deployment Model

Intra-Component Behaviour Model

System Model

Application Server 1

CPU

Web Server

CPU

<<allocated>>

AppServer2

<<allocated>>

<<ExternalCall>>
AppServer2

Figure 1.1.: PCM instance of the load balancer system in a UML-based notation (taken from [158]).

In the case of the Znn.com system, we consider a self-adaptive system which adapts the

system configuration by varying the distribution factor of the load balancer component.

That is, the self-adaptive system can distribute the incoming load evenly in terms of

high-load scenarios or to a single node if the other server node is not available. More

specifically, the adaptation problem is to keep the system responsive in the presence of

high user loads and potential hardware failures while minimising the number of utilised

servers over time.

1.5.2. DeltaIoT

The DeltaIoT system [92, 168] is a widely used case study in the self-adaptive system

community and originates from the Internet of Things (IoT) domain. The DeltaIoT system

is a multi-hop network consisting of 15 motes. The system is deployed at the Department

of Computer Science at KU Leuven in Belgium. The motes are distributed in various

buildings and communicate with each other based on LoRa communication, a low-power

16

1.5. Example Systems

[14]

[12]

[10]

[6]

[17]

[5]

[7]

[11]

[8]

[4]

[1]

[2]

[3]

[8]

[13]

[16]

[15]

Legend:

[1]...[17]

Movement
sensor

Temperature
sensor

RFID
sensor

Gateway Wireless
link

Mote ID

Figure 1.2.: Network topology of the DeltaIoT system (roughly sketched from [168]).

wide area network modulation technique suitable for low-power devices such as those

found in IoT networks. Each mote is equipped with a single sensor where three sensor

types are considered: RFID sensor to provide access control to the labs, passive infrared

sensor to monitor the occupancy status of buildings and temperature sensor to sense the

temperature. The emitted sensor data of the motes are transmitted to a central gateway

where the data is aggregated and made available. Thus, actions can be taken by the

Campus security personnel in case of unusual behaviour. The DeltaIoT system is depicted

on Figure 1.2.

As shown in Figure 1.2, some motes cannot directly send their data to the central gateway

but send the data to an intermediate or adjacent mote; also known as multi-hop commu-

nication. Hereby, the communication is considered to be unicast. Thus, for each mote,

there has to be at least one path (via some adjacent motes) to the gateway. This means

that a mote might have more than one adjacent mote and thus the possibility to send a

data packet towards the gateway.

A mote is individually configurable. More specifically, a mote is associated with an

adaptable transmission power. The higher the transmission power the lower the probability

of packet loss, but at the cost of higher energy consumption. Moreover, the proportion for

17

1. Introduction

motes with more than one option to send data can be adapted as well. Thus, traffic can be

sent tomotes with lower packet loss potential, taking into account their transmission power

to balance the energy consumption. The challenge now is to find an optimal configuration

of the motes such that packet losses and energy consumption are minimised.

However, some uncertainties make it difficult for static systems to find an individual system

configuration such that the reliability of the system in terms of packet loss and energy

consumption is maintained at the same time. These uncertainties refer to fluctuations

in traffic load and wireless interference. Fluctuations in traffic loads emerge from the

varying number of data packets that can be emitted by a mote. Each sensor deployed on a

mote emits a certain number of data packets in equidistant time cycles; more specifically,

between 0 and 10 data packets per cycle. The probability that a mote produces data packets

during a cycle is captured by its activation probability, e.g. if the activation probability

of a mote is 0.6, 6 data packets are produced and sent within a cycle. Fluctuations in

traffic loads are dependent on the type of sensor. For instance, while temperature sensors

produce sensor data in equidistant time steps, passive infrared and RFID sensors are more

active during the daytime operation of the university and thus more frequently emitting

sensor data.

Wireless interference refers to disturbances in the environment or rather during the

communication between motes that can cause a failure in the transmission of data packets

and increases the overall packet loss of the system. More specifically, the packet loss

depends on the Signal-to-Noise Ratio (SNR) of a wireless link, i.e. the communication

link between two motes. SNR is defined as the ratio between the level of a mote’s signal

when sending data and the level of a noise signal from the environment (e.g. wireless

interference). The SNR of a wireless link is increased when the transmission power of a

mote is increased; that is, the higher the SNR the lower the probability of packet loss and

vice versa.

Fluctuation in traffic load and wireless interference are two variables that change over

time and make it quite challenging to adjust the configurations of the individual motes to

maintain a certain level of packet loss and energy consumption. Especially for IoT networks

such as DeltaIoT where the network topology encompasses a lot of configurable motes.

Therefore, self-adaptive capabilities are required to compensate for such uncertainties.

More specifically, the adaptation problem is to adapt the transmission power and data

distribution of motes to maintain packet loss and energy consumption in the presence of

wireless interference and fluctuations in the traffic load.

1.5.3. Human-Robot-Interaction

The last example system is taken from the domain of Human-Robot-Interaction (HRI) and

is based on the work of Timmermann et al. [188]. The HRI system was designed as part of

the CyberProtect-project1 in which parts of this thesis were also elaborated.

1
https://www.cyberprotect-bw.de/

18

1.5. Example Systems

Build-
SequenceLogic

MaskR-
CNN

Object-
Localistion

Trajectory-
Planner

Robot-
ControlCamera Image-

Preprocessing

Resource Container

CPUSensor

<<InternalAction>>
ComputeTrajectory

<<EmitEventAction>>
PublishTrajectoryMsg

<<calls>>

Resource
demand = 50
Failure prob. = 0.1MTTF = 150h

MTTR = 8hRequest/s = 1

<<implements>><<allocated>>

Usage Model Deployment Model Intra-Component Behaviour Model

System Model

Figure 1.3.: PCM instance of the HRI system [188] in a UML-based notation (taken from [159]).

It represents a robot system that controls a robot arm which is attached to a camera to

recognise and assemble object parts. Figure 1.3 shows the simplified architecture of the

HRI system. It builds upon the Robot Operating System (ROS) [142] and thus follows

a message-based communication. We assume that the system perceives one image per

second from the camera. The central part of the system forms the ObjectLocalisation

component (to which the image is forwarded). In the HRI example, object localisation is

implemented by a hybrid approach where computer vision and deep learning techniques

are combined to achieve a fast and robust object localisation. More specifically, the deep

learning part of the approach encompasses a DNN which detects all object parts within

an image; so-called MaskR-CNN’s have been used [80, 2]. The results of the MaskR-CNN

are used by a computer vision component for object localisation to determine further

information such as the orientation or the exact position of the object parts. Based on the

localised objects, the BuildSequenceLogic component determines the assembling order.

Finally, the trajectory of the robot is planned and translated into control signals.

Because the use case involves human interaction (human workers may operate in the

same workspace as the robot arm or directly interact with the system), a specific level

of safety must be maintained, e.g. a collision with the robot arm can cause injuries such

as squeezing. However, the safety of human workers is highly dependent on the reliable

detection of the object parts by the AI model (i.e. the MaskR-CNN). For example, if a body

part is not detected while assembling object parts, the system computes a trajectory which

can directly collide with the human worker. Therefore, it is paramount that the AI model

is working accurately and reliably.

19

1. Introduction

For the sake of illustration, we consider two external factors which we assume to have a

direct influence on the predictive uncertainty of the AI model, namely brightness variations

and sensor noise. Originally, Timmermann et al. [188] used as an AI model a pre-trained

MaskR-CNN which they re-trained based on a limited training dataset of the object

parts. Therefore, we assume that not sufficient data examples are included in the dataset

which covers data examples under various brightness conditions or sensor noise levels.

Consequently, the AI model is likely to produce wrong predictions in scenes with varying

brightness conditions or sensor noise.

To ensure safety, however, an architectural or system-level approach is supposed to be

considered. For the HRI system, we consider the use of a self-adaptive system as an archi-

tectural safeguard. Note that also non-adaptive solutions could be taken into consideration;

however, due to illustration purposes, we consider a self-adaptive system which can apply

two adaptations. The first adaptation activates (or deactivates) an additional preprocessing

component to deal with sensor noise. For instance, in Figure 1.3 the ImagePreprocessing

component can be activated or deactivated. For the second adaptation, we assume (in

addition to the MaskR-CNN) another AI model which is more robust but computationally

expensive. Thus, the self-adaptive system can switch between the two AI models at run-

time. However, both adaptations degrade the performance of the system to some extent,

i.e. a particular execution time can not be guaranteed, and the system is no longer able to

react to new events in time. Thus, the challenge or adaptation problem of the self-adaptive

system is to adapt the system in such a way that the performance and reliability of the

system are balanced as well as possible, i.e. preventing unsafe states while keeping the

system responsive.

1.6. Outline

Before briefly outlining the individual chapters of this thesis, we would like to point

out that the structure of the thesis does not directly follow the order of the enumerated

contributions. Although we build upon existing model-based approaches, further model-

based approaches had to be developed, which are necessary for a design-time evaluation

of architectural safeguards. In particular, this concerns the evaluation of adaptation

strategies of self-adaptive systems (acting as designated architectural safeguards) and the

probabilistic modelling of environments (i.e. the environmental dynamics). Therefore,

the contribution-related chapters (i.e. chapters 4-8) are divided into two parts. The first

part (i.e. chapters 4-6) generally presents the fundamental concepts and approaches that

are independent of the evaluation and analysis of AI-related architectural safeguards.

This includes the formal or mathematical framework on which this thesis is based and

which runs through all chapters, the domain-agnostic environment model and our SimExp
method for design-time evaluation of adaptation strategies. The second part (i.e. chapters 7

and 8) takes these concepts and extends them for the evaluation of architectural safeguards

of AI components. That being said, we structured the thesis as follows:

20

1.6. Outline

In Chapter 2, we introduce all relevant foundations necessary to understand the concepts

and terminology of this thesis.

In Chapter 3, we review and distinguish ourselves from numerous scientific works related

to our research.

In Chapter 4 we discuss the formal framework of our approach, namely MDPs. More

specifically, we present the basic concepts and building blocks which map directly to

equivalent concepts in MDPs and on which the subsequent approaches are based. In

addition, based on the semantics of MDPs, we prove that self-adaptive systems follow a

dynamic behaviour under certain assumptions.

In Chapter 5, we present the metamodel of our environment model. For the sake of gen-

erality, we discuss the environment (or the environmental dynamics) from the perspective

of self-adaptive systems. At its core, however, the metamodel is based on the concepts of

Dynamic Bayesian Networks that extends Bayesian Networks. We use Bayesian networks to

describe the relationships between environmental variables and the predictive uncertainty

of an AI component.

In Chapter 6, we present our SimExp method. The SimExp method encompasses a

framework one can use to evaluate adaptation strategies of any self-adaptive system in

any domain. SimExp, however, represents not a ready-to-use tool but rather a method

(or framework) one must instantiate and, if necessary, complement with domain-specific

elements.

In Chapter 7, we expand the concepts elaborated in the previous chapters to evaluate

architectural safeguards. Hereby, we start to present our reliability prediction approach

for AI-enabled systems. Afterwards, we discuss how to evaluate self-adaptive systems

as architectural safeguards for AI components by combining our reliability prediction

approach with the SimExp method presented in chapter 6.

InChapter 8, we introduce our classification structure for assessing AI-enabled systems in

terms of making assurances for a particular system-level property. First, we start to discuss

our classes of architectural dependability assurance and the classification dimensions we

identified. Finally, we apply the structure to a representative set of AI systems and discuss

the results afterwards.

We validate our approaches in Chapter 9. Our validation is driven by the Goal-Question-
Metric approach that we present in the beginning. We validate our approaches by consid-

ering four case study systems. In the end, we discuss the results and answer the research

questions.

Finally, we conclude the thesis in Chapter 10 by providing a summary and discussion of

future work.

21

Part II.

Foundations and Related Work

2. Foundations

In this section, we review all relevant foundations that are needed to understand the

concepts presented in this thesis.

2.1. Self-Adaptive Software Systems

Opposed to static software systems, self-adaptive systems adapt their structure and be-

haviour at runtime. Thus, self-adaptive systems can operate in dynamic environments

where a static software system is not able to satisfy the quality requirements of the system.

In this thesis, we focus on self-adaptive systems that follow the MAPE-K paradigm [101].

The MAPE-K paradigm follows a feedback loop. Figure 2.1 depicts the main elements or

generic structure of a MAPE-K feedback loop.

Basically, the MAPE-K paradigm distinguishes between Managed Elements and the Au-
tonomic Manager. The former corresponds to the elements of a software system which

are adapted at runtime. The autonomic manager in turn is responsible for adapting the

managed elements. Both together form a self-adaptive system.

More specifically, the autonomic manager defines four phases: Monitor, Analyse, Plan and

Execute (this explains the first four letters of the acronym MAPE). In the monitor-phase,

the autonomic manager gathers data on the environment or system variables which are

necessary for determining the state of the system. Moreover, it serves as a basis for the next

phase. The analyse-phase checks based on the collected data of the monitor-phase whether

Managed Element

Plan

ExecuteMonitor

Analyze

Knowledge

Autonomic Manager

Figure 2.1.: Basic structure of the MAPE-K feedback loop based on [101].

25

2. Foundations

an adaption of the system is necessary, e.g. by checking whether quality objectives are

not satisfied anymore. If so, the analyse-phase triggers the plan-phase. The plan-phase

determines a specific adaptation to cope with the current situation and to restore a stable

system state. Finally, the execute-phase applies the planned adaptation to the managed

elements. Note that we use the term quality objectives in the context of a self-adaptive

system to refer to a set of non-functional (or quality) requirements that are maintained by

a self-adaptive system.

The concept of the Knowledge refers to a knowledge base that encompasses information on

the system structure, domain information, assumptions, etc. necessary for the individual

MAPE phases. The MAPE phases as well as the knowledge base constitute a MAPE-K

feedback loop.

2.2. Model-driven Software Development

Model-Driven Software Development (MDSD) [198] defines a collection of techniques and

methods centred around models. A model provides an abstract point of view of a software

system. Thus, the complexity is reduced and provides developers with good means for

communication, discussion and documentation. Strongly related to MDSD is an approach

known as Model-Driven Architecture (MDA) [103] which was introduced by the Object
Management Group (OMG). The very basic idea of MDA is to use models gradually refined

with more details in later development stages. In the beginning, a Platform Independent
Model (PIM) is generated which is exclusively concerned with platform-independent

system operations. Based on the PIM, the Platform Specific Model (PSM) is developed to

complement the PIM with platform-specific information. Based on the PSM model, code

can be generated. Essentially, MDA is about using abstraction at the early development

stages of a software product which is iteratively refined as soon as more requirements and

information are getting more concrete.

2.2.1. Models and Metamodels

In this section, we discuss the foundations of Models and Metamodels as both concepts

are of paramount importance for this thesis. The central element of MDSD is a model.

Therefore, the concept of a model must be defined, which we will do in the following

based on the work of Stachowiak [175] on general model theory:

Definition 1 (Model based on Stachowiak [175]). A model is a formal representation of
real-world entities and their relationships in which

• only the details relevant for understanding are captured (abstraction)

• a certain correspondence is maintained (homomorphism)

• a specific intention is to be illustrated (pragmatics)

26

2.2. Model-driven Software Development

M3: Metametamodel

M2: Metamodel

M1: Model

M0: Instance

defines

defines

defines

defines

instance of

instance of

instance of

instance of

Figure 2.2.: The meta-levels in models adopted from [176].

A model is associated with a set of rules that define how a model is to be created, i.e.

which elements the model contains and how the elements relate to each other. Such

structure-defining rules are defined within a so-called metamodel. In terms of metamodels,

we reuse the definition provided by Koziolek [106, P.43] which is based on Stahl and Völter

[176].

Definition 2 (Metamodel). “A metamodel is a formal model that describes the possible
models for a domain by defining the constructs of a modelling language and their relationships
(abstract syntax) as well as constraints and modelling rules (static semantics).” [106, P.43]
(adapted from Stahl and Völter [176]).

Amodel is considered to be an instance of its corresponding metamodel. Also, a metamodel

may have a metametamodel while this can again be described by a metametametamodel.

Thus, from a theoretical point of view, there exist infinite meta-levels. In practice, however,

only a few meta-levels are considered. More concretely, the Object Management Facility

(OMG) and their Meta Object Facility (MOF) consider four meta-levels (see Figure 2.2).

The idea of MOF is to provide a standardised metametamodel. Based on the standardised

metametamodel at meta-level𝑀3, metamodels (𝑀2) can be created which in turn allow the

instantiation of models (𝑀1) capturing real-world entities and their relationships (𝑀0).

2.2.2. Model Transformation

In this section, we explain Model Transformations which we mainly use within this thesis

to abstract adaptations of self-adaptive systems. Informally, a model transformation

27

2. Foundations

transforms a model into another model, e.g. it transforms a state machine model into

a Petri-Net model. However, this requires that both models have common semantics,

otherwise a transformation would not be possible. Transformations of this kind are called

Model-to-Model Transformations.

Definition 3 (Model-to-Model Transformation). A model-to-model transformation defines
a set of rules that map elements from a source metamodel to a target metamodel. [198]

Generally, there is a distinction between Exogenous and Endogenous transformations.

Transformations that transform models from one metamodel into another are called

exogenous. More formally, let𝑀 and𝑀′ be twomodels whereMM(𝑀) corresponds to the
source andMM(𝑀′) to the target metamodel, a transformation is exogenous, if and only

ifMM(𝑀) ≠MM(𝑀′). On the contrary, a model transformation is called endogenous

or in-place model transformation, ifMM(𝑀) =MM(𝑀′) holds. In the context of this

thesis, we are mainly concerned with endogenous or in-place transformations.

2.2.3. EMF Profiles

Metamodels can be very expressive and grow over time. To some extent, the extension of

a complex and large metamodel requires a lot of effort. For this reason, a new extension

method has been established that applies so-called Profiles at metamodel level to the

respective metaclasses to be extended. Profiles define additional attributes or references

for which the metaclass is to be extended. In the context of the Unified Modeling Language
(UML) [133], for example, UML Profiles have been established. In this work, however, we

consider EMF Profiles that correspond to the equivalent concept to UML profiles in the

context of the Eclipse Modeling Framework (EMF) [177]. EMF provides a framework to

develop metamodels based on the Ecore notation and is fully integrated into the Eclipse

development environment. The presented concepts of this thesis are mainly implemented

in EMF. Therefore, we also make use of EMF profiles. However, we are not using EMF

profiles to extend existing metamodels but to annotate them. In later chapters, we will see

that using EMF profiles as annotations enable us to apply our approach independent of

the considered modelling language for describing software architectures.

2.3. The Palladio Approach

In this section, we introduce the Palladio approach [149]. The Palladio approach provides

an ADL (architectural description language) to model component-based software architec-

tures, namely the Palladio Component Model (PCM) (see section 2.3.1). Complementary to

PCM, the Palladio approach provides a collection of simulation and analysis tools which

can be used to predict quality attributes based on the modelled PCM instances (see sec-

tion 2.3.2). However, before we delve into the details of PCM and its simulation/analysis

tools, we introduce two more definitions which are of paramount importance, namely the

28

2.3. The Palladio Approach

concept of Software Architecture and Software Component. In literature, there are many

definitions and understandings of both concepts. For clarification, however, we intro-

duce the respective definitions of what we define as software architecture and software

components.

In this thesis, we focus on component-based software architectures, where software

components are the central building blocks. Therefore, we first define software components

from Reussner et al. [149]:

Definition 4 (Software Component). “A software component is a contractually specified
building block for software, which can be composed, deployed and adapted without under-
standing its internals.” [149, P.47]

Based on the definition, the software architecture is defined by Reussner et al. [149] as

follows:

Definition 5 (Software Architecture). “A software architecture is the result of a set of design
decisions relating to the structure of a system with components and their relationships as well
as their mapping to execution environments.” [149]

2.3.1. Modelling Component-based Software Architectures

In this section, we describe the PCM. The PCM is an ADL for component-based software

architectures which we use in the context of this thesis as modelling language to describe

software architectures. In the following, we introduce the main elements of the language.

Moreover, we describe the template language Architectural Templates (ATs) which is based

on the PCM. ATs describe a language to model architectural knowledge (e.g. architec-

tural patterns or reference architectures). Because we use ATs in this thesis to describe

architectural patterns, we introduce the main concepts as well.

2.3.1.1. The Palladio Component Model

In principle, the PCM comprises a collection of distinct models where each of which

describes a specific view or aspect of the entire software architecture. There are three

viewpoints within the PCM, namely Structural Viewpoint, Behavioural Viewpoint and
Deployment Viewpoint. Each viewpoint is associated with a set of models. All models

together form a PCMmodel instance that describes the architecture of a software system.

29

2. Foundations

Structural Viewpoint The structural viewpoint is associated with two models, namely

the Repository Model and System model. The repository model describes all Software
Components of a software system (which form the main building blocks of the software

architecture) and their dependency structure. Each component can provide and require

an Interface. An interface describes a set of services which is either provided or required

by a component. A service is represented by its service or function signature which

encompasses the service name, input arguments and the corresponding output value. The

requiring and providing semantics connect components where one component provides an

interface which is required by another component. Moreover, it also dictates synchronous

communication between two components, e.g. consider the load balancing system where

the load balancer component is synchronously communicating with the application server.

In some scenarios, however, software systems rather follow a different type of communica-

tion, i.e. event-based communication. Recall, for example, the HRI system using the ROS

(robot operating system) which dictates message-based communication. In such settings,

there is no direct communication between components, only an event channel where

events are published and consumed by other components. In event-based communication,

components are not connected by interfaces but by Event Groups, which in turn do not

specify function signatures but event types. Each event type can define a set of input

arguments. In contrast to providing and requiring components, one component can act as

a source (i.e. an event-producing component), while another component acts as a sink (i.e.

event-consuming component).

The system model defines the runtime model. More specifically, it defines a set of Assembly
Contexts which instantiates components of the repository model. Consequently, not every

component of the repository model must be instantiated in the system model but only

a subset. For example, if there exist several components providing the same interface

(i.e. design or implementation options), only one is eventually selected and considered in

the system model. Furthermore, the system model describes the concrete connection of

components based on the providing/requiring or source/sink semantics (which depends

on the type of communication technology). More precisely, one may connect components

by creating so-called Assembly Connectors. All assembly contexts and connectors are

maintained within a System which represents the whole software system. A system

provides one or more interfaces that are visible to the environment in which the system

operates, i.e. they describe the services that the system provides and that can be requested

by users.

Behavioural Viewpoint The behavioural viewpoint comprises two models, namely the

Service Effect Specification (SEFF) and Usage Model.

In PCM, the intracomponent and intercomponent behaviour is distinguished. The intra-

component behaviour refers to the internal behaviour of the component itself which is

modelled by the SEFF. More specifically, for each component operation or service, there

exists a SEFF describing the internals of the component when invoking the respective

operation provided by the component. SEFFs define Abstract Actions which models the

control flow of a component based on finite state machines. An abstract action can have

30

2.3. The Palladio Approach

different subtypes. For example, an Internal Action represents a processing task which is

associated with a certain resource demand. External Call Actions model external service

calls of a requiring component to a providing component. An Emit Event Action is the

counterpart of an external call action in terms of event-based communication. Moreover,

there are further actions such as Branch Actions and Loop Actions to model the abstract

control flow of a component. On the contrary, intercomponent behaviour models the

interaction between models. However, because the intercomponent behaviour is implicitly

modelled by the system model and the external calls of the intracomponent behaviour,

there is no dedicated model.

The usage model captures the usage behaviour of the users interacting with the system.

The usage model allows domain experts to model so-called Usage Scenarios. In a usage

scenario, the user’s interaction with the system is captured in a way that resembles activity

diagrams. In this context, a domain expert must model aWorkload specification. There are

two kinds of workload: Open Workloads and Closed Workload. Closed workloads models a

population of users (i.e. a fixed number of users) that circulate in the system (i.e. who are

repeatedly interacting with the system). In contrast, open workloads capture the frequency

with which the system is requested by a user. Hereby, either the Arrival Rate (i.e. the
number of requests per time unit) or Interarrival time (i.e. the time between user arrival

which is derived by the arrival rate: 1/𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑅𝑎𝑡𝑒) of the system can be modelled. Finally,

a domain expert can model the distribution defined over the distinct interarrival times to

capture the user behaviour more accurately.

Deployment Viewpoint The deployment viewpoint subsumes all models which provide

information about the deployment of the system components. More specifically, two

models include deployment information, namely the Allocation Model and Resource Envi-
ronment.

The resource model defines the available Resource Containers (e.g. physical nodes such as

servers) on which software components can be deployed. A resource container consists of

several processing resources (e.g. CPU or HDD) which can be requested by the software

components (and which have a tremendous effect on the system performance). Moreover,

the resource environment models Linking Resources (i.e. network connection such as LAN

or WAN) between the distinct resource containers.

Based on the resource environment, the allocation model describes the allocation structure

of the assembly contexts of the system model. More specifically, it models the mapping of

an assembly context to a specific resource container.

2.3.1.2. Architectural Templates

In this section, we present the Architectural Template (AT) approach of Lehrig [113] for

templating Architectural Knowledge. Architectural knowledge is defined by Kruchten et

al. [108] as design decisions and the design of the software architecture, i.e. not only

the design but also the involved design decisions. In some domains, however, gained

31

2. Foundations

architectural knowledge is transferable to related domains which face comparable design

problems. Therefore, it is of tremendous importance to document architectural knowledge

to make them reusable in various application contexts. Examples of reusable architectural

knowledge are Architectural Patterns, Architectural Styles and Reference Architectures. In
this thesis, we focus on architectural patterns which are defined as follows:

Definition 6 (Architectural Pattern). “An architectural pattern is a named collection of
architectural design decisions that are applicable to a recurring design problem, parametrized
to account for different software development contexts in which that problem appears.” [122,
P.73]

Lehrig’s AT approach accommodates the reuse of architectural knowledge by providing a

formal modelling language for describing ATs, i.e. for modelling architectural patterns,

architectural styles and reference architectures. The approach has been initially imple-

mented in the context of Palladio and PCM; thus, it is fully compatible with PCM. The

definition of an AT involves three steps. First, an AT must be defined and added to a

central Architectural Catalog that can be browsed by a software engineer and contains

all applicable ATs. An AT itself contains a set of AT Roles and a Quality Completion. The
AT roles correspond to EMF profiles which are applied to annotate the elements of the

architecture model (or PCM model) that are affected by the AT. More precisely, the roles

specify the place or part of the architecture to which the AT is to be applied. In addition,

they can also introduce architectural constraints that must not be violated. For example,

in a three-tier architecture, components assigned to one of the tiers (i.e. presentation,

application and data access tiers) may only request components from lower tiers. Finally,

to evaluate the effect of an AT on the quality attributes, a quality completion must be

implemented. Quality completion refers to an in-place model transformation that com-

pletes the PCM model with AT-specific elements. Recall the load balancer example system

from section 1.5.1. The concept of a load balancer can also be modelled as an architectural

pattern (see [113]). In this case, the corresponding model elements of the PCM model

(concerning the load balancing system of the AppServer) have to be annotated in such

a way that the quality completion transforms the model by inserting the load balancer

component and replications of the AppServer. Depending on the AT used, the quality

completions are different. In this thesis, we use ATs to model architectural patterns to

safeguard or improve the reliability of AI-enabled software systems.

2.3.2. Simulating Component-based Software Architectures

In this section, we briefly provide an overview of the simulation and analysis capabilities

of the Palladio framework.

32

2.3. The Palladio Approach

2.3.2.1. Predicting Software Quality Attributes

Originally, the idea of the Palladio approach was to predict performance attributes of

modelled PCM instances. This idea was generalised by allowing the prediction of other

quality attributes (e.g. reliability) and not only performance. In the process, the PCM

was extended by further concepts to enable the prediction of further quality attributes.

Thus, the Palladio approach defines an overall procedure that can be extended by further

simulation and analysis tools to predict a whole range of quality attributes.

In the context of this thesis, we will reuse the performance simulator SimuLizar ([16, 17])
to predict performance attributes (more specifically, the response time of the system).

We reuse, however, SimuLizar not as part of our approach but as a tool to quantify a

system state. In addition to SimuLizar, there is also the PCM-Rel analysis tool [33] to

predict reliability attributes of PCM instances, which we extend in this work to enable

the prediction of reliability attributes for AI-enabled software systems. Since the internals

and semantics of PCM-Rel are of greater importance, PCM-Rel is discussed in more detail

in the next section. Note, however, that there are more simulation and analysis tools (we

refer to reference [149] for more details).

2.3.2.2. Architecture-based Software Reliability Prediction

Before we explain the details of the PCM-Rel approach for predicting the reliability at-

tributes of a PCM model, we first define what we consider under the term software

reliability. Therefore, we consider the IEEE 1633 standard in which software reliability is

defined as follows:

“The probability that software will not cause the failure of a system for a

specified time under specified conditions.” [90]

Based on this definition, we present the PCM-Rel approach [33, 34].

In essence, PCM-Rel enables the prediction of the success probability of a PCM-modelled

software system. More specifically, the success probability is determined for the execution

of a service. The service execution depends on the execution paths induced by the intra-

and intercomponent behaviour of the distinct components of the software architecture.

Moreover, the success probability depends on the given usage behaviour, i.e. the sequences

of service calls modelled by a usage scenario.

PCM-Rel extends the PCM by annotating particular model elements with failure types.

More specifically, there are three distinct failure types, namely Software-, Hardware- and
Network Failure Type. Software failure types describe the failure potential due to faults in

the implementation of software components. In terms of PCM, internal action elements

are annotated by failure probabilities because they refer to internal processing units (i.e.

implemented code). Hardware failure types represent the failure potential of observing

hardware failures of hardware resources (i.e. the probability that at a certain time instance

a server is unavailable). In the context of PCM, resource containers are annotated by

33

2. Foundations

Mean-Time-To-Failure (MTTF) and Mean-Time-To-Repair (MTTR). Based on the MTTF and

MTTR specifications, the availability of a resource container 𝑖 is calculated as follows:

𝐴𝑣 (𝑖) = 𝑀𝑇𝑇𝐹𝑖

𝑀𝑇𝑇𝐹𝑖 +𝑀𝑇𝑇𝑅𝑖
(2.1)

Let 𝑋𝑖 denote the random variable describing the state of a resource container 𝑖 which is

either available (𝑂𝐾) or not available (𝑁𝐴), i.e. 𝑉𝑎𝑙 (𝑋𝑖) = {𝑂𝐾, 𝑁𝐴}. The probability of

failure/success of resource container 𝑖 is equivalent to the probability of having 𝑖 either in

state 𝑂𝐾 or 𝑁𝐴:

𝑃𝑟 (𝑋𝑖 = 𝑂𝐾) = 𝐴𝑣 (𝑖)
𝑃𝑟 (𝑋𝑖 = 𝑁𝐴) = 1 −𝐴𝑣 (𝑖)

(2.2)

Finally, a network failure type refers to the failure probability observed during the commu-

nication of components (i.e. intercomponent behaviour). In this case, a linking resource of

the PCM model is annotated with a corresponding failure probability.

Recall that the resource environment of PCM models all resource containers. Whenever

we use multiple resource containers on which software components are allocated, we also

observe distinct resource failure patterns. For instance, for two resource containers, four

different failure situations are possible. More generally, for 𝑙 available resource containers,

2
𝑙
different resource failure patterns are possible. Based on the hardware failure annotations

all possible Physical System States (i.e. the distinct resource failure patterns) are determined.

The probability of observing a particular pattern of physical states𝜓 ∈ Ψ := {𝑂𝐾, 𝑁𝐴}𝑙 is
𝑃𝑟 (𝑋Ψ = 𝜓) = 𝑃𝑟 (𝑋1 = 𝜓1, ..., 𝑋𝑙 = 𝜓𝑙). Moreover, it is assumed that the individual resource

failures are stochastically independent, i.e. 𝑃𝑟 (𝑋1 = 𝜓1, ..., 𝑋𝑙 = 𝜓𝑙) =
∏𝑙
𝑖=1 𝑃𝑟 (𝑋𝑖 = 𝜓𝑖).

The main reason why we consider different physical state patterns𝜓 is that each of which

has a different effect on the system’s success probability 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠). Recall that
each usage model 𝑈 defines a set of usage scenarios. Each usage scenario is associated

with a different user behaviour (i.e. different interaction with the system) that results in

different execution or service invocation paths. For a given physical state pattern, the

service invocation path may contain services that are provided only on available and

functioning servers. If, on the other hand, the path of service invocations contains services

that are provided on non-functioning servers, a system failure is observed. Therefore,

the effect of𝜓 on 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠) is evaluated w.r.t. 𝑈 . Without going into too much

detail, this is achieved by generating and evaluating an absorbing Discrete-Time Markov
Chain (DTMC) (see section 2.4.1). For each 𝜓 a DTMC is generated w.r.t. the internal

software failure of the intracomponent behaviour and failures of intercomponent behaviour

descriptions (i.e. network failures). Finally, the overall system’s success probability is

evaluated by determining all physical states and their weighted effect on the system’s

success probability:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) =
∑︁
𝜓∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈) · 𝑃𝑟 (𝑋Ψ = 𝜓) (2.3)

In chapter 7, we will discuss how we extend PCM-Rel (based on equation (2.3)) to predict

the reliability attributes of AI-enabled software systems.

34

2.4. Markov Models

2.4. Markov Models

In this section, we introduce Markovian Processes or Markov models. More specifically, we

discuss three well-known Markov models, namely Discrete-time Markov Chains (DTMCs),

Markov Decision Processes (MDPs) and Partially Observable Markov Decision Processes
(POMDPs).

2.4.1. Discrete-time Markov Chain

The most basic Markov model forms Markov Chains. Markov chains are stochastic pro-

cesses where the Markov Assumption applies:

Definition 7 (Markov Chain). A Markov chain is defined by a family of random variables
(𝑋𝑡)𝑡∈N where the Markov assumption applies:

𝑃𝑟 (𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡 , . . . , 𝑋1 = 𝑥1, 𝑋0 = 𝑥0) = 𝑃𝑟 (𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡) (2.4)

In other words, the Markov assumption states that the probability of transitioning to a

state 𝑥𝑡+1 at time 𝑡 + 1 depends exclusively on the last state 𝑥𝑡 at time 𝑡 but not on the

entire history, i.e. 𝑥0, . . . , 𝑥𝑡 . Generally, it is distinguished between Discrete-time Markov
Chains (DTMCs) and Continuous-time Markov Chains. For DTMCs, discrete-time instances

𝑡 are considered in which the stochastic process evolves. On the contrary, continuous-time

Markov chains move in continuous time through the state space. In the context of this

work, however, we only focus on DTMCs. Moreover, we consider DTMCs where the

Stationary Assumption [105, P. 202] (also called homogeneous or time-invariant) holds:

∀𝑡, 𝑡 ′ ∈ {0, 1, . . . ,𝑇 } :
𝑃𝑟 (𝑋𝑡+1 = 𝑥 𝑗 | 𝑋𝑡 = 𝑥𝑖) = 𝑃𝑟 (𝑋𝑡 ′+1 = 𝑥 𝑗 | 𝑋𝑡 ′ = 𝑥𝑖)

(2.5)

That is, the probability of evaluating how the system transitions from 𝑥𝑖 to 𝑥 𝑗 is independent

of the current time instance.

Throughout this work, we consider a DTMC as tuple (𝑆, 𝑆0, 𝑡) consisting of three elements,

namely state space 𝑆 , initial distribution 𝑆0 and transition function 𝑡 : 𝑆 × 𝑆 → [0, 1].
Hereby, the transition function 𝑡 refers to the probability distribution of transitioning from

state 𝑠 at time 𝑡 to state 𝑠′ at time 𝑡 + 1, i.e. (𝑠, 𝑠′) ↦→ 𝑃𝑟 (𝑋𝑡+1 = 𝑠′ | 𝑋𝑡 = 𝑠). Finally, the set
𝑆0 ⊆ 𝑆 defines the set of initial states (following a particular probability distribution) in

which a DTMC may start.

35

2. Foundations

2.4.2. Markov Decision Process

This section introduces Markov Decision Processes (MDPs), which form an elementary

concept of this thesis. In section 2.4.1, we introduced DTMCs, i.e. stochastic processes

where the Markov assumption applies. MDPs extend DTMC (or Markov chains in general)

by taking into account two further concepts: Actions and Rewards. In the following, we

briefly discuss the main elements of MDPs but refer to [180, P.37] for more details.

MDPs are commonly explained by an agent that interacts with an environment. More

specifically, at some point in time 𝑡 , the agent receives the current state 𝑠𝑡 ∈ 𝑆 of the

environment and selects an action 𝑎𝑡 ∈ 𝐴 from an action set𝐴 w.r.t. 𝑠𝑡 . Afterwards, at time

𝑡 + 1, the agent receives a new state 𝑠𝑡+1 and a reward 𝑟𝑡+1 ∈ 𝑅 evaluating the decision of

selecting action 𝑎𝑡 in state 𝑠𝑡 . As a result of the interaction between agent and environment,

one can observe a Trajectory (also referred to as Episode) that has the following form:

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, . . . (2.6)

The trajectory illustrates how stochastic processes described by MDPs are different from

DTMCs. The state transitions are additionally affected by the choice of an action selected at

time 𝑡 . Probabilistically speaking, this is expressed by the transition function 𝑡 : 𝑆×𝐴×𝑆 →
[0, 1], i.e. (𝑠, 𝑎, 𝑠′) ↦→ 𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠′ | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡

= 𝑎). Each decision of selecting an action

in a given state is evaluated by a reward 𝑟 ∈ 𝑅 which is a numerical value, i.e. 𝑅 ⊂ 𝐼𝑅. This
idea is captured by the reward function 𝑟 : 𝑆 ×𝐴 × 𝑆 → 𝑅 that determines the expected

reward, i.e. (𝑠, 𝑎, 𝑠′) ↦→ 𝐼𝐸 [𝑋𝑅𝑡+1 | 𝑋𝑆𝑡 = 𝑠′, 𝑋𝐴𝑡
= 𝑎,𝑋𝑆𝑡 = 𝑠]. In summary, an MDP is

defined as follows:

Definition 8 (Markov Decision Process). A Markov decision process (MDP) is defined by
the tuple 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) where

• 𝑆 is a finite set of states.

• 𝐴 is a finite set of actions.

• 𝑡 is a conditional probability distribution determining the probability of transitioning
to state 𝑠′ at time 𝑡 + 1 given the current state 𝑠 and the selected action 𝑎 at time 𝑡 .

• 𝑟 is the reward function determining the expected reward after transitioning from state
𝑠 w.r.t. action 𝑎 at time 𝑡 to 𝑠′ at time 𝑡 + 1.

The last concept related to MDPs is the so-called Policy. A policy implements the decision

procedure that determines the action to be taken in a given state. More formally, a policy

𝜋 : 𝐴 × 𝑆 → [0, 1] is a conditional probability distribution (𝑠, 𝑎) ↦→ 𝜋 (𝑎 | 𝑠) = 𝑃𝑟 (𝑋𝐴 = 𝑠 |
𝑋𝑆 = 𝑠) that evaluates the probability of selecting an action in a given state. The primary

objective in MDPs is to develop such a decision procedure or policy 𝜋 that maximises

the expected reward over time. This idea is captured by so-called Value Functions 𝑣𝜋 (𝑠)

36

2.5. Dynamic Programming

which are defined to be the expected reward when starting in state 𝑠 and following policy

𝜋 (taken from [180, P.46]):

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) = 𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠] = 𝐼𝐸𝜋

[𝑇∑︁
𝑘=0

𝛾𝑘𝑋𝑅𝑡+𝑘+1

���𝑋𝑆𝑡 = 𝑠] (2.7)

𝑋𝐺𝑡
is used as a notation to abbreviate the accumulated reward over time, i.e. 𝑋𝐺𝑡

:=∑𝑇
𝑘=0

𝛾𝑘𝑋𝑅𝑡+𝑘+1 . Hereby, 𝑇 denotes the final time step. The parameter 𝛾 , 0 ≤ 𝛾 ≤ 1, is

called Discount Rate and has two main purposes. First, it ensures that in situations where

𝑇 = ∞ the accumulated reward is not infinite (when 𝛾 < 1). Second, it determines how

strong future rewards are taken into account. For instance, for values of 𝛾 close to 0, future

rewards are considered less strongly (as 𝛾𝑘 decreases for increasing 𝑘’s). On the contrary,

for values of 𝛾 close to 1, future rewards are taken into account more strongly.

2.4.3. Partially Observable Markov Decision Process

An even more general family of Markov models are so-called Partially Observable Markov
Decision Processes (POMDPs) which expand MDPs. In MDPs, it is implicitly assumed that

each state 𝑠 is fully observable. However, this might not be true in some settings where

the state is hidden, i.e. state 𝑠 can not directly be observed. In such situations, POMDPs

are considered which expand MDPs 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) by a set of observations Ω and an

observation model 𝑜 : 𝑆 × Ω → [0, 1] which evaluates the probability to observe 𝜔 ∈ Ω in

state 𝑠 . Note that in many other POMDP definitions the observation model also considers

the last action. However, the last action is directly reflected by the resulting state such

that it can be excluded by the observation model [174].

Definition 9 (Partially Observable Markov Decision Process). A partially observable
Markov decision process (POMDP) is defined as a tuple (𝜆,Ω, 𝑜):

• 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) describes a Markov decision process.

• Ω is a set of observations.

• 𝑜 is a probability distribution determining the probability of observing 𝜔 ∈ Ω in state
𝑠 ∈ 𝑆 at some time instance 𝑡 , i.e. (𝑠, 𝜔) ↦→ 𝑃𝑟 (𝑋Ω = 𝜔 | 𝑋𝑆 = 𝑠).

We use POMDPs in later chapters to formalise the hidden state problem induced by AI

black-box components.

2.5. Dynamic Programming

In this section, we briefly discuss Dynamic Programming (DP). For more details on DP, we

refer to [19, 180] (notations are reused from [180]).

37

2. Foundations

Recall from section 2.4.2 the concept of MDPs 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) and policies that need to be

implemented in a way that maximises the cumulative reward over time. DP refers to a

set of algorithms that enable computing an optimal policy 𝜋 given a perfect model of the

environment represented as an MDP. However, before finding an optimal policy, one has

to define when a policy 𝜋 is considered to be better than any other policy 𝜋 ′. Hereby, the
value function of equation (2.7) is used which induces a partial ordering over policies:

𝜋 ≥ 𝜋 ′⇔ ∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) ≥ 𝑣𝜋 ′ (𝑠) (2.8)

Roughly speaking, DP can be seen as an iterative process that repeatedly goes through two

sub-processes to find optimal policies. The first sub-process is called Policy Evaluation and

computes the value function 𝑣𝜋 (𝑠) of a policy 𝜋 . The second sub-process is called Policy
Improvement and identifies individual changes of a policy 𝜋 that lead to a better policy

𝜋 ′ (according to (2.8)). Policy evaluation and improvement are constantly repeated until

the process converges to an optimal policy; this whole iteration process is called policy
iteration. However, the main focus of this paper is evaluation rather than optimisation.

Therefore, the concept of policy evaluation in DP is briefly discussed.

2.5.1. Policy Evaluation

Policy evaluation computes the value function 𝑣𝜋 (𝑠) of a policy 𝜋 ; this is also referred to as
the Prediction Problem. The core of policy evaluation forms an iterative update approach

of a set of equations that are known as Bellman Equations (taken from [180, P.47]):

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) =𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠]

=𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′

∑︁
𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)

·
(
𝑟 + 𝛾𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑋𝐺𝑡+1 | 𝑋𝑆𝑡+1 = 𝑠′]

)
=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝜋 (𝑠′)

)
(2.9)

Note that function 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) is used to abbreviate the conditional probability of observing
state 𝑠′ and reward 𝑟 at time 𝑡 + 1 given state 𝑠 and action 𝑎 at time 𝑡 , i.e. 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) :=
𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡

= 𝑎). The existence and uniqueness of value function

𝑣𝜋 (𝑠) of policy 𝜋 is guaranteed if 𝛾 < 1 or termination is guaranteed (i.e. the final time

step 𝑇 from the value function (2.7) is finite 𝑇 < ∞). An update rule for a given state 𝑠 is

defined as follows (taken from [180, P.60]):

𝑣𝑘+1(𝑠) = 𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑣𝑘 (𝑋𝑆𝑡+1) | 𝑋𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝑘 (𝑠′)

)

38

2.5. Dynamic Programming

The update rules are implemented w.r.t. the Bellman equations, where 𝑣𝑘 denotes the last

updated value; such updates are also denoted as Expected Updates. The iterative policy
evaluation algorithm is shown in algorithm 2.1.

Algorithm 2.1: The iterative policy evaluation algorithm adopted from [180, P.61]

Input: The policy to be evaluated 𝜋

Output: Value function 𝑉 ≈ 𝑣𝜋
1 𝑉 (𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 () // e.g. ∀𝑠 ∈ 𝑆 : 𝑉 (𝑠) = 0

2 repeat
3 Δ← 0

4 foreach 𝑠 ∈ 𝑆 do
5 𝑣 ← 𝑉 (𝑠)
6 𝑉 (𝑠) ← ∑

𝑎 𝜋 (𝑎 | 𝑠)
∑
𝑠′,𝑟 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)

(
𝑟 + 𝛾𝑉 (𝑠′)

)
7 Δ←𝑚𝑎𝑥 (Δ, |𝑣 −𝑉 (𝑠) |)
8 end
9 until Δ < 𝜖 ∈ 𝐼𝑅>0

2.5.2. Monte Carlo Prediction

Generally, Monte Carlo Methods refer to a collection of estimation methods that involve

probabilistic sampling from a distribution. Regarding MDPs, Monte Carlo methods are

commonly used to randomly sample trajectories from the actual or simulated environment

which are (e.g.) used to estimate the value function 𝑣𝜋 (𝑠). One problem with DP is that

it requires complete knowledge of the dynamics of the environment (i.e. 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)),
which, however, might not be known in advance. In some cases, it is possible to draw

samples from 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) without knowing the distribution which is sufficient to compute

value functions 𝑣𝜋 (𝑠). This is where Monte Carlo Prediction comes in, which estimates

value functions 𝑣𝜋 (𝑠) by sampling from the environment and following the policy 𝜋 (as

dictated by the Bellman equation). If the interaction with the environment is simulated,

the generated samples are called Simulated Experience.

Monte Carlo prediction is a quite simple approach as it generates trajectories by repeatedly

drawing samples from 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) and following 𝜋 until termination. Now recall that the

value of a state 𝑠 corresponds to the expected reward (or rather expected accumulated and

discounted reward) by starting from 𝑠 and following 𝜋 . For each generated trajectory, the

value of a state 𝑠 can be estimated by averaging the expected reward observed after the

first visit of 𝑠 . The more trajectories are sampled, the more the estimated value for each

state converges towards its true value.

There are two Monte Carlo prediction approaches, namely the First-Visit Monte Carlo
Method and Every-Visit Monte Carlo Method. Generally, when traversing over a trajectory,

one encounters several states 𝑠 which is denoted as a visit to 𝑠 . The first-visit Monte Carlo

method estimates 𝑣𝜋 (𝑠) by averaging the accumulated rewards observed after the first

39

2. Foundations

visit of 𝑠 in each trajectory. In contrast, the every-visit Monte Carlo method averages the

accumulated rewards following all visits of 𝑠 in each trajectory. The first-visit Monte Carlo

prediction algorithm is illustrated in algorithm 2.2.

Algorithm 2.2: The first-visit Monte Carlo prediction algorithm based on [180,

P.76]

Input: The policy to be evaluated 𝜋

Output: Estimated value function 𝑉 ≈ 𝑣𝜋
1 𝑉 (𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑉 () // e.g. ∀𝑠 ∈ 𝑆 : 𝑉 (𝑠) = 0

2 𝑅(𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑅() // an empty list, for all 𝑠 ∈ 𝑆
3 repeat
4 𝜏 ← 𝑠𝑎𝑚𝑝𝑙𝑒 () // Generates a trajectory w.r.t 𝜋

5 foreach 𝑠 ∈ 𝑆 do
6 if 𝑠 ∈ 𝜏 then
7 𝐺 ← 𝑎𝑐𝑐 (𝑠, 𝜏) // The accumulated reward that follows after

first occurence of 𝑠

8 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅(𝑠),𝐺) // Appends 𝐺 to 𝑅(𝑠)
9 𝑉 (𝑠) ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅(𝑠)) // Averages the returns of 𝑠

10 end
11 end

2.6. Probabilistic Graphical Models

In this section, we discuss the framework of Probabilistic Graphical Models that describe
graph-based probabilistic structures. Basically, probabilistic graphical models are used to

describe large and complex probability spaces which adhere to or encode specific properties

in a graph-based way, e.g. Bayesian Models or Markov Random Fields. The framework

encompasses entire families of probabilistic models; in this section, however, we discuss

Bayesian models (i.e. Bayesian Networks (BN) and Dynamic Bayesian Networks (DBN)
and Template-based Probabilistic Models. Template-based probabilistic models provide a

generic framework which generalises Bayesian models by defining templates of random

variables.

In this section, only the concepts necessary for the understanding of this work are explained.

For further details, we refer to the reference [105] on which this section is based. Also, all

definitions and notations are based on [105].

2.6.1. Bayesian Networks

A BN consists of a set of random variables {𝑋1, ..., 𝑋𝑛}. The network encodes conditional

independence assumptions of the random variables by a Directed Acyclic Graph (DAG) G.

40

2.6. Probabilistic Graphical Models

𝑊 𝑋

𝑌

𝑍

Figure 2.3.: Example Bayesian network consisting of the random variables𝑊 , 𝑋 , 𝑌 and 𝑍 .

The nodes of graph G represent the random variables of the network; the edges represent

the direct effect of one random variable on another random variable. For example, consider

Figure 2.3 which depicts an example BN including four random variables: {𝑊,𝑋,𝑌, 𝑍 }.

The resulting graph includes four nodes (i.e. {𝑊,𝑋,𝑌, 𝑍 }) and the edges𝑊 → 𝑌 , 𝑋 → 𝑌 ,

𝑌 → 𝑍 . The semantics of an edge (e.g.) 𝑌 → 𝑍 is to be understood as node𝑍 depends solely

on its parent 𝑌 . In principle, however, an edge indicates conditional independence, e.g.

(𝑍 ⊥⊥𝑊,𝑋 | 𝑌). Additionally, nodes of a graph G that have no parents are stochastically

independent, e.g. (𝑊 ⊥⊥ 𝑋) and (𝑋 ⊥⊥𝑊). This encoding of conditional independence

assumptions can be generalised for any G. Let 𝑃𝑎G (𝑋𝑖) denote the parents of 𝑋𝑖 in G and

𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑋𝑖) denotes the variables in G that are non descendants of 𝑋𝑖 . A DAG G
representing the structure of a BN with nodes (or random variables) {𝑋1, ..., 𝑋𝑛} encodes
the following independence assumptions:

∀𝑖 ∈ {1, ..., 𝑛} : (𝑋𝑖 ⊥⊥ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑋𝑖) | 𝑃𝑎G (𝑋𝑖)) . (2.10)

Conditional independence assumptions have favourable ramifications on the joint distribu-

tion 𝑃 (𝑋1, ..., 𝑋𝑛). More specifically, if distribution 𝑃 satisfies the conditional independence

assumptions encoded by G and according to equation (2.10) (which we write 𝑃 |= G), then
it can be shown that 𝑃 factorises over G (see [105, P. 62]):

𝑃 (𝑋1, ..., 𝑋𝑛) =
𝑛∏
𝑖=1

𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)) . (2.11)

The individual Conditional Probability Distributions (CPDs) 𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)) complements

the structure of a BN. This factorisation property is called Decomposability. Decompos-

ability not only allows estimating each 𝑃 (𝑋𝑖 |𝑃𝑎𝑋𝑖
) individually but also reduces the com-

plexity of the joint distribution. In terms of the example BN in Figure 2.3, the distribution

𝑃 (𝑊,𝑋,𝑌, 𝑍) factorises as follows:

𝑃 (𝑊,𝑋,𝑌, 𝑍) =𝑃 (𝑊) · 𝑃 (𝑋 |𝑊) · 𝑃 (𝑌 |𝑊,𝑋) · 𝑃 (𝑍 |𝑊,𝑋,𝑌)
=𝑃 (𝑊) · 𝑃 (𝑋) · 𝑃 (𝑌 |𝑊,𝑋) · 𝑃 (𝑍 | 𝑌).

Finally, BNs are defined as follows:

41

2. Foundations

𝑋

𝑌

𝑡 = 0

(a) Initial BN B0

𝑋 𝑋 ′

𝑌 ′

𝑡 𝑡 + 1

(b) 2-TBN B→

𝑋

𝑌

𝑋 ′

𝑌 ′

𝑋 ′′

𝑌 ′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(c) Unrolled DBN

Figure 2.4.: Example DBN: (a) represents the initial BN B0, (b) depicts the 2-TBN B→ and (c) shows the

resulting DBN unrolled over 3 steps.

Definition 10 (Bayesian Network). A Bayesian network B is a tuple B := (G, 𝑃) where
probability distribution 𝑃 factorises over G, i.e. 𝑃 |= G.

2.6.2. Dynamic Bayesian Networks

While BNs enable the representation of compact joined distributions 𝑃 (X) with X :=

{𝑋1, ..., 𝑋𝑛}, DBNs describe the stochastic evolution of X by a transition model. If the

Markov and stationary assumptions hold, the transition model forms a CPD: 𝑃 (X’ | X).
DBNs are thus a specialisation of Markov processes.

Roughly speaking, DBNs are temporal extensions of BNs where the temporal extension

refers to the transition model 𝑃 (X’ | X). Such transition models are represented by

so-called 2-Time-Slice Bayesian Network (2-TBN).

Definition 11 (2-Time-Slice Bayesian Network). A 2-time-slice Bayesian network B→ for
a process over X, is a CPD 𝑃 (X’ | XI) where XI ⊆ X.

The set XI is denoted as Interface Variables and refers to the set of random variables that

have a direct effect on the random variables in X’. Just as in BNs, this dependency is

characterised by an edge in a DAG G. Figure 2.4b illustrates a simple 2-TBN.

In the example, the interface variables of the 2-TBN include only 𝑋 , i.e. XI = {𝑋 }.
Therefore, 𝑋 is the only variable that has a direct effect at time 𝑡 on X = {𝑋,𝑌 } at time

𝑡 + 1. In 2-TBNs, edges between time slice 𝑡 and 𝑡 + 1 are denoted as Inter-Time-Slice Edge,
e.g. 𝑋 → 𝑋 ′ and 𝑋 → 𝑌 ′. Additionally, there might be edges within a time slice that are

denoted as Intra-Time-Slice Edge. Intra-time-slice edges indicate dependencies between

random variables that have an immediate effect, i.e. much shorter than one would observe

between variables that are connected by an inter-time-slice edge. Inter-time-slice edges of

the form 𝑋 → 𝑋 ′ are denoted as Persistence Edges. A random variable 𝑋 for which there

42

2.6. Probabilistic Graphical Models

exists a persistence edge tends to persist over time with high probability. Just like BNs,

2-TBNs factorises w.r.t. a dependency structure encoded by a DAG G.

𝑃 (X’ | XI) =
𝑛∏
𝑖=1

𝑃 (𝑋 ′𝑖 | 𝑃𝑎G (𝑋 ′𝑖)) where 𝑃𝑎G (𝑋 ′𝑖) ⊆ XI. (2.12)

A DBN consists of a BN that forms the initial distribution and a 2-TBN that inductively

describes how states are dynamically changing over time (see Figure 2.4). DBNs are

unrolled to generate a trajectory of any length. The Markov and stationary assumptions

allow a compact representation of the distribution 𝑃 (X0,X1, . . . ,X𝑇) for any 𝑇 :

𝑃 (X0,X1, . . . ,X𝑇) = 𝑃 (X0)
𝑇−1∏
𝑡=0

𝑃 (X𝑡+1 | X𝑡) (2.13)

Figure 2.4c depicts and unrolled DBN over three time slices. Finally, we conclude this

section by formally defining a DBN.

Definition 12 (Dynamic Bayesian Network). A dynamic Bayesian network is a tuple
(B0,B→) which consists of a Bayesian network B0 and a 2-time-slice Bayesian network B→.
B0 defines the initial distribution over the state space; B→ inductively defines the transition
model.

2.6.3. Template-based Probabilistic Models

Template-based probabilistic models (or simply template models) provide a generic frame-

work to model and instantiate probability spaces for arbitrary object-relational domains.

The concepts of template-based models serve as a basis to develop rich languages. In this

section, we give a brief overview of template-based models and their fundamental building

blocks.

One of the key concepts of template models is Template Variables (or template attributes).

Template variables encode random variables that have common (domain-specific) se-

mantics and share the same value space. Applying a template variable to an object of a

particular domain is to be considered as an instantiation of the template and turns the

template into a random variable. Thus, template variables are defined at the type level

while random variables are defined at the instance level. Domains, in which templates

are supposed to be instantiated, are viewed as being composed of a set of objects. Objects

are divided into a set of mutually exclusive classes Q = 𝑄1, ..., 𝑄𝑛 , i.e. equivalence classes.

Template variables have a tuple of Arguments where each argument is associated with

a specific class 𝑄𝑖 . The arguments of a template restrict the set of objects for which the

template can be instantiated (w.r.t. to the class membership of each argument).

Definition 13 (Template Variable). A template variableV(𝑈1, ...,𝑈𝑛) is a function with
some range 𝑉𝑎𝑙 (V). Each argument𝑈𝑖 ofV is a typed logical variable where 𝑄 [𝑈𝑖] ∈ Q.

43

2. Foundations

The tuple (𝑈1, ...,𝑈𝑛) is denoted as the Argument Signature of V , and abbreviated by

𝛼 (V).

Template variables generate probability spaces within the domains in which they are

instantiated. The probability spaces are induced by a set of objects considered for instan-

tiating the templates. The objects can be divided into mutually exclusive sets (w.r.t. the

equivalence classes Q.) and forms an Object Skeleton. More formally, let denote O𝜅 [𝑄] the
finite set of objects associated with class 𝑄 included in object skeleton 𝜅. Template vari-

ables are instantiated to the objects considered in skeleton 𝜅 by applying them to objects

that can be assigned to the logical variables of the argument signature ofV . Therefore,

the set of possible assignments for a template V with 𝛼 (V) = (𝑈1, ...,𝑈𝑛) is defined as

follows:

O𝜅 [(𝑈1, ...,𝑈𝑛)] = O𝜅 [𝑄 [𝑈1]] × · · · × O𝜅 [𝑄 [𝑈𝑛]] . (2.14)

In some domains, however, specific assignments are not legal. Therefore, Γ𝜅 [V] ⊆
O𝜅 [𝛼 (𝑈)] defines the set of all valid assignments for template V . Based on the pre-

vious definitions, for an object skeleton 𝜅 and a set ℵ of template variables over Q, the set
of instantiations of template variables

𝜒
𝜅 [ℵ] is defined as follows:

𝜒
𝜅 [ℵ] =

⋃
V∈ℵ
{V(𝛾) |𝛾 ∈ Γ𝜅 [V]}. (2.15)

The notation V(𝛾) indicates an assignment of object tuple (𝑢1, ..., 𝑢𝑛) to a template V
w.r.t. the argument signature 𝛼 (V), i.e. 𝛾 = (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑘 ↦→ 𝑢𝑘). An instantiated

template variable is also denoted as Ground Random Variable.

The second key concept of template models forms Template Factors. Template factors

complement template variables by a probabilistic specification, i.e. the type of distribution

such as multinomial distributions. Just as Template variables, template factors are defined

at type-level over a set of template variables. When the set of template variables is

instantiated, the template factors can be instantiated to specify the concrete distribution

of the ground random variables.

Definition 14 (Template Factor). A template factor 𝜉 : 𝑉𝑎𝑙 (V1) × · · · ×𝑉𝑎𝑙 (V𝑙) → 𝐼𝑅 is
a function defined over template variables (V1, . . . ,V𝑙). Given a tuple of ground random
variables (𝑋1, ..., 𝑋𝑙), if ∀𝑖 ∈ {1, ..., 𝑙} : 𝑉𝑎𝑙 (𝑋𝑖) = 𝑉𝑎𝑙 (V𝑖) holds true, then 𝜉 (𝑋1, ..., 𝑋𝑙)
defines the instantiated factor from 𝑋1, ..., 𝑋𝑙 to 𝐼𝑅 w.r.t. (V1, ...,V𝑙).

2.6.3.1. Plate Models

In this section, we briefly discuss a template-based language for probabilistic models,

called Plate Models. Plate models reuse the key concepts presented in the last section to

encode probabilistic structures. The formal semantics of plate models goes beyond the

pure template-based concepts and are not in the scope of this work. Therefore, we refer

again to reference [105] that discusses plate models in more detail. In the following, we

44

2.6. Probabilistic Graphical Models

𝑋

Class A
(a) Simple plate

𝑋

𝑌

Class A

Class B

(b) Nested plate

𝑋 𝑌

𝑍

Class A Class B

(c) Intersected plate

Figure 2.5.: Plate model encoding according to [105, P. 219]: (a) represents a simple plate structure, (b) shows

a nested plate structure and (c) depicts an intersected plate structure.

introduce basic concepts of plate models (which we reuse in later chapters) and how they

are used in modelling Bayesian networks.

In plate models, object types are characterised by Plates. Such object types or classes

correspond to the equivalence classes Q = 𝑄1, . . . , 𝑄𝑛 . More specifically, each plate

describes a class 𝑄𝑖 . The graphical notation of a plate encloses a random variable with a

box. For instance, consider Figure 2.5a which specifies a plate of some object class A for a

random variable 𝑋 . The graphical representation encodes the fact that there are multiple

random variables of 𝑋 in which all share the same templateV𝑋 and are instantiated for

several objects of class A.

The example of Figure 2.5a is very simple and can be expanded for multiple random

variables and overlapping plates. For instance, the plate structure in Figure 2.5b indicates

a Nested plate structure. Hereby, the plate of object class B for random variable 𝑌 is nested

within the plate of object class A. Nested plate structures encode that the template for 𝑌

can be instantiated for object pairs of class A and B (as B is embedded in plate A). For each

pair, however, there has to be an individual instantiation ofV𝑋 representing the parent of

𝑌 .

A third plate structure describes the Intersection of plates as depicted in Figure 2.5c. In this

case, the template for random variable 𝑍 is instantiated for object pairs of class A and B.

Similarly to nested plates, for each pair the corresponding parent random variables must

be instantiated as well, i.e. V𝑋 andV𝑌 , respectively.

Plate models describe probabilistic models with repeated structure and shared parameters.

Based on the notion of template variables, plate models induce BNs instantiated in domains

with certain object structures. As explained earlier, a set of plates and their associated

object classes are semantically the same as the equivalence classes Q that typify the

argument signature of a template. Thus, any template variable that is embedded in several

plates 𝑄1, ..., 𝑄𝑛 possesses an argument signature 𝑈1, ...,𝑈𝑛 matching the plate’s object

class structure, i.e. 𝑄 [𝑈𝑖] = 𝑄𝑖 .

Finally, the only missing concept that completes a plate model is the dependency structure

of template variables. In plate models, template variables embedded in overlapping plates

45

2. Foundations

can depend on template variables in any of these plates. Based on these semantics, the

plate model can now be formally defined.

Definition 15 (Plate Model). For a set of template variablesV ∈ ℵ with argument signature
𝛼 (V) = 𝑈1, ...,𝑈𝑛 , let 𝐵𝑖 (Ui) denote the variables of the argument signature of parent 𝐵𝑖 . A
plate model𝑀𝑃𝑙𝑎𝑡𝑒 defines for each template:

• A set of template parents 𝑃𝑎(V) := {𝐵1(U1), ..., 𝐵𝑘 (Uk)} in which ∀𝑖 ∈ {1, ..., 𝑘} :
𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛}.

• A template CPD 𝑃 (V | 𝑃𝑎(V)).

Finally, a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton 𝜅 generate a Ground Bayesian Network:

Definition 16 (Ground Bayesian Network). A Ground Bayesian Network B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 is gener-

ated by a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton 𝜅 as follows:

∀V(𝑈1, ...,𝑈𝑛) ∈ ℵ,∀𝛾 ∈ Γ𝜅 [V] : ∃=1V(𝛾) ∈ 𝜒𝜅 [ℵ] (2.16)

where 𝛾 := (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑛 ↦→ 𝑢𝑛) and for all template parentsV𝑃𝑎 ∈ 𝑃𝑎(V) of ground
random variableV(𝛾) there exist an instantiated CPD: 𝑃 (V(𝛾) | V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)).

Note thatV𝑃𝑎 (𝛾) is a shorthand notation for ground random variables of template parents

which argument signature is only a subset of V(𝛾) so that the parent template is only

instantiated for a subset of tuple 𝛾 . The ground Bayesian network B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 forms a joint

distribution over
𝜒
𝜅 [ℵ] (see (2.15)).

2.7. A Brief Introduction to Artificial Intelligence

In this section, we provide a brief overview of the broad field of AI (artificial intelligence).

More specifically, we give a brief overview of the subfields of AI, namely machine learning

and deep learning (a subfield of machine learning). It is worth noting, that AI is a fairly

large field that goes beyond machine learning and deep learning, e.g. propositional logic

or first-order predicate logic (see [56] for a broader introduction). However, machine

learning and deep learning are currently the most popular methods associated with AI and

embody the current state of the art. In particular, DNNs (deep neural networks) and their

inherent complexity lead to today’s challenges and the need to safeguard AI. Although our

presented concepts generalise to all types of AI models, we briefly introduce the notion of

machine learning and some well-known DNNs below.

46

2.7. A Brief Introduction to Artificial Intelligence

2.7.1. Machine Learning

Goodfellow, Bengio and Courville [69] provide a brief introduction to machine learning

based on the definition of Mitchell [124, P.2]: “A computer program is said to learn from

experience 𝐸 with respect to some class of tasks 𝑇 and performance measure 𝑃 , if its

performance at tasks in 𝑇 , as measured by 𝑃 , improves with experience 𝐸.” For more

detailed introductions to machine learning, we refer to [129, 24].

The abstract definition of a task 𝑇 refers to the learning task particular to the given

domain where a machine learning system is applied. For example, a task might simply

refer to face recognition, object detection or more complicated tasks in robotics (such as

navigating through space). According to Goodfellow et al. [69], most machine learning

tasks are generally classified into the following task types: Classification, classification

with missing inputs, regression, transcription, machine translation, structured output,

anomaly detection, synthesis and sampling, imputation of missing values, denoising and

density or probability mass function estimation. The most common tasks are classification

and regression. In classification, the task is to classify input values 𝑥 of some input spaceX
to some set of categories 1, . . . , 𝑘 by learning a function 𝑓 : 𝐼𝑅𝑛 → {1, . . . , 𝑘}. For example,

object detection is a quite familiar example for classification tasks. In general, machine

learning is intended to approximate functions of the form 𝑓 : X → Y based on a dataset

𝐷 (discussed later) that contains the relationships to be learned. Regarding classification,

X refers to 𝐼𝑅𝑛 (e.g. pixel space) and Y refers to the distinct categories {1, . . . , 𝑘}. In terms

of regression, the function to be learned or approximated is of the form 𝑓 : 𝐼𝑅𝑛 → 𝐼𝑅. In

such cases, control signals need to be learned for robot navigation or real estate price

prediction.

The performance measure 𝑃 evaluates the extent to which a task 𝑇 is accomplished. The

effectively used performance measure depends on the considered domain. In many cases

(and also in the context of this work), however, the accuracy of an AI model is measured.

A fairly popular measure in terms of AI model accuracy forms the Mean-Squared-Error
(MSE) or Root-Mean-Squared-Error (RMSE).

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸

(2.17)

Hereby, 𝑦𝑖 refers to the predictions produced by an AI model and 𝑦𝑖 to the actual output.

Moreover, 𝑁 refers to the number of test data included in a Test Dataset 𝐷𝑇𝑒𝑠𝑡 . Such

datasets are commonly used to measure the performance of an AI model. A test dataset

consists of labelled example data of the form (𝑥,𝑦) where 𝑥 describes some input data and

𝑦 the corresponding (and correct) output. For instance, in classification tasks, 𝑦 refers to

one of the correct categories {1, . . . , 𝑘}.

Finally, experience 𝐸 refers to Training Datasets from which specific patterns or behaviours

are to be learned, i.e. based on training examples that have the same form as the test data.

Training datasets form the source of what is considered as experience 𝐸. In classification

47

2. Foundations

tasks, labelled input data serves as experience to generate a learner 𝑓 for classifying

arbitrary input data. However, machine learning is divided into three categories, namely

Supervised Learning, Unsupervised Learning and Reinforcement Learning. Depending on
the category, the way how experience is incorporated into the learning process is different.

In simple terms, supervised learning is about approximating or learning a function w.r.t.

the training dataset such that for new inputs (not included in the training dataset) precise

predictions or classifications are made. Hereby, the training dataset includes data annotated

by labels or targets which serves as the foundation for the learning process. On the contrary,

unsupervised learning considered unlabeled training datasets from which structures (e.g.

clustering) or probability distributions (e.g. density or probability mass function estimation)

are to be learned. The third category refers to reinforcement learning which is based

on a trial-and-error approach. In reinforcement learning, the idea is to learn or train

an agent that can take actions and interact with an environment. Based on the taken

actions and observed responses of the environment, the agent learns how to deal with the

environment. Reinforcement learning is often used in robotic tasks or games (e.g. [125]).

All three categories have in common that they are highly dependent on the quality of the

training datasets. If the concepts (to be learned) are not sufficiently represented in the

training datasets, the learned AI model is likely to perform poorly; this induces one of the

main problems concerned with machine learning.

2.7.2. Deep Learning

When people talk about AI today, it is usually about deep learning. Nearly any AI-enabled

system integrates a DNN. Deep learning is a subfield of machine learning and, in simplified

terms, deals with Neural Networks with a deeper layer structure. In principle, a neural

network defines three layers, namely the Input, Hidden and Output layer. Each layer

consists of a set of neurons which are connected with neurons of adjacent layers. Each

layer can be viewed as a function 𝑓 (𝑖) which (when composing the individual layers)

transforms input data 𝑥 into output data by forwarding the results to the next layer,

i.e. (𝑓 (3) ◦ 𝑓 (2) ◦ 𝑓 (1)) (𝑥) (see [69]). The most common types of neural networks refer

to Feedforward Networks where no data is fed back into some previous layers. Neural

networks with higher depths (i.e. many layers or increased length of composed functions)

are called DNNs (deep neural networks). Similarly to neural networks, DNNs are mainly

used to approximate some function 𝑓 : X → Y which is to be learned by a training dataset

𝐷 including examples of 𝑥 ∈ X annotated by labels or targets.

The learning or training process can be viewed as an optimisation problem where the

main target is to estimate a set of parameters 𝜃 which is responsible for determining the

prediction results of approximated function 𝑓 (𝑥) (commonly written 𝑓 (𝑥 ;𝜃)). A widely

used optimisation or training algorithm is Back-Propagation which refers to a gradient-

based training method. The main idea is to propagate the error back to the parameters

𝜃 that caused a high deviation w.r.t. a loss function (i.e. a function that measures the

deviation of the predictions made and the training data) that is to be minimised. In the

following, we consider two types of DNNs, namely Convolutional Neural Networks (CNNs)

48

2.7. A Brief Introduction to Artificial Intelligence

...
...

Input Image feature maps fully-connected layers

convolution

Figure 2.6.: Schematic structure of a CNN adopted from [112].

and Recurrent Neural Networks (RNNs). Both DNNs are widely used and also serve as

the main object of investigation in the validation part of this work. Again, we refer to

reference [69] which discusses both DNNs in more detail.

2.7.2.1. Convolutional Neural Networks

Before CNNs gained more attention, software engineers hand-crafted local filters which

were applied to extract features from images used for classification. However, hand-crafted

features are vulnerable to particular image transformations (e.g. rotation). In CNNs, the

entire feature engineering process is part of the learning process in which so-called Kernels
(representing filters) are learned. In principle, CNNs introduce convolution operations

where the input image is convolved by the kernel. The output is denoted as a feature

map. The structure of a CNN consists of several convolutional layers followed by a fully-

connected layer (see Figure 2.6). The convolutional layers extract features from the input

image and are eventually passed on to the fully-connected layer, which is responsible for

the actual classification task. Unlike fully connected DNNs, in CNNs some neurons of the

convolutional layer are connected to some neurons of the next layer. Moreover, weights

or parameters to be learned (i.e. the elements of the kernel) are shared which reduces the

number of learned parameters drastically.

The functionality of CNNs is inspired by neuroscience or rather by the visual cortex of the

human brain. More specifically, convolutional layers close to the input layer are extracting

low-level features (e.g. edges), which become more abstract higher-level features in deeper

convolutional layers (i.e. closer to the output layer). Finally, note that CNNs are not

only applicable to image data but any kind of data where convolution is applicable (e.g.

time-series data).

2.7.2.2. Recurrent Neural Networks

In contrast to feedforward DNNs (which can be viewed graphically as directed acyclic

graphs), RNNs allow for feedback or loop-like structures. This means, that outputs or

predictions of some layers may be fed back to previous layers (see Figure 2.7). While CNNs

49

2. Foundations

𝑥

ℎ

𝑦

(a) Recurrent structure of an RNN.

𝑥𝑡−1

ℎ𝑡−1. . .

𝑦𝑡−1

𝑥𝑡

ℎ𝑡

𝑦𝑡

𝑥𝑡+1

ℎ𝑡+1

𝑦𝑡+1

. . .

(b) RNN unfolded for several time steps.

Figure 2.7.: Example structure of an RNN (based on [69, P.378]) in which 𝑥 refers to the input, ℎ represents

the hidden layers and 𝑦 the output.

are considered to work on image data, RNNs are rather applied to sequential data. An

example application of RNNs is machine translation in which sequences of words (i.e.

sentences) are translated from one language to another; also image captioning and action

recognition are popular examples.

RNNs are also trained by using the gradient-based back-propagation learning algorithm.

However, when unfolding over many time steps, the gradient is also propagated over

many time points, which leads to long-term dependencies. In such situations, the gradient

can either vanish or explode, affecting the learning process negatively. To circumvent such

long-term dependencies, Long Short-Term Memories (LSTMs) [84] are leveraged which deal

with the problem of observing vanishing or exploding gradients in the learning process.

2.8. Validation Preliminaries

Finally, this section briefly discusses the basic building blocks essential for validation.

2.8.1. Goal-Question-Metric Approach

In the validation chapter of this thesis (see chapter 9), we leverage the so-called Goal-
Question-Metric (GQM) approach or plan that guides our validation process. The GQM

approach was originally introduced by Basili, Caldiera and Rombach [36].

The idea of a GQM plan is to structure the validation or evaluation process by three

distinct levels, namely the conceptual level (goals), the operational level (questions) and

the quantitative level (metrics). The conceptual level defines the distinct goals, one has to

define within the validation or evaluation process.

A goal is formulated for a particular purpose of measurement (e.g. to improve or analyse

something), issue (e.g. efficiency or applicability) and object (e.g. software product,

50

2.8. Validation Preliminaries

goal Purpose Improve

Issue the timeliness of

Object change request processing

Viewpoint from the project manager’s viewpoint

Table 2.1.: Example of a formulated goal taken from [36].

Goal 1 ...

Question 1.1 Question 1.x Question N.1 Question N.y

Metric 1

Goal N

Metric 2 Metric 3 Metric 4 Metric M

... ...

...

Conceptual
level

Operational
level

Quantitative
level

Figure 2.8.: Overview of the GQM approach adapted from [36].

modelling language or process) to be measured and w.r.t. to a certain viewpoint (e.g. from

the perspective of a user or software engineer). More specifically, a goal is structured by

the very same components, i.e. purpose, issue, object and viewpoint. An example of a

formulated goal is shown in Table 2.1.

On the operational level, questions are defined that determine or characterize how the

validation is conducted to achieve or assess the goal. Therefore, a goal is associated with a

set of questions. Finally, on the quantitative level, metrics are defined. Each question is

related to a set of metrics. Metrics define in a quantitative way how measurements can be

derived to answer a particular question. An overview of the GQM approach as well as the

relationships between the distinct levels is depicted on Figure 2.8.

2.8.2. Validation Levels

Böhme and Reussner [28] define three validation levels to validate analytical metrics.

In terms of this work, we assign our validation goals to the validation levels presented

below.

An analytical metric is defined as a prediction made for a quality property of a system,

e.g. a predictive model. The validation of analytical metrics, however, is more challenging

since the predictions must be compared with observations or measurements of actual

outcomes. In this context, the authors presented three levels of validation at which an

analytical metric can be validated:

• Level I (metric validation): A level I validation refers to the situationwhere predictions

of an analytical metric are compared with observations or measurements. However,

51

2. Foundations

Böhme and Reussner [28] point out that this requires the implementation of the

analytical metric and the computability of the metric.

• Level II (applicability validation): A level II validation is concerned with the applica-

bility of an analytical metric and prediction approach. Level II validation is about

whether the input data can be collected reliably and whether the predictions made

can be interpreted meaningfully (e.g. to assess design decisions).

• Level III (benefit validation): A level III validation relates to validating the benefit of

an analytical metric or prediction approach as part of a systematic process (e.g. the

selection of design options). In such settings, the analytical metric must be compared

with competing approaches to validate the benefits. However, level III validation

usually involves a lot of effort [28].

2.8.3. Bhattacharyya Distance

In the validation chapter of this thesis, we use the Bhattacharyya Distance [22] to measure

the similarity of two probability distributions. In order to calculate the Bhattacharyya

distance 𝐷𝐵 , one has to calculate the Bhattacharyya coefficient 𝐵𝐶 (𝑃, 𝑃 ′). Let 𝑃 and 𝑃 ′

be two probability distributions defined over the random variable 𝑋 , the Bhattacharyya

coefficient 𝐵𝐶 (𝑃, 𝑃 ′) is defined as follows:

𝐵𝐶 (𝑃, 𝑃 ′) =
∑︁

𝑥∈𝑉𝑎𝑙 (𝑋)

√︁
𝑃 (𝑋 = 𝑥) · 𝑃 ′(𝑋 = 𝑥) (2.18)

Based on the Bhattacharyya coefficient, the Bhattacharyya distance can be derived.

𝐷𝐵 = −𝑙𝑛(𝐵𝐶 (𝑃, 𝑃 ′)) (2.19)

Note that we formalized the Bhattacharyya coefficient and distance in terms of discrete

probability distributions.

52

3. Related Work

In this chapter, we review related work. We structure related work into three areas.

In section 3.1, we first distinguish ourselves from approaches that are dealing with AI-

induced uncertainties. In section 3.2, we discuss engineering processes that facilitate

quality assurance of AI-enabled systems and review existing taxonomies that classify AI

systems. Finally, section 3.3 discusses the whole branch of research analysing self-adaptive

systems by either employing MDPs (which also include runtime approaches) or using

other model-based approaches for design-time analysis.

3.1. Dealing with AI-induced Uncertainty

In this section, we give an overview of related work that deals either with AI-induced

uncertainty at the algorithmic or system level. Especially, on the algorithmic level, there

are numerous approaches one can take into account, e.g. approaches that allow identifying

vulnerabilities in AI models or proving safety properties. We refer to [86, 58, 195] which

provide a broad overview of safety-related algorithmic approaches. In section 3.1.1, we

explain how our approach differs from pure algorithmic approaches. In addition, we present

several approaches regarding runtime monitoring of AI components as an additional

safeguarding mechanism. Afterwards, we present in section 3.1.2 related work of system-

level approaches.

3.1.1. Algorithmic Approaches

In this section, we give a brief overview of purely algorithmic approaches. Although

all approaches are strongly related to our work (as they aim to deal with AI-specific

uncertainty), they differ in that they are purely algorithmic. On the contrary, our approach

is based on the architecture or system level and supports software engineers (using models)

in the development of reliable AI-enabled software systems. Our approach is rather to

be understood as complementary to the approaches at the algorithmic level. On the

one hand, algorithmic approaches enable the improvement of AI models by identifying

vulnerabilities or data examples for which the AI model does not provide good predictions.

However, it is unlikely to obtain an AI model acting perfectly accurately. Therefore,

architectural or system-level approaches should be considered as additional safeguards.

Such architectural approaches are systematically evaluated using the concepts presented

in this work and support software engineers in decision-making. On the other hand,

53

3. Related Work

various approaches suggest runtime monitoring, i.e. to detect potential malicious inputs

or potential erroneous predictions of AI components. Such approaches differ from our

work in that they provide building blocks for architecture- or system-level approaches in

which they are embedded. For example, there are architectural patterns that implement

measures to deal with potentially unsafe states but require a monitoring procedure to

detect such states; our approach enables the evaluation of such architectural patterns.

3.1.1.1. Verification of AI

Great efforts have been made in providing formal guarantees for the behaviour of DNNs

(deep neural networks), e.g. robustness properties [13]. In addition, DNNs have been

observed to be sensitive to so-called Adversarial Examples [71] where inputs (known to

produce correct outputs by the DNN) are slightly altered (e.g. by modifying some pixels

of the input image) and force the DNN to produce incorrect outputs. Therefore, several

verification techniques have been developed to prove robustness or to compute regions of

the input space for which one can prove that the DNN produces correct results.

Katz et al. [99] present Reluplex, an SMT (satisfiability modulo theories) solver for verifying

DNNs. More specifically, Reluplex allows the verification of certain properties such as

robustness properties [13]. Another example for verifying properties in DNNs is provided

by the Marabou framework [100] or by the work of Wang et al. [201]. Singh et al. [172]

provide an approach to verify the robustness properties of neural networks for more

complex perturbations of the input data (e.g. image rotations). The approach allows

verifying whether a neural network produces correct predictions for so-called adversarial

regions (constructed by considering slight modifications of the original image that are

still close to the original image depending on a certain distance norm). Such adversarial

regions can also be leveraged at runtime to verify whether new input data are contained

in such an adversarial region for which the neural network has been shown to provide

correct predictions. Another interesting approach is by Cohen, Rosenfeld and Kolter [50],

who use randomised smoothing to generate adversarial robustness of DNNs.

However, the problem with verification techniques is that they lack efficiency because

DNNs are large, non-linear and non-convex [99]. Therefore, they tend to be practically

inapplicable in situations that require fast reactions, e.g. calculating whether input data

belongs to an adversarial region might be too time-consuming in autonomous driving.

Therefore, they are more likely to be used at design-time or in offline experiments to

enhance the overall robustness of DNNs.

3.1.1.2. Interpretable and Explainable AI

As AI has become more advanced and widely applicable, the challenges it entails have also

become apparent. The black-box nature of AI makes the use of AI models in safety-critical

applications very difficult due to the lack of comprehensibility and interpretability of their

internal behaviour. Therefore, the requirement to understand and interpret the internal

54

3.1. Dealing with AI-induced Uncertainty

behaviour of AI models becomes an interesting branch of research to deal with AI-induced

uncertainty.

In terms of interpretable and explainable AI, the survey of Guidotti et al. [76] provides an

excellent overview. In their work, they classify black-box explanation approaches into three

classes, namely model explanation, outcome explanation and model inspection. Model

explanation is about finding an interpretable global predictor for a black-box AI model

which generates for each input an explanation. The explanations are used to comprehend

the prediction or decision made by the AI model and serve as a basis to determine whether

the prediction is correct or not. Outcome explanation is about finding an interpretable local

predictor, i.e. for generating explanations for only a subset of the input space. Examples

for model explanation are [107, 82]; examples for outcome explanation are [150, 217]. The

model inspection problem classifies approaches which are concerned with identifying

properties or features of the input space that greatly impact the outcome of an AI model,

e.g. a sensitivity analysis. Examples of model inspections provide [179, 171]. However, for

a complete overview of all approaches, we refer again to [76].

3.1.1.3. Safe Reinforcement Learning

In supervised and unsupervised learning tasks, a machine learning model learns based on

data (either labelled or unlabeled). Reinforcement learning constitutes the third branch

into which a machine learning approach can be classified. In contrast to supervised and

unsupervised learning, an agent learns how to operate in an environment. Technically

speaking, reinforcement learning builds on MDPs, where the main learning task is to learn

a strategy 𝜋 that selects from a set of actions the best possible action by considering its

effect on the environment. For example, reinforcement learning is a widely used machine

learning approach to motion control in robotics. To learn an optimal policy, the agent

must explore possible actions to observe how the environment reacts to them. However,

this can cause the agent to enter an unsafe state, which is particularly problematic for

safety-critical applications.

Therefore, several works expanded the framework of reinforcement learning by introducing

safeguardingmechanisms. For instance, Alshiekh et al.[4] introduce so-called shields which

are additionally considered while learning policies. A shield monitors the actions taken by

the agent and corrects them whenever safety constraints (expressed in temporal logic) are

violated. Moreover, Wachi and Sui [200] propose a safe reinforcement learning approach

by considering Constrained Markov Decision Processes. In this approach, the agent learns

safety constraints by successively expanding a safe state space region. After expansion,

the agent learns the policy within the safe region. We refer to [63], which provides an

overview of further safe reinforcement learning approaches.

55

3. Related Work

3.1.1.4. Runtime Monitoring of AI components

Runtime Monitoring constitutes another research area for dealing with the uncertain

nature of AI components. The basic idea is to enrich an AI-enabled system with additional

monitors specifically designed to monitor the properties of an AI component or model.

The observed properties can either be used to determine whether the AI component may

be making incorrect predictions or to ensure that the individual predictions do not violate

certain safety constraints. In principle, some approaches presented earlier can be employed

in the context of runtime monitoring. For example, AI model explainers can be leveraged

to generate explanations for a prediction. The explanations in turn serve as the basis for

checking whether certain safety constraints are maintained.

Salay and Czarnecki [151] propose requirements and types of properties that are important

for a partial specification language of AI models. More specifically, one of the main reasons

why verification is difficult to apply to AI models is the lack of specification of properties to

be verified. Therefore, the authors propose the use of partial specification languages that

formalise some types of properties, e.g. pre- and post-conditions or invariance properties.

Furthermore, the languages are not only used to specify safety constraints or requirements

but also to use formalised specifications for runtime monitoring.

Kang et al. [98] propose so-called model assertions that one can use for runtime monitoring.

A model assertion is a function (specifically designed for an AI model to be monitored)

that is defined over the input and output space of an AI model. A possible implementation

of a model assertion returns a Boolean value indicating that a possible fault might occur.

For example, if an AI-based object recognition quickly changes its class in a video.

Another variant of runtime monitoring is proposed by the work of Cheng et al. [46],

who describes a runtime monitoring technique based on neuron activation patterns of

neural networks. The idea is to construct a runtime monitor based on the trained neural

network and the training dataset used. In this process, the training data is fed back to

the neural network and (abstract) neural activation patterns are generated and stored in

the monitor. At runtime, activation patterns for newly arriving input data are generated

and the similarity with the patterns obtained from the training data is compared (using a

distance measure). Input data for which the monitor has not stored a similar pattern is

potentially malicious and could cause the AI model to behave incorrectly.

Finally, Langford and Cheng [111] describe an approach that allows the learned behaviour

of an AI component to be predicted in the presence of uncertainty. Based on such predictive

capabilities, one can anticipate potentially erroneous behaviour at runtime and take

appropriate countermeasures.

3.1.1.5. Machine Learning Testing

To assure some level of quality of machine learning models, Machine Learning Testing
has become an interesting research branch. Testing machine learning models, however,

poses greater challenges than testing conventional software [213], e.g. the oracle problem

56

3.1. Dealing with AI-induced Uncertainty

[12]. We refer to Zhang et al. [213] who provides a comprehensive overview of machine

learning testing approaches. In the following, however, we enumerate a view testing

approaches.

In the work of Thian et al. [186], the authors present the DNN testing tool DeepTest

which is specifically designed to test DNN-based self-driving cars. DeepTest leverages

neuron coverage to detect input data for which the DNN produces incorrect outputs. More

specifically, the tool generates synthetic input data (i.e. synthetic images) based on a set of

uncertainties (e.g. raindrops in the image, image blur or various brightness conditions).

The generated images are fed back to the DNN, and the neuron coverage is observed

(input data which activates only a small amount of neurons of the DNN are likely to cause

wrong predictions). In the context of the Udacity self-driving car challenge [192], the

DeepTest tool identified several input images for which several DNN-based steering angle

prediction models produced wrong predictions. Also in this line of research is the work of

[187] which also employs neuron coverage metrics to detect confusion and bias errors in

DNN-based visual recognition models for image classification.

Pei, Cao, Yang and Jana propose the DNN testing tool DeepXplore [136] for white-box

testing. Similarly to DeepTest, DeepXplore detects input data for which DNNs produce

wrong outputs. They make use of neuron coverage to measure the extent to which the

internal logic of a DNN has been tested. Moreover, the authors leverage multiple DNNs as

cross-referencing oracles to detect incorrect predictions of a single DNN.

Finally, DeepRoad [214]) constitutes another testing tool for DNN-based autonomous

driving systems. In contrast to the previously presented testing tools, DeepRoad makes use

of a Generative Adversarial Network [70] to synthesise driving scenes. This circumvents

problems related to synthetic data generated by image transformations, e.g. lack of diversity

of driving scenes [214]. Finally, DeepRoad implements an input validation component

which detects inconsistent behaviours of the tested DNNs.

3.1.1.6. Using Training Data to Deal with Uncertainty

This section enumerates approaches that make use of training data to (𝑖) identify sub-input
spaces for which an AI model may produce incorrect predictions or (𝑖𝑖) to determine

whether new input data was generated by the same data generation process as the training

data. However, what both have in common is that they identify input data that is not

sufficiently represented by the training dataset.

Gu and Easwaran [75] present an approach that partitions the input or feature space of an

AI model into several subspaces. Based on the training dataset, the approach identifies

those partitions that are not sufficiently represented by training samples. Thus, one can

either collect new training data to retrain the AI model or use it at runtime to identify

inputs that are included in one of the safety-critical partitions.

Other approaches such as, for example, [1, 81] detect input data which does not belong to

the training data distribution of a classifier. Such examples are denoted out-of-distribution

57

3. Related Work

inputs which must be detected to prevent potential misclassifications. According to [167],

another method to detect out-of-distribution samples provides a family of algorithms that

are known as variational inference [26].

3.1.1.7. Safety Assurance of AI Models

In this section, we summarise several methods and approaches for the safety assurance of

AI models.

In their survey [161], Schwalbe and Schels enumerate various methods for safety assurance

along the lifecycle of a machine learning model. Hereby, the authors discuss distinct safety

requirements one must take into consideration during requirements engineering (such as

safety-related performance requirements). Moreover, the authors highlight the importance

of making well-informed design decisions and enumerate a list of quality criteria and other

aspects (such as the inclusion of expert knowledge) software engineers have to account for

in the decision-making process. In the end, the authors discuss methods for verifying (e.g.

satisfiability modulo theory) and validating (e.g. data validation by using fuzzy testing) AI

models.

Burton, Gauerhof and Heinzemann discuss in their work [35] how assurance cases can

be used to argue in terms of the safety of machine learning models in the context of

autonomous driving. In addition, they present several methods and techniques to substan-

tiate claims made in the assurance case, namely training data coverage, explainability of

the learned function, uncertainty calculation, black-box testing and runtime measures.

The latter comprises runtime monitoring techniques to observe assumptions made or to

check the plausibility of the produced outputs.

Finally, Varshney et al. [195] discuss three strategies for achieving safety in machine

learning. The first strategy discusses how machine learning models can be inherently

safely designed. According to the authors, an inherently safe designed system excludes

potential hazards. In terms of machine learning, such hazards might be the exclusion

of features that are not causally related to the outputs of a learned model. The second

strategy presents safety reserves. Such safety reserves define safety margins which may,

for example, address uncertainty resulting from label noise in classification problems.

Finally, the third strategy refers to fail-safe states. Hereby, in situations where a system

encounters erroneous behaviour, the system may fail safely. In terms of machine learning,

fail-safe states can be realized by using reject options. For example, when the confidence

of a prediction made by the machine learning model is not sufficiently high enough, the

output is rejected and the system transitions into a fail-safe state, e.g. a human operator

takes over control.

3.1.2. System-level Approaches

Now, we give an overview of the approaches that safeguard AI models at the architectural

or system level. First, we list approaches that provide architectural knowledge for AI-

58

3.1. Dealing with AI-induced Uncertainty

enabled systems (i.e. architectural patterns, styles or reference architectures). Afterwards,

we present model-based approaches similar to the presented approach of this work but

different in that we aim to predict the reliability properties of AI-enabled systems. Finally,

we present and distinguish ourselves from approaches that make use of self-adaptive

systems for safeguarding AI black-box components.

3.1.2.1. Architectural Knowledge for AI-based Systems

There are numerous works which propose various architectural means to deal with AI-

induced uncertainties. In the following, we review some of them. Also, we discuss

architectural patterns from related domains which are potentially applicable to AI-enabled

systems. Note that although our work is about addressing AI-induced uncertainty at the

architectural level (i.e. by applying architectural patterns), we do not aim to develop novel

architectural patterns but rather provide the means to evaluate existing ones. This forms

the main difference between our approach to the approaches presented in this section.

Using architectural means to deal with uncertainty primarily induced by ML (machine

learning) components is not new in research. Serban [164], for example, argues that

ML-induced uncertainty can be mitigated by architectural patterns. More specifically,

Serban argues that using already known architectural patterns from the safety domain

(e.g. triple modular redundancy) could be a considerable way to approach uncertainties

caused by ML.

In terms of architectural patterns several works apply the well-known N-Version Program-
ming pattern to deal with possible false predictions of an AI model, e.g. see [77, 211, 119].

In principle, the idea is to use 𝑁 distinct AI models for which a newly arriving input is fed

into each of the models such that one obtains 𝑁 outputs. Eventually, the results are used

to synthesise a more qualitative output, e.g. by calculating a mean value (in the context of

control signal prediction) or by making a majority vote (in terms of classification tasks).

In the context of autonomous driving, Shafaei et al. [167] present four cases to deal

with uncertainties related to ML models. For example, one pattern describes the use of

variational methods (i.e. variational inference) to filter anomalous inputs. Hereby, the

pattern discusses an input checker component (based on variational methods). Whenever

the input checker detects potentially malicious inputs, the system transitions into a fail-safe

mode. Otherwise, the input is simply forwarded to the ML model.

Biondi et al. [23] propose a novel software architecture for integrating DNN components

such that safety, security and time predictability are addressed. The authors suggest the

use of hypervisors to isolate the security and safety-critical components. Moreover, the

software architecture incorporates redundancy and diversity mechanisms to enhance

robustness and fault tolerance. Also, digital twin technologies are discussed for predictive

fault detection and fault recovery mechanisms (such as switching the safety-critical compo-

nents with more conservative components in terms of failure occurrence) are enumerated

as well. Finally, a predictable DNN inference engine is discussed for dealing with distinct

execution rates of several concurrent DNNs.

59

3. Related Work

Also in that line of research, the work of Cheng, Gulati and Yan [45] outline three ar-

chitectural approaches for architecting dependable AI-enabled systems (focusing on the

autonomous driving domain). The first architectural approach is Diverse Redundancy and

refers to using diverse algorithms or paradigms. The second approach is Information
Fusion, i.e. by using several homogeneous or heterogeneous sources and merging them to

gain more qualitative information. The third approach discusses Runtime Monitoring by

using additional monitors to detect potential erroneous behaviour.

Originally, Salay and Czarnecki discussed in [151] a partial specification language for

enhanced safety assurance of AI components. However, because the authors also consider

the language in combination with runtime monitoring, they discuss three architectural

patterns on can take into account when performing runtime monitoring. The first pattern

simply describes a fail-safe architecture, i.e. the system enters a fail-safe mode as soon

as a monitor signals that the output of an ML component violates a property (specified

by their proposed language). The second pattern puts the ML component in a pipeline

so that only inputs that cannot be classified in advance are passed to the ML component.

Finally, the widely known simplex architecture approach [166] is adopted. In simplex

architectures, the idea is to supplement a given algorithm with another, more conservative

but verifiable safe algorithm (providing the same functionality) that serves as a backup if

the primary algorithm is not trusted for certain outputs. In this case, the ML component is

considered the primary algorithm and the specification language serves as the basis to

decide when switching to the conservative algorithm. Another example of an approach

where simplex architectures are employed for the safety assurance of ML components is

provided by Musau et al. [131]. In [152] (also authored by Salay and Czarnecki), the list

of architectural patterns is extended by considering three more fault tolerance patterns:

Ensemble methods, safety envelope and data harvesting.

In general, there are architectural patterns which are not directly designed to deal with

uncertain AI components but are nevertheless applicable in that context. For example, Luo

et al. [118] describe a safety channel pattern for automated driving applications which can

be potentially adapted to deal with uncertainty in AI components. Also in the domain of

safety-critical embedded systems (see [10] for more details) there are plenty of patterns (e.g.

voting techniques or recovery block patterns) potentially considerable for safeguarding

AI components. Finally, architectural patterns for fault-tolerant systems [52] should be

mentioned here as well since they provide great means to handle erroneous behaviour

caused by AI components. In fact, we have already discussed approaches that make use of

fault-tolerant patterns at the beginning of this section (e.g. [211]).

While not directly related to architectural approaches for dealing with AI-induced un-

certainty, approaches (such as [212, 162, 181, 203]) that deal with maintenance issues

caused by AI components are still related to this work. Improving the maintenance of

AI systems is not only relevant for addressing operational stability [212] but is also of

considerable importance when the system structure needs to be revised or redesigned by

integrating new (e.g. fault-tolerant) architectural mechanisms. Finally, Lewis, Ozkaya and

Xu [115] discuss the challenges and role of software architecture when dealing with model

maintenance and evolution.

60

3.1. Dealing with AI-induced Uncertainty

3.1.2.2. Model-based Approaches

To our knowledge, there is little to no scientific work that uses model-based approaches

to analyse AI-enabled software systems at design-time. We found two model-based

approaches for design-time analysis.

Dreossi et al. [54] introduce a compositional falsification framework for cyber-physical

systems with ML components. The framework identifies inputs for which a modelled

cyber-physical system with ML components produces false executions in which a property

𝜑 of the system to be falsifying are formalised in signal temporal logic. Specifically, they

investigated an Advanced Emergency Braking System (AEBS) as a representative of a cyber-

physical system that relies on the predictions of an AI-based image classifier for object

detection. Simulink models are used to simulate the AEBS (in conjunction with the image

classifier) to determine whether the 𝜑 property is violated. To identify false executions,

two extremes of an image classifier are considered: A perfect classifier (which always

makes correct predictions) and an extremely poor classifier (which always makes incorrect

predictions). Based on the Simulink simulation, both classifiers are simulated to extract

an uncertainty region, i.e. a subspace of the input space for which only the correctness

of the classifier’s prediction result determines whether a crash is about to happen. From

the subspace, inputs are identified (based on sampling techniques) for which the system

property 𝜑 is violated. Dreossi et al. enable software engineers to identify situations in

which the system (and especially the image classifier) behaves unreliable. In contrast

to our work, we analyse reliability attributes of modelled software architectures which

also guides software engineering during the decision-making process, i.e. finding proper

architectural countermeasures to deal with AI-induced uncertainties. Furthermore, we

have generalised our approach to self-adaptive systems, which cannot be studied with the

falsification framework of Dreossi et al.

Serban, Poll and Visser introduce in their work [163] a methodModeling Uncertainty During
Design for software architecture evaluation by taking into account the uncertainty of ML

components. Their approach enables the evaluation of design decisions (e.g. architectural

patterns) to mitigate ML-induced uncertainty. The presented method annotates existing

software architectures (or rather the included software components) by the twoML-specific

uncertainty types: epistemic and stochastic (or aleatoric) uncertainty. Starting from the

annotated components, a BN (Bayesian network) is generated. The annotated components

and their annotated uncertainties correspond to the nodes (i.e. the random variables) in the

graph of the BN; the connections between the nodes can be interpreted as a kind of control

flow that includes all software components to which the uncertainty could propagate. The

individual probability distributions of the BN can be investigated by a domain expert or

simulation. Afterwards, the overall effect of ML-specific uncertainties can be determined

and their impact on particular architectural patterns analysed. Similarly to our approach,

the approach of Serban et al. allows design-time evaluation of software architectures.

However, we focus on the reliability prediction of the overall system; that is, we do not

focus on the individual components that might be affected by ML uncertainties but analyse

the system-level effects. Moreover, we do not consider epistemic and stochastic uncertainty

61

3. Related Work

as such, but concrete instances or manifestations of uncertainty in the environment that

could have an impact on predictive uncertainty. As we will see in later sections, our

approach allows us to analyse architectural patterns such as the n-version programming

or filtering pattern that either limit the impact of incorrect predictions or contain the

occurrence of uncertainty. This is in contrast to the method presented by the authors,

where only the sensitivity in terms of uncertainty propagation for specific architecture

patterns or styles is analysed. Since our approach is embedded in the Palladio framework,

we can also use other simulation and prediction tools to compare design decisions not

only in terms of reliability but also in terms of performance, leading to well-informed

design decisions.

3.1.2.3. Self-Adaptive Systems to Safeguard AI components

To the best of our knowledge, there is little work using self-adaptive systems as architectural

safeguards.

De Lemos and Grzes envisioned the self-adaptive AI approach [114] which discusses the

idea of using transparency and interpretation methods of AI to generate explanations

that serve as the basis for the self-adaptive system to change the AI model, e.g. via direct

manipulation of the model parameters. The authors motivated the idea of self-adaptive AI

in terms of dealing with concept drift (i.e. the situation where the distribution of the data

changes). While the core idea is the same as what we present in this paper, the authors

present a vision rather than an implementation of their approach.

The work of Aniculaesei et al. [7] and Weiss et al. [204] present concepts where self-

adaptation is used as the primary means to deal with uncertain AI components. The former

presents a holistic approach to engineering dependable autonomous systems which might

include AI components. The latter work discusses so-called self-adaptation envelopes

which are used to integrate and manage undependable components or subsystems. Both

of these works are related to our approach in that self-adaptation is leveraged to deal

with unreliable subsystems (which refer in our case to AI black-box components). Overall,

however, both approaches are rather considered to either support software engineers in the

engineering process (i.e. [7] by proposing a holistic software system engineering approach

for dependable autonomous systems) or by providing a concept to integrate undependable

self-adaptive systems in safety-critical environments. In contrast, the approach presented

in this thesis provides an implemented design-time approach to predict the reliability

attributes of AI-enabled software systems.

Another example of a runtime adaptation approach is provided by Zhu et al. [216] that

outline approaches where multiple AI-based controllers (for planning tasks in autonomous

systems) are employed. The controllers are considered to be diverse, i.e. each controller

might be designed by a different team or according to different design methodologies.

Due to diversity, some controllers might have advantages (e.g. acting more robust) while

having disadvantages (e.g. less efficient). Runtime adaptation is used to switch between

62

3.2. Quality Assurance of AI-enabled Systems

the controllers to deal with various system states. A similar approach is described by

[128].

3.2. Quality Assurance of AI-enabled Systems

In this section on related work, we review and distinguish ourselves from approaches to

quality assurance of AI-enabled systems. Strictly speaking, the approaches listed in section

3.1 are also quality assurance approaches, but directly at the algorithmic or system level.

In the following, approaches are discussed (complementary to the approaches from the

last sections) that deal with the quality assurance of AI systems by looking at the life cycle

of an AI component. Therefore, in section 3.2.1 we provide an overview of approaches

that propose or discuss engineering processes around the life cycle of an AI component.

Afterwards, we discuss in section 3.2.2 existing classifications for AI-enabled systems and

how they are different from our classes of architectural dependability assurance.

3.2.1. Engineering Processes

There are a lot of works that describe how engineering approaches must be adapted to

engineer AI or (more specifically) ML systems. Similarly, our assurance classes provide

support for assessing an AI-enabled system and its domain (e.g. operating environment).

Thus, they also guide the development of the system. Nonetheless, the approaches are

rather suggesting further methods or activities that must be considered during all phases of

development (e.g. requirement, training or deployment phase). In contrast, our classes give

a first intuition of the system and the level of assurance that can be achieved. Based on the

classification into one of the classes, a software engineer can take appropriate actions by

considering the methods and activities proposed in the work, which we summarise below.

Also, we refer to [67] which conducted a systematic literature review on the state-of-the-art

of software engineering research for engineering ML-based systems.

In terms of addressing safety issues during the ML lifecycle, Pereira and Thomas [137]

discuss safety hazards that can occur during the lifecycle of ML-based cyber-physical

systems that potentially impact safety, e.g. incorrect objective function definition during

requirements elicitation. Also in this context, the work of Santhanam et al. [154] introduce

and discuss the notion of AI engineering which is about building reliable deep learning-

based software systems. In particular, the authors discuss the impact of deep learning

components on the traditional software lifecycle and highlight challenges that need to

be addressed such as the requirement to measure the correctness of a deep learning

model across its lifecycle. Ashmore, Calinescu and Paterson [11] provide a survey which

discusses state-of-the-art methods that provide proper evidence for assuring ML models

at distinct stages of the ML lifecycle. Hereby, the authors considered the stages Data
Management, Model Learning, Model Verification and Model Deployment. For each phase,

the corresponding activities are discussed (e.g. data management includes activities such

63

3. Related Work

as data collection and pre-processing), assurance desiderata and the methods to achieve

assurance.

Besides adapting traditional software development processes in terms of AI-specific ac-

tivities to assure safety, some approaches discuss general processes for engineering AI

applications. For example, Amershi et al. [5] describe a study for building AI applications

based on the experience of several Microsoft software teams. Moreover, they present a

nine-step workflow process for developing AI applications which is integrated into agile-

like software engineering processes. Also, the authors extracted best practices one can

account for when developing AI systems. Finally, Hesenius et al. [83] represent a further

work which proposes a software engineering process for ML systems (or data-driven

applications).

In addition to approaches that focus purely on the engineering process and the lifecycle of

AI-enabled systems, some approaches focus on specific phases within the process, such as

requirements engineering [85, 197, 144] or testing [32].

3.2.2. Classifying AI-enabled Systems

In this section, we discuss scientific works (similarly to our classes of dependability assur-

ances) that classify AI-enabled systems w.r.t. some classification structure or taxonomy.

To our knowledge, however, no work classifies AI-enabled systems according to the extent

to which assurances can be made either at design-time or at runtime. Nonetheless, we

discuss some works that propose classification structures, but for a different purpose.

In [199], a taxonomy is established that classifies ML in terms of the types of knowledge

used to train the respective ML models. Therefore, the authors introduce the term Informed
Machine Learning, which refers to the idea of incorporating knowledge gained (e.g. from

domain experts) into the training process. For example, knowledge graphs can be used to

provide certain relationships between concepts in the domain to be learned. The proposed

taxonomy classifies ML approaches based on three categories: The type of knowledge

integrated (e.g. domain expert or process flows), the representation of the knowledge (e.g.

rules, knowledge graphs or differential equations) and the location where the knowledge is

integrated (e.g. training data or hypothesis space). In contrast, our classes of dependability

assurance are rather designed to classify ML systems regarding assurance levels. Moreover,

the taxonomy presented by the authors aims to classify research activities.

Feldt et al. [59] present the AI in Software Engineering Application Levels (AI-SEAL)
taxonomy that classifies applications w.r.t. three dimensions. The first dimension is the

Point of Application and refers to the point in time or location the AI technology is applied,

i.e. during execution (runtime), at the process level (during software engineering process)

or directly in the product. The second dimension refers to the Type of AI, e.g. Bayesian
models. The last dimension or facet corresponds to the level of automation, i.e. the extent

of human intervention. The authors argue that engineers or software companies can

analyse the associated risks and opportunities when applying AI based on the taxonomy.

Although this is fairly similar to our classification structure, we reason about the assurance

64

3.3. Analysing Self-Adaptive Systems

level one can make when engineering AI-enabled systems. Furthermore, we aim to support

software engineers to develop reliable systems with AI components.

3.3. Analysing Self-Adaptive Systems

In this section, we provide an overview and distinguish ourselves from related work that

(just like us) uses Markov models to analyse self-adaptive systems in terms of decision-

making. Note that although we will describe extensively how MDPs are instantiated in

the domain of self-adaptive systems, we do not aim to provide a formalism describing the

fundamental notion of self-adaptivity (e.g. Petrovska et al. [138]), but use MDPs to predict

the quality of an adaptation strategy. We conclude this section by reviewing model-based

approaches for analysing self-adaptive systems at design-time and discuss how they differ

from our approach.

3.3.1. Using Markov Models for Decision-Making

The use of Markov models in terms of self-adaptive systems is a widely used method. For

example, Moreno et al. [126] employ MDPs to determine the best possible adaptation or

adaptation tactic from a given set of options. Hereby, the interaction of the environment

and the system is translated into anMDP such that different adaptations can be evaluated by

applying (e.g.) probabilistic model checking to the MDP. Thus, the best possible adaptation

can be determined. Also in this line of research, Camilli, Mirandola and Scandurra [40]

employ MDPs to capture self-adaptive systems and their uncertainties mainly induced

by the environment and verify whether the system maintains an acceptable behaviour.

In this work, we use MDPs as well to simulate the interaction between the environment

and the system. However, we conduct a full simulation of the MDP to evaluate entire

adaptation strategies (as opposed to analysing individual adaptation options). Moreover,

the above approaches are applicable only at runtime, whereas our approach aims to analyse

adaptation strategies at design-time. Also, Elrakaiby et al. [55] make use MDPs to formalise

self-adaptive systems for the sake of optimisation. The authors provide a framework for

model-based (and requirements-driven) synthesis of optimal adaptation strategies for

autonomous systems at design-time. Besides the difference that we evaluate adaptation

strategies and do not optimise them, the authors focus on behavioural optimisation (i.e.

on functional requirements), which is in contrast to our approach that deals exclusively

with non-functional requirements.

DTMCs (discrete-time Markov chains) represent Markov models that are also frequently

used to model self-adaptive systems and their stochastic dynamics, e.g. [66, 38, 60, 37, 61].

In [38], for example, the authors use DTMCs to describe the impact of adaptations. Based

on the DTMC, the impact of adaptation is analysed and the best possible adaptation is

selected. Further, Filieri et al. [60] use DTMCs to model different behavioural variants

of a self-adaptive system and use control theory approaches to maintain the reliability

properties. Equivalently, Cámara and de Lemos [37] employ DTMCs to model self-adaptive

65

3. Related Work

systems and to check resilience properties. The resilience properties are specified by using

probabilistic computation tree logic. In the last step, the authors apply probabilistic

model checking to verify whether the properties are satisfied. Finally, Franco et al. [61]

translate individual system configurations into DTMCs to predict reliability properties. At

runtime, the prediction results are used to find optimal adaptations to which the current

configuration of the system can transition. As with MDP-based approaches, the same

reasoning applies to the distinction with our work: All approaches are used at runtime to

support decision-making (e.g. selecting the best possible adaptation) or to verify certain

properties when transitioning to another state. In this work, however, we focus entirely on

design-time analysis, i.e. we enable the evaluation of design decisions before a single line of

code of the system is implemented. Moreover, we evaluate entire adaptation strategies.

3.3.2. Model-based Analysis of Self-Adaptive Systems

In this section, we review related work that is either purely model-based or heavily build

upon model-based techniques.

3.3.2.1. Architecture-based Self-Adaptation

Architecture-based self-adaptation [64] refers to a research area in which models (abstract-

ing the managed system) are used at runtime to evaluate changes made to the managed

system using model-based analysis techniques. In such settings, abstract models of the

system are complemented by data monitored at runtime. Afterwards, analysis techniques

are applied to the complemented models in order to predict or analyse system properties

such as the response time. Based on the predicted properties, adaptations can be triggered,

or they are used to determine the effects of some adaptations. In this section, we give a

brief overview of some approaches using architecture-based self-adaptation. However,

the difference between architecture-based self-adaptation approaches and our approach is

always the same. While architecture-based self-adaptation uses models at runtime (for

decision-making), we use models at design-time for the analysis of self-adaptive systems

(e.g. the evaluation design decisions).

Cámara et al. [38] use DTMCs to abstract the managed system and to predict quality

attributes. The prediction results are used to determine at runtime the effects of particular

adaptations; that is, for a set of adaptations, the individual impacts are evaluated such that

the best possible adaptation is selected.

In [87], the authors present a model-based approach using the Descartes Modeling Language
(DML). DML is an architecture-level modelling language for online performance and

resource management in self-adaptive systems. The approach allows the prediction of

performance attributes of the system such that adaptation can be planned proactively w.r.t.

the predicted performance attributes.

66

3.3. Analysing Self-Adaptive Systems

Finally, Weyns and Iftikhar [208] present an approach for model-based simulation at

runtime. Hereby, stochastic timed automata are used to abstract the managed system and

the environment. At runtime, the models are first complemented with runtime data and

then simulated. Based on the simulation results, the adaptation (from a set of adaptations)

that best meets the quality objectives can be determined.

3.3.2.2. Formal Verification of Functional Correctness

Model-based approaches are also leveraged in terms of showing the correctness of the

adaptation logic itself. In this context, MAPE-K-based self-adaptive systems are analysed

(based on models such as state machines) to verify the correctness of the adaptation

behaviour, e.g. [8, 91]. Although such approaches aim to ensure the adaptation behaviour

at design-time, our model-based approach is concerned with evaluating the quality or

effectiveness of a strategy. That is to say, our approach supports software engineers during

the design of an adaptation strategy, i.e. to evaluate distinct adaptation strategies or design

decisions within a strategy family. Once an appropriate adaptation strategy has been

identified and designed (in terms of the different quality objectives), the approaches to

verify the correctness of the strategy can be applied afterwards.

3.3.2.3. Model-based Testing

Model-based testing [193] is a widely used approach to generate test cases or input data

for a system under test. In the context of self-adaptive systems, there are also several

approaches which make use of models to generate test cases to validate the adaptation

logic, e.g. [141, 9]. For example, Arcaini et al. [8] uses a domain-specific modelling

language called MAPE Specification Language and abstract state machines (to represent

the adaptation logic) to generate test cases for which the resulting MAPE-K feedback loop

implementation can be tested.

In contrast to our approach, however, we do not aim to test adaptation logic, but to evaluate

the quality of an adaptation strategy w.r.t. various quality objectives. More specifically,

we address the uncertainty Parameter over time, which is arguably difficult to tackle by

using model-based testing. We also aim to compare distinct strategies or design decisions

within families of strategies. In summary, our approach can be seen as a starting point for

developing an appropriate strategy. Afterwards, model-based testing can be used to test

the adaptation logic and avoid implementation errors.

3.3.2.4. Scenario-based Analysis

In this section, we review several approaches which we consider to be scenario-based,

i.e. the adaptation logic or adaptation strategy is explicitly validated or tested against

certain scenarios. However, scenario-based analysis is not suitable for evaluating a general

quality measure of a strategy; this forms the main difference to our approach. We will see

67

3. Related Work

in chapter 4 that it is necessary to analyse the trajectory space of a self-adaptive system to

determine the quality of its adaptation strategy. Scenario-based approaches focus only

on evaluating specific trajectories of the space. For instance, let 𝜋, 𝜋 ′ be two strategies,

scenario-based analysis evaluates 𝜋 > 𝜋 ′ based on a single (or a few) trajectories (or

scenarios). However, it does not ensure the general case, i.e. whether 𝜋 outperforms 𝜋 ′

when considering all trajectories. Finally, scenario-based analysis neglects the uncertainty

Parameter over time.

An example of a scenario-based approach is the performance simulator called SimuLizar [16,

15]. SimuLizar enables the simulation of performance attributes of self-adaptive systems

by simulating distinct workload scenarios. More specifically, by using an approach called

Usage Evolution [31], one can model the evolution of the workload over time which is used

as a foundation to analyse the adaptive behaviour (represented by model transformations)

w.r.t. performance attributes. There are also extensions for SimuLizar that addresses the

consideration of other quality attributes, e.g. energy efficiency [178].

Another example of a scenario-based analysis approach is SLAstic.SIM [121] for perfor-

mance simulation of reconfigurable component-based software systems. Similarly to

SimuLizar, SLAstic.SIM uses PCM to represent the managed system. In addition, the

simulation is driven by workload traces (either recorded or generated) that represent

distinct scenarios against which the adaptation logic is evaluated.

3.3.2.5. Evaluating Adaptation Strategies

In the following, we review approaches similar to our approach to enable the evaluation

of adaptation strategies at design-time.

Berardinelli et al. [20] provide an approach which models the context of an adaptive

system by using continuous-time Markov chains. Based on the continuous-time Markov

chain it can be determined how well an adaptive system satisfies certain quality attributes.

In contrast to our approach, however, Berardinelli et al. do not focus on MAPE-K-based

self-adaptive systems. Moreover, since we make use of MDPs, we can encode multiple

quality attributes within a reward; thus, we can compare strategies w.r.t. various quality

attributes.

Grassi, Mirandola and Sabetta [72] discuss a model-based approach of performability

analysis for dynamically reconfigurable component-based systems. Just like our approach,

the work is applicable at design-time to evaluate dynamically acting systems. However,

there are several differences. First, the approach of Grassi et al. is domain-specific, i.e.

it deals with the analysis of performability properties. Second, although the approach

enables evaluating dynamically reconfigurable systems, they do not focus on MAPE-K-

based self-adaptive systems (which is contrary to our work). Thus, they do not analyse

what we define as an adaptation strategy. Third, the approach of Grassi et al. requires

that the state space (or all possible system configurations) can be completely unfolded.

However, due to state space explosion, this is not always possible and addressed in our

approach by using Monte Carlo methods.

68

3.3. Analysing Self-Adaptive Systems

Cámara et al. [39] describe an approach for offline (i.e. design-time) synthesis of adaptation

strategy repertoires w.r.t. a utility profile (system qualities). More specifically, the authors

use a discrete abstraction of the state space, MDPs and probabilistic model checking

techniques to synthesise a repertoire of adaptation strategies used at runtime. In particular,

the offline synthesis identifies those strategies that are more suitable for certain regions of

the state space. Based on the offline analysis, the runtime overhead of the online synthesis

process is eliminated and near-optimal solutions are provided. To our understanding,

however, the term adaptation strategy is treated differently by Cámara et al. More precisely,

they define an adaptation strategy as a set of tactics representing a primitive or atomic

adaptation step within a strategy. As we will see later, the term adaptation strategy

is defined differently in this thesis. In our definition, an adaptation strategy includes

all activities that influence the decision to select a particular action in a given state

(including activities of all MAPE phases). That is, we evaluate the adaptation logic more

comprehensively. Furthermore, our main intention is to evaluate adaptation strategies

in order to support software engineers in decision-making, i.e. comparing strategies or

design decisions within strategy families.

3.3.2.6. Environmental Modelling

In terms of environment modelling, there are two works [104, 169] which conducted

literature research on modelling the environment of self-adaptive systems. According

to the results, various modelling approaches capture the environment in which self-

adaptive systems operate, e.g. state machines, DTMCs, MDPs, and UML (unified modelling

language) class diagrams. The selection of the concrete model type highly depends on the

purpose of the environment model. The environment models, for example, reviewed in

[104] are considered from the perspective of requirements engineering. The environment

models discussed in [169] are mainly intended to support runtime decision-making or for

model-based testing, which is different from what we want to achieve, i.e. design-time

evaluation of adaptation strategies.

When reviewing the various model-based approaches for analysing self-adaptive systems,

we also noticed that different representations have been used to capture the environment,

ranging from stochastic timed automata to Markov models to traces of recorded data.

In virtually every approach, the purpose of the environment model is distinct from our

approach. Moreover, most design-time approaches are applicable in a domain-specific

way. Thus, we can barely compare our environmental modelling approach with other

approaches.

However, we found at least one approach which supports desing-time analysis by using an

environment model representing the context of an adaptive system domain independently.

Berardinelli et al. [20] present a state machine-based Context Evolution Model which
captures the context of an adaptive system. More specifically, the authors define so-called

Context Attributes (CA) that represent what we consider to be an environmental variable.

Each CA consists of a finite set of values and is described by an individual state machine.

A set of CA is transformed into an overall state machine by composing the individual

69

3. Related Work

CAs. Interestingly, a context evolution model can be instantiated domain independently

(just as our environmental modelling approach as we will see in chapter 5). However,

the algorithm composing the single CAs suffers from scalability and memory limitations

because the number of composed states grows exponentially. We circumvent this problem

by compactly encoding the state space by using Bayesian models. Finally, we argue that

the modelling of complex state spaces and complex stochastic dependencies is rather hard

to conduct with a state machine-based model because for each CA a state machine must

be described and also the dependencies between the distinct state machines. In contrast,

our approach allows the modelling of state spaces flexibly and compactly by using discrete

Bayesian networks. Again, we defer the discussion to chapter 5.

70

Part III.

Design-time Evaluation of Self-Adaptive
System

4. The Dynamics of Self-Adaptive
Systems: A Theoretical Perspective

We consider self-adaptive systems as architectural safeguards that we aim to evaluate

at design-time. For design-time analysis, however, an analytical model is required that

abstracts the behaviour of a real system and that provides the fundamental means to

predict quality attributes. In this chapter, we discuss the theoretical framework or model

that underlies the approaches of chapter 6 and section 7.2 and that forms the basis for

evaluating adaptation strategies of self-adaptive systems at design-time. More specifically,

we formalise the stochastic dynamics of self-adaptive systems. Stochastic dynamics refer

to the various states that a self-adaptive system can potentially transition to over time.

We consider the process of how a self-adaptive system moves through the state space

as a stochastic process which is induced by two components, namely the Environmental
Dynamics and the Deterministic Adaptation Process. Environmental dynamics refers to the

stochastic evolution of the environment that must be taken into account by a self-adaptive

system to maintain quality objectives. The deterministic adaptation process describes

adaptations of system configurations in response to changes in the environment. Based on

these concepts, we map the formal elements of a self-adaptive system into the domain of

MDPs (Markov decision processes) which we consider as the underlying analytical model

of self-adaptive systems. We use MDPs to formulate the challenges and problems arising

when engineering self-adaptive systems from the perspective of a software engineer.

Using MDPs as the theoretical foundation has several advantages:

• MDPs are prevalent models in the self-adaptive system community and have proven

to be successful as theoretical foundation to capture and analyse self-adaptive systems

(e.g. [6, 127, 215]).

• Using MDPs as an underlying framework shows the formal semantics of our pre-

sented approach.

• Many other mathematical methods (e.g. dynamic programming, reinforcement

learning [180] or stochastic stability analyses [123]) build upon MDPs and offer

approaches to deal with the challenges this work addresses. For instance, we discuss

in chapter 6 how we make use of dynamic programming to evaluate and assess the

quality of an adaptation strategy.

This chapter is structured as follows: Section 4.1 introduces the environmental dynamics.

Section 4.2 describes the deterministic adaptation process. The concepts presented in the

latter two sections are brought together in section 4.3 to formalise self-adaptive systems

73

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

as MDPs. Having established the formal apparatus of self-adaptive systems, we formalise

in section 4.4 what we consider to be the Engineering Problem concerning self-adaptive

systems, namely the design of an adaptation strategy for maintaining various quality

objectives of a system. Finally, we discuss made assumptions in section 4.5 and summarise

the chapter in section 4.6.

4.1. Environmental Dynamics

Self-adaptive systems are expected to maintain quality objectives under changing condi-

tions or Uncertainties [206, p. 1]. Uncertainties are an important concept, as they are the

source of adaptation. In literature, however, there are various definitions and understand-

ings. For instance, Weyns [206, p. 1] enumerates changes in the operational environment,

dynamic resource availability and variations of user goals as possible uncertain conditions.

Salehie and Tahvildari [153] consider changes in the Self and Context of a software system
as the main reason for adaptation. The term Self refers to the whole body of the soft-

ware and Context includes everything in the operational environment that affects system

properties and behaviour. As the last example, Oreizy et al. [134] consider the operating

environment as the source of adaptation in which the operating environment is considered

as anything that can be observed by the system (e.g. user input), sensor data or hardware

devices. We agree with all of these definitions. In this thesis, however, we generalise the

concept of changing conditions or uncertainties (w.r.t. the definitions) and define it from a

quality-oriented perspective.

More specifically, we denote the source of adaptation as Environment. Before defining
the environment more formally, we introduce Environmental States that make up the

environment.

Definition 17 (Environmental State). An environmental state encompasses all variables
or factors whose behaviour cannot be controlled directly but have an impact on the quality
objectives of a software system. More formally, an environmental state 𝐸 := (𝑒1, ..., 𝑒𝑛) is a
tuple consisting of instances of the aforementioned variables.

To limit the effects of the state space explosion problem, we assume that each 𝑒𝑖 ∈ 𝐸 is

discrete. Based on the definition of environmental states, the environment E is defined as

follows:

Definition 18 (Environment). The environment E := {𝐸1, ..., 𝐸𝑚} is a set of discrete envi-
ronmental states. More specifically, E is spanned by all the variable realizations or instances
of each environmental state 𝐸𝑖 .

The definition of discrete environmental states 𝐸 follows from the assumption that each 𝐸

consists of discrete variables.

74

4.2. The Deterministic Adaptation Process

Note how definitions 17 and 18 abstract from the definitions enumerated at the begin-

ning of this section. An environmental state 𝐸 includes all variables 𝑒1, ..., 𝑒𝑛 that affect

quality objectives which subsumes (depending on the domain) variables like resource

availability/failures or harsh weather conditions. More specifically, no distinction is made

between intrinsic (e.g. resource availability) or extrinsic (e.g. harsh weather conditions)

variables, as only their effect on quality objectives is of relevance. The main concern of

this thesis is how quality objectives (w.r.t. the quality requirements) are affected in the

presence of certain environmental states and how self-adaptation compensates for these

effects. The concrete classification or meta-information of the environmental state itself

is therefore of secondary importance but only their effect on quality objectives matters.

Self-adaptation is highly related to quality requirements and meeting them is the primary

trigger for adaptation [153].

The distinct states of the environment evolve; that is, for each time instance 𝑡 , we observe

the environment to be in a particular state 𝐸𝑡 . We denote the evolution of the environmental

states as Environmental Dynamics which we consider as stochastic process (𝑋E𝑡)𝑡∈𝐼𝑁 . In
addition, we assume that the Markov assumption (see section 2.4.1) applies to (𝑋E𝑡)𝑡∈𝐼𝑁 .

Definition 19 (Environmental Dynamics). The environmental dynamics are a stochastic
process (𝑋E𝑡)𝑡∈𝐼𝑁 for which the Markov assumption holds. More precisely, the environmental
dynamics are described as stationary Discrete-Time Markov Chain (E, E0, 𝑡E) where

• E corresponds to the set of environmental states.

• E0 corresponds to the set of initial environmental states: E0 ⊆ E

• 𝑡E : E ×E → [0, 1] corresponds to the transition function that evaluates the probability
to transition to state 𝐸𝑖 given 𝐸 𝑗 , i.e. 𝑃𝑟 (𝑋E𝑡+1 = 𝐸𝑖 | 𝑋E𝑡 = 𝐸 𝑗).

We consider the stochastic process of environmental dynamics to be discrete (which

follows from the definition of discrete environmental states).

The use of DTMCs or Markov models is an accepted and widely used approach in the

self-adaptive system community. For example, many works (e.g. [127, 55, 37]) use Markov

models to capture the stochastic nature of self-adaptive systems. In contrast to our work,

we generalise the concept of the environment and consider it as the source or trigger

of adaptation. The dynamics of the environment (see definition 19) is represented by a

DTMC and is considered the main component responsible for the stochastic behaviour of

self-adaptive systems.

4.2. The Deterministic Adaptation Process

In the last section, the concept of the environment and its dynamics was introduced.

Whenever the environment transitions to a state that can no longer be handled by the

current configuration of the software system (due to violations of the quality objectives),

75

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

an adaptation is triggered. The goal is to adapt the system to compensate for changes in

the environment to maintain quality objectives. The process of adapting the system from

a configuration 𝐶𝑖 to 𝐶 𝑗 is called Adaptation Process and is explained in more detail in the

following section.

Before formally defining the adaptation process, we introduce basic terminology. We

consider adaptation from an architecture-driven perspective. That is to say, adaptations

and system configurations are described at the architectural level.

Definition 20 (Architectural Configuration). An architectural configuration 𝐶 includes
all structural, behavioural and deployment-specific elements as well as their relationships to
describe the software architecture (according to definition 5) of the system at a given time
instance.

We intentionally do not specify the concrete structure of an architectural configuration 𝐶

to emphasise that no assumptions are made and to maintain generality. It is only required

that the effect of adaptations to configurations are represented in 𝐶 . Similarly to the

definition of system configurations, adaptations are also defined from an architectural

perspective.

Definition 21 (Architectural Adaptation). An architectural adaptation 𝛿 ∈ Δ (where Δ
refers to the set of available adaptations) is applied to an architectural configuration of a
system to change its structure or behaviour.

The set of available adaptations Δ includes at least one adaptation 𝛿∅ which we denote as

the Empty Adaptation. The empty adaptation applied to a configuration does not change

the configuration and indicates that the self-adaptive system has not taken any action at

all, i.e. applying 𝛿∅ to an architectural configuration 𝐶 results in 𝐶 again. For the sake of

completeness, the architectural configuration space is defined as follows:

Definition 22 (Architectural Configuration Space). The architectural configuration space
C consists of all architectural configurations that are reachable from an initial architectural
configuration 𝐶0 by applying a sequence of adaptations (𝛿1, ..., 𝛿𝑛).

Based on the previous definitions, the adaptation process can be defined. The adaptation

process refers to the transition of an architectural configuration 𝐶𝑖 to 𝐶 𝑗 by applying an

architectural adaptation 𝛿 .

Definition 23 (The Deterministic Adaptation Process). The deterministic adaptation process
is described by the function 𝜙 : C×Δ→ C that uniquely maps an architectural configuration
𝐶𝑖 and adaptation 𝛿 to an architectural configuration 𝐶 𝑗 , i.e. 𝜙 (𝐶𝑖, 𝛿) = 𝐶 𝑗 .

Based on the definition of the deterministic adaptation process, we now catch up with the

formalisation of the empty adaptation property introduced earlier.

76

4.3. Considering Self-Adaptive Systems as Stochastic Processes

Property 1. The empty adaptation 𝛿∅ applied to any architectural configuration 𝐶 results
always in 𝐶 :

∀𝐶 ∈ C : 𝜙 (𝐶, 𝛿∅) = 𝐶 (4.1)

Additionally, we require that 𝜙 satisfies the following property:

Property 2. For any pair of architectural configurations 𝐶 and 𝐶′ for which there exist an
adaptation 𝛿 (i.e. 𝜙 (𝐶, 𝛿) = 𝐶′), the adaptation 𝛿 is unique:

∀𝛿, 𝛿′ ∈ Δ : 𝜙 (𝐶, 𝛿) = 𝜙 (𝐶, 𝛿′) = 𝐶′⇔ 𝛿 = 𝛿′ (4.2)

Basically, the property states that an adaptation 𝛿 is derived uniquely from 𝐶 and 𝐶′, if
𝜙 (𝐶, 𝛿) = 𝐶′ applies. The properties 1 and 2 play an essential role in section 4.3.2, which is

why we have formalised them explicitly.

The mechanism governing the adaptation process is the adaptation strategy. The strategy

implements the decision logic that determines which adaptation should be executed. The

selected adaptation is passed to the adaptation process to apply the adaptation. We assume

that the adaptation strategy does not select adaptations leading to invalid architectural

configurations. For example, consider adaptations adjusting parameters by adding values

or incrementing the parameter itself. When the parameter reaches the maximum value,

increasing the value again will result in an invalid configuration. Ensuring the correctness

of MAPE-K-based self-adaptive systems can be achieved by using approaches such as

[8, 91]. We will not formally introduce here what we consider an adaptation strategy;

however, this is made up for in chapter 6. For the remainder of this chapter, it is sufficient

to think of an adaptation strategy as a function that determines the next adaptation given

the current state.

4.3. Considering Self-Adaptive Systems as Stochastic
Processes

As discussed at the beginning of this chapter, we consider the dynamics of a self-adaptive

system as a stochastic process induced by two components, namely the environmental

dynamics and the deterministic adaptation process. Both were introduced in section 4.1

and 4.2, respectively. In this section, we discuss how environmental dynamics and the

deterministic adaptation process are correlated and mapped onto MDPs (Markov decision

processes).

77

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

4.3.1. Mapping Self-Adaptive Systems to Markov Decision Processes

In this section, we describe how the mathematical framework of MDPs is instantiated in

the domain of self-adaptive systems. For this, the elements that make up a self-adaptive

system (i.e. the self-adaptive system state space, adaptation space, self-adaptive system

dynamics, quality objectives and adaptation strategy) are mapped to the basic elements

of an MDP, namely the set of states 𝑆 , set of actions 𝐴, transition function 𝑡 and reward

function 𝑟 : 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) (see section 2.4.2). Before we define the mapping, we need

to introduce the concepts of Self-Adaptive System State and Self-Adaptive System State
Space.

Whenever the environment transitions to a state that cannot be handled by the current

system configuration, an adaptation is triggered to adapt the system accordingly. As

described in section 4.1, we assume that environmental states are discrete.

Definition 24 (Self-Adaptive System State). A self-adaptive system state 𝑆 consists of an
architectural configuration 𝐶 ∈ C and an environmental state 𝐸 ∈ E, described by the tuple:
𝑆 := (𝐶, 𝐸).

The combination of an environmental state and architectural configuration defines a self-

adaptive system state. The state changes over time, e.g. when an adaptation is made or the

environment transitions to a different state. For completeness, the self-adaptive system

state space is defined as follows:

Definition 25 (Self-Adaptive System State Space). The self-adaptive system state space S
is a set that encompasses all self-adaptive system states, i.e. S := C × E.

Based on definitions 24 and 25, the mapping of the elements of a self-adaptive system to

the elements of an MDP can now be discussed.

As described at the beginning of this section, an MDP comprises four elements captured by

the tuple 𝜆 := (𝑆,𝐴, 𝑡, 𝑟). In the remainder of this section, we refer to the set of states 𝑆 of

an MDP as 𝑆𝜆 to distinguish the set from a self-adaptive system state 𝑆 := (𝐶, 𝐸). The most

trivial mappings refer to the self-adaptive system space S which represents 𝑆𝜆 and the

adaptation space Δ which corresponds to the set of actions 𝐴 in the context of MDPs.

In MDPs, the transition function 𝑡 determines how states transition over time, i.e. it

captures the dynamics. Therefore, we consider 𝑡S as an instantiated version of 𝑡 that

captures the transition function or stochastic dynamics of a self-adaptive system. More

precisely, we define the function 𝑡S : S × Δ × S → [0, 1] as the equivalent concept

to 𝑡 from MDPs. Equally, to 𝑡 , 𝑡S determines the probability distribution to transition

to state 𝑆 𝑗 given the present state 𝑆𝑖 and adaptation 𝛿 , i.e. 𝑡S = 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
),

(𝑆 𝑗 , 𝑆𝑖, 𝛿) ↦→ 𝑃𝑟 (𝑋S𝑡+1 = 𝑆 𝑗 | 𝑋S𝑡 = 𝑆𝑖, 𝑋Δ𝑡
= 𝛿). Additionally, 𝑡S specifies the correlation

of the environmental dynamics and the adaptation process. More specifically, let (𝑋S𝑡)𝑡∈𝐼𝑁
be a stochastic process (where the Markov assumption applies) describing the stochastic

78

4.3. Considering Self-Adaptive Systems as Stochastic Processes

dynamics of a self-adaptive system. 𝑡S encodes all information necessary to determine all

possible state sequences of (𝑋S𝑡)𝑡∈𝐼𝑁 :

𝑋S0 = 𝑆0 → · · · → 𝑋S𝑡 = 𝑆𝑖
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 → · · · → 𝑋S∞ = 𝑆𝑘 (4.3)

· · · → 𝑋S𝑡 = 𝑆𝑖 := (𝐶, 𝐸)
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 := (𝐶′, 𝐸′) → · · · (4.4)

Hereby, 𝑋S𝑡 = 𝑆𝑖
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 denotes a specific transition from state 𝑆𝑖 and 𝛿

to 𝑆 𝑗 w.r.t. 𝑡S (𝑆𝑖, 𝛿, 𝑆 𝑗). As shown in sequence 4.4, a state 𝑆 := (𝐶, 𝐸) consists of an
architectural configuration 𝐶 and environmental state 𝐸. Both components underlie a

change process: the deterministic adaptation process and the stochastic environmental

dynamics. Intuitively, one would think that the adaptation process is mainly driven by the

environmental dynamics; that is, whenever the environmental dynamics transitions from

state 𝐸 at time 𝑡 to state 𝐸′ at time 𝑡 +1 and the current configuration𝐶 is not able to satisfy

quality objectives in state 𝐸′, a new configuration is observed at time 𝑡 + 2. However, this
is not necessarily the case because the environmental dynamics may also change during

the adaptation process (e.g. in the sequence from 𝑡 + 1 to 𝑡 + 2). In principle, there are

four ways in which 𝑡S can transition to a particular self-adaptive system state which are

mainly due to environmental changes, changes in architectural configuration, both or no

changes. More formally, let 𝑆𝑖 := (𝐶, 𝐸) be a state and 𝑆 𝑗 := (𝐶′, 𝐸′) be the state after the
transition w.r.t. 𝑡S , the four possible transitions are as follows:

𝑆 𝑗 =

(𝜙 (𝐶, 𝛿), 𝐸), 𝛿 ≠ 𝛿∅ ∧ 𝐸 = 𝐸′

(𝐶, 𝐸), 𝛿 = 𝛿∅ ∧ 𝐸 = 𝐸′

(𝜙 (𝐶, 𝛿), 𝐸′), 𝛿 ≠ 𝛿∅ ∧ 𝐸 ≠ 𝐸′

(𝐶, 𝐸′), 𝛿 = 𝛿∅ ∧ 𝐸 ≠ 𝐸′

(4.5)

Recall from section 2.4.2 function 𝑟 of an MDP referring to the reward function that

evaluates the decision of selecting an action in a given state considering the state after

the transition. In self-adaptive systems, the reward function is represented by the quality

objectives or utility functions that must be maintained by adaptation strategies. Therefore,

the reward function 𝑟S : S × Δ × S → 𝐼𝑅 in self-adaptive systems reflects exactly these

quality objectives. The quality objectives (and preferences of particular quality attributes,

if any) are encoded in the resulting rewards generated for each decision that a self-adaptive

system makes (i.e. by applying adaptations). Although in later chapters implementations

are presented, we do not focus on the best possible way to implement a reward function.

While this is an important topic, it is highly domain and application-dependent. Note

that the reward function 𝑟S is not limited to represent solely quality objectives. It is also

possible to encode other qualities in the reward function (e.g. stability properties). For

example, each time an adaptation is triggered, a negative reward can be added to the

resulting reward to punish strategies that frequently adapt the system. In this thesis,

however, we solely focus on reward functions that reflect quality objectives.

Finally, the last concept of MDPs that must be mapped to a corresponding concept in

self-adaptive systems is the policy 𝜋 . Recall that a policy 𝜋 determines the action to

79

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

be taken in a given state. In self-adaptive systems, the policy 𝜋 is represented by the

adaptation strategy that decides whether an adaptation is triggered or not and governs

the adaptation process. We are not going into more detail in this section as the concept of

adaptation strategies and their role in MDPs is discussed in chapter 6.

As a last remark, note that the definitions of the reward function 𝑟S and policy 𝜋 (i.e. the

adaptation strategy) deviate from the definitions in the literature. For instance, Sutton and

Barto [180] define the reward function as the expected reward for a given state-action pair,

i.e. 𝐼𝐸 [𝑋𝑅𝑡+1 | 𝑋𝑆𝜆𝑡 = 𝑠, 𝑋𝐴𝑡
= 𝑎]; the policy 𝜋 (𝑎 |𝑠) is defined as a conditional probability

distribution of selecting an action in a given state, i.e. 𝜋 (𝑎 |𝑠) = 𝑃 (𝑋𝐴𝑡
| 𝑋𝑆𝜆𝑡). We deviate

from the literature because the underlying concern is different. In the work of Sutton and

Barto, the underlying concern of MDPs is optimisation in the context of reinforcement

learning. More specifically, the primary goal is to learn the distribution 𝜋 (𝑎 |𝑠). From
the moment 𝜋 (𝑎 |𝑠) is learned the resulting mechanism selects an action by querying the

learned policy, i.e. 𝜋∗ := argmax 𝑎∈𝐴 𝜋 (𝑎 |𝑠). Based on the probabilistic definition of 𝜋 , the

reward function is also defined from a probabilistic perspective, as the policy must be

learned in a way that maximises the expected reward. In the context of this thesis, however,

the underlying concern is the evaluation of adaptation strategies. That is, the policy, or

rather the adaptation strategy, is a fixed and non-probabilistic function 𝜋 : 𝑆 → 𝐴, which

is plugged into the MDP framework to assess the quality of the strategy by observing

the reward generated. Consequently, there is no need to define the reward function

from a probabilistic point of view because sequences of states are simulated/sampled and

evaluated by the reward function. Based on the generated rewards of each sequence, the

expected reward could be computed anyway.

4.3.2. The Interdependency of Software Architecture and Environment

In this section, we discuss the interdependency of the software architecture (i.e. the various

architectural configurations) and the environment. With the term interdependency, we

refer to the mutual interaction of the two concepts, i.e. the effect of the environment on

the software architecture and vice versa. Intuitively, one may argue that there is only a

unidirectional dependency where only the environment forces changes in the architectural

configuration. However, there are also cases in which the architectural configuration of

the system affects how the environment evolves. The interdependency of architecture and

environment now refers to whether the environment drives the stochastic process of a self-

adaptive system solely or whether the architecture configuration also has a non-negligible

effect on the environment and thus on the entire process. Let 𝑆 := (𝐶, 𝐸,), 𝑆′ := (𝐶′, 𝐸′,) be
self-adaptive system states at time 𝑡 and 𝑡 + 1, respectively. The probability of transitioning
to 𝑆′ given 𝑆 is 𝑃𝑟 (𝑋S𝑡+1 = 𝑆′ | 𝑋S𝑡 = 𝑆) or 𝑃𝑟 (𝑋C𝑡+1 = 𝐶′, 𝑋E𝑡+1 = 𝐸′ | 𝑋C𝑡 = 𝐶,𝑋E𝑡 = 𝐸).
From a formal perspective, the interdependency of architecture and environment is about

the stochastic (in-)dependencies of the random variables 𝑋C𝑡+1 , 𝑋E𝑡+1 , 𝑋C𝑡 and 𝑋E𝑡 . By
knowing the dependency structure of the random variables, the distribution 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡)
may factorise to a product of eligible distributions that provides a better understanding

of the stochastic process itself. In addition, the knowledge of how a self-adaptive system

80

4.3. Considering Self-Adaptive Systems as Stochastic Processes

moves through the state space (encoded by 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡)) is of paramount importance for

analysis and decision-making at runtime and design-time.

Example 1. Before discussing the interdependency of architecture and environment in

more detail, we provide an example of a real use case in which the software architecture

affects the environment. Consider the DeltaIoT example system presented in section 1.5.2.

The system consists of a set of motes where a single mote transmits data packets to other

motes over unidirectional communication channels. The probability that a data packet

will be lost during transmission depends on the current SNR (signal-to-noise) level of the

environment. For the sake of illustration, we neglect the activation probability and focus

only on a single mote of the network. The SNR level is dependent on the current wireless

interference level, i.e. the higher the wireless interference the higher the probability of

packet loss. In addition, the SNR level is also dependent on the current transmission

power of the given mote, i.e. the higher the transmission power the lower the proba-

bility of packet loss. The transmission power, however, is not part of the environment

but of the architecture; each architectural configuration indicates different transmission

powers. That is, an architectural configuration has an indirect effect on the SNR level

which is part of the environment. Roughly speaking, the probability that a high SNR level

is observed is lower if the current architectural configuration has a high transmission

power. Furthermore, the probability that a high SNR level is observed is higher if the

current architectural configuration has a low transmission power. This correlation applies

as well as for the case of low SNR levels and low/high transmission powers of the cor-

responding configurations. Therefore, the knowledge of the current configuration (with

corresponding transmission power) enables one to determine how the environment (i.e.

SNR level) changes. The DeltaIoT example illustrates a scenario where the architecture

and environment are interdependent. ■

In the following, we show how the transition function 𝑡S of a self-adaptive system factorises

to a product of distributions. More specifically, we prove that 𝑡S provides an enhanced

understanding of the stochastic process of a self-adaptive system itself. Additionally, it

shows the interdependency of architecture and environment that primarily determines how

a self-adaptive systemmoves through the state space. This is of paramount importance and

needs to be considered for analysis at design-time or runtime. Before we mathematically

derive the factorisation of 𝑡S , we need to introduce one further assumption and property.

We assume that an architectural configuration 𝐶′ and environmental state 𝐸′ at a specific
time have no direct effect on each other. That is, the configuration 𝐶′ at time 𝑡 + 1 does
not affect the current value of 𝐸′ and vice versa. 𝐶′ and 𝐸′ are exclusively affected by the

architectural configuration 𝐶 and environmental state 𝐸 at time 𝑡 :

(𝑋C𝑡+1 ⊥⊥ 𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) (4.6)

In other words, whenever the states 𝑋C𝑡 , 𝑋E𝑡 are known at time 𝑡 , the states 𝑋C𝑡+1 , 𝑋E𝑡+1
are independent such that the knowledge of 𝑋C𝑡+1 (given 𝑋C𝑡 , 𝑋E𝑡) does not provide any
information about the value of 𝑋E𝑡+1 and vice versa. This might seem to contradict what

we defined as the interdependency of system and environment; however, what assumption

81

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

(4.6) states is that the effect of the mutual interaction of system and environment is not

immediate (i.e. at a particular time instance 𝑡) but temporal (i.e. between time instances 𝑡

and 𝑡 + 1). For example, if an adaptation 𝛿 is applied to configuration 𝐶 at time 𝑡 such that

we observe 𝜙 (𝐶, 𝛿) at time 𝑡 + 1 the corresponding environmental state 𝐸 at 𝑡 + 1 is not
directly affected by 𝜙 (𝐶, 𝛿) but solely by 𝐶 at 𝑡 . However, the environmental state 𝐸 at

𝑡 + 2 is possibly affected by 𝜙 (𝐶, 𝛿) observed at 𝑡 + 1.

Recall from section 4.2 the deterministic property of 𝜙 . Each deterministic function can be

written as a probability distribution by using the indicator function:

Property 3. The deterministic adaptation process in conjunction with property 2 implies the
following equalities:

𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋Δ𝑡
) = 𝑃 (𝑋Δ𝑡

| 𝑋C𝑡+1, 𝑋C𝑡) = 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (4.7)

Note that we abuse notations here in which C𝑡 , Δ𝑡 and C𝑡+1 are placeholders for concrete
variable realizations in the indicator function which evaluates to 1 if 1𝜙 (𝐶𝑡 ,𝛿𝑡)=𝐶𝑡+1 holds for
a given triple (𝐶𝑡 , 𝛿𝑡 ,𝐶𝑡+1) and returns 0 otherwise.

Property 3 is very important for the following lemma:

Lemma 4.3.1. Given the deterministic property of 𝜙 , the following equality holds:
𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) = 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) where

𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) =
{
𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋C𝑡 , 𝑋E𝑡), ∃=1𝛿∗ ∈ Δ : 𝜙 (C𝑡 , 𝛿∗) = C𝑡+1
0, otherwise

Proof.

𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) =
∑︁
𝛿∈Δ

𝑃 (𝑋C𝑡+1, 𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡)

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡

= 𝛿, 𝑋C𝑡 , 𝑋E𝑡)

Whenever 𝑋Δ𝑡
, 𝑋C𝑡 are known 𝑋C𝑡+1 can be uniquely derived so that the environmental

state 𝑋E𝑡 does not affect the probability 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡
, 𝑋C𝑡 , 𝑋E𝑡) and can be omitted.

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡

= 𝛿, 𝑋C𝑡)

According to property 3:

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡=𝛿)=C𝑡+1

82

4.3. Considering Self-Adaptive Systems as Stochastic Processes

According to property 2:

=

{
𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋C𝑡 , 𝑋E𝑡), ∃=1𝛿∗ ∈ Δ : 𝜙 (C𝑡 , 𝛿∗) = C𝑡+1
0, otherwise

=𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Basically, lemma 4.3.1 proves that distribution 𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is equal to 𝑃 (𝑋Δ𝑡
= 𝛿∗ |

𝑋C𝑡 , 𝑋E𝑡) if and only if there is an adaptation 𝛿∗ such that 𝜙 (𝐶, 𝛿∗) = 𝐶′. Hereby, 𝐶 and 𝐶′

correspond to the configurations for which 𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is queried. Otherwise, the
distribution returns 0.

Based on lemma 4.3.1, the following corollary can be derived:

Corollary 4.3.1. 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Proof.

Recall that a self-adaptive system state consists of an architectural configuration and

environmental state (i.e. 𝑆 := (𝐶, 𝐸)). Thus, distribution 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) can be written as a

conditional joined distribution over four random variables:

𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) =𝑃 (𝑋C𝑡+1, 𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

According to the independence assumption of 4.6:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

According to lemma 4.3.1:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Finally, w.r.t. theorem 4.3.1, it can be shown that transition function 𝑡S factorises to a

product of two distributions:

Theorem 4.3.1. The transition function 𝑡S of a self-adaptive system factorises to 𝑃 (𝑋S𝑡+1 |
𝑋S𝑡 , 𝑋Δ𝑡

) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

83

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

Proof.

𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 ,𝑋Δ𝑡
) =

𝑃 (𝑋S𝑡 , 𝑋S𝑡+1, 𝑋Δ𝑡
)

𝑃 (𝑋S𝑡 , 𝑋Δ𝑡
)

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) · 𝑃 (𝑋Δ𝑡

| 𝑋S𝑡+1, 𝑋S𝑡)
𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡

| 𝑋S𝑡)

According to property 3:

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

According to corollary 4.3.1:

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

Let 𝑆 := (𝐶, 𝐸), 𝑆′ := (𝐶′, 𝐸′) and 𝛿 be the self-adaptive system states and selected adapta-

tion for which 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) is queried, i.e. 𝑃𝑟 (𝑋S𝑡+1 = 𝑆′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡

= 𝛿). At this
point two cases can occur: 𝜙 (𝐶, 𝛿) = 𝐶′ or 𝜙 (𝐶, 𝛿) ≠ 𝐶′

𝜙 (𝐶, 𝛿) ≠ 𝐶′:

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 0

𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

= 0

𝜙 (𝐶, 𝛿) = 𝐶′:

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋S𝑡)
𝑃 (𝑋Δ𝑡

| 𝑋S𝑡)

From property 2 follows 𝜙 (𝐶, 𝛿) = 𝐶′⇒ 𝛿 = 𝛿∗. This in turn means that the distribution

in the denominator and 𝑃 (𝑋Δ𝑡
= 𝛿∗ | 𝑋S𝑡) are equal and can be truncated.

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

Taking both cases into account, we can write 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) equivalently:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

84

4.4. Problem Statement

Theorem 4.3.1 shows that 𝑡S and thus the stochastic dynamics of a self-adaptive system

factorises to two terms. The term 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 refers to the deterministic adaptation

process that ensures that the architectural configurations of two states 𝑆 and 𝑆′ are linked
by an adaptation. Otherwise, there is no chance that the system transitions from 𝑆 to

𝑆′, i.e. 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 and thus 𝑡S evaluates to 0. The second term 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)
refers to the environmental dynamics. Intuitively, one would assume that the evolution

of the environment is an independent process responsible for changes in the system

configuration. However, theorem 4.3.1 showed that it cannot be ruled out whether the

system (or configurations of the system) affects the stochastic evolution of the environment.

In the case of the DeltaIoT system, we illustrated a scenario in which the environmental

dynamics are not evolving independently but are influenced by the system configurations

(i.e. the configured transmission power of each configuration). However, there are possibly

other scenarios in which the environment evolves completely independently (or where the

system has a negligible effect on the environmental dynamics). Ultimately, the theorem

embodies what we denote as the interdependency of the architecture and environment.

As discussed at the beginning of this section, an integral part of this thesis is about

evaluating self-adaptive systems (or their adaptation strategies) at design-time. Thus,

the dynamics of a self-adaptive system must be taken into account to simulate the dy-

namic behaviour. However, because they strongly depend on the interdependency of

the architecture and environment, it is crucial to make appropriate assumptions. More

specifically, if the assumptions do not reflect the true dynamics that would be observed at

runtime, the evaluation results at design-time are likely to be inaccurate. We will revisit

the interdependency of the architecture and environment in chapter 6.

4.4. Problem Statement

After we have mapped the formal semantics of self-adaptive systems onto MDPs (see

section 4.3.1) and discussed the dynamics (i.e. the transition function, see section 4.3.2), we

are now able to fully describe a self-adaptive system as anMDP. Based on this formalisation,

we can also explain how adaptation strategies fit into this picture. More specifically, we

consider the development of adaptation strategies as the engineering challenge or problem

faced by a software engineer. We formalise the engineering problem based on MDPs which

is to be understood as the problem statement this work aims to address. In the following,

we start to discuss the state space complexity of a self-adaptive system in section 4.4.1 and

introduce afterwards the engineering problem of engineering a self-adaptive system in

section 4.4.2.

4.4.1. State Space Complexity

In section 4.3.1, we formally introduced the self-adaptive system state space S as the

Cartesian product of the set of architectural configurations C and environment E, i.e.
S := C × E. In the context of non-adaptive systems, the architectural configuration space

85

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

is comparable to the concept of the Design Space introduced by the work of [120]. The

design space corresponds to the various system configurations induced by Design Options.
Design options are comparable to adaptations and determine the variation points of an

architecture that can be changed (e.g. changing component implementation). In terms of

non-adaptive systems, a software architect needs to explore the design space to find the

system configuration that satisfies the non-functional requirements of the software system.

We consider the complexity of a space or set (such as the architectural configuration space

C) to be the cardinality or the number of elements contained in the set (e.g. |C|). The
complexity of the design space, for example, is the Cartesian product of the design option

sets and can become very large with an increasing number of options. Since the design

space (spanned by the distinct design options) and the architectural configuration space

(spanned by the distinct adaptations) are closely connected concepts, we assume the size

of the configuration space to be comparatively large.

Recall from section 4.1 that the environment E consists of a set of environmental states 𝐸.

An environmental state is structured by a sequence of atomic and discrete environmental

variables 𝐸 := (𝑒1, ..., 𝑒𝑛). Let 𝑉𝑎𝑙 (𝑒𝑖) be the value space of each environmental variable 𝑒𝑖
with |𝑉𝑎𝑙 (𝑒𝑖) | ≥ 2. The upper and lower bound of the complexity of the environment is

estimated as follows:

|E | =
𝑛∏
𝑖=1

|𝑉𝑎𝑙 (𝑒𝑖) |

≤
𝑛∏
𝑖=1

𝑣𝑚𝑎𝑥 = 𝑣
𝑛
𝑚𝑎𝑥 with 𝑣𝑚𝑎𝑥 =𝑚𝑎𝑥

𝑒∈𝐸
|𝑉𝑎𝑙 (𝑒) |

⇒ 2
𝑛 ≤ |E| ≤ 𝑣𝑛𝑚𝑎𝑥 (4.8)

From formula (4.8) follows that the upper and lower bounds of the complexity of E are

𝑣𝑛𝑚𝑎𝑥 and 2
𝑛
, respectively. Consequently, the complexity of E is exponential in the number

of environmental variables 𝑛 that form an environmental state 𝐸.

Note that the same complexity estimation of 𝐸 can be applied to the above-mentioned

design space and corresponding design options. Considering these findings, we can

conclude that the state space of the self-adaptive system S is spanned by two spaces, each

of which has exponential size.

In non-adaptive systems, it is sufficient to explore the design space of possible architectural

candidates which is comparable to what we denote as architectural configuration space C.
More precisely, it is assumed that there is an architectural configuration that sufficiently

satisfies the quality requirements in any environmental state. In the context of self-

adaptive systems, however, this is not sufficient because the aspect of time (that causes

different architectural configurations) cannot be neglected. According to Esfahani and

Malek [57], engineering self-adaptive systems is associated with several uncertainties.

One of these uncertainties is known as Parameter over time. The uncertainty Parameter
over time primarily argues that the future behaviour of the system and environment must

be considered to select optimal adaptations. For example, consider a chess game in which

two players must make their moves. A player who makes moves based on the current

86

4.4. Problem Statement

state of the chessboard (i.e. the arrangement of pieces on the chessboard) performs worse

compared to moves that take into account how the opponent possibly reacts or how the

state of the chess game possibly evolves. This analogy perfectly explains the uncertainty

Parameter over time because an adaptation that seems to fit well in a given situation may

have positive effects only in the short run, but may perform poorly in the long run.

Unfortunately, the uncertainty Parameter over time has drastic implications on the state

space complexity of self-adaptive systems. Since the uncertainty implies that the temporal

aspect must be taken into account when selecting an adaptation, it is not sufficient to

explore the architectural configuration space and select the configuration (by applying an

adaptation) that seems to be the best solution exclusively for the current state. Instead,

the adaptation that achieves the best results (i.e. satisfies quality objectives) in the long

run must be selected. In terms of MDPs, the adaptation that achieves the best possible

accumulated reward over time is the most preferred solution regarding Parameter over time.
More formally, selecting an adaptation 𝛿𝑡 in a self-adaptive system state 𝑆𝑡 at time 𝑡 has

an effect on the future behaviour 𝑆𝑡+1, . . . , 𝑆𝑇−1, 𝑆𝑇 and thus on the accumulated reward,

i.e.

∑𝑇−1
𝑖=𝑡 𝑟S (𝑆𝑖, 𝛿𝑖, 𝑆𝑖+1). Equivalently, an adaptation strategy 𝜋 has to be engineered

considering exactly these effects. Recall from section 4.3.1 that the adaptation strategy is

the equivalent concept to a policy in MDPs.

To formally define the state space complexity, we must account for the temporal nature of

self-adaptive systems and the uncertainty Parameter over time. This means that the state

space complexity is defined by the sequences of states a self-adaptive system generates

by changing the system configuration in response to environmental changes. We denote

such a sequence as Trajectory.

Definition 26 (Trajectory). A trajectory 𝜏 is a sequence of self-adaptive system states
𝜏 := (𝑆0, 𝑆1, ..., 𝑆𝑇) where state 𝑆0 corresponds to the initial state and 𝑆𝑇 corresponds to the
state where the self-adaptive system terminates with 𝑇 ∈ 𝐼𝑁 .

A trajectory represents a possible path through the state space S that a self-adaptive

system can experience when starting at an initial state 𝑆0 and terminating at 𝑆𝑇 at time 𝑇 .

We denote 𝑇 as Horizon. Because we consider the dynamics of a self-adaptive system as a

stochastic process (i.e. as MDP), there exist a multitude of possible trajectories that form

the Trajectory Space.

Definition 27 (Trajectory Space). The trajectory space T encompasses all possible trajec-
tories a self-adaptive system can traverse. More formally, as a trajectory 𝜏 ∈ T defines a
possible path through the self-adaptive system state space S, the trajectory space is spanned
by the Cartesian product of all states up to horizon 𝑇 :

T := S0 × S1 × · · · × S𝑇 (4.9)

The trajectory space T is of paramount importance because T encompasses all possi-

ble trajectories (of length 𝑇) a self-adaptive system can theoretically traverse. Thus, T

87

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

constitutes the central object for evaluating adaptation strategies considering the uncer-

tainty Parameter over time. Based on the definition of the trajectory space, the state space

complexity is the cardinality of the trajectory space |T |:

|T | = |S0 × S1 × · · · × S𝑇 | =
∏

𝑖∈{0,...,𝑇 }
|S𝑖 | = |S|𝑇 (4.10)

Equation (4.10) shows that the state space complexity grows exponentially in horizon 𝑇 .

Moreover, as discussed at the beginning of this section, the state space S is of exponential

complexity. The state space complexity of self-adaptive systems is more complex compared

to non-adaptive systems and poses significant challenges to software engineers.

Finally, it is important to note that adaptation strategies to some extent govern how the

self-adaptive systems move through the state space. Therefore, certain trajectories 𝜏 of

the trajectory space are probably never observed at runtime. The subset of trajectories

T𝜋 ⊆ T a self-adaptive system is traversing by following strategy 𝜋 should be those that

generate the highest possible rewards. However, T𝜋 is unknownwhen engineering strategy
𝜋 at design-time and has to be analysed. The complexity of T (see equation (4.10)) is

an additional complicating factor that is infeasible to be analysed manually. The state

space complexity again highlights the importance of automated analysis at design-time

and model-based approaches. Model-based approaches introduce abstraction to deal with

the complexity of T which is crucial to evaluating and designing adaptation strategies at

design-time.

4.4.2. The Engineering Problem of Self-Adaptive Systems

In the previous sections, we introduced all the necessary concepts to formulate the en-

gineering problem. Moreover, we catch up with the formal definition of a self-adaptive

system as an MDP that we deliberately omitted in section 4.3.1.

In the previous sections, we introduced the environmental dynamics (described by a

Markov chain) and the deterministic adaptation process (triggered by an adaptation strat-

egy). In combination, both concepts induce a stochastic process capturing the dynamics of

self-adaptive systems. As discussed in section 4.3.1, the stochastic process corresponds to

an MDP. We have discussed how MDPs are instantiated in the domain of self-adaptive

systems but have not introduced a concrete definition of self-adaptive systems as MDPs.

We make up for this, taking into account the theoretical discussion and findings of section

4.3.2.

Definition 28 (Stochastic Dynamics of Self-Adaptive Systems). The dynamics of a self-
adaptive system is a stochastic process (𝑋S𝑡)𝑡∈𝐼𝑁 for which the Markov assumption holds. More
precisely, the stochastic process is captured by a Markov decision process 𝜆𝑆𝐴𝑆 := (S,Δ, 𝑡S, 𝑟S)
where

• S corresponds to the set of self-adaptive system states.

88

4.5. Assumptions

• Δ corresponds to the set of adaptations.

• 𝑡S : S × Δ × S → [0, 1] corresponds to the transition function where
𝑡S = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (according to theorem 4.3.1).

• 𝑟S : S × Δ × S → 𝐼𝑅 corresponds to the reward function encoding quality objectives.

The major challenge of MDPs is to develop a policy 𝜋 that determines what action to

execute in a given state. As discussed in section 4.3.1, the policy 𝜋 corresponds to the

adaptation strategy of a self-adaptive system. Therefore, we consider the engineering

problem of self-adaptive systems in developing an adaptation strategy taking into account

various quality objectives (captured by the reward function) and the exponential state

space complexity (i.e. the trajectory space T) discussed in section 4.4.1. When developing

adaptation strategies, a software engineer must ensure that the required quality objectives

(reflected by 𝑟S) aremaintained over time by considering the implications of the uncertainty

Parameter over time. That is, a strategy must be developed such that not only short-term

effects but also long-term effects are considered. Consequently, the possible trajectories of

the trajectory space of a self-adaptive system must be considered to evaluate a strategy

regarding the uncertainty Parameter over time. Because adaptation strategies generate

subspaces T𝜋 ⊆ T , not all trajectories have to be analysed to determine the effectiveness of

𝜋 . Nonetheless, it is still challenging to deal with such spaces compared to static software

systems.

The engineering problem again emphasises the significant importance of design-time

analysis in the development of adaptation strategies. Each strategy involves numerous

design decisions, each of which has a different impact on the quality objectives. The

specific impact on quality objectives cannot be foreseen at design-time without automated

tool support. One may argue that there are several approaches for optimising adaptation

strategies at runtime (e.g. [78]), or approaches that use models at runtime for decision-

making (e.g. [209]). However, there remains the challenge of first designing a strategy as

a starting point. Moreover, optimisation approaches and formal verification can benefit

from design-time analyses. For optimisation, an increased convergence behaviour can be

expected; in terms of formal verification, scalability is addressed by a constraint search

space as a result of the pre-explored trajectory space.

4.5. Assumptions

In section 4.1, we assume a discrete set of environmental states. The assumption of dis-

cretising the environment to a set of environmental states is well established in the research

community of self-adaptive systems (e.g. [182]). The discretisation of the environment

has the advantage of drastically reducing the number of environmental states (compared

to continuous spaces) and tackles the state space explosion problem. Moreover, it is a

common approach for design-time analysis to abstract and simplify real-world concepts.

89

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

In section 4.2, we introduced the deterministic adaptation process 𝜙 . Without explicitly

stating it, the adaptation process implies that adaptations are always applied successfully,

i.e. the adaptation process does not fail. One reason for this assumption is that it is not

known to which state the system transitions in case of an adaptation failure: Does the

system remain in the state before the adaptation? Does the system go into a dedicated error

state? Ultimately, it is again a simplifying assumption to address real-world problems and

justified as a starting point to analyse self-adaptive systems at design-time. In future work,

however, the assumption can be relaxed, and our approach extended both theoretically

and practically.

In section 4.3.2, we assumed conditional independence of observing an environmental state

𝐸𝑡+1 and architectural configuration𝐶𝑡+1 given the last state, i.e. (𝐶𝑡 , E𝑡) (see formula (4.6)).

The assumption states that the current architecture configuration and the environmental

state have no immediate influence on each other. This assumption may be too strong if the

considered time difference Δ𝑡 between two states is too large. However, the assumption

can be sufficiently approximated if Δ𝑡 is chosen precisely, e.g., by a domain expert.

Finally, an MDP is associated with several assumptions, namely the Markov assumption

and the assumption of a fully observable state. As discussed at the beginning of this chapter,

MDPs constitute a widely used framework in the self-adaptive system community. Their

successful use strongly suggests that the assumptions associated with MDPs are reasonable.

In addition, according to Koller and Friedman [105, p. 201], the Markov assumption can

always be sufficiently approximated by considering a reach state description (we revisit

this in the next section). Indeed, the assumption of a fully observable state is not always

appropriate. In chapter 7, we discuss how this assumption can be relaxed by considering

Partially Observable Markov Decision Processes which generalise MDPs.

4.6. Summary

In this chapter, we formally described the dynamics of self-adaptive systems. More

specifically, we defined a self-adaptive system as a stochastic process that can be described

as an MDP. We instantiated the framework of MDPs in the domain of self-adaptive

systems. We mapped the abstract concepts of MDPs to the equivalent concepts in the

domain of self-adaptive systems which we formally introduced earlier. Afterwards, we

have proven a specific probabilistic behaviour of self-adaptive systems which is induced by

the interdependency of the architecture and environment. We discussed the exponential

complexity of the state space as a result of a self-adaptive system-specific uncertainty

known as Parameter over time. Based on the definition of the state space complexity

and the MDP-based semantics of self-adaptive systems, we formulated the engineering

problem or challenge. Finally, we discussed the assumptions we made.

90

5. Using Bayesian Modelling to Capture
the Environmental Dynamics

In this chapter, we present our metamodel for describing the environmental dynamics of

self-adaptive systems. The metamodel is discussed exclusively from the perspective of

modelling the environmental dynamics (i.e. the operating environment) of self-adaptive

systems; it does not discuss the modelling of sensitivity models of AI components. The

modelling capabilities of the metamodel go beyondmodelling static probabilistic structures,

as these form only one aspect of the metamodel required to capture the temporal behaviour

of the environmental dynamics. For a better separation and understanding, however, we

concentrate the discussion of the metamodel in this chapter solely on the environmental

dynamics and discuss the modelling of sensitivity models in the section provided for

this purpose (more precisely section 7.1) and then revisit the corresponding part of the

metamodel. The contribution, presented in this chapter, is based on the publication [158].

There are three key aspects that our formal modelling language must address. The first

aspect results from the requirement of domain-independent applicability and refers to the

Level of Abstraction. Intuitively, the level of abstraction of a modelling language increases

with the requirement of cross-domain applicability. A high level of abstraction purposefully

omits domain-specific information or knowledge to allow for domain independence. This

can lead to a loss of Accuracy in the analysis of adaptation strategies and corresponds to

the second key aspect. That is, the aspects of level of abstraction and accuracy compete.

However, both aspects need to be balanced in such a way that the level of abstraction

is sufficient to achieve domain independence, but with an acceptable loss of accuracy to

enable design-time analysis. Finally, the last aspect refers to the Representation of the

environmental dynamics. As discussed in section 4.1, we consider the environmental

dynamics as a DTMC (discrete-time Markov chain). Recall that the state space of a DTMC

refers to the environment E consisting of environmental states 𝐸 ∈ E. Representing
environmental dynamics appropriately is challenging due to the state space explosion

problem. For instance, one may argue that as we consider environmental dynamics as

DTMC, we can also represent them by state machine-based models. However, this requires

the modelling of each state separately which is impractical as well as infeasible for large

state spaces. Additionally, an environmental state 𝐸 is considered as a tuple consisting of

atomic variables, i.e. 𝐸 := (𝑒1, ..., 𝑒𝑛). The variables 𝑒𝑖 might be stochastically correlated

such that 𝑃 (𝑋𝑒𝑖 , 𝑋𝑒 𝑗) ≠ 𝑃 (𝑋𝑒𝑖) ·𝑃 (𝑋𝑒 𝑗); that is, they form a network of variables with certain

dependencies. Such correlations cannot be adequately captured by state machine-based

models.

91

5. Using Bayesian Modelling to Capture the Environmental Dynamics

In this chapter, we mainly address the sub-research questions RQ1.1 and RQ1.2, which
bring us one step closer to answering the main research question RQ1. The previously
discussed key aspects are reflected in RQ1.1 and RQ1.2. For the sake of completeness, we

restate the research question and its sub-questions (omitting RQ1.3 and RQ1.4):

Research Question 1: How to evaluate adaptation strategies of self-adaptive

systems at design-time regarding the ability to meet quality objectives?

Research Question 1.1: How can environmental dynamics be formalised domain-

independently at design-time?

Research Question 1.2: What is an appropriate level of abstraction to represent

the environmental dynamics domain independently? By appropriateness, we mean

that

• adaptation strategies can be analysed at design-time with sufficient accuracy.

• environmental state spaces can be described flexibly and compactly.

In the following of this chapter, we present the environmental dynamics metamodel based

on Dynamic Bayesian Networks (DBNs). DBNs are compact encodings of DTMCs and

therefore fit perfectly into our definition of environmental dynamics (see definition 19 on

page 75). Their human-understandable nature makes them easy to use, but yet powerful

enough to model complex structured environments. Furthermore, DBNs are part of a

broader framework called Template-based Probabilistic Models. Template-based models not

only generalise DBNs but define a concept of domain-independent type-level descriptions

that can be instantiated in domain-specific contexts to instantiate probabilistic structures

(such as DBNs). We reuse these semantics of template-based models in the environmental

dynamics metamodel to achieve domain independence.

This chapter is organised as follows: First, in section 5.1 we discuss requirements that

the environmental dynamics metamodel must satisfy such that self-adaptive systems (or

rather the adaptation strategy) are evaluated. Afterwards, we present the environmental

dynamics metamodel in section 5.2. In section 5.3 we show how the model instances of the

metamodel must be associated with the architecture model to instantiate domain-specific

probabilistic structures capturing the environmental dynamics of a given domain. In

section 5.4 we give a brief overview of the implementation of the metamodel. Finally,

we discuss assumptions and limitations in section 5.5 and conclude the chapter with a

summary in section 5.6.

92

5.1. Requirements

5.1. Requirements

At the beginning of this chapter, we already discussed three key aspects that have to be

addressed by our modelling language, namely the level of abstraction, accuracy and repre-

sentation. In this section, we break down the key aspects and enumerate the requirements

our modelling language must satisfy. The requirements can be assigned to one of the key

aspects.

Domain independence Domain independence is linked to the level of abstraction aspect

and is the most important requirement for cross-domain analysis. One of the central

goals of this thesis is to evaluate the effect of architectural safeguards on the reliability of

a system by considering non-adaptive and self-adaptive approaches. In both cases, the

modelling of environmental factors or variables that impact the predictive uncertainty

of an AI component is domain-specific. Therefore, the metamodel for describing such

environments must not make any assumptions about structure or characteristics. Instead,

they should be flexibly modelled and related to elements captured by a different model,

e.g. the architecture model.

Architecture description language agnostic The approach presented in this thesis is

based on architecture models to describe the fundamental structure of a software sys-

tem. Therefore, the architecture model is assumed to be the main source of containing

domain-specific elements. The environment model (based on our metamodel) is expected

to supplement the architecture model. More specifically, the modelled environment has to

be instantiated in the architecture model, i.e. by relating environmental variables to the

domain-specific elements captured by the architecture model. However, there are several

ADLs (architecture description languages) for describing architecture models, e.g. [149, 87,

73, 21]. Some of them are rather generally applicable (e.g. ADL for component-based soft-

ware architectures [149]) while others are more domain-specific (e.g. embedded systems

[21]). Therefore, the metamodel should be ADL-agnostic such that environment models

can be instantiated in any architectural model. Modelling environments independent of

the used ADL facilitates domain independence and contributes to the key aspect level of

abstraction.

Stochastic dynamics From a theoretical perspective, we consider the environmental

dynamics as a stochastic process or DTMC as the environmental state changes over time.

More specifically, the goal is to sample sequences or trajectories from the DTMC capturing

the stochastic dynamics of the environment. The trajectories are important for analysing

the quality of an adaptation strategy. As discussed at the beginning of this chapter, one

may argue to use state machine-based models to capture the stochastic dynamics of a

DTMC. However, this is impractical in terms of modelling large state spaces. Therefore,

the metamodel must represent the stochastic dynamics or DTMC in such a way that

93

5. Using Bayesian Modelling to Capture the Environmental Dynamics

trajectories of environmental states can be generated from the model, taking into account

a low modelling effort. This requirement refers to the key aspect of representation.

Stochastic correlations An environmental state comprises environmental variables, i.e.

𝐸 := (𝑒1, ..., 𝑒𝑛). The variables might correlate with each other. For instance, let us consider

a web-based software system in which a state consists of two variables 𝐸 := (𝑒𝑊 , 𝑒𝑆). The
first variable 𝑒𝑊 describes the current workload of the system; the second variable 𝑒𝑆
describes the state of the server, i.e. available or not available. For the sake of illustration,

we assume a single server. The variable 𝑒𝑆 is dependent on 𝑒𝑊 because the probability of

observing a server failure increases with an increased workload of 𝑒𝑊 . Therefore, if we

want to sample a trajectory of environmental states the direct effect of 𝑒𝑊 at time 𝑡 to 𝑒′
𝑆

at time 𝑡 + 1 has to be captured (for all 𝑡):

𝐸1, 𝐸2, . . . , 𝐸𝑡 := (𝑒𝑊 , 𝑒𝑆)𝑡 , 𝐸𝑡+1 := (𝑒′𝑊 , 𝑒′𝑆)𝑡+1, . . . , 𝐸𝑇

Such correlations have to be represented by the metamodel and form another requirement

that can be assigned to the key aspect representation.

Compactness State machine-based models are impractical to describe the DTMC due

to large state spaces. This is true not only for modelling the states and transitions (i.e.

the structure of the DTMC) but also for specifying 𝑡E . In state machine-based models, 𝑡E
is represented by a transition matrix. The number of matrix entries grows quadratically

with the number of states. The manual creation of the transition matrix is costly even

for medium-sized state spaces. Therefore, the metamodel has to reduce the effort of mod-

elling 𝑡E . The requirement of compactness is strongly related to the stochastic dynamics

requirement and thus contributes as well to the key aspect of representation.

Discretisation level Finally, the discretisation level constitutes the last requirement. As

discussed in section 4.1, an environmental state consists of a tuple of discrete variables

such that the state itself is discrete. Discretisation, however, can be either fine-grained or

course-grained. For instance, a continuous variable with a range [0, 100] can be discretised

by a resolution of 10 (i.e. 10, 20, 30, ..., 100) or 5 or 1 and so on. The finer the resolution,

the more adequately reality is captured; at the cost of enlarged state space. The choice

of a suitable discretisation level is up to the software developer (or domain expert) and

should be flexibly configurable by the metamodel. The discretisation level belongs to the

key aspect of accuracy because it directly affects the accuracy of the analysis of adaptation

strategies.

5.2. The Environmental Dynamics Metamodel

In this section, we introduce the environmental dynamics metamodel, which we abbreviate

as EnvDyn in the following. The formal modelling language integrates concepts to describe

94

5.2. The Environmental Dynamics Metamodel

and instantiate probability spaces domain independently. However, before we introduce

the main concepts and formal semantics of our metamodel, we first discuss how to use

DBNs to represent the environmental dynamics and how it fits in our formal framework

presented in chapter 4.

5.2.1. Representing Environmental Dynamics with Dynamic Bayesian
Networks

In section 4.1, we formally described the environmental dynamics as DTMCs. The reason

for considering environmental dynamics as DTMCs is to show (𝑖) how they fit into a

broader mathematical framework (i.e. considering self-adaptive systems as MDPs) and (𝑖𝑖)
for generalisation. DTMCs (and other state machine-based representations), however, are

not appropriate to model large and complex structured stochastic environments. Instead,

an alternative approach needs to be taken into account which maintains the semantics

and assumptions associated with DTMCs.

Such an approach or formal framework provides DBNs. DBNs are probabilistic graphical

models (recall from section 2.6) that comprise a family of probabilistic models. Probabilistic

graphical models provide a powerful framework for representing complex probability

distributions in a manageable way. As introduced in section 2.6.2, DBNs are specialisations

of DTMCs. That is, w.l.o.g. we can represent the environmental dynamics as DBNs without

violating the formal semantics of chapter 4.

Using DBNs, however, is not only promising to maintain mathematical consistency but

also for practical reasons. Formally, a DBN is a tuple (B0,B→) where B0 is a BN (Bayesian

network) describing the initial distribution over the states and B→ is a 2-TBN inductively

describing the dynamic evolution of the states. The core of the DBN forms the prob-

abilistic structure encoded by B0 (which from now on we simply refer to as B). The
BN B constitutes a graph that enables the specification of probabilistic relations. The

graph-based representation provides an intuitive and human-understandable structure for

modelling complex probability spaces. In addition, the decomposability (see section 2.6.1)

property factorises the BN into a set of local CPDs (conditional probability distributions);

each CPD is associated with a node in the graph and can be manually estimated by a

domain expert. The human understandable nature and the decomposability property of

Bayesian models provide a foundation to incorporate domain knowledge. Domain experts

can model the probabilistic structure with a very familiar and intuitive graph structure.

Even in the absence of domain experts, the structure and parameters (of the local CPDs)

of BNs and DBNs can be learned from data, e.g. [105, 130, 129]. Finally, the initially

modelled BN B is complemented by a temporal or dynamic extension captured by 2-TBN

B→. Similarly to BNs, 2-TBNs are described in a graph-based structure and local CPDs.

Moreover, the Markov and stationary assumption (see section 2.4.1) empower DBNs to

compactly represent entire trajectory spaces. This allows DBNs to sample environmental

states and perfectly satisfies the requirement of representing the stochastic nature of the

environmental dynamics. Capturing the environmental dynamics with DBNs constitutes

95

5. Using Bayesian Modelling to Capture the Environmental Dynamics

one of the key aspects of this work to evaluate adaptation strategies of self-adaptive

systems.

Therefore, the key idea of this chapter is to present a metamodel for describing the

environmental dynamics based on the semantics of DBNs. The generic and probabilistic

structure of the environmental variables of an environmental state 𝐸 := (𝑒1, ..., 𝑒𝑛) are
initially modelled with BNs. The graph G associated with B captures the stochastic

correlations of the variables and describes the initial distribution. Recall definition 19

on page 75 of the environmental dynamics and the set of initial states E0. The modelled

BN represents the initial distribution over E0 based on G and the local CPDs, which

we call Static Environment. The transition function 𝑡E includes the knowledge about

the evolution of the environmental states and is captured by the 2-TBN B→. Roughly
speaking, a DBN (B,B→) describes the static environment E by the non-dynamic BN B
and the Dynamic Environment or Environmental Dynamics by the 2-TBN B→, i.e. (B,B→)
compactly encodes the DTMC (E, E0, 𝑡E) from definition 19.

Finally, note that DTMCs induce a set of discrete states; regarding the environmental

dynamics, the set relates to E. BNs and DBNs are structured as a network of random

variables according to some graph G encoding a set of local CPDs. The random variables

over which the CPDs are defined are potentially continuous (and thus the CPD itself)

and violate the discrete state property. Therefore, we assume all random variables of a

DBN describing the environmental dynamics as discrete. Moreover, we assume that all

local CPDs are multinomial distributed such that the discrete state property is maintained.

We defer the discussion of the assumption to section 5.5. The multinomial assumption

drastically reduces the state space. Thus, the state space explosion problem is addressed

and facilitates design-time analysis of adaptation strategies.

5.2.2. Overview of the Metamodel

Before we present the individual concepts of the EnvDyn metamodel, we first provide an

overview. Therefore, consider Figure 5.1 which depicts the metamodel.

The metamodel is divided into three packages, namely template, static and dynamic.

Roughly speaking, the template package allows the modelling of random variables and

their distributions at the type level. The package defines template variables and template

factors based on the concepts of template-based probabilistic models (see section 2.6.3).

The static package includes the metamodel elements for describing BNs and thus the

non-temporal or static environment E, i.e. the probabilistic structure of the environmental

variables. Therefore, the defined template variables and factors of the template package

are instantiated to generate random variables. The BN is generated w.r.t. the dependency

structure of the templates. Based on the concepts of template-based models from section

2.6.3, we connect each ground random variable to a particular domain object in the

architecture model to complete the instantiation process. It may seem contradictory that

we use the term “instantiate” within the same meta-level 𝑖 as the term is rather used to

describe instances at meta-level 𝑖 − 1. However, in Multi-Level Modelling it is common

96

5.2. The Environmental Dynamics Metamodel

EnvDyn

ProbDist

template static

dynamic

distributiontype distributionfunction

template variables
and template factors static environment

environmental
dynamics

type-level probability
distributions probability distributions

uses

instantiates

extends
uses

instantiates

uses

instantiates

Figure 5.1.: Overview of the EnvDyn metamodel packages (including the ProbDist metamodel packages).

to describe instances ontologically (i.e. at the same meta-level) because it circumvents

constraints of strict meta-modelling [49].

The dynamics package complements the metamodel by modelling dynamic and temporal

behaviour. As we consider DBNs as environmental dynamics, this part of the metamodel

encompasses metamodel elements for specifying the stochastic evolution, i.e. B→. The
semantics of 2-TBNs complete the metamodel such that the created models describe DBNs

of the form (B0,B→).

Finally, Figure 5.1 depicts a fourth metamodel for modelling probability distributions;

we call the metamodel ProbDist. The metamodel enables the modelling of probability

distributions at type- and instance-level. The packages template, static and dynamic

provide the required semantics to represent probabilistic structures (Bayesian models) but

do not specify elements for defining probability distributions. This gap is addressed by

the ProbDist metamodel. In the EnvDyn metamodel, only multinomial distributions are

considered and represent one of many distribution types that can be modelled with the

ProbDist metamodel. Therefore, we extracted the metamodel as a standalonemodelling tool

for specifying arbitrary probability distributions that can be reused in different contexts

or metamodels.

5.2.3. Modelling Domain-Independent Template Variables and Template
Factors

In this section, we present the template package in more detail. We start to explain all the

elements and formal semantics of the metamodel. Afterwards, we illustrate the application

of the metamodel package by applying it to the DeltaIoT example system from section

1.5.2. The package is depicted on Figure 5.2. For illustrative purposes, we have omitted

97

5. Using Bayesian Modelling to Capture the Environmental Dynamics

TemplateVariable
Definitions

<<abstract>>
TemplateFactor

 temporal: Boolean

TemplateVariable

Argument

LogicalVariable

Probabilistic
TemplateFactor

TemplateVariable
Group

<<abstract>>
Relation

<<abstract>>
TemporalRelation

DependenceRelation

type: DependenceType
contingent: Boolean

PersistenceRelation TimeSliceRelation

<<enumeration>>
DependenceType

 DIRECTED
UNDIRECTED

[0...*] factors

[0...*] variables

[0...*] arguments

[1...1] argument

[1...*] signature

[0...*] relations

[0...*] templateGroups

[1...*] grouped-
Templates

[1...*] scope

[0...1] refines

[1...1] source

[1...1] target

[1...1] source
[1...1] target

[1...1] interfaceVariable

Probability
DistributionSkeleton[1...1] distribution-

Family

Meta class A template meta classes

Meta class B probdist meta classes

Legend:

Figure 5.2.: The template package of the metamodel for modelling type-level random variables.

descriptive attributes such as name or ID to provide a clear overview of the metaclasses

and their relationships.

5.2.3.1. Formal Semantics

As discussed in previous sections, our metamodel reuses concepts of template-based

probabilistic models. The two main building blocks in template-based models are template

variables and template factors which play a central role in this part of the metamodel.

The root element of the template package forms the TemplateVariableDefinitions. It

defines the starting point for modelling TemplateVariables, TemplateFactors, Relations,

Arguments and TemplateVariableGroups. Starting from TemplateVariableDefinitions,

TemplateVariables and Arguments can be created. Recall from section 2.6.3 that template

variables describe random variables at the type level. In our metamodel, a template variable

is represented by the entity TemplateVariable. An Argument-entity is indirectly linked

to a TemplateVariable by a LogicalVariable. Thus, a TemplateVariableDefinitions in-

stance can include a set of Argument instances. Additionally, TemplateVariables possess a

set of LogicalVariables where each LogicalVariable is uniquely associated with an Ar-

gument. The set of LogicalVariables of a TemplateVariable forms its argument signature.

98

5.2. The Environmental Dynamics Metamodel

The entities TemplateVariables, Argument and LogicalVariable and their relationships

are semantically equal to the formal definition of template variables. For better readability,

we give the definition again:

Definition 13 (Template Variable). A template variableV(𝑈1, ...,𝑈𝑛) is a function with
some range 𝑉𝑎𝑙 (V). Each argument𝑈𝑖 ofV is a typed logical variable where 𝑄 [𝑈𝑖] ∈ Q.

More specifically, a template variableV is represented by the entity TemplateVariables.

The argument signature 𝛼 (V) = (𝑈1, ...,𝑈𝑛) of a template corresponds to the set of

LogicalVariables contained in TemplateVariable. Because each 𝑈𝑖 is associated with

a specific class 𝑄 ∈ Q (i.e. 𝑄 [𝑈𝑖]), each LogicalVariable is typed by a single Argument

representing a class 𝑄 .

The second key concept of template-based models refers to template factors. As before,

we start to give the definition again:

Definition 14 (Template Factor). A template factor 𝜉 : 𝑉𝑎𝑙 (V1) × · · · ×𝑉𝑎𝑙 (V𝑙) → 𝐼𝑅 is
a function defined over template variables (V1, . . . ,V𝑙). Given a tuple of ground random
variables (𝑋1, ..., 𝑋𝑙), if ∀𝑖 ∈ {1, ..., 𝑙} : 𝑉𝑎𝑙 (𝑋𝑖) = 𝑉𝑎𝑙 (V𝑖) holds true, then 𝜉 (𝑋1, ..., 𝑋𝑙)
defines the instantiated factor from 𝑋1, ..., 𝑋𝑙 to 𝐼𝑅 w.r.t. (V1, ...,V𝑙).

Recall from section 2.6.3 that template factors are (just as template variables) a type-level

construct to describe probabilistic properties. A template factor is defined over a set of

template variablesV1, . . . ,V𝑙 that denotes the scope of factor 𝜉 . In terms of our metamodel,

template factors are represented by the entity TemplateFactor. To satisfy the formal

semantics of definition 14, TemplateFactor is referencing a set of TemplateVariables

which define the scope of the factor. The metaclass TemplateFactor is abstract to facilitate

the extendability of the metamodel. Template-based formalisms are not only suitable

for modelling probability structures based on directed graphs (e.g. BNs and DBNs), but

also for structures based on undirected graphs (e.g. Markov random fields). Currently,

TemplateFactor is only extended with the entity ProbabilisticTemplateFactor to model

probability distributions but could be extended for other types of factors (e.g. factors

of Markov random fields). ProbabilisticTemplateFactor are referencing exactly one

ProbabilityDistributionSkeleton which is part of the prodist metamodel. We discuss

the metamodel in section 5.2.6 in more detail. At this point, it is sufficient to know that

ProbabilityDistributionSkeleton describes types or families of probability distributions

such as multinomial, exponential or uniform distributions. In summary, a TemplateFactor-

entity is defined over a set of TemplateVariables which forms the scope of the factor. It

also specifies a distribution family (e.g. multinomial) so that the distribution parameters

must be specified after each instantiation of a factor.

In addition to template variables and factors, the template package of the metamodel

has a third concept that allows the specification of Relations between template variables.

The central entity here is Relation. Basically, Relations define relationships between

template variables and thus induce the graph-based structure of BNs and DBNs after

99

5. Using Bayesian Modelling to Capture the Environmental Dynamics

instantiation. Relation is abstract and extended by the metaclasses TemporalRelation

and DependenceRelation. A DependenceRelation defines a relation between two tem-

plate variables by specifying a source and target. DependenceRelations have a type

that refers to an enumeration called DependenceType with the constants DIRECTED and

UNDIRECTED. Note that (just as for template factors) we facilitate extendability by allowing

the specification of undirected graphs, e.g. to model Markov random fields. Throughout

this work, however, we focus only on BNs and DBNs and thus consider only directed

graph structures. Therefore, an DependenceRelation instance of type DIRECTED describes

a parent-child relationship between two template variables where source attribute refers

to the parent and the target attribute refers to the child. While DependenceRelation is

primarily used to encode stochastic dependencies for static probability structures (i.e.

BNs), TemporalRelation specifies dynamic dependencies of DBNs. TemporalRelation

is also abstract and extended by PersistenceRelation and TimeSliceRelation. Persis-

tenceRelation and TimeSliceRelation are DBN-specific relations based on the semantics

of persistence edges and inter-time-slice edges known from DBNs. Recall from section

2.6.2 that in DBNs time-slice edges define the dependency between two random variables

between two time slices, i.e. 𝑋𝑡 → 𝑌𝑡+1 from time 𝑡 to 𝑡 + 1. Persistence edges are a special
kind of time-slice edges where the two random variables between two time slices are equal,

i.e. 𝑋𝑡 → 𝑌𝑡+1 where 𝑋 = 𝑌 . In the template package of the metamodel, however, we dis-

tinguish between PersistenceRelation and TimeSliceRelation, although the former is a

special case of the latter. The main reason for that is (𝑖) a clear separation of concepts and

(𝑖𝑖) a simplified modelling process, as a PersistenceRelation is associated with a single

TemplateVariable. TimeSliceRelation defines temporal relations of TemplateVariables

that are not equal.

Finally, the entity TemplateVariableGroup groups a set of templates forming a BN. Such

template groups can be instantiated multiple times; this is discussed in more detail in

section 5.3.

Based on the semantics of Relations, TemplateVariables and TemplateFactors, we can

describe plate models from section 2.6.3.1. The generic framework of plate models are

based on template-based probabilistic models and thus share the same semantics in terms

of template variablesV , template factors 𝜉 , logical variables𝑈1, . . . ,𝑈𝑛 and object classes

Q. Plate models are well-established probabilistic graphical models that are commonly

used in practice [105, P. 216]. Although plate models provide much more concepts than

discussed in this work, we only consider the formal definition of plate models. In this way,

we show that our metamodel is in conformance with the semantics of plate models, as

they provide the fundamental concepts for instantiating ground Bayesian networks in

arbitrary domains; this is discussed in the section 5.2.4.1. Here again, we repeat the formal

definition of plate models from section 2.6.3.1:

Definition 15 (Plate Model). For a set of template variablesV ∈ ℵ with argument signature
𝛼 (V) = 𝑈1, ...,𝑈𝑛 , let 𝐵𝑖 (Ui) denote the variables of the argument signature of parent 𝐵𝑖 . A
plate model𝑀𝑃𝑙𝑎𝑡𝑒 defines for each template:

100

5.2. The Environmental Dynamics Metamodel

• A set of template parents 𝑃𝑎(V) := {𝐵1(U1), ..., 𝐵𝑘 (Uk)} in which ∀𝑖 ∈ {1, ..., 𝑘} :
𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛}.

• A template CPD 𝑃 (V | 𝑃𝑎(V)).

The set of template variables ℵ is captured by TemplateVariableDefinitions. We already

discussed how template variables and their argument signatures are captured by the

metamodel, i.e. TemplateVariable, LogicalVariable, Argument. Template conditional

probability distributions 𝑃 (V | 𝑃𝑎(V)) are represented by TemplateFactors. The parent

structure for each template V is induced by the Relation instances. Thus, for each V ,

the corresponding template parents 𝑃𝑎(V) are determined by browsing the modelled

Relations. Requirements, such as enumerated in definition 15, i.e. ∀𝑖 ∈ {1, ..., 𝑘} :

𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛} and ∀V ∈ ℵ, ∃𝜉 ∈ Ξ : 𝜉 = 𝑃 (V | 𝑃𝑎(V)), can be enforced by

defining OCL constraints at metamodel-level.

The template package adheres to the formal semantics of template variables and template

factors which are the two main building blocks in template-based models for defining

probability models with reoccurring structures. Furthermore, the package is complemented

with the concept of relations to express dependencies for static and dynamic probabilistic

models. Based on template variables, template factors and relations, we are now able to

describe probabilistic structures at the type level. These probabilistic structures induce

BNs that can be instantiated in several domains. The instantiation of template variables

and factors is discussed in section 5.2.4.

5.2.3.2. Applying Template Variables and Template Factors

In this section, we give an illustrative example of how the template metamodel package

can be applied. In doing so, we define a set of template variables for the DeltaIoT example

system that we presented in section 1.5.2.

Recall that there are several uncertainties in the DeltaIoT system, namely wireless in-

terference, SNR (signal-to-noise ratio) and fluctuations in traffic load. All these factors

have a direct influence on the quality attributes of the system, i.e. packet loss and energy

consumption. Because wireless interference, SNR and fluctuations in traffic load fit into

our definition of an environmental state, they are considered environmental variables, each

of which is represented by an environmental variable, say𝑊𝐼 for the wireless interference

variable, 𝑆𝑁𝑅 for the SNR variable and 𝑀𝐴 for the variation in traffic load w.r.t. mote

activation. It is important to note, however, that the environmental state of the DeltaIoT

system does not only consist of the three variables. For example, wireless interference

occurs whenever there is a wireless link between two communicating motes. Accordingly,

there are different SNR values for each wireless link and different traffic fluctuations for

different motes. Therefore, the variables𝑊𝐼 , 𝑆𝑁𝑅 and𝑀𝐴 represent template variables

that have to be instantiated for each wireless link and mote. As a result, the environmental

state of the DeltaIoT system encompasses a set of environmental variables that represent

ground random variables instantiating𝑊𝐼 , 𝑆𝑁𝑅 and𝑀𝐴. Figure 5.3 shows the template

101

5. Using Bayesian Modelling to Capture the Environmental Dynamics

𝑀𝐴

Mote

(a) Plate model of mote activation

𝑊𝐼

𝑆𝑁𝑅

Wireless link

(b) Plate model of wireless interference and SNR

Figure 5.3.: Plate model representation of the template variables and object classes of the environmental

variables of the DeltaIoT system: (a) represents the mote activation variable, (b) shows the wireless interfer-

ence and SNR variables.

variables and their corresponding object class 𝑄 in the plate model notation (see section

2.6.3.1).

It can be seen from Figure 5.3b that the 𝑆𝑁𝑅 template depends on the𝑊𝐼 variable. This

results from the fact that the SNR value represents the ratio of the level of a mote’s

signal and the level of a noise signal that refers to the wireless interference variable𝑊𝐼 .

Both the𝑊𝐼 and 𝑆𝑁𝑅 template share the same object classWireless Link (abbreviated as

𝑄𝑊𝐿). That is, they can only be instantiated in the architecture model for objects that are

considered to be instances of object class 𝑄𝑊𝐿 . Similarly, the template𝑀𝐴 has object class

Mote (abbreviated as 𝑄𝑀𝑜𝑡𝑒) indicating that𝑀𝐴 can only be instantiated for objects that

correspond to class 𝑄𝑀𝑜𝑡𝑒 .

Based on the template variables𝑊𝐼 , 𝑆𝑁𝑅 and 𝑀𝐴 a TemplateVariableDefinitions in-

stance of the template metamodel package is created to model the templates. Figure 5.4

depicts an excerpt of the TemplateVariableDefinitions instance that specifies the tem-

plate variables𝑊𝐼 , 𝑆𝑁𝑅 of the DeltaIoT system.

For illustrative purposes, we only show the template variables𝑊𝐼 and 𝑆𝑁𝑅, their argu-

ment signatures (i.e. 𝛼 (𝑊𝐼), 𝛼 (𝑆𝑁𝑅)), their temporal and non-temporal relationships

and their respective template factors; otherwise, the illustration would lack clarity due to

the multiple relationships between the model elements. It can be seen that the template

variables𝑊𝐼 and 𝑆𝑁𝑅 are modelled by two TemplateVariable instances with name Wire-

lessInterference and SNR. Both share the same argument signature; each of them has a

single LogicalVariable instance referencing the same Argument WirelessLink, i.e. object

class 𝑄𝑊𝐿 .

The dependency structure given by𝑊𝐼 and 𝑆𝑁𝑅 is modelled by a DependencyRelation

object where the source is pointing to the WirelessInterference TemplateVariable and

target is associated with the SNR TemplateVariable as shown in Figure 5.3b. So far, the

structural elements of type-level template variables and their relationships have been

modelled, which only need to be complemented by the probabilistic specifications, i.e.

102

5.2. The Environmental Dynamics Metamodel

WirelessInterference:
TemplateVariable

SNR: TemplateVariable

DynamicalWIFactor:
ProbabilisticTemplateFactor

temporal = true

DynamicalWI_SNRFactor:
ProbabilisticTemplateFactor

temporal = true

WI_SNRFactor:
ProbabilisticTemplateFactor

temporal = false DependenceRelation

contingent = false
Type = DIRECTED

WIPersistence:
PersistenceRelation

WI_SNRTimeSlice:
TimeSliceRelation

WirelessLink:
Argument

LogicalVariable
signature

argument

LogicalVariable
signature argument

scope

scope

scope

interface
Variable

source

target

source

target

WIFactor:Probabilistic
TemplateFactor

temporal = false
scope

Figure 5.4.: An excerpt of the TemplateVariableDefinitions-instance of the template metamodel package

applied to the DeltaIoT system. Note that the different appearances of the arrows have no semantic meaning

but merely serve the purpose to distinguish between the references of the model elements.

the template factors. Regarding𝑊𝐼 and 𝑆𝑁𝑅, there are two template factors (captured by

a respective ProbabilisticTemplateFactor): The WIFactor describing 𝜉𝑊𝐼 = 𝑃 (𝑊𝐼) and
WI_SNRFactor describing 𝜉𝑆𝑁𝑅 = 𝑃 (𝑆𝑁𝑅 | 𝑊𝐼). Template factors are defined over a set

of template variables, i.e. the scope. The scope of WIFactor is a single template variable

(namely WirelessInterference). In contrast, the scope of WI_SNRFactor is defined over

two template variables (namely WirelessInterference and SNR) as it described a CPDwith

WirelessInterference as the conditional variable. Note that these type-level constructs

refer to the static part (i.e. B0) of the environmental dynamics (B0,B→). Thus, the

attribute temporal is set to false accordingly. As discussed in the last section, each

ProbabilisticTemplateFactor is referencing a single distribution type of the probdist

metamodel package which is, however, note depicted on Figure 5.4. For the sake of

illustration, we omitted the reference. Because we assume multinomial distributions, each

ProbabilisticTemplateFactor refers to a corresponding probdist instance indicating

that the distribution belongs to the family of the multinomial distribution.

For the dynamic part B→, two more relations and template factors are modelled. There are

two temporal relations, namely PersistenceRelation WIPersistence and TimeSliceRe-

lation WI_SNRTimeSlice. WIPersistence is referencing the template variable WirelessIn-

terference and indicates that the template variable has a persistent behaviour over time.

The TimeSliceRelation WI_SNRTimeSlicemodels the temporal dependency of𝑊𝐼 at time

𝑡 on 𝑆𝑁𝑅′ at time 𝑡 + 1. Note that the WI_SNRTimeSlice is not a persistence relation as it

does not exhibit persistent behaviour over time, but is primarily driven by the wireless

interference of the environment. Suppose the wireless interference is non-existent, the

SNR value of a wireless link would be constant (w.r.t. the transmission power of the

respective mote). The corresponding 2-TBN B→ of𝑊𝐼 and 𝑆𝑁𝑅 would look as depicted

on Figure 5.5.

The template instance is completed by the temporal template factors, each of which

is modelled by a ProbabilisticTemplateFactor instance with attribute temporal set to

103

5. Using Bayesian Modelling to Capture the Environmental Dynamics

𝑊𝐼 𝑊 𝐼 ′

𝑆𝑁𝑅′

𝑡 + 1𝑡

Figure 5.5.: 2-TBN B→ of template variables𝑊𝐼 and 𝑆𝑁𝑅

true. DynamicalWIFactor models the template factor 𝜉𝑊𝐼 ′ = 𝑃 (𝑊𝐼 ′ |𝑊𝐼). Although the

𝜉𝑊𝐼 ′ is defined over two template variables (i.e. 𝑊𝐼 ,𝑊𝐼 ′) the scope encompasses only

the template variable WirelessInterference. To simplify modelling, there is no need

to reference the same template variable two times as it can be derived by the temporal

attribute of the ProbabilisticTemplateFactor and the PersistenceRelation. Finally, the

DynamicalWI_SNRFactor describes template factor 𝜉𝑆𝑁𝑅′ = 𝑃 (𝑆𝑁𝑅′ |𝑊𝐼) where the scope
is defined over the template variables WirelessInterference and SNR.

5.2.4. Modelling the Static Environment

In this section, we discuss the static package of the EnvDyn metamodel. The static

package encompasses all concepts relevant to model the static environment with BNs,

i.e. the B0 part of the environmental dynamics (B0,B→). More specifically, it instan-

tiates template variables and factors modelled with the template package. Note again

that template variables and factors are type-level descriptions of random variables and

probability distribution families. Therefore, the static package contains the entities for

instantiating template variables and factors of the template package. The static package

of the metamodel is depicted in Figure 5.6.

5.2.4.1. Formal Semantics

In this section, we present the formal semantics of the static package of the EnvDyn
metamodel. The package provides all modelling concepts to instantiate type-level template

variables and factors. The modelled relations from section 5.2.3 specify parent-child

relationships between templates and induce probabilistic structures, i.e. BNs. Recall from

section 2.6.3.1 that a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and an object skeleton𝜅 generate a ground Bayesian

network. The object skeleton 𝜅 specifies for each class 𝑄 ∈ Q a finite set of objects for

which template variables can be instantiated. In section 5.2.3, we formally described how

plate models can be generated by the entities of the template package. In this section, we

present how BNs are instantiated based on an object skeleton 𝜅 and modelled template

variables and factors that adhere to the formal semantics of plate models. However, we

104

5.2. The Environmental Dynamics Metamodel

ProbabilisticModel
Repository

Ground
ProbabilisticNetwork[0...*] models

Local
ProbabilisticModel

LocalProbabilistic
Network

Ground
RandomVariable

[1...*] localModels

[1...*]
groundRandomVariables

[1...*] localNetworks [1...1] localModel

Meta class A static meta classes

Meta class B probdist meta classes

Legend:

TemplateFactor[1...1] instantiatedFactor

ProbabilityDistribution

[1...1] distribution

TemplateVariable
[1...1]

instantiatedTemplate

Dependence
Relation

[0...*] dependence
Structure

EObject[1...*] appliedObjects

Meta class C template meta classes

Meta class D ecore meta classes

Figure 5.6.: The static package of the metamodel for modelling Bayesian networks.

start by introducing the metaclasses of the static package and then formally describe

how they induce ground Bayesian networks.

The root element of the static package corresponds to ProbabilisticModelRepository.

A ProbabilisticModelRepository contains a set of GroundProbabilisticNetworks that

represent instantiated BNs.

Each GroundProbabilisticNetwork references a set of LocalProbabilisticNetworks. Lo-

calProbabilisticNetworks consist of GroundRandomVariables and describe local proba-

bilistic structures of the BN. One would expect that GroundProbabilisticNetwork refers

only to a single LocalProbabilisticNetwork. However, this is generally not the case;

this is illustrated in section 5.2.4.2. Each GroundRandomVariable is associated with ex-

actly one TemplateVariable of the template package, i.e. to indicate that the Templat-

eVariable is instantiated by the GroundRandomVariable. Recall that each template vari-

able is instantiated for a set of objects included in object skeleton 𝜅, i.e. V(𝛾) where
𝛾 = (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑘 ↦→ 𝑢𝑘). Therefore, a GroundRandomVariable is associated with a

set of EObjects. Technically, we realised the EnvDyn metamodel in the Eclipse Modelling
Framework [177], which allows the design and construction of metamodels. The Env-
Dyn metamodel is realised with the EMF, where EObject corresponds to the root of each

model object (equivalent to java.lang.Object in the Java programming language). Thus,

a GroundRandomVariable can be associated with any kind of EMF-based model object.

Since the PCM is also implemented in the context of EMF, a GroundRandomVariable refer-

ences a TemplateVariable that is instantiated for a set of model objects (i.e. PCM-specific

model objects); we revisit the topic in section 5.3. Finally, each GroundRandomVariable

might have parents described by DependenceRelations of the template package. Thus, a

GroundRandomVariable is referencing a set of DependenceRelations indicating the parents

or dependence structure of the random variable. Based on the relations and EObjects (i.e.

105

5. Using Bayesian Modelling to Capture the Environmental Dynamics

the objects for which the random variable is instantiated), the parent GroundRandomVari-

ables are resolved.

Principally, a BN consists of a structural (i.e. G) and a parametric part (i.e. a set of CPDs

associated with G). The structural part is captured by the previously introduced enti-

ties, namely GroundProbabilisticNetworks, LocalProbabilisticNetworks and Ground-

RandomVariables. The parametric part is captured by the entity LocalProbabilisticModel

which (𝑖) instantiates TemplateFactors of the template package and (𝑖𝑖) describes the
concrete probability distribution of a GroundRandomVariable. Thus, each GroundRandom-

Variable refers to exactly one LocalProbabilisticModel where each model describes the

corresponding distribution. Furthermore, each LocalProbabilisticModel refers to a single

TemplateFactor that models the instantiation of said factor. Recall from definition 13

that a template factor is a function defined over a set of template variables; that is, the

scope of TemplateFactor. Thus, a TemplateFactor (or more specifically a Probabilis-

ticTemplateFactor) is properly instantiated by a LocalProbabilisticModel if the scope

of the TemplateFactor encompasses the instantiated TemplateVariable of the associated

GroundRandomVariable and the TemplateVariables of the parents, if any. LocalProba-

bilisticModels are also contained in GroundProbabilisticNetworks and correspond to

their parametric part. Recall that template factors describe probability distribution families

at the type level. Distribution families form a set of distributions of the same type (e.g.

normal distribution) but different parameter values (e.g. mean and standard deviation). Re-

garding LocalProbabilisticModel, an instantiated TemplateFactor is complemented by

a ProbabilityDistribution-entity. The ProbabilityDistribution is part of the ProbDist
metamodel (discussed in section 5.2.6) and corresponds to a distribution with fixed parame-

ter values. Roughly speaking, a LocalProbabilisticModel instantiates a TemplateFactor

by connecting the factor with a probability distribution of the same distribution type with

fixed parameter values.

Recall formula (2.15) from page 44 that defines
𝜒
𝜅 [ℵ] as the set of all ground random vari-

ablesV(𝛾) w.r.t. some object skeleton 𝜅. A ground random variableV(𝛾) is captured in

our metamodel by GroundRandomVariablewhere TemplateVariable corresponds to the in-

stantiated templateV and the set of referenced EObjects correspond to the applied objects

𝛾 . By iterating over all LocalProbabilisticNetworks that are contained in GroundProba-

bilisticNetwork, we obtain 𝜒𝜅 [ℵ] by considering all GroundRandomVariables referenced
by LocalProbabilisticNetworks. Thus, we adhere to the formal semantics of ground

Bayesian networks. For better readability, we repeat the definition 16 of a ground Bayesian

network:

Definition 16 (Ground Bayesian Network). A Ground Bayesian Network B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 is gener-

ated by a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton 𝜅 as follows:

∀V(𝑈1, ...,𝑈𝑛) ∈ ℵ,∀𝛾 ∈ Γ𝜅 [V] : ∃=1V(𝛾) ∈ 𝜒𝜅 [ℵ] (2.16)

where 𝛾 := (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑛 ↦→ 𝑢𝑛) and for all template parentsV𝑃𝑎 ∈ 𝑃𝑎(V) of ground
random variableV(𝛾) there exist an instantiated CPD: 𝑃 (V(𝛾) | V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)).

106

5.2. The Environmental Dynamics Metamodel

The basic semantics of a plate model are captured by the template package. We dis-

cuss in section 5.3 how we use the architecture model (i.e. PCM models) to repre-

sent the object skeleton 𝜅. Finally, TemplateFactors (or in this case ProbabilisticTem-

plateFactors) and ProbabilityDistributions describe the instantiated CPDs 𝑃 (V(𝛾) |
V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)). The requirement of complete CPD instantiations and the require-

ment of formula (2.16) can be enforced by OCL constraints at the meta-level (as discussed

in section 5.2.3.1).

5.2.4.2. Applying the Static Environment Model

In this section, we illustrate how to model an instance of the staticmetamodel package to

capture the static environment. Again, we use the DeltaIoT example system as a use case

for which we have already described how to model template variables and template factors

(see section 5.2.3.2). Now, we illustrate how the modelled template variables and template

factors are instantiated in a model of the static metamodel package. The resulting model

represents the static environment, i.e. B0 of the environmental dynamics (B0,B→).

Suppose we have an architecture model that describes the DeltaIoT system as depicted

on Figure 1.2 of section 1.5.2. The role of the architecture model in conjunction with the

instantiation process of template variables and template factors is discussed in section

5.3. For simplicity, we therefore assume that the architecture model of DeltaIoT contains

the objects of the respective object classes of the template variables, namely Mote and
WirelessLink (see Figure 5.3).

Recall from section 5.2.3.2 that we defined three template variables that represent the

environmental variables of the DeltaIoT system, namely mote activation 𝑀𝐴, wireless

interference𝑊𝐼 and the SNR 𝑆𝑁𝑅. Each template variable is instantiated multiple times

in the DeltaIoT architecture model. For example, the𝑀𝐴 template variable is instantiated

17 times because there are 17 motes. Similarly,𝑊𝐼 and 𝑆𝑁𝑅 templates are instantiated

for each wireless link. Consequently, this results in a large ground Bayesian network

describing the static environment of the DeltaIoT system. Therefore, consider Figure 5.7

which depicts only an excerpt of the ground Bayesian network.

For the sake of illustration, the ground Bayesian network depicts only the instantiation

of the template variable 𝑀𝐴 of a single mote (mote 10 of the DeltaIoT system which is

equipped with a passive infrared sensor, see Figure 1.2) and template variables𝑊𝐼 and

𝑆𝑁𝑅 for a single wireless link (the wireless link which connects mote 10 and mote 5, see

Figure 1.2). It can be seen that the model consists of the root element BasicDistribution-

Repo ProbabilisticModelRepository which contains a single ground Bayesian network,

namely the GroundNetwork instantiating a GroundProbabilisticNetwork. The GroundNet-

work-object encompasses the instantiated template variables (i.e. the ground random

variables) and the set of instantiated template factors characterising the distribution of

each ground random variable.

The ground random variables are grouped into LocalProbabilisticNetworks. For in-

stance, each ground random variable instantiating the template variable 𝑀𝐴 forms an

107

5. Using Bayesian Modelling to Capture the Environmental Dynamics

BasicDistributionRepo:
ProbabilisticModel

Repository GroundNetwork:Ground
ProbabilisticNetwork

LocalProbabilistic
Network

Link10to5_WI_Model:
LocalProbabilisticModel

LocalProbabilistic
Network

Link10to5_WI:
GroundRandomVariable

Link10to5_SNR:
GroundRandomVariable

Mote10_MA:
GroundRandomVariable

WirelessInterference:
TemplateVariable

SNR:TemplateVariable

MoteActivation:
TemplateVariable

WirelessLink10to5:
EObject

Mote10:EObject

DependenceRelation

contingent = false
Type = DIRECTED

Link10to5_SNR_Model:
LocalProbabilisticModel

Mote10_MA_Model:
LocalProbabilisticModel

WIFactor:Probabilistic
TemplateFactor

Link10to5_WI_Dist:
ProbabilityDistribution

WI_SNRFactor:Probabilistic
TemplateFactor

Link10to5_WI_SNR_Dist:
ProbabilityDistribution

MAFactor:Probabilistic
TemplateFactor

Mote10_MA_Dist:
ProbabilityDistribution

instantiated
Factor

distribution

localModel

instantiated
Template

appliedObjects

instantiated
Template

dependenceStructure

instantiated
Template

appliedObjects

instantiated
Factor

distribution

instantiated
Factor

distribution

localModel

localModel

models

...

localModelslocalNetworks

...

Object A static object Object B probdist object

Legend:

Object C template object ecore object

appliedObjects

Object D

gr
ou

nd
R

an
do

m
Va

ria
bl

es

ground
Random
Variables

Figure 5.7.: An excerpt of the ground Bayesian network model of the static metamodel package applied to

the DeltaIoT system.

individual local network such that for each of them there is a corresponding LocalProba-

bilisticNetwork-object. Similarly, for each instantiation of template variables𝑊𝐼 and

𝑆𝑁𝑅, there is a corresponding LocalProbabilisticNetwork-object. Since𝑊𝐼 and 𝑆𝑁𝑅

are stochastically correlated, they form a local probabilistic network and are grouped for

this reason. Each ground random variable refers to the instantiated template variable, the

set of applied objects and the dependency structure, if any. For example, the Mote10_MA

108

5.2. The Environmental Dynamics Metamodel

GroundRandomVariable instantiates the template variable𝑀𝐴. It also references the corre-

sponding mote object (i.e. mote 10 of the DeltaIoT system) in the architectural model for

which the𝑀𝐴 is instantiated. Equivalently, the Link10to5_WI GroundRandomVariable and

Link10to5_SNR GroundRandomVariable-objects instantiate the template variables𝑊𝐼 and

𝑆𝑁𝑅, respectively. Both refer to the WiressLink-EObject because both template variables

are instantiated together for the same object. However, note that the Link10to5_SNR

GroundRandomVariable is also referencing DependenceRelation-object that forms its de-

pendency structure as 𝑆𝑁𝑅 depends on𝑊𝐼 .

Finally, each ground random variable references a LocalProbabilisticModel-object that

instantiates a template factor. Recall from section 5.2.3.2 that regarding the DeltaIoT system

we have three template factors, namely 𝜉𝑀𝐴, 𝜉𝑊𝐼 and 𝜉𝑆𝑁𝑅 , each of which is instantiated

multiple times. For example, in Figure 5.7 there are three LocalProbabilisticModel-

objects instantiating 𝜉𝑀𝐴, 𝜉𝑊𝐼 and 𝜉𝑆𝑁𝑅 . Furthermore, each LocalProbabilisticModel-

object refers to a ProbabilityDistribution-object that is part of the ProbDist metamodel

(more precisely, the distributionfunction package). Recall that template factors specify a

distribution family (e.g. the multinomial distribution family), which must be concretised as

soon as they are instantiated by a LocalProbabilisticModel. This concretisation is done

by the respective ProbabilityDistribution-object, i.e. by determining the parameters.

The representation of ProbabilityDistribution-objects are discussed in section 5.2.6. As

mentioned earlier, each LocalProbabilisticModel is associated with a ground random

variable and models its concrete probability distribution.

5.2.5. Modelling the Dynamic Environment

So far we discussed how to model type-level descriptions of random variables (i.e. template

variables and factors) and how they can be instantiated to generate ground Bayesian

networks which form the static environment of the system, i.e. the B→ part of the

environmental dynamics (B0,B→). However, the primary objective of this thesis is to

evaluate adaptation strategies of self-adaptive systems in environments that indicate

stochastic and temporal behaviour. This section discusses the part of EnvDyn that adds

dynamic modelling capabilities to the metamodel. The dynamic package contains the

corresponding metaclasses and is depicted on Figure 5.8.

5.2.5.1. Formal Semantics

The root of the dynamic package forms the DynamicBehaviourRepository that consists of

a set of DynamicBehaviourExtensions. Recall that BNs form joint probability distributions

over a set of random variables. Each DynamicBehaviourExtensions is associated with a

single GroundProbabilisticNetwork to indicate that the (static) ground Bayesian network

is extended to a DBN. Consider the definition of a DBN (B0,B→) that is defined as a

tuple consisting of an initial BN B0 and 2-TBN B→. Semantically, the entity DynamicBe-

haviourExtension refers to a 2-TBN, where the referenced GroundProbabilisticNetwork

109

5. Using Bayesian Modelling to Capture the Environmental Dynamics

DynamicBehaviour
Respository

<<abstract>>
DynamicBehaviour

[0...*] extensions

TemporalDynamic

InductiveDynamic
Behaviour

<<abstract>>
TimeSliceInduction

[1...*] localModels

[1...*]
timeSliceInductions

[1...1] localModel

GroundProbabilistic
Network

[1...1] groundNetwork

ProbabilityDistribution

[1...1] distribution

GroundRandom
Variable

[1...1]
appliedGroundVariable

Dependence
Relation

[1...*] dependenceStructure

Temporal
Relation

DynamicBehaviour
Extension[1...1] behaviour

InterTime
SliceInduction

IntraTime
SliceInduction

[1...*] temporalStructure

TemplateFactor[1...1] instantiatedFactor

Meta class A dynamic meta classes

Meta class B probdist meta classes

Legend:

Meta class C template meta classes

Meta class D static meta classes

Figure 5.8.: The dynamic package of the metamodel for modelling dynamic Bayesian networks.

corresponds to B0, i.e. the BN to be extended. The specific behaviour description is

captured by the abstract metaclass DynamicBehaviour which is referenced by DynamicBe-

haviourExtension.

DynamicBehaviour is abstract to keep themetamodel extensible for other types of behaviour.

Currently, there is only a single extension: InductiveDynamicBehaviour. The Inductive-

DynamicBehaviour-entity refers to a set of TimeSliceInductions which is an abstract

metaclass. TimeSliceInductions establish a temporal dependency between two random

variables (or GroundRandomVariables) and describe inductively from time instance 𝑡 to

𝑡 +1 how they stochastically evolve. There are two types of TimeSliceInductions, namely

InterTimeSliceInductions and IntraTimeSliceInductions. Themetaclass TimeSliceIn-

duction references a single GroundRandomVariable which is either complemented by De-

pendenceRelations (if the sub-metaclass corresponds to IntraTimeSliceInduction) or

TemporalRelations (if the sub-metaclass corresponds to InterTimeSliceInduction). Re-

garding InterTimeSliceInductions, the GroundRandomVariable (referenced by the super-

metaclass) is complemented by a set of TemporalRelations (i.e. either PersistenceRe-

lation or TimeSliceRelation) where the target of each relation is referencing the same

TemplateVariable as instantiated by the GroundRandomVariable.

Example 2. Consider Figure 5.9 where a simple 2-TBN is shown. In this case, a In-

terTimeSliceInduction is associated with a GroundRandomVariable (i.e. 𝑋 ′) and refers

to a PersistenceRelation (i.e. 𝑋 → 𝑋 ′) and a TimeSliceRelation (i.e. 𝑌 → 𝑋 ′). In

terms of IntraTimeSliceInductions, the GroundRandomVariable is complemented by a

set of (non-temporal) DependenceRelations where the target of each relation references

110

5.2. The Environmental Dynamics Metamodel

𝑋

𝑌

𝑋 ′

𝑡 + 1𝑡

Figure 5.9.: An example structure of a two-time-slice Bayesian network.

the same TemplateVariable as instantiated by GroundRandomVariable (just as for Inter-

TimeSliceInductions). ■

The semantics of InterTimeSliceInductions and IntraTimeSliceInductions are equiv-

alent to the semantics of inter-time-slice edges and intra-time-slice edges in DBNs. In the

dynamic package, persistence edges are considered as special cases of inter-stime-slice

edges in which the source and target random variables are the same.

We have deliberately reserved the discussion of TemporalDynamic-entities as they comple-

ment TimeSliceInductions with probabilistic models. TemporalDynamics are comparable

to LocalProbabilisticModels from the static package as they describe the probability

distributions of TimeSliceInductions (e.g. 𝑃 (𝑋 ′ | 𝑋,𝑌) from the example 2-TBN shown

in Figure 5.9). Therefore, they instantiate a type-level TemplateFactor from the template

package complemented by a ProbabilityDistribution instance with fixed parameter

values (just as LocalProbabilisticModels).

In summary, the formal semantics of the dynamic package are based on the notion of

2-TBNs where existing BNs are extended to DBNs. The semantics of inter-time-slice, intra-

time-slice and persistence edges are reused to establish the temporal connection between

random variables. Equivalently to the static package, template factors are instantiated to

inductively describe the probability distributions of how random variables change over

time.

5.2.5.2. Applying the Dynamic Environment Model

In this section, we illustrate the application of the dynamic metamodel package. Again, we

use the DeltaIoT system as an example system and add the dynamic environment model

to the model instances of sections 5.2.3.2 and 5.2.4.2 presented so far. All three model

instances form the environmental dynamics (B0,B→).

Since the environment of the DeltaIoT system is quite complex, we have again only

presented an excerpt from the dynamic environment model for the sake of clarity. We also

discuss the temporal extensions (described by the dynamic environment model) for the

111

5. Using Bayesian Modelling to Capture the Environmental Dynamics

BasicDynamicsRepo:
DynamicBehaviour

Repository Extension:Dynamic
BehaviourExtension

InductiveDynamic
Behaviour

Link10to5_WI_DynamicModel:
TemporalDynamic

InterTimeSliceInduction

Link10to5_WI:
GroundRandomVariable

WIPersistence:
PersistenceRelation

Link10to5_SNR_DynamicalModel:
TemporalDynamic

DynamicalWIFactor:
ProbabilisticTemplateFactor

Link10to5_WI_DynamicDist:
ProbabilityDistribution

DynamicalWI_SNRFactor:
ProbabilisticTemplateFactor

Link10to5_WI_SNR_DynamicalDist:
ProbabilityDistribution

instantiated
Factor

distribution

localModel

applied
GroundVariable

temporalStructure

instantiated
Factor

distribution

extensions

localNetworks

Object A dynamic object Object B probdist object

Legend:

Object C template object static objectObject D

tim
eS

lic
eI

nd
uc

tio
ns

GroundNetwork:Ground
ProbabilisticNetwork

groundNetwork

Link10to5_SNR:
GroundRandomVariable

WI_SNR_Relation:
TimeSliceRelation

applied
GroundVariable

temporalStructure

InterTimeSliceInduction

InterTimeSliceInduction

Mote10_MA:
GroundRandomVariable

MAPersistence:
PersistenceRelation

applied
GroundVariable

temporalStructure
...

localModel

Mote10_MA_DynamicModel:
TemporalDynamic

DynamicalMAFactor:
ProbabilisticTemplateFactor

Mote10_MA_DynamicDist:
ProbabilityDistribution

localModel

localModels
...

Figure 5.10.: An excerpt of the dynamic environment model of the dynamic metamodel package applied to

the DeltaIoT system.

same ground random variables of the DeltaIoT system presented in section 5.2.4.2. The

excerpt of the model is depicted on Figure 5.10.

The model consists of the root object BasicDynamicsRepo and defines a set of extensions

that refer to DynamicBehaviourExtensions. In this case, there is only a single DynamicBe-

hvaiourExtension-object, namely Extension. Recall that DynamicBehvaiourExtensions

are associated with a single ground Bayesian network that is to be extended to include

dynamic behaviour (in our case, this is the ground Bayesian network of the DeltaIoT

system from section 5.2.4.2).

To relate the ground Bayesian network with its respective dynamic behaviour extension,

the Extension-object references an InductiveDynamicBehaviour-object that models the

112

5.2. The Environmental Dynamics Metamodel

concrete dynamic behaviour extensions. More specifically, InductiveDynamicBehaviour

references a set of TimeSliceInductions (i.e. attribute timeSliceInductions) and a set of

TemporalDynamics (see attribute localModels). The former specifies the ground random

variables of the GroundNetwork-object indicating dynamic behaviour; the latter models the

probability distribution that describes the stochastic evolution, i.e. the probabilistic de-

scription of the dynamic behaviour. This structural split is similar to what we have seen for

objects of GroundProbabilisticNetworks where a set of GroundRandomVariables specify

the instantiated template variables and a set of LocalProbabilisticModels determine

their probability distributions.

Each TimeSliceInduction refers to a single GroundRandomVariable that is to be extended

and, depending on the type of TimeSliceInductions, the respective Relation-object

from the template metamodel package. In terms of the DeltaIoT system there are no

IntraTimeSliceInductions but only InterTimeSliceInductions. For example, in Fig-

ure 5.10 there is an InterTimeSliceInduction that is applied to GroundRandomVariable-

object Link10to5_WI. Moreover, the InterTimeSliceInductions-object refers to the Per-

sistenceRelation-object WIPersistence indicating the temporal structure (see attribute

temporalStructure). This means that the basic random variable Link10to5_WI evolves

probabilistically and persistently, i.e. there is a stochastic correlation between the ground

random variable 𝑋𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼 at time 𝑡 and the basic random variable 𝑋 ′
𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼

at

time 𝑡 + 1. As another example, there is an InterTimeSliceInduction that is applied

to GroundRandomVariable-object Link10to5_SNR. In this case, the temporalStructure is

given by the TimeSliceRelation-object WI_SNR_Relation indicating that the ground ran-

dom variable Link10to5_SNR has no persistent behaviour but is stochastically dependent

on ground random variable Link10to5_WI; that is, there is a stochastic correlation be-

tween the ground random variable 𝑋𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼 at time 𝑡 and the basic random variable

𝑋 ′
𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑆𝑁𝑅

at time 𝑡 + 1.

Just as InterTimeSliceInductions describe stochastic correlations of ground random

variables inductively from 𝑡 to 𝑡+1, the concrete probability distribution of such correlations
is modelled by TemporalDynamic-objects. For instance, consider the TemporalDynamic-

object Link10to5_WI_DynamicModel which is related to (see the localModel attribute of

InterTimeSliceInduction-objects) the InterTimeSliceInduction-object extending the

ground random variable Link10to5_WI. The object Link10to5_WI_DynamicModel refers

to the template factor it instantiates (i.e. DynamicalWIFactor) and is complemented by

an instance of ProbabilityDistribution (i.e. the object Link10to5_WI_DynamicDist) of

the metamodel package distributionfunction, which specifies the concrete probability

distribution. Effectively, this is equivalent to the concept of LocalProbabilisticModels

discussed in section 5.2.4.1 and illustrated in section 5.2.4.2.

5.2.6. Modelling Probability Distributions

This section discusses the ProbDist metamodel, which is not explicitly part of the EnvDyn
metamodel but provides the modelling concepts to describe probability distributions. The

113

5. Using Bayesian Modelling to Capture the Environmental Dynamics

distributionfunction

distributiontype

ProbabilityDistribution
Repository

ProbabilityDistributionSkeleton

type: ProbabilityDistributionType

ParameterSignature <<enumeration>>
ProbabilityDistributionType

 DISCRETE
CONTINUOUS

[0...*] parameters

[0...*]
distributionFamilies

[1...*]
paramStructures

ProbabilityDistribution
FunctionRepository

Parameter

<<abstract>>
AbstractProbability

Distribution

ProbabilityDistribution

[1...*] params

[0...*] distributions

[1...*] params

RandomVariable

valueSpace: Domain
[1...*]

randomVariables

<<enumeration>>
Domain

 NATURAL
INTEGER
REAL
CATEGORY

<<enumeration>>
ParameterType

 SCALAR
VECTOR
MATRIX
SAMPLESPACE

[1...1] instantiated
[1...1] instantiated

<<abstract>>
ParamRepresentation

SimpleParameter

type: ParameterType

value: String

ComplexParameterTabularCPD

TabularCPDEntry

conditionals: String

[1...*] cpdEntries

[1...1] entry

[1...1]
representation

Figure 5.11.: Overview of the ProbDist metamodel.

metamodel is divided into two packages, namely distributiontype and distribution-

function. An overview of the entire metamodel is depicted in Figure 5.11.

The distributiontype package provides modelling concepts to describe probability distri-

butions at type-level; the distributionfunction package instantiates modelling entities

of the distributiontype package to describe manifestations of probability distributions.

Note that, just as in the EnvDyn metamodel, we have omitted attributes such as name or

ID in Figure 5.11.

114

5.2. The Environmental Dynamics Metamodel

5.2.6.1. Type-Level Probability Distributions

The core entities of the distributiontype package form the ProbabilityDistribution-

Skeleton and ParameterSignature. Instances of both metaclasses are collected in the Prob-

abilityDistributionRepository metaclass which corresponds to the root of the package.

ProbabilityDistributionSkeletons model distribution families (e.g. exponential, uni-

form or multinomial distributions) that are distinguished by their names. Additionally,

the type attribute refers to an enumeration called ProbabilityDistributionType. Prob-

abilityDistributionType enumerates two constants, namely DISCRETE and CONTINUOUS.

Therefore, a ProbabilityDistributionSkeleton instance is characterised as being either

continuous or discrete; that is, the value space of the considered random variables is either

discrete or continuous. Each ProbabilityDistributionSkeletons references one or many

ParameterSignatures that parameterise the distribution.

Instances of ParameterSignature describe parameters such as the mean, standard de-

viation or covariance matrix without specifying the actual value. Based on these mod-

elling concepts, type-level distribution can be modelled. For example, a family of nor-

mal distributions is modelled by creating an instance of ProbabilityDistributionSkele-

ton named (say) "normal distribution" and type CONTINUOUS referencing two instances

of ParameterSignature. One instance of parametersignature describes the mean and

another instance of parametersignature describes the standard deviation (assuming a

one-dimensional distribution).

5.2.6.2. Instance-Level Probability Distributions

The distributionfunction package provides the modelling concepts to instantiate type-

level distributions by adding fixed values to the purely parametric descriptions (i.e. Param-

eterSignatures).

The root of the package forms the ProbabilityDistributionFunctionRepository that

references a set of Parameters and ProbabilityDistributions. Each ProbabilityDis-

tribution references a set of RandomVariables over which the distribution is defined. A

RandomVariable is characterised by its value space (see valueSpace attribute in Figure 5.11).

A value space has a domain captured by the enumeration Domain with constants NATURAL

(i.e. 𝐼𝑁), INTEGER (i.e. Z), REAL (i.e. 𝐼𝑅) and CATEGORY. A ProbabilityDistribution entity

is associated with a particular ProbabilityDistributionSkeleton that models an instan-

tiation of the skeleton (or a manifestation of a particular distribution w.r.t. a distribution

family). To complement the type-level parameters of the instantiated distribution, a set of

Parameters are referenced.

Just like ProbabilityDistributions instantiate ProbabilityDistributionSkeletons, Pa-

rameters instantiate and supplement ParameterSignatures with fixed values. However,

an instance of ParameterSignature can describe parameters with different representa-

tions. Such representations range from simple scalar values to matrices or tables (e.g. to

115

5. Using Bayesian Modelling to Capture the Environmental Dynamics

𝑋 𝑌

𝑍

𝑃𝑟 (𝑋 = 𝑥1) 𝑃𝑟 (𝑋 = 𝑥2)
0.5 0.5

𝑃𝑟 (𝑌 = 𝑦1) 𝑃𝑟 (𝑌 = 𝑦2)
0.3 0.7

Con. 𝑃𝑟 (𝑍 = 𝑧1) 𝑃𝑟 (𝑍 = 𝑧2)
𝑥1, 𝑦1 0.8 0.2

𝑥1, 𝑦2 0.3 0.7

𝑥2, 𝑦1 0.5 0.5

𝑥2, 𝑦2 0.4 0.6

Figure 5.12.: Example BN with tabular-based parameter representation

describe higher-dimensional multinomial distributions). Therefore, a Parameter has a

representation captured by ParamRepresentation

The abstract ParamRepresentation metaclass has two sub-metaclasses, namely SimplePa-

rameter and ComplexParameter. The SimpleParameter entity has a type and value at-

tribute. Former, describes the ParameterType by an enumeration with constants SCALAR,

VECTOR, MATRIX and SAMPLESPACE. The value attribute of SimpleParameter corresponds

to the string-based representation of the value w.r.t. to its specified type (for each type

a certain string pattern is expected to parse the string value). For a value of type SAM-

PLESPACE, for example, the string pattern refers to a set of pairs where each pair comprises

a categorical value and probability. The abstract metaclass ComplexParameter describes

more sophisticated representations. Currently, there is only one ComplexParameter sup-

ported: TabularCPD. A TabularCPD-entity represents table-like parameters (such as for

higher-dimensional multinomial distributions). Thus, a TabularCPD instance contains a set

of TabularCPDEntries where each entry defines a conditional (represented as a string)

and refers to exactly one SimpleParameter. The referenced SimpleParameter of each en-

try indicates the distribution of some values given the conditional of the entry. Because

TabularCPD represents tables for higher-dimensional multinomial distributions, the value

space of the random variables over which the distribution is defined is discrete. Thus, the

type attribute of SimpleParameter (referenced by each entry) must be SAMPLESPACE.

Example 3. Consider Figure 5.12 which depicts an example BN with a tabular-based

parameter representation.

It shows a BN that describes a multinomial joint distribution over the random variables𝑋 ,𝑌

and 𝑍 . Recall that the joint distribution of a BN factorises w.r.t. some graph G. Thus, given
the graph in Figure 5.12, the distribution factorises to 𝑃 (𝑋,𝑌, 𝑍) = 𝑃 (𝑋) ·𝑃 (𝑌) ·𝑃 (𝑍 | 𝑋,𝑌).
Based on the factorisation the distributions 𝑃 (𝑋) and 𝑃 (𝑌) are described individually, i.e.

each by a SimpleParameter instance of type SAMPLESPACE with (𝑥1, 0.5), (𝑥2, 0.5) as value

116

5.2. The Environmental Dynamics Metamodel

for 𝑃 (𝑋) and (𝑦1, 0.3), (𝑦2, 0.7) as value for 𝑃 (𝑌), respectively. The distribution 𝑃 (𝑍 |
𝑋,𝑌) is represented by a ComplexParameter (or rather TabularCPD) instance with four

TabularCPDEntries where the conditionals refer to (𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1) and (𝑥2, 𝑦2).
Each TabularCPDEntry is associated with a SimpleParameter describing the corresponding

distribution, e.g. 𝑃 (𝑍 | 𝑋 = 𝑥1, 𝑌 = 𝑦1) with value (𝑧1, 0.8), (𝑧2, 0.2). ■

5.2.7. Discussion

In section 5.1, we enumerated several requirements that our metamodel must provide.

Now, we discuss how the EnvDyn metamodel addresses the requirements.

Domain-Independence The rationale for the domain-independence requirement is based

on the fact that AI components can be deployed in any domain, so it is necessary to describe

the environmental variables or factors that force AI components to make erroneous

predictions. The EnvDyn metamodel addresses this requirement by integrating modelling

concepts from the field of probabilistic template-based models. Template variables and

factors enable the specification of type-level random variables that can be instantiated

in arbitrary domains. We have discussed in section 5.2.3 how the metamodel EnvDyn
conforms to the formal semantics of template variables and factors. Thus, the EnvDyn
metamodel exhibits the same domain-independent modelling capabilities that satisfy the

domain independence requirement.

Architecture description language agnostic The EnvDyn metamodel is intended to be

applicable to any architecture model (w.r.t. a particular ADL), as some architecture models

are more suitable for some domains, i.e. enable the modelling of more domain-specific

characteristics that are more meaningful in terms of the instantiation of the environmental

dynamics. The EnvDyn metamodel is ADL-agnostic because each template variable is

associated with a set of EObjects indicating the set of domain-specific objects for which

the template variable is instantiated (see section 5.2.4). An EObject in turn forms the root

of each model object in the EMF. Roughly speaking, the EnvDynmetamodel can be applied

to any Ecore-based ADL; that is, any ADL which was developed in the context of EMF.

Stochastic dynamics Technically, the environmental dynamics are formally considered

as a DTMC to capture the probabilistic evolution of the environmental states. However,

modelling DTMCs conventionally (e.g. with state machine-based models) can be quite

tedious. In terms of the EnvDyn metamodel, we represent the environmental dynamics as

DBNswhich (if multinomial distributed) formDTMCs. In DBNs, the stationary andMarkov

assumptions allow an inductive representation of the state changes over time. This requires

modelling only the initial distribution of the environmental states (i.e. the distribution

over E0, captured by a BN) and an inductive transition step of the environmental states at

time 𝑡 to 𝑡 + 1 (i.e. the transition function 𝑡E , captured by a 2-TBN). In section 5.2.5, we

117

5. Using Bayesian Modelling to Capture the Environmental Dynamics

discussed how we integrated the semantics of DBNs in the EnvDyn metamodel to model

the stochastic dynamics of the environment with DBNs.

Stochastic correlations Recall that an environmental state is a tuple 𝐸 := (𝑒1, ..., 𝑒𝑛)
consisting of environmental variables 𝑒𝑖 . Stochastic correlations refer to stochastic depen-

dencies between the environmental variables 𝑒𝑖 that manifest themselves statically and

dynamically. Such correlations are taken into account in the metamodel EnvDyn through

Bayesian modelling. In Bayesian modelling, correlations (or (in-)dependence assumptions)

between random variables are expressed by DAGs that form the core of Bayesian models.

Such DAGs can also be modelled in the EnvDyn metamodel (see section 5.2.3) and allow

the representation of correlations between environmental variables.

Compactness The compactness requirement refers to the compact modelling of probabil-

ities or their parameters. In DTMCs, for example, the transition probabilities are captured

in a probability transition matrix in which each entry corresponds to the probability of

transition to another state given the current. From a modelling perspective, such matrix-

based representations are hard to manage as the size of entries grows quadratically in the

size of the states. Thus, for large state spaces, such matrices are intractable to model. The

EnvDynmetamodel tackles the compactness requirements by the decomposability property

of Bayesian models, i.e. the decomposition of the probability distribution of Bayesian

models (according to some DAG G) into local CPDs. For instance, let 𝑃 (𝑋1, . . . , 𝑋𝑛) be a
joint probability distribution over a set of random variables (𝑋1, ..., 𝑋𝑛). If the distribu-
tion is multinomial distributed, the set of parameters to fully describe 𝑃 (𝑋1, . . . , 𝑋𝑛) is
𝜃 = (∏𝑖∈{1,...,𝑛} |𝑉𝑎𝑙 (𝑋𝑖) |) − 1. If the distribution is represented as BN and factorises to

some graph G, the number of parameters to estimate corresponds to the sum of parameters

of each local CPD 𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)). Let𝐶𝑃𝐷𝑖 be the number of required parameters of local

CPD 𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)), then the number of parameters (to fully describe 𝑃 (𝑋1, . . . , 𝑋𝑛)) is
𝜃 =

∑
𝑖∈{1,...,𝑛}𝐶𝑃𝐷𝑖 . Depending on the structure of graph G, this can tremendously reduce

the number of parameters to describe a given probability distribution; this is illustrated

in [105, P.5]. Because the EnvDyn metamodel enables the modelling of BNs and DBNs

over a set of random variables, the decomposability property applies equally and allows

modelling parameters of local CPDs instead of the entire joint probability distribution.

For high-dimensional probability distributions, however, where few (in)dependence as-

sumptions can be made, the number of descriptive parameters can still be high and hard

to model. Nevertheless, this can be tackled by more course-grained discretisation of the

considered random variables.

Discretisation level Finally, the discretisation level requires the flexible modelling of

discrete value spaces of random variables. We discussed in section 5.2.6 how the EnvDyn
metamodel integrates the ProbDist metamodel to specify multinomial distributions (recall

that we assume only multinomial distributed BNs and DBNs, respectively). The ProbDist
metamodels enable the modelling of multinomial distributions where the value spaces

of the considered random variables are described by tabular-based parameters in which

118

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

the value spaces of random variables. More precisely, the value ranges are described by a

string in which the desired number of discrete states can be specified.

5.3. Instantiating Environmental Dynamics in
Domain-Specific Contexts

In the last section, we presented the EnvDyn metamodel to model the environmental

dynamics. One of the key concepts of the EnvDyn metamodel is template variables

that describe type-level random variables. Although template variables describe random

variables that share common semantics (i.e. the value space and distribution family), it

becomes more meaningful after instantiation for a set of objects of a particular domain.

After instantiation, the template variable is complemented by the actual distribution of

the random variable (described by the instantiation of a corresponding template factor).

We briefly discussed the instantiation process in which template variables are instantiated

for an object skeleton 𝜅 . We also mentioned that 𝜅 refers to the architecture model. More

specifically, the objects of 𝜅 are covered by the objects defined in the architecture model

𝑀C , i.e. 𝜅 ⊆ 𝑀C . This again shows the importance of the selection of an appropriate ADL.

The architecture model must include all relevant objects from which an object skeleton 𝜅

can be derived. Based on 𝜅 an EnvDyn instance or environment model is generated.

In the following, we discuss in more detail how instances of the EnvDyn metamodel

are created w.r.t. an architecture model containing all relevant objects to capture 𝜅. We

consider an EnvDyn instance as𝑀E (i.e. 𝑀E = (B0,B→)) and an architecture model as𝑀C .
An environment and architecture model summarised by a tupleM := (𝑀C, 𝑀E) indicates
that 𝑀E is generated by 𝑀C . Therefore, we start to present the general process where

template variables and factors are instantiated in the architecture model. Afterwards,

we present a semi-automated approach for generating the probabilistic structure of an

environment model 𝑀E induced by the instantiated template variables and factors in

the architecture model𝑀C . We present an annotation-based approach for instantiating

template variables based on so-called EMF Profiles [110].

5.3.1. Instantiation of Template-based Structures

The most straightforward way to instantiate template variables is to create the architecture

model and template variables (or rather template variable definitions, as discussed in

section 5.2.3). When the template variables are defined, they are instantiated in the

architecture model (or based on the architecture model). Recall that after the template

variables are modelled (see the template package of EnvDyn), they can be instantiated

in the static package of the EnvDyn metamodel. Note that the term "instantiation" is

ambiguous, as template variables are instantiated in the static part of EnvDyn on the one

hand, and instantiated in the architectural model on the other; however, it describes the

same concept. The instantiation of a template variable is a two-part process in which a

119

5. Using Bayesian Modelling to Capture the Environmental Dynamics

ground random variable is first created to indicate an instantiation of a given template

variable in the static package of EnvDyn. Afterwards, the ground random variable

must be complemented by a set of objects that indicate the domain-specific objects for

which the template is instantiated. Trivially, this can be achieved by manually adding

the corresponding objects of the architecture model to the ground random variable. This

is repeated for each template variable that is to be instantiated. Finally, the remaining

elements of the static and dynamic packages are modelled to obtain the BN and DBN,

respectively.

The manual instantiation of template variables is straightforward and directly aligned

with the modelling process of environment models. Depending on the complexity of

the environment model, however, the manual instantiation process might be tedious and

error-prone. Therefore, the question arises as to which extent the manual instantiation

process can be automated. In the next section, we present a semi-automated approach

where the structural part of the environment model is automatically generated.

5.3.2. Semi-Automated Generation of the Structural Environment Model
by Annotation-based Instantiation

In the last section, we discussed the manual instantiation process of template variables.

Because the process might be time-consuming and error-prone, we now present a semi-

automated approach to generate the structural environment model. By structural en-

vironment model 𝑀−E := (B−,B−→), we refer exclusively to the pure structure (not the

parametric part) of the DBN that captures the environment.

The approach follows an annotation-based instantiation process in which the objects

of an architecture model are annotated with template variable-related attributes. More

specifically, we implemented a Stereotype that allows the annotation of objects of an

architecture model in an ADL-agnostic way. The stereotype is realised by using EMF

Profiles [110] that implement the concept of UML Profiles [62] in the context of EMF. In a

nutshell, an EMF Profile is applied to an EMF model such that stereotypes (defined within

the profile) can be applied to objects of the EMF model. Stereotypes extend metaclasses of

metamodels with additional attributes. That is, when a stereotype is applied to a model

object at the instance level, it enriches the object with more attributes.

In our case, we use stereotypes to annotate model objects of the architectural model. The

annotation of an object with the stereotype indicates that one or more templates are instan-

tiated for the object. We denote the stereotype of such an annotation as InstantiationTag.

The InstantiationTag stereotype is shown in Figure 5.13.

The InstantiationTag is referencing a TemplateVariable and a TemplateVariableGroup

which specifies template variables that are to be instantiated. Although the stereotype

offers the possibility to reference both, it is expected that either a TemplateVariable or a

TemplateVariableGroup are specified; only one of them can be instantiated but not both

at the same time. An InstantiationTag references exactly one Argument. Recall that an

120

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

TemplateVariable

Argument

TemplateVariable
Group

Meta class A stereotype meta class

Legend:

Meta class B template meta classes Meta class C ADL meta class

<<stereotype>>
InstantiationTag

 taggedValue: String

ADL class

[1...1] argument

[0...1] templateGroups

[0...1] templates [1...1] extends

Figure 5.13.: InstantiationTag stereotype for annotating architecture models.

Argument-object corresponds to a particular object class 𝑄 . Thus, an InstantiationTag

associated with a particular Argument instance (i.e. 𝑄) must only be applied to model

objects of the architecture model that are considered to be objects of object class 𝑄 . Each

stereotype can define a set of Tagged Values which form the attributes of a stereotype or

rather the attributes that enrich the extended metaclass. Regarding InstantiationTag

there is a single taggedValue attribute of type string. Because the same template (or group

of templates) can be instantiated multiple times for model objects of the same object class,

the attribute taggedValue uniquely connects the template with the objects for which it

is instantiated. The taggedValue attribute is to be understood as an ID for each applied

InstantiationTag. Finally, a stereotype extends one metaclass of another metamodel as

depicted in Figure 5.13. In terms of InstantiationTag, a metaclass of an ADL has to be

extended to which the stereotype can be applied. Ideally, the ADL-specific metaclass is a

superclass that is inherited by most other metaclasses such that InstantiationTag can be

applied to numerous objects at the instance level.

Example 4. Recall the DeltaIoT example system from section 1.5.2. Suppose an archi-

tecture model representing the DeltaIoT system for which we want to instantiate the

template variables𝑀𝐴,𝑊𝐼 and 𝑆𝑁𝑅 from section 5.2.3.2 by annotating the corresponding

objects (that are instances of object classMote orWirelessLink) with an InstantiationTag.

Each mote object of the architectural model is annotated by an InstantiationTag with

a unique taggedValue, a reference to the template variable 𝑀𝐴 (not a template group)

and an argument referring to 𝑄𝑀𝐴. Similarly, each wireless link object shall be annotated

by an InstantiationTag with a unique taggedValue, a reference to a TemplateVariable-

Group-object (i.e.𝑊𝐼 and 𝑆𝑁𝑅) and a corresponding argument of the wireless link. ■

When all model objects (for which templates are to be instantiated) are annotated with

corresponding InstantiationTags, the structural environment model can be generated.

The algorithm for generating the structural environment model is depicted on algorithm 5.1.

Note that the algorithm is described from an abstract and formal perspective and reflects

121

5. Using Bayesian Modelling to Capture the Environmental Dynamics

only the core concepts; the details of the algorithm should be looked up in the code.

The algorithm inputs an architecture model𝑀C and a set of template variables𝑀ℵ that
represent a TemplateVariableDefinition-object. The templates defined in 𝑀ℵ must be

instantiated in the architecture model𝑀C by following the annotation-based approach (i.e.

by applying InstantiationTags as described before). Based on𝑀C and𝑀ℵ, the structural
environment model 𝑀−E is generated and returned by the algorithm. In principle, the

algorithm is divided into five parts which we discuss in the following.

Algorithm 5.1: The structural environment model generation algorithm

Input: Architecture model𝑀C , template variable definitions𝑀ℵ
Output: Structural environment model𝑀−E
/* Filter all annotated elements from 𝑀C */

1 O𝜅ℵ ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑀C)
/* Create instantiation contexts and equivalence classes */

2 𝐼𝐶 ← ∅
3 foreach 𝑜 ∈ O𝜅ℵ do
4 𝑖𝑑,𝑄 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐼𝑑𝐴𝑛𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠 (𝑜)
5 V𝐼𝐶 ← ∅
6 𝐼𝐶 ← 𝐼𝐶 ∪ 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜)
7 end
8 𝑃𝐼𝐶 ← {[𝑖𝑐]∼ ⊆ 𝐼𝐶 | [𝑖𝑐]∼ := {𝑖𝑐′ := (𝑖𝑑′, 𝑄′,V′𝐼𝐶, 𝑜) ∈ 𝐼𝐶 | 𝑖𝑑 = 𝑖𝑑′}}
/* Assign each 𝑜 to V for which V is instantiated */

9 foreach [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 do
10 V[𝑖𝑐]∼ ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ([𝑖𝑐]∼)
11 foreachV ∈ V[𝑖𝑐]∼ do
12 foreach 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) ∈ [𝑖𝑐]∼ do
13 if ∃𝑈𝑖 ∈ 𝛼 (V) : 𝑄 [𝑈𝑖] = 𝑄 then
14 V𝐼𝐶 ←V𝐼𝐶 ∪V
15 end
16 end
17 end
18 end

/* Instantiate template variables to obtain 𝜒𝜅 [ℵ] */

19 𝜒𝜅 [ℵ] ← ∅
20 foreach [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 do
21 foreachV ∈ V[𝑖𝑐]∼ do
22 𝑂V ← {𝑜 ∈ 𝑖𝑐 | 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) ∈ [𝑖𝑐]∼ : V ∈ V𝐼𝐶}
23 𝛾 ← 𝑎𝑠𝑇𝑢𝑝𝑙𝑒 (𝑂V, 𝛼 (V)) // i.e. 𝛾 := (𝑈1 ↦→ 𝑜1, ...,𝑈𝑛 ↦→ 𝑜𝑛)
24 𝜒

𝜅 [ℵ] ← 𝜒
𝜅 [ℵ] ∪ V(𝛾)

25 end
26 end
27 return 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝐵𝑁 (𝜒𝜅 [ℵ], 𝑀ℵ)

122

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

In terms of efficiency, only the third loop (the assignment of all 𝑜 to the respective template

V) is worth mentioning. Ultimately, in the worst case, the loop iterates over |𝑀ℵ | · |O𝜅ℵ |
elements. However, we argue that efficiency is not a serious problem because the generation

algorithm inputs human-made models. In other words, it would take a software engineer a

considerable amount of time to construct a model, leading to serious efficiency problems.

In the first part of the algorithm all elements (denoted by the set O𝜅ℵ) of the architecture
model𝑀C that are annotated by an InstantiationTag are filtered, i.e. O𝜅ℵ ⊆ 𝑀C . Theoret-
ically, this is achieved by checking whether for an architectural object 𝑜 ∈ 𝑀C there exists
a template variableV ∈ 𝑀ℵ such that object 𝑜 is a possible instantiation object ofV:

∃𝑈𝑖 ∈ 𝛼 (V) : 𝑜 ∈ O𝜅 [𝑄 [𝑈𝑖]] (5.1)

Practically, all elements 𝑜 ∈ 𝑀C are checked whether they are annotated with an In-

stantiationTag. All instantiated template variables associated with the corresponding

InstantiationTag satisfy the requirement of formula (5.1).

The second part of algorithm 5.1 (starting at line 2) takes the filtered objects O𝜅ℵ and creates
so-called Instantiation Contexts. Formally, an instantiation context 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) is
a tuple where 𝑖𝑑 and object class 𝑄 refer to the taggedValue and Argument attributes of

InstantiationTag applied to object 𝑜 . The 𝑖𝑑 and object class 𝑄 are directly extracted

from the applied InstantiationTag. TheV𝐼𝐶 of an instantiation context 𝑖𝑐 refers to a set

of templates and is initially empty. For each object 𝑜 (with respective InstantiationTag)

an instantiation context is created so that from set O𝜅ℵ a set of instantiation contexts 𝐼𝐶

is generated. The instantiation contexts 𝐼𝐶 are partitioned into equivalence classes 𝐼𝐶/∼
where the equivalence relation ∼ is defined by the 𝑖𝑑 identity of instantiation contexts,

i.e. 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) ∼ 𝑖𝑐′ := (𝑖𝑑′, 𝑄′,V′𝐼𝐶, 𝑜′) ⇔ 𝑖𝑑 = 𝑖𝑑′. The partitioned sets of 𝐼𝐶 are

denoted as 𝑃𝐼𝐶 , i.e. 𝑃𝐼𝐶 = 𝐼𝐶/∼.

After the creation of instantiation contexts and their partitioning into equivalence classes,

the next part of the algorithm (starting at line 9) complements each instantiation context

𝑖𝑐 of a partition [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 with the concrete template variables. Recall that an 𝑖𝑐 :=

(𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) contains a set of template variablesV𝐼𝐶 which have been initially declared

to be empty, i.e. V𝐼𝐶 = ∅. It should also be noted that all InstantiationTags applied to the
objects 𝑜 ∈ 𝑖𝑐 of an instantiation context 𝑖𝑐 ∈ [𝑖𝑐]∼ within a partition [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 have the

same template structure, i.e. the set of template variables referenced by InstantiationTag

and applied to 𝑜 . Thus, for each [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 the common template structure (denoted

as V[𝑖𝑐]∼) is extracted that refers precisely to the template variables contained in all

InstantiationTags applied to the object 𝑜 of each instantiation context 𝑖𝑐 of partition

[𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 . Each template variable V ∈ V[𝑖𝑐]∼ is now added to the set V𝐼𝐶 of each

instantiation context if there exists a logical variable𝑈𝑖 ∈ 𝛼 (V) such that the object class

𝑄 of an instantiation context matches object class 𝑄 [𝑈𝑖] of logical variable𝑈𝑖 . Roughly
speaking, the template variableV is added to all instantiation contexts for whose object the

template variable is instantiable. The objects for which a template variable is instantiated

are thus resolved in a reverse manner.

Based on the complemented instantiation contexts, the template variables are instantiated

and become ground random variables in the penultimate part of the algorithm (starting

123

5. Using Bayesian Modelling to Capture the Environmental Dynamics

at line 19). This step iterates over all partitions [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 . Moreover, for each template

V ∈ V[𝑖𝑐]∼ in the respective template structureV[𝑖𝑐]∼ a ground random variable is created.

Before instantiating template variableV , however, the objects for whichV is instanti-

ated have to be resolved. From the previous part of the algorithm, it is known that all

instantiation contexts are complemented by the template variables that are instantiated

for the objects contained in the instantiation contexts. Therefore, for a template V all

objects 𝑂V of each instantiation context 𝑖𝑐 ∈ [𝑖𝑐]∼ are filtered whereV is included, i.e.

𝑂V := {𝑜 ∈ 𝑖𝑐 | 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶, 𝑜) ∈ [𝑖𝑐]∼ : V ∈ V𝐼𝐶}. The set𝑂V has to be transformed

to a tuple 𝛾 w.r.t. the argument signature of V , i.e. 𝛾 := (𝑈1 ↦→ 𝑜1, ...,𝑈𝑛 ↦→ 𝑜𝑛) w.r.t.
𝛼 (V). Finally, the template is instantiatedV(𝛾) and added to the set of ground random

variables
𝜒
𝜅 [ℵ].

In the last part of the algorithm (see line 27), the structural environment model (B−,B−→)
is generated (w.r.t.

𝜒
𝜅 [ℵ] and the template variable definitions 𝑀ℵ) and returned. The

function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝐵𝑁 (𝜒𝜅 [ℵ], 𝑀ℵ) abstracts away the details of the remaining generation

algorithm. We deliberately do not go into the details as they involve the same steps we

discussed in section 5.2.

The result of the algorithm is the structural environment model, which still has to be

complemented with the parametric information of the probability distributions. The para-

metric part of the environment model cannot be derived from the architecture model and

the template variable definitions. Instead, only the structural representation is generated

automatically and must be complemented manually with probability distributions in a

final step.

5.4. Implementation

In the previous sections, we presented the EnvDyn and ProbDist metamodels as well as an

approach for a semi-automated generation of the structural environment model. However,

the pure model instances of the EnvDyn and ProbDist metamodel do not provide any

functionality such as sampling or evaluating the probability of certain events. Therefore,

we implemented additional components that provide such basic functionality. In this

section, we give a brief overview of the implemented components. The dependency graph

of the components is depicted on Figure 5.14. We have made the code available at [155].

The EnvDyn and ProbDist metamodels are implemented based on the Eclipse Modeling

Framework (EMF). Thus, the metamodel and the generated metamodel code are located

in the components EnvDyn.Model and ProbDist.Model. Note that EMF-based metamodels

allow the generation of the respective metamodel code to represent the metaclasses and

make them accessible at the code level.

The ProbDist.API component provides the basic functionality of probability distributions

(i.e. evaluating probabilities and sampling) and depends on the ProbDist.Model component.

For instance, it takes an ProbDist model instance and calculates the probabilities of certain

events w.r.t. the specified probability distribution of the model.

124

5.5. Assumptions and Limitations

EnvDyn.Model

EnvDyn.API

EnvDyn.Profile

ProbDist.Model

ProbDist.Model.Basic

ProbDist.API

Figure 5.14.: Dependency graph of the implemented EnvDyn components.

Recall from section 5.2.6.1 that probability distributions modelled with ProbDist must

contain type-level descriptions of the corresponding distribution, e.g. distribution type

(such as normal distribution) and parameter types (such as mean and variance). Because

such type-level distribution descriptions are reused in any probability distribution, the

ProbDist.Model.Basic provides a model of the distributiontype package of ProbDist
that already models some basic distribution types and parameters. Thus, the component

can be reused in multiple contexts and reduces the modelling effort.

The EnvDyn.API component provides the basic functionality of Bayesian models, i.e. it

implements the core logic of BNs and DBNs. Just as the ProbDist.API, it takes an EnvDyn
model instance and returns either a BN or DBN implementation. Because BNs and DBNs

are complex structured probability distributions, they provide the core functionalities

of evaluating the probability of certain events and sampling. In addition, the code for

the semi-automated generation of the structural environment model is included in the

component.

Finally, the EnvDyn.Profile component contains the stereotype implementation (i.e. the

InstantiationTag stereotype introduced in section 5.3.2). Thus, the component can be

loaded and applied to any EMF-based architecture model.

5.5. Assumptions and Limitations

In this chapter, we discuss the made assumptions and limitations of the environmental

dynamics metamodel.

Assumptions To model the environmental dynamics of a self-adaptive system in a com-

pact form, we considered DBNs. However, the compact representation of DBNs results

from two assumptions, namely the Markov assumption and the stationary assumption

(see sections 2.4.1 and 2.6.2), which we need to discuss. As discussed in chapter 4 several

widely accepted approaches employ the formal framework of DTMCs or MDPs to predict

125

5. Using Bayesian Modelling to Capture the Environmental Dynamics

the future behaviour of self-adaptive systems or to learn adaptation strategies based on

reinforcement learning. Because DBNs are specialisations of DTMCs, the Markov and

stationary assumptions also apply to DTMCs which have been successfully used in con-

nection with self-adaptive systems. Therefore, we argue that the two assumptions are

not too restrictive. Moreover, the Markov assumption can be sufficiently approximated in

terms of DBNs by adding more random variables to the state description of a self-adaptive

system that makes the Markov assumption more reasonable [105, P.202].

Recall that a DBN is a network of random variables where each random variable is

associated with a probability distribution. If the random variables are continuous, the

resulting state space of the DBN is arguably difficult to analyse. Therefore, we assumed

the random variables to be discrete and multinomial distributed to tackle the state space

explosion problem. One may argue that the multinomial distribution assumption or rather

the discretisation of states is associated with information loss such that the resulting DBN

model might not accurately capture the environmental dynamics. However, as discussed

in chapter 4, in the self-adaptive system community it is widely accepted to consider the

environment as DTMC consisting of discrete states. Moreover, as the EnvDyn metamodel

satisfies the requirementDiscretisation Level (see section 5.2.7), one can adjust the resolution
of the state description to be more fine-grained (at the cost of state space explosion). Finally,

in the context of this work, the EnvDyn metamodel is used for design-time analysis. At

design-time, abstraction is exploited to eliminate details that are not required for analysis.

This simplifies the analysis process and allows predictions of particular system attributes,

e.g. performance or reliability. Even if the result of the prediction does not perfectly reflect

reality, it provides information on whether the initially designed system meets the quality

requirements. In summary, using abstraction is a widely used and accepted method to

predict system attributes using models that sufficiently reflect the runtime behaviour.

Limitations Although the EnvDyn metamodel addresses the state space explosion prob-

lem by discretising the states, the state space still grows exponentially in the number of

environmental variables (see section 4.4.1). As a result, there might still be domains in

which the modelled environment indicates a large state space. In such domains, Monte-
Carlo-Simulation [148] or Importance Sampling [105, P.494] can be applied to explore the

state space for the most probable states. This does not examine the entire state space, but

at least the most probable environmental states, which should be representative enough

for design-time analysis.

Finally, one last limitation of the EnvDyn refers to the modelling process that can be

still cumbersome and error-prone for large and complex structured environment models.

For instance, consider an environmental variable 𝑒1 which depends on, say, three other

environmental variables 𝑒2, 𝑒3, 𝑒4. In this case, the corresponding random variable 𝑋𝑒1 of 𝑒1
forms a CPD with three conditional random variables. In terms of the EnvDyn (or rather

ProbDist) metamodel, the CPD is represented by a table comprising |𝑉𝑎𝑙 (𝑒2) ×𝑉𝑎𝑙 (𝑒3) ×
𝑉𝑎𝑙 (𝑒4) | rows. Even for small numbers of 𝑉𝑎𝑙 (𝑒𝑖) with 𝑖 ∈ {2, 3, 4}, the modelling effort

is not negligible. However, there are still methods (e.g. [105, P.157]) which tackle this

126

5.6. Summary

significant disadvantage by considering different CPD representations. Currently, such

methods are not considered in the EnvDynmetamodel but are the subject of future work.

5.6. Summary

In this chapter, we have introduced the EnvDyn metamodel that enables the modelling of

the stochastic environment in which self-adaptive systems operate.

Therefore, we initially discussed in section 5.1 the requirements that the metamodel must

satisfy, namely domain independence, ADL-agnostic, stochastic dynamics, stochastic

correlations, compactness and discretisation level.

Before presenting the metamodel in section 5.2, we discussed why DBNs are perfectly

suited to represent the environmental dynamics of self-adaptive systems. We then pre-

sented the EnvDyn metamodel that is divided into three packages, namely the template,

static and dynamic package. We have indicated how each of the packages conforms to

the formal semantics of probabilistic template-based models (see section 2.6.3), which

plays an important role in enabling domain-independent application. The section was

concluded with a discussion on the fulfilment of the aforementioned requirements for the

metamodel.

In section 5.3, we outlined how an initially modelled EnvDyn instance is instantiated into

an architecture model which completes the environment model. Hereby, we described a

manual instantiation (e.g. performed by a software engineer) and an annotation-based

instantiation process. The latter allows the annotation of specific objects in the architecture

model for which an EnvDyn model should be instantiated. Based on the annotated archi-

tectural model, we have presented a semi-automated approach to generate the structural

environment model, which only needs to be complemented by a probabilistic description

of the instantiated random variables of the environment model.

Finally, we briefly presented the implementation of the EnvDyn metamodel in section 5.4

and discussed the made assumptions in section 5.5.

127

6. Evaluating Self-Adaptive Systems by
Simulating Experience: The SimExp
Method

In this chapter, we present a model-based method for evaluating self-adaptive systems

(or rather adaptation strategies that self-adaptive systems pursue). The contribution,

presented in this chapter, is based on the publication [158].

So far, in chapter 4, we have discussed the underlying mathematical framework, i.e. MDPs.

Subsequently, in chapter 5 we have discussed how a particular concept of this mathematical

framework, namely environmental dynamics, is captured in a model-based way, i.e. by

reusing concepts from the field of probabilistic graphical models. In section 4.3.1 we

already discussed how the concepts of self-adaptive systems are mapped to concepts that

constitute an MDP. Now, we discuss how the concepts of self-adaptive systems are mapped

into the domain of Model-based Quality Analysis (MBQA), i.e. a branch of MDSD (see

section 2.2) that makes use of models to analyse system attributes (e.g. performance or

reliability). Based on MBQA, we simulate the dynamics and evaluate adaptation strategies

of self-adaptive systems based on the formal framework of MDPs. More specifically, we use

Dynamic Programming (DP) (see section 2.5) which provides a collection of methods for

evaluating, improving or (in general) optimising policies in MDPs (recall that an adaptation

strategy reflects a policy 𝜋). Because our primary goal is to evaluate adaptation strategies,

we use a method of DP referred to as Policy Evaluation (see section 2.5.1) to determine the

quality of a strategy.

The result of this chapter is a method that we denote as SimExp method. SimExp stands

for simulated experience and originates from the field of reinforcement learning where

simulated experience is produced to learn policies ([180, P.131]). Note that we deliberately

use the term method instead of approach because SimExp rather resembles a framework

than a ready-to-use tool. To bemore specific, onemain question that this work is concerned

with is generalisability, i.e. the evaluation of adaptation strategies domain-independently

and without a specific focus (e.g. safeguarding AI black-box components). Technically,

the generic nature of MDPs allows such an analysis at design-time, provided that we can

adequately model the relevant elements of a self-adaptive system. We will see, however,

that the instantiation of the SimExp method always requires domain-specific extensions.

Therefore, we present in this chapter a framework that implements the main building

blocks of the SimExp method that are extended or complemented by domain-specific

concepts for evaluating adaptation strategies.

129

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

This chapter addresses research question RQ1, which is:

Research Question 1: How to evaluate adaptation strategies of self-adaptive

systems at design-time regarding the ability to meet quality objectives?

As presented in section 1.3, research questionRQ1 breaks down into sub-research questions
that, when answered individually, allow the main research question RQ1 to be answered.

The sub-research questions RQ1.1 and RQ1.2 have already been dealt with in previous

chapters. This chapter relates to the sub-research question RQ1.3, which is:

Research Question 1.3: What is an appropriate analytical model to enable design-

time analyses of self-adaptive systems?

As an analytical model for analysing self-adaptive systems, we consider MDPs and employ

methods of DP to evaluate policies 𝜋 , i.e. adaptation strategies.

The chapter is structured as follows: In section 6.1, we generally describe the process

of using model-based techniques to evaluate adaptation strategies. In section 6.2, we

formally describe howwe make use of DP and Monte Carlo methods to evaluate adaptation

strategies. Afterwards, in section 6.3 we present the SimExp method. In section 6.4 we

briefly present implementation details of the SimExp framework. Finally, in section 6.5 we

discuss limitations and assumptions and summarise the chapter in section 6.6.

6.1. Evaluating Adaptation Strategies at Design-time

In this section, we give a brief overview of the formal components of SimExp and their

relation to each other. Furthermore, we have only associated an adaptation strategy with

the concept of a policy in MDPs, but have not provided details on what we consider an

adaptation strategy. We make up for this in this section and start by defining an adaptation

strategy for MAPE-K-based self-adaptive systems.

In literature, the term adaptation strategy is often associated with the plan-phase of MAPE-

K-based self-adaptive systems (e.g. [38, 48]). In some approaches, adaptation mechanisms

are hierarchically structured into Strategies, Tactics and Actions (S/T/A). Moreover, (S/T/A)

strategies consist of several tactics where each tactic composes a set of actions (e.g. [47,

88]). However, we treat the term adaptation strategy somewhat more broadly. In section

4.3.1 we introduced an adaptation strategy abstractly as a deterministic function 𝜋 that

implements the decision procedure for choosing a particular adaptation 𝛿 in a given state

without making any assumptions about the internals of the strategy. However, we view

any activity as part of an adaptation strategy that influences the decision procedure in

selecting an adaptation. In terms of MAPE-K-based implementations, this includes the

activities along the MAPE phases. We argue that design decisions in all MAPE phases (and

not only in the plan-phase) might potentially determine whether an adaptation is selected

130

6.1. Evaluating Adaptation Strategies at Design-time

or not. Consequently, they must be considered as part of the strategy that adheres to the

semantics of policies 𝜋 in MDPs. The following example illustrates our argument:

Example 5. Let us suppose twoMAPE-K-based adaptation strategies 𝜋 , 𝜋 ′. Let us assume

also that 𝜋 ′ is identically implemented to 𝜋 , i.e. ∀𝑆 ∈ S : 𝜋 (𝑆) = 𝜋 ′(𝑆). For simplicity, we

consider 𝜋 and 𝜋 ′ as adaptation strategies that monitor a single property, denoted as 𝜑 , in

the monitor-phase and determine in the analyse-phase whether an adaptation is planned

by evaluating the condition 𝜑 ≥ 𝜀 where 𝜀 is some threshold. If we change 𝜋 ′ slightly by

adjusting the threshold 𝜀 to 𝜀′, we might run into a situation where 𝜋 and 𝜋 ′ do not behave
equally, i.e. ∃𝑆 ∈ S : 𝜋 (𝑆) ≠ 𝜋 ′(𝑆). This means that the mere change of threshold 𝜀′ in the

monitor-phase of 𝜋 ′ alters its behaviour at the same time. ■

Example 5 illustrates how activities of MAPE phases may influence the decision of ex-

ecuting an adaptation. More generally, decisions made by one phase can influence the

actions of other phases. For example, the specific decision on which monitors to use to

perceive the current state in the monitor-phase directly affects the analyse-phase, as the

monitored properties are evaluated to determine whether an adaptation is planned or

not. Furthermore, the plan-phase can use the monitored properties to plan an adaptation.

Taking into account the previous discussion, we define an adaptation strategy as follows:

Definition 29 (Adaptation Strategy). An adaptation strategy of a MAPE-K-based self-
adaptive system is a function 𝜋 : S → Δ that selects an adaptation 𝛿 ∈ Δ in a given state
𝑆 ∈ S. Moreover, it encompasses all activities along the MAPE phases that affect the decision
of selecting an adaptation.

After we defined an adaptation strategy, we now embed the evaluation of such strategies in

the context of MBQA by following the formal semantics of MDPs and DP. Therefore, recall

definition 28 that introduces the stochastic dynamics of a self-adaptive system, which

was:

Definition 28 (Stochastic Dynamics of Self-Adaptive Systems). The dynamics of a self-
adaptive system is a stochastic process (𝑋S𝑡)𝑡∈𝐼𝑁 for which the Markov assumption holds. More
precisely, the stochastic process is captured by a Markov decision process 𝜆𝑆𝐴𝑆 := (S,Δ, 𝑡S, 𝑟S)
where

• S corresponds to the set of self-adaptive system states.

• Δ corresponds to the set of adaptations.

• 𝑡S : S × Δ × S → [0, 1] corresponds to the transition function where
𝑡S = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (according to theorem 4.3.1).

• 𝑟S : S × Δ × S → 𝐼𝑅 corresponds to the reward function encoding quality objectives.

131

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

Also, recall the engineering problem of section 4.4.2, which was, in summary, to develop

an adaptation strategy that maintains quality objectives over time encoded by rewards.

The idea of our approach is to evaluate adaptation strategies using models to address the

engineering problem at design-time. This requires, however, that the concepts of definition

28 must be represented in a model-based way, which are: The environmental dynamics,

the architecture of the managed system, adaptations and the adaptation process 𝜙 itself,

the adaptation strategy and the reward function.

In the last chapter, we already introduced the EnvDyn metamodel which captures the en-

vironmental dynamics (recall that model instances of EnvDyn are denoted as environment

model𝑀E). Recall also that the tupleM := (𝑀C, 𝑀E) indicates that the environment model

𝑀E is generated by the architecture model𝑀C . The architecture model𝑀C is modelled by

an ADL (architecture description language) representing the managed system. Because

the EnvDyn metamodel is ADL-agnostic, no further assumptions need to be made about

the architecture model (except that they must be Ecore-based). Thus, we assume that the

architecture model is given in terms of an Ecore-based ADL (e.g. PCM). Adaptations and

the adaptation process are represented by using model transformations (see section 2.2.2).

Each adaptation is represented by an individual model transformation. The adaptation

process is simulated by applying a transformation to the architectural model𝑀C , as one
obtains a new and adapted model𝑀′C .

These three ingredients, namely the architecture model, environment model and model

transformations, enable the implementation of a framework that simulates the environment

(i.e. by sampling trajectories from the environment model) and executing adaptations

(i.e. applying model transformations) to adapt the managed system (i.e. the architecture

model), if required. Such a framework only needs to be complemented by an adaptation

strategy and a reward function to evaluate the decisions made by the strategy. This is

realised by providing interfaces that need to be implemented to plug in an adaptation

strategy and reward function.

The engineering problem states that adaptation strategies must maintain quality objectives

over time. These quality objectives are encoded by rewards and serve as a basis for evaluat-

ing how well an adaptation strategy satisfies these objectives. However, quality attributes

(such as performance or reliability) are traditionally observed at runtime. Therefore, we

employ simulation and analysis of models (i.e. MBQA) to predict quality attributes at

design-time. For example, the Palladio framework provides a repertoire of analysis and

simulation tools that can be applied to PCM instances to predict quality attributes. The

PCM-based tools allow predicting only a particular set of quality attributes; however,

there are potentially more prediction tools one can take into consideration for design-time

analysis (e.g. Prism [109]). Consequently, the framework must provide extension points to

provide an entire repertoire of tools for implementing the reward function accordingly.

The outlined framework reflects the core idea of SimExp to evaluate adaptation strategies.

An overview of the method is depicted on Figure 6.1.

As mentioned in the beginning, simulating experience originates from the field of rein-

forcement learning. Hereby, simulated experience is considered as a tuple consisting of

four elements, namely a state and selected action at time 𝑡 and the next state and observed

132

6.2. A Formal Framework for Evaluating Adaptation Strategies

SimExp A B

Environment Model

Architecture Model

Model Transformation

Adaptation
Strategy

Reward
Function

Input

Output

User-specific
extension

Legend:

Figure 6.1.: Overview of the SimExp framework.

reward at time 𝑡 + 1. In the context of MDPs, such tuples are produced by simulating the

environment. Recall that the dynamics of the environment are captured by the probability

distribution 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) that describes the probability of observing state 𝑠′ and reward 𝑟 at

time 𝑡 + 1 given the current state 𝑠 and selected action 𝑎 at time 𝑡 (see section 2.4.2). In

principle, two kinds of models are considered to represent 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎), namely distribution

models (i.e. probability distributions that hold all possible outcomes and their probabilities)

and sample models (i.e. models that produce individual samples from 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎)). Both
models are used to generate sequences or trajectories of states by repeatedly sampling

transitions 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) and applying 𝜋 in response to the new sampled state 𝑠′. The simu-

lated experience produced by this procedure enables the evaluation and optimisation of

policies 𝜋 .

In this work, we reuse the idea of simulated experience to evaluate adaptation strategies

𝜋 . Moreover, 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) represents the stochastic dynamics of self-adaptive systems (see

definition 28) and is captured by a sample model to produce simulated experience. We

employ Monte Carlo methods to estimate the quality of an adaptation strategy 𝜋 w.r.t. the

observed reward. Rewards are determined by applying simulation and analysis techniques

from MBQA. As our primary concern is to evaluate adaptation strategies in terms of

maintaining quality objectives, MBQA is used to predict quality attributes for a given state.

That is, we integrate MBQA techniques in the reward function implementation and use

the quality attribute predictions to evaluate decisions made by an adaptation strategy.

6.2. A Formal Framework for Evaluating Adaptation
Strategies

In this section, we present the formal framework that underlies the SimExp method. In the

previous chapters, we discussed that we consider the stochastic dynamics of self-adaptive

systems as MDPs and explained how the concepts of self-adaptive systems are mapped

to the corresponding concepts of MDPs. The advantage of this mapping is that methods

133

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

applicable to MDPs are similarly applicable to self-adaptive systems. In fact, DP (see

section 2.5) provides methods to evaluate or improve policies of MDPs which we reuse

in the context of this work. More accurately, we apply the policy evaluation method

of DP (see section 2.5.1) to evaluate adaptation strategies of self-adaptive systems. In

the following, we discuss how to apply policy evaluation in the context of self-adaptive

systems more formally.

6.2.1. Using Dynamic Programming to Evaluate Adaptation Strategies

In section 2.5.1, we presented policy evaluation which is an approach of DP to evaluate

a policy 𝜋 . More specifically, the value function 𝑣𝜋 of a policy 𝜋 is computed. In the

following, we discuss how we apply policy evaluation to evaluate adaptation strategies.

6.2.1.1. Computing the Value Function of Adaptation Strategies

Algorithm 2.1 of section 2.5.1 illustrates the algorithm of policy evaluation. The algorithm

iteratively updates the value of a state w.r.t. the Bellman equation. For the sake of clarity,

we show the Bellman equation once again:

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝜋 (𝑠′)

)
(2.9)

Also, recall that 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) is a shorthand notation of the conditional probability of

observing state 𝑠′ and reward 𝑟 at time 𝑡 + 1 given state 𝑠 and action 𝑎 at time 𝑡 , i.e.

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) := 𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡
= 𝑎).

The Bellman equation forms the core of policy evaluation and must be transferred into the

domain of self-adaptive systems before using it to evaluate adaptation strategies. First, the

set of states 𝑠 ∈ 𝑆 and set of actions 𝑎 ∈ 𝐴 must be replaced by the self-adaptive system

state space 𝑆 ∈ S and adaptation space 𝛿 ∈ Δ (according to section 4.3.1). Moreover, we

defined an adaptation strategy 𝜋 as deterministic function; that is, the first sum of the

equation (2.9) (i.e.

∑
𝑎 𝜋 (𝑎 | 𝑠)) is therefore omitted and the selected adaptation of 𝜋 is

directly transferred to the conditional part of 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎):

∀𝑆 ∈ S : 𝑣𝜋 (𝑆) =
∑︁
𝑆 ′,𝑟

𝑝 (𝑆′, 𝑟 | 𝑆, 𝜋 (𝑆))
(
𝑟 + 𝛾𝑣𝜋 (𝑆′)

)
(6.1)

In MDPs, the dynamics of the environment are captured by 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎). Applied to self-

adaptive systems, the function reflects the dynamics of self-adaptive systems and factorises

as follows:

𝑝 (𝑆′, 𝑟 |𝑆, 𝛿) :=𝑃𝑟 (𝑋S𝑡+1 = 𝑆′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

=𝑃𝑟 (𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡+1 = 𝑆′, 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

· 𝑃𝑟 (𝑋S𝑡+1 = 𝑆′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

=1𝑟S (𝑆,𝛿,𝑆 ′)=𝑟 · 𝑡S (𝑆, 𝛿, 𝑆
′)

(6.2)

134

6.2. A Formal Framework for Evaluating Adaptation Strategies

Formula (6.2) shows that 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿) factorises into two products. The first product (i.e.

𝑃𝑟 (𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡+1 = 𝑆′, 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)) evaluates the probability of observing a

particular reward 𝑟 given states 𝑆 , 𝑆′ and adaptation 𝛿 . However, definition 28 states that

the reward function is deterministic; that is, one can deterministically compute the reward

value with reward function 𝑟S (𝑆, 𝛿, 𝑆′). This deterministic property allows us to rewrite

the probability of the first product by using the indicator function. The second product

(i.e. 𝑃𝑟 (𝑋S𝑡+1 = 𝑆′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)) refers to the transition function of definition 28.

If we substitute equation (6.2) in equation (6.1), we obtain a new equation which looks as

follows:

∀𝑆 ∈ S : 𝑣𝜋 (𝑆) =
∑︁
𝑆 ′,𝑟

1𝑟S (𝑆,𝜋 (𝑆),𝑆 ′)=𝑟 · 𝑡S (𝑆, 𝜋 (𝑆), 𝑆
′)
(
𝑟 + 𝛾𝑣𝜋 (𝑆′)

)
=
∑︁
𝑆 ′
𝑡S (𝑆, 𝜋 (𝑆), 𝑆′)

(
𝑟S (𝑆, 𝜋 (𝑆), 𝑆′) + 𝛾𝑣𝜋 (𝑆′)

) (6.3)

1𝑟S (𝑆,𝜋 (𝑆),𝑆 ′)=𝑟 cancels out all summands with 𝑟S (𝑆, 𝜋 (𝑆), 𝑆′) ≠ 𝑟 . Thus, the equation

simplifies to a single sum while the reward function is applied directly to compute the

reward for 𝑆 , 𝑆′ and 𝛿 .

Moreover, recall from section 2.4.2 that parameter 𝛾 refers to the discount rate which

determines the extent to which future rewards are taken into account. Also, recall that we

aim to address the uncertainty Parameter over time which is concerned with future effects

caused by adaptations. Consequently, for the rest of this thesis, we define the discount

rate 𝛾 = 1. Thus, we maximally account for future rewards and address the uncertainty

Parameter over time as well as possible. Note that since we define 𝑇 < ∞, the existence
and uniqueness of value function 𝑣𝜋 (𝑆) of policy 𝜋 is guaranteed (see section 2.5.1).

In summary, equation (6.3) corresponds to an adapted version of the Bellman equation by

considering formal concepts of self-adaptive systems and their stochastic dynamics. Now

one might use DP (or more precisely policy evaluation) to compute the value function of

a particular adaptation strategy by recursively evaluating the transition function 𝑡S and

reward function 𝑟S . However, in section 6.2.2, we will see that applying DP is practically

not feasible such that we make use of Monte Carlo methods.

6.2.1.2. Partial Ordering of Adaptation Strategies

In section 2.5, we presented formula (2.8) which induces a partial ordering over the policy

space of MDPs. For better readability, we present the formula again, but apply it to the

domain of self-adaptive systems, i.e. we take into account the concepts of the self-adaptive

system state space and adaptation strategies.

𝜋 ≥ 𝜋 ′⇔ ∀𝑆 ∈ S : 𝑣𝜋 (𝑆) ≥ 𝑣𝜋 ′ (𝑆) (6.4)

However, formula (6.4) has a significant disadvantage. Suppose two distinct adaptation

strategies 𝜋 , 𝜋 ′ where there exist a subset S′ ⊂ S such that ∀𝑆 ∈ S′ : 𝑣𝜋 (𝑆) ≤ 𝑣𝜋 ′ (𝑆) and

135

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

∀𝑆 ∈ S \ S′ : 𝑣𝜋 (𝑆) ≥ 𝑣𝜋 ′ (𝑆). In other words, 𝜋 ′ produces a better expected reward for a

given set of states (i.e. S′) while 𝜋 performs better for the remaining states (i.e. S \ S′).
Naturally, the questions arise of which strategy is better. That is, formula (6.4) provides no

way to compare the two strategies. For optimisation, the formula is sufficient as it holds

for optimal strategies. However, the primary concern of this work is the evaluation; thus,

we must expand formula (6.4) such that any pairs of strategies 𝜋 , 𝜋 ′ can be compared.

Recall that the value function for a strategy 𝜋 is the expected reward when starting in

state 𝑆 and following the respective strategy, i.e. 𝑣𝜋 (𝑆) := 𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋S𝑡 = 𝑆]. The fact

that value function 𝑣𝜋 (𝑆) is conditioned on 𝑆 complicates the comparison of any strategies

𝜋 , 𝜋 ′ and forms the main drawback of formula (6.4). To overcome this drawback, one

can get rid of this condition by considering the overall expected reward of a strategy, i.e.

𝐼𝐸𝜋 [𝑋𝐺𝑡
]:

𝐼𝐸𝜋 [𝑋𝐺𝑡
] :=

∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋S𝑡 = 𝑆] =

∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 (𝑆) (6.5)

In simple terms, the expected reward of a strategy 𝜋 is the sum of all value functions

𝑣𝜋 (𝑆) weighted by the probability of observing 𝑆 at time 𝑡 . By considering the overall

expected reward, one can assign a value to each strategy and makes it, in fact, possible to

compare any strategies 𝜋 , 𝜋 ′. To clarify this idea, we expand formula (6.4) by considering

𝐼𝐸𝜋 [𝑋𝐺𝑡
]:

(6.4)⇒ 𝐼𝐸𝜋 [𝑋𝐺𝑡
] ≥ 𝐼𝐸𝜋 ′ [𝑋𝐺𝑡

]
=
∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 (𝑆) ≥
∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 ′ (𝑆) (6.6)

Again, let us assume two strategies 𝜋 and 𝜋 ′ where 𝜋 ≥ 𝜋 ′ according to formula (6.4).

If this is true, then 𝐼𝐸𝜋 [𝑋𝐺𝑡
] ≥ 𝐼𝐸𝜋 ′ [𝑋𝐺𝑡

] must also hold. If we expand 𝐼𝐸𝜋 [𝑋𝐺𝑡
] (and

𝐼𝐸𝜋 ′ [𝑋𝐺𝑡
], respectively) according to formula (6.5), then we obtain an inequality with two

sums adding the weighted value functions of all states 𝑆 . As a result, to compare two

strategies 𝜋 , 𝜋 ′, one merely needs to add the weighted value functions of each strategy.

This is shown in formula (6.6).

Note that although (6.6) preserves the optimality criterion (i.e. for an optimal strategy: (6.6)

⇒ (6.4)), this is not generally true for any pair of strategies (i.e. for all 𝜋 , 𝜋 ′: (6.6)⇏ (6.4)).

However, we argue that 𝐼𝐸𝜋 [𝑋𝐺𝑡
] is more suitable in terms of evaluating and comparing

strategies as we associate the value of each state with the probability of observing said

state. Thus, state values 𝑣𝜋 (𝑆) with low probability 𝑃𝑟 (𝑋S𝑡 = 𝑆) are less affecting the

overall result and vice versa.

As a last remark, note that we could have simply used the total accumulated reward

generated by a strategy 𝜋 . However, when considering the total reward, convergence is

not guaranteed (unlike (6.6) where the value function converges). This is especially an

issue when comparing strategies because it can not be ruled out that the total rewards for

both strategies still change if we sample more trajectories. Nonetheless, we would like to

stress that the total reward can still be used as a quality measure.

136

6.3. Simulating Experience by Model-based Quality Analysis

6.2.2. Using Monte-Carlo-Methods to Generate Simulated Experience

In the last section, we discussed how to make use of DP (or policy evaluation) to compute

the value function 𝑣𝜋 . Based on the value function, one may assign a real value to a strategy

𝜋 , inducing a partial ordering over the strategy space that forms the basis for comparison

and evaluation. The problem of DP is that it requires complete knowledge of the probability

distribution capturing the dynamics of self-adaptive systems, i.e. 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿) (recall from
equation (6.2)). Generally, this is not the case for self-adaptive systems; this is discussed in

more detail in section 6.3.2.

Therefore, we advocate the use of Monte Carlo methods. More specifically, we apply

Monte Carlo prediction (recall from section 2.5.2) to estimate the value function 𝑣𝜋 . Monte

Carlo prediction is an alternative approach to policy evaluation of DP in terms of handling

the prediction problem. The great advantage of using Monte Carlo prediction is that it does

not require complete knowledge of 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿). The key idea is to generate trajectories by

probabilistic sampling and estimating 𝑣𝜋 based on the samples; such samples are denoted

as Simulated Experience.

More accurately, Monte Carlo prediction generates trajectories by repeatedly drawing

samples from 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿) (represented by a sample model) and following strategy 𝜋 until

termination:

𝑆0, 𝛿0, 𝑟1, 𝑆1, 𝛿1, 𝑟2, 𝑆2, . . . , 𝑟𝑇 , 𝑆𝑇 (6.7)

For the trajectory depicted on (6.7), for example, each 𝛿𝑖 is determined by applying strategy

𝜋 ; each self-adaptive systems state 𝑆𝑖 is sampled from 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿). For each generated

trajectory, the value of a state 𝑆 (i.e. 𝑣𝜋 (𝑆)) can be estimated by averaging the expected

reward observed after the first visit of 𝑆 . The more trajectories are sampled, the more

estimates are averaged such that 𝑣𝜋 (𝑆) converges towards its true value.

6.3. Simulating Experience by Model-based Quality Analysis

After we discussed the formal framework of SimExp in the last section, we now discuss

how we implement the formal concepts by using MBQA. Therefore, we start by discussing

how self-adaptive systems and their related concepts are represented by employing models.

Afterwards, we outline how these models are simulated to produce experience by applying

Monte Carlo prediction.

6.3.1. Modelling Self-Adaptive Systems

In this section, we discuss how the most relevant concepts of self-adaptive systems are

represented by models, namely the environmental dynamics, the managed system, the

adaptations (and associated adaptation process), the reward function and the adaptation

strategy. Each of these is captured by a dedicated concept in the SimExp framework which

is discussed in the following.

137

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

Modelling the Environmental Dynamics The model-based representation of the environ-

mental dynamics has been exhaustively discussed in chapter 5. Therefore, we do not go

into detail here. For the sake of completeness, however, we include this section to show

that the EnvDyn metamodel is an integral part of the SimExp framework and corresponds

to the model-based representation of the environmental dynamics.

Modelling the Software Architecture of the Managed System One of the main concepts

of self-adaptive systems is the managed system, i.e. the system that is supposed to be

adapted at runtime. At design-time, we represent the managed system by using an ADL.

More specifically, we use the PCM (Palladio Component Model) [149] language as ADL.

The reason for choosing PCM is that it is (𝑖) mature and (𝑖𝑖) provides an expressive ADL

to describe component-based software architectures. Although we have implemented

the SimExp framework by first considering PCM instances, we would like to emphasise

that SimExp is generally not limited to PCM, but is ADL-agnostic (similar to the EnvDyn
metamodel). We discussed the PCM (or the Palladio approach in general) in section 2.3.

Representation of Adaptations by Model Transformations We abstract an adaptation 𝛿 by

using model transformations (see section 2.2.2). Recall that our approach depends on EMF

and thus on Ecore-based ADLs. Therefore, we must consider MTLs (model transformation

languages) that apply to Ecore-based models. Fortunately, EMF provides a set of MTLs

that can be used to define model transformations. More specifically, we consider in-place

model transformations, i.e. transformations that transform a model𝑀 to model𝑀′ where
the metamodel of𝑀 and𝑀′ is the same. Thus, the result of a model transformation, when

applied to a PCM instance 𝑀C , is a new PCM instance 𝑀′C representing the managed

system after executing an adaptation.

Representation of the Adaptation Strategy The adaptation strategy implements the adap-

tation logic. Thus, it contains a sequence of control structures to plan a concrete adaptation.

Representing such adaptation logic with a dedicated DSL is challenging, as one has to

find a balance between expressiveness and domain specificity. However, the development

of such a language is not in the scope of this work; therefore, we use a general-purpose

language (e.g. Java) to represent the adaptation strategy.

More specifically, the SimExp framework provides an entry point where software engineers

can plug in their strategy implementations. The excerpt of the interface is depicted on

listing 6.1. We do not go into the technical details of the listing here, but rather into the

interaction of the individual methods. To implement the strategy, a software engineer

must implement a set of methods that refer to the monitor-, analyse-, and plan-phase

and a method which returns an empty adaptation 𝛿∅ (according to the semantics of

empty adaptations defined in property 1). One might miss the method that represents

the execution phase of a MAPE cycle; however, we do not consider the execution of an

adaptation as part of the adaptation strategy, which, in fact, corresponds to the application

of model transformations and is located in a different part of the code. The main control

138

6.3. Simulating Experience by Model-based Quality Analysis

flow is already implemented in the select-method and is complemented by the concrete

adaptation logic contained in the remaining methods. Note that the excerpt from the

listing 6.1 is a snapshot that may change over time (due to code refactorings).

1 public abstract class AdaptationStrategy<T> implements Policy<T> {

2

3 ...

4

5 @Override

6 public T select(State source, Set<T> options) {

7 monitor(source, knowledge);

8 if (analyse(source, knowledge)) {

9 return plan(source, options, knowledge);

10 }

11 return emptyReconfiguration();

12 }

13

14 protected abstract void monitor(State source, SharedKnowledge knowledge);

15

16 protected abstract boolean analyse(State source, SharedKnowledge knowledge);

17

18 protected abstract T plan(State source, Set<T> options, SharedKnowledge

knowledge);

19

20 protected abstract T emptyAdaptation();

Listing 6.1: Adaptation strategy to be implemented.

Representation of the Reward Function Just like the adaptation strategy, the reward

function is represented at code level. In order to plug in a reward function implementation

into the SimExp framework, one must implement a dedicated interface (see listing 6.2)

consisting of a single method.

1 public interface RewardEvaluator {

2

3 public Reward<?> evaluate(StateQuantity quantifiedState);

4 }

Listing 6.2: Reward function to be implemented.

The evaluate-method includes a single argument containing the state quantities, i.e. the

predicted quality attributes of the managed system provided by Palladio (or rather its

simulation and analysis tools) or provided by external tools, e.g. Prism. Based on the

predictions, a software engineer determines the resulting reward, e.g. by checking quality

objective violations. Also, quality objective preferences can be encoded within the reward

function implementation. Similar to the adaptation strategy, note that the excerpt from

the listing 6.2 is a snapshot that possibly changes over time.

139

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

6.3.2. Evaluating Adaptation Strategies by Generating Simulated
Experience

In the last section, we outlined the (predominantly model-based) representation of the

self-adaptive system concepts that are relevant for evaluating adaptation strategies. In this

section, we discuss in more detail how the individual concepts are mutually interacting to

generate trajectories or simulated experience.

Therefore, consider algorithm 6.1 which shows the main procedure of the SimExp frame-

work, i.e. the procedure for probabilistically generating trajectories. SimExp inputs the

initial architecture model 𝑀𝐶0
, environment model 𝑀E , a set of model transformations

denoted as𝑀Δ, the implemented reward function 𝑟S and adaptation strategy 𝜋 . Moreover,

some configuration-specific parameters are passed as well: The number of trajectories to

sample (i.e. 𝑛) and the horizon (i.e. the final step 𝑇 of a trajectory). First, a list (denoted

as T ∗𝜋) is initialised. The list maintains all sampled trajectories where each trajectory

is denoted as 𝜏 . Note that we reuse notations of section 4.4.1, i.e. T𝜋 that describes the

subspace of the trajectory space T induced by a policy 𝜋 and a trajectory 𝜏 . In terms of

algorithm 6.1, T ∗𝜋 ⊆ T𝜋 ; depending on the size of 𝑛 not all trajectories might be sampled,

but a representative subset captured by T ∗𝜋 . Also, note that we originally defined a trajec-

tory to be a sequence of states; technically, however, we do not merely consider the states

but also the corresponding adaptations (applied in a given state) and the achieved reward

for taking said adaptation.

The algorithm contains two main loops, an outer and an inner loop. The outer loop is

controlled by parameter 𝑛 and executes the inner loop until all trajectories are sampled

(specified by 𝑛). The inner loop is controlled by horizon 𝑇 , i.e. the number of states to

sample or the length of each trajectory. The main logic of the inner loop, however, is to

generate simulated experience, i.e. states, adaptations, state transitions and rewards.

Each trajectory starts with sampling the initial state. The initial state sampling is cap-

tured by the code block following the if -statement when condition 𝑖 = 0 evaluates to

true. Because a state consists of an architectural configuration and environmental state,

both variables must be generated (i.e. an initial architectural configuration 𝐶0 and an

initial environmental state 𝐸0). The initial architectural configuration refers to the initial

architecture model 𝑀𝐶0
passed to the algorithm. The initial environmental state 𝐸0 is

generated by sampling from the initial distribution captured by the BN (Bayesian network)

B0 which is part of the environmental model𝑀E . Both variables form the initial state and

are appended to 𝜏 (which has been initialised before).

In all other cases (i.e. 𝑖 > 0) the else-block of the inner loop is executed. Hereby, the last

state 𝑆𝑖−1 appended to 𝜏 is retrieved as it serves as a basis to determine the adaptation,

reward and next state. Thus, the adaptation 𝛿𝑖−1 is selected by triggering adaptation

strategy 𝜋 w.r.t. 𝑆𝑖−1, i.e. by invoking the code which implements the interface shown in

listing 6.1. Afterwards, the selected adaptation 𝛿𝑖−1 is applied by executing adaptation

process 𝜙 (𝐶𝑖−1, 𝛿𝑖−1); that is, the model transformation representing 𝛿𝑖−1 is applied to

architectural model𝑀𝐶𝑖−1 . As a result, we obtain the next architectural configuration 𝐶𝑖 .

140

6.3. Simulating Experience by Model-based Quality Analysis

Algorithm 6.1: Core process of SimExp: probabilistic trajectory sampling

Input: The policy to be evaluated 𝜋 ,

reward function 𝑟S ,
initial architecture model𝑀𝐶0

,

environment model𝑀E ,
model transformations𝑀Δ,

number of trajectories to sample 𝑛,

horizon 𝑇

Output: Estimated quality of strategy 𝜋 , i.e. 𝐼𝐸𝜋 [𝑋𝐺𝑡
]

1 T ∗𝜋 ← 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 () // initialise with empty list

2 while number of trajectories 𝑛 is not reached do
3 𝜏 ← 𝑒𝑚𝑝𝑡𝑦𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 () // initialise with empty sequence

4 forall 𝑖 < 𝑇 do
5 if 𝑖 = 0 then
6 𝐸0 ← 𝑥 ∼ B0 ∈ 𝑀E // sampling of initial environmental state

from initial distribution B0
7 𝐶0 ← 𝑀𝐶0

8

9 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, (𝐸𝑖,𝐶𝑖))
10 end
11 else
12 𝐸𝑖−1,𝐶𝑖−1 ← 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒 (𝜏) // i.e. 𝑆𝑖−1
13 𝛿𝑖−1 ← 𝜋 (𝑆𝑖−1) // w.r.t. 𝑀Δ

14 𝐶𝑖 ← 𝜙 (𝐶𝑖−1, 𝛿𝑖−1)
15 𝐸𝑖 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝑁𝑒𝑥𝑡 (𝑆𝑖−1, 𝑀E)
16 𝑟𝑖 ← 𝑟𝑆 (𝑆𝑖−1, 𝛿𝑖−1, 𝑆𝑖) // 𝑆𝑖 := (𝐸𝑖,𝐶𝑖)
17

18 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝛿𝑖−1)
19 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝑟𝑖)
20 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝑆𝑖)
21 end
22 end
23 𝑎𝑝𝑝𝑒𝑛𝑑 (T ∗𝜋 , 𝜏) // appends sampled trajectory 𝜏

24 end
25 return 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(T𝜋)

The next environmental state 𝐸𝑖 is sampled w.r.t. 𝑆𝑖−1. For now, we abstract the details
by the sampleNext-method and defer the discussion to section 6.3.2.1 because it relates to

the interdependency of architecture and environment that we discussed in section 4.3.2.

After determining the environmental state 𝐸𝑖 (which completes state 𝑆𝑖), one can compute

the reward 𝑟𝑖 by applying reward function 𝑟S . Adaptation 𝛿𝑖−1, reward 𝑟𝑖 and state 𝑆𝑖 are

appended to 𝜏 which is appended to T ∗𝜋 after𝑇 runs of the inner loop. Finally, T ∗𝜋 is further

141

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

, , ,

Load
Balancer

App
Server1

App
Server2

<<ExternalCall>>
AppServer1

<<ExternalCall>>
AppServer2

<<implements>>

Load
Balancer

App
Server1

App
Server2

<<ExternalCall>>
AppServer1

<<ExternalCall>>
AppServer2

<<implements>>

Figure 6.2.: A probabilistically sampled trajectory of the load balancer example system adopted from [158].

analysed to estimate the expected reward of strategy 𝜋 . Again, we abstract the details by

the estimateValueFunction-method and defer the discussion to section 6.3.2.3.

Note that lines 12-16 of the algorithm reflects the logic of sampling rewards and states

from distribution 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿). Formula (6.2) indicates how 𝑝 (𝑆′, 𝑟 |𝑆, 𝛿) factorises into two

products where it can be seen that only the next state (w.r.t. 𝑡S) must be sampled as

the reward function is deterministic. More generally, the entire logic of the inner loop

reflects the sampling process of Monte Carlo prediction (as discussed in section 6.2.2 and

illustrated by (6.7)). The trajectories are sampled w.r.t. the decisions made by strategy 𝜋

and as dictated by the Bellman equation (6.3) (or their adjusted version for self-adaptive

systems).

Example 6. Consider the load balancer example system from section 1.5.1. In the load

balancer example system, the adaptation problem is about adjusting the distribution factor

(which determines how the incoming load is distributed onto two application servers) to

keep the response time and resource utilisation of the system as low as possible in the

presence of uncertainties such as varying workloads and resource failures. For simplicity,

we discretise the workload into three levels, namely low, medium, high. The resource
failure of a server is described as a binary random variable.

Suppose a predefined adaptation strategy 𝜋 that has been developed by a software engineer

and which is supposed to be evaluated by the SimExp framework. In addition, let us

assume that all required models are specified and all required interfaces implemented.

Now, consider Figure 6.2 which depicts an example trajectory of the load balancer system

following strategy 𝜋 sampled by the SimExp framework.

It shows a possible trajectory through the load balancer system state space and illustrates

two possible state transitions, i.e. from 𝑆𝑡−1 to 𝑆𝑡 and from 𝑆𝑡 to 𝑆𝑡+1. More precisely, 𝑆𝑡−1

142

6.3. Simulating Experience by Model-based Quality Analysis

to 𝑆𝑡 illustrates a transition where only the environmental state is changing; that is, the

system has not been adapted by the adaptation strategy (𝜋 (𝑆𝑡−1) = 𝛿∅) at time 𝑡 − 1, but
the environmental state (or more specifically, the workload) has changed at time 𝑡 . The

environmental state change is determined by the sampleNext-method which we discuss

in section 6.3.2.1. From 𝑆𝑡 to 𝑆𝑡+1, one can observe an adaptation of the architectural

configuration. The environmental state transition from time 𝑡 − 1 to 𝑡 could have resulted

in a self-adaptive system state that violates the quality objectives. As the workload variable

increases to a higher level, the response time of the system increases equally such that the

strategy 𝜋 triggers an adaptation in response to the environmental change, i.e. by adapting

the distribution factor. As the SimExp framework uses the prediction tools of the Palladio
framework, the increased workload is also noticeable in the predicted response time of

the system. When the adaptation strategy is invoked again, the increased response time

is detected and a corresponding adaptation, i.e. a model transformation, is planned. The

model transformation is carried out in such a way that a new architecture configuration

(represented by the transformed architecture or the PCM model) is created that indicates

an improvement in the predicted response times. ■

So far, we deliberately neglected detailed discussions about how the sampleNext-method,

estimateValueFunction-method of algorithm 6.1 are implemented and how we make use of

software quality prediction approaches to compute rewards. This is done in the subsequent

sections.

6.3.2.1. Encoding Interdependency Assumptions of Software Architecture and
Environment

In the last section, we presented the core process of the SimExp framework (see algo-

rithm 6.1). Hereby, we abstracted the details of the procedure for sampling environmental

states by the sampleNext-method. In this section, we discuss the internals of said method

and how it relates to the interdependency of software architecture and the environment

from section 4.3.2.

Therefore, recall theorem 4.3.1 on page 83 which states that the transition function of a

self-adaptive system factorises to:

𝑡S = 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

Moreover, in the last section, we discussed how the core process of SimExp follows the

Bellman equations (with the difference that we sample from 𝑡S instead of summing over

all possible subsequent states). If we substituted the transition function 𝑡S of the adjusted

Bellman equations (6.3) from page 135, we obtain:

∀𝑆 := (𝐶, 𝐸) ∈ S : 𝑣𝜋 (𝑆) =
∑︁

𝑆 ′:=(𝐶′,𝐸′)
𝑃𝑟 (𝑋E𝑡+1 = 𝐸′ | 𝑋C𝑡 = 𝐶,𝑋E𝑡 = 𝐸)

· 1𝜙 (𝐶,𝜋 (𝐶))=𝐶′
(
𝑟S (𝑆, 𝛿, 𝑆′) + 𝛾𝑣𝜋 (𝑆′)

) (6.8)

143

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

As mentioned earlier, the core process of SimExp samples trajectories according to the

dynamics described by the Bellman equations or their adjusted version (6.8). That is, it is

not summed over all possible subsequent states 𝑆′ but sampled from 𝑡S which factorises

into two products according to theorem 4.3.1. Hereby, the sampleNext-method implements

the procedure of sampling from 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡).

However, the dynamics of the distribution depend on the domain in which the self-adaptive

system operates. Furthermore, at design-time it may be unclear what the exact distribution

of 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) looks like. Therefore, assumptions must be made. By default, it is

assumed that the environment is conditionally independent of the software architecture

(or architectural configuration) if the last environmental state is given:

(𝑋E𝑡+1 ⊥⊥ 𝑋C𝑡 | 𝑋E𝑡) (6.9)

Based on that assumption the distribution 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) simplifies to 𝑃 (𝑋E𝑡+1 | 𝑋E𝑡).
For the load balancer example system, this might be a reasonable assumption because

regardless of how the distribution factor is adapted, it has probably no effect on how the

workload and resource failure variables evolve. In section 4.3.2, however, we discussed

that assumption (6.9) does not hold for the DeltaIoT system. Therefore, domain-specific

assumptions about the distribution must be encoded in some way to account for them

during the sampling process of the SimExp framework.

Currently, in the SimExp framework, domain-specific assumptions (i.e. domains where

(6.9) does not hold) are implemented by using a dedicated interface. An alternative

approach, however, would be to encode the interdependency assumption directly in

the environment model, i.e. 𝑀E . That is to say, dedicated architectural template variables

must be considered.

Recall from chapter 5 that the core of the EnvDyn metamodel are template variables which

encode the probabilistic structure of domains at the type level. At this point, the template

variables are extended by the architecture-specific templates, which are related to the

environment-specific template variables on which they have an influence. Afterwards, the

template variables are instantiated in the architecture model as usual and the respective

probability distributions are specified accordingly. Thus, changes in the architecture model

(triggered by model transformations) are considered by the expanded environment model

𝑀E , if the architectural change influences the environment. Finally, 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is
evaluated by sampling from the modelled distributions described by𝑀E .

Example 7. In the DeltaIoT system, an architecture-specific template might refer to the

transmission power as it directly affects the SNR (signal-to-noise ratio) of a communication

link. That is, a template variable associated with the transmission power must be created

and added to the existing (and environmental-specific) template variables. Moreover, the

transmission power template must be related to the SNR template variable to indicate that

the transmission power influences the SNR. Subsequently, the templates are instantiated

in the architecture model as usual, i.e. the transmission power template refers to the

architectural elements that represent the transmission power. Thus, adaptations (or

model transformations) that adapt the transmission power are considered by the expanded

144

6.3. Simulating Experience by Model-based Quality Analysis

environmentmodel such that the next environmental state is determinedw.r.t. themodelled

probability distributions (described by the ProbDist metamodel). ■

6.3.2.2. Using Software Quality Prediction to Determine Rewards

The quality of an adaptation strategy is determined by evaluating how good quality

objectives are maintained. For this purpose, at each time 𝑡 the reward function 𝑟S evaluates
the decisions made by the strategy. Afterwards, the generated rewards are evaluated to

estimate the expected reward of a strategy (details follow in section 6.3.2.3). In this section,

however, we discuss how particular rewards are generated by using quality prediction

tools (such as those provided by the Palladio framework).

Based on predicted quality attributes, a reward signal or value is determined. The calcula-

tion of a reward is context specific because it depends on (𝑖) the quality objectives specific

to that context and (𝑖𝑖) their prioritisation. For instance, in the load balancer example

system, the quality objectives that must be dealt with are response time and resource

utilisation. The Palladio framework provides prediction tools to predict the response

time and resource utilisation of a modelled PCM instance. That is, for each state, quality

predictions are made which serve as a basis to generate a reward signal. For example, a

trivial reward generation procedure could simply return a positive reward (e.g. +1) when

all quality objectives are satisfied or a negative reward signal (e.g. -1) whenever one of the

predicted quality attributes is violated. In some application contexts, however, a software

engineer prefers some quality attributes more than others. For example, in terms of the

load balancer system, one may prefer to keep the system rather more responsive than

economising resource utilisation. In this case, the reward function can be adapted in the

sense that +1 is returned when the response time and resource utilisation attributes are

satisfied, 0 if at least the response time is satisfied and -1 otherwise. As a result, adaptation

strategies that keep the system responsive are likely to generate a larger expected reward

signal.

In this thesis, we use PCM as ADL to model software systems. Again, we want to stress

that our approach is not limited to PCM as ADL but is rather ADL-agnostic. PCM (or the

Palladio approach in general) provides a set of prediction tools that can be used to predict

certain quality attributes. However, the quality predictions are dependent on the current

environmental state, e.g. when the environmental variables of the load balancer example

indicate a high workload, the predicted response time is high as well (assuming that the

current architectural configuration is balancing the load not ideally). As the workload

variable in PCM is associated with the usage model, the current environmental state (or

rather the variable that is associated with the workload) must be synchronised with the

current state of the usage model, i.e. the model element that describes the workload.

That is, whenever the environmental variable of the workload takes a different value,

the usage model of the PCM must be synchronised with said variable (similarly, this

applies to resource failures). Therefore, there must be a procedure which synchronises the

current environmental state with the current PCM instance. Thus, at each time step, the

145

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

Analytical
Model

M2M-, M2Text-
Transformation

,

Load
Balancer

App
Server1

App
Server2

<<ExternalCall>>
AppServer1

<<ExternalCall>>
AppServer2

<<implements>>

Prediction

Figure 6.3.: Transformation of the environment- and architecture model to an analytical model for quality

prediction and reward evaluation.

predicted quality attributes take into account the current state of the environment. This

synchronisation procedure can be generalised as depicted on Figure 6.3.

Instead of thinking of a synchronisation procedure, one can consider a model transfor-

mation procedure which takes as input the current environmental state and architectural

configuration (e.g. the PCM instance) and transforms both models into an analytical model.

Generally, speaking for each supported ADL there might be a transformation procedure

that transforms the architecture and environment model. The transformed model forms

the analytical model (e.g. queuing networks, Petri nets or Prism specifications) which is

used by other tools (e.g. such as Prism) to predict quality attributes. For example, in the

DeltaIoT system, the considered quality attributes encompass the consumed energy of the

system and packet loss. Both quality attributes cannot be predicted by the tools provided

by Palladio. However, the PCM instance and environment model can be transformed (by

using an M2Text transformation) into Prism specifications which are passed to the Prism

tool to predict the energy consumption and packet loss of the current state. Finally, the

prediction of the quality attributes is passed to the reward function (as discussed before)

and forms the primary source to evaluate decisions made by an adaptation strategy.

6.3.2.3. Analysing Generated Trajectories to Evaluate Adaptation strategies

In this section, we explain how the estimateValueFunction-method is implemented. The

sampled trajectories T ∗𝜋 serve as a basis to estimate the value function 𝑣𝜋 and must be

further evaluated. For this estimation, we make use of the first-visit Monte Carlo method

that we introduced in section 2.5.2. The first-visit Monte Carlo method has been shown in

algorithm 2.2. The difference between algorithm 6.1 and algorithm 2.2 is that the trajectory

sampling is done beforehand, i.e. T ∗𝜋 contains all samples that can be evaluated as usual

by the first-visit method to estimate 𝑣𝜋 .

Moreover, for the final evaluation of an adaptation strategy, we use formula (6.6) which

we derived in section 6.2.1.2 for the partial ordering of strategies, i.e. the expected reward

146

6.4. Implementation

of a strategy 𝜋 : 𝐼𝐸𝜋 [𝑋𝐺𝑡
]. More specifically, we are interested in the expected reward of

strategies starting at time 𝑡 = 0, i.e. 𝐼𝐸𝜋 [𝑋𝐺0
]. As a result, the expected reward is calculated

by considering only the initial states S0 ⊂ S which forms a subset of the entire state space

of self-adaptive systems (as there is only one initial architectural configuration). That is,

the expected reward of a strategy is calculated as follows:

𝐼𝐸𝜋 [𝑋𝐺0
] =

∑︁
𝑆∈S0

𝑃𝑟 (𝑋S0 = 𝑆) · 𝑣𝜋 (𝑆) (6.10)

Thus, only trajectories with probabilities greater than zero are considered. This is reason-

able because the expected reward of trajectories that start in states 𝑆 ∉ S0 is zero (as they

can never occur). It could be argued that this is insufficient because only a subset of states

is considered in the value function and does not reflect the overall value of the strategy;

however, the recursive nature of the Bellman equations shows that other states are also

visited such that their values are implicitly considered. Moreover, it is the quality of a

strategy to move to states that generate a higher expected reward (in terms of the value

function).

Finally, note that although the estimateValueFunction-method specifically estimates the

value function 𝑣𝜋 of strategy 𝜋 w.r.t. its generated trajectories T ∗𝜋 , we can also generalise

the method. More specifically, based on the trajectory space, one can apply other quality

measures to evaluate 𝜋 such as the total accumulated reward generated by 𝜋 . Nonetheless,

we use 𝐼𝐸𝜋 [𝑋𝐺0
] as quality measure but would like to emphasise that the SimExp framework

is not restricted to 𝐼𝐸𝜋 [𝑋𝐺0
].

6.4. Implementation

In this section, we briefly provide an overview of the implementation details of the SimExp
framework. Therefore, consider Figure 6.4 which shows an excerpt of the dependency

graph of the implemented components of SimExp. For clarity, however, note that Figure 6.4
provides only an excerpt with a simplified view of the component structure; in fact, more

components are involved. Therefore, we aggregated related components into a single

component (e.g. SimExp.PCM.*).

Basically, the SimExp.Markovian component implements all relevant concepts of MDPs

which are reused in the SimExp.Core component. The SimExp.Core component provides

the basic and ADL-agnostic functionality (which encompasses the quality attribute-based

reward function, Monte Carlo prediction, representation of actions as model transforma-

tions, etc.) of the SimExp framework. Therefore, the SimExp.PCM.* components provide

the corresponding implementations to use SimExp in conjunction with PCM as ADL.

Finally, the SimExp.Workflow component encapsulates the logic to structure the execution

of SimExp based on several job implementations.

147

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

SimExp.Markovian

ProbDist.*

SimExp.Core

EnvDyn.*

SimExp.PCM.* PCM.*

SimExp.Workflow

Figure 6.4.: Dependency graph of the implemented SimExp components.

6.5. Assumptions and Limitations

In the following, we discuss the assumptions and limitations of the SimExp framework.

Assumptions In DP, there is the assumption of a perfect environment model (i.e. the

MDP). Although this is a strong assumption, the underlying concern of DP is optimisation.

The primary concern of our SimExp method, however, is evaluation; that is, we are merely

interested in deriving a quality value for a strategy to give them an order of magnitude

and to make them comparable. As we evaluate at design-time, where inaccuracies are

accepted anyway due to abstraction, it is acceptable to assume imperfect models. In

addition, reinforcement learning methods greatly build upon DP without assuming perfect

models and yet are successfully used in various contexts.

In section 6.3.2.2, we discussed the general transformation procedure which takes the

current architecture model and environment model and transforms them into an analytical

model for predicting quality attributes. Hereby, we assumed that the information provided

by both models is sufficient to derive a respective analytical model (e.g. Prism specifica-

tions). However, this is a weak assumption because the SimExp method is conceptually

ADL-agnostic. That is, if one may use a particular quality prediction tool (say one that

cannot be derived by using PCM as ADL), a different ADL can be used which contains the

required information for the transformation procedure.

Limitations Currently, the reward function, adaptation strategy and interdependency

assumptions regarding the architecture and environment are not represented by models

148

6.5. Assumptions and Limitations

but merely considered by implementing dedicated interfaces. That is, a software engineer

must be familiarised to some extent with the implementation details. However, in future

work, we plan to reuse existing models to represent also adaptation strategies, reward

functions and interdependency assumptions with models. For example, as our approach

is quality-driven, in the work of Becker [15, P.87] a metamodel for describing service

level objectives (e.g. tolerance ranges, violation ranges, etc.) is of particular interest and

can be potentially reused to model reward functions. Regarding the interdependency

assumptions, we already discussed in section 6.3.2.1 how the environment model can

be expanded to encode such assumptions. Regarding the model-based description of

adaptation strategies, we have already envisioned a formal domain-specific language

for describing MAPE-K-based adaptation strategies [147], which is the subject of future

work.

Just as the environmental dynamics, the SimExp method suffers the state space explosion

problem as the architectural configuration space and the state space of the environmental

dynamics grow exponentially. We address the state space explosion problem by using (𝑖)
abstraction and (𝑖𝑖) Monte Carlo methods. The former is addressed by using architecture

models to focus only on the necessary details (i.e. the architectural elements which affect

the quality of the system) which reduces the configuration space. In addition, by discretis-

ing an environmental state to an arbitrary level, the number of environmental states is

reduced as well (recall the discretisation level property of the EnvDyn metamodel from

section 5). Finally, we employ Monte Carlo methods to sample representative trajectories

of the trajectory space to estimate the overall quality of an adaptation strategy. By consid-

ering the previously given arguments, we argue that for most of the domains the state

space explosion is sufficiently addressed. However, as there are no guarantees there might

be systems and domains that indicate such a high degree of complexity which makes it

impossible to deal with them at design-time. We discuss how to deal with such domains

in chapter 8.

In the work of Stier [178], so-called Transient Effects of self-adaptive systems are described

which relate to execution times and consumed resources of applied adaptations. In other

words, transient effects describe costs associated with adaptations. Moreover, Stier presents

an approach to how such transient effects can be analysed at design-time. Our SimExp
method, however, does not yet consider transient effects because they are not in the scope

of this thesis but are subject to future work.

Finally, it is worth mentioning that the presented SimExp framework is supposed to be

considered as a method. That is, if the approach is instantiated in a specific domain

(e.g. IoT), some domain-specific extensions must be done. For the DeltaIoT system, for

instance, we had to extend the SimExp framework to analyse the packet loss and energy

consumption (as we will see in chapter 9). However, as our primary concern is to evaluate

adaptation strategies that safeguard AI black-box components no more extensions as the

ones presented in this work are required.

149

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

6.6. Summary

In this chapter, we presented the SimExp method. First, we discussed in section 6.1 how

we generally evaluate adaptation strategies at design-time. In section 6.2, we presented the

formal semantics of the SimExp method. Afterwards, we discussed in section 6.3 how the

formal semantics are implemented by using methods from MBQA. Hereby, we indicated

how all relevant concepts are represented by models (or at the code level) and how they

are interacting to sample trajectories for estimating the quality of an adaptation strategy.

In section 6.4, we discussed implementation details of the SimExp framework. Finally, we

discussed assumptions and limitations in section 6.5.

150

Part IV.

Safeguarding Uncertain AI Black-Box
Components

7. Reliability Prediction of Architectural
Safeguards for AI-enabled Systems

In this chapter, we discuss our reliability prediction approach to evaluate architectural safe-

guards for AI-enabled systems at design-time. Within a software system, an AI component

has specific responsibilities (e.g. object recognition) on which other components depend

(and thus on the correctness of the prediction results). Therefore, the consequences of

an incorrect prediction manifest themselves in other parts of the system and have global

effects. Furthermore, Dreossi et al. [54] pointed out that incorrect predictions do not

necessarily force the system to fail: In automatic braking systems, for example, a suffi-

ciently distant car that has not been correctly detected by an AI-based object recognition

component has no safety-critical impact at that moment. Therefore, we focus on reliability

attributes of the system as a whole. For this purpose, we start to explain how the reliability

approach is applied to static software systems safeguarded by non-adaptive approaches

(e.g. architectural patterns) and generalise the approach to self-adaptive systems after-

wards. The contribution, presented in this chapter, is based on the publication [160, 159].

In addition, section 7.1 is based on the Master’s thesis of Dennis Marvin Bäuml [14] which

was supervised by the author of this thesis.

In the previous chapters, we discussed how to represent the environmental dynamics

and analysed self-adaptive systems by using model-based techniques. Now, we focus

on software systems with AI components where self-adaptive systems are specifically

considered as safeguards to deal with potential erroneous behaviour to which AI compo-

nents are susceptible. Thus, the concepts presented in this chapter build strongly upon

the concepts of the previous chapters, i.e. SimExp framework and EnvDyn metamodel.

More specifically, we use the EnvDyn metamodel not only to represent the environmental

dynamics of the system but also to model the uncertainties or environmental variables

(which are, in fact, the same thing) that affect the predictive uncertainty (i.e. the failure

probability of the prediction) of the AI component. Moreover, we instantiate the SimExp
method from chapter 6 to evaluate adaptation strategies that are supposed to safeguard

AI black-box components. For this purpose, however, we need to take a step back and

develop additional concepts for evaluating the reliability of AI-enabled static software

systems that complement the SimExp framework in the next step; this refers to research

question RQ2:

Research Question 2: How can software systems that contain AI black-box

components be evaluated in terms of meeting reliability attributes at design-time?

153

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

One of the major problems in connection with safeguarding AI black-box components is

that we are not able to determinewhether a prediction is correct or not aswe cannot observe

the true state; we call this the Hidden State Problem. However, the incorrect prediction is

propagated to the other components of the system which rely on the prediction. In the

HRI example system from section 1.5.3, for instance, the trajectory planning component

highly depends on the AI-based object detection component to avoid collisions while

computing the trajectory. This means that before analysing adaptation strategies, one

must first consider how to deal with the fact that the state of the AI components is not

observable. This directly refers to research question RQ2.1:

Research Question 2.1: How to deal with the hidden state problem of AI black-box

components?

The black-box property of AI components makes it difficult not only to safeguard them at

runtime but also to analyse them at design-time. For example, how can one analyse the

reliability attributes of an AI-enabled system when the true state of the AI component is

hidden? How are AI black-box components included in reliability prediction when the

input data for which they produce faulty behaviour is unknown? Moreover, Seshia et al.

[165] enumerated several challenges that make modelling AI-enabled systems challenging.

One of these challenges relates to high-dimensional input spaces that one encounters

when dealing with AI (or deep learning). The input space is crucial for how reliably an

AI component works and must therefore be taken into account to some extent in the

analysis. However, high dimensional input spaces, such as the pixel space in perception

tasks, are way too large to be analysed. Dealing with the aforementioned problems relates

to research question RQ2.2:

Research Question 2.2: How to systematically consider the influence of pre-

dictive uncertainty and causally related environmental variables in the reliability

prediction?

After dealing with the problems of RQ2, we can generalise the concepts to evaluate adap-

tation strategies of self-adaptive systems that are safeguarding uncertain AI components

and relates to research question RQ3:

Research Question 3: How can adaptation strategies of self-adaptive systems that

safeguard uncertain AI black-box components be evaluated in terms of reliability at

design-time?

When we speak of AI-induced uncertainty, we refer to predictive uncertainty [89], i.e.

potentially erroneous predictions of an AI component that could remain undetected and

propagate to the rest of the system. Moreover, we consider predictive uncertainty as first-

order uncertainty. Generally, uncertainty of AI is classified into Epistemic and Aleatoric
uncertainty [139, 89, 167, 163]. Epistemic uncertainty refers to the “lack of knowledge” of

an AI model which can be reduced by more training data; aleatoric uncertainty relates

154

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

to irreducible random phenomena in the input data of an AI model, e.g. such as distinct

weather conditions or noise. Therefore, we also consider uncertainties that can be either

epistemic or aleatoric, but which directly affect predictive uncertainty, and refer to these

as second-order uncertainties. Such uncertainties possibly refer to factors observed in the

environment or derived from the input data which allow conclusions to be drawn about the

state of an AI component. To avoid confusion, we note that we use the terms uncertainties

and properties interchangeably. In section 7.1, we rather use the term uncertainties and

in section 7.2 we use the term properties. The reason for this is that we begin to discuss

architectural means for dealing with AI-related uncertainties of second order in static

software systems. We then discuss how the concepts can be generalised to self-adaptive

systems (section 7.2). In this case, we observe properties to draw conclusions about the

state of an AI component and plan appropriate adaptations based on the observations.

However, both concepts describe the same thing but may differ in the way we view them.

The chapter is organised as follows: In section 7.1, we present an approach to predict

reliability attributes of AI-enabled systems. Hereby, we apply an upstream sensitivity

analysis to capture the predictive uncertainty of an AI component by the resulting sensi-

tivity model. Additionally, we use ATs (architectural templates) to model non-adaptive

architectural safeguards (i.e. architectural patterns) that one can consider dealing with

AI-related uncertainties. The effect of an AT on the reliability attributes of the system is

analysed by our provided prediction approach. In section 7.2, we generalise the concepts

to self-adaptive systems. We reused the concepts of the SimExp method from chapter 6

and extended it to evaluate adaptation strategies safeguarding uncertain AI components.

In section 7.3, we briefly present the implementation details of the approach. Finally,

section 7.4 discusses the assumptions and limitations of the approach, while section 7.5

summarises the chapter.

7.1. Engineering Reliable AI-Enabled Systems in the
Presence of Uncertainty

In this section, we discuss a model-based approach to predict reliability attributes of static

AI-enabled software systems. To model static architectural safeguards, we reuse a template

method to describe reusable architectural patterns or styles for reoccurring problems,

e.g. safeguarding an AI component. For this purpose, we reuse the formal language

of ATs from Lehrig [113] (see section 2.3.1.2). ATs are completely compatible with the

Palladio framework, i.e. they can be applied to PCM instances. That is, they are perfectly

suited in the context of this work to capture architectural patterns dealing with AI-specific

uncertainties. The overall approach is depicted on Figure 7.1. In section 7.2, we generalise

the presented concepts for self-adaptive systems.

The approach is essentially divided into three parts:

• Architectural knowledge representation: A collection of architectural patterns

described by a formal template language for specifying architectural knowledge.

155

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Com AI

AT
Name: Filter
Description:

Apply
selected ATAT catalogue

Architecture model

Com

 AI

Filter

...

AI model

Apply sensitivity
analysis

Sensitivity model

Apply
reliability
prediction

Architectural knowledge
representation and application

Sensitivity analysis

Reliability prediction of
AI-enabled systems

Results

1 2

1

2

Figure 7.1.: Overview of the reliability prediction approach for AI-enabled systems. The reliability prediction

inputs (𝑖) an architecture model (PCM model) enriched by an AT and (𝑖𝑖) the sensitivity model of an AI

component. Based on the inputs, the success and failure probabilities of the system are predicted.

• Sensitivity analysis: An upstream sensitivity analysis to determine a sensitivity

model capturing the predictive uncertainty of an AI component.

• Uncertainty-based reliability prediction: An approach for predicting reliabil-

ity attributes of AI-enabled software systems by taking into account AI-induced

uncertainties.

Asmentioned before, for the first part, we employ ATs to represent architectural knowledge,

e.g. n-version programming pattern for deep neural networks [211]. Based on a collection

of architectural patterns (i.e. a catalogue of ATs), one can select an appropriate AT for the

given application context and apply it to the modelled architecture model, i.e. the PCM

model. In parallel, a sensitivity analysis of the AI model is performed. The sensitivity

analysis forms the second part of the approach and addresses the problem of representing

AI components in the reliability prediction process. The result of the analysis is a sensitivity

model represented by a probability distribution that describes the likelihood of observing

correct or incorrect predictions (i.e. predictive uncertainty) of the AI model in the presence

of uncertainties such as increased illumination, bad weather conditions or blurring in

perceptual learning tasks. Based on the AT-enriched PCM model and the sensitivity model,

reliability attributes are predicted by an uncertainty-based reliability prediction approach

which forms the third part of the approach. Here we extend the reliability prediction

tool of the Palladio framework, PCM-Rel (see section 2.3.2.2). Roughly speaking, we

extend PCM-Rel by considering the predictive uncertainty of an AI component as a type of

software-induced failure that can be assigned a failure probability. The failure probability

is derived from the sensitivity model and a given set of uncertainty values that have an

impact on the predictive uncertainty.

Finally, it should be noted that we are reusing an existing approach for architectural

knowledge representation and also not developing any novel sensitivity analyses (but

referencing existing approaches), so neither should be understood as contributions. Instead,

156

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

the first contribution is a holistic approach that unifies the sub-approaches (i.e. architectural

knowledge representation/application, sensitivity analysis and reliability prediction of

AI-enabled systems) to a tool that supports software engineers in the design and analysis

of AI-enabled systems. The second contribution relates to the approach for predicting

reliability attributes of AI-enabled systems themselves. Therefore, we discuss in the

following the three parts of the holistic approach, focusing on the reliability prediction

part as it forms the main contribution.

7.1.1. Represention of Architectural Safeguards with Architectural
Templates

In this section, we discuss how to represent (AI-specific) architectural knowledge by using

models. The notion of architectural knowledge is broad and refers to reusable structures

such as reference architectures, architectural styles or architectural patterns [184]. We

focus on the latter in this section. We consider architectural patterns as architectural

safeguards or Architectural Countermeasures that either contain/mitigate AI-specific un-

certainties (of second order) or reduce predictive uncertainty. The notion of architectural

countermeasures is discussed in more detail in section 7.1.3.2.

In literature, several architectural patterns are discussed to enhance the reliability of

AI-enabled systems (we discussed some of them in section 3.1.2.1). In this section, however,

we focus on two patterns (namely Filtering and N-Version Programming) and model them

as ATs. Note that we do not aim to develop novel architectural patterns for AI systems,

nor do we provide a comprehensive literature review of patterns; this is not in the scope

of this thesis.

7.1.1.1. Architectural Patterns for Dealing with AI-induced Uncertainties

In literature, several works propose or reuse architectural patterns to maintain quality

attributes of AI-enabled systems, e.g. [211, 167, 45, 212, 23]. However, in this work we

focus on two architectural patterns: filtering [145] and n-version programming [44]. We

have chosen these patterns because (𝑖) they are well researched and known in the software

engineering community and (𝑖𝑖) their structures and application to software architectures

are well documented. In the following, we briefly present the patterns.

Filtering: The filtering pattern (more commonly referred to as Pipe and Filter [145]) is
an architectural pattern consisting of a series of pipes and filters. A filter describes a set

of components which transform input to output data. A pipe connects one filter with

another, a data source with a filter or a filter with a data consumer. The pipe and filter

pattern is a widely used approach in software architectures that implement any type of

data processing step that requires input data to be transformed into specific output data.

157

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Data
source Filter 1 Filter N Data

consumer
...Pipe Pipe Pipe Pipe

(a) Pipe and filter

Data
source Filter Data

consumer
Pipe Pipe

(b) Filtering pattern

Figure 7.2.: Overview of (a) the pipe and filter architectural pattern and (b) filtering pattern.

In the context of this work, however, we consider a simplified version of pipe and filter

which we refer to as the filtering pattern. Hereby, we consider merely a single filter

component and two pipes which connect the filter two a given data source (e.g. a sensor)

and to a data consumer (e.g. the AI component) which inputs the result of the filtering

process. We simplify the pipe-and-filter approach to a single filtering process, as it is better

suited to AI use cases such as [205], where filtering components are used to preprocess

incoming data before passing the data to the AI component. The general structure of the

filtering pattern is depicted on Figure 7.2. The main component of the filtering pattern is

the filter component which is responsible for the preprocessing. The pipes abstract away

the concrete communication technology (e.g. event-based) used by the data source, filter

and data consumer.

N-Version Programming: The next architectural pattern we are focusing on refers to

n-version programming. In the context of deep neural networks various approaches

are indicating the benefits of using n-version programming in terms of improving the

prediction result, e.g. [77, 211, 119].

Originally, n-version programming was developed to improve the fault-tolerance of soft-

ware systems [44]. Basically, the idea is to develop 𝑁 independent versions or components

that are functionally equal, i.e. following the same specification. Since each component

implements the same specification, the input and output data are equal. Thus, new input

data is passed to each version which performs the computation resulting in 𝑁 outputs.

The second important concept of n-version programming refers to the voter or decision

component which selects or merges the 𝑁 output results. The implementation of the

voter or decision procedure is manifold, e.g. one may implement a majority vote based on

the confidence assigned to each version or by simply computing the average. The basic

structure of the n-version programming pattern is depicted on Figure 7.3.

The generic nature of n-version programming makes it applicable in many application

contexts. In AI, for example, 𝑁 versions of distinct model types (e.g. DNN) are developed

and trained independently. At runtime, the input data is passed to each version simulta-

neously, and the individual predictions are merged in the voter component to produce a

more accurate prediction.

158

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Component 1

Component 2

Component N

...

Voter/Decision
procedureInput Output

Figure 7.3.: The n-version programming pattern (based on [52]).

Meta class A stereotype meta class

Legend:

Meta class B pcm meta classes

<<stereotype>>
AiAssemblyContext

distributionName: String
AssemblyContext[0...*] extends

targetUncertaintyName: String

Figure 7.4.: The EMF profile of the filtering pattern.

7.1.1.2. Modelling of the Filtering Pattern as Architectural Template

In this section, we describe how we realised the AT for the filtering pattern. Recall from

section 2.3.1.2 that the main tasks in modelling ATs comprise the creation of an EMF profile

(which should be considered as annotations to the architectural model, e.g. PCM model)

to indicate where the AT is woven in, and a completion, i.e. the model transformation that

implements the weaving-in process or application of the AT.

EMF-Profil The EMF profile for the filtering AT is depicted on Figure 7.4. There is only

a single stereotype which extends an AssemblyContext (or which can be applied to an

AssemblyContext), namely AiAssemblyContext. The stereotype is to be understood as

an annotation applied to the AssemblyContext representing the AI component (or the

instantiated component in the system model). Consequently, the filter is woven in the

system, i.e. the filter component is placed before the AssemblyContext of the AI component;

reflecting the main purpose of the filter pattern, i.e. a preprocessing step to reduce possible

uncertainties in the input data. The filter stereotype includes two attributes, namely

distributionName and targetUncertaintyName. The attribute distributionName refers

to a probability distribution that determines the probabilistic effect on the uncertainty that

the filter reduces or contains. As we discuss the concept of architectural countermeasures

and the metamodel to describe them and their influence on uncertainties in section 7.1.3.2,

we do not go into further details here. It is yet sufficient to know that the attribute

distributionName allows the resolution of the corresponding distribution that models the

influence on a given target uncertainty. However, the target uncertainty is referenced by

the attribute targetUncertaintyName. This uniquely determines which uncertainty the

filter component acts on.

159

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Resource Container

AIComponentComponent

@AiAssemblyContext {
 distributionName: "..."
 targetUncertaintyName: "..."
}

Resource Container

FilterComponent AIComponent

Legend:

@Stereotype{
 attribute: value
 ...
}

Completion

Figure 7.5.: The action of the filtering pattern completion on an annotated PCM model.

Completion The completion of the filtering pattern refers to a model transformation that

weaves in the architectural pattern. Figure 7.5 schematically shows the PCM model before

and after the completion. We do not go into the technical details of the model transfor-

mation but refer to [156] where the model transformation can be looked up. However,

it can be seen that the filter is inserted before the AI component. Hereby, a respective

BasicComponent instance is created, added to the repository model and instantiated in the

system model. Since the filter is inserted before the AI component, it emits events (in the

case of event-based communication) to the event group from which the AI component

receives events. Moreover, the filter component receives events emitted by the component

that was previously received by the AI component. The filter component is deployed on

the same resource container where the AI component is allocated.

What the illustration does not show is the model completion of the uncertainty model

that describes (among others) the architectural countermeasures and their effect on uncer-

tainties. However, we defer the discussion to section 7.1.3 where the reliability prediction

approach is explained and the interplay of all concepts is discussed.

7.1.1.3. Modelling of the N-Version Programming Pattern as Architectural Template

In this section, we describe how we realised the AT for the n-version programming

pattern. Just as before, we first present the EMF profile and the completion (or model

transformation) afterwards.

EMF-Profil The EMF profile for the n-version programming pattern is depicted on Fig-

ure 7.6. Just as seen in the filtering profile, the n-version programming profile defines a

stereotype (namely AiNVAssemblyContext) that is applied to an AssemblyContext related

to the AI component. Moreover, the stereotype holds an attribute called improvedMod-

elName which corresponds to the name of a GroundProbabilisticNetwork. This again

refers to the metamodel, which we have not yet introduced (not until section 7.1.3.2).

160

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Meta class A stereotype meta class

Legend:

Meta class B pcm meta classes

<<stereotype>>
AiNVAssemblyContext

improvedModelName: String

AssemblyContext[1...*] extends

BasicComponent
[1...*] extends<<stereotype>>

AiNVBasicComponent

Figure 7.6.: The EMF-profile of the n-version programming pattern.

We defer the discussion again to section 7.1.3 where all concepts will be unified into a

holistic approach. For now, it is sufficient to consider the referenced network name as

the sensitivity model associated with the n-version programming pattern as a whole and

which is more robust.

In addition to the stereotype applied to a AssemblyContext, there is another stereotype

applied to a BasicComponent, namely AiNVBasicComponent. The stereotype is used to

annotate the components in the repository of a PCM model corresponding to the different

AI components to be included in the n-version programming pattern, i.e. each annotated

component represents a single version.

Completion Finally, the completion or model transformation for the n-version program-

ming pattern is depicted on Figure 7.7. Just as for the filtering pattern, we do not discuss

the details of the transformation but rather refer to [156]. However, as shown in Figure 7.7,

the completion substitutes the original AI component with 𝑁 + 1, i.e. the 𝑁 versions

and an additional component which acts as a voter or other decision procedure. The

component-internal behaviour of the decision procedure initially dispatches newly arriv-

ing input data among the 𝑁 versions and receives a prediction from each version, which

is eventually evaluated. In the system model, each version instantiates the AI component

which has been annotated by a corresponding EMF stereotype. The components are allo-

cated on the same resource container on which the replaced AI component was previously

allocated. Again, the illustration does not represent the entire model completion (as the

corresponding metamodel is presented in section 7.1.3.2). However, this will be made up

for in section 7.1.3; at this point, it is more important to understand the principle operation

of the completion on a PCM instance.

7.1.2. Sensitivity Analysis of AI Components

At the beginning of this chapter, we discussed the problem of not being able to observe the

true state of an AI black-box component. For predicting reliability attributes of a system

with AI components, however, one must also account for the reliability or confidence

of the predictions made by the AI component. To approach this problem, we apply a

Sensitivity Analysis.

Essentially, a sensitivity analysis is about varying the input of an AI component and

observing how this change affects the output [76, 30] which is captured in a corresponding

161

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Resource Container

AIComponent1Component

@AiNVAssemblyContext {
 ImprovedModelName: "..."
}

Resource Container

VoterComponent

AIComponent1

Legend:

@Stereotype{
 attribute: value
 ...
}

Completion

AIComponentN

...

Component Repository

Component

AIComponent1

AIComponentN

...

@AiNVBasicComponent

@AiNVBasicComponent

Figure 7.7.: The action of the n-version programming pattern completion on an annotated PCM model.

𝑋𝑏

. . .𝑋𝜑1 𝑋𝜑𝑁

Figure 7.8.: Probabilistic structure of the sensitivity model (assuming independence between all uncertainty

pairs).

sensitivity model. Before describing the sensitivity model in more detail, wemust introduce

the notion of an AI black-box component more formally. Similarly to Guidotti et al. [76],

we consider an AI black-box component as a function 𝑏 which maps an input 𝑥 from an

input space X to an output 𝑦 from output space Y.

Definition 30 (AI Black-Box Component based on Guidotti et al. [76]). An AI Black-Box
component is a function𝑏 : X → Y that maps an input 𝑥 ∈ X to an output𝑦 = 𝑏 (𝑥) ∈ Y. We
denote𝑏 as black-box to indicate that the internals are neither understandable nor interpretable
by humans.

In the context of this work, the result of the sensitivity analysis (i.e. the sensitivity model)

is considered as a probability distribution or CPD (conditional probability distribution)

with the following structure: 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁).

162

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Oracle

AI black-box
component

Correct: 1
Incorrect: 0

(a) Oracle for determining the state of AI black-box 𝑏

AI black-box
component

Oracle Success:
Failure:

(b) Oracle approximation by a sensitivity model w.r.t. some prop-

erties 𝜑1, . . . , 𝜑𝑁

Figure 7.9.: Approximation of an oracle for AI black-box component by a sensitivity model.

The sensitivity model (captured by the CPD) is defined over the random variables 𝑋𝑏 and

𝑋𝜑1, . . . , 𝑋𝜑𝑁 . The predictive uncertainty of an AI black-box component 𝑏 is captured by

the binary random variable 𝑋𝑏 with value space 𝑉𝑎𝑙 (𝑋𝑏) := {𝑆𝑢𝑐𝑐𝑒𝑠𝑠, 𝐹𝑎𝑖𝑙} describing
the possible events of an AI component to successfully or unsuccessfully make a certain

prediction. We define the model to be a discrete BN (Bayesian network), i.e. the value

spaces of all random variables are discrete. The generic structure of a sensitivity model is

depicted on Figure 7.8 which assumes stochastic independence between all uncertainty

pairs, i.e. ∀𝑖 ≠ 𝑗 : 𝑋𝜑𝑖 ⊥⊥ 𝑋𝜑 𝑗
.

Recall that one of the main problems this work is concerned with is the inability to observe

the true state of an AI black-box component 𝑏. That is, there is no oracle that tells whether

a prediction made by 𝑏 is correct or not. However, one can try to approximate such an

oracle by estimating the probability of correct or incorrect behaviour of 𝑏 based on a set

of observable properties (see Figure 7.9). These properties may relate to environmental

variables or other domain-specific uncertainties that allow conclusions to be drawn about

the true state of 𝑏. In terms of the sensitivity model, these environmental variables

or uncertainties refer to the 𝜑1, . . . , 𝜑𝑁 . Compared to an oracle that returns 1 (correct

prediction) or 0 (wrong prediction) for any input-output pair (𝑥, 𝑏 (𝑥)), the sensitivitymodel

(as an approximation of the oracle) is queried for a given set of uncertainties 𝜑1, . . . 𝜑𝑁 and

returns a success probability 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∈ [0, 1] and failure probability 1 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 . Because
the hidden state problem permits us to reason about the true state of 𝑏, we cannot estimate

the predictive uncertainty (i.e. 𝑃 (𝑋𝑏)) directly; however, we can approximate 𝑃 (𝑋𝑏) by
conditioning the predictive uncertainty on the set 𝜑1, . . . 𝜑𝑁 , i.e. 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁).

Example 8. Recall the HRI example system from section 1.5.3 which requires human

interaction such that a specific level of safety must be maintained, e.g. to prevent injuries

like squeezing or collision with the robot. However, this is dependent on the AI-based

object detection component because an undetected body part is not taken into account by

the trajectory planner.

Since the robotic system is not mobile but is located in a fixed place with a specific inter-

action radius, the system operates in a relatively low dynamic environment (compared

to highly dynamic environments such as autonomous driving). Therefore, only a limited

number of environmental variables can have an impact on the AI component. From a

domain analysis or domain expert, it might be known that sensor noise of the camera or

brightness variations in the environment can lead to false predictions of the AI component.

163

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

𝑋𝑏

𝑋𝜑𝐵 𝑋𝜑𝑆𝑁

Figure 7.10.: The sensitivity model of the HRI example system.

That is, we have two uncertainties that affect the predictive uncertainty and allow conclu-

sions to be drawn about the true state of 𝑏, i.e. 𝜑𝐵 describing varying brightness conditions

and 𝜑𝑆𝑁 for sensor noise. The respective sensitivity model is shown in Figure 7.10. ■

Finally, the question arises of how to obtain a sensitivity model of the form 𝑃 (𝑋𝑏 |
𝑋𝜑1, . . . , 𝑋𝜑𝑁). Depending on how well-researched the domain is or whether it indicates

low dynamics in the environment (as in the HRI example system), a domain expert can

be consulted to build the sensitivity model manually. Since we represent the model by

a BN (i.e. in a graph-based structure), they are fairly understandable and amenable for

humans. Alternatively, in the literature, numerous sensitivity approaches are presented.

For instance, [76] provides an overview of sensitivity analysis approaches for neural

networks. Additionally, the references [170, 217, 179, 102] provide a good starting point

for further sensitivity analysis approaches. We would like to emphasise once again that

the development of a sensitivity analysis approach is not within the scope of this work,

but rather to reuse existing approaches such as those listed previously. Furthermore, there

is no universal sensitivity analysis that can be applied to any type of AI model, as it is

adjusted to the characteristics of the AI model. For example, an AI model from the field

of natural language processing is completely different to a model for object detection.

It should also be noted that the aforementioned approaches do not directly provide a

sensitivity model of the form 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁), but provide the means to derive such a

model.

7.1.3. Reliability Prediction of AI-Enabled Systems

In this section, we discuss our extension of the reliability prediction tool PCM-Rel for

AI-enabled systems. Recall from section 2.3.2.2 that PCM-Rel considers three failure types:

software, hardware and network failure types each associated with a failure probability. In

this work, we introduce a fourth type of failure, namely Uncertainty-induced Failure Type.
Uncertainty-induced failure types refine PCM-Rel-specific failure types in the sense that

they are enriched with additional uncertainties that affect the probability of failure of the

respective failure type. For AI-enabled systems, for example, the predictive uncertainty

of an AI component can be considered a type of software failure which is dependent

on a collection of uncertainties. The uncertainties influence the probability of failure

of the refined software failure. This refinement or relation of a failure type to a set of

uncertainties is established by an uncertainty-induced failure type. In the context of this

164

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Resource Container 2

CPU
MTTF = 150h
MTTR = 8h

Resource Container 1

CPU

Comp A Comp B

<<implements>>

<<allocated>>

System Model

<<allocated>>

Intra-Component Behaviour Model
<<InternalAction>>

methodCall

Deployment Model

PCM-Rel Uncertainty-based Extension

...

AI model

Sensitivity model

<<UncertaintyInduced-
FailureType>>

refines

Uncertainty
model

Figure 7.11.: Uncertainty-based extension of PCM-Rel.

work, the uncertainty-induced failure type relates the respective software failure type

(capturing predictive uncertainty) to the sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) where
𝜑1, . . . , 𝜑𝑁 represents the uncertainties. This idea is illustrated on Figure 7.11.

7.1.3.1. Formal Extension of PCM-Rel

Before we present the practical extension, we start to discuss the formal extension of

PCM-Rel to show formal consistency and the formal semantics of our approach.

Therefore, recall from section 2.3.2.2 that in PCM-Rel the probability of whether a software

system is experiencing a successful or unsuccessful run for a given usage scenario is

defined by the distribution 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). The probability can be rewritten by taking

into account the resource failure patterns 𝜓 :
∑
𝜓∈Ψ 𝑃 (𝑋𝑆𝑦𝑠, 𝑋Ψ = 𝜓 | 𝑋𝑈). By assuming

stochastic independence between the usage scenario and resource failure pattern variables,

one obtains (2.3).

We extend PCM-Rel by considering a set of uncertainties that influence the predictive

uncertainty of an AI component. More specifically, these uncertainties refer to the set

𝜑1, . . . , 𝜑𝑁 . Their influence on the prediction result indirectly impacts the overall success

(or failure) probability of a system. That is, for different realisations of 𝑋𝜑1, . . . , 𝑋𝜑𝑁 (where

𝑋𝜑𝑖 is a random variable associated with property 𝜑𝑖), one would observe different success

and failure probabilities, i.e. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). Hereby, the random variable 𝑋𝑆𝑦𝑠 describes the

probability of success or failure of the system including the AI component affected by

165

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

𝜑1, . . . , 𝜑𝑁 . That is to say, the resulting distribution that we want to predict w.r.t. 𝜑1, . . . , 𝜑𝑁
looks as follows:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁) (7.1)

By taking into account the hardware failures (such as in equation (2.3)), distribution (7.1)

can be rewritten:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁) =
∑︁
𝜓∈Ψ

𝑃 (𝑋𝑆𝑦𝑠, 𝑋Ψ = 𝜓 | 𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁)

=
∑︁
𝜓∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁) · 𝑃𝑟 (𝑋Ψ = 𝜓 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁)

=
∑︁
𝜓∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁) · 𝑃𝑟 (𝑋Ψ = 𝜓)

(7.2)

The last step of equation (7.2) follows from the fact that we assume independence between

the resource failures 𝜓 and uncertainties 𝜑1, . . . , 𝜑𝑁 , i.e. (𝑋𝜑1, . . . , 𝑋𝜑𝑁 ⊥⊥ 𝑋Ψ). Roughly
speaking, we assume that the occurrence of any AI-specific uncertainty does not correlate

with the observation of a specific resource failure pattern. Regarding the HRI example

system, for instance, the occurrence of varying brightness conditions or sensor noise does

not have any effect on the probability of observing a hardware failure.

When comparing equation (7.2) with equation (2.3) (i.e. the original equation for PCM-

Rel), it can be seen that only the CPD of equation (2.3) is expanded by the uncertainties

𝜑1, . . . , 𝜑𝑁 . That is, from a formal perspective we must extend PCM-Rel in a way such that

we can evaluate CPDs of the form 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁). The details of the
extension are explained in the next sections.

7.1.3.2. Metamodeling Uncertainty-induced Failures

In this section, we present the metamodel for describing uncertainty-induced failure types.

Before we delve into the details of the metamodel, however, we first have to discuss how

the sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) is represented. To this end, we assume that the

sensitivity model has already been derived, e.g. by using the methods that we presented

in section 7.1.2. Now the question arises of how the model is represented on a metamodel

level to make use of it. Therefore, recall from section 7.1.2 that we consider the sensitivity

model as a discrete BN. In chapter 5, we presented the EnvDyn metamodel that allows the

modelling of BNs. Thus, we use the modelling capabilities provided by EnvDyn to describe

the sensitivity model. Moreover, in section 7.2, we discuss how to generalise the approach

to self-adaptive systems, where the dynamics of the environment need to be modelled

anyway. Since the uncertainties 𝜑1, . . . , 𝜑𝑁 must by definition be considered part of the

environment (see definition 17 on page 74), they form a subset of the entire environment

(or rather of the set of environmental variables). Figure 7.12 depicts the metamodel.

The root element of the metamodel is the UncertaintyRepository which references a

set of UncertaintyInducedFailureTypes, ArchitecturalPreconditions and Architec-

turalCountermeasures. We start by discussing ArchitecturalPreconditions because the

166

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

UncertaintyRepository

[0...*] preconditions

<<abstract>>
ArchitecturalPrecondition

[0..*] uncertaintyInducedFailureTypes

<<abstract>>
Architectural

Countermeasure

[0..*] countermeasures

[1..1] appliedFailureType

<<abstract>>
FailureType

NetworkInduced
FailureType

HardwareInduced
FailureType

SoftwareInduced
FailureType

[0..*] preconditions

[1..*] preconditions

ActiveComponent

requiredActiveComponent:
InterfaceProvidingRequiringEntity

[1..1] refines

UncertainyModelEquality

first: GroundProbabilisticNetwork
second: GroundProbabilisticNetwork

UncertaintyInduced
FailureType

uncertaintyModel:
GroundProbabilisticNetwork
failureVariable:
GroundRandomVariable

GlobalUncertainty
Countermeasure

improvedUncertaintyModel:
GroundProbabilisticNetwork

UncertaintySpecific
Countermeasure

targetUncertainty:
TemplateVariable

<<abstract>>
UncertaintyImprovement

[1..1] uncertainty
Improvement

Probabilistic
Improvement

probabilityDistribution:
ProbabilityDistribution

Deterministic
Improvement

MapEntry

key: String
value: String

[1..*] mappingTable

Meta class A uncertainy meta classes

Meta class B pcm meta classes

Legend:

Figure 7.12.: Metamodel of the uncertainty-induced failure types.

UncertaintyInducedFailureTypes and ArchitecturalCountermeasures depend on the

metaclass. In simple terms, ArchitecturalPreconditions describe preconditions that the

architecture model (or in our case the PCM model) must satisfy. For example, a precondi-

tion might require the actual use of a software component in the runtime model. Thus, for

components that implement the same interface (i.e. the same service), only the component

that is deployed at runtime would satisfy the precondition. The ActiveComponent is a sub

metaclass of ArchitecturalPreconditions that holds the previously explained seman-

tics. Besides ActiveComponent, there is UncertaintyModelEquality as a second Archi-

tecturalPrecondition. UncertaintyModelEquality requires structural equality between

two uncertainty models. Suppose two uncertainty models 𝑢1 and 𝑢2 which we consider as

BNs, i.e. for each model there is a graph G𝑢𝑖 describing the structure of model 𝑢𝑖 . For 𝑢1
and 𝑢2, the UncertaintyModelEquality precondition is satisfied if and only if G𝑢1 = G𝑢2 .
Note that UncertaintyModelEquality only requires structural equality but no equality

regarding the distributions. For instance, let 𝑃𝑢1, 𝑃𝑢2 |= G𝑢1 (and thus 𝑃𝑢1, 𝑃𝑢2 |= G𝑢2) be two
distributions that satisfy the dependency structure of G𝑢1 and G𝑢2 (recall the |= notation

from section 2.6.1), although the UncertaintyModelEquality preconditions hold for the

167

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

graph structure, it does not require that the same holds for the distributions, i.e. 𝑃𝑢1 = 𝑃𝑢2
is not required. The ActiveComponent and UncertaintyModelEquality are currently the

only sub-metaclasses of ActiveComponentPrecondition, although there might be other

preconditions, e.g. the deployment of a component on a specific hardware resource. There-

fore, ArchitecturalPrecondition is an abstract metaclass and thus extensible. So far we

have only discussed the idea of ArchitecturalPreconditions, but have not yet given any

insight into the purpose of the metaclass. Nevertheless, we deliberately continue with

the metaclasses UncertaintyInducedFailureTypes and ArchitecturalCountermeasures

because the purpose of ArchitecturalPreconditions becomes clear when we discuss the

concepts in which they are used.

An UncertaintyInducedFailureType defines the metaclass for describing uncertainty-

based failure types. It refines the super metaclass FailureType of the PCM-Rel metamodel

referencing a single FailureType indicating a refinement relationship. Thus, only soft-

ware, hardware or network failure can be refined by an uncertainty model. As a starting

point, however, we focus on refining exclusively software failure types of AI components.

Nevertheless, we discuss in section 7.1.3.4 how the concepts can be generalised. An Uncer-

taintyInducedFailureType is additionally referencing a GroundProbabilisticNetwork

which corresponds to the metaclass of the EnvDyn metamodel describing BNs. Note that

although the reference is named uncertaintyModel, we refer here to the sensitivity model.

To maintain generalisability, we use the term uncertainty model to be not too restrictive

regarding the type of model one can choose to describe the probabilistic influence of

uncertainties. Again, we defer the discussion to section 7.1.3.4. The next reference of

a UncertaintyInducedFailureType is called failureVariable and represents the main

variable of failure (typed as GroundRandomVariable), e.g. predictive uncertainty captured

by 𝑋𝑏 . The reference can be set optionally. However, if not specified, the failure variable

must be identified in the uncertainty model. This cannot be achieved without making

assumptions about the model, i.e. there must only be one random variable in the BN that

has no descendants. The last reference refers to a set of ArchitecturalPreconditions.

An UncertaintyInducedFailureType can either be active or inactive. Suppose an Uncer-

taintyInducedFailureType instance refines a software failure type of an AI component

with a sensitivity model. For the AI component, there might exist several implemen-

tations, e.g. different kinds of deep neural networks for object detection. Let us now

assume that for each model there is an UncertaintyInducedFailureType (and sensitivity

model, respectively), then only the UncertaintyInducedFailureType of the instantiated

(or deployed) AI component in the system is considered active; the remaining are con-

sidered inactive. We return to this concept in section 7.1.3.3 as we can only consider

UncertaintyInducedFailureTypes in the prediction process that are active.

The last main concept refers to ArchitecturalCountermeasures that describe architec-

tural means that one can apply to deal with uncertainties. By architectural means, we

mean architectural patterns describing architectural safeguards (such as those presented

in section 7.1.1) that are used to cope with uncertainties and to improve the overall qual-

ity of the system. An ArchitecturalCountermeasure models the concrete effect of an

architectural safeguard on the predictive uncertainty of an AI component. Generally,

ArchitecturalCountermeasures reference a set of ArchitecturalPreconditions and a

168

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

single UncertaintyInducedFailureType. Similarly to UncertaintyInducedFailureType,

ArchitecturalCountermeasures define preconditions to check whether they are applicable

(or active) in a specific context. For example, take the filtering pattern where an additional

filter component is activated to preprocess the input data. To apply the countermeasure, the

corresponding filter component must be instantiated in the system model. In addition to

the set of ArchitecturalPreconditions, the UncertaintyInducedFailureType (for which

the countermeasure is to be used) is referenced. The ArchitecturalCountermeasures

metaclass is abstract. Currently, there are two extensions, namely GlobalUncertainty-

Countermeasure and UncertaintySpecificCountermeasure. GlobalUncertaintyCounter-

measure refer to countermeasures that have a global impact on the predictive uncertainty

of an AI component. With global impact, we mean the direct impact on the probability

of failure/success of the uncertainty model. In the case of AI components and sensitivity

models, this refers to the distribution 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁). In principle, the effect of an

architectural countermeasure always has an impact on the uncertainty model for which

it is used (see reference appliedFailureType). Regarding GlobalUncertaintyCountermea-

sures, this refers to the impact on the failure variable (w.r.t. uncertainties), e.g. 𝑋𝑏 in

the case of AI components. On the contrary, we consider UncertaintySpecificCounter-

measures as countermeasures that have a local impact on a specific uncertainty (this is

discussed later). More formally, let G be the DAG (directed acyclic graph) describing

the structure of an uncertainty model and 𝑃 the respective probability distribution (e.g.

obtained by a sensitivity analysis), i.e. 𝑃 |= G. When a GlobalUncertaintyCountermea-

sure is applied, one obtains a new probability distribution 𝑃 ′ with 𝑃 ′ |= G; that is, a
global countermeasure solely changes the distribution or parametric setting of the BN

describing the uncertainty model but do not modify the structure encoded by G. The new
distribution 𝑃 ′ is captured by the reference improvedUncertaintyModel of a GlobalUncer-

taintyCountermeasure. Note, however, that both 𝑃 and 𝑃 ′ are defined over G. Similarly,

both factorise into a set of CPDs (due to the decomposability property of BNs). That is to

say, a GlobalUncertaintyCountermeasure solely changes 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) in the set

of CPDs to which 𝑃 ′ factorises but leaves the other CPDs (e.g. 𝑃 (𝑋𝜑𝑖)) unchanged.

Example 9. Recall the n-version programming pattern discussed in section 7.1.1. In

the n-version programming pattern (specifically for AI use cases), 𝑁 AI components

are considered and queried simultaneously for a given input data. Depending on the

implementation of the voter, the prediction result is determined from the 𝑁 predictions

made. However, the resulting predictions of the n-version pattern are very likely to

differ from the predictions of the single AI component (which is to be replaced by the

𝑁 versions). Consequently, the quality of the predictions changes as well; thus, we can

associate the n-version programming pattern with a new sensitivity model that accounts

for the changed prediction quality. For the n-version programming pattern, one can create

a GlobalUncertaintyCountermeasurewhere the improvedUncertaintyModel points to the

new sensitivity model. Additionally, an UncertaintyModelEquality precondition must be

created to make sure that the new sensitivity model is applicable or structurally equal to

the uncertainty model in which distribution 𝑃 is to be adjusted (or improved). ■

169

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

𝑋𝜑𝐵 𝑋𝜑𝑆𝑁

𝑋 ′𝜑𝑆𝑁

𝑋𝑏

Figure 7.13.: The sensitivity model of the HRI example system after applying filtering pattern as an architec-

tural countermeasure.

In contrast, UncertaintySpecificCountermeasure describe countermeasures that have a

local effect, i.e. they influence a specific uncertainty. Therefore, an UncertaintySpecific-

Countermeasure references a TemplateVariable corresponding to the target uncertainty

addressed by the countermeasure. The TemplateVariable must be instantiated and repre-

sents an uncertainty 𝜑𝑖 of the uncertainty model. The main goal of UncertaintySpecific-

Countermeasures is to contain the target uncertainty. For example, each uncertainty 𝜑𝑖
follows a probability distribution, i.e. 𝑃 (𝑋𝜑𝑖). An UncertaintySpecificCountermeasure

cannot change the distribution itself, as any uncertainty is part of the environment, which

cannot be controlled (or only to a certain extent). However, it affects whether uncertainties

are forwarded to the AI component in exactly the form in which they are observed in the

environment.

Example 10. Recall the HRI example system from section 1.5.3 and the corresponding sen-

sitivity model from Figure 7.10. An example of an UncertaintySpecificCountermeasure

represents the filtering pattern where a filter component is used to preprocess incoming

data. In the case of the HRI system, a filter might be employed to filter out noise artefacts

of the input image. Thus, the sensor noise uncertainty is contained. The filter component

does not directly affect the success/failure probability of the AI component (e.g. as in the

n-version programming approaches) but reduces the likelihood of potentially malicious

input data being passed to it. Considering the sensitivity model (or uncertainty model), the

effect of the filtering pattern manifests itself by inserting an additional random variable

𝑋 ′𝜑𝑆𝑁 between 𝑋𝑏 and 𝑋𝜑𝑆𝑁 (see Figure 7.13).

The random variable 𝑋 ′𝜑𝑆𝑁 specifies the effect of the filtering process on the sensor noise.

More specifically, 𝑋 ′𝜑𝑆𝑁 models the probability of eliminating noise artefacts from the input

image originally observed in the environment before passing it on to the AI component.

■

More formally, letG be the DAG describing the structure of an uncertainty model. When an

UncertaintySpecificCountermeasure is applied, one obtains a new probabilistic structure

G′ of the uncertainty model (such as depicted on Figure 7.13); that is, an uncertainty-

specific countermeasure changes the original structure of the sensitivity model by inserting

170

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

a new random variable that describes the impact of the target uncertainty. Therefore, we

say that an UncertaintySpecificCountermeasuremodifies the structure of an uncertainty

model but not the parametric setting (opposed to GlobalUncertaintyCountermeasure).

One may argue that if the structure G is changed to G′, there must be also a new distri-

bution (and thus a parametric change) satisfying G′, i.e. 𝑃 |= G ∧ 𝑃 ′ |= G′ ⇒ 𝑃 ̸ |= G′.
However, G′ preserves the (in-)dependency assumptions of G such that the original para-

metric setting is preserved as well. More accurately, we can easily obtain 𝑃 from G′
by marginalising over the additional random variables introduced by the countermea-

sure: 𝑃 (𝑋𝑏, 𝑋𝜑1, . . . , 𝑋𝜑𝑁) =
∑
𝜑∈𝑉𝑎𝑙 (𝜑𝑖) 𝑃

′(𝑋𝑏, 𝑋𝜑1, . . . , 𝑋𝜑𝑁 , 𝑋 ′𝜑𝑖 = 𝜑). The concrete improve-

ment or impact on the target uncertainty 𝜑𝑖 is modelled by an UncertaintyImprovement.

Basically, an improvement is defined by a function 𝑓𝜑 : 𝑉𝑎𝑙 (𝑋𝜑) → 𝑉𝑎𝑙 (𝑋𝜑). An Un-

certaintyImprovement represents an abstract metaclass which is extended by two sub

metaclasses, namely DeterministicUncertaintyImprovement and ProbabilisticUncer-

taintyImprovement. A DeterministicUncertaintyImprovement describes a deterministic

effect of the improvement on 𝜑𝑖 . In this case, the function 𝑓𝜑𝑖 is bijective and uniquely

defines a mapping from𝑉𝑎𝑙 (𝑋𝜑) to𝑉𝑎𝑙 (𝑋𝜑); this is modelled by key-value pairs (see refer-

ence mappingTable in Figure 7.12). A ProbabilisticUncertaintyImprovement describes a

probabilistic effect of the improvement on 𝜑𝑖 . For example, in the HRI example, there might

be input images where the noise component is too strong such that even the application

of a filter cannot reduce the noise level. The improvement would be only effective for a

portion of images which can be described probabilistically. In this case, function 𝑓𝜑𝑖 is

modelled as probability distribution, i.e. 𝑓𝜑𝑖 = 𝑃 (𝑋𝜑𝑖 | 𝑋𝜑𝑖). The distribution is modelled

by using the ProbDist metamodel from section 5.2.6.

7.1.3.3. Uncertainty-based Reliability Prediction

In this section, we unify the presented concepts together with the reliability prediction

approach PCM-Rel to make reliability predictions of AI-enabled software systems. There-

fore, recall the main components of the approach (as depicted on Figure 7.1), namely ATs,

sensitivity analysis and the prediction tool PCM-Rel. As a prerequisite of the extended

reliability prediction, an upstream sensitivity analysis must be conducted such that the

sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) is obtained. In addition, the sensitivity model needs

to be represented as BN by using the modelling capabilities of the EnvDynmetamodel. The

sensitivity model, the architecture or PCM model and a model describing the uncertainty-

induced failure types from the last section (which we commonly refer to in the following as

the uncertainty-refined failure model) are the main components relevant to the prediction

approach.

Internally, the prediction process can be viewed as schematically shown in the activity

diagram of Figure 7.14. As depicted in the diagram, the prediction process starts by

checking whether an AT needs to be applied first before the regular prediction process

is carried out. In the following, however, we begin to present the regular prediction

process and discuss the application of ATs afterwards. In this case, the process continues

171

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Prediction
process

Uncertainty model

Apply AT in PCM
Model

apply AT first?

yes

<<Loop>>

Resolve and recalculate
failure probabilities:

Apply architectural
countermeasures once

Apply PCM-Rel to

PCM model

no

Prediction
result

Adjusted uncertainty model
PCM model

Merge prediction results

Figure 7.14.: Activity diagram of the prediction process.

by applying architectural countermeasures w.r.t. the PCM model and the uncertainty-

refined failure model. Afterwards, the PCM model and the uncertainty-refined failure

model are forwarded to a loop which iterates over all uncertainty tuples 𝜑1, . . . , 𝜑𝑁 of the

uncertainty space, i.e. the space spanned by the distinct value spaces of each uncertainty 𝜑𝑖 .

In each iteration, two steps are performed w.r.t. each uncertainty tuple. In the following,

we assume for simplicity that only a single UncertaintyInducedFailureType (capturing

the AI-induced uncertainties) is defined. We discuss in section 7.1.3.4 how the concepts

generalise.

As a first step, architectural countermeasures are applied. In our case, the uncertainty

model refers to the sensitivity model which represents the predictive uncertainty of an AI

component in the presence of second-order uncertainties. Moreover, the uncertainty model

is referenced by an UncertaintyInducedFailureType-object of the uncertainty-refined

failure model that refines the corresponding SoftwareInducedFailureType describing the

predictive uncertainty of an AI component. The uncertainty model is the primary source

used to calculate the adjusted failure probabilities of each refined failure type (as we will

see in the first step of the loop). Since countermeasures act on the uncertainty model, their

effects manifest themselves exclusively in the uncertainty model. Therefore, the uncer-

tainty model (or sensitivity model in our case) is adjusted w.r.t. the used countermeasures.

However, before a countermeasure is applied, it must be checked if the countermeasure

is active, i.e. whether its ArchitecturalPreconditions are satisfied and whether the ref-

erenced failure type is active as well. Recall that architectural countermeasures act on

the uncertainty model either locally (i.e. on a specific uncertainty) or globally (i.e. by

changing the overall probability of success and failure). Moreover, the modification is

either structural (i.e. related to the structure of the graph) or parametric (i.e. related

to the probability distribution of the graph), depending on the kind of countermeasure

172

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

𝑋𝜑𝐵 𝑋𝜑𝑆𝑁 𝑃 (𝑋𝜑𝑆𝑁)

𝑋 ′𝜑𝑆𝑁 𝑃 (𝑋 ′𝜑𝑆𝑁 | 𝑋𝜑𝑆𝑁)

𝑋𝑏

(a) Uncertainty model before pruning.

𝑋𝜑𝐵

𝑋 ′𝜑𝑆𝑁

∑
𝜑𝑆𝑁

𝑃 (𝑋 ′𝜑𝑆𝑁 , 𝑋𝜑𝑆𝑁 = 𝜑𝑆𝑁)

𝑋𝑏

(b) Uncertainty model after pruning.

Figure 7.15.: Pruning process: (a) represents the graph G before pruning and (b) depicts the graph after

pruning.

(i.e. UncertaintySpecificCountermeasure and GlobalUncertaintyCountermeasure). In

the case of a GlobalUncertaintyCountermeasure, the modification is trivial because, due

to the decomposability property of BNs, only the probability 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) of
the old uncertainty model needs to be swapped with the new distribution. In terms of

UncertaintySpecificCountermeasure, the modification is more complicated due to the

structural change of the model. Therefore, consider Figure 7.13 where we illustrated the

effect of a structural change caused by an UncertaintySpecificCountermeasure. Recall

from the activity diagram that it is iterated over all uncertainties. If we stay with the

example of Figure 7.13, this involves all combinations of 𝑉𝑎𝑙 (𝑋𝜑𝐵) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁) such that

the probability of failure 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝑆𝑁) for all combinations is evaluated. However, if

the structure of the graph changes and another random variable 𝑋 ′𝜑𝑆𝑁 (representing the ef-

fect of an UncertaintySpecificCountermeasure) is inserted, iterating over all uncertainty

combinations is no longer sufficient in some cases. More specifically, this depends on

the type of UncertaintyImprovement associated with the countermeasure. For instance,

let us assume that the improvement is deterministic. In this case, no further steps must

be taken because also the probability distribution related to 𝑋 ′𝜑𝑆𝑁 becomes deterministic,

i.e. 𝑃 (𝑋 ′𝜑𝑆𝑁 | 𝑋𝜑𝑆𝑁) = 1𝑓 (𝜑𝑆𝑁) . When the improvement is probabilistic, however, for each

iteration of the loop the possible outcomes of distribution 𝑃 (𝑋 ′𝜑𝑆𝑁 | 𝑋𝜑𝑆𝑁) defined over

𝑋 ′𝜑𝑆𝑁 must be considered as well. That is, iterating over all uncertainty combinations is not

sufficient anymore. To address this problem, one may expand the number of iterations by

considering also the different values of𝑉𝑎𝑙 (𝑋 ′𝜑𝑆𝑁), i.e. 𝑉𝑎𝑙 (𝑋𝜑𝐵) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁) ×𝑉𝑎𝑙 (𝑋
′
𝜑𝑆𝑁
).

However, the number of iterations already increase exponentially in the number of uncer-

tainties (we discuss the state space explosion problem at the end of this section). Therefore,

we prune the uncertainty model structure by merging 𝑋𝜑𝑆𝑁 and 𝑋 ′𝜑𝑆𝑁 to a single random

variable as depicted on Figure 7.15.

The idea of the pruning or merging process is to recover the structure of the original graph

before the UncertaintySpecificCountermeasure has been applied such that we can iterate

over all the uncertainties as before. This is achieved by removing variable 𝑋𝜑𝑆𝑁 from the

graph and by adjusting the probability distribution defined over 𝑋 ′𝜑𝑆𝑁 , i.e. 𝑃 (𝑋
′
𝜑𝑆𝑁
). Based

173

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

on the originally provided distributions 𝑃 (𝑋𝜑𝑆𝑁) and 𝑃 (𝑋 ′𝜑𝑆𝑁 | 𝑋𝜑𝑆𝑁), the new distribution

𝑃 (𝑋 ′𝜑𝑆𝑁) is constructed as follows:

𝑃 (𝑋 ′𝜑𝑆𝑁) =
∑︁

𝜑𝑆𝑁 ∈𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁)

𝑃 (𝑋 ′𝜑𝑆𝑁 , 𝑋𝜑𝑆𝑁 = 𝜑𝑆𝑁)

=
∑︁

𝜑𝑆𝑁 ∈𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁)

𝑃 (𝑋 ′𝜑𝑆𝑁 | 𝑋𝜑𝑆𝑁 = 𝜑𝑆𝑁) · 𝑃𝑟 (𝑋𝜑𝑆𝑁 = 𝜑𝑆𝑁)
(7.3)

Note that although the mathematical derivation is based on the uncertainty model of

the HRI example system, the concepts generalise to any uncertainty 𝜑𝑖 . Moreover, equa-

tion (7.3) reflects the intention of an UncertaintySpecificCountermeasure, namely the

containment or mitigation of an uncertainty. Based on the pruned graph, the prediction

process can be continued as usual.

In the next step of the prediction process, it is iterated over all uncertainty tuples (as

described before). The first step within the loop corresponds to the resolution and recalcu-

lation of the failure probabilities. Recall that the core idea of the prediction process is to

recalculate the failure probability of the failure type associatedwith anAI component. More

precisely, this failure probability is determined taking into account the distinct uncertainty

permutations. That is, the probability of failure of the AI component is calculated w.r.t.

the considered uncertainty tuple 𝜑1, . . . , 𝜑𝑁 , i.e. 𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁).
Afterwards, the recalculated failure probability is resolved in the (unresolved) PCM model

𝑀−
𝐶
by retrieving the refined failure type and updating the failure probability. Finally,

the resolved PCM model𝑀+
𝐶
contains the updated failure probability and can be further

analysed.

More specifically, the following step applies the conventional prediction procedure of

PCM-Rel to the resolved model 𝑀+
𝐶
to predict the probability of success as usual. As a

result, we obtain the predicted success (and failure) probability of the system, given the

uncertainty model (or sensitivity model) of the AI component and a tuple of uncertainties,

i.e. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1, . . . , 𝑋𝜑𝑁) from (7.1). This is repeated for all uncertainty tuples such

that one obtains a set of prediction results for each uncertainty tuple.

Finally, after the loop is completely iterated, the number of prediction results must be

merged. The individual success and failure predictions help to understand the impact

of each uncertainty on the AI component and the overall system. In the end, however,

the major result is to obtain the overall success probability 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) given a certain

usage scenario𝑈 (just as originally provided by PCM-Rel). The overall success probability

takes into account all conditional success probabilities and summarises the impact of each

uncertainty on the system (or AI component) into a single value. Formally, 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) is

174

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

computed by adding the individual conditional probabilities of success weighted by the

probability of observing an uncertainty tuple to which it is conditional:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) =
∑︁
𝜓∈Ψ

∑︁
𝜑1,...,𝜑𝑁 ∈Φ

𝑃 (𝑋𝑆𝑦𝑠, 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 | 𝑋𝑈)

=
∑︁
𝜓∈Ψ

∑︁
𝜑1,...,𝜑𝑁 ∈Φ

𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁) · 𝑃𝑟 (𝑋Ψ = 𝜓 | 𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

· 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 , 𝑋𝑈)
=

∑︁
𝜑1,...,𝜑𝑁 ∈Φ

𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

·
∑︁
𝜓∈Ψ

𝑃𝑟 (𝑋Ψ = 𝜓) · 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 , 𝑋𝑈)︸ ︷︷ ︸
(7.2)

=
∑︁

𝜑1,...,𝜑𝑁 ∈Φ
𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁) · 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

(7.4)

For the sake of clarification, we use the notations Φ to represent𝑉𝑎𝑙 (𝑋𝜑1) × · · · ×𝑉𝑎𝑙 (𝑋𝜑𝑁)
and 𝑋Φ = 𝜑1, . . . , 𝜑𝑁 to represent 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁 .

The prediction result encompasses a set of CPDs capturing the conditional success and

failure probabilities of the system and the overall probability of success and failure. Note

that one could have used the uncertainty model to marginalise over the random variables

of the uncertainties (i.e. 𝑋𝜑1, . . . , 𝑋𝜑𝑁) to compute the probability 𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙) (or
𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)). Afterwards, the probability could have been used to describe the

probability of failure of the respective failure type in the PCM model and evaluated by

using PCM-Rel as usual. From the perspective of a software engineer, however, the

individual CPDs provide more insights regarding the impact of certain uncertainties and

can be used to prepare appropriate countermeasures. In addition, the approach presented

is fully automated and requires no further manual intervention.

Based on the prediction result, software architects might test several architectural coun-

termeasures to deal with uncertainties and enhance the overall reliability of the system.

Architectural countermeasures can be defined within the uncertainty-refined failure model.

In this work, we use ATs to represent architectural patterns that can be used to deal with

uncertainties. We already discussed in section 7.1.1 the filtering and n-version program-

ming pattern which we described by ATs. Hereby, we described how the ATs can be applied

to the PCM model by executing the corresponding completion (i.e. model transformation).

However, we have not yet discussed how the completions can be extended to enrich

the uncertainty-refined failure model with ArchitecturalCountermeasure instances to

account for the ATs in the reliability prediction for AI-enabled systems. We extended

the completion of the filtering pattern creating an UncertaintySpecificCountermeasure

capturing the effect of the filter component on given target uncertainty. Recall the EMF

profile of the filtering pattern which defines a distributionName and targetUncertain-

tyName attribute. Both attributes are used to resolve probability distribution describing

175

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

the UncertaintyImprovement and TemplateVariable capturing the target uncertainty of

the filter. Based on this information, the completion complements the uncertainty-refined

failure model by a corresponding countermeasure reflecting the action of the filtering

pattern on the uncertainty model. The completion of the n-version programming AT has

been extended in the same way. In contrast to the filtering pattern, a GlobalUncertainty-

Countermeasure is generated because the n-version programming pattern acts globally

and not on a specific target uncertainty. The EMF profile of the n-version programming AT

defines the name of the improved uncertainty model (see attribute improvedModelName).

After resolving the improved uncertainty model, the corresponding countermeasure is

created and added to the uncertainty-refined failure model. Regarding the reliability

prediction process, the application of ATs, if required, is performed before the actual

prediction process (as can be seen in the activity diagram of Figure 7.14). Thus, the AT

is considered in the PCM model and the respective countermeasure is considered during

the prediction process. This empowers software engineers to select from an AT catalogue

different patterns which can be checked regarding their reliability impact. Moreover, since

the completions are purely PCM-based, further analysis or simulation tools of Palladio are

applicable to predict other quality attributes. For instance, the application of the n-version

programming pattern may improve reliability but degrade performance. However, the

prediction tools support software engineers in making a suitable trade-off decision.

Finally, regarding the efficiency of the presented reliability prediction process, we already

noted the exponential complexity of the procedure (the iterations of the loop depicted on

Figure 7.14 grows exponentially in the number of uncertainties). Nonetheless, there are

several ways to deal with this problem. As mentioned in section 7.1.2, we consider the

value space of a property 𝑉𝑎𝑙 (𝑋𝜑𝑖) as a discrete set. Although discretisation drastically

reduces the size of the space, it does not eliminate the exponential property, but rather

makes it manageable. The degree of discretisation or resolution of each property can be

controlled, e.g. by the software architect or domain expert who identifies and models the

properties. However, a low resolution is associated with information loss; that is, a high

degree of discretisation can potentially affect the quality of the analysis or simulation

process. Therefore, the resolution must be balanced against the resulting complexity of

the uncertainty space (i.e. the efficiency of the prediction procedure itself) and the quality

of the prediction procedure. One last method to tackle the state space explosion problem

is to apply Monte Carlo methods, i.e. by sampling property tuples from 𝑃 (𝑋𝜑1, . . . , 𝑋𝜑𝑁).
Although the entire space is not examined, at least the tuples of uncertainties that have

high probabilities are taken into account and provide sufficient insights regarding the

effect of an architectural safeguard.

7.1.3.4. Generalisation

In the last section, we presented our reliability prediction approach for AI-enabled software

systems. We introduced the uncertainty-refined failure model for refining specific failure

types of the PCM model by an uncertainty model. Hereby, we restricted our discussion

merely to software-induced failure types as the primary means to model AI-induced failure

176

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

potentials. However, the concepts explained can be generalised to a much wider range of

use cases. In this section, we discuss how individual concepts of the approach need to be

extended and what challenges need to be considered to apply our prediction approach for

any failure type refinement and to analyse PCM models where more than one failure type

is refined.

Therefore, recall the metamodel of the uncertainty-refined failure model from section

7.1.3.2. The possible refinements can be defined for any kind of failure type (and not solely

software-induced failure types). In this case, the uncertainty-refined failure model includes

a set of UncertaintyInducedFailureTypes where each refines a certain failure type in the

PCM model associated with a respective uncertainty model. To discuss how the reliability

prediction process can be generalised, the four main steps from the activity diagram in

Figure 7.14 that make up the prediction process are discussed.

Therefore, recall that the procedure starts with applying architectural countermeasures.

Regarding a generalised prediction procedure, no further actions must be taken since for

each uncertainty-refined failure type the corresponding uncertainty model can be adjusted

w.r.t. the modelled and applicable countermeasures.

The prediction process continues with iterating over all uncertainty tuples and which

requires no further adjustments. However, as already discussed in the previous section,

the complexity of the procedure is exponential in the number of considered uncertainties.

Thus, when considering an arbitrary number of uncertainty models or failure refinements,

the uncertainty space increases faster. We already discussed how one can tackle the state

space explosion problem. However, depending on the number of uncertainty models and

considered uncertainties in each model, it is likely that they cause severe computational

problems. One way to deal with this problem could be to iterate sequentially over the sub-

spaces spanned by each uncertainty model instead of iterating over the entire uncertainty

space induced by all uncertainties of each uncertainty model. In this case, when iterating

over the subspace of an uncertainty model, a default or fixed failure probability can be as-

sumed for the other refined failure types, e.g.

∑
𝜑1,...,𝜑𝑁 ∈Φ′ 𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙, 𝑋Φ′ = 𝜑1, . . . , 𝜑𝑁)

for subspace Φ′ ⊂ Φ.

In the resolving step, we assumed stochastic independence between the resource failure

patterns and the uncertainties, i.e. (𝑋𝜑1, . . . , 𝑋𝜑𝑁 ⊥⊥ 𝑋Ψ). However, the assumption

does not hold when we model a set of uncertainties 𝜑1, . . . , 𝜑𝑁 describing the effect on a

hardware-induced failure type. This can be addressed by making no assumptions at all but

involves the modification of PCM-Rel. Internally, PCM-Rel implements a dedicated process

to calculate 𝑃𝑟 (𝑋Ψ = 𝜓) for any resource pattern𝜓 . Without the independence assumption

(𝑋𝜑1, . . . , 𝑋𝜑𝑁 ⊥⊥ 𝑋Ψ), this process must be adjusted to account for distributions of the

form 𝑃 (𝑋Ψ | 𝑋𝜑1, . . . , 𝑋𝜑𝑁).

Finally, after applying PCM-Rel as usual the results of the prediction need to be merged.

Both steps do not involve any additional effort and can be used as currently implemented.

In summary, to generalise the presented approach of the reliability process for AI-enabled

systems to a wider range of uncertainty-based reliability prediction scenarios, two factors

need to be considered. First, the assumptions made must be reconsidered, as they do not

177

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

apply to specific situations. Secondly, the problem of state-space explosion becomes more

challenging the more uncertainty-refined failure types are added.

7.2. Engineering Self-Adaptive Systems to Safeguard AI
Components

In section 7.1, we discussed how to evaluate AI-enabled software systems (and non-adaptive

architectural safeguards) regarding reliability attributes. However, so far we focused on

static systems. In this section, we generalise the concepts to self-adaptive systems.

Although we have discussed how to deal with the black-box nature of AI components

(e.g. by applying sensitivity analysis), the concepts tend to support software architects

in reliability assessment. For self-adaptive systems, however, the problem of the hidden

state of an AI component remains. We consider self-adaptive systems as mechanisms for

safeguarding AI components. Dealing with the black-box property is consequently of great

significance because self-adaptive systems must draw conclusions about the true state

to plan appropriate adaptations. In the following, we start to re-formalise the problem

statement of self-adaptive systems as originally stated in section 4.4.2. In particular, we

relax the basic assumptions associated with MDPs and take into account the black-box

property of AI components.

7.2.1. Problem Statement

Recall from section 4.4.2 that we consider a self-adaptive system as an MDP 𝜆𝑆𝐴𝑆 :=

(S,Δ, 𝑡S, 𝑟S) where the engineering problem is constituted by implementing an adaptation

strategy 𝜋 such that the quality objectives (reflected by reward function 𝑟S) are satisfied.
Also, recall that we defined a state as a tuple 𝑆 := (𝐸,𝐶) ∈ S consisting of an environmental

state 𝐸 ∈ E and an architectural configuration𝐶 ∈ C of the system. In MDPs, it is assumed

that each state 𝑆 := (𝐸,𝐶) is fully observable. When considering self-adaptive systems as

architectural safeguards for AI black-box components, however, this is not entirely true

for the environmental state 𝐸. In the following, we discuss why this assumption no longer

applies.

Recall definition 30 on page 162 of an AI black-box component defined as a function

𝑏 with input space X and output space Y. Since the true state of 𝑏 is not observable,

the uncertainty induced by 𝑏 refers to the inability to determine whether a prediction

or output is correct or not. Regarding the state definition 𝑆 := (𝐸,𝐶), this means that

there is a variable 𝑒𝑏 ∈ 𝐸 (recall the environmental state from definition 17 on page 74)

capturing the uncertainty induced by 𝑏. According to the hidden state problem, however,

the variable 𝑒𝑏 is not observable such that the entire state 𝑆 := (𝐸,𝐶) is not fully observable.
We say that 𝑆 is Partially Observable to account for the variables in the state which remain

hidden. Instead of directly monitoring the state of 𝑏 (or 𝑒𝑏), we encounter observations of

input/output pairs (i.e. of the form (𝑥,𝑦) ∈ X × Y) that one can use to draw conclusions

178

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

about the state of 𝑏. To account for these observations, we expand the problem statement

by considering a self-adaptive system as a Partially Observable Markov Decision Process
(POMDP) represented by the tuple (𝜆,Ω, 𝑜).

Technically, POMDPs extend MDPs 𝜆 by a set of observations Ω and an observation model

𝑜 : 𝑆 × Ω → [0, 1] that evaluates the probability to observe 𝜔 ∈ Ω in state 𝑠 ∈ 𝑆 . That is,
instead of observing a state 𝑠 directly, one encounters an observation 𝜔 generated from

the observation model 𝑜 that serves as the basis for determining 𝑠 ; or, in other words, the

observation process (w.r.t. 𝑜) is a stochastic process that allows one to draw conclusions

about the stochastic process of the hidden states 𝑠 ∈ 𝑆 .

We consider self-adaptive systems safeguarding AI black-box components as POMDPs

described by the tuple (𝜆𝑆𝐴𝑆 ,Ω, 𝑜S) where Ω ⊆ X ×Y and 𝑜S : S × Ω → [0, 1] represents
the instantiated version of the original observation model (i.e. 𝑜 : 𝑆 × Ω → [0, 1]). Note
that in literature POMDPs are often defined differently; more precisely, the definitions

additionally include the taken action in the observation model, i.e. 𝑜 : 𝑆 ×𝐴 × Ω → [0, 1].
However, when the action is directly reflected or included as a state feature, then the

observation model can be written in the form 𝑜 : 𝑆 × Ω → [0, 1] [174]. In our case, an

adaptation is included by a state 𝑆 := (𝐸,𝐶) in the sense that its effect is directly reflected by
the architectural configuration 𝐶 . Additionally, from a probabilistic perspective, one may

argue that the adaptation and observation process is conditionally independent given the

architectural configuration because only the configuration impacts the way of observing

correct or incorrect tuples, i.e. (𝑥,𝑦) and (𝑥,𝑦′) where 𝑦 corresponds to a wrong output

and 𝑦′ to a correct output (because (𝑥,𝑦′) might be predicted in a situation where the

architectural configuration included additional filter operation or pursued an n-version

programming approach).

Extending the formal definition of self-adaptive systems to POMDPs is indicating how

the complexity of the problem increases when uncertain AI components are involved.

Instead of implementing an adaptation strategy 𝜋 that must maintain the system’s quality

objectives over time (as originally motivated), a software architect must additionally deal

with the fact that the true state is hidden.

7.2.2. Decoupling of the Observation Process

In the last section, we formally discussed the problem associated with self-adaptive systems

that are supposed to manage AI black-box components, namely the hidden state of 𝑏 and

the observation model 𝑜 as a basis to draw conclusions about the state of 𝑏. In this section,

we discuss how to tackle the problems induced by uncertainties of AI.

To this end, we need to take a closer look at the problem MAPE-K-based self-adaptive

systems have to deal with when safeguarding AI components, namely the Observation
Process. In this context, the observation process mainly refers to the process of making

observations (w.r.t. observation model 𝑜) from which the true state must be determined.

Let us therefore briefly enumerate the steps of the decision procedure of a self-adaptive

system, if one strictly adheres to the semantics of POMDPs. Since we are focused on

179

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

MAPE-K-based self-adaptive systems, these steps refer to the MAPE phases. Recall that

POMDPs comprise two stochastic processes, one describing the state evolution of the

hidden (or partially observable) state and another generating the respective observation of

each state. That is, in the monitor phase, the self-adaptive system obtains an observation

or input/output pair 𝜔 := (𝑥,𝑦) ∈ Ω. In the analyse phase, it must be determined whether

the state of 𝑏 is potentially erroneous, i.e. the prediction of output 𝑦 is not correct. We

abstract this situation by considering it as a probabilistic problem: 𝑃 (𝑋S | 𝑋Ω = 𝜔). Note
that w.l.o.g., we can formulate this in a probabilistic way because even if there exists a

deterministic function 𝑓 (𝜔) that determines the state, we can write this probabilistically,

i.e. 𝑃𝑟 (𝑋S = 𝑆 | 𝑋Ω = 𝜔) = 1𝑓 (𝜔)=𝑆 . Furthermore, recall that a state 𝑆 ∈ S is considered to

be partially observable, i.e. merely the variable 𝑒𝑏 ∈ 𝐸 associated with the AI component

is hidden. Thus, we can constrain the probabilistic problem to the environmental variable

directly related to 𝑏: 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) where (as before) 𝑋𝑏 describes a binary random

variable capturing the predictive uncertainty of an AI component. Simply put, in the

analysis phase, the distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) must be considered to infer the true state

of the AI component and decide whether an adaptation should be planned. The planning

and execution phases are then carried out in the usual way.

It can be seen that, in the analyse phase, it is crucial to have profound knowledge of the

distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) because it determines whether the system is adapted or not.

However, estimating 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) requires deep knowledge of the observation model 𝑜

and is either tedious or even infeasible due to the complexity of the input space (e.g. the

pixel space). Therefore, using 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) as a criterion for deciding whether to adapt

the system is arguably questionable, as it involves considerable theoretical problems.

Instead, we have to focus on a different set of properties that allow conclusions to be drawn

of the true state of 𝑏. We argue to augment the monitor phase of a self-adaptive system by

considering observable properties that allow conclusions to be drawn of the true state of 𝑏.

Therefore, recall the set of uncertainties 𝜑1, . . . , 𝜑𝑁 (which we now consider as observable

properties of 𝑏) from the sensitivity model in section 7.1.2. Depending on the domain, the

properties manifest themselves in various ways; they range from simple properties such

as brightness conditions or sensor noise to more complex properties such as robustness

indicators or neuron coverage in deep neural networks (we discuss the nature of properties

in more detail later). Nonetheless, we assume that the properties are observable, i.e. either

directly from the environment (e.g. sensor noise) or derivable from the input/output of an

AI component (e.g. neuron coverage). Thus, runtime monitors can be constructed such that

the properties 𝜑1, . . . , 𝜑𝑁 are monitored and taken into consideration for the remaining

phases of a self-adaptive system. To account for the monitored properties 𝜑1, . . . , 𝜑𝑁 , the

distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) of the analyse phase expands as follows:

𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔,𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁) (7.5)

However, the distribution still includes the random variable 𝑋Ω which is associated with

severe theoretical problems. Therefore, recall the environmental state 𝐸 of a self-adaptive

system before augmenting the monitor phase with additional properties. The environ-

mental state merely encompasses a single variable, namely the variable describing the

180

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

state of an AI component: 𝐸 := (𝑒𝑏). By considering the set of properties 𝜑1, . . . , 𝜑𝑁 as

factors that potentially influence the quality of a prediction made by 𝑏, they indirectly

impact the quality attributes of the software system including 𝑏. Recall that we consider

predictive uncertainty as the first-order uncertainty of AI components. The set 𝜑1, . . . , 𝜑𝑁
refer now to what we defined at the beginning of the chapter as AI-related uncertainties

of second order. Therefore, they must (according to definition 17 on page 74) also be

considered in the environmental state: 𝐸 := (𝑒𝑏, 𝑒𝜑1, . . . , 𝑒𝜑𝑁). Given that expanded state

definition, the environmental state can be partitioned into a set of observable variables

𝐸𝑜𝑏𝑠 := {𝑒𝜑1, . . . , 𝑒𝜑𝑁 } and a set of hidden variables 𝐸ℎ𝑖𝑑 := {𝑒𝑏}. This can also be written in

terms of random variables, i.e. 𝑋𝐸𝑜𝑏𝑠 := {𝑋𝜑1, . . . , 𝑋𝜑𝑁 } and 𝑋𝐸ℎ𝑖𝑑 := {𝑋𝑏} (we omit the 𝑒’s

to simplify the notation). Given the random variables 𝑋𝐸𝑜𝑏𝑠 , 𝑋𝐸ℎ𝑖𝑑 and 𝑋𝐸𝑜𝑏𝑠 , we assume

that the Missing At Random (MAR) assumption applies:

(𝑋Ω ⊥⊥ 𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠) (7.6)

The MAR assumption requires conditional independence between the observations and

hidden variables given the observable variables, i.e. independence between 𝑋Ω and 𝑋𝐸ℎ𝑖𝑑
given 𝑋𝐸𝑜𝑏𝑠 [105, P.854]. That is, an observation 𝜔 := (𝑥,𝑦) provides no additional infor-

mation about the hidden variables if the observed variables are known. Consequently,

the following equation applies: 𝑃 (𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠 , 𝑋Ω) = 𝑃 (𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠) MAR is applicable

in many settings and is primarily used to decouple the observation model to deal with

complex likelihood functions (see Koller and Friedman for detailed explanations of MAR

[105, P.854]). In this context, however, we make the MAR assumption to decouple the ob-

servation process to avoid theoretical problems induced by large and complex input spaces.

Instead, we can focus on more reliable and easier-to-handle observations or properties.

Based on the MAR assumption and their implications, equation (7.5) simplifies to:

𝑃 (𝑋𝑏 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁) (7.7)

In summary, the MAR assumption allows the decoupling of the observation process as we

can exclude the observation set Ω and thus the observation process. Instead, we focus on

a set of observable properties that are both directly observable and allow more precise

statements about the state of 𝑏. Note that this does not change the theoretical problem

that one is facing, i.e. a self-adaptive system safeguarding an AI component still must

be considered as POMDP. However, the MAR assumption is accompanied by several

advantages that facilitate dealing with the hidden state of 𝑏 and also the analysis of such

systems at design-time (as we will see in the next section).

According to Koller and Friedman [105], although the MAR assumption is applicable in

many settings, it must be considered with care. For a limited or not representative set

of observable properties, the MAR assumption may not hold. So far we rather enumer-

ated properties such as brightness, sensor noise, weather, etc. However, in areas such

as autonomous driving with extremely dynamic environments (where there are fairly

more monitorable properties), taking such primitive properties into account is arguably

insufficient or does not accurately satisfy the MAR assumption. Therefore, we consider

more sophisticated or expressive properties. Basically, we distinguish between weak and

181

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

strong properties. We denote properties such as brightness or sensor noise as weak, even

though they allow reasoning about the state of an AI component, but do not provide strong

assurances. On the contrary, we consider properties such as the determination of safe

input regions [201] or variational inference [26] as strong properties as they provide a

higher level of assurance. For example, if the input data can be mapped to a precomputed

safe region (i.e. a region of the input space for which predictions have been verified to be

correct), the probability of an incorrect prediction is zero. The computation of such safe

regions, however, is computationally expensive and may not be applicable in situations

that require quick reactions such as autonomous driving [116]. Consequently, strong prop-

erties need to be weighed in terms of the computational cost and the level of assurance

they provide. The MAR assumption can always be sharpened by considering additional

observations. Whether this is achieved by strong or soft properties (or a combination of

both) must be evaluated by the software architect in terms of the degree of assurance and

the computational cost they entail and is a design decision.

Finally, let us consider the design of a MAPE-K-based self-adaptive system by taking into

account the insights gained from the MAR assumption. A design sketch is depicted on

Figure 7.16. The monitor phase is augmented by the set of properties 𝜑1, . . . , 𝜑𝑁 which are

either directly computable from the input/output pairs (𝑥,𝑦) (e.g. safe input regions) or by
additional monitors observing external properties (e.g. brightness conditions by external

sensors). In the analyse phase, the distribution (7.7) is used to assess whether, for a given

set of properties, the probability of observing an incorrect prediction exceeds a threshold

𝜖 . Note that the distribution can be obtained by applying an upstream sensitivity analysis

(as described in section 7.1.2). If this is the case, the plan-phase is triggered, in which an

adaptation is planned (e.g. by considering 𝜑1, . . . , 𝜑𝑁) as a countermeasure or to prevent

the system from transitioning to an unsafe state. At the very end, the adjustment is carried

out in the execute-phase. The knowledge part contains all the information (architecture

model, environment model, sensitivity model, assumptions, etc.) relevant to each phase

and required for decision-making.

In the next two sections, we discuss how to evaluate self-adaptive systems that follow the

previously outlined design. More specifically, we discuss how adaptation strategies are

evaluated in terms of maintaining reliability attributes.

7.2.3. Analysing the Monitorable Space

In the last section, we sketched the design of a MAPE-K-based self-adaptive systemwithout

being too restrictive in terms of the design space, i.e. the main adaptation logic (such as

adaptation planning) still needs to be designed. Hereby, we made the MAR assumption

to decouple the observation process which relates to the problem of dealing with high

dimensional input spaces from which one must draw conclusions about the hidden state

of an AI component. However, the decoupling of the observation process not only has

positive effects on the black-box property of AI components but also on the evaluation.

The general evaluation approach of self-adaptive systems to safeguard AI components is

discussed in the next section; however, this section discusses how the input spaces of AI

182

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

Knowledge

Monitor

Analyse Plan

Execute

Environment model

Sensitivity model

...

AI model

Comp BComp A

Architecture model

Assumptions: ...

Sensors Actuators

Properties:

If true: trigger plan phase
Otherwise: terminate

Threshold exceeded?

Input/ouput
pair

external
sensor

Adaptation planning (e.g.
w.r.t.)

Execution of the planned
adaptation

Figure 7.16.: Design of the MAPE-phases when considering the MAR assumption.

components can be taken into account in the evaluation as peculiarities in the input space

are the main source of incorrect predictions and therefore need to be considered in the

evaluation.

Without the decoupling, one must represent the observations in the evaluation process.

The observations again refer to input-output pairs of the AI component, which is fairly

difficult to integrate (especially when dealing with image data where the input space is the

pixel space). By the decoupling, however, we focus on a more manageable set of properties

𝜑1, . . . , 𝜑𝑁 that allows drawing more precise conclusions of the state of an AI black-box

component 𝑏; recall distribution 𝑃 (𝑋𝑏 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁). That is, instead of

considering the input space of 𝑏, we rather focus on the distinct property permutations

during analysis or evaluation. We denote the space spanned by the set of properties

𝜑1, . . . , 𝜑𝑁 the Monitorable Space. More formally, we describe the monitorable space Φ as

follows:

Φ := 𝑉𝑎𝑙 (𝑋𝜑1) × · · · ×𝑉𝑎𝑙 (𝑋𝜑𝑁) (7.8)

By considering themonitorable space, one can simulate themonitor phase of a self-adaptive

system by generating property tuples (𝜑1, . . . , 𝜑𝑁) from Φ. By decoupling the observation

process, we shift the analysis to the monitorable space, bypassing problems caused by

large input spaces. We discuss this in more detail in the next section.

However, it should be noted that the monitorable space still grows exponentially in the

number of properties such that we possibly encounter state space explosion problems.

183

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

As already discussed in section 7.1.3, Monte Carlo methods can be applied or the level of

discretisation can be adjusted to reduce the size of the space. However, this might entail a

loss of simulation/analysis accuracy. Again, we defer the detailed discussion to section

7.2.4. Moreover, the set of properties must be kept small to circumvent statistical problems

(e.g. curse of dimensionality). Consequently, a larger number of properties could be an

indication of poor selection. Instead, one can reduce the set of properties by focusing on

(if possible) strong properties, i.e. properties that provide stronger assurances. In this way,

the monitorable space is reduced because adding strong properties allows the removal of

weak properties.

7.2.4. Evaluating Adaptation Strategies

In this section, we discuss how to evaluate adaptation strategies of self-adaptive systems

to safeguard AI components at design-time. Therefore, we take all the concepts we have

elaborated in this chapter and combine them with the SimExp method from chapter 6.

Recall that the SimExp method provides a framework for evaluating adaptation strategies.

In the following, we outline how we extend the SimExp framework to evaluate adaptation

strategies safeguarding AI components.

For this purpose, however, we have to briefly recap the main concepts of SimExp. More

specifically, recall Figure 6.1 that provides an overview. The SimExp framework needs to be

complemented by a reward function and an adaptation strategy provided by the software

engineer. Moreover, the framework inputs the initial architecture model, an environment

model and a set of model transformations. The latter represents the set of adaptations. The

initial architecture model (represented by a PCM model) indicates the start configuration

of the system. At this point, the environment model is of most interest because it is directly

connected to the uncertainties or properties 𝜑1, . . . , 𝜑𝑁 . Therefore, recall that during

section 7.1 we used the term uncertainties to describe factors that potentially influence

the prediction quality of an AI component. In this section, however, we introduced the

notion of properties that one can observe to reason about the true state of an AI black-box

component. Although both terms suggest different concepts, we consider them the same.

In the remainder of the chapter we use the term properties, but would like to emphasise

again that we could use the term synonymously with uncertainties. Nonetheless, they

form an integral part of the environment because they affect quality objectives. They are

represented as environmental variables that make up an environmental state (as already

discussed in section 7.2.2). The set of environmental states forms the environmental

dynamics which is modelled by the EnvDyn metamodel. That is to say, one can use the

EnvDyn metamodel to model the corresponding DBN that describes the probabilistic

behaviour of the properties over time. Based on the DBN, the adaptation strategy can be

evaluated based on the sampled environmental states.

It is important to note that the way the SimExp framework is used originates from the

theoretical insights of decoupling the observation process (see section 7.2.2) and the fact

that we can focus the simulation on the monitorable space (see section 7.2.3). Without

the decoupling, we would still need to simulate the dynamics of the system governed by

184

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

the semantics of POMDPs which is associated with severe theoretical issues caused by

the observation process. By decoupling the observation process, we focus on the purely

observable and monitorable space spanned by a set of properties that allow conclusions to

be drawn about the true state of the AI black box component. However, this requires that

theMAR assumption is sufficiently approximated by the set of considered properties. Based

on both concepts (namely the decoupling of the observation process and the monitorable

space), one can model the environment as in any other domain and evaluate adaptation

strategies as discussed in Figure 7.16.

Finally, let us return to the reward function, which assigns a reward to each decision of an

adaptation strategy. In this context, we are interested in analysing how well a strategy

maintains reliability objectives. That is, we have to account for reliability attributes in the

reward function. Therefore, we directly reuse our reliability prediction approach from

section 7.1 for AI-enabled systems. For reliability prediction, the sensitivity model must

be generated beforehand and must match the environmental model, i.e. the uncertainties

of the sensitivity model are equal to (or a subset of) the environmental variables of

the DBN. That is, the sampled environmental states are used to compute the failure

potential of the AI component, which has a global impact on the overall reliability of

the system (quantified as probability of success). Recall that we introduced this idea

in section 6.3.2.2 where each state of a self-adaptive system (comprising the current

architectural configuration and environmental state) is transformed into an analytical

model for predicting quality attributes. Suppose that there is a proper uncertainty-refined

failure model (referencing the sensitivity model), the environmental state (including the

uncertainties) and the architecture model are simply passed to the reliability prediction tool

to predict the probability of success. The reliability prediction can be complemented by the

application of other simulation/analysis tools, e.g. the Palladio performance prediction tool

enables the prediction of additional performance indicators. Based on these predictions the

corresponding reward can be determined by the reward function. The idea is illustrated

once again in Figure 7.17 for the HRI example system.

The implemented adaptation strategy executes (if required) model transformations to sim-

ulate adaptations. To account for the effects of the transformations (or adaptations) on the

reliability attributes, the transformations are implemented in a way such that architectural

preconditions defined in the uncertainty-refined failure model are satisfied, leading to the

activation of a connected architectural countermeasure (see section 7.1.3.3). For exam-

ple, a model transformation could activate further filter components to preprocess input

data before passing it to the AI component. In this case, the filter component is inserted

into the architectural model such that a corresponding architectural precondition of the

uncertainty-refined failure model evaluates to true and the associated countermeasure is

considered in the reliability prediction.

185

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

, , ,
FilterComponent

AI
ComponentComponent

AI
Component

Reliability
Prediction

Sensitivity model

Figure 7.17.: Internal simulation/sample process when evaluating adaptation strategies for safeguarding AI

components.

7.3. Implementation

In this section, we briefly provide an overview of the implementation details. Therefore,

consider Figure 7.18 which shows an excerpt of the component structure implementing

the reliability prediction approach from section 7.1.3.3. For clarity, not all components are

displayed, but related components are combined into a single component (e.g. PCM.Core.*
or PCM.Reliability.*).

The approach is implemented by three central components, namely PCMRelAI.UI, PCMRelAI.-

Predictor and PCMRelAI.Model. Note that we use PCMRelAI.* to prefix components related

to our presented reliability prediction approach. The PCMRelAI.UI component implements

the user interface where all necessary details (e.g. model locations and other configura-

tions) are specified by the user. Afterwards, the PCMRelAI.Predictor component is used by

the provided configuration of the user and implements the core logic of the prediction ap-

proach. Since the approach extends the conventional PCM-Rel approach by resolving and

updating the failure probabilities of an AI component, the PCMRelAI.Predictor component

is dependent on the corresponding components implementing PCM-Rel (and also on some

components providing core PCM functions, e.g. the PCM model). In addition, the user can

apply an AT before the analysis (if needed). Therefore, the PCMRelAI.Predictor reuses

the appropriate functions provided by the PCM.AT.* components to apply the specified

AT. Finally, the PCMRelAI.Model component is referenced which provides the uncertainty-

refined failure model and corresponding code artefacts based on the EMF framework.

186

7.4. Assumptions and Limitations

PCMRelAI.ModelPCMRelAI.PredictorPCMRelAI.UI

PCM.Core.* PCM.Reliability.*

ProbDist.* EnvDyn.*PCM.AT.*

Figure 7.18.:Excerpt from the dependency graph of the components for implementing the reliability prediction

approach for AI-based systems

Similar to the implementations in the other chapters, our tooling is implemented in the

context of Eclipse, more precisely as an Eclipse plug-in.

7.4. Assumptions and Limitations

In the following, we discuss the assumptions and limitations of the presented approach.

Assumptions As in other chapters, the presented approach is associated with several

assumptions. The first assumption to mention is the MAR assumption. We make the

MAR assumption to decouple the observation process by focusing on a set of observable

properties which allow conclusions to be drawn about the true state of an AI component.

As we have already discussed in this chapter, this assumption might be too strong in

some settings. However, the MAR assumption can be highly approximated by considering

properties that provide high assurances regarding the state of an AI component. We have

discussed this issue in detail in section 7.2.2 and refer to said discussion.

Moreover, we assumed independence between hardware resource patterns𝜓 , usage model

𝑈 and the observed uncertainties or properties 𝜑1, . . . , 𝜑𝑁 , i.e. (𝑋𝜑1, . . . , 𝑋𝜑𝑁 ⊥⊥ 𝑋Ψ ⊥⊥ 𝑋𝑈).
We argue that this assumption is accurate in settings where 𝜑1, . . . , 𝜑𝑁 refer exclusively

to AI-specific uncertainties, or at least accurate enough to perform design-time analysis

187

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

where simplifying assumptions are fairly common. Moreover, when considering equation

(2.3) on page 34 of PCM-Rel, similar assumptions must have been made regarding 𝑋Ψ and

𝑋𝑈 . In settings where 𝜑1, . . . , 𝜑𝑁 are related to hardware failure types, the assumption does

not hold anymore (as discussed in section 7.1.3.3). However, this is currently unrelated

to our considered use case but is a topic for future work when the our approach is to be

extended to a wider range of use cases.

Limitations Also, regarding the implemented functionality of the approach, there are a

couple of limitations. First, we outlined in section 7.1.3.3 how our presented reliability

prediction approach for AI-enabled systems can be generalised to a wider range of use

cases. However, the discussion is only theoretical and not yet implemented. We plan to

make up for this in future work.

Our reliability prediction approach for AI-enabled systems is based on PCM-Rel [33]

which is based on PCM. Consequently, one must strictly use PCM as ADL to model

the software architecture of the AI-enabled system. Although PCM is a very powerful

language to describe numerous software systems, it might be not perfectly suited to model

the architecture of systems from other domains, e.g. embedded systems. Nonetheless,

PCM can be used anyway and thus our reliability prediction approach. However, using an

ADL that allows more accurate modelling of other types of systems would be desirable.

The same applies to the semantics of the reliability prediction procedure. Our reliability

approach builds upon the existing reliability approach PCM-Rel of Brosch [33]. Therefore,

we also inherit the semantics of the PCM-Rel reliability prediction procedure. In terms of

our reliability prediction approach (and the inherited prediction semantics of PCM-Rel),

the effect of a wrong prediction is directly evaluated at the modelled AI component and

not in the other parts of the system which might be affected by the corrupted prediction.

However, since our primary goal is to evaluate design decisions in terms of architectural

safeguards, we argue that the reliability prediction semantics are sufficiently accurate.

In section 7.1, we presented two architectural patterns, namely the filtering and n-version

programming pattern. We modelled both patterns by using the formal language of ATs (see

section 2.3.1.2). Each AT is accompanied by a completion, i.e. the model transformation,

which weaves the pattern into a specific architectural model (or more precisely PCM

model). In this context, the completions for both ATs are merely applicable to event-based

PCMmodels. This results from the fact that we considered (at least for AI-enabled systems)

only systems adhering to event-based architectures. In future work, however, we plan to

extend the completions to apply the ATs to PCM models that communicate synchronously

through operation calls.

7.5. Summary

In this chapter, we presented design-time approaches to evaluate architectural safeguards

regarding reliability at design-time. We considered predictive uncertainty as first-order

188

7.5. Summary

uncertainty. Moreover, we defined a set of second-order uncertainties (e.g. brightness,

sensor noise) that are directly observable and allow conclusions to be drawn about the true

state of the AI component. These secondary uncertainties serve as the main components

for dealing with the black-box nature (or hidden state problem) of AI components and

form the entry point for the analysis of systems with AI components.

In section 7.1, we presented an approach to model and analyse architectural patterns

specifically designed to deal with AI uncertainties. We focused on two patterns, namely

the filtering and n-version programming pattern. We used the AT (architectural template)

language to represent the patterns as models (see section 7.1.1). This allows a software

developer to select an AT and apply it to an architectural model (in this context a PCM

model) such that the impact can be analysed. After that, in section 7.1.2, we explained how

to use sensitivity analysis to address the black-box property of AI components. The key

idea is to generate a sensitivity model to approximate the predictive uncertainty of an AI

component given a set of secondary uncertainties which affect the predictive uncertainty.

The secondary uncertainties must be known in advance by consulting a domain expert or

conducting an upstream domain analysis. Based on the sensitivity model, we presented

a reliability prediction approach for AI-enabled systems. More specifically, we extended

an existing reliability approach for classic information systems, namely PCM-Rel (see

section 7.1.3.3). Internally, PCM-Rel makes use of a failure model for annotating specific

elements of the architecture model with failure probabilities. We extended PCM-Rel by

using the sensitivity model to represent the predictive uncertainty of the AI component.

The extended reliability prediction approach complements the developed ATs by analysing

the impact of an architectural safeguard (modelled as AT) in terms of reliability.

In the second part of this chapter, we generalised the previously presented concepts to

self-adaptive systems. In this context, we consider self-adaptive systems as a safeguarding

mechanism for AI components, where the adaptation strategy (governing the adaptation

process) is to be evaluated. Therefore, we reused the SimExp framework from chapter

6. Moreover, we extended the framework by integrating the aforementioned reliability

approach for AI-enabled systems. Thus, an adaptation strategy is analysed and evaluated in

terms of maintaining reliability attributes. Finally, we concluded the chapter by discussing

the assumptions and the limitations.

189

8. Classes of Architectural Dependability
Assurance for AI-Enabled Systems

In the previous chapter, we presented a model-based approach for the reliability prediction

of AI-enabled systems (for both, static and self-adaptive systems). The approach is based

on models that abstract the software architecture, adaptations (in the case of self-adaptive

systems) and the environment in which the system is operating. However, the question that

arises at this point is whether we can always abstract systems and environments to conduct

design-time analysis. In self-driving cars, for example, the dynamics of the environment

are so manifold and encompass numerous possible scenarios that these environments

are difficult to capture by an environment model. Depending on the quality attributes

one wants to analyse, there could be a lack of simulation or analysis tools for prediction.

Even if one can predict a quality attribute (or another type of system property), the state

space to be analysed might be too large to check whether all states satisfy the system

property. The circumstances under which a system can be analysed at design-time depend

not only on the type of system (i.e. static or self-adaptive) but also strongly on the system

properties that are to be analysed. In particular, for systems with AI components, where

the hidden state problem of AI models prohibits checking whether the model is executing

incorrectly, one has to resort to particular properties (e.g. neuron coverage, robustness or

simply brightness in the input image) that are used to draw conclusions about the true

state of the AI component. However, such properties are not always observable (i.e. only

for a subset of the input space) or computationally expensive, but are highly relevant to

determine system-level properties.

To account for a wide range of system-level properties, we consider those related to

Dependability. According to Sommerville [173], dependability encompasses four essential

quality dimensions, namely Availability, Reliability, Safety and Security. Therefore, we
consider system-level properties that can be assigned to one of the enumerated quality

dimensions.

In this chapter, we propose four classes of architectural dependability assurance, namely

Static Analysability,Monitor Analysability, A-posteriori Analysability andNon-Analysability.
Furthermore, we introduce a classification structure (based on generic classification dimen-

sions) that allows AI-enabled systems and their domain to be classified into one of these

classes. The classes form a natural order where static analysability is the most desirable

class (i.e. the system is fully analysable at design-time) and non-analysability refers to the

worst class (i.e. the system cannot be analysed at all and thus no assurances can be made).

Each class is associated with a particular system-level property for which assurance can

191

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

be given either at design-time or at runtime or not at all. For example, static analysability

refers to the ability to fully analyse a system at design-time such that, as a result, assurances

w.r.t. the considered system-level property can be made at design-time. Additionally, the

classification of the system to be engineered (and w.r.t the operating environment) into

one of the classes gives software engineers an intuition about the problem domain itself.

Systems which are statically analysable (regarding a system-level property the systemmust

satisfy) are arguably easier to develop than systems that are classified as non-analysable.

Finally, we envision the classes to serve as assurance arguments in assurance cases. In

assurance cases, claims are made that the system meets the (safety-related) requirements

and arguments and evidence are provided to justify these claims [25]. Therefore, we

consider our classes of dependability assurance as further argumentation and evidence

that contribute to the degree of belief to justify the claims within an assurance case. For

example, if it can be argued (in terms of classification structure) that a system is classified

into static analysability, this strengthens the assurance argument considerably as it implies

that evidence can be provided at design-time. If, on the other hand, a system can only be

classified into lower-ordered classes, then the assurance argument is weakened as it implies

that either only partial analysis is possible at design-time or even only at runtime.

As a last remark, the classes are inspired by the insights gained from the previous chapters.

Nonetheless, they are formulated in a way that generalises the concepts of this thesis.

However, due to the rather limited number of approaches to the analysis of AI-enabled

systems at design-time, it is difficult to assess whether the dependability assurance classes

(and the classification dimensions) are complete. Therefore, we consider them as a starting

point, but one that is still preliminary and needs to be further investigated in future work.

The contribution of this chapter has been published [160].

In this chapter, we address research question RQ4:

Research Question 4: How to assess the extent to which dependability assurances

can be given for an AI-enabled system?

Therefore, we developed the aforementioned classes of analysability and respective classi-

fication dimensions to address the sub-research questions RQ4.1 and RQ4.2

Research Question 4.1: What are appropriate classes of architectural dependabil-

ity assurances?

Research Question 4.2: What are the suitable dimensions for classification?

The chapter is structured as follows: In section 8.1, we introduce the four classes of

architectural dependability assurance. In section 8.2, we discuss the distinct classification

dimensions and provide an overview of the classification structure (w.r.t. the dimensions).

Afterwards, in section 8.3, we demonstrate the applicability of the classification structure

by applying it to representative AI-enabled systems. Finally, we summarise the chapter in

section 8.4.

192

8.1. Classes of Architectural Dependability Assurance

8.1. Classes of Architectural Dependability Assurance

In this section, we present the distinct classes of architectural dependability assurance.

Basically, the idea is to classify systems and the environment (in which the system operates)

into one of the classes. Each class indicates the extent to which design-time and runtime

assurances can be made. We consider an assurance or assurance case as defined in [68]:

“A reasoned and compelling argument, supported by a body of evidence, that a system,

service or organisation will operate as intended for a defined application in a defined

environment” [68]. Moreover, an argument “[...] is defined as a connected series of claims

intended to establish an overall claim” [68]. Our classes determine the time at which these

arguments can be given, i.e. at design-time or runtime. Therefore, classification into one of

the classes itself becomes an assurance argument. Systems that can be assigned to classes

for which assurances can be given at design-time are more favourable because evidence

can be given at design-time and not only at runtime (making the assurance case more

compelling).

Compose Verify
System

Environment

Property

proof

counterexample

Figure 8.1.: Typical formal verification process taken from [165].

For the definition of the classes, we orient ourselves on the traditional verification process

(see Figure 8.1) for software systems or programs. In principle, in formal verification, the

primary objective is to verify a property Φ based on a system model 𝑆𝑦𝑠 and environment

model 𝐸𝑛𝑣 (in which the system operates). The 𝑆𝑦𝑠 and 𝐸𝑛𝑣 models are composed and

generate a formal model F which serves as a basis to verify property Φ. The output is a yes
or no answer indicating that the property could either be verified (with an optional proof)

or not (with a corresponding counterexample that falsifies Φ). Originally, Seshia et al.

[165] discuss how this process can be adapted into a holistic procedure for the verification

of AI systems. In this work, we make use of the individual elements and their interplay to

define our distinct classes.

As a final remark, recall that the classes induce a natural ordering in which static analysabil-

ity is to be considered the most preferable class, followed by monitor and a-posteriori

analysability; non-analysability refers to the worst possible class. Similarly, we argue that

the same natural order exists in the classes static analysability, monitor analysability and a

posteriori analysability in terms of making assurances. More specifically, assurances that

can be made in a particular class must automatically apply to lower-order classes as well,

i.e. a property that can be assured at design-time can also be assured at runtime (if the

property is efficiently computable). For example, any system-level property that is (say)

193

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Compose Predict

Architecture model

Environment model

Property

Satisfied

Not satisfied
Model transformations

Figure 8.2.: The adapted dependability assurance process for design-time analysis based on the classical

verification process [165].

statically analysable is also monitor-analysable, but not vice versa. However, this does not

apply to non-analysability because any system-level property that is static, monitor- or

a-posteriori analysable cannot be non-analysable.

8.1.1. Static Analysability

In this section, we define the dependability assurance class static analysability which

refers to the ability to statically analyse properties at design-time. When classified to static

analysability, the environment in which the system operates is considered to be well known

or there is sufficient information available to analyse the environment. Environments

which are well understood by (e.g.) domain experts allow sufficient information (such as

assumptions) to be included to describe how the environment behaves, how it interacts

with the system or what the main disturbances are.

To be more formal, let us consider Figure 8.2 which depicts the traditional verification

process adapted for our purposes. In this case, the system model 𝑆𝑦𝑠 and environment

model 𝐸𝑛𝑣 correspond to our architecture model𝑀C and environment model (capturing the

environmental dynamics)𝑀E . As further input, we consider a set of model transformations

𝑀Δ that abstract adaptations. However, the model transformations are optional, i.e. they

must be only specified if self-adaptive systems are to be analysed. A set of analytical or

formal models Λ is generated by composing the specified models that serve as a foundation

to analyse the given properties (e.g. an MDP associated with further analytical models

to predict system-level properties for each state). What was originally formulated as

property Φ now refers to system property Φ𝑆𝑦𝑠 (e.g. the success probability of the system).

Finally, based on Λ it is predicted whether Φ𝑆𝑦𝑠 is satisfied or not. Note that we deliberately
use the term "predict" instead of "verify" because we do not aim to verify whether Φ𝑆𝑦𝑠
holds in all states, but sometimes calculate an average or expectation of the individual

predictions of Φ𝑆𝑦𝑠 and check whether the expectation satisfies Φ𝑆𝑦𝑠 . For example, recall

our reliability prediction approach from chapter 7, where an overall success probability

is derived by aggregating the individual conditional success probabilities (conditional

on 𝜑1, . . . , 𝜑𝑁). However, the term "predict" suggests that the considered system-level

properties must be computable. Therefore, we require that the prediction procedure is

efficiently Turing-computable.

194

8.1. Classes of Architectural Dependability Assurance

Compose Predict

Architecture model

Environment model

Property

Satisfied

Not satisfied

Model transformations Unkown

Figure 8.3.: The adapted dependability assurance process for partial design-time analysis based on the

classical verification process [165].

Essentially, the dependability assurance process from Figure 8.2 reflects exactly what we

define as static analysability:

Definition 31 (Static Analysability). An AI-enabled system and its operating environment
are said to be statically analysable if there exists a system or architecture model 𝑀C , an
environment model𝑀E and a set of model transformations𝑀Δ such that a set of formal models
Λ are generated or derivable that allow predicting with an acceptable degree of accuracy
whether𝑀C satisfies system property Φ𝑆𝑦𝑠 w.r.t. 𝑀E .

Note again that𝑀Δ is not required if non-adaptive software systems are analysed.

In simple terms, static analysability refers to settings where, for a given system property

Φ𝑆𝑦𝑠 , there are models that abstract the system (and adaptations in the case of self-adapting

systems) and its operating environment in such a way that it is possible to predict whether

the system satisfies Φ𝑆𝑦𝑠 w.r.t. the operating environment. Static analysability is the most

desirable class into which a system and its environment can be classified, as evidence

for the assurance argument can be given at an early stage of development, making the

assurance case more reasoned and compelling.

8.1.2. Monitor Analysability

The next class of dependability assurance refers to monitor analysability. Similarly to

static analysability, monitor analysability allows analysing whether system properties are

satisfied at design-time. This time, however, there might be a situation where for some

states we cannot predict whether Φ𝑆𝑦𝑠 is satisfied or not, i.e. the fulfilment is unknown.

This circumstance is illustrated in Figure 8.3 by extending the possible outcomes to include

the case of an unknown state.

The term “monitor” of class monitor analysability seems a bit contradictory because one

would rather associate it with runtime monitoring, and yet we consider it a class for

which design-time assurances can be given. In fact, the term “monitor” refers to a runtime

capability, namely the ability to construct runtime monitors for subregions of the state

space for which no assurances can be given. Since the analysability of monitors implies

195

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

that no assertions about Φ𝑆𝑦𝑠 can be made for some subregions of the state space, it is

essential to use additional monitors at runtime to reason about Φ𝑆𝑦𝑠 and avoid potentially

hazardous situations. Restricting the state space to exactly such subspaces allows software

engineers to construct additional runtime monitors. For the remaining subspace (in

which statements about Φ𝑆𝑦𝑠 can be made), assurances can be given and appropriate

countermeasures taken.

Definition 32 (Monitor Analysability). An AI-enabled system and its operating environment
are said to be monitor-analysable if there exists a system or architecture model 𝑀C , an
environment model 𝑀E and a set of model transformations 𝑀Δ such that a set of formal
models Λ are generated or derivable that allow predicting for a subset of states with an
acceptable degree of accuracy whether𝑀C satisfies system property Φ𝑆𝑦𝑠 w.r.t. 𝑀E .

The definition of monitor analysability is only different from static analysability in that

only for a subset of states it can be predicted or determined whether Φ𝑆𝑦𝑠 is satisfied. For
example, let us consider an MDP as a formal model for self-adaptive systems, the monitor

analysability indicates that only a subset of the state space can be checked w.r.t. Φ𝑆𝑦𝑠 . In
situations where not every state of a self-adaptive system is fully observable, there may be

situations where it cannot be determined with sufficient certainty whether the system is

in a particular state (due to a lack of evidence) such that it is not possible to determine

whether Φ𝑆𝑦𝑠 is satisfied.

Although we do not specify a certain percentage of the states for which one can expect

a verdict regarding Φ𝑆𝑦𝑠 , it is reasonable to do so in practice. For example, if for a large

percentage of states, it is not known whether Φ𝑆𝑦𝑠 is satisfied, the knowledge of the

remaining states is unlikely to be sufficiently informative.

8.1.3. A-posteriori Analysability

A-posteriori analysis states that the system and its operating environment cannot be

analysed at design-time; that is, it can not be determined whether the system satisfies the

system-level properties w.r.t. the environment.

Definition 33 (A-posteriori Analysability). An AI-enabled system and its operating envi-
ronment are said to be a-posteriori analysable if there exist no models𝑀C ,𝑀E and𝑀Δ such
that (based on Λ) it can be predicted whether the system property Φ𝑆𝑦𝑠 is satisfied. Instead,
assurances can only be given at runtime; that is, it can be determined whether Φ𝑆𝑦𝑠 is satisfied
at runtime.

In this case, only assurances at runtime can be given. System engineers are advised

to perform analysis after a system crash or hazardous event occurred, e.g. based on

logging data. Each arising event of the system is eventually logged and documented by

the system. In case of a system crash (or other types of events), the logged data can be

analysed A-Posteriori to investigate the source of the event. This trial-and-error approach

incrementally improves the system quality.

196

8.2. Classification Structure

8.1.4. Non-Analysability

Non-analysability means that no assurances can be given at all. Non-analysability is the

worst possible class a system and its environment can be classified into.

Definition 34 (Non-Analysability). An AI-enabled system and its operating environment
are said to be non-analysable if they are at least non-a-posteriori analysable. That is, no
assurances regarding system property Φ𝑆𝑦𝑠 can be given.

The simulation of systems is a common practice in engineering disciplines before realising

the system physically. Simulation is essential to analyse the impact of design decisions

regarding various quality attributes of interest. The capability of analysing the properties

of a system before physically realising it constitutes the central characteristic of traditional

engineering. However, if systems cannot be analysed such that no predictions or statements

can be made about certain properties, engineers refuse to realise the system. This is mainly

because, in traditional engineering, the consequences of system damage usually have an

enormous impact on safety or may cause high financial damage. As soon as the properties

can not be guaranteed, the system is not engineered.

8.2. Classification Structure

In this section, we present the classification structure that allows classifying systems

into one of the dependability assurance classes. Therefore, we first present the distinct

classification dimensions and give an overview of the classification structure afterwards.

In the end, we envision how to use the classification structure and its dimensions as

a blueprint to build dependability cases, i.e. assurance cases for dependability-specific

system-level properties.

8.2.1. Classification Dimensions

In the following, we discuss four classification dimensions, namely Abstractability, Approx-
imation of the System Dynamics, Analytic Capacity and Fail-Safe. Especially, the analytic
capacity refers to a dimension that we explicitly elaborated to assess and classify the ana-

lytical potential of an AI component and constitutes a significant part of the contribution

presented in this chapter.

We would like to emphasise again that we do not consider the dimensions to be complete,

but rather preliminary because they are highly subjective and due to the far too few design-

time approaches for AI-enabled systems to assess the completeness and appropriateness

of the classification structure. Nevertheless, we consider it as (𝑖) a starting point for

evaluating systems and their environments, (𝑖𝑖) a guideline for software engineers and
(𝑖𝑖𝑖) a basis for building/structuring dependability cases. In addition, the classes are subject
to future work.

197

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

8.2.1.1. Abstractability

The first dimension refers to abstractability, i.e. the ability to find model abstractions

of the system 𝑀C and operating environment 𝑀E (and 𝑀Δ in the case of self-adaptive

systems) such that a system-level property Φ𝑆𝑦𝑠 is predicted with a sufficient degree of

accuracy. Abstractability simply requires that there exist models that capture the essential

characteristics of a system and its environment. For some systems, for instance, there might

be no suitable ADL that captures all the relevant details of the system being analysed; or

the operating environment is too complex to be modelled, i.e. there are too many variables

and relationships between variables to be modelled with acceptable effort. Abstractability

is to be considered as an entry point that a system is analysable at design-time w.r.t. Φ𝑆𝑦𝑠 .

In general, it is difficult to objectively determine whether abstractability is met, and there

is also no universal metric that measures whether a system and its environment are

sufficiently abstracted for design-time analysis (this applies to other dimensions as well).

Nevertheless, we argue that depending on the modelling languages and the respective

analysis tools used, it can be argued whether abstractability is sufficiently satisfied. We

return to the discussion in the section 8.2.3.

8.2.1.2. Approximation of the System Dynamics

The second dimension is concerned with the approximation of the system dynamics. Let

us assume that a system and its environment can be accurately abstracted to predict a

system property Φ𝑆𝑦𝑠 . If abstractability is given, we can determine whether Φ𝑆𝑦𝑠 is satisfied
for a particular architectural configuration of a system (i.e. 𝑀𝐶) w.r.t. some environmental

state (i.e. 𝑀𝐸). However, we still have to account for the dynamics of the system, i.e. how

the system moves through the state space.

Therefore, we consider a software system as a stochastic process. In the case of self-

adaptive systems, for example, this stochastic process is described by an MDP (see section

4.3.1). But also for static systems, one can consider Markov chains to describe the dynamics

(where only the environment probabilistically evolves while the system configuration

always remains the same). The system dynamics describe now how a system is potentially

evolving through the state space. To analyse whether Φ𝑆𝑦𝑠 is sufficiently satisfied by the

system, one must simulate or sample the distinct trajectories which embody the system

dynamics.

We argue, however, that this is rather relevant for self-adaptive systems. Although one

might model static systems as (e.g.) Markov chains, sampling trajectories from the Marko-

vian is arguably superfluous because only the environment is changing but not the system

configuration. This means that it is sufficient to check (e.g. in a brute force manner)

whether Φ𝑆𝑦𝑠 is satisfied for each environmental state, see for example [149]. In self-

adaptive systems, however, capturing the system dynamics accurately is paramount since

the dynamics are strongly influenced by the adaptation strategy. That is, the way how

self-adaptive systems move through the state space is dictated by the adaptation strategy

198

8.2. Classification Structure

𝑋𝐴 𝑋 ′
𝐴

𝑋𝑆 𝑋 ′
𝑆

𝑡 𝑡 + 1
(a) The general MDP represented as DBN.

𝑋Δ 𝑋 ′Δ

𝑋C 𝑋 ′C

𝑋E 𝑋 ′E

𝑡 𝑡 + 1
(b) The MDP of a self-adaptive system represented as DBN.

Figure 8.4.: DBN representation of an MDP based on [160] (originally adopted from [190]).

which adapts the system configuration in certain environmental states. Thus, some states

are visited with high probability and others may never be. Moreover, since adaptation

strategies must be evaluated in terms of the uncertainty Parameter over time, the long-term
effects of adaptations manifest themselves exclusively in the trajectory space. There-

fore, the system dynamics must be adequately captured during the evaluation of distinct

strategies.

To further explain what we consider to be a good approximation of the system dynamics,

recall how we defined the system dynamics of a self-adaptive system (i.e. by MDPs),

which is primarily captured by the transition function 𝑡S . Therefore, consider Figure 8.4
which depicts the system dynamics of an MDP conventionally (i.e. Figure 8.4a) and

the instantiated version for self-adaptive systems (i.e. Figure 8.4b). Now, consider the

equations (8.1) and (8.2) which describe the system dynamics of Figure 8.4a and Figure 8.4b,

respectively.

𝑃 (𝑋 ′𝑆 , 𝑋 ′𝐴 |𝑋𝑆 , 𝑋𝐴) = 𝑃 (𝑋 ′𝑆 |𝑋𝑆 , 𝑋𝐴) · 𝑃 (𝑋 ′𝐴 |𝑋 ′𝑆) (8.1)

𝑃 (𝑋 ′S, 𝑋
′
Δ |𝑋S, 𝑋Δ) = 𝑃 (𝑋 ′C |𝑋C, 𝑋Δ) · 𝑃 (𝑋 ′E |𝑋C, 𝑋E)︸ ︷︷ ︸

𝑃 (𝑋 ′S |𝑋S,𝑋Δ)=𝑡S

· 𝑃 (𝑋 ′Δ |𝑋 ′C, 𝑋
′
E)︸ ︷︷ ︸

𝑃 (𝑋 ′Δ |𝑋
′
S)=𝜋

(8.2)

It can be seen that 𝑃 (𝑋 ′
𝑆
, 𝑋 ′

𝐴
|𝑋𝑆 , 𝑋𝐴) describe the system dynamics of an MDP which

factorises into two products. The first product (i.e. 𝑃 (𝑋 ′
𝑆
|𝑋𝑆 , 𝑋𝐴)) refers to the transition

function 𝑡 ; the second distribution describes the policy 𝜋 (recall from section 2.4.2). When

applied to self-adaptive systems (see equation (8.2)), the system dynamics factorise into

three distributions. The first two represent the transition function 𝑡S and the last reflects

the adaptation strategy (i.e. policy 𝜋). Because we evaluate adaptation strategies, 𝜋 is a

deterministic function which can be represented as probability distribution by using the

indicator function, i.e. 1𝜋 (𝑆)=𝛿 . Moreover, from theorem 4.3.1 on page 83 we know that

the transition function factorises into two distributions, i.e. exactly those as shown in

equation (8.2). Hereby, the first distribution (i.e. 𝑃 (𝑋 ′C |𝑋C, 𝑋Δ)) is again represented by the

indicator function (see theorem 4.3.1). Thus, only the distribution 𝑃 (𝑋 ′E |𝑋C, 𝑋E) remains

which refers precisely to the interdependency of the system and its environment from

section 4.3.2. The interdependency of the system and its environment embodies what we

199

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

understand under approximating the system dynamics. When considering self-adaptive

systems in the same way as we did in section 4, it is crucial to make accurate assumptions

about the interplay between the system and its environment because it (along with the

adaptation strategy) determines how a self-adaptive system evolves.

Although we have motivated the dimension "approximation of system dynamics" from the

perspective of our consideration of system dynamics, the bottom line is to find suitable

assumptions or approximations of system dynamics that are strongly correlated with the

behaviour of the system and its environment. How these assumptions or approximations

are encoded is dependent on the tool used for design-time analysis. Some approaches

or tools already have these implemented internally in a simulator (e.g. [54, 16]); other

approaches require these to be encoded manually (like our approach or [38]). In any case,

it is of utmost importance that the assumptions are sufficiently accurate to be able to

conduct a design-time analysis.

8.2.1.3. Analytic Capacity of AI-enabled Systems

In this section, we present the concept of the analytic capacity of AI-enabled systems.

While the abstractability and approximation of system dynamics dimensions are mainly

to determine whether an AI-enabled system can be abstracted and simulated/analysed

regarding system property Φ𝑆𝑦𝑠 at design-time, the analytic capacity indicates the potential

of analysing AI-specific properties in general (i.e. at design-time or runtime). The analytic

capacity is spanned by three factors, namely the State Space Complexity, Φ𝑏-Monitorability
and Input-Output Monitorability.

For the analytic capacity, we consider the AI-specific property Φ𝑏 . In contrast to system

property Φ𝑆𝑦𝑠 , Φ𝑏 is purely related to AI-specific properties that, for instance, allow conclu-

sions to be drawn about the state of an AI component. Thus, the properties Φ𝑆𝑦𝑠 and Φ𝑏 are
distinct. However, we assume that property Φ𝑆𝑦𝑠 depends on Φ𝑏 such that the capability

of monitoring Φ𝑏 strongly impacts the way of observing or analysing Φ𝑆𝑦𝑠 . In terms of

our reliability prediction approach for AI-enabled systems, for example, the capability of

observing 𝜑1, . . . , 𝜑𝑁 is paramount to derive a sensitivity model (capturing the predictive

uncertainty) which is required to predict the system-level property 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (i.e. the
system’s success probability).

State Space Complexity The first factor of the analytic capacity refers to the state space

complexity of the AI-enabled system. The state space complexity refers to the various

states of an AI-enabled system one must analyse to determine whether Φ𝑏 applies or

not. Intuitively, the larger the state space the more states need to be checked to provide

assurances. Moreover, large state spaces indicate that there are potentially more malicious

states or corner cases leading to erroneous behaviour.

As discussed in section 4.4.1, the state space complexity of static systems refers to the design

space. When using static systems instead of self-adaptive, it is assumed that there exists at

least one system configuration which satisfies the quality requirements sufficiently. In

200

8.2. Classification Structure

this case, software engineers have to explore the design space to identify the best possible

configuration, e.g. by applying optimisation techniques such as [106]. When developing

self-adaptive systems, however, exploring the design space is not sufficient because an

adaptation strategy is to be engineered. The temporal aspect of self-adaptive systems

induces the trajectory space, i.e. the number of individual trajectories a self-adaptive

system might encounter. Thus, the adaption strategy must be engineered in a sense that

the strategy selects only "good" trajectories, i.e. the sequences of states in which the

quality requirements or objectives are met. Intuitively, one would associate static software

systems with low state space complexity and self-adaptive system with high state space

complexity. However, this may not be the case in general, nor is there any guarantee for

this intuition.

Therefore, we distinguish three cases when determining the complexity of state spaces,

namely Φ𝑏-explorable, Φ𝑏-sufficiently explorable and non-explorable. State spaces that are

considered to be Φ𝑏-explorable are either fully explorable (i.e. it is possible at design-time

to check each state) or statistically sufficiently explorable (i.e. not all states can be visited

but the portion of visited states is sufficient to make statements about Φ𝑆𝑦𝑠 w.r.t. Φ𝑏). A
system is said to be Φ𝑏-sufficiently explorable if a large portion of the state space can be

explored, i.e. a sufficiently large partition of the state space can be analysed to reason

about Φ𝑏 . Finally, non-explorable refers to state spaces that are neither Φ𝑏-explorable nor
Φ𝑏-sufficiently explorable. We will see examples of all three variants in section 8.3.

Φ𝑏-Monitorability The second factor relates toΦ𝑏-monitorability which defines the extent

to which an AI-specific property Φ𝑏 of an AI component is monitorable. More specifically,

we consider four types of monitorability of an AI component w.r.t. Φ𝑏 , namely Verifiability,
Fully Monitorability, Partially Monitorability and Non-Monitorability.

The first type refers to AI components where one can prove that Φ𝑏 holds:

Definition 35 (Verifiability). An AI component is said to be verifiable w.r.t. Φ𝑏 if it is possible
to prove with a justifiable effort that Φ𝑏 is always satisfied.

Clearly, verifiability of AI components is rather hard to observe in practice for AI compo-

nents which have a certain level of complexity. However, for very simple AI components

with small input spaces, it might be possible to prove (e.g.) in a brute-force manner that the

AI component always produces the correct output for any input. Note that we deliberately

do not further specify the term “justifiable” because it depends heavily on various factors,

such as experience (how experienced is the developer?), time (how much time does the

verification process take?), computational power (how much computational resources are

needed?), complexity (how complex is the AI component?), etc.

The next type of monitorability, namely fully monitorability, relaxes this hard requirement

that Φ𝑏 can be proven:

201

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Definition 36 (Fully Monitorability). An AI component is said to be fully monitorable if
there exists a decision procedure which decides in a reasonable time whether the components’
current behaviour satisfies Φ𝑏 or not.

Instead of proving that an AI component satisfies Φ𝑏 , fully monitorability relates to

situations where a monitor component can be constructed that determines whether Φ𝑏 is
satisfied or not at any point in time. This relaxes the assumption regarding the existence

of proof that either shows the correctness or incorrectness of an AI component working

properly. Additionally, in practice, it is more likely that one can construct a monitor

instead of finding proof. The performance of the decision procedure, however, is crucial.

For example, if there is a decision procedure that determines whether Φ𝑏 is satisfied or not,
but takes too much time to reach that conclusion, the decision procedure is not applicable.

This refers to what we mean by “reasonable time”. Again, “reasonable time” is intentionally

not specified further because it depends strongly on the context of the application.

Technically, the performance of a decision procedure depends on particular factors, e.g.

for some input data it might take more time to check whether the AI component satisfies

Φ𝑏 . In this case, for a subset of states, the procedure might reach a verdict. Furthermore,

it is known from the field of “explainable AI” that for some AI components only local

explainers can be constructed that generate explanations for a subset of the input space.

That is, we are only able to check for a subset of states whether Φ𝑏 is satisfied. Partially
monitorability accounts for such situations and relaxes the requirements made for fully

monitorable AI components.

Definition 37 (Partially Monitorability). AnAI component is said to be partially monitorable
if there exists a decision procedure which decides in a reasonable time whether the component’s
current behaviour satisfies Φ𝑏 or not or reaches an inconclusive verdict.

Again, we assume that a verdict is reached for a sufficiently large percentage of states

Finally, the last type of monitorability refers to non-monitorability:

Definition 38 (Non-Monitorability). An AI component is said to be non-monitorable if it is
neither partially monitorable nor verifiable.

Non-monitorability represents the worst-case scenario because no statements can be made

w.r.t. Φ𝑏 .

Just as for the classes of architectural dependability assurance, the monitorability types

establish a total order where the most favourable type refers to verifiability and the

worst to non-monitorability. Fully monitorability is more advantageous than partially

monitorability but not as desirable as verifiability.

202

8.2. Classification Structure

State Space
Complexity

Input-Output
Monitorability -Monitorability

Proof
Fully

Partially
None

None

Input

Output

non-explorable

-explorable

-sufficiently
explorable

Figure 8.5.: Overview of the analytic capacity with schematically drawn regions indicating distinct analysis

potentials.

Input-Output Monitorability The third factor of the analytic capacity is called input-

output monitorability. Input-output monitorability complements Φ𝑏-Monitorability in

that it determines whether the properties Φ𝑏 can be derived by solely analysing the

input data or by considering the produced output of the AI black-box 𝑏. An example of

input monitorability is, for instance, variational inference [26] where it is determined

if a new input data was produced by the same data generation process as the training

data. An example of output monitorability is, e.g., the use of outcome explainers [76]

which generate explanations for produced outputs that can be checked against some

formal constraints. Hereby, input monitorability is more favourable because it enables the

detection of malicious input data before being forwarded to the AI component. That is, in

case of detection, appropriate countermeasures can be taken proactively.

Characteristics of the Analytic Capacity After we presented the several factors of the

analytic capacity, we now discuss its main characteristics, i.e. the manifestation of the

analytic capacity for AI-enabled systems that indicate distinct analytical potentials. There-

fore, consider Figure 8.5 which depicts the analytic capacity spanned by its three factors

as a radar chart. Depending on how the different factors manifest themselves, the analytic

capacity of an AI component takes different forms. However, to provide a better intuition,

we schematically draw regions Figure 8.5 to highlight different analytical potentials.

We extend input-output monitorability to include the categorical value “none”. In addition,

we have ordered the values of the individual factors (which together span the three-

dimensional analytic capacity) according to their natural order, with the most desirable

203

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

values (e.g. verifiability or Φ𝑏-explorable) being close to the origin of the radar chart.

Therefore, AI components whose analytical capacity spans small regions around the

origin are assumed to have a high analytical capacity, e.g. the green region of Figure 8.5.

Consequently, AI components that occupy a large area are considered to have a low

analytic capacity, e.g. the red region depicted on Figure 8.5.

For example, AI components with high analytic capacity are considered to be at least

fully monitorable in terms of Φ𝑏-monitorability. In addition, the AI component must at

least be output-monitorable, i.e. one can determine whether the AI component exhibits

erroneous execution at the latest when looking at the outputs. AI-enabled systems that

are partially monitorable and at least output-monitorable (e.g. the yellow and blue region

of Figure 8.5) exhibit a rather medium-like analytic capacity. AI-enabled systems with low

analytic capacity (e.g. the red area of Figure 8.5) are non-monitorable and thus neither

input- nor output-monitorable.

Finally, it should be noted that some factors are more relevant to design-time analysis;

others are more interesting at runtime. The factors of state space complexity and Φ𝑏-
monitorability, for instance, strongly influence the extent to which an AI-enabled system

is analysable at design-time. Intuitively, systems that have small state spaces and are (say)

fully monitorable are potentially well suited for design-time analysis. On the contrary,

at runtime, the factors of Φ𝑏-monitorability and input-output monitorability are more

important. To make assurances at runtime, one must verify that Φ𝑏 (or Φ𝑆𝑦𝑠 , which
depends on Φ𝑏) is satisfied. In this case, it does not matter if we encounter large state

spaces, because we only need to check the current system state in terms of Φ𝑏 . That is, we
are more interested in having a high Φ𝑏-monitorability and preferably input-monitorability

to act proactively.

8.2.1.4. Fail-Safe

The last dimension concerns whether there is a fail-safe mode the system can transition to.

Intuitively, the ability to enter the fail-safe mode neither contributes to nor has any direct

analytical implications on whether one can analyse system property Φ𝑆𝑦𝑠 . Nonetheless, we
consider it as the last dimension which supports software engineers in the classification

process. Especially in domains where it is not possible to give reliable assurances about

system properties, the availability of a fail-safe mode is always a last resort when situations

occur for which no assurances can be given or where it is difficult to predict whether the

system might crash or malfunction severely. Therefore, the presence of a fail-safe mode

can possibly influence the classification of the system. We will see in section 8.2.2 that

the capability to transition to a fail-safe mode affects the decision process regarding the

classification of a system to a-posteriori analysability or non-analysability.

204

8.2. Classification Structure

8.2.2. Overview of the Classification Structure

After examining the different classes and classification dimensions in the previous section,

we now introduce the classification structure to categorise AI-enabled systems. To simplify

the structure, we introduce the following convention regarding the analytic capacity: With

Φ𝑏-analysable, we refer to AI-enabled systems that are at least partially monitorable, at

least output-monitorable and the state space is at least Φ𝑏-sufficiently explorable. Note

that all criteria must apply to consider an AI-enabled system to be Φ𝑏-analysable. For
example, a system which is fully monitorable, output-monitorable and Φ𝑏-explorable is
Φ𝑏-analysable. In contrast, a system which is fully monitorable, output-monitorable but

the state space is non-explorable, is not Φ𝑏-analysable.

Consider Figure 8.6 which depicts the classification structure. The entry point of the

classification structure is the analytic capacity. More specifically, for an AI-enabled system,

it must be determined whether it is Φ𝑏-analysable. Recall that assurances about a system-

level property Φ𝑆𝑦𝑠 can only be made whenever any statements about the fulfilment of Φ𝑏
can be given. Thus, an AI-enabled system must be at least Φ𝑏-analysable. In this case, one

is at least able to make statements about Φ𝑏 for a percentage-sufficient subset of the state

space. We now follow the branch in which this is not the case (i.e. the AI system or Φ𝑏 is
not Φ𝑏-analysable) and later return to the part where the AI system is Φ𝑏-analysable.

If an AI system is not Φ𝑏-analysable, no assurances at design-time can be given; that

is, the system cannot be classified into static or monitor analysability. Instead, the

Φ𝑏-monitorability is queried. If the analytic capacity of the AI-enabled system is non-

monitorability, the system is classified to be non-analysable because no statement can

be given about Φ𝑏 and thus Φ𝑆𝑦𝑠 . If the Φ𝑏-monitorability of the analytic capacity is ver-

ifiable, the system is a-posteriori analysable because we can prove that Φ𝑏 holds. Only
if the AI component is either partially or fully monitorable, the presence of a fail-safe

mode is crucial. If so, one can transition to fail-safe if either Φ𝑏 is not satisfied or there

is an inconclusive verdict. Therefore, if the fail-safe mode is available or the system is

not safety-critical, the system is classified into a-posteriori analysability. Otherwise, the

system is considered to be non-analysable. As already mentioned in section 8.2.1.4, the

presence of a fail-safe mode is analytical of no relevance (therefore only marked with

dashed lines in Figure 8.6) but crucially affects the classification process regarding the

classes a-posteriori analysability and non-analysability. It may seem contradictory that

a fully monitorable system can be classified as non-analysable. However, it should be

remembered that with full monitorability, although it is possible to determine whether Φ𝑏
is satisfied for any state, there are still possible cases where Φ𝑏 may not be satisfied. For

safety-critical systems, it is paramount to transition to fail-safe in such cases; otherwise,

there is no way to fail safely.

Now let us return to the case where the analytic capacity is Φ𝑏-analysable. At this point,
the next question that arises is that of abstractability: Are there models that abstract

the system, environment and adaptations (in the case of self-adaptive systems) in such a

way that we can accurately predict Φ𝑆𝑦𝑠? (Note that at this point Φ𝑏-analysability already

ensures that Φ𝑏 can be checked to some extent which is required to reason about Φ𝑆𝑦𝑠). If

205

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

 -analysable?Abstract-
ability?

 System
dynamics?

 -monitor-
ability

 -monitor-
ability?

Fail-safe?

A-posteriori
Analysability

Static
Analysability

Monitor
Analysability

Non-
Analysability

yes

yes

yes

no

no

no

proof

none

partially
fully,

partially

State space
complexity

proof, fully

-sufficiently
explorable

-explorable

noyes

Figure 8.6.: Overview of the classification structure.

so, we can move on to the next dimension. Otherwise, the system cannot be classified into

static or monitor analysability but rather in one of the remaining classes.

If abstractability is given, it must be determined whether the system dynamics are suffi-

ciently approximated as it arguably makes no sense to analyse states that (w.r.t. the system

dynamics) are never visited (see section 8.2.1.2). If the system dynamics are not accurately

approximated, it is not possible to make assurances at design-time.

Finally, if also the system dynamics are sufficiently approximated, it is generally possible

to make assurances at design-time. At this point, if the system is partially monitorable

in terms of Φ𝑏-monitorability, it can be directly classified into monitor analysability. If

the system is either verifiable or fully monitorable, the state space complexity determines

whether the system is statically analysable or monitor analysable. More specifically, in

terms of Φ𝑏-explorable state spaces, we consider the system to be statically analysable

because we can explore each state and check whether system-level propertyΦ𝑆𝑦𝑠 is satisfied
(w.r.t. Φ𝑏). In terms of state spaces that are Φ𝑏-sufficiently explorable, there are still small

regions within the state space for which the fulfilment of Φ𝑆𝑦𝑠 cannot be checked. For these
small regions, we do not know whether Φ𝑆𝑦𝑠 is satisfied. Thus, systems are classified into

monitor analysability. It is important to note that not knowing whether Φ𝑆𝑦𝑠 is satisfied is

206

8.2. Classification Structure

not directly associated with the inability of monitoring Φ𝑏 in some states (as for partial

monitorability) but could also be a result of lacking exploration capabilities of the entire

state space, i.e. the state space could be reduced to small regions in which no assurance

can be made regarding Φ𝑆𝑦𝑠 . However, if the system is either partially monitorable and

Φ𝑏-sufficiently explorable, it must be ensured that the portion of the explorable state space

is sufficient w.r.t. the portion of states for which statements regarding Φ𝑏 can be made.

It may seem unusual that for the branch where an AI system is not Φ𝑏-analysability, the
availability of fail-safe mode is explicitly checked, but not if we already know that we can

classify into static or monitor analysability, i.e. for the Φ𝑏-analysability branch. However,

in case of static or monitor analysability we can make assurances at design-time; that

is, we can determine for which states Φ𝑆𝑦𝑠 is not satisfied. Moreover, we can evaluate

countermeasures to deal with such states. This is in contrast to the remaining classes, as

the knowledge gained at design-time is completely missing and one has to rely exclusively

on the mechanism used at runtime.

8.2.3. Deriving Dependability Assurance Cases

After we introduced the classification structure with its distinct dimensions, we now

envision or outline how the classification structure can be used to generate depend-

ability assurance cases. Generally, assurance cases (such as safety assurance cases) are

structured by common notations, such as the Goal Structuring Notation (GSN) [68] or

Claims-Argument-Evidence notation [27]. In this section, we discuss how dependability

assurance cases can be derived after a system and its environment have been classified ac-

cording to our classification structure. We also outline what such a dependability assurance

case might look like, using GSN as a prevalent notation for assurance cases.

As we have seen in section 8.2.2 the classification structure and its dimensions exhibit

a high degree of abstraction. This is mainly because we aim to classify as many AI-

enabled systems as possible, each of which has its particularities. Consequently, the

dimensions are difficult to assess objectively; for example, the dimensions abstractability,

approximation of system dynamics or Φ𝑏-analysability (or the analytic capacity in general)

are arguably difficult to assess in terms of their fulfilment. Moreover, there are probably

no universal metrics that allow determining whether the dimensions are sufficiently

satisfied (as it is also a domain-specific matter). Instead, software engineers need to find

(domain-specific) evidence which provides adequate justification. However, in developing

assurance cases, claims are made about the system (e.g. properties that the system exhibits

or countermeasures implemented to mitigate hazardous behaviour) that are substantiated

by evidence. Thus, the question arises whether one can derive a dependability assurance

case based on the arguments and evidence gained during the classification process.

In the following, we illustrate how our classification structure can be used as guidance or

a blueprint to generate dependability assurance cases. For this purpose, we consider GSN

as a notation to structure the assurance case. Figure 8.7 illustrates a simplified GSN-based

example of the dependability assurance case of an AI-enabled system which we assume

207

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

G1
The system
satisfies

G2 G3 G4

G5 G6 G7

S1 S2

Id
goal statement

Id
solution

statement

Id
strategy

statement

Legend:

Sn1

A goal or claim made about the
system

A solution which provides ref-
erence to an evidence item

A strategy that describes the infe-
rence between a goal and its
supporting subgoals

"Supported by"-relationship

 is monitored
at runtime Transition to fail-safe

Argument by static
analysability

Argument by a-
posteriori analysability

Approximation of
system dynamics Abstractability Analytic capacity

(or -analysability)

Evidence for
approximation

Sn2 Sn3
Evidence for
abstractability

Evidence for
 -analysability

The system is analysed
statically w.r.t.

Figure 8.7.: Illustration of a dependability assurance case based on the goal structuring notation [68].

to be statically analysable. In principle, a GSN is a directed acyclic graph that consists of

Goals (i.e. top-level claims made about the system), Sub-goals (i.e. claims that together

refine a top-level claim) and Solutions (i.e. the evidence that support the made claims).

Moreover, a Strategy is a multi-argument approach to support a top-level goal (or claim).

In our case, we have created a GSN-based assurance case where the top-level goal is to

satisfy the system property Φ𝑆𝑦𝑠 . For example, a system-level property could comprise

the success probability 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (e.g. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) > 𝜖 ∈ [0, 1]) that the system must

satisfy.

The top-level goal G1 is supported by three sub-goals. Note that the "supported by"

relationship implies that all sub-objectives are supported by a sufficient amount of evidence,

and does not mean that only a subset of sub-objectives must be assured. The first sub-goal

G2 claims that the system is statically analysable (which results from the classification

process). The argument strategy encompasses in this case the same line of reasoning as

when the AI-enabled system is classified as static analysability. That is, the strategy is

supported by three sub-goals (i.e. G5, G6 and G7), each of which claims the fulfilment

of the respective dimension that, taken as a whole, justifies static analysability. Finally,

each sub-goal is associated with the respective evidence gathered during the classification

process. Note that the sub-graph starting at S1 could have been also replaced by a single

solution denoted “Reliability analysis”. However, when constructing the assurance case

based on the line of argumentation provided by the classification structure, the assurance

case becomes in its entirety more compelling and is substantiated by a larger body of

evidence.

208

8.3. Classifying AI-enabled Systems

Besides static analysability, we can support the top-level goal G1 by further sub-goals.

Therefore, recall that our dependability assurance classes form a hierarchy. Because we

assumed the system under consideration to be statically analysable, we are also able to

make assurances at runtime. If we further assume the system to be fully monitorable in

terms of Φ𝑏 , we apply runtime monitoring to check whether Φ𝑏 is satisfied; this constitutes
the second sub-goal G3. Again we can reuse the same line of reasoning and refer to the

respective evidence that justifies a-posteriori analysability. The dependability assurance

case is completed by sub-goal G4 which claims that the system can transition to fail-safe

(assuming that there exists a fail-safe mode).

In summary, the simplified dependability assurance case is derived for a statically analysable

AI-enabled system. The system-level property Φ𝑆𝑦𝑠 is supported by the claim that the

system is statically analysable at design-time in terms of Φ𝑆𝑦𝑠 . Thus, software engineers
can evaluate design decisions such as architectural patterns (e.g. N-version programming

pattern) that address Φ𝑆𝑦𝑠 . Since there are still situations where Φ𝑆𝑦𝑠 is not satisfied, run-
time monitors (e.g. by using neuron activation pattern monitors [46] or outcome explainers

[76]) are employed to detect these states and transitions to fail-safe if necessary. Finally,

we would like to emphasise that the outlined process serves only as an inspiration for

how the classification structure might be used to guide software engineers through the

development process of dependability assurance cases.

8.3. Classifying AI-enabled Systems

In this section, we apply our classification structure to AI-enabled systems from the

literature. However, the classification of an AI-enabled system w.r.t. our classification

structure is highly subjective. Thus, a comprehensive evaluation was not possible because

it would require the knowledge of domain experts to assess the individual classification

dimensions. Therefore, we focused on the applicability of our classification structure. More

specifically, we apply our classification structure to three representative domains where AI

have been commonly used, namely AI-supported assistance in automated driving, human-

robot-interaction systems and aircraft collision avoidance systems. Hereby, we consider

various system-level properties. Due to the limited number of design-time approaches for

analysing AI-enabled systems, we apply our reliability prediction approach (if possible) for

each considered system and discuss how they are classified when considering 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈)
as additional system-level property. It is important to note here that the way we apply

the classification structure is only to show general applicability and is based only on the

information provided in the papers. We are no experts in any of the domains discussed;

that is, a domain expert might classify the system differently based on domain-specific

knowledge that we are not aware of. As a starting point, however, we demonstrate the

applicability of our classification structure by classifying a representative set of AI-enabled

systems.

209

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Camera

Obstacle
Detection Controller

Brake

Acceleration

Distance
sensor

ActuationAEBS

Environment

Image,
distance measure

Braking,
acceleration

...

Figure 8.8.: Overview of the AEBS based on [54].

8.3.1. AI-supported Assistance in Automated Driving

In [93], a taxonomy for automated driving vehicles is presented, which includes six levels

of automation, ranging from level 0 (no automation of driving) to (e.g.) level 2 (partial

automation of driving) to level 5 (full automation of driving). At each level, AI can be

used to assist during driving (e.g. object detection in automatic braking systems). The

higher the level, the more challenging the learning task. Therefore, AI-enabled systems

that are categorised in higher levels of automation are likely to be classified as lower-order

dependability assurance classes. In the following, we discuss two AI systems. The first

system corresponds to an Automatic Emergency Braking System (AEBS), which relies on

AI-based object recognition to detect vehicles ahead and actuates the brakes (if necessary)

to avoid a collision. The second system corresponds to a more advanced autonomous

driving system, i.e. perception systems.

8.3.1.1. Automatic Emergency Braking System

As a representative example for the discussion, we consider an AEBS presented in [54].

The AEBS comprises several components that are depicted on Figure 8.8.

The first component of the Cyber-Physical System (CPS) refers to a controller responsible

for regulating acceleration and braking. For the regulation, the controller makes use of the

second component: the plant (vehicles subsystem under control). Moreover, the controller

210

8.3. Classifying AI-enabled Systems

component makes its decisions based on a sensor (more precisely a camera) which is

equipped with a DNN-based obstacle detector. The AEBS and its operating environment

form a closed-loop control system. The controller component (which regulates the braking

and acceleration control signals) relies on the accuracy of the obstacle detector. Thus, it is

paramount to make assurances regarding safety-relevant system properties.

Originally, Dreossi et al. presented in their work [54] a compositional falsification frame-

work, where they identify counterexamples (by considering misclassifications of the DNN)

for which the AEBS exhibits erroneous execution. However, the classification structure

is designed more to assess the degree of dependability assurance for a system property

of an AI system. In the absence of other approaches to evaluating AI-enabled systems,

we nevertheless consider the falsification approach. As we will see later, this approach

provides the possibility of making assurances anyway.

After we classified the compositional falsification approach, we discuss how our approach

for reliability prediction can be applied to analyse the system-level property 𝑃 (𝑋𝑆𝑦𝑠 |
𝑋𝑈).

Compositional falsification of CPS with machine learning components In the following,

we apply our classification structure to the compositional falsification approach of Dreossi

et al. [54]. As a system-level property, it is required that the AEBS avoids collisions, i.e.

the system must maintain a certain distance 𝑑𝑖𝑠𝑡 (𝑡) (relative to a certain distance limit 𝜏)

from an obstacle at any time 𝑡 : 𝑑𝑖𝑠𝑡 (𝑡) ≥ 𝜏 .

In summary, the approach presented by Dreossi et al. involves two main analysis compo-

nents (namely a CPS analyser and an ML analyser) which are composed for the detection

of counterexamples. The CPS analyser acts as the primary component which checks

whether the AEBS violates the system property Φ𝑆𝑦𝑠 . Hereby, the input space of the AEBS
is considered of three variables, namely the Distance between the vehicle and the preceding
obstacle, the Velocity of the vehicle and the Input Images of the camera (forwarded to the

DNN for classification). The CPS analyser abstracts away the DNN 𝑏 by considering two

extremes: A perfect image classifier (i.e. producing always the correct output; denoted

as 𝑏+) and the worst possible image classifier (i.e. producing always the wrong output;

denoted as 𝑏−). Internally, the CPS analyser is implemented by using a simulation model

(in this case a Simulink model) to simulate the AEBS and a verification tool (namely

Breach [53]) to falsify the Φ𝑆𝑦𝑠 at system-level. Hereby, system property Φ𝑆𝑦𝑠 is falsified
by considering two cases where the image classifier is either perfect (i.e. 𝑏+) or operates
poorly (i.e. 𝑏−). For both cases, the input space can be partitioned into regions where Φ𝑆𝑦𝑠
is violated or satisfied. When the partitioned input space of both cases is combined, the

input space can be reduced to an overlapping region where the fulfilment of Φ𝑆𝑦𝑠 solely
depends on the prediction correctness of 𝑏; this region is called Region of Uncertainty
(ROU). The task of the ML analyser is now to determine the images within the ROU for

which the DNN makes incorrect predictions and based on which counterexamples are

identified. The DNN of the AEBS inputs images which requires analysis of the pixel space.

However, the pixel space is too large to be analysed; instead, the ML analyser makes use

211

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

of feature space abstraction in which the original DNN 𝑏 : X → Y is approximated by

˜𝑏 : 𝐴→ Y. The approximated version
˜𝑏 acts on an abstraction (called abstract domain 𝐴)

of the original input space (or feature space) X. The abstraction is achieved by focusing

only on a constrained feature space
˜X ⊆ X restricted to the scenario under investigation

(in this case desert road scenarios with a single car on the highway) and three dimensions

along which the scene can be varied, namely the lateral position of the car, the distance

from the sensor position of the vehicle, and the brightness of the image. Within the three

dimensions, the scene can be varied and analysed regarding misclassifications. More

specifically, the approximated classifier
˜𝑏 allows analysis of regions within the abstract

domain 𝐴 for which the original classifier 𝑏 potentially produces misclassifications. These

regions are used to identify counterexamples within the ROU. To connect 𝐴 with X, a
so-called abstraction function 𝛼 :

˜X → 𝐴 and concretization function 𝛾 : 𝐴→ ˜X are used.

The exact details of the ML analyzer would go beyond the scope of this section; thus, we

refer to the original work of Dreossi et al. [54] to look up the details of the ML analyser.

In combination, the CPS and ML analyser allows determining counterexamples for which

the system-level property Φ𝑆𝑦𝑠 is violated.

The classification result is depicted on Table 8.1. In terms of the analytic capacity, we

consider the AEBS to be Φ𝑏-analysable. The AI-specific properties Φ𝑏 refer to input space

regions for which the DNN potentially produces misclassifications w.r.t. the distance and

lateral position to the next obstacle as well as the brightness of an image. Based on the

factors, one can determine (w.r.t. the approximated classifier
˜𝑏) whether 𝑏 is likely to

produce wrong predictions. Assuming that all factors are derivable from the sensor inputs,

the AI component is fully monitorable regarding Φ𝑏 (i.e. lateral position, distance and
brightness). Moreover, from the information provided by the authors, we consider the

state space complexity to be Φ𝑏-sufficiently explorable. This results mainly from the fact

that the input space of the AEBS is already highly reduced to the ROU. Although the ROU

is unlikely to be fully explored in terms of misclassifications gained by analysing
˜𝑏, the

ROU can still be refined based on identified misclassification clusters. So while a large part

of the state space has already been analysed as non-safety critical, other (much smaller)

parts are known to be potentially unsafe. For these regions, system-level countermeasures

or additional AI-specific monitors can be used to safeguard the DNN image classifier.

Based on the results provided by Dreossi et al., we argue that the AEBS is Φ𝑏-sufficiently

explorable. Moreover, due to the state space analysis, Φ𝑏 is input monitorable, i.e. we could

already determine the critical subspaces of the state space.

Abstractability is given by using a Simulink model (for physical simulation of the AEBS)

and Breach [53] (a verification tool used to falsify Φ𝑆𝑦𝑠). The concrete interplay between

the Simulink model and Breach is not discussed; however, the authors pointed out that

simulation-based verification is well-studied in the literature. Therefore, we consider

abstractability to be sufficiently addressed (also taking into account the evaluation results of

the approach). The same applies to the approximation of the system dynamics classification

dimension. Since the simulation-based verification of CPS is a well-researched field, we

assume the system dynamics to be sufficiently approximated. Moreover, the AEBS is a

static software system for which the approximation of the system dynamics is not as

important as for self-adaptive systems (see section 8.2.1.2).

212

8.3. Classifying AI-enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Approximation of 𝑏 and feature space abstraction.

State space complexity
Φ𝑏-sufficiently ex-

plorable

CPS input space and ML feature space abstraction;

reduction of CPS input space to ROU.

Input-output-monitor.
Input-monitorable Input space analysis of

˜𝑏.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes CPS-analyser: Simulink model of the AEBS and the

verification tool Breach [53]. ML-analyser: Approx-

imation of 𝑏 by abstract
˜𝑏 : 𝐴→ Y.

≈ System dynamics
Conclusion Explanation

Yes Simulation-based verification of CPS is a well-

studied field. The software system is static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Monitor analysability

Table 8.1.: Classification result of the AEBS by considering the compositional falsification approach of

Dreossi et al. [54].

Overall, we classify the AEBS into monitor analysability. This is mainly because the system

is only Φ𝑏-sufficiently explorable, i.e. there exist states for which no conclusion can be

made regarding system property Φ𝑆𝑦𝑠 .

Reliability prediction Now, we discuss how the AEBS is classified when applying our

approach to reliability prediction, i.e. we want to assure the system’s probability of success

as a system-level property. At this point, we assume that the AEBS is modelled with

PCM. However, the core of the reliability prediction approach is the sensitivity model

which represents the AI component (or in this case the DNN for image classification).

Originally, Dreossi et al. discussed three factors in how an image or scene is varied, namely

brightness, distance and lateral position. Based on the factors misclassification ranges

were determined. In our approach, we consider the factors as sources of uncertainty that

could force the AI component to make incorrect predictions. Therefore, we view the

sensitivity model with three variables (one for each factor) and one variable capturing the

failure/success probability (i.e. the predictive uncertainty) of the AI component. Dreossi

et al. presented a scene generator in their compositional falsification framework that

213

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

concretises images based on samples of the abstract domain (i.e. images with distinct

image brightness, distance of the nearest vehicle and lateral position). We argue that

the generator can be used to produce a dataset from which the sensitivity model can be

derived (e.g. by considering one of the sensitivity analysis approaches from section 7.1.2).

Moreover, we assume a discretisation of the value spaces for each factor. For example,

image brightness is discretised in categories (e.g. high, low, normal) or distance values are

discretised into intervals.

Based on these considerations, we can now apply our classification structure. Therefore,

consider Table 8.2 which summarises the classification results. We consider the analytic

capacity to be Φ𝑏-analysable. In this case, the AI-specific property Φ𝑏 refers to the success/-
failure probability of the AI component w.r.t. the aforementioned factors (i.e. brightness,

distance and lateral position). We described how the factors could be discretised into

categorical values. The Cartesian product spans the space to be explored. However, due to

the discretisation (and the fact that we form the Cartesian product of only three variables),

we argue that the space is Φ𝑏-explorable. Because brightness, distance and lateral position

are observable at runtime, we consider the AEBS to be fully monitorable. In terms of input-

output monitorability, the same reasoning applies as for the compositional falsification

approach, i.e. Φ𝑏 is input-monitorable because we can observe brightness, distance and

lateral position and use the sensitivity model to check whether we might encounter an

unsafe state.

Abstractability is given under the assumption that the AEBS can be modelled accurately

with PCM and that we can generate a sensitivity model from the DNN. In terms of

approximating the system dynamics, we argue (again) that since we analyse a static

software system, the system dynamics are negligible. More precisely, we analyse how the

probability of success for a given system configuration varies by considering different

combinations of the three factors. However, this is done in a brute-force manner that does

not take into account the temporal evolution of the system.

Overall, we conclude that the AEBS is statically analysable regarding system-level property

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).

8.3.1.2. Autonomous Driving

In this section, we move further up the taxonomy of automation and look at the higher

levels of automation for automated driving vehicles. More specifically, we consider AI

components that are part of the entire cognition process of the automated vehicle. First,

we classify an uncertainty estimation method for software architecture of autonomous

driving vehicles provided by Serban, Poll and Visser [163] and our reliability approach

afterwards.

Uncertainty estimation of software architectures for autonomous driving vehicles Serban

et al. [163] applied their uncertainty estimation method to a perception system for scene

understanding of an autonomously driving system. The perception system comprises three

214

8.3. Classifying AI-enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Brightness, distance and lateral position are observ-

able.

State space complexity
Φ𝑏-explorable All uncertainty combinations can be iterated.

Input-output-monitor.
Input-monitorable Due to sensitivity analysis.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes PCM to abstract the software architecture. Sensi-

tivity model to abstract the DNN. Markov chain

transformation to predict 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).
≈ System dynamics

Conclusion Explanation
Yes The software system is static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.2.: Classification result of the AEBS by considering our reliability prediction approach.

components, namely object detection (to identify the location of all obstacles in an image),

semantic segmentation (which associates each pixel in an image to a class) and depth

estimation (to determine the position of obstacles or the road surface). Each component is

implemented by using a dedicated DNN. The result of the perception system is forwarded to

a planning component for trajectory computation. Consequently, the prediction accuracy

highly affects the safety of the system as incorrect/inaccurate predictions may lead to

wrongly computed trajectories.

We already discussed the approach in related work (see section 3.1.2.2). In a nutshell,

the approach annotates software components of an architecture (e.g. provided by an

architecture model) by the two ML-specific uncertainty types: epistemic and stochastic

(or aleatoric) uncertainty. Based on the annotated components, a BN (Bayesian network)

is generated in which the annotated components as well as their annotated uncertainties

are represented as nodes (i.e. random variables). The graph structure of the BN describes

a kind of control flow along which uncertainty could be potentially propagated. The

probability distributions associated with each node (or random variable) of the BN can be

determined by a domain expert or simulation. In the case of the perception system, the last

node of the BN refers to the random variable describing the planning component of the

system (subsequently denoted as 𝑋𝑃𝑙𝑎𝑛) which is highly affected by the predictions of the

215

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable By assumption.

State space complexity
Φ𝑏-explorable Due to Bayesian inference rules.

Input-output-monitor.
Output-monitorable At least output-monitorable.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes Software components and their connections are ab-

stracted by BNs.

≈ System dynamics
Conclusion Explanation

- Irrelevant.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.3.:Classification result of a perception system of a self-driving vehicle by considering the uncertainty

estimation approach of Serban et al. [163].

individual DNNs. Based on the structure and defined distributions of the BN, inference rules

of BNs are applied to reason about properties such as 𝑃𝑟 (𝑋𝑃𝑙𝑎𝑛 = ℎ𝑖𝑔ℎ), ℎ𝑖𝑔ℎ ∈ 𝑉𝑎𝑙 (𝑋𝑃𝑙𝑎𝑛).
Therefore, we consider 𝑃 (𝑋𝑃𝑙𝑎𝑛) as the system-level property. Moreover, by using Bayesian

inference rules, one can determine how 𝑃𝑟 (𝑋𝑃𝑙𝑎𝑛 = ℎ𝑖𝑔ℎ) is affected when varying the

uncertainty values of components of the perception system.

Table 8.3 summarises our classification results. The AI-specific properties Φ𝑏 refer to the

epistemic and aleatoric uncertainty of each AI component. Based on the information

provided by the authors, we could not reliably assess whether the methods used to analyse

the uncertainty types are also suitable to be applied at runtime (predictions are assessed

whether they exhibit epistemic or aleatoric uncertainty). To determine the class of Φ𝑏-
monitorability, more knowledge of the methods is required. For example, Phan et al. [139]

describe an approach where epistemic or aleatoric uncertainties are estimated as part of

the prediction. However, they focused on a specific class of DNNs (Bayesian deep learning

models) such that we cannot use the approach for runtime estimation. Nonetheless,

Serban et al. pointed out that for both uncertainty types: “The methods used to measure

them can be different, depending on the ML algorithm employed” [163]. This suggests

that there are several methods, one can take into consideration when estimating the

uncertainties. Therefore, we assume that the properties are fully monitorable. Moreover,

if they are fully monitorable, they must be at least output-monitorable. In their estimation

216

8.3. Classifying AI-enabled Systems

approach, the authors showed how to apply inference rules of BNs to check the fulfilment

of system property 𝑃 (𝑋𝑃𝑙𝑎𝑛) when varying the uncertainty values of components of the

perception system. Since this can be done with reasonable effort for all the different

types of uncertainties that the components of the perceptual system may encounter, we

consider the state space to be Φ𝑏-explorable. Thus, we evaluate the analytic capacity to be

Φ𝑏-analysable.

Abstractability is given in that BNs are used to model the software architecture or compo-

nent structure of the perception system. The approximation of the system dynamics is

not relevant as we are (again) assessing a static software system; but most importantly,

the uncertainty estimation method is to be considered as an inter-component analysis

that aims to assess how uncertainty might propagate and does not incorporate system

dynamics.

Overall, we classify the perceptual system as statically analysable w.r.t. assuring the

system property 𝑃 (𝑋𝑝𝑙𝑎𝑛). However, it should be noted that uncertainty estimation is

highly dependent on how well the epistemic and aleatoric uncertainty can be estimated

from the AI components. Thus, it is paramount that the estimation results are rigorously

checked by domain experts.

Reliability prediction In this section, we again apply our reliability prediction approach

to make assurances about the system-level property 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). However, we do not

consider the perception system we classified earlier. Instead, we consider a more advanced

AI system whose capabilities go beyond mere perception and which also includes (partial)

planning tasks. More specifically, we consider an AI system that predicts the steering

angles of a self-driving car based on image data. Several variants of such systems are

presented by Tian et al. [186]. Since the steering angle prediction strongly influences the

movement of the vehicle, it is of paramount importance that the AI components operate

accurately. The reason we consider a different system is to provide and discuss an example

of a non-analysable system in terms of Φ𝑆𝑦𝑠 (or 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈)).

Recall that the AI-specific property Φ𝑏 refers to the distribution 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁) which
is conditioned on the uncertainty factors 𝜑1, . . . , 𝜑𝑁 . Let us assume that the factors refer

to events in the environment which potentially affect the prediction result. However, the

set of possible events is potentially quite large and difficult to fully determine at design-

time. In [139, 186] alone, enumerates together 14 factors, namely brightness variation,

changing contrast, translation, scaling, horizontal, shearing, rotation, blurring, fog effect,

rain effect, depth, occlusion, clouds, and puddles. Due to the highly dynamic environment

of autonomously driving cars, it is unlikely that the list is complete. Even if we assume

that each factor can be discretised into binary values, we would encounter 2
14 = 16384

entries of the probability mass function 𝑃 (𝑋𝑏 | 𝑋𝜑1, . . . , 𝑋𝜑𝑁). Apart from the fact that such

a high-dimensional probability distribution cannot be modelled manually, it is not only

difficult to estimate such a distribution (as a large data set is required to build the sensitivity

model) but also entails dimensionality issues (i.e. the curse of dimensionality).

217

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Non-monitorable Due to dimensionality problems and the inability

to observe certain properties.

State space complexity
Φ𝑏-explorable By assumption.

Input-output-monitor.
None As a consequence of non-monitorability.

𝚽𝒃-analysable: No

Abstractability
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

≈ System dynamics
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is non-monitorable.

Class: Non-analysability

Table 8.4.: Classification result of an AI-based steering angle prediction system of an autonomously driving

vehicle by considering our reliability prediction approach.

Our classification result is summarised in Table 8.4. Although the system itself could

be modelled by using PCM (i.e. abstractability and approximation of system dynamics

are possibly satisfied), the system is not Φ𝑏-analysable which results mainly from the

dimensionality problems discussed above. However, the most important aspect is that

most of the uncertainty factors 𝜑1, . . . , 𝜑𝑁 are not monitorable at runtime. For instance,

how is one able to measure properties like translation, scaling, shearing or rotation? This is

generally not possible such that we have to consider Φ𝑏 to be non-monitorable. Moreover,

non-monitorability directly classifies systems into non-analysability.

Note that the example discussed is rather artificially constructed and is unlikely to be

encountered in practice. Nevertheless, it conveys an intuition about systems that are non-

analysable. Even if a system is non-analysable, this simply means that no assurances can

be made about the system-level property under consideration. In this case, however, one

can instead focus on a set of system properties that are more eligible in terms of making

assurances and that, in combination, provide a strong assurance case. Furthermore, non-

analysability should not prevent software engineers from using testing approaches such

as [186].

Finally, as a last remark, the example reveals an interesting corner case. We explained that

the abstractability and approximation of the system dynamics are not relevant because Φ𝑏
is not Φ𝑏-analysability. However, let us ignore for a moment the dimension of analytical

218

8.3. Classifying AI-enabled Systems

capacity and follow the path in the classification structure when a system is Φ𝑏-analysable.
As already noted, the system could be modelled using PCM and the static nature allows

the neglect of the system dynamics. Even though there are a minimum of 2
14 = 16384

uncertainty combinations that need to be evaluated to determine 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈), this is
still manageable or can be done efficiently with our reliability prediction approach. Thus,

we assume the state space complexity Φ𝑏-explorable because we can at least statistically

sufficiently infer 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). In summary, the system could be classified into static

analysability but is deemed to be non-analysable due to the inability to monitor 𝜑1, . . . , 𝜑𝑁
at runtime. In the testing approach of Tian et al. [186], for example, synthetic data is used

to generate images that indicate exactly those uncertainty factors. Thus, we can generate a

dataset in which each generated image can be labelled by the corresponding factor inserted

in the image. However, this allows us to determine the sensitivity model at design-time

and also to analyse the system regarding 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (ignoring the problems discussed

earlier). Therefore, it may seem unreasonable to classify a system into non-analysablility

even though assurances can be given at design-time. However, we argue that a fully

assured system requires assurances at design-time and runtime; unless one can prove

that Φ𝑆𝑦𝑠 is satisfied at design-time (e.g. Julian and Kochenderfer [95]) or at runtime (e.g.

Thumm and Althoff [185]). One of the main advantages of static (or monitor) analysability

is that it not only allows us to design our system (e.g. by evaluating design decisions) but

also guides us during the design of the system. More specifically, if we have a statically

(or monitor) analysable system, we can determine the set of potentially unsafe states. This

knowledge gained should not only be used to design the system accordingly but should

also be reused when monitoring the AI component. Having a system in a safety-critical

context for which assurances can be given merely at design-time (assuming the evidence

include no proof) but being incapable of making statements regarding Φ𝑆𝑦𝑠 and Φ𝑏 at
runtime cannot be considered to be sufficiently assured.

8.3.2. Human-Robot-Interaction Systems

In this section, we classify two more systems, namely a robotic manipulation system in

human environments and the HRI system we described in section 1.5.3.

Robotic manipulation in human environments Now we classify an approach for provably

safe deep RL (reinforcement learning) for robotic manipulation by Thumm and Althoff

[185]. In their work, the authors describe a shielding mechanism that ensures human

safety during the manipulation task of an RL-based controller. The considered scenario

involves a modular robot with six degrees of freedom which is mounted on a working

table. Because a human may work at the same table, it must be assured that the robot

operates safely, i.e. there must be no trajectories where the robot collides with the human.

Although not explicitly mentioned by the authors, we assume the state of the robot to

be represented by a vector. Each element of the vector corresponds to an observation

including the current joint position, velocity, episode goal, Cartesian end-effector position

and the relative Cartesian positions of the human wrists and head.

219

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

In essence, the safety shield presented by the authors consists of two planners. The first

planner refers to a long-term planner acting on a low frequency; the second planner refers

to a fail-safe planner acting on a high frequency. Roughly summarised, the idea is to use

the long-term planner for computing an Intermediate Trajectory in larger time steps Δ𝑇 (i.e.

at lower frequency) which is complemented by the fail-safe planner which calculates safe

sub-trajectories within smaller time steps Δ𝑡 (i.e. at higher frequency) with Δ𝑡 < Δ𝑇 . Note
that the original intermediate trajectory could be getting unsafe whenever a dynamically

moving object interferes with the computed trajectory. Therefore, the fail-safe planner

must verify potential collision at high frequency. In principle, the approach works as

follows: During the execution of a trajectory between 𝑡𝑖 and 𝑡𝑖+1 (where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖) a
fail-safe trajectory is computed starting from 𝑡 + 2. If there is no fail-safe trajectory (as a

result of the verification process), the fails-safe trajectory of 𝑡 + 1 is executed. In addition,

it is assumed that the robot starts in a safe state at 𝑡0. Thus, by induction safety can be

guaranteed for any time horizon.

Informally, we define the system-level property “The robot is guaranteed to cause no

collision”. Moreover, we consider as AI-specific property whether there exists an action

for any time 𝑡𝑖 such that a fails-safe trajectory (starting at 𝑡𝑖) can be constructed. The

classification results are summarised in Table 8.5. We consider the system to be not Φ𝑏-
analysable because the state space complexity is non-explorable. This is mainly because

the state and action space are both continuous spaces which makes it practically impossible

to be at least sufficiently explorable. Moreover, we consider input-monitorability because

it can be determined prior to 𝑡𝑖+1 whether the trajectory starting at 𝑡𝑖 is safe.

Finally, the fact that the system is fully monitorable and is guaranteed to transition to

fail-safe allows the classification into a-posteriori analysability.

Reliability prediction of HRI system In this section, we discuss the HRI example system

from section 1.5.3. Recall that in the HRI example system, a robotic arm is considered

which supports humans in the assembly tasks of some parts. Since the robot implements

an AI-based object detection component, the safety of the human (with whom the robot

collaborates) highly depends on the detection accuracy. Incorrect detection (e.g. the hand

of the human worker) can lead to collisions and crushing injuries. However, in this setting,

it is known that variations in image brightness and sensor noise may potentially lead

to incorrect predictions. For the HRI system, the system-level property Φ𝑆𝑦𝑠 refers to
𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈); the AI-specific property Φ𝑏 refers to 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝑆𝑁) where 𝜑𝐵 and 𝜑𝑆𝑁
describes the brightness and sensor noise uncertainties.

Our classification result is summarised in Table 8.6. The result is fairly similar to the

classification result of the AEBS when considering our reliability prediction approach. We

analyse the HRI system as part of our validation (albeit for self-adaptive systems); thus,

more details about the reliability prediction or used models can be found in section 9.4.2.

The uncertainty factors are fully observable in the environment. Moreover, they can be

discretised into finite sets of categorical values that are fully iterable (when considering

the Cartesian product). Again, the sensitivity analysis allows for determining whether

220

8.3. Classifying AI-enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Due to the fail-safe planner.

State space complexity
Non-explorable Continuous state and action space.

Input-output-monitor.
Input-monitorable Due to the fail-safe planner.

𝚽𝒃-analysable: No

Abstractability
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

≈ System dynamics
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

Fail-safe
Conclusion Explanation

Yes Due to the fail-safe planner. A full stop of the robot

is possible.

Class: A-posteriori analysability

Table 8.5.:Classification result of a robotic system for manipulation tasks in human environments of Thumm

and Althoff [185].

input images are potentially malicious. Thus, we conclude that overall the system is

Φ𝑏-analysable.

As we will see in section 9.4.2, the HRI system can be abstracted by using PCM models;

also, the AI component can be represented by estimating a sensitivity model. The sys-

tem dynamics are not relevant because we are analysing a static system in which each

uncertainty combination is visited and analysed.

Therefore, we classify the HRI system in class static analysability. In section 9.4.2, we

evaluate self-adaptive systems that are used to safeguard the AI-based object detection

component of the HRI system. The results of the evaluation indicate that each adaptation

strategy converges towards a fixed reward value. Thus, it can be concluded that the state

space is sufficiently explored. If we now assume that the system dynamics are accurately

approximated, the HRI system would also have been classified in static analysability when

self-adaptive systems are evaluated in terms of 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).

8.3.3. Aircraft Collision Avoidance Systems

In this section, we discuss the classification of a safety-guaranteeing approach for DNN-

based Aircraft Collision Avoidance System (ACAS) of Julian and Kochenderfer [95]. In their

221

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Image brightness and sensor noise are observable.

State space complexity
Φ𝑏-explorable All uncertainty combinations can be iterated.

Input-output-monitor.
Input-monitorable Due to sensitivity analysis.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes PCM to abstract the software architecture. Sensi-

tivity model to abstract the DNN. Markov chain

transformation to predict 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).
≈ System dynamics

Conclusion Explanation
Yes The software system is static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.6.:Classification result of the HRI example system by considering our reliability prediction approach.

work, the authors proved safety properties of two kinds of collision avoidance systems,

namely VerticalCAS which issues vertical rate advisories to an aircraft to avoid Near
Midair Collisions (NMACs) with another aircraft and HorizontalCAS which issues turn rate

advisories to an aircraft to avoid NMACs. The collision avoidance problem is formulated

by using MDPs. A state is composed of several (physical) variables, e.g. in VerticalCAS a
state consists of five variables (three variables describing the vertical encounter geometry,

one variable capturing the horizontal geometry and one variable representing the previous

advisory). The transition function 𝑡 is constructed based on the dynamic model of aircraft.

The action space relates to the set of advisories the system can issue to the pilot. Based on

dynamic programming techniques, the policy 𝜋 can be computed which maximises the

accumulated reward over time (w.r.t. some reward function).

As a result, 𝜋 is represented by a large table of states to advisory mappings. Due to

storage constraints of certified avionics hardware, however, the table violates the storage

constraints and is not applicable. Thus, DNNs are used to learn or approximate the table to

compress the data and to meet storage requirements [96, 97]. However, DNNs are highly

complex, continuous and non-linear functions for which it is difficult to predict whether

the outputs are correct or not (recall the black-box nature of DNNs). Moreover, Julian and

Kochenderfer [95] pointed out that pure simulation of the system is not sufficient because

it cannot be guaranteed whether the DNN performs correctly in all possible states.

222

8.3. Classifying AI-enabled Systems

Guaranteeing safety for DNN-based ACASs To make safety guarantees of the advisories

produced by the DNN, Julian and Kochenderfer developed an approach which makes use

of DNN verification techniques (e.g. [99, 202]) and a reachability analysis which verifies

whether an NMAC is reachable. If it can be shown that no advisory results in an NMAC,

the system is guaranteed to be safe (for more details we refer to the original work of Julian

and Kochenderfer [95]).

Informally, we define the system-level property Φ𝑆𝑦𝑠 : “The ACAS is guaranteed to cause

no NMAC”. In summary, the reachability analysis can be divided into two main procedures.

The first procedure splits the state space (which is the input space of the DNN) into smaller

regions. By applying formal verification techniques for DNNs (in this case, symbolic

bound propagation [201]), it is verified which advisories A𝑐 can be given within a region

(or cell) 𝑐 . The AI-specific property Φ𝑏 thus refers to an input-output property, where

output bounds are proved for a given input range. The second procedure starts to identify

those regions or cells 𝑐 representing the states that could occur before the DNN-based

ACAS takes action. Afterwards, the system makes use of the system dynamics to compute

the next state regions, i.e. the regions of the state space at time 𝑡 + 1 one would observe

when following the advisories and system dynamics given the previous regions at time

𝑡 . Because the state space (or input space) has been already split into regions A𝑐 for

which some advisories are proven, the next advisories of the regions computed at 𝑡 + 1
are determined. This procedure is repeated until either an NMAC cell is reached or it

converges to a set of reachable regions with no NMAC. If no NMAC cell is reached, the

ACAS is guaranteed to be safe.

The classification of the DNN-based ACAS is shown in Table 8.7. We consider the an-

alytic capacity of the discussed ACAS to be Φ𝑏-analysable. More specifically, the Φ𝑏-
monitorability is given by a proof, i.e. the input space is partitioned into a set of regions

A𝑐 for which it can be proven that the DNN produces a certain set of advisories by

using symbolic bound propagation [201]. Moreover, we consider the state space to be

Φ𝑏-explorable because all relevant states are verified in terms of Φ𝑏 (or rather A𝑐) by

exploring the state space w.r.t. the system dynamics. In this case, it is not relevant whether

the AI component is input or output monitorable since we can prove the ACAS to operate

safely.

In terms of abstractability, we consider the ACAS to be sufficiently abstracted. More

specifically, the system is represented as an MDP where the state space is spanned by

several (physical) variables. In addition, the transition function is based on the well-

researched physical dynamics of an aircraft. Because the transition function represents the

dynamics of the system, we consider the system dynamics to be accurately approximated

(again, due to the well-known aerodynamic properties of an aircraft). In conclusion, the

DNN-based ACAS is classified into static analysability.

Reliability prediction In this part of the section, we would now apply our reliability

prediction approach. However, our approach is barely applicable to ACAS for two reasons:

First, since the safe operation has been already proven there is no need to apply a reliability

223

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Verifiable Proof by input space partitioning A𝑐 (using neural

network verification tools like [99, 202]).

State space complexity
Φ𝑏-explorable All safety-critical states are verified by the reacha-

bility analysis.

Input-output-monitor.
- Irrelevant due to verifiability of Φ𝑏 .

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes MDPs are used to represent the logic of collision

avoidance systems. Transition function 𝑡 is con-

structed according to the well-known physics of an

aircraft.

≈ System dynamics
Conclusion Explanation

Yes Known from the physical dynamics of an aircraft.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.7.:Classification result of an aircraft collision avoidance system by considering the safety guaranteeing

approach of Julian and Kochenderfer [95].

analysis. Secondly, the environmental dynamics of an ACAS are rather low for aircraft;

that is, there are fewer environmental variables or uncertainties that could force the AI

component to make wrong predictions (in contrast to, e.g., self-driving cars). Julian and

Kochenderfer pointed out that pilot delays (to respond to advisories) or sensor errors are

potential sources of uncertainty; however, the reachability analysis can be expanded to

account for both uncertainties. Therefore, we do not discuss our reliability prediction

approach.

8.3.4. Discussion

After applying our classification structure to several AI-enabled systems, we now discuss

the results. We could show that the classification structure could be applied to each

system. Thus, we conclude the general applicability of the classification structure and

architectural dependability assurance classes. Although we considered only a limited

number of AI-enabled systems, we chose very generic and representative AI-enabled

224

8.3. Classifying AI-enabled Systems

systems from different domains. Since we are no experts, it is debatable whether some

classification decisions can be made as we have done. However, even if different decisions

were made for some classification dimensions, we have not encountered situations where

the dimensions were neither appropriate nor applicable. Therefore, we conclude that the

classification structure and its dimensions are applicable.

We now discuss research question RQ4 and its sub-questions. As our dependability

assurance classes and dimensions are to be regarded as preliminary and still subject to

research, it is not possible to answer the research question comprehensibly. Therefore,

we can only give preliminary answers. To improve readability, we recap the individual

research questions.

Research Question 4: How to assess the extent to which dependability assurances

can be given for an AI-enabled system?

However, before answering the research question, we must first answer the sub-research

questions. Therefore, recall research question RQ4.1:

Research Question 4.1: What are appropriate classes of architectural dependabil-

ity assurances?

We addressed the research question by our four classes of architectural dependability

assurance: Static analysability, monitor analysability, a-posteriori analysability and non-

analysability. The most favourable classes are static and monitor analysability because

they allow assurances to be given at design-time. A-posteriori analysability involves only

runtime assurances while for non-analysable systems no assurances can be given. The

assurances are always associated with a particular system-level property, e.g. the system

success probability or the ability to avoid collision with another object at any time. This

means, however, that the system is always classified w.r.t. to the system-level property. In

the 8.3 section, we could assign all the systems to one of the classes. Therefore, we could

demonstrate the applicability of the classes.

Recall research question RQ4.2 which asks for suitable classification dimensions:

Research Question 4.2: What are the suitable dimensions for classification?

We identified four classification dimensions consisting of the analytic capacity (which

itself is defined by three dimensions: state space complexity, Φ𝑏-monitorability and input-

output-monitorability), abstractability, approximation of the system dynamics and fail-safe.

Based on the classification dimensions, we have developed a classification structure that

makes it possible to assign a particular system and its environment to one of our classes.

In section 8.3, we were able to classify each AI-enabled system w.r.t. the dimensions. Due

to the limited number of systems that we classified, it cannot be said for certain whether

the dimensions are complete or whether they must be refined to some extent. However, in

225

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

8.3 section, we demonstrated that they form a solid foundation, but need to be researched

further.

Considering RQ4.1 and RQ4.2 together, we conclude that we addressed the research

question with our architectural dependability assurance classes and dimensions. The

dimensions and classification structure classifies systems and their environments (w.r.t.

Φ𝑆𝑦𝑠) into one of the classes. Nevertheless, research questionRQ4 cannot be fully answered
due to the restricted discussion of the classification structure. To have a more informed

discussion, we would have to interview experts for each area. However, this involves a

great deal of effort, which was no longer feasible within the scope of this work, but is the

subject of future work. However, the classification of AI-enabled systems in section 8.3 has

demonstrated general applicability and strongly suggests that the classification structure

and classes already provide a solid foundation. Furthermore, we argue that our classes and

classification structure provide software engineers with guidelines to judge at what level

assurances can be given for a system-level property and whether the system-level property

needs to be refined and broken down intomore analytically amenable properties. Especially

for the last point, our class and classification structure supports software engineers to

identify system properties that are difficult to assure as such. For example, we argue

that an AI system which is classified into a lower-ordered class (e.g., non-analysability)

is symptomatic of a poorly defined and hard-to-assure system property. In such cases,

it is arguably more advisable to split the original system property into multiple (and

analytically more amenable) properties that can be classified into higher-order classes.

8.4. Summary

In this chapter, we introduced four classes of architectural dependability assurance, namely

static analysability, monitor analysability, a-posteriori analysability and non-analysability.

Each class is associated with different dependability assurances one can make regarding

a particular system-level property. AI-enabled systems and the environments (in which

they operate) can be classified into one of the classes that indicate the extent to which

assurances can be made. Moreover, we discussed a classification structure consisting

of several classification dimensions, namely abstractability, approximation of system

dynamics, analytic capacity and fail-safe. Based on the dimensions, we discussed how to

classify AI-enabled systems. Afterwards, we envisioned how the classification structure

can be used to build dependability assurance cases. Finally, we applied the classification

structure to representative and well-known examples of AI-enabled systems and discussed

its applicability.

226

Part V.

Validation

9. Validation

In this section, we validate our presented approaches by considering a series of case

studies of different domains. The primary target of the validation is to answer our research

questions stated in section 1.3. The validation process of this thesis is organised and

structured similarly to the validation process of the dissertation from Stier [178]. That

is, we start with an overview of the validation (including the presentation of the GQM

plan, the case study systems and the discussion of the validation process), carry out the

validation for each validation goal and discuss the results afterwards. Just like in the

work of Stier, our validation is guided by a GQM (goal-question-metric) plan based on

Basili et al. [36] (see section 2.8.1). Therefore, we start to elaborate the GQM plan by

defining four central validation goals. The validation goals are complemented by validation

questions that need to be answered to determine whether the respective validation goal is

achieved. Each validation question is associated with a set of metrics that aim to answer

the validation question under consideration. For each validation goal, we have created a

separate section in which the corresponding validation goal is examined.

The remainder of this chapter is structured as follows: In section 9.1, we provide an

overview of the validation and introduce the GQM plan. In sections 9.2, 9.3 and 9.4 the

performed validations of the individual validation goals are presented. Finally, the results

of the validation are discussed in section 9.5.

9.1. Overview

In this section, we give an overview of the validation. Therefore, we start to present

our GQM plan in the next section. Afterwards, we discuss the validation levels (based

on Böhme and Reussner [28]) associated with the corresponding validation goal and

considered case studies. Moreover, we explain the structure of the validation process and

its accomplishment.

9.1.1. Validation Goals, Questions and Metrics

In this section, we present the GQM plan and its validation goals, questions and metrics.

We relate each validation goal with its addressed research questions. Therefore, we start

to present the GQM plan as such and discuss the individual validation goals and the

interpretation of the metrics subsequently.

229

9. Validation

Before we present the GQM plan, we have to introduce further notations that we use in

the metrics:

• As introduced in definition 30, we consider an AI black-box component as a function

𝑏 which maps inputs of the input space to outputs of the output space. In addition,

with 𝑏+ we denote an AI component which produces for any input the correct output;

with 𝑏− we denote an AI component which produces for any input the incorrect

output.

• We use the notation 𝐶𝑏 to express that architectural configuration 𝐶 includes AI

component 𝑏; in addition,𝑀𝐶𝑏 indicates the corresponding architecture model (or

PCM model) that describes 𝐶𝑏 .

• The function 𝑎𝑐𝑐 (𝑏) abstracts a performance measure for a trained AI model 𝑏, e.g.

based on RMSE (root-mean-squared error).

• For simplification, we use the function 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑1, . . . , 𝜑𝑁) to represent a prediction
run with our reliability prediction approach for AI-enabled systems from section

7, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑1, . . . , 𝜑𝑁) = 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁)
(recall from formula (7.1)) where the probability of success of the system (defined

over 𝑋𝑆𝑦𝑠) is investigated w.r.t. 𝑀𝐶𝑏 and for given uncertainty tuple (𝜑1, . . . , 𝜑𝑁) and
a fixed usage scenario𝑈 . Moreover, with 𝑟𝑒𝑙 (𝑀𝐶𝑏) we refer to the overall probability
of success of the system (or 𝑀𝐶𝑏), i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏) = 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈) =∑
𝜑1,...,𝜑𝑁 ∈Φ 𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁) · 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑1, . . . , 𝜑𝑁) (recall from equation (7.4)).

• The set Φ𝑏𝑖 ,𝑏 𝑗 := {(𝜑1, . . . , 𝜑𝑁) ∈ Φ | 𝑃𝑟 (𝑋𝑏𝑖 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 =

𝜑𝑁) ≥ 𝑃𝑟 (𝑋𝑏 𝑗 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁)} is defined over two distinct

AI components 𝑏𝑖 and 𝑏 𝑗 and contains all uncertainty tuples (𝜑1, . . . , 𝜑𝑁) for which
the sensitivity model of 𝑏𝑖 indicates higher success probabilities than the sensitivity

model of 𝑏 𝑗 .

• We write an adaptation strategy 𝜋 [𝑏] if the strategy 𝜋 is safeguarding AI component

𝑏.

Based on the previous notations, we define a set of plausibility assertions. Let {𝑏1, 𝑏2, . . . }
be a set of AI components under investigation where 𝑎𝑐𝑐 (𝑏𝑖) induce a partial order over
the set, i.e. 𝑏1 ≤ 𝑏2 ≤ · · · ⇔ 𝑎𝑐𝑐 (𝑏1) ≤ 𝑎𝑐𝑐 (𝑏2) ≤ . . . Moreover, let denote 𝑀𝐶𝑏𝑖

the

corresponding architecture model including 𝑏𝑖 where the architecture models exclusively

differ in the used AI component. We consider the following plausibility assertions:

𝑏− ≤ 𝑏1 ≤ · · · ≤ 𝑏+ ⇔ 𝑟𝑒𝑙 (𝑀𝐶𝑏−) ≤ 𝑟𝑒𝑙 (𝑀𝐶𝑏
1

) ≤ · · · ≤ 𝑟𝑒𝑙 (𝑀𝐶𝑏+) (9.1)

∀(𝜑1, . . . , 𝜑𝑁) ∈ Φ𝑏𝑖 ,𝑏 𝑗 :
𝑟𝑒𝑙 (𝑀𝐶𝑏𝑖

| 𝜑1, . . . , 𝜑𝑁) ≥ 𝑟𝑒𝑙 (𝑀𝐶𝑏 𝑗
| 𝜑1, . . . , 𝜑𝑁)

(9.2)

∀(𝜑1, . . . , 𝜑𝑁) ∈ Φ𝑏𝑖 ,𝑏 𝑗 ∩ Φ𝑏 𝑗 ,𝑏𝑖 :
𝑟𝑒𝑙 (𝑀𝐶𝑏𝑖

| 𝜑1, . . . , 𝜑𝑁) = 𝑟𝑒𝑙 (𝑀𝐶𝑏 𝑗
| 𝜑1, . . . , 𝜑𝑁)

(9.3)

𝑏− ≤ 𝑏1 ≤ · · · ≤ 𝑏+ ⇔ 𝜋 [𝑏−] ≤ 𝜋 [𝑏1] ≤ · · · ≤ 𝜋 [𝑏+] (9.4)

230

9.1. Overview

The first plausibility assertion (9.1) states that the ordering of the AI components must

be preserved by our reliability prediction approach. That is, for any distinct 𝑏𝑖 , 𝑏 𝑗 with

𝑏𝑖 ≤ 𝑏 𝑗 our reliability prediction approach applied to the respective models𝑀𝐶𝑏𝑖
and𝑀𝐶𝑏 𝑗

must indicate the same ordering in terms of the success probability (recall again that both

models only differ in the used AI component). We extend the set of AI components that

are subject to validation with 𝑏− and 𝑏+. The order of the set must therefore start with 𝑏−

(reflecting the worst possible AI component) and end with 𝑏+ (reflecting the best possible

AI component). When applied to our reliability prediction model, the prediction order

must preserve the two extremes.

The plausibility assertion (9.2) states that for any pair 𝑏𝑖 , 𝑏 𝑗 where the sensitivity model of

𝑏𝑖 yields higher success probabilities than the sensitivity model of 𝑏 𝑗 for some uncertainty

tuples, this must also be reflected by the individual prediction results of our reliability

prediction tool. For AI components whose sensitivity models indicate the same success

probabilities for some uncertainties, the reliability results for these uncertainty tuples

must be equal; this is captured by the plausibility assertion (9.3). Note that (9.3) directly

follows from (9.2); nonetheless, we make the assertion explicit to clearly emphasise that

this plausibility relation must hold.

In essence, the plausibility assertion (9.4) states that any adaptation strategy 𝜋 used to

safeguard the AI components 𝑏𝑖 and 𝑏 𝑗 (i.e. 𝜋 [𝑏𝑖] and 𝜋 [𝑏 𝑗]) must generate higher rewards

in safeguarding 𝑏𝑖 if and only if 𝑏𝑖 ≤ 𝑏 𝑗 . Hereby, we assume that each adaptation strategy

𝜋 [𝑏] implements the same adaptation logic and only differs in the AI black-box component

𝑏 to be safeguarded. The ordering of strategies is based on formula (6.6). Moreover, it is

assumed that each strategy is evaluated with the same reward function where a reward

directly reflects the reliability of the system, i.e. the success probability.

9.1.1.1. Evaluating Adaptation Strategies

The validation goals of this section are related to the first research questions and their

sub-questions:

Research Question 1: How to evaluate adaptation strategies of self-adaptive

systems at design-time regarding the ability to meet quality objectives?

Research Question 1.1: How can environmental dynamics be formalised domain-

independently at design-time?

231

9. Validation

Research Question 1.2: What is an appropriate level of abstraction to represent

the environmental dynamics domain independently? By appropriateness, we mean

that

• adaptation strategies can be analysed at design-time with sufficient accuracy.

• environmental state spaces can be described flexibly and compactly.

Research Question 1.3: What is an appropriate analytical model to enable design-

time analyses of self-adaptive systems?

Research Question 1.4: Are the predictions sufficiently accurate to yield plausible

results?

The validation goals are divided to validate key aspects of RQ1, namely the applicability

of the formal modelling language of environmental dynamics and the appropriateness of

using MDPs as an analytical model for evaluating adaptation strategies. The GQM plan

presented in the next two sections adheres to the same structure as in Stier’s dissertation

[178].

Goal 1. Analyse the applicability of the EnvDyn formal modelling language to describe

the operating environment of self-adaptive systems.

Addressed RQs: RQ1, RQ1.1, RQ1.2

Question 1.1. Canwe instantiate and apply the EnvDynmodelling language domain-

independently?

Metric 1.1.1. Rank of adaptation strategies evaluated by the DeltaIoT simulator

compared to adaptation strategy ranking of the SimExp method.

Metric 1.1.2. Rank of adaptation strategies evaluated by SimuLizar compared

to adaptation strategy ranking of the SimExp method.

Metric 1.1.3. Plausibility assertion checks based on measured reliability prop-

erties of the AI components. More specifically, plausibility assertions (9.1)-

(9.4) are validated.

Addressed RQs: RQ1, RQ1.1

Question 1.2. Are the essential characteristics of an operating environment cap-

tured by the EnvDyn modelling language?

Metric 1.2.1. Rank of adaptation strategies evaluated by the DeltaIoT simulator

compared to adaptation strategy ranking of the SimExp method.

Metric 1.2.2. Rank of adaptation strategies evaluated by SimuLizar compared

to adaptation strategy ranking of the SimExp method.

232

9.1. Overview

Metric 1.2.3. Plausibility assertion checks based on measured reliability prop-

erties of the AI components. More specifically, plausibility assertions (9.1)-

(9.4) are validated.

Addressed RQs: RQ1, RQ1.2

Goal 2. Analyse the appropriateness of our SimExp method to evaluate adaptation strate-

gies of self-adaptive systems at architecture-level.

Addressed RQs: RQ1, RQ1.3, RQ1.4

Question 2.1. Does our SimExp method achieve the evaluation results of compara-

ble quality for adaptation strategies compared to domain-specific simulators?

Metric 2.1.1. Rank of adaptation strategies evaluated by the DeltaIoT simulator

compared to adaptation strategy ranking of the SimExp method.

Metric 2.1.2. Rank of adaptation strategies evaluated by SimuLizar compared

to adaptation strategy ranking of the SimExp method.

Addressed RQs: RQ1, RQ1.3, RQ1.4

Question 2.2. Can our SimExp method evaluate design decisions within an adapta-

tion strategy family or the comparison of distinct adaptation strategies?

Metric 2.2.1. Rank of adaptation strategies evaluated by the DeltaIoT simulator

compared to adaptation strategy ranking of the SimExp method.

Metric 2.2.2. Rank of adaptation strategies evaluated by SimuLizar compared

to adaptation strategy ranking of the SimExp method.

Addressed RQs: RQ1, RQ1.3

Question 2.3. Does our SimExp method support the decision-making process re-

garding the design decision of whether to use a self-adaptive system or static

software systems?

Metric 2.3.1. Rank of adaptation strategies evaluated by the DeltaIoT simulator

compared to adaptation strategy ranking of the SimExp method.

Metric 2.3.2. Rank of adaptation strategies evaluated by SimuLizar compared

to adaptation strategy ranking of the SimExp method.

Addressed RQs: RQ1, RQ1.3

Note that the first validation goal (the applicability of the EnvDyn modelling language) is

implicitly covered by the remaining validation goals. The first part of validation goal 1 is

concerned with the domain-independent application. As we use four case study systems

during the entire validation of this work, we instantiate the EnvDyn metamodel in each

case study. That is, we show the applicability of the modelling language in four different

domains. The second part of validation goal 1 relates to the appropriateness in terms of

coverage of the essential characteristics of a domain. For each case study, a corresponding

233

9. Validation

environment model is created and used in adaptation strategy evaluation and reliability

prediction. That is, if the resulting evaluation and prediction results are shown to be

valid in the respective validation goals, we can conclude the applicability of the EnvDyn
metamodel.

9.1.1.2. Analysis of Architectural Safeguards for AI-enabled Systems

The validation goals of this section are related to the second research question and their

sub-questions:

Research Question 2: How can software systems that contain AI black-box

components be evaluated in terms of meeting reliability attributes at design-time?

Research Question 2.1: How to deal with the hidden state problem of AI black-box

components?

Research Question 2.2: How to systematically consider the influence of pre-

dictive uncertainty and causally related environmental variables in the reliability

prediction?

Research Question 3: How can adaptation strategies of self-adaptive systems that

safeguard uncertain AI black-box components be evaluated in terms of reliability at

design-time?

Goal 3. Analyse the plausibility of our reliability predictions of AI-enabled software

systems at architectural-level.

Addressed RQs: RQ2, RQ2.1, RQ2.2

Question 3.1. Do sensitivity models adequately capture AI black-box components

in reliability prediction?

Metric 3.1.1. Bhattacharyya distance to measure the similarity between the

success/failure probabilities of the sensitivity model and the reliability

predictions.

Metric 3.1.2. Plausibility assertion checks based on measured properties of the

AI components. More specifically, plausibility assertion (9.1) is validated.

Addressed RQs: RQ2, RQ2.1

Question 3.2. Do the prediction results of our holistic approach reflect reliability

attributes measured from AI components?

234

9.1. Overview

Metric 3.2.1. Plausibility assertion checks based on measured properties of

the AI components. More specifically, plausibility assertions (9.1)-(9.3) are

validated.

Addressed RQs: RQ2, RQ2.2

Question 3.3. Does the approach allow for the evaluation of AI-specific design

decisions?

Metric 3.3.1. Plausibility assertion checks based on measured properties of the

AI components. More specifically, plausibility assertions (9.2)-(9.3) must

hold after applying a design decision.

Addressed RQs: RQ2, RQ2.2

Goal 4. Analyse the plausibility of the instantiated SimExp method for the evaluation of

adaptation strategies of self-adaptive systems safeguarding AI black-box components

at architecture-level.

Addressed RQs: RQ3(, RQ1.3)

Question 4.1. Do the generated rewards of an adaptation strategy reflect reliability

attributes derived from AI components?

Metric 4.1.1. Plausibility assertion checks based on measured properties of the

AI components. More specifically, plausibility assertion (9.4) is validated.

9.1.2. Case Study Systems

In this section, we briefly enumerate the case study systems that we consider in the

validation. In total, we consider four case studies:

CS1 DeltaIoT system: We use the DeltaIoT system as a case study which has been

introduced in section 1.5.2. The DeltaIoT system is a widely known case study in the

self-adaptive system community. Moreover, it is complemented with a simulator for

the evaluation of adaptation strategies implemented for the DeltaIoT system.

CS2 Load balancing based on the ZNN.com system: The second case study that we

consider corresponds to the load balancer example system from section 1.5.1 which is

based on the ZNN.com community case study [48]. The case study has already been

used in the context of SimuLizar [15]. SimuLizar provides means for scenario-based

performance evaluation of adaptation strategies which we use to compare with the

results of our approach based on the load balancer case study.

CS3 Human-Robot-Interaction system: The HRI system has been introduced in sec-

tion 1.5.3. The case study is primarily used to evaluate adaptation strategies for

self-adaptive systems safeguarding AI black-box components.

235

9. Validation

CS4 Udacity self-driving car challenge: Finally, we consider a case study from the

autonomous driving domain. The case study is part of the Udacity self-driving car

challenge [192]. In the challenge, several teams were developing DNNs (deep neural

networks) for predicting the steering angles of a self-driving car based on image

data. For our validation, we consider two trained DNNs from the set of developed

DNNs which we use for further investigation.

9.1.3. Validation Process

In this section, we discuss the validation process. We start to classify the validation

goals and questions into the validation levels of Böhme and Reussner [28] and assign the

considered case studies to the respective validation question. Moreover, the validation

question specific interpretation of metrics are explained. Afterwards, we discuss the

validation accomplishment, i.e. the structure of the validation process, ordering of the

validation goals, etc.

9.1.3.1. Classification into Validation Levels

For the classification of the validation goals and questions, we use the validation levels of

Böhme and Reussner [28]. The validation levels have been introduced in section 2.8.2. We

associate each validation question of a validation goal with its corresponding validation

levels. In the following, we discuss the validation levels of each goal.

Validation goal 1 Table 9.1 provides an overview of the validation question to validation

level assignment and the considered case study systems as validation foundation.

Validation question Validation level Case study systems

1.1 Level II CS1-CS4

1.2 Level II CS1-CS4

Table 9.1.: Overview of the assignment of validation level to question of goal 1.

The validation goal 1 is about analysing the applicability of our EnvDyn metamodel

and is linked to two validation questions. Question 1.1 is concerned with the domain-

independent applicability of the modelling language; question 1.2 is about whether the

essential characteristics of an operating environment are captured. In the following, we

examine the levels at which both questions are validated, the case study systems and the

interpretation of the metrics for each question.

We conducted a level II validation to address both questions. To validate whether the

EnvDyn metamodel is both applicable domain-independently and captures the key char-

acteristics of an operating environment is determined by considering the validity of the

results validated in the remaining goals (and w.r.t. all case study systems). The EnvDyn

236

9.1. Overview

modelling language is used in both the evaluation of adaptation strategies (i.e. the SimExp
method) and the reliability prediction of AI-enabled systems; thus, their respective validity

strongly depends on the applicability of the EnvDyn metamodel. That is, if the results are

valid, both questions are positively answered. Therefore, we link each question to each

metric used to validate either the SimExp method or the reliability prediction approach.

In this case, however, the metrics are not generally interpretable (or at least not in the

context of goal 1). Instead, one must take into account the interpretations of each metric in

the remaining validation goals where the metric is used to answer a validation question.

Validation goal 2 Table 9.2 shows the validation question to validation level assignment

and the considered use cases to validate the question.

Validation Question Validation level Case study systems

2.1 Level I CS1-CS2

2.2 Level I & II CS1-CS2

2.3 Level I & II CS1-CS2

Table 9.2.: Overview of the assignment of validation level to question of goal 2.

For validation goal 2, we formulated three questions. Question 2.1 is concerned with

whether our SimExp approach produces comparable results by considering domain-specific

simulators for evaluating adaptation strategies. We conducted a level I validation to answer

the question. Moreover, we consider metrics 2.1.1 and 2.1.2. The metrics are intended

to validate that the evaluation order of adaptation strategies made by domain-specific

simulators are preserved by the SimExp method (which builds upon MDPs). As domain-

specific simulators, we consider the DeltaIoT simulator and SimuLizar. Therefore, the

used case study systems are CS1 and CS2 because both simulators are applicable to the

respective case study. The DeltaIoT simulator has been used in many evaluation settings

(e.g. [194, 168]). Consequently, we assume that the simulator is sufficiently accurate to

be used in our context. Also, SimuLizar has been evaluated for the load balancer case

study that we consider [15]. The rationale behind the metrics is to compare the results of

our MDP based SimExp approach with two established simulators. If SimExp produces

the same ranking of strategies as the domain-specific simulators, we can conclude the

appropriateness of SimExp and the appropriateness of MDPs as an underlying analytical

model. We do not aim to be more accurate than the simulators; this is arguably hard to

achieve due to the level of abstraction and simplifications associated with the SimExp
method. On the other hand, however, to obtain the ranking of adaptation strategies,

SimExp must at least satisfy a particular level of accuracy, otherwise one would observe

different ranks resulting from our SimExp method.

For question 2.2, we conduct a level I validation. The question is about whether our SimExp
method allows the evaluation of design decisions within adaptation strategy families and

whether distinct strategies are comparable. We use the metrics as before, i.e. 2.2.1 and 2.2.2

(and thus the same case study systems, i.e. CS1 and CS2). For the level I validation, the

237

9. Validation

metrics must be interpreted as discussed in question 2.1. Only if the rank of an adaptation

strategy family is preserved, one can evaluate design decisions and compare distinct

strategies based on the rank generated by SimExp.

For validation question 2.3, we use the same metrics and case study systems as in question

2.2. The measurements of the metrics are also interpreted in the same way. The only

difference is that we compare the results of static and self-adaptive systems produced by

the domain-specific simulators compared to the results of the SimExp method.

For validation questions 2.2 and 2.3, we conduct also a level II validation. We use the

same metrics as for Level I validation, but focus on whether our SimExp method enables

software engineers to evaluate meaningful design decisions based on the models acquired

from the respective case study systems and relevant to SimExp.

Validation goal 3 Table 9.3 shows the validation question to validation level assignment

and considered case study systems.

Validation Question Validation level Case study systems

3.1 Level I CS4

3.2 Level I CS4

3.3 Level II CS4

Table 9.3.: Overview of the assignment of validation level to question of goal 3.

The validation goal is associated with three validation questions. The first two questions

are validated by a level I validation; question 3.3 is conducted in the context of a level II

validation.

Question 3.1 is about whether sensitivity models adequately capture AI black-box com-

ponents. We address the question by two metrics, namely metric 3.1.1 and metric 3.1.2.

Moreover, for the validation of the goal we use solely case study CS4. The first metric

measures the similarity of the success/failure probability of the sensitivity model (or rather

its distribution) with the predicted success probabilities w.r.t. the individual uncertainty

tuples. Recall that for each reliability prediction run, we only change the AI component

𝑏 such that only 𝑏 affects the reliability of the entire system. As a result, the predicted

success/failure probabilities of the system 𝑀𝐶𝑏 must indicate some degree of similarity

with the success/failure probabilities of the respective sensibility model of 𝑏. Therefore, we

calculate the Bhattacharyya distance (see section 2.8.3) to measure the similarity of both

distributions. For this purpose, we predict the individual success and failure probabilities

for each uncertainty tuple by our reliability prediction approach and compare the results

with the success and failure probability with the sensitivity model of the AI component

under investigation. More formally, for all uncertainty tuple (𝜑1, . . . , 𝜑𝑁), we compute

the Bhattacharyya distance of the distributions 𝑃 (𝑋𝑏 | 𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁) and
𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑1 = 𝜑1, . . . , 𝑋𝜑𝑁 = 𝜑𝑁). If the value is close to 0, we can conclude that

both distributions are similar. With metric 3.1.2, we check whether plausibility assertion

238

9.1. Overview

(9.1) holds which requires for a given ordering of AI components (w.r.t. some performance

measure), the same ordering of reliability predictions.

For question 3.2, we consider metric 3.2.1. Hereby, we take into account plausibility as-

sertions (9.1)-(9.3). For question 3.1, we required that assertion (9.1) is satisfied from the

perspective of the sensitivity model. In this case, we require that assertions (9.1)-(9.3) are

satisfied from the perspective of our reliability prediction approach. More specifically, in

terms of assertion (9.1), it is required that for a given set of AI components, our holistic

reliability prediction approach reflects their individual reliability properties, i.e. the accu-

racy of an AI component. This is complemented by the assertions (9.2) and (9.3), which for

any two AI components, say 𝑏 and 𝑏′, giving different or equal prediction confidences (i.e.

predictive uncertainty) for particular (𝜑1, . . . , 𝜑𝑁), require that exactly these prediction

confidences are reflected in the individual reliability predictions 𝑟𝑒𝑙 (𝐶𝑏 | 𝜑1, . . . , 𝜑𝑁) and
𝑟𝑒𝑙 (𝐶𝑏′ | 𝜑1, . . . , 𝜑𝑁) under identical architectural model 𝐶 .

For question 3.3, we conduct a level II validation and, similarly to goal 2, focus on whether

our reliability prediction approach supports software engineers in evaluating design

decisions based on the models acquired from the respective case study systems. More

specifically, we consider metric 3.3.1 which is associated with plausibility assertions (9.2)-

(9.3). The metric intends to measure whether the assertions still hold after applying a

design decision (e.g. the application of the filtering or n-version pattern). For question 3.2,

we validate whether the assertions (9.2)-(9.3) hold for a fixed architecture model𝑀𝐶𝑏 where

only the used AI component 𝑏 is exchangeable. Now, we require that if we apply a specific

design decision to the architecture model 𝑀𝐶𝑏 such that we obtain 𝑀𝐶′
𝑏
, the plausibility

assertions must still hold. Note that a design decision has an impact on the sensitivity

model of 𝑏 (either structural or parametric, recall architectural countermeasures from

section 7.1.3.2). That is, the sensitivity model originally associated with 𝑏 is modified, i.e.

it accounts for the effects of the design decision. Consequently, the sets Φ𝑏𝑖 ,𝑏 𝑗 are modified

accordingly. However, the plausibility assertions (9.2)-(9.3) for the modified sets Φ𝑏𝑖 ,𝑏 𝑗
must still hold. If this is the case, our reliability prediction approach has been shown to

enable the evaluation of AI-specific design decisions.

Validation goal 4 Finally, Table 9.4 shows the mapping of the validation questions of goal

4 to the corresponding validation levels.

Validation Question Validation level Case study systems

4.1 Level I CS3-CS4

Table 9.4.: Overview of the assignment of validation level to question of goal 4.

For validation goal 4, we conduct a level I validation. The goal is related to a single

validation question. Question 4.1 is about whether the generated rewards of an adaptation

strategy reflect the reliability attributes derived from an AI component. In terms of

question 4.1, metric 4.1.1 is used to measure whether plausibility assertion (9.4) is satisfied

or maintained by our SimExp approach. Suppose a set of AI components with varying

239

9. Validation

degrees of accuracy and an adaptation strategy that implements some adaptation logic. The

assertion 9.4 states that when the adaptation strategy is evaluated for each AI component,

the individual evaluation results must indicate the same order as given by the order of the

AI components w.r.t. their accuracies. In other words, for two AI components, say 𝑏 and

𝑏′ with 𝑎𝑐𝑐 (𝑏′) ≤ 𝑎𝑐𝑐 (𝑏), it is required that the overall result of the adaptation strategy

safeguarding 𝑏 is higher compared to the strategy safeguarding 𝑏′ (where the strategies
implement the same adaptation logic but differ in 𝑏 and 𝑏′ respectively).

9.1.3.2. Validation Accomplishment

In this section, we discuss howwe conduct the validation for the distinct validation goals.

We start to validate goals 2-4 and goal 1 afterwards. The reason for this has already been

explained in the previous section. To validate the goal 1, we must first validate the other

goals, as the validity of their results is strongly related to the validity of goal 1.

Therefore, we start with validation goal 2. To the best of our knowledge, there is no

gold standard approach that enables the evaluation of adaptation strategies domain-

independently. However, there are domain-specific simulators that one can use to evaluate

adaptation strategies for a given domain, e.g. the DeltaIoT simulator [92] in the field of IoT.

We use these domain-specific simulators as a baseline to reason about the appropriateness

of using MDPs as analytical models to evaluate adaptation strategies. Once we have shown

the appropriateness of using MDPs, we continue to validate our SimExp method in terms

of evaluating adaption strategies that safeguard AI black-box components.

However, we have to validate goal 3 before as it is concerned with relevant concepts. The

validation of these concepts must be considered as a prerequisite for validating goal 4,

namely the reliability prediction of AI-enabled systems. Also, we are facing here the same

problems as in goal 2; to the best of our knowledge, there are no comparable approaches

that we can use as a baseline or ground truth. Another possibility would be to implement an

AI-enabled case study system to compare the runtime measurements with our predictions.

However, besides the high effort associated with such a validation, obtaining accurate

measurements for reliability metrics is hard to achieve due to the rare nature of events

influencing the reliability of the system [28]. Therefore, we follow a different validation

approach. More precisely, we check plausibility assertions based on measurable reliability

attributes in the considered domain or case study system, which have to be preserved by

our reliability prediction approach. At first glance, this seems contradictory, as one would

expect the accuracy of our approach to be validated. Looking at the components that make

up our reliability prediction approach (sensitivity model, PCM-Rel and ATs) and the way

they are connected, it is clear that there is no need to validate accuracy. More specifically,

recall that the reliability prediction approach demands an upstream sensitivity analysis of

an AI component. For this purpose, we enumerated a set of approaches that can be used

to conduct the sensitivity analysis (see section 7.1.2). Based on the resulting sensitivity

model, our approach predicts the respective success probabilities of the system for distinct

uncertainty tuples by using the conventional PCM-Rel prediction approach. At this stage,

240

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

it is important to note that we did not modify the code and thus the prediction logic of

PCM-Rel (see section 7.1.3). Instead, we implemented an upstream resolving procedure for

recalculating the failure probability of the analysed AI component based on the sensitivity

model. Consequently, validating the accuracy of our reliability prediction approach is

equal to validating the accuracy of PCM-Rel which was extensively validated by Brosch

[33]. Additionally, our reliability prediction approach is complemented by ATs which can

be applied to improve the reliability of the system. The AT approach was also validated by

Lehrig [113]. Thus, our reliability prediction approach for AI-enabled systems is composed

of well-validated components such that only their joint interaction needs to be validated

holistically. Therefore, we focus the validation on plausibility assertions that need to be

preserved to reason about the validity of the joint interaction of the components that make

up our approach to predicting reliability. The plausibility assertions have been discussed

in previous sections.

Following validation goal 3, we finally validate our SimExp method for evaluating adapta-

tion strategies that safeguard AI components in validation goal 4. As before, there is no

gold standard or baseline against which we can compare our approach. However, as we

have already validated the SimExp method in validation goal 2, we validated the appropri-

ateness of the SimExp method; thus, we validate in this context again the preservation of

plausibility assertions. The results of this validation goal also complement the validation

results of goal 2 and increase confidence and reasoning that MDPs are appropriate for

evaluating adaptation strategies.

9.2. Evaluating Adaptation Strategies of Self-Adaptive
Systems

In this section, we validate validation goal 2 by considering the DeltaIoT case study and

the load balancer case study in conjunction with SimuLizar, a performance simulator for

self-adaptive systems.

9.2.1. DeltaIoT

In the following, we validate validation goal 2 by considering the DeltaIoT community

case study. Therefore, we start to outline how we instantiated the SimExp method for

the DeltaIoT system. The case study itself has already been introduced in section 1.5.2.

Subsequently, we discuss the experimental setup and present the results afterwards.

9.2.1.1. Instantiation of SimExp

For the instantiation of the SimExp method, we created the models and other artefacts

required to analyse adaptation strategies with SimExp, namely the architecture model

241

9. Validation

Link Power Distribution

2 to 4 15 100

3 to 1 15 100

4 to 1 15 100

5 to 9 15 100

6 to 4 15 100

7 to 2 15 0

7 to 3 15 100

8 to 1 15 100

9 to 1 15 100

10 to 6 15 50

10 to 5 15 50

11 to 7 15 100

12 to 7 15 0

12 to 3 15 100

13 to 11 15 100

14 to 12 15 100

15 to 12 15 100

Table 9.5.: Initial architectural configuration of the (PCM) modelled DeltaIoT system.

(i.e. PCM model), the model transformation representing the adaptation, the environment

model (based on our EnvDyn metamodel), the adaptation strategy subject to evaluation

and the reward function to evaluate decisions made by the strategy. Moreover, recall

from section 4.3.2 that the architecture possibly influences the environmental dynamics.

By default, we assume that the environment evolves independently of the architecture;

however, in the context of the DeltaIoT system, this is not the case. Therefore, we briefly

discuss the assumption made (and its rationale).

Initial Architecture Model We created the PCM model for describing the DeltaIoT system

based on the information provided by [92]. However, the models are too large and complex

to be discussed here. Therefore, we refer to [157] where all models and validation results

are located. Nonetheless, Table 9.5 shows the initial architectural configuration (and

adaptable elements) of the DeltaIoT system modelled with PCM.

Therefore, recall that each mote can send a packet via a communication link to another

mote. Links are modelled in PCM by so-called Linking Resources (see [149, P.57]). Each
connection is assigned a transmission power value between 0 and 15 (see the second

column of Table 9.5), with high values increasing the probability that the packet will

not be lost during transmission. Moreover, if a mote has two communication endpoints,

the distribution factor (see the third column of Table 9.5) determines the distribution of

sending the packet to the respective mote.

242

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

𝑊𝐼

𝑆𝑁𝑅

Wireless link

𝑀𝐴

Mote

(a) Overview of the template variables in the plate

model notation.

𝑀𝐴 𝑀𝐴′ 𝑀𝐴′′

𝑊𝐼

𝑆𝑁𝑅

𝑊 𝐼 ′

𝑆𝑁𝑅′

𝑊𝐼 ′′

𝑆𝑁𝑅′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(b) The DBN describing the environmental dynamics unrolled for

three time steps.

Figure 9.1.:Overview of the essential environmental variables of the DeltaIoT system and their relationships.

Adaptations Effectively, there are two atomic adaptations in the context of the DeltaIoT

system. In the first adaptation, the transmission power of a particular mote 𝑖 (or its

communication link) is adjusted by adding a value, say 𝑡𝑝𝑖 ∈ {+1,−1, 0}, to the current

transmission power, where the ranges are fixed, i.e. it is not possible to set 𝑡𝑝 = 1 if the

transmission power to be adjusted is already set to 15, or 𝑡𝑝 = −1 if the transmission

power is set to 0. The second adaptation adjusts the distribution factors of a mote which

has two communication links. More specifically, a distribution factor 𝑑 𝑓𝑖 𝑗 ∈ {+10,−10, 0}
modifies the current distribution of a mote 𝑖 which communicates via link (𝑖, 𝑗) with mote

𝑗 where again the ranges are fixed, i.e. if the distribution of link (𝑖, 𝑗) is already set to 100,

𝑑 𝑓𝑖 𝑗 ≠ +10 and 𝑑 𝑓𝑖 𝑗 ≠ −10 if the distribution of link (𝑖, 𝑗) is set to 0.

In the case of an adaptation, however, the system is not adapted by (e.g.) modifying the

transmission power of a single mote. Instead, an adaptation is considered a composition of

several atomic adaptations. That is, an adaptation consists of several atomic adaptations

which are summarised as a tuple 𝛿 := (𝑡𝑝1, . . . , 𝑡𝑝𝑖, . . . , 𝑡𝑝15, 𝑑 𝑓𝑖 𝑗 , . . .). The whole tuple is
finally applied to adjust the network configuration of the system.

In terms of SimExp, we implemented a single model transformation which takes a tuple of

network configuration 𝛿 and transforms the PCM model accordingly. More specifically,

the transformation traverses over all motes and their links and reconfigures the network

configurations according to the new values 𝑡𝑝𝑖 and 𝑑 𝑓𝑖 𝑗 .

Environment Model We modelled the environment of the DeltaIoT system by using our

EnvDyn metamodel. Basically, for the DeltIoT systems, there are three template variables,

namely mote activation𝑀𝐴, wireless interference𝑊𝐼 and the signal-to-noise-ratio 𝑆𝑁𝑅

(recall the definitions from section 5.2.3.2). Figure 9.1 provides an overview of the essential

environmental variables.

243

9. Validation

Mote 5 Mote 7 Mote 11 Mote 12 Default

Mote activation 0.8 + Δ 0.8 + Δ 0.8 + Δ 0.9 + Δ 1 + Δ
Disturbance Δ [−0.1, 0.1] [−0.2, 0.2] [−0.1, 0.1] [−0.1, 0.1] Δ = 0

Table 9.6.: Overview of the individual mote activations taken from [168].

The𝑀𝐴 template variable is instantiated for each mote in the PCM model. Similarly, the

𝑊𝐼 and 𝑆𝑁𝑅 templates are instantiated for each wireless or communication link within

the PCM model.

For the parameter setting of the variables, we considered the work of Shevtsov et al. [168]

where the DeltaIoT system and simulator are used. The work contains information about

the static/initial (but non-temporal) distributions of all three templates, i.e. the local CPDs

of each ground Bayesian network (instantiated for each mote and wireless link). Therefore,

consider Table 9.6 which depicts the individual mote activations.

For example, the table indicates for mote 5 a basis mote activation of 80% which varies w.r.t.

a disturbance factor Δ ∈ [−0.1, 0.1]. We discretised the intervals of the disturbance factors,

e.g. [−0.1, 0.1] is discretised to the set {−0.1, 0, 0.1}. Because we have no information

about how the values are distributed, we assumed uniform distribution. The activation

variations only apply to a couple of motes; the remaining motes produce sensor data with

constant activation. Since we could not find any information on the temporal evolution of

mote activation, we assumed that the same distribution applies to the temporal behaviour,

i.e. 𝑃 (𝑋𝑀𝐴′ | 𝑋𝑀𝐴).

For the distribution parameters of the 𝑆𝑁𝑅 and𝑊𝐼 templates, consider table Table 9.7.

The table shows the static distribution parameters for the individual SNRs and wireless

interferences. For example, for link (2, 4) the basis SNR value is 8.0 which varies w.r.t.

disturbance factor Δ ∈ [−5, 5] (i.e. wireless interference) which is added to the basis

SNR value. Recall that the SNR value is determined w.r.t. the transmission power, i.e.

the SNR value increases for high power values and decreases for small power values,

respectively. Since all transmission powers of the initial architectural configuration are

configured to the highest value (i.e. 15), we determined the basis SNR value according to

values of [168] which specifies the SNR values for all possible power values. Moreover,

table Table 9.7 indicates that there are merely two possible wireless interference intervals,

namely [−2, 2] and [−5, 5]. Just as for the mote activation, we discretised both intervals

and assumed uniform distributions. Also, there is no information about the probabilistic

temporal behaviour of𝑊𝐼 such that we assumed the same distributions as for the static

case. Finally, we defer the discussion of the stochastic evolution of the SNR values to a

subsequent section that discusses the interdependency of the architectural configuration

and the environment. We will see that the architectural configurations (or rather their

transmission power configurations) determine how the SNR values evolve.

Adaptation Strategies In the context of DeltaIoT, we considered three adaptation strate-

gies. For the first strategy, we consider a non-adaptive behaviour; that is to say, we reflect

244

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Link SNR Wireless interference Δ

2 to 4 8.0 + Δ [−5, 5]
3 to 1 7.63 + Δ [−2, 2]
4 to 1 3.0 + Δ [−2, 2]
5 to 9 2.6 + Δ [−2, 2]
6 to 4 7.6 + Δ [−2, 2]
7 to 2 5.0 + Δ [−5, 5]
7 to 3 0.8 + Δ [−5, 5]
8 to 1 7.0 + Δ [−5, 5]
9 to 1 4.4 + Δ [−2, 2]
10 to 6 4.0 + Δ [−5, 5]
10 to 5 6.0 + Δ [−5, 5]
11 to 7 6.0 + Δ [−2, 2]
12 to 7 −3.0 + Δ [−2, 2]
12 to 3 7.5 + Δ [−2, 2]
13 to 11 4.7 + Δ [−5, 5]
14 to 12 1.0 + Δ [−5, 5]
15 to 12 0.4 + Δ [−2, 2]

Table 9.7.: Overview of the individual SNR and wireless interference probabilities taken from [168].

the behaviour of a static system. In terms of SimExp or self-adaptive systems in general,

this is simply achieved by constructing an adaptation strategy, say 𝜋𝛿∅ , which returns for

all states the empty adaptation 𝛿∅ (recall from property 1), i.e. ∀𝑆 ∈ S : 𝜋𝛿∅ (𝑆) = 𝛿∅. To put
it another way, strategy 𝜋𝛿∅ does not adapt the system and thus simulates the behaviour

of a static system. In the remainder of this chapter, we denote the strategy non-adaptive

strategy.

The second adaptation strategy is taken from [92] and was presented within the context

of DeltaIoT as a strategy example. Thus, we refer to this strategy as the default strategy

denoted as 𝜋𝐷 . The adaptation logic is shown in listing 9.1.

1 public class DefaultStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge knowledge) {

5 for (MoteContext eachMote : getAllMoteContexts(knowledge)) {

6 for (WirelessLink eachLink : eachMote.links) {

7 boolean isPowerOptimal = (eachLink.SNR > 0 &&

eachLink.transmissionPower > 0) || (eachLink.SNR < 0 &&

eachLink.transmissionPower < 15)

8 if (isPowerOptimal == false) {

9 return true;

10 }

11 }

245

9. Validation

12

13 if (eachMote.hasTwoLinks()) {

14 if (eachMote.hasUnequalTransmissionPower()) {

15 return true;

16 }

17 }

18 }

19 return false;

20 }

21

22 @Override

23 protected QVToReconfiguration plan(State source, Set<QVToReconfiguration>

options, SharedKnowledge knowledge) {

24 DeltaIoTNetworkReconfiguration reconfiguration =

getFirstElementOf(options);

25

26 boolean powerChanging = false;

27 for (MoteContext eachMote : getAllMoteContexts(knowledge)) {

28 for (WirelessLink eachLink : eachMote.links) {

29 powerChanging = false;

30 if (eachLink.SNR > 0 && eachLink.transmissionPower > 0) {

31 decreaseTransmissionPower(eachMote.mote, eachLink,

reconfiguration);

32 powerChanging = true;

33 } else if (eachLink.SNR < 0 && eachLink.transmissionPower < 15) {

34 increaseTransmissionPower(eachMote.mote, eachLink,

reconfiguration);

35 powerChanging = true;

36 }

37 }

38

39 if (eachMote.hasTwoLinks() && powerChanging == false) {

40 if (eachMote.hasUnequalTransmissionPower()) {

41 WirelessLink left = getLeftLink(eachMote);

42 WirelessLink right = getRightLink(eachMote);

43

44 if (left.distributionFactor == 1 && right.distributionFactor

== 1) {

45 setDistributionFactorsUniformally(

46 eachMote.mote,

47 reconfiguration

48);

49 }

50

51 if (left.transmissionPower > right.transmissionPower &&

left.distributionFactor < 1) {

246

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

52 adjustDistributionFactor(right, eachMote,

reconfiguration);

53 } else if (right.distributionFactor < 1) {

54 adjustDistributionFactor(left, eachMote,

reconfiguration);

55 }

56

57 }

58 }

59 }

60

61 return reconfiguration;

62 }

63 }

Listing 9.1: Default adaptation strategy 𝜋𝐷 taken from [92].

Note that, for simplicity, listing 9.1 only reflects a snippet of the actual adaptation logic and

does not reflect all the technical details, e.g. we omit the monitor phase implementation.

We thus concentrate on the pure adaptation logic; more precise implementation details

can be looked up in [157]. The strategy checks in the analyse-phase whether there exists

a wireless link for which the power settings are not optimal. If they are, in effect, not

optimal, the plan-phase is invoked. In the plan-phase, the transmission power is adapted

for links that are not optimally configured w.r.t. the current SNR value associated with the

said link. Moreover, the distribution factor is increased for those links of a mote where the

transmission power is higher.

The third strategy 𝜋𝑄 (see listing 9.2) represents a quality-driven strategy because the deci-

sion of adapting the system is exclusively determined w.r.t. the current quality objectives,

i.e. packet loss and energy consumption. In the analyse-phase, strategy 𝜋𝑄 checks whether

the quality objectives are violated, i.e. whether their values exceed some thresholds. If so,

the plan-phase is executed. The strategy prioritises energy consumption; that is, during

planning, it is first checked whether the energy consumption objective is violated and if

so, appropriate adaptations are planned. Hereby, the transmission power for all wireless

links with SNR values (i.e. SNR value ≥ 0) is decreased. Also, the distribution factor for

motes with two links is decreased for those links that indicate higher transmission powers.

If the packet loss objective is violated, the transmission power for all links with low SNR

values (i.e. SNR value < 0) is increased and the distribution factor for motes with two links

is increased for those links that indicate higher transmission powers.

Reward Function In this section, we discuss the reward function that we consider in

the evaluation of the adaptation strategies. Recall that the quality objectives within the

DeltaIoT system are to minimise packet loss and energy consumption. Thus, the quality

attributes of packet loss and energy consumption determine the reward. As we will see in

the evaluation results, however, the energy consumption values (measured in Coulomb)

are significantly higher than the estimated packet loss (the percentage ratio of sent and

247

9. Validation

1 public class QualityBasedStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge knowledge) {

5 return getPacketLoss(knowledge) >= PL_THRESHOLD ||

getEnergyConsumption(knowledge) >= EC_THRESHOLD;

6 }

7

8 @Override

9 protected QVToReconfiguration plan(State source, Set<QVToReconfiguration>

options, SharedKnowledge knowledge) {

10 DeltaIoTNetworkReconfiguration reconfiguration =

getFirstElementOf(options);

11

12 if (getEnergyConsumption(knowledge) >= EC_THRESHOLD) {

13 // Decreases the transmission power for all links with high SNR,

i.e. SNR >= 0.

14 decreaseTransmissionPowerLocally(reconfiguration, knowledge);

15 // Decreases the distribution factor for motes with two links, i.e.

for the link with the higher transmission power.

16 decreaseDistributionLocally(reconfiguration, knowledge);

17 return reconfiguration;

18 } else {

19 // Increase the transmission power for all links with low SNR, i.e.

SNR < 0.

20 increaseTransmissionPowerLocally(reconfiguration, knowledge);

21 // Increase the distribution factor for motes with two links (the

link with higher transmission power).

22 increaseDistributionLocally(reconfiguration, knowledge);

23 return reconfiguration;

24 }

25 }

26 }

Listing 9.2: Quality-based adaptation strategy 𝜋𝑄

received packets). That is, when calculating the reward for a given state by summing

the packet loss and energy consumption values, the accumulated reward is completely

dominated by the energy consumption (packet loss values are within the range of [0, 1],
so they do not contribute sufficiently to the total reward computation). Therefore, we

normalise each packet loss and energy consumption value to the range [0, 1] w.r.t. an
upper and lower bound indicating the best possible and worst possible packet loss and

energy consumption values, respectively. For packet loss we denote the upper bound 𝛽+
𝑝𝑙

248

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

and lower bound 𝛽−
𝑝𝑙
; for energy consumption the bounds are denoted as 𝛽+𝑒𝑐 and 𝛽

−
𝑒𝑐 . The

normalisation function is defined as follows:

𝑛𝑜𝑟𝑚𝑞 : 𝐼𝑅 → [0, 1], 𝑥 ↦→
1

𝛽+𝑞 − 𝛽−𝑞
· (𝛽+𝑞 − 𝑥) (9.5)

Hereby, 𝑞 refers to one of the quality attributes, i.e. 𝑝𝑙 or 𝑒𝑐 . The normalisation allows the

comparison of energy consumption and packet loss. Therefore, we define the following

reward function:

𝑟S : S × Δ × S → [0, 2],
(𝑆, 𝛿, 𝑆′) ↦→ (𝑛𝑜𝑟𝑚𝑝𝑙 ◦ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑝𝑙) (𝑆′) + (𝑛𝑜𝑟𝑚𝑒𝑐 ◦ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑐) (𝑆′)

(9.6)

The function 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑞 : S → 𝐼𝑅 abstracts away the predicted packet loss (i.e. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑝𝑙 (𝑆′))
and energy consumption values (i.e. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑐 (𝑆′)) obtained from some state 𝑆′ resulting
from applying 𝛿 in state 𝑆 . We use the model-checking tool Prism to predict both quality

attributes (this is discussed later).

Interdependency Assumption of Architecture and Environment In section 4.3.2, we al-

ready illustrated the interdependency of architectural configuration and environment

within the DeltaIoT system. More specifically, we pointed out that the transmission power

(which is part of the architectural configuration) affects the SNR values (which are part of

the environment). Consequently, the stochastic evolution of the environmental dynamics

is not purely environmental-driven but also partially by the selected architectural con-

figurations. Conventionally, we assume by default that the environmental dynamics are

purely environmental-driven, i.e. independent of the architectural configuration. However,

taking into account the previous discussion, this assumption no longer applies to the

DeltaIoT system.

In section 6.3.2.1, we explained that interdependency assumptions are encoded within

the SimExp framework by implementing a dedicated interface. For the implementation of

the interdependency assumption, only the stochastic evolution of the SNR values must

be considered as the other environmental variables (i.e. mote activation and wireless

interference) are purely environmental-driven. As mentioned earlier, the work of Shevtsov

et al. [168] already provides information about the DeltaIoT system. Moreover, they

provide a complete table which maps transmission power values to SNR values for each

wireless link. The table can be used to implement the interdependency assumption, i.e. by

calculating the next SNR value w.r.t. the current transmission power associated with a

wireless link. However, while exploring the code of the DeltaIoT simulator, we found a set

of linear equations of the form

𝑆𝑁𝑅𝑖 𝑗 : {0, 1, . . . , 15} → 𝐼𝑅, 𝑥 ↦→𝑚𝑖 𝑗 · 𝑥 + 𝑐𝑖 𝑗 (9.7)

Here,𝑚𝑖 𝑗 is some multiplier and 𝑐𝑖 𝑗 is some constant dependent on the wireless link (𝑖, 𝑗)
for which the SNR is to be calculated. The equations calculate for a given link (𝑖, 𝑗) w.r.t.
the current transmission power 𝑥 the new SNR value. Therefore, we instantiate each

equation for each wireless link (𝑖, 𝑗) and calculate the new SNR value of each link based

on the transmission power extracted from the current architectural configuration.

249

9. Validation

Prediction of quality attributes In section 6.3.2.2, we explained how to extend the SimExp
framework to account for other prediction tools which are not part of the simulation and

analysis tool repertoire of the Palladio ecosystem. For the prediction of packet loss and

energy consumption, we extended the SimExp framework by the model-checking tool

Prism [109]. Weyns and Iftikhar [207] used Prism in the context of DeltaIoT to predict

packet loss and energy consumption. We reuse their Prism artefacts [140] (i.e. property

and module files) for prediction. Hereby, we use the Prism module files as parameterised

templates that are complemented by values derived from a given self-adaptive system state

𝑆 . More specifically, for a self-adaptive system state 𝑆 := (𝐶, 𝐸), the prediction procedure

extracts all relevant parameters of the architectural configuration 𝐶 (i.e. the PCM model)

and environmental state 𝐸 and inserts them in the parameterised template of the Prism

module. After completion, the module file is forwarded to the Prism tool for prediction.

9.2.1.2. Experiment Setup

For the validation, we evaluate the quality of the previously presented adaptation strategies

with both, the DeltaIoT simulator and our SimExp method. Afterwards, we compare the

rank of the strategies w.r.t. both evaluation approaches. To validate the appropriateness

of our MDP-based approach, we expect the evaluation results of the strategies with our

SimExp method to produce the same rank as the DeltaIoT simulator.

Therefore, we complemented the DeltaIoT simulator by implementing the quality-based

strategy 𝜋𝑄 as shown in listing 9.2. The default strategy 𝜋𝐷 was already implemented

and provided by the simulator. Also, the DeltaIoT simulator allows the evaluation of non-

adaptive and thus static systems w.r.t. some specified initial configuration. We configured

the simulator by defining the same initial architecture as for the instantiation of the

SimExp method before (see 9.5). Moreover, we used the same set of SNR equations (recall

9.7) already defined by the simulator. We configured the wireless interferences and mote

activation probabilities as shown in Table 9.6 and Table 9.7. For transparency, we initialised

a Git repository in the code base of the DeltaIoT simulator. Thus, all configurations and

settings made are documented and can be understood. Moreover, within the DeltaIot

simulator, there are various configurable simulation parameters. We adopted all default

simulation parameters predefined by the simulator (some of them are relevant for the

Prism files for quality prediction). Table 9.8 provides an overview. Only the number of

trajectories was defined by us. By default, the DeltaIoT simulator performs only a single

simulation of an entire trajectory. To achieve a particular statistical certainty, we have

increased the number to 10 runs. One could argue that even 10 runs might not be sufficient;

however, we had efficiency problems with some energy consumption predictions with

Prism (up to several minutes for a single prediction). Therefore, we limited the number of

runs to 10. Nonetheless, we will see later that the results are stable in terms of statistical

certainty.

250

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Name Value Description

Spreading factor 1.158 Number of bits encoded of a transmitted

packet [92].

Reception cost 14.2 -

Reception time 4 -

Coulomb 1000.0 The unit for measuring the energy con-

sumption.

Number of simulations 96 Number of simulations per trajectory

(compare with horizon from SimExp).
Number of trajectories 10 Number of trajectories to simulate.

Table 9.8.: Overview of the parameter setting for the DeltaIoT case study system. For some parameters, no

description could be found.

9.2.1.3. Experiment Results

Finally, we present the results of the validation. As described in the last section, we

evaluated all three strategies (i.e. non-adaptive strategy 𝜋𝛿∅ , default strategy 𝜋𝐷 and the

quality-based strategy 𝜋𝑄) with our SimExp method and the DeltaIoT simulator. The

primary objective of each strategy is to minimise the packet loss and energy consumption

of the system.

The results of the evaluation runs of SimExp and the DeltaIoT simulator are depicted on

Figure 9.2 regarding packet loss and Figure 9.3 for energy consumption. Note that in the

following all line plots indicate the mean and 95% confidence interval of the considered

quality attribute. In general, the y-axes of the line graphs show the packet loss/energy

consumption of each strategy; the x-axes indicate the discrete time steps in both cases.

In terms of Figure 9.2, the left-hand side (i.e. Figure 9.2a and Figure 9.2c) shows the results

of the DeltaIoT simulator. More specifically, it depicts the line plot and box plot of the

packet loss achieved by the strategies. The right-hand side shows the line plot and box

plot of the SimExp evaluation of the strategies. It can be seen that the evaluation results

for the non-adaptive strategy 𝜋𝛿∅ and default strategy 𝜋𝐷 indicate the same results, i.e. 𝜋𝐷
causes higher packet loss than 𝜋𝛿∅ . Also, the prediction accuracy is remarkably precise, i.e.

mean value and median are not deviating significantly. This fact is visualized in the box

plots more clearly. However, the quality-based strategy 𝜋𝑄 is slightly deviating. When

considering the mean values of the SimExp results, we observe the strategy ordering

𝜋𝛿∅ < 𝜋𝐷 < 𝜋𝑄 w.r.t. packet loss. In contrast, the ordering of the DeltaIoT results are

given as follows: 𝜋𝑄 < 𝜋𝛿∅ < 𝜋𝐷 . Nonetheless, the mean values of the packet loss of

both, DeltaIoT and SimExp are fairly close to each other, i.e. approximately in a range of

[0.1, 0.15]. Therefore, it can be argued that all strategies achieve comparable packet loss

results such that the packet loss quality objective is not a crucial factor when considering

the overall quality of each strategy (i.e. taking into account the energy consumption as

well).

251

9. Validation

(a) DeltaIoT results for packet loss (b) SimExp results for packet loss

(c) DeltaIoT results for packet loss (d) SimExp results for packet loss

Figure 9.2.:Comparison of DeltaIoT and SimExp results considering the line plots and box plots of the packet
loss. In addition to the median value of the box plots, the white dots indicate the mean values.

The energy consumption results (see Figure 9.3) are not as accurate as the packet loss

results. In terms of prediction accuracy, the pure energy consumption predictions are

quite deviating. The prediction range of the DeltaIoT simulator is approximately between

[14, 23]; the prediction range of the SimExp results is approximately between [31, 34.5].
However, this deviation results from the prediction inaccuracy of Prism and is not a result

of SimExp (we will come back to this later). Nonetheless, the rank of the strategies in terms

of energy consumption is preserved in both evaluations, i.e. 𝜋𝛿∅ causes the highest mean

energy consumption followed by 𝜋𝑄 and 𝜋𝐷 which performs best.

Recall that the quality-based strategy 𝜋𝑄 depends on some packet loss and energy consump-

tion thresholds on which decisions are made (see Listing 9.2). Generally, the thresholds are

determined w.r.t. the quality requirements. For the experiments, we configured the packet

loss threshold to be 𝛼 = 0.1. Regarding energy consumption, we have chosen two distinct

thresholds. As discussed, the energy consumption predictions of DeltaIoT and SimExp are

deviating to an extent that makes it not possible to use the same threshold; this would

result in completely different results. Therefore, we have selected two separate thresholds

(𝛽 = 18 for DeltaIoT and 𝛽 = 32 for SimExp) w.r.t. the energy consumption prediction

ranges such that the results are comparable. We explain the precise determination of the

thresholds later in this section. The thresholds are summarised in table Table 9.9.

252

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(a) DeltaIoT results for energy consumption (b) SimExp results for energy consumption

(c) DeltaIoT results for energy consumption (d) SimExp results for energy consumption

Figure 9.3.:Comparison of DeltaIoT and SimExp results considering the line plots and box plots of the energy
consumption. In addition to the median value of the box plots, the white dots indicate the mean values.

DeltaIoT
Packet loss Energy consumption

𝛼+ = 0.2 𝛼 = 0.1 𝛼− = 0.025 𝛽+ = 26 𝛽 = 18 𝛽− = 10

SimExp
Packet loss Energy con.

𝛼+ = 0.2 𝛼 = 0.1 𝛼− = 0.025 𝛽+ = 34.5 𝛽 = 32 𝛽− = 30.5

Table 9.9.: Overview of the distinct thresholds and bounds used in the quality-based strategy and reward

function. A threshold value superscripted with + or − denotes the upper and lower bounds of the quality

attribute in question.

To compare the results of the reward function for both simulations, we applied the reward

function to the DeltaIoT simulator as well. More specifically, we calculated the reward for

each time instance where a packet loss and energy consumption pair have been generated.

We repeated that process for each strategy. The results of both reward functions are shown

in Figure 9.4.

253

9. Validation

(a) Line plot of the accumulated reward of DeltaIoT (b) Line plot of the accumulated reward of SimExp

Figure 9.4.: Comparison of the accumulated rewards of DeltaIoT and SimExp.

𝑰𝑬𝝅 [𝑿𝑮0]

𝝅𝜹∅
= 51.6 𝝅𝑸 = 100.7 𝝅𝑫 = 109.6

Table 9.10.: Overview of the expected rewards of each strategy for the DeltaIoT case study.

The figure depicts the average accumulated rewards. Note that Table 9.9 depicts the upper

and lower bounds used to calculate the reward for each strategy. Again, we have chosen

different upper and lower bounds for energy consumption because the predictions in

DeltaIoT and SimExp differ too much. For this purpose, we evaluated the rewards of each

simulated trajectory by considering the following function: 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) = 1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 . The

function accumulates the rewards of a strategy 𝜋 to a given time instance 𝑁 and calculates

the mean value. Figure 9.4 depicts the averaged accumulation function for the considered

time steps (i.e. 0, 1, 2, . . . , 95) of 10 runs. It can be seen that both functions indicate the same

behaviour. Moreover, in terms of the strategies, the order 𝑎𝑐𝑐𝑢𝑚𝜋𝛿∅
(96) < 𝑎𝑐𝑐𝑢𝑚𝜋𝑄 (96) <

𝑎𝑐𝑐𝑢𝑚𝜋𝐷 (96) is in both results the same. Complementary to the results from Figure 9.4,

we depict the estimated reward (i.e. 𝐼𝐸𝜋 [𝑋𝐺0
] from equation (6.10)) in Table 9.10. Note that

we could not estimate the expected reward in the case of DeltaIoT because we could only

extract the quality values (i.e. packet loss and energy consumption).

Although the averaged accumulated rewards of strategies 𝜋𝛿∅ and 𝜋𝐷 converge to a fixed

reward value for both, DeltaIoT and SimExp, this is not the case for strategy 𝜋𝑄 . Further-
more, when considering again the packet loss and energy consumption of DeltaIoT, it

can be seen that the curves of both quality objectives tend to rise instead of converging

towards a fixed value (in contrast to the other strategies). Therefore, we repeated the

DeltaIoT simulation experiment by increasing the simulation horizon (i.e. the number of

simulations which were initially set to 96) to 500 runs. The results are depicted by the

orange curve on the left-hand side of Figure 9.5.

If we ignore for one moment the other curves depicted and simply focusing the orange

curve (again, indicating the results of the quality-based strategy generated by the DeltaIoT

simulator for 500 simulation runs), we can see that the packet loss and energy consumption

254

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(a) DeltaIoT results for packet loss (b) SimExp results for packet loss

(c) DeltaIoT results for energy consumption (d) SimExp results for energy consumption

(e) The accumulated reward of DeltaIoT (f) The accumulated reward of SimExp

Figure 9.5.: Comparison of DeltaIoT and SimExp packet loss, energy consumption and accumulated rewards

results of strategy 𝜋𝑄 taking into account the bounds 𝛽− , 𝛽 and 𝛽+.

converge to a completely different value as suggested for simulation horizon of 96. The

right-hand side of Figure 9.5 shows the quality-based strategy (also the orange curve)

generated by SimExp for 96 simulations per trajectory (the results are, in effect, copied

from the figures before). At this point, it can be seen that the packet loss (which seems to

diverge a little when comparing DeltaIoT with SimExp for 96 runs w.r.t. strategy 𝜋𝑄) now

becomes accurate again, as the packet loss of strategy 𝜋𝑄 for the DeltaIoT simulator clearly

converges to the highest packet loss value of all strategies. On the other hand, however,

255

9. Validation

the energy consumption of the DeltaIoT results converges towards a value ≈ 22.5 which is

again the highest energy consumption value of all three strategies (see Figure 9.3c). This

is in contradiction with our results where strategy 𝜋𝑄 causes the second-highest energy

consumption.

One reason why the results in DeltaIoT and SimExp differ for the strategy 𝜋𝑄 is that the

strategy makes its decisions based on the predicted energy consumption. That is, if the

energy consumption predictions are diverging, also the behaviour of the adaptation logic

is likely to diverge. In addition, energy consumption is the primary quality attribute,

i.e. it is first checked whether the required energy consumption level is met, and if

not, appropriate countermeasures are taken; only if the energy consumption objective is

satisfied, the packet loss is checked. Although the evaluation results of the strategies 𝜋𝛿∅
and 𝜋𝐷 (when compared to the evaluation results of DeltaIoT) are quite precise, and we

already observed prediction deviations in terms of energy consumption for Prism and the

DeltaIoT simulator, we conducted further experiments to show the appropriateness of our

MDP-based SimExp method.

Therefore, we adjusted the thresholds of the quality-based strategy by considering upper

and lower bounds. The upper and lower bounds correspond to the thresholds at which the

strategy 𝜋𝑄 reaches the maximum and minimum energy consumption; that is, the same

maximum and minimum energy consumption is observed for each threshold above and

below the thresholds, respectively. Hereby, we investigated the bounds in both cases (i.e.

for DeltaIoT and SimExp) by experimental testing. In terms of SimExp the lower bound

corresponds to 𝛽− = 30.5 and the upper bound 𝛽+ = 34.5; for the DeltaIoT simulator

the lower bound is 𝛽− = 10 and 𝛽+ = 26. The thresholds and bounds are summarised in

Table 9.9. Note again that for any bound lower than 𝛽− or higher than 𝛽+, the DeltaIoT
simulator indicates the same adaptation behaviour because 𝛽− and 𝛽+ refer to lower and

upper energy consumption bounds the system can never achieve by adaptation.

On this basis, we determined the thresholds of the strategy 𝜋𝑄 for the initial validation.

Since the ranges of energy consumption differ, we had to choose a threshold 𝛽 that makes

both strategies 𝜋𝑄 comparable when evaluated in the context of DeltaIoT and SimExp.
Therefore, we chose the mean value of the respective upper and lower bounds.

The rationale for evaluating strategy 𝜋𝑄 for lower and upper bounds is that we can

expect a similar adaptation behaviour. For the upper bound case, for example, the energy

consumption is always satisfactory. Consequently, fewer adaptations are required. The

same applies to packet loss. Since the initial configuration already provides for high

transmission powers (i.e. each mote is configured with the highest possible transmission

power) and no further adaptations to reduce the transmission power are expected, the

packet loss is also likely to be below the predefined threshold (recall that high transmission

powers reduce the probability of packet loss). For the lower bound case, however, we

expect the very opposite behaviour. In this case, the energy consumption is not satisfied

at any time. Therefore, strategy 𝜋𝑄 adapts the system as much as possible to satisfy the

energy consumption objective w.r.t. its implemented adaptation logic. Therefore, we

expect low energy consumption but increased packet loss because minimising energy

consumption is always at the cost of packet loss.

256

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

We simulated strategy 𝜋𝑄 for both, DeltaIoT and SimExp, with different bounds. The

results are depicted on Figure 9.5 where the results for 𝜋𝑄 with upper bound 𝛽+ refer to
the green curves and the results for 𝜋𝑄 with lower bound 𝛽− refer to the blue curves. The

results show that strategy 𝜋𝑄 behaves for both bounds as expected. When we compare the

DeltaIoT results with our SimExp results, we also notice that the curves for packet loss and
energy consumption have the same shape; except the energy consumption curve for mean

bound 𝛽 . Consequently, the average accumulated rewards are deviating from the strategy

𝜋𝑄 with mean bound 𝛽 . Nonetheless, we showed that the evaluation results of SimExp
for strategy 𝜋𝑄 are accurate when considering bounds (or thresholds) which dictate a

certain adaptation behaviour. This adaptation behaviour could be observed in the DeltaIoT

simulator and also by our SimExp method. Therefore, we conclude that SimExp still gives

accurate results w.r.t. the strategy 𝜋𝑄 (although the results for the mean bound 𝛽 differed).

In addition, we consider the evaluation deviation for the mean bound 𝛽 as a result of the

deviating energy consumption of Prism and the DeltaIoT simulator we observed before.

Complementary to the discussed results of this section, in appendix A the average archi-

tectural configurations to which each strategy converges after a specific length of sampled

states per trajectory. Here, we compare the predicted configuration of SimExp with the

actual configurations that one observed after applying the DeltaIoT simulator. We consider

it remarkable that the prediction results regarding the 𝛿𝐷 strategy are very precise and

hardly differ from each other. The same applies to the strategy 𝜋𝑄 with upper and lower

bounds where the results are also fairly close. Only for the strategy 𝜋𝑄 with mean bound

𝛽 there are deviations in the configurations for the very reasons that we discussed in this

section before. However, the configurations do not deviate significantly either.

9.2.2. Load Balancing

After validating the SimExp method for the DeltaIoT case study system, we consider the

load balancer case study system in this section. Moreover, in the context of the case study,

we use SimuLizar as a baseline for SimExp. The section is organised as for the DeltaIoT

case study before. We start to explain how the SimExp method is instantiated for the load

balancer system. Then, we outline the experiment setup and discuss the results afterwards.

The validation artefacts and results can be found at [157].

9.2.2.1. Instantiation of SimExp

In the following, we outline the instantiation of the SimExp method regarding the load

balancer system by following the same structure as in the last section.

Initial Architecture Model The load balancer system has already been discussed in section

1.5.1. Therefore, we do not discuss the details of the system (and its software architecture)

again but refer to said section. Recall that the load balancing system includes two applica-

tion servers that are preceded by a load balancing component to balance the incoming load.

257

9. Validation

𝐼𝐴𝑇

Open Workload

(a) Overview of the template variable in the plate

model notation.

𝐼𝐴𝑇 𝐼𝐴𝑇 ′ 𝐼𝐴𝑇 ′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(b) The DBN describing the environmental dynamics unrolled for three

time steps.

Figure 9.6.: Overview of the only environmental variable of the load balancer system: The inter-arrival time.

The load balancing component is controlled by a distribution factor which determines

the percentage of load distributed to the respective application servers. For example, if

the distribution factor is set to 0.7, 70 percent is distributed to application server 1 and

the remaining 30 percent to application server 2. The distribution factor is adapted by a

self-adaptive system to deal with varying loads. Initially, however, we assume that the

distribution factor is set to 1.0, i.e. all incoming load is initially forwarded to application

server 1.

Adaptations We consider two adaptations, namely Outsource and Scale in. Both adap-

tations are concerned with adapting the distribution factor w.r.t. some step size. More

specifically, outsource refers to the case where the distribution factor is adapted in a sense

such that incoming load is distributed to both servers more strongly. For example, if the

step size is set to 0.1 and suppose the system is in the initial architecture configuration,

outsource results in adapting the distribution factor to 0.9. Afterwards, it is possible to

outsource again until the maximum possible distribution, i.e. 0.5, is reached.

Scale in, on the contrary, reverses outsource adaptations w.r.t. step size (to reduce the

number of resources used and thus the costs). This means if the distribution factor is set

to 0.5, scale in results in a distribution factor of 0.6. Furthermore, scale in can be repeated

until the distribution factor is set to 1.0 again.

Environment Model The environment model and its corresponding environmental vari-

ables of the load balancing system are trivial. In principle, the environment includes only

a single variable, namely the inter-arrival time. The inter-arrival time determines the time

between two user arrivals (see section 2.3.1.1). Whenever the inter-arrival time decreases,

the incoming load of the system increases because of the rising number of incoming

users per time unit. The environment model and its modelled environmental dynamics

(described by our EnvDyn metamodel) are depicted on Figure 9.6.

Note that since we use PCM as ADL to describe software architectures, the 𝐼𝐴𝑇 template

variable is instantiated to the open workload object (which is the container object for

describing the inter-arrival rates of users) of the PCMmodel. For the load balancing system,

there is only a single usage scenario defined with a single open workload object. Thus, the

258

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

template 𝐼𝐴𝑇 is instantiated once. We discuss the concrete probability distributions of the

environment model in section 9.2.2.2.

Adaptation Strategies We consider three adaptation strategies in the context of the load

balancer case study system. As a first adaptation strategy, we again consider the non-

adaptive strategy 𝜋𝛿∅ (recall from section 9.2.1) which reflects the behaviour of a static

software system.

As a second adaptation strategy, we consider an adaptation strategy that outsources the

system when the response time exceeds a certain threshold 𝜀+ or scales in when the

response time falls below a second threshold 𝜀−. The step size for adapting the distribution
factor of this strategy is 0.1; therefore, we refer to the strategy as 𝜋0.1 in the following.

As a third adaptation strategy (denoted 𝜋0.2), we consider the same adaptation logic as

discussed for strategy 𝜋0.1 but consider a different step size, i.e. 0.2. Therefore, strategy

𝜋0.2 reflects a design decision within the adaptation strategy family where only the step

size is varied.

For both strategies, we used the fixed thresholds 𝜀+ = 2.0 and 𝜀− = 0.3where the thresholds

are specified in seconds.

Reward Function Again, we consider a reward function that reflects the extent to which

the quality objectives are satisfied. In terms of the load balancing system, the primary

quality objective is performance or more specifically the response time of the system.

Therefore, the reward function simply returns a positive reward (i.e. +1) if the current

response time is below 𝜀+ and a negative reward (i.e. -1) otherwise.

𝑟S : S × Δ × S → {+1,−1}, (𝑆, 𝛿, 𝑆′) ↦→ (−1)1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑟𝑡 (𝑆′)>𝜀+ (9.8)

Again, we use the function 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑟𝑡 to abstract (in this case) the response time prediction

for state 𝑆′; we discuss the used prediction tool later.

Interdependency Assumption of Architecture and Environment We assumed no interde-

pendency between the system or architectural configuration and the environment, i.e. the

default assumption is made (recall independence assumption (6.9)). In other words, we

assume that the stochastic dynamics of the self-adaptive system are purely environmental-

driven.

Prediction of quality attributes For the prediction of the quality attributes (i.e. the

response time of the system), we use SimuLizar. It is important to understand the difference

in how we use SimuLizar within our SimExp method itself and for comparison. Within

SimExp, we use the simulation capabilities of SimuLizar for static systems. That is, we

predict the response time of the current architectural configuration and environmental

state. In this case, the environmental state consists of a single environmental variable

259

9. Validation

(i.e. the inter-arrival time 𝐼𝐴𝑇) holding a single inter-arrival time value. The inter-arrival

time is synchronised with the usage model of the current PCM model (describing the

architectural configuration) such that SimuLizar is applied to predict the response time.

Thus, we obtain a response time prediction by considering the said PCM model as a static

system and the inter-arrival time as a fixed and non-varying value. This is repeated for

any state sampled by SimExp (based on the sampled environment state or inter-arrival

time and the adaptation applied by the strategy). In contrast, we compare the results of

SimExp with the simulation results of SimuLizar by considering its self-adaptive system

simulation capabilities.

9.2.2.2. Experiment Setup

Just like the DeltaIoT system, we compare the evaluation results of SimuLizar with the

evaluation results of SimExp w.r.t. the three adaptation strategies 𝜋𝛿∅ , 𝜋0.1 and 𝜋0.2 in the

context of the load balancer case study system. Therefore, we implemented the strategies

for both simulators. Also, to validate the appropriateness of our MDP-based approach,

we expect the evaluation results of the strategies with our MDP-based SimExp method to

produce the same rank as SimuLizar.

However, SimuLizar is effectively used to evaluate adaptation strategies for a collection of

predefined scenarios. Such scenarios are usually modelled by an approach called Usage
Evolution [31]. Usage evolution allows the modelling of varying performance-relevant

factors over time. Such a factor refers to the arrival rate, i.e. the number of users arrivals

within a time unit. An example usage evolution of the arrival rate is depicted on Figure 9.7g

which models a scenario where the arrival rate increases to a maximum and decreases

afterwards again, i.e. a peak load scenario with time range [0, 100]. Usage evolution is

used in conjunction with Palladio in that during the simulation of SimuLizar, the inter-

arrival time of PCM’s usage model is periodically synchronised with usage evolution.

The inter-arrival time 𝑖𝑎𝑡 is calculated by dividing 1 with the current arrival rate 𝑎𝑟 , i.e.

𝑖𝑎𝑡 = 1/𝑎𝑟 .

This is, however, in contrast with SimExp which evaluates adaptation strategies in terms

of numerous sampled trajectories of the environmental dynamics. A naive approach for

comparing with SimuLizar could be to sample a representative number of trajectories

which are transformed to an equivalent set of usage evolutions for evaluating adaptation

strategies in both contexts. However, this is impractical and would require an exhaustive

effort. Conversely, we can define a set of usage evolutions and transform them into

individual DBNs where each DBN represents a deterministic trajectory. For example,

consider again the usage evolution describing the arrival rates of a peak load scenario

depicted on Figure 9.7g. In the first step, we can transform the arrival rates such that we

obtain the respective inter-arrival times, see Figure 9.7h. The inter-arrival times are then

discretised at equidistant intervals, say 0, 1, 2, 3, . . . , 100. After discretisation, we obtain a

discrete function 𝑓 : {0, 1, . . . , 100} → 𝐼𝑅, as depicted on Figure 9.7i. From function 𝑓 , we

generate a DBNwith static distribution 𝑃 (𝑋𝐼𝐴𝑇) and dynamic distribution 𝑃 (𝑋𝐼𝐴𝑇𝑡+1 | 𝑋𝐼𝐴𝑇𝑡).
Let 𝑥, 𝑥′ ∈ 𝑉𝑎𝑙 (𝑋𝐼𝐴𝑇), the action of static distribution 𝑃 (𝑋𝐼𝐴𝑇) on 𝑥 is 𝑥 ↦→ 1𝑓 (0)=𝑥 and the

260

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(a) Usage evolution with constant ar-

rival rates.

(b) Inter-arrival time at constant evolu-

tion.

(c) Discretized inter-arrival time at con-

stant evolution.

(d) Usage evolution with linear arrival

rates. (e) Inter-arrival time at linear evolution.

(f)Discretized inter-arrival time at linear

evolution.

(g) Usage evolution with arrival rate

peak. (h) Inter-arrival time with peak.

(i) Discretized inter-arrival time with

peak.

Figure 9.7.: Comparison of the usage evolutions in SimuLizar and SimExp.

action of dynamic distribution 𝑃 (𝑋𝐼𝐴𝑇𝑡+1 | 𝑋𝐼𝐴𝑇𝑡) on 𝑥 and 𝑥′ is (𝑥, 𝑥′) ↦→ 1𝑓 (𝑡+1)=𝑥 ′ · 1𝑓 (𝑡)=𝑥 .
We repeated this transformation for two further usage evolutions. The usage evolutions

and their discretised versions for SimExp are depicted on Figure 9.7.

The constant usage evolution on Figure 9.7a is selected in such a way that the initial

architectural configuration is not able to deal with the arrival rate in the long run such that

adaptation is required. The second usage evolution indicates a continuously increasing

arrival rate which demands adaptation as well. For each strategy, we can now evaluate

how each strategy performs in the three usage evolutions for SimuLizar and SimExp where
we expect the same strategy rank.

Finally, Table 9.11 provides an overview of the experiment parameters. As already men-

tioned, we defined the usage evolution scenarios over the time range [0, 100]; thus, the
simulation time of SimuLizar is adjusted to 100 and the number of trajectories in terms

of SimExp. Because the simulation of self-adaptive systems in SimuLizar is nondetermin-

istic, we repeated the experiments ten times to maintain statistical certainty (we see in

the next section that there are no significant deviations). In terms of SimExp, the only

261

9. Validation

Name Value Description

𝜀+ 2.0 Upper threshold of the response time

(specified in seconds) which must not

be exceeded.

𝜀− 0.3 Lower threshold of the response time

(specified in seconds) which must not

be fallen short of.

Simulation time 100 Simulated time units of SimuLizar.

Repetitions 10 Number of experiment repetitions for

SimuLizar.

Number of simulations 100 Number of simulations per trajectory

(compare with horizon from SimExp).

Table 9.11.: Overview of the parameter setting for the load balancer case study system.

non-deterministic component refers to the environmental dynamics. However, since we

generated deterministic DBNs, the entire sampling process becomes deterministic such

that no further repetitions are required.

9.2.2.3. Experiment Results

Finally, we present the results of the validation. As described in the last section, we

evaluated all three strategies (i.e. non-adaptive strategy 𝜋𝛿∅ , 𝜋0.1 and 𝜋0.2) with our SimExp
method and SimuLizar. The primary objective of each strategy is to keep the system

responsive in the presence of varying workloads (or arrival rates). Again, all line plots

indicate the mean and 95% confidence interval.

Figure 9.8 depicts the evaluation results of all strategies for SimuLizar and SimExp where

the y-axis shows the response time of each strategy and the x-axis depicts the simulation

time. At this point, it is important to note that the prediction results of SimuLizar and

SimExp are not directly comparable because SimuLizar conducts a continuous simulation

over the time range [0, 100] and SimExp samples 100 discrete states in which each state

is individually simulated. For instance, consider the results of strategy 𝜋𝛿∅ for SimuLizar

Figure 9.8a and SimExp Figure 9.8b with constant usage evolution (in each case the blue

curve). Since strategy 𝜋𝛿∅ does not apply any adaptation, the system remains in its initial

architectural configuration. The initial configuration, however, is not able to deal with

the constant arrival rate (or inter-arrival times) such that the response time increases

linearly over time. This situation is perfectly reflected in terms of SimuLizar and its

continuous simulation (see Figure 9.8a). In contrast, for strategy 𝜋𝛿∅ SimExp samples 100

states which constitute (in this case) the deterministic dynamics of the self-adaptive system

where for each state the architectural configuration (i.e. the initial configuration) and

the environmental states (the constant inter-arrival time) are the same. However, each

state is simulated individually by SimuLizar such that we obtain for each simulation the

same linearly increasing response times as SimuLizar produced in Figure 9.8a. Internally,

262

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(a) Simulizar results with constant evolution. (b) SimExp results with constant evolution.

(c) Simulizar results with linear evolution. (d) SimExp results with linear evolution.

(e) Simulizar results with peak. (f) SimExp results with peak.

Figure 9.8.: Comparison of SimuLizar and SimExp results. The left-hand side enumerates all SimuLizar

results w.r.t. the individual usage evolutions and the right-hand side the SimExp results, respectively.

SimExp reduces the response times to a single value, i.e. it calculates the average response

time which is approximately ≈ 29.33 (see Figure 9.8b). This behaviour applies to all SimExp
results and explains why the corresponding result curves tend to be discontinuous in

contrast to the SimuLizar curves. Although the prediction results of SimuLizar and SimExp
are not directly comparable, we still expect the prediction results of SimExp to show the

same characteristics as the prediction results of SimuLizar, e.g. strategies that show high

response times in SimuLizar should also show high response times in SimExp and vice

263

9. Validation

versa. From this, we can conclude that our SimExp framework allows the evaluation of

adaptation strategies (w.r.t. some usage scenarios) in the same way as SimuLizar. If we

look at Figure 9.8 we can see that the results of SimExp reflect the same as the results of

SimuLizar. More specifically, for each usage evolution scenario, strategy 𝜋𝛿∅ indicates high

response times; the strategies 𝜋0.1 and 𝜋0.2 performs better in which 𝜋0.2 achieves the best

results.

The strategy rank is especially observable in the averaged accumulated rewards as shown

in Figure 9.9. We applied the same reward function that we used for SimExp to the

SimuLizar results (see left side of Figure 9.9); the rewards of SimExp results are depicted

on the right side. Hereby, we again accumulated and averaged the generated rewards, i.e.

𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) = 1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 . It can be seen that for 𝑁 = 100 the ranks of strategies are the

same. More specifically, for all three usage evolution scenarios, SimuLizar evaluates the

strategy rank: 𝑎𝑐𝑐𝑢𝑚𝜋𝛿∅
(100) < 𝑎𝑐𝑐𝑢𝑚𝜋0.1 (100) < 𝑎𝑐𝑐𝑢𝑚𝜋0.2 (100). The very same rank is

observed in the SimExp results which are in line with our expectations.

Although the averaged accumulated rewards are fairly accurate, we observe that some

characteristics of the predicted response time trajectories of SimuLizar are differently

predicted in SimExp. Regarding strategy 𝜋𝛿∅ , for example, we observe in the SimExp results
(although capturing the high response times associated with 𝜋𝛿∅) quite a different response

time behaviour which is a result of the discrete sampling process to which SimExp adheres.
More specifically, the continuous simulation of SimuLizar maintains performance-relevant

properties (e.g. resource contention) over the entire simulation time range. SimExp,
however, applies a simulation for every state such that the simulation context (and thus

performance-relevant properties) is lost after each simulation. The extent to which the

loss of information generally affects the evaluation of adaptation strategies cannot be

fully clarified within this validation. However, it did not influence the validation use case

currently under consideration but should be further investigated in future work.

9.3. Reliability Analysis of AI-enabled Systems

In this section, we present the results of validation goal 3. As already discussed in section

9.1.3.2, there are no approaches comparable to ours. Although there are model-based

tools for analysing reliability attributes of software systems, none of these applies to the

scenarios we are interested in, i.e. reliability analysis of AI-enabled systems taking into

account the predictive uncertainty of AI components. That is to say, we cannot use any tool

as a baseline or ground truth for comparison. Therefore, the main objective is to validate

the plausibility of our reliability prediction approach for AI-enabled software systems.

As our holistic approach is based on already validated components, we validate several

plausibility assertions to show the validity. We initially focus on static software systems

and expand the validation in the next section for self-adaptive systems. First, however,

we must introduce the case study system of the Udacity self-driving car challenge. All

validation artefacts (i.e. results and models) can be looked up under [156].

264

9.3. Reliability Analysis of AI-enabled Systems

(a) Simulizar accumulated rewards for constant evolution (b) SimExp results for constant evolution

(c) Simulizar results for linear evolution (d) SimExp results for linear evolution

(e) Simulizar results for peaked evolution (f) SimExp results for peaked evolution

Figure 9.9.: Comparison of the accumulated rewards of SimuLizar and SimExp.

9.3.1. Udacity Self-Driving Car Challenge

We conduct the validation in the context of the Udacity self-driving car challenge [192].

The Udacity challenge is also known from the DNN (deep neural network) testing tool

DeepTest [186] where it was used as a case study system to detect erroneous predictions

from a selection of DNNs for steering angle prediction. In the subsequent two sections,

we give a brief overview of the background of the challenge and introduce the considered

DNNs afterwards.

265

9. Validation

9.3.1.1. Background

The Udacity self-driving car challenge is about using deep learning methods to take on

certain control tasks. In this case, the DNNs are considered to predict the steering angle

of a self-driving car based on pure image data. For this purpose, training data have been

collected consisting of centred traffic images labelled with steering angles. A steering angle

is considered as a value 𝛼 ∈ [−25, 25]; that is, the steering angle is a bounded value which

is finally scaled by value 1/25 such that the result is within the range [−1, 1] [186].

Several teams were competing in the challenge to develop DNNs (trained by the provided

training data) that are to predict the steering angle as well as possible for a final test dataset.

The trained DNNs were evaluated by the RMSE (root-mean-squared-error; see section

2.7.1) metric. More specifically, the ranks of the DNNs were established by measuring the

deviation of the predicted steering angles to the actual steering angles of the test data by

applying RMSE. Based on the rank, the best DNNs were investigated. In the next section,

we describe the DNNs that we considered during validation.

9.3.1.2. Considered Deep Neural Networks for Steering Angle Prediction

In the context of the Udacity challenge, ten DNNs have been submitted and ranked [192].

From these ten models, we selected two for validation, namely Chauffeur [42] and Rambo
[146]. We decided to use Chauffeur and Rambo as their trained models are publicly

available, well documented and easy to reproduce (i.e. in terms of evaluation w.r.t. the

provided test data).

Chauffeur The Chauffeur model [42] for steering angle prediction achieved in the Udacity

challenge the third rank [192] of all DNNs. It is based on two sub-models where the first

extracts a set of features from the input image and the second sub-model is responsible

for the actual prediction of the steering angle. More specifically, the first sub-model corre-

sponds to a CNN (convolutional neural network) extracting 100 features from the input

image. The extracted features are forwarded to the second sub-model that corresponds to

an LSTM (long-short term memory) a subgroup of RNNs (recurrent neural networks). The

LSTM does not directly predict the steering angle based on the given features but predicts

the steering angle based on the concatenation of the features extracted from 100 images.

In the following, we denote the Chauffeur prediction model as 𝑏𝐶 .

Rambo The Rambo prediction model [146] achieved the second-best rank within the

Udacity challenge [192]. It consists of three CNNs in which two CNNs are inspired by a

DNN architecture of NVIDIA [29] and the third is inspired by comma.ai’s steering model

[51]. The Rambo model takes three consecutive images and computes two consecutive

differenced images which serve as input. The result of each CNN is merged into a final

layer. In the following, we denote the Chauffeur prediction model as 𝑏𝑅 .

266

9.3. Reliability Analysis of AI-enabled Systems

N-Version Recall from section 7.3 that we implemented the n-version programming

pattern as an architectural template. For steering angle prediction, the n-version approach

is essentially used to forward the input image to 𝑁 redundant and distinct prediction

models that generate a prediction for the image. The predictions are finally merged

or combined by a voter or other type of decision procedure. In this case, the steering

angles are combined by calculating the average of all predictions. Moreover, we consider

two redundant steering angle prediction models, namely Chauffeur and Rambo. In the

following, we denote the n-version prediction model as 𝑏𝑁𝑉 .

Perfect and Worst Steering Models Finally, we supplement the prediction models 𝑏𝐶 , 𝑏𝑅
and 𝑏𝑁𝑉 by two additional steering models (or black-boxes) 𝑏+ and 𝑏−. As introduced
in section 9.1.1, the black-box models 𝑏+ and 𝑏− correspond to models where either the

correct output is always produced for every input (i.e. 𝑏+) or the wrong output is always
produced for every input (i.e. 𝑏−). In this case, the black-box models correspond to steering

angle prediction models following the aforementioned semantics.

9.3.2. A Generic Software Architecture for Self-Driving Cars

So far, we introduced the Udacity self-driving car case study system and the various steering

angle prediction models that we consider within the validation of goal 3. A steering angle

prediction model only provides a small fraction of the functionality which constitutes

a self-driving car. Thus, there are other functionalities (e.g. braking and accelerating)

relating to other software components that make up the software system as a whole. The

case study does not provide any information about the software architecture of the self-

driving car because the focus is merely on the prediction of steering angles. However, we

need a software architecture based on which we create the corresponding PCM model for

which we want to show the validity of our reliability prediction approach. In the context

of the Udacity challenge, there are no assumptions made about the software architecture

in which a steering angle prediction model is included. Therefore, we assume w.l.o.g. a

software architecture of a self-driving car w.r.t. proposed architectures from literature [18,

94, 183]. Note that we do not sacrifice generality by assuming a particular architecture as

the plausibility assertions (9.1)-(9.3) are defined over a fixed architecture model 𝐶𝑏 where

only the used black-box model 𝑏 is different. That is to say, if we analyse the architecture

models individually with distinct AI components, only the AI components themselves have

an impact on the reliability of the entire system. Therefore, the design of the architectural

model is of no relevance as long as they remain the same for each AI component 𝑏. More

generally, if plausibility assertions (9.1)-(9.3) hold for a particular software architecture of

an architecture family, the assertions hold for the entire architecture family.

Since we are no experts in the field of engineering software architectures for self-driving

cars, we searched the literature for existing architectural designs. Hereby, we created a

PCM model for describing a fairly generic software architecture of a self-driving car based

on [18, 94, 183]. The generic architecture model is by no means to be considered complete

267

9. Validation

EmbeddedPC Planning

RCP ECU VehicleControl

ECU Steering Brake

ECU Acceleration

EmbeddedPC VisionSensorik ECU

Sensors

<<call>>

Request/ms = 1

Camera

Localisation

Distance-
Measure

Semantic-
Understanding

SensorFusion

Steering-
AnglePrediction

Longitudinal-
MotionPlanning

Trajectory-
Generation

VehicleControl

Acceleration

Brake

Steering

Fl
ex

R
ay

 b
us

receives

emits

provides

requires

Figure 9.10.: An excerpt of the generic software architecture of a self-driving car assumed in validation

based on [18, 94, 183].

but rather serves as a sufficiently abstract and simplified representation of a real software

architecture for a self-driving car. In the following, we briefly discuss the architecture

model and its generic components.

Figure 9.10 depicts the generic architecture. We assume an event-based communication

between the individual software components, e.g. by using ROS (robot operating system)

[142], which is already used in the context of autonomous driving [3]. Excluded from

event-based communication are the VehicleControl, Acceleration, Brake and Steering

components, as the VehicleControl is connected exclusively to the TrajectoryGeneration

component, i.e. the generated trajectory is passed directly to the VehicleControl compo-

nent and not received from other components. Similarly, the VehicleControl is directly

connected with the components Acceleration, Brake and Steering. For clarification, we

slightly abuse the graphical notations by not explicitly modelling every event channel

from one component to another (e.g. as for the HRI example system in Figure 1.3). That is,

not all event channels between components are directly visible in the figure but can be

looked up in the PCM model directly (see [156]).

268

9.3. Reliability Analysis of AI-enabled Systems

𝑋𝑏

𝑋𝜑𝐵 𝑋𝜑𝐵𝑙

Figure 9.11.: The sensitivity model of the steering angle prediction models.

The system is constantly taking sensor values (i.e. by a fixed time rate) to perceive the envi-

ronment. More specifically, the components Camera, Localisation and DistanceMeasure

indicate that respective sensor values are taken. The sensor values are then emitted in

the form of messages, which are received by the components for which there exists an

event channel for the reception. For example, the SteeringAnglePrediction component

receives the recorded images of the Camera component, predicts the steering angle and

emits the prediction as a message again. Note that the SteeringAnglePrediction compo-

nent represents one of the steering angle prediction models, e.g. Rambo 𝑏𝑅 or Chauffeur 𝑏𝐶 ;

depending on the currently deployed AI component. Moreover, the components Sensor-

Fusion and SemanticUnderstanding receive the recorded image data together with the

sensed localisation and distance data. The SensorFusion abstracts away all procedures

that take the sensor data from several sources (in this case image, localisation and distance

data) to produce features or new data of higher quality [18]. Similarly, the Semantic-

Understanding component receives sensor data and is considered to generate semantically

richer data. For example, the image data can be enriched by detecting objects or seg-

menting regions of interest that are relevant to the final trajectory planning [18]. The

LongitudinalMotionPlanning component is responsible for determining the braking or

acceleration parameters [94]. The TrajectoryGeneration component receives the accord-

ing messages (i.e. the longitudinal motion parameters, semantically enriched data and

predicted steering angle) to compute a collision-free trajectory. The trajectory is finally

translated into control signals that are passed on to the VehicleControl component which

controls the respective actuators (i.e. Acceleration, Brake and Steering).

Finally, note that we assumed FlexRay as communication protocol [94]. Moreover, we mod-

elled the resource environment consisting of six resource containers and the deployment

of the component as specified by Jo et al. [94].

9.3.3. Sensitivity Model and Analysis

In this section, we introduce the sensitivity model that we consider for validation. Further-

more, we present a sensitivity analysis algorithm that we developed based on the work of

Tian et al. [186].

The general structure of the sensitivity model is depicted on Figure 9.11. For valida-

tion, we consider two uncertainties: image brightness 𝑋𝜑𝐵 and blurring 𝑋𝜑𝐵𝑙 where

𝑉𝑎𝑙 (𝑋𝜑𝐵) := {𝐿𝑜𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑆𝑡𝑟𝑜𝑛𝑔} indicates three brightness levels and 𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙) :=

269

9. Validation

{𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦} indicates two possible events. As usual, the random variable 𝑋𝑏 is

binary, i.e. 𝑉𝑎𝑙 (𝑋𝑏) := {𝑆𝑢𝑐𝑐𝑒𝑠𝑠, 𝐹𝑎𝑖𝑙}. We decided to consider the uncertainties as they

were used (among others) by DeepTest which already verified erroneous behaviour of

the steering angle prediction models when observing said uncertainties in the context of

the Udacity self-driving car challenge [186]. Clearly, image brightness and blurring are

generally no good uncertainties or properties in the context of autonomous driving to

analyse reliability attributes. Instead, one would rather focus on stronger properties, e.g.

neuron coverage. Nonetheless, for showing the validity of our approach, the effectively

chosen uncertainties (and their quality) are of no relevance since only their measurable

effect on the AI model is of importance. For example, if we measure varying prediction

confidence of an AI component for some uncertainties and observe the variation in the

reliability predictions as well, we can conclude the validity (at least regarding assertion

(9.1)) of our approach independent of the concretely chosen uncertainties.

Regarding the given structure of the sensitivity model, we need to determine the sensitivity

distribution (i.e. 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙)) which we derive by applying a sensitivity analysis.

For the sensitivity analysis, we consider an algorithm depicted on algorithm 9.1. Clearly,

we could have used one of the sensitivity analysis approaches described in section 7.1.2;

however, we decided to develop our own analysis as we would have to adopt the sensitivity

analysis approaches anyway to obtain a sensitivity model with the required structure.

Moreover, we can reuse insights from the DeepTest tool to derive the sensitivity values (as

we will see later).

The algorithm inputs five parameters.

• 𝐷𝑆𝑒𝑛𝑠 : The parameter refers to the sensitivity dataset 𝐷𝑆𝑒𝑛𝑠 based on which the

sensitivity model is determined. Hereby, 𝐷𝑆𝑒𝑛𝑠 does not simply consist of labelled

data, but each data is additionally labelled with the uncertainty values which are

observed in the given data. More specifically, an element 𝑑 := (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙) ∈ 𝐷𝑆𝑒𝑛𝑠
of the sensitivity dataset includes (in addition to a given image 𝑥 ∈ X and correct

label or output 𝑦 ∈ Y of the input and output space of black-box 𝑏) two uncertainty

values or labels 𝜑𝐵 and 𝜑𝐵𝑙 . For example, for a given image 𝑥 and the corresponding

label 𝑦, there are two additional uncertainty labels, e.g. 𝜑𝐵 = 𝐿𝑜𝑤 and 𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦,

which means that the image 𝑥 is blurred and also has low brightness. The sensitivity

dataset 𝐷𝑆𝑒𝑛𝑠 consists, in effect, of synthetic image data and originates from a test

dataset 𝐷𝑇𝑒𝑠𝑡 used to evaluate the accuracy of steering angle prediction model 𝑏.

𝐷𝑆𝑒𝑛𝑠 is generated by 𝐷𝑇𝑒𝑠𝑡 by applying image transformations that account for the

distinct uncertainties under consideration. In the next section, we discuss in more

detail how dataset 𝐷𝑆𝑒𝑛𝑠 is generated.

• 𝑏: Corresponds to the steering angle prediction model 𝑏 which is to be analysed.

• 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏): The parameter refers to the original RMSE value associated with

steering angle prediction model 𝑏 and is originally determined by 𝐷𝑇𝑒𝑠𝑡 .

• 𝑅𝑀𝑆𝐸𝑎𝑣𝑔: Corresponds to the average RMSE of all steering angle prediction models,

i.e. 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 :=
1

𝑁

∑
𝑏∈{𝑏1,...,𝑏𝑁 } 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏).

270

9.3. Reliability Analysis of AI-enabled Systems

Algorithm 9.1: Sensitivity analysis algorithm

Input: Dataset 𝐷𝑆𝑒𝑛𝑠 ,
Steering angle prediction model 𝑏,

The original RMSE 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏),
The averaged RMSE 𝑅𝑀𝑆𝐸𝑎𝑣𝑔,

The set of uncertainties Φ
Output: Sensitivity distribution 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙)

1 𝜆 ∈ 𝐼𝑁 // The 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 scaling factor

2 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑆 () // an empty list, for all (𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ
3 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑃𝑎𝑟𝑎𝑚𝑠 () // ∀(𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ : 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 0

4 foreach (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙) ∈ 𝐷𝑆𝑒𝑛𝑠 do
5 𝑝 ← (𝑦,𝑏 (𝑥))
6 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑆 (𝜑𝐵, 𝜑𝐵𝑙), 𝑝) // Appends 𝑝 to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙)
7 end
8 foreach (𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ do
9 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ←

𝜆·𝑅𝑀𝑆𝐸𝑎𝑣𝑔
2

10 if 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) ≠ ∅ then
11 𝒚, �̂� ← 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) // fetch all predictions and respective label

12 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ←
√︃

1

|𝑆 (𝜑𝐵,𝜑𝐵𝑙) |
∑|𝑆 (𝜑𝐵,𝜑𝐵𝑙) |
𝑖=1

(𝒚𝑖 − �̂�𝑖)2 // calculates the local

RMSE

13 end
14 if 𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙 ∧ 𝜑𝐵𝑙 = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 then
15 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ← 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)
16 end

17 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) ← 1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 ·
(
1 − 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)

𝜆·𝑅𝑀𝑆𝐸𝑎𝑣𝑔

)
18 end
19 return 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙)

• Φ: The set of uncertainties based on which the sensitivity model is analysed; in our

case Φ := 𝑉𝑎𝑙 (𝑋𝜑𝐵) ×𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙).

The output of the algorithm corresponds to the estimated sensitivity model, i.e. 𝑃𝜃𝑏 (𝑋𝑏 |
𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙).

Basically, the algorithm holds two variables (i.e. 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) and 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙)) and one con-

stant 𝜆. The constant 𝜆 corresponds to a natural number which describes a scaling factor

used to determine the success probability (we explain the meaning of 𝜆 later).

The algorithm initially iterates over all elements of 𝐷𝑆𝑒𝑛𝑠 . For each image 𝑥 the corre-

sponding prediction is made by applying 𝑏 on 𝑥 , i.e. 𝑏 (𝑥). The correct output 𝑦 and

prediction 𝑏 (𝑥) are appended to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙). Recall that any 𝑑 ∈ 𝐷𝑆𝑒𝑛𝑠 is labelled with the

corresponding uncertainties which are observable in image 𝑥 . That is, the prediction of 𝑏

is made w.r.t. to the labeled uncertainties 𝜑𝐵 and 𝜑𝐵𝑙 . Thus, the prediction 𝑏 (𝑥) and correct

271

9. Validation

output or label 𝑦 must be associated with 𝜑𝐵 and 𝜑𝐵𝑙 which is done by appending the tuple

(𝑦,𝑏 (𝑥)) to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙).

The second loop of the algorithm iterates over all uncertainties of Φ (i.e. 𝑉𝑎𝑙 (𝑋𝜑𝐵) ×
𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙)). Within the loop, variable 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) is declared and initialized. In principle,

the variable holds the RMSE which is calculated based on 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) for a given uncertainty

pair 𝜑𝐵 ,𝜑𝐵𝑙 . In other words, it holds a value which is calculated by applying RMSE to

all prediction and label pairs that are associated with particular uncertainty pair 𝜑𝐵 ,𝜑𝐵𝑙 .

We consider 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) as local RMSE because it is not computed based on the entire

dataset 𝐷𝑆𝑒𝑛𝑠 (as opposed to 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) which is calculated w.r.t. 𝐷𝑇𝑒𝑠𝑡) but only a subset

of 𝐷𝑆𝑒𝑛𝑠 . Initially, 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) is set to (𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2 (the reason for the initialisation

is explained shortly). Afterwards, the first if-clause checks whether 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) maintains

values for uncertainty pair 𝜑𝐵 ,𝜑𝐵𝑙 . If so, the local RMSE is calculated w.r.t. the values

of uncertainty pair 𝜑𝐵 ,𝜑𝐵𝑙 stored in 𝑆 (𝜑𝐵, 𝜑𝐵𝑙). The second if-clause checks whether the

uncertainty pair corresponds to the default values. Recall that dataset 𝐷𝑆𝑒𝑛𝑠 is generated

by 𝐷𝑇𝑒𝑠𝑡 , i.e. for all elements of 𝐷𝑇𝑒𝑠𝑡 some image transformation is applied to generate

synthetic images that include increased brightness or blurring. The data elements of 𝐷𝑇𝑒𝑠𝑡 ,

however, are considered to indicate no uncertainties; that is, no increased image brightness

and no blurring are observed in the images. Thus, we cannot calculate the local RMSE

because 𝑆 (𝑁𝑜𝑟𝑚𝑎𝑙, 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) = ∅. Instead, we set 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) := 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) since
𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) is computed w.r.t. 𝐷𝑇𝑒𝑠𝑡 , i.e. based on images where 𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙 ∧ 𝜑𝐵𝑙 =
𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 holds true.

Next, the success probability of making a correct prediction w.r.t. 𝜑𝐵 ,𝜑𝐵𝑙 must be deter-

mined. Since 𝑋𝑏 is a binary random variable, it is sufficient to estimate either the event

of encountering a successful or an erroneous prediction. We estimate the success proba-

bility 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 = 𝜑𝐵, 𝑋𝜑𝐵𝑙 = 𝜑𝐵𝑙) by taking 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) into
account:

𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 ·
(
1 − 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)

𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔

)
(9.9)

The first term of the product of (9.9) makes sure that the local RMSE is smaller or equal

to the average RMSE of all considered steering angle prediction models 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 scaled

by constant 𝜆. In other words, if for a given uncertainty pair the RMSE is strongly

deviating (i.e. the uncertainties have a great impact on the prediction results), the

𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) increases accordingly but must not exceed the threshold 𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔. Other-
wise, 1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 evaluates to 0 and thus the success probability becomes 0 as well.

However, if 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ≤ 𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 holds, the success probability is calculated accord-
ing to the second term of the product of (9.9), i.e. 1 − (𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)/𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔) ∈ [0, 1].
This procedure is inspired by a metamorphic relation introduced in DeepTest [186] which

measures the deviation of predicted and actual steering angles.

If no condition of the if-clauses of algorithm 9.1 evaluates to true, 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) = (𝜆 ·
𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2 applies. If we consider the if-clauses more precisely, it can be seen that there

still might be the case 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) = ∅. Another reason (besides 𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙 ∧ 𝜑𝐵𝑙 =
𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) why 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) = ∅ might still apply relates simply to the fact that 𝐷𝑆𝑒𝑛𝑠
contains no images where a respective uncertainty tuple (𝜑𝐵, 𝜑𝐵𝑙) is observed. In this

272

9.3. Reliability Analysis of AI-enabled Systems

case, no statement about the success probability can be made, i.e. the probability of

observing success or failure is by chance. More specifically, if we substitute 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) =
(𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2 in (9.9), it evaluates to 0.5.

Finally, based on 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) the sensitivity distribution 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙) is determined

and returned in which 𝜃𝑏 indicates that the parametric setting of the distribution refers to

𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙).

9.3.4. Generating Synthetic Data

In the last section, we discussed the sensitivity model and analysis. For the sensitivity

analysis, we need a sensitivity dataset 𝐷𝑆𝑒𝑛𝑠 which does not only include input image and

steering angle label pairs but also further labels regarding the uncertainties observable

in the input image. For this purpose, we generate 𝐷𝑆𝑒𝑛𝑠 by the test dataset 𝐷𝑇𝑒𝑠𝑡 which is

primarily used to evaluate the accuracy (i.e. RMSE) of a steering angle prediction model 𝑏.

More specifically, we apply image transformations on each input image of 𝐷𝑇𝑒𝑠𝑡 . For the

generation of synthetic image data, we reuse image transformations of DeepTest [186]

that generate synthetic image data to detect erroneous behaviour in AI models. The

synthetic image data generation algorithm is depicted on algorithm 9.2 The algorithm

Algorithm 9.2: Synthetic image data generation algorithm

Input: Test dataset 𝐷𝑇𝑒𝑠𝑡
Output: Sensitivity dataset 𝐷𝑆𝑒𝑛𝑠

1 𝐷𝑆𝑒𝑛𝑠 ← ∅
2 foreach (𝑥,𝑦) ∈ 𝐷𝑇𝑒𝑠𝑡 do
3 𝜑𝐵 ← 𝑁𝑜𝑟𝑚𝑎𝑙

4 𝜑𝐵𝑙 ← 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦

5 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 3) // selects randomly a natural number from the range

6 if 𝑟 = 1 then
7 𝑥, 𝜑𝐵𝑙 ← 𝑡𝐵𝑙 (𝑥)
8 end
9 if 𝑟 = 2 then
10 𝑥, 𝜑𝐵 ← 𝑡𝐵 (𝑥)
11 end
12 if 𝑟 = 3 then
13 𝑥, 𝜑𝐵𝑙 ← 𝑡𝐵𝑙 (𝑥)
14 𝑥, 𝜑𝐵 ← 𝑡𝐵 (𝑥)
15 end
16 𝐷𝑆𝑒𝑛𝑠 ← 𝐷𝑆𝑒𝑛𝑠 ∪ (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙)
17 end
18 return 𝐷𝑆𝑒𝑛𝑠

starts to loop over all input images and steering angle label pairs. For each iteration,

273

9. Validation

Name Value Description

𝜆 20 Scaling factor of 𝑅𝑀𝑆𝐸𝑎𝑣𝑔.

𝐷𝑇𝑒𝑠𝑡 - The CH2_001 test dataset [191] which encom-

passes 5614 images and corresponding steering

angle labels.

𝑎𝑐𝑐 (𝑏) see (9.10) We use an RMSE-based accuracy measure which

is calculated based on 𝐷𝑇𝑒𝑠𝑡 .

Table 9.12.: Overview of the parameter setting for the Udacity self-driving car case study system.

the brightness and blurring uncertainty values are initially set to their default values, i.e.

𝑁𝑜𝑟𝑚𝑎𝑙 and 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦. Afterwards, a natural number 𝑟 is randomly selected from the

set {1, 2, 3} to distinguish between three cases. In the first case (i.e. 𝑟 = 1), only the image

transformation to insert the blur 𝑡𝐵𝑙 is applied to 𝑥 , returning a synthetic image (including

the blur) and the corresponding uncertainty label (i.e. 𝐵𝑙𝑢𝑟𝑟𝑦). The image transformation

𝑡𝐵𝑙 is reused by DeepTest, where several different blur filters are available: Averaging,

Gaussian, median and bilateral. In the transformation 𝑡𝐵𝑙 we randomly select one of the

blur filters. In the second case (i.e. 𝑟 = 2), only the image transformation 𝑡𝐵 to adjust the

brightness of the image is applied. Again, we reuse the image transformation of DeepTest

where a constant value 𝛽 ∈ {10, 20, 30, . . . , 100} is either added (to increase brightness) or

subtracted (to decrease brightness) from each pixel in the image. Moreover, whether 𝛽 is

added or subtracted is again randomly chosen. 𝑡𝐵 returns the synthetic image with the

adjusted brightness and uncertainty label (i.e. 𝑆𝑡𝑟𝑜𝑛𝑔 or 𝐿𝑜𝑤). In the third case (i.e. 𝑟 = 3),

both transformations (i.e. 𝑡𝐵𝑙 and 𝑡𝐵) are applied. Depending on the randomly selected

cases, a new synthetic image is created which is finally added to the set 𝐷𝑆𝑒𝑛𝑠 .

9.3.5. Experiment Setup

In this section, we briefly discuss the experimental setup including the preliminary analyses

and experimental parameters. A summary can be found in Table 9.12.

Recall from section 9.3.1.2 that we consider for validation five steering angle prediction

models, namely Chauffeur 𝑏𝐶 , Rambo 𝑏𝑅 , n-version 𝑏𝑁𝑉 (including 𝑏𝐶 and 𝑏𝑅 as two

versions), a perfect steering angle prediction model 𝑏+ and the worst possible model 𝑏−

for predicting steering angles. For each black-box 𝑏, we determined the accuracy 𝑎𝑐𝑐 (𝑏).
Recall that the accuracy measure is relevant for the plausibility assertions. Concretely, we

use an RMSE-based accuracy measure:

𝑎𝑐𝑐 (𝑏) = 1 − 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) = 1 −

√√√
1

𝑁

𝑁∑︁
𝑖=1

(𝑏 (𝑥𝑖) − 𝑦𝑖)2, 𝑁 = |𝐷𝑇𝑒𝑠𝑡 | (9.10)

We calculate the RMSE (recall from section 2.17) based on the test dataset 𝐷𝑇𝑒𝑠𝑡 . For 𝐷𝑇𝑒𝑠𝑡 ,

we considered the test dataset CH2_001 [191] which encompasses 5614 images. The dataset

274

9.3. Reliability Analysis of AI-enabled Systems

was used in the Udacity self-driving car challenge as the final test dataset to evaluate the

distinct steering angle prediction models.

For each steering angle prediction model (except 𝑏− and 𝑏+), we analysed the sensitivity

as described in section 9.3.3 based on a generated sensitivity dataset 𝐷𝑆𝑒𝑛𝑠 (as described in

9.3.4). The individual sensitivity models are depicted on Table 9.13. For each sensitivity

model generated by the sensitivity analysis, we created a corresponding EnvDyn model

which holds the sensitivity values and is used during reliability prediction. Note that for

reliability prediction with our approach, the probabilities of the uncertainties themselves

must also be determined, i.e. 𝑃 (𝑋𝜑𝐵) and 𝑃 (𝑋𝜑𝐵𝑙). Therefore, we have assumed (w.l.o.g.)

a distribution defined over the uncertainties that we have consistently used for each

reliability prediction.

Moreover, we created a PCM model describing the software architecture of a self-driving

car. Recall that w.l.o.g. we assumed a generic software architecture for self-driving cars

based on proposed architectures from literature (see 9.3.2).

For each steering angle prediction model, we created an uncertainty-refined failure model

to connect each 𝑏 with its respective sensitivity model. Furthermore, each failure model

references the same software-induced failure type (which is defined within the Steering-

AnglePrediction component) reflecting the refined failure type modelling the failure

potential of each AI component. Based on the uncertainty-refined failure model, we pre-

dicted the reliability (or rather probability of success) of our generic software architecture

of a self-driving car by considering each black-box 𝑏 individually.

As a final remark, steering angle prediction models 𝑏 𝑓 which are annotated by 𝑓 refer to

models where the filtering pattern from section 7.1.1.2 is applied (or the corresponding

architectural template) and𝑀
𝑓

𝐶𝑏
the architecture model, respectively. If the filtering pattern

is applied, the resulting architecture model𝑀𝐶 is modified as well. We stated, however,

that we consider only a single architectural configuration; more specifically, the generic

software architecture from section 9.3.2 for which we created the corresponding PCM

model𝑀𝐶 . As a matter of fact, the same applies for𝑀𝐶𝑏𝑁𝑉
which describes the architecture

model where the n-version pattern (or architectural template) is applied. This contradicts

our plausibility assertions in which we stated that we consider a single architecture model

𝑀𝐶𝑏 where only the AI component 𝑏 is interchangeable. The reason for considering a fixed

architectural model𝑀𝐶𝑏 , where only 𝑏 is variable, is that only 𝑏 needs to have an impact on

the reliability of the system, so we can relate reliability attributes of 𝑏 directly to reliability

predictions and for comparison (e.g. 𝑀𝐶𝑏𝑅
with𝑀𝐶𝑏𝐶

). That is, when applying the filter to

architecture model𝑀𝐶𝑏 , we obtain a new architecture model𝑀
𝑓

𝐶𝑏
which are not directly

comparable, e.g. the filter component itself might indicate a certain failure probability

which impacts to some extent the overall reliability of the system. For validation purposes,

however, we configured all reliability-related elements inserted into the architectural

model (after either the filtering or the n-version pattern was applied) to not affect the

reliability of the system, but only the prediction accuracy or predictive uncertainty of

𝑏 itself, i.e. the sensitivity model. This means that each applied pattern or architectural

template acts exclusively as an architectural countermeasure (as described on 7.1.3.2) and

275

9. Validation

has no other consequences in terms of reliability. Therefore, the architecture models

𝑀𝐶𝑏𝑁𝑉
,𝑀

𝑓

𝐶𝑏𝑅
and𝑀

𝑓

𝐶𝑏𝐶
are admittedly different in terms of their architectural configuration

but are still directly comparable with all other models.

9.3.6. Experiment Results

In this section, we present the experiment results. Recall that the main intention is to

show that the plausibility assertions (9.1)-(9.3) are satisfied. Moreover, we show sim-

ilarity between the sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙) and the reliability predictions

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙). In other words, we show that the predicted success/failure proba-

bilities indicate the same behaviour or characteristics as the sensitivity model for different

uncertainty values 𝜑𝐵 and 𝜑𝐵𝑙 .

First, however, consider Table 9.13 which depicts the sensitivity models of all steering angle

prediction models. As mentioned in the last section, we obtained the sensitivity models and

their respective probabilities by applying the sensitivity analysis from section 9.3.3. For

𝑏+, we defined the success probability to be always 1 to account for the perfect prediction

property. Accordingly, we define the success probabilities of 𝑏− to be always 0. From

the sensitivity model, it appears that Chauffeur and Rambo indicate lower probabilities

of success (and thus higher probabilities of failure) for uncertainty values that deviate

from what we consider normal (i.e. images that are not blurred 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 and under

normal brightness conditions 𝑁𝑜𝑟𝑚𝑎𝑙). Moreover, we calculated the RMSE of each model

based on the original test dataset 𝐷𝑇𝑒𝑠𝑡 (i.e. 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)) and based on dataset 𝐷𝑆𝑒𝑛𝑠 (i.e.

𝑅𝑀𝑆𝐸𝑆𝑒𝑛𝑠 (𝑏)) which contains the generated synthetic image data enriched by varying

image brightness and blur. For Chauffeur 𝑏𝐶 , we calculated 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏𝐶) = 0.05768,

which deviates slightly (but negligibly) from the originally documented RMSE (0.05816)

of the Udacity challenge. Similarly, Rambo’s calculated RMSE (𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏𝑅) = 0.05682)

also differs negligibly from the published results where the RMSE is reported as 0.05787.

However, the rank of the two models remains the same, i.e. Rambo performs better

than Chauffeur. The final rank of all models can be found in [192]. The third and fourth

columns depict the success and failure probabilities of each 𝑏. Note that 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏−) = ∞
accounts for the fact that 𝑏− produces the worst possible predictions. Moreover, by

considering the accuracy 𝑎𝑐𝑐 (𝑏) of each steering angle prediction model 𝑏 (recall that

𝑎𝑐𝑐 (𝑏) = 1 − 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)), we observe the following order:

𝑏− < 𝑏𝐶 < 𝑏𝑅 < 𝑏𝑁𝑉 < 𝑏+ (9.11)

By recalling assertion (9.1), we must observe

𝑟𝑒𝑙 (𝑀𝐶𝑏−) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅

) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉
) < 𝑟𝑒𝑙 (𝑀𝐶𝑏+) (9.12)

in the reliability predictions of our approach. Therefore, consider Table 9.14.

The table shows all steering angle prediction models which are ordered from top to bottom

according to (9.11). The third column of the table shows the predicted success probabilities

276

9.3. Reliability Analysis of AI-enabled Systems

𝒃 𝑹𝑴𝑺𝑬𝒐𝒓 𝒊𝒈 𝑹𝑴𝑺𝑬𝑺𝒆𝒏𝒔 𝚽 Succ. Fail.

𝑏− ∞ ∞

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 1

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 1

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 1

𝑏𝐶 0.05768 0.07065

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9374 0.0626

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9347 0.0653

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9248 0.0752

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.933 0.067

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9448 0.0552

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9305 0.0695

𝑏𝑅 0.05682 0.06144

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9462 0.0538

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9365 0.0635

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9435 0.0565

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9411 0.0589

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9456 0.0544

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9434 0.0566

𝑏𝑁𝑉 0.04221 0.04631

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9561 0.0439

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9542 0.0458

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9523 0.0477

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9562 0.0438

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9596 0.0404

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9543 0.0457

𝑏+ 0 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 1 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 1 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 1 0

Table 9.13.: An overview of the steering angle prediction models, their sensitivity models and RMSE values.

that we obtained after applying our reliability approach for each 𝑏 to architecture model

𝑀𝐶𝑏 . It can be seen that the same order applies as required in (9.12). Thereby, we conclude

that our reliability prediction approach maintains plausibility assertion (9.1).

After we validated that our reliability prediction approach preserves the overall success

probability of the whole system (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏)) w.r.t. the accuracy of 𝑏, we now investi-

gate how the characteristics of 𝑏 regarding (𝜑𝐵, 𝜑𝐵𝑙) are preserved. Therefore, consider
Figure 9.12, Figure 9.13, Figure 9.14 and Figure 9.15 which relate the individual success

277

9. Validation

Model 𝒂𝒄𝒄 (𝒃) 𝒓𝒆𝒍 (𝑴𝑪𝒃) 𝑷𝒓 (𝑿𝒃 = 𝑺𝒖𝒄𝒄𝒆𝒔𝒔)

𝑏− −∞ 0 0

𝑏𝐶 0.94232 0.9170 0.9356

𝑏𝑅 0.94318 0.9242 0.9429

𝑏𝑁𝑉 0.95779 0.9372 0.9561

𝑏+ 1 0.9798 1

Table 9.14.: Comparing the accuracy of all steering angle prediction models with the overall success prob-

ability of our reliability prediction approach and the overall success probability of individual sensitivity

models (i.e. 𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)).

(a) Success probabilities of 𝑏𝐶 . (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
| 𝜑𝐵, 𝜑𝐵𝑙) .

Figure 9.12.: Comparing the sensitivity model of Chauffeur (i.e. 𝑃 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) with the

prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
| 𝜑𝐵, 𝜑𝐵𝑙)).

probabilities of the sensitivity models of 𝑏+, 𝑏𝑅 , 𝑏𝐶 and 𝑏𝑁𝑉 with the predicted success

probabilities 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙) for all 𝜑𝐵 , 𝜑𝐵𝑙 and fixed architecture model𝑀𝐶𝑏 .

Note that 𝑏− is not depicted because the success probabilities of the sensitivity model and

the predicted success probabilities of the system are 0. On the other hand, Figure 9.15

depicts the success probabilities of the sensitivity model of perfect model 𝑏+ (and the

predicted success probabilities of the system including 𝑏+). It can be seen that both

𝑃 (𝑋𝑏+ = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 , 𝑋𝜑𝐵𝑙) and 𝑟𝑒𝑙 (𝑀𝐶𝑏+ | 𝜑𝐵, 𝜑𝐵𝑙) indicate equal probabilities which is a

result of the fact that the success probability of 𝑏+ is for all pairs (𝜑𝐵, 𝜑𝐵𝑙) equal to 1. It is

important to note that the figures do not depict probability distributions but merely the

individual success probabilities for any uncertainty pair, e.g. 𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 =

𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) and 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) for 𝑏𝐶 .
However, each bar of a single plot is associated with a probability distribution defined over

𝑋𝑏 and 𝑋𝑆𝑦𝑠 , respectively. For example, 𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) =
0.9374 and thus 𝑃𝑟 (𝑋𝑏𝐶 = 𝐹𝑎𝑖𝑙 | 𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) = 1 − 0.9374; similarly,

𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
| 𝐿𝑜𝑤, 𝐵𝑙𝑢𝑟𝑟𝑦) =

278

9.3. Reliability Analysis of AI-enabled Systems

(a) Success probabilities of 𝑏𝑅 . (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
| 𝜑𝐵, 𝜑𝐵𝑙) .

Figure 9.13.: Comparing the sensitivity model of Rambo (i.e. 𝑃 (𝑋𝑏𝑅 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) with the

prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
| 𝜑𝐵, 𝜑𝐵𝑙)).

(a) Success probabilities of 𝑏𝑁𝑉 . (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉
| 𝜑𝐵, 𝜑𝐵𝑙) .

Figure 9.14.: Comparing the sensitivity model of the n-version model (i.e. 𝑃 (𝑋𝑏𝑁𝑉
= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
))

with the prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉
| 𝜑𝐵, 𝜑𝐵𝑙)).

0.9188 and 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝐹𝑎𝑖𝑙 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) = 1 − 0.9188. From the

figures, it is quite obvious that the probabilities of success show the same behaviour for

each uncertainty pair or more specifically are proportional to 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙). Thus,
the same must be true for the probabilities of failure. Complementary to the figures,

279

9. Validation

(a) Success probabilities of 𝑏+. (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏+ | 𝜑𝐵, 𝜑𝐵𝑙) .

Figure 9.15.: Comparing the sensitivity model of the perfect steering angle prediction model (i.e. 𝑃 (𝑋𝑏+ =

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) with the prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏+ |
𝜑𝐵, 𝜑𝐵𝑙)).

Table 9.15 contains the concrete values of the success probabilities, the probabilities of the

uncertainties pairs themselves, and the Bhattacharyya distance 𝐷𝐵 .

Note that the table does not consider 𝑏− since the success probabilities are all zero. More-

over, for simplification, we do not depict all entries of 𝑏+ because the success probabilities
(i.e. 𝑃 (𝑋𝑏 | 𝑋Φ) and 𝑟𝑒𝑙 (𝑀𝐶𝑏 | Φ)) and Bhattacharyya distances are the same for all uncer-

tainties. We calculated the Bhattacharyya distance between 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵 = 𝜑𝐵, 𝑋𝜑𝐵𝑙 = 𝜑𝐵𝑙)
and 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵 = 𝜑𝐵, 𝑋𝜑𝐵𝑙 = 𝜑𝐵𝑙) for all (𝜑𝐵, 𝜑𝐵𝑙). As can be seen in Table 9.15,

the Bhattacharyya distance is fairly small for all 𝑏 which shows the similarity of the

respective distributions.

Finally, we validate plausibility assertions (9.2) and (9.3). For the assertions, we have to

compare the sets Φ𝑏𝑖 ,𝑏 𝑗 pairwise for all considered black-boxes 𝑏. However, the pairwise

comparison is tedious and difficult to assess even for a few steering angle prediction

models as we have to compare all combinations (𝑏𝑖, 𝑏 𝑗). Instead, we exploit a property that
can be observed in all steering angle prediction models. If we carefully review the table

Table 9.15, we can see that the individual success probabilities (i.e. the fourth column)

are partially ordered between the steering angle prediction models (ordered from top

to bottom according to (9.11)), e.g. 𝑃𝑟 (𝑋𝑏− = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) <
𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑃𝑟 (𝑋

𝑏
𝑓

𝐶

= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵 = 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙 =

𝐵𝑙𝑢𝑟𝑟𝑦) < . . . Figure 9.16 depicts this monotonic property.

More precisely, Figure 9.16a shows monotonically decreasing success probabilities (y-

axis) of each sensitivity model (x-axis), with the steering angle prediction models sorted

according to (9.11) but in descending order. Regarding plausibility assertion (9.2) and (9.3),

280

9.3. Reliability Analysis of AI-enabled Systems

(a) Success probabilities of the sensitivity models 𝑃 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

) .

(b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙) .

Figure 9.16.: Comparing the success probabilities of the individual sensitivity models with the predicted

success probability of our approach.

281

9. Validation

𝒃 𝚽 𝑷 (𝑿𝚽) 𝑷 (𝑿𝒃 | 𝑿𝚽) 𝒓𝒆𝒍 (𝑴𝑪𝒃 | 𝚽) 𝑫𝑩

𝑏𝐶

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9374 0.9188 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9347 0.9162 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9248 0.9063 0.0005

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.933 0.9144 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9448 0.9260 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9305 0.9121 0.0005

𝑏
𝑓

𝐶

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 0.9374 0.9188 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 0.9347 0.9162 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 0.9248 0.9063 0.0005

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.3 0.933 0.9144 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.4 0.9448 0.9260 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.3 0.9305 0.9121 0.0005

𝑏𝑅

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9462 0.9274 0.0007

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9365 0.9179 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9435 0.9247 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.9411 0.9224 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9456 0.9268 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9434 0.9247 0.0007

𝑏
𝑓

𝑅

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 0.9462 0.9274 0.0007

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 0.9365 0.9179 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 0.9435 0.9247 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.3 0.9411 0.9224 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.4 0.9456 0.9268 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.3 0.9434 0.9247 0.0007

𝑏𝑁𝑉

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9561 0.9371 0.0008

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9542 0.9353 0.0008

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9523 0.9334 0.0008

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.9562 0.9372 0.0008

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9596 0.9405 0.0009

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9543 0.9354 0.0008

𝑏+ - - 1 0.9798 0.01

Table 9.15.: Comparison of the similarity of the success probabilities of the sensitivity models with the

success probability predicted by our reliability prediction approach.

this means that the success probabilities of our reliability analysis must indicate the very

same monotonic property. Therefore, consider Figure 9.16b which shows the predicted

success probabilities 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙) (y-axis) for each steering angle prediction model

(x-axis) and uncertainty pair (𝜑𝐵, 𝜑𝐵𝑙). If we compare Figure 9.16a and Figure 9.16b, we

can observe exactly this property. Note that we omitted 𝑏− in Figure 9.16 as the success

probability in both cases is 0 for all pairs (𝜑𝐵, 𝜑𝐵𝑙). More specifically, the line plot of

282

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Figure 9.16b is simply shifted in the negative direction of the y-axis (because the reliability

predictions are slightly smaller than the success probabilities of the sensitivity models)

but indicates the very same behaviour. Therefore, we conclude that plausibility assertions

(9.2) and (9.3) must hold.

Note that we have deliberately not considered or discussed the case where the filtering

pattern was applied, e.g. 𝑀
𝑓

𝐶𝑏𝑅
and𝑀

𝑓

𝐶𝑏𝐶
where an additional filter is inserted to contain

the effect of uncertainties. The main reason for this is that the previous discussion referred

exclusively to the success probability of the sensitivity models and the models predicted

by our approach. However, recall that the filtering pattern corresponds to an uncertainty-

specific architectural countermeasure which has no direct impact on the success probability

of the sensitivity model itself but rather on the impact of uncertainties (see section 7.1.3.2).

This can also be observed in Figure 9.16b where the sensitivity models of 𝑏
𝑓

𝐶
and 𝑏

𝑓

𝑅
are

identical to the sensitivity models of 𝑏𝐶 and 𝑏𝑅 . However, when looking at the probabilities

of the uncertainties (i.e. the third column), it can be seen that they are different compared

to the others. In this case, we modelled the effect of the filter component to be deterministic.

More precisely, we assumed that the filter always eliminates the blur from the image, i.e.

𝑓 (𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑓 (𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦. We made this strict improvement assumption

because we can now expect 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) < 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝐶
) and 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅

) < 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝑅
). Note from

equation (7.4) that 𝑟𝑒𝑙 (𝑀𝐶𝑏) =
∑
(𝜑𝐵,𝜑𝐵𝑙)∈Φ 𝑃𝑟 (𝑋𝜑𝐵 = 𝜑𝐵, 𝑋𝜑𝐵𝑙 = 𝜑𝐵𝑙) · 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙).

However, since the application of the filter eliminates image blur, the corresponding

probabilities of uncertainty tuples which contain 𝐵𝑙𝑢𝑟𝑟𝑦 have zero probability and do not

affect the success probability of𝑏. This effect is reflectedwhen predicting the corresponding

success probabilities of the entire system:

𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) = 0.9170 < 0.9183 = 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝐶
)

𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
) = 0.9242 < 0.9249 = 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝑅
)

Thus, systems that contain the filter pattern are more reliable than systems that do not,

which is in line with our expectations.

9.4. Evaluating Self-Adaptive Systems to Safeguard AI
Components

In this section, we focus on validation goal 4. More specifically, we expand the validation

of the last section (i.e. reliability prediction of static AI-enabled systems) to self-adaptive

systems in which an AI component is to be safeguarded. For the validation, we focus on

two case study systems, namely the Udacity self-driving car challenge and the HRI system

of section 1.5.3. All results and validation artefacts can be found in reference [157].

283

9. Validation

9.4.1. Udacity Self-Driving Car Challenge

This section is similar in structure to the previous sections where SimExp was validated.

That is, we outline how the SimExp method is instantiated in the context of the Udacity

case study system and discuss the experiment setup and results afterwards. First, however,

we discuss how we expand the Udacity case study system to a self-adaption scenario.

9.4.1.1. Self-Adaptive Filtering of Input Images

In section 9.3, we introduced the Udacity self-driving car challenge where AI models

(or more specifically deep learning) have been employed to predict steering angles for a

self-driving car. In this section, we expand the scenario by considering the same generic

software architecture from section 9.3.2 but assume that the filtering pattern is applied

to contain the effect of image blurring. Although safety is an important aspect of self-

driving cars, the performance of the system, or the ability to process in real-time, must be

ensured at the same time [116]. Therefore, the filter component is dynamically activated

in situations where an increased image blur is observed, e.g. by leveraging image blur

detection methods [189, 132, 117].

We consider the steering angle prediction models 𝑏−, 𝑏𝐶 , 𝑏𝑅 and 𝑏+. Note that we exclude
𝑏𝑁𝑉 as it represents no AI component which must be safeguarded but an already applied

architectural pattern to enhance the reliability of the system. Clearly, one may combine

the n-version and filtering pattern to obtain an even more reliable system; however, we do

not consider this scenario as it has no relevance for the validation of goal 4 but only leads

to more complexity.

The motivation for dynamically activating and deactivating the filter component is to bal-

ance the reliability and performance attributes of the system. Thus, one would expect that

both attributes are considered in the reward function. The consideration of performance

as an additional influencing factor, however, does not allow the validation of plausibility

assertion (9.4) where the assertion is exclusively based on reliability attributes. Therefore,

we only consider reliability as a single quality attribute.

9.4.1.2. Instantiation of SimExp

For the instantiation of SimExp, we could reuse various artefacts which have already been

generated in section 9.3.

Initial Architecture Model We reuse the same generic software architecture of a self-

driving car as presented in section 9.3.2. As discussed, we assume that the filtering pattern

is applied. Hereby, we configure the initial architecture such that the filter component is

initially deactivated.

284

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Adaptations We consider two adaptations, namely the activation and deactivation of the

filter component. We implemented both adaptations as model transformations which can

be selected and applied by an adaptation strategy.

Environment Model Recall that the environmental dynamics of a self-adaptive system

consists of a static part (describing the initial distribution of the environment) and a

dynamics part (describing the temporal extension of the static environment) which in

conjunction constitutes a DBN. The environment E of the Udacity case study system

encompasses two environmental variables namely, image blur𝜑𝐵𝑙 and brightness variations

𝜑𝐵𝑙 . That is, an environmental state is formed by two random variables: 𝐸 := (𝑋𝜑𝐵𝑙𝑋𝜑𝐵𝑙).
In the context of the sensitivity model from section 9.3, we already modelled the static

environment, i.e. the distributions 𝑃 (𝑋𝜑𝐵𝑙) and 𝑃 (𝑋𝜑𝐵). Therefore, only the stochastic

evolution (i.e. the dynamic part) must be modelled. Just as for 𝑃 (𝑋𝜑𝐵𝑙) and 𝑃 (𝑋𝜑𝐵), we
assumed w.l.o.g. the dynamic distributions which can be looked up in reference [157].

Adaptation Strategies We consider three adaptation strategies, namely the non-adaptive

strategy 𝜋𝛿∅ , the randomised filtering strategy 𝜋𝑅𝑎𝑛 and the image blur mitigation strategy

𝜋𝑀𝑖𝑡 . The strategy 𝜋𝛿∅ again simulates the behaviour of a static systemwhere no adaptation

is triggered at all. The two remaining strategies are used to validate the steering angle

prediction model by dynamically activating the filter component. The randomised filter

strategy 𝜋𝑅𝑎𝑛 activates or deactivates the filter component randomly and independently of

the current environmental state; the image blur reduction strategy 𝜋𝑀𝑖𝑡 activates the filter

component whenever increased image blur is observed and deactivates it otherwise.

It should be noted that the strategies are not thoroughly engineered. It is arguably not

sufficient for self-driving cars to just observe the degree of blurring and activate a filtering

component when needed. However, it is not within the scope of this thesis to research

suitable adaptation strategies specifically for autonomous systems, nor are we experts in

this field. However, regardless of the complexity of the strategies, our SimExp method

must preserve the plausibility assertion (9.4). Recall that the assertion requires that for

any strategy 𝜋 which is individually applied to safeguard an AI black-box 𝑏 from a set of

AI black-box models {𝑏1, 𝑏2, . . . } with 𝑏1 < 𝑏2 < . . . , the same ordering must apply for

adaptation strategy where only 𝑏 is modified, i.e. 𝜋 [𝑏1] < 𝜋 [𝑏2] < For the assertion,

however, the complexity of the adaptation strategy is of no relevance. That is to say, if we

can validate that assertion (9.4) holds for the adaptation strategies under consideration,

it must immediately follow that it also holds for any strategy of arbitrary complexity.

Moreover, we have already validated the appropriateness of our SimExp method for more

complex adaptation strategies in section 9.2.

Reward Function As mentioned before, we only account for the reliability of the system

to determine the reward because the consideration of additional quality attributes might

distort the order of evaluated strategies. More specifically, the reward function returns

285

9. Validation

Strategy 𝑰𝑬𝝅 [𝑿𝑮0]
∑

𝒊 𝒓 𝒊

𝒃− 𝒃𝑪 𝒃𝑹 𝒃+ 𝒃− 𝒃𝑪 𝒃𝑹 𝒃+

𝜋𝛿∅ [𝑏] 0.0 84.5 85.2 89.3 0.0 13647 13719 14555

𝜋𝑅𝑎𝑛 [𝑏] 0.0 80.5 79.2 85.2 0.0 13664 13733 14555

𝜋𝑀𝑖𝑡 [𝑏] 0.0 81.8 82.4 86.3 0.0 13663 13733 14555

Table 9.16.: Overview of the expected and total rewards of each strategy for the Udacity self-driving car case

study.

simply the predicted success probability of the system by using our reliability prediction

approach for AI-enabled systems.

𝑟S : S × Δ × S → [0, 1], (𝑆, 𝛿, 𝑆′) ↦→ 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙) (9.13)

Note that 𝑆′ := (𝐶𝑏, 𝐸) with 𝐸 := (𝑋𝜑𝐵𝑙 , 𝑋𝜑𝐵).

Interdependency Assumption of Architecture and Environment We assumed no interde-

pendency between the system or architectural configuration and the environment, i.e. the

dynamics of the self-adaptive system is purely environmental-driven (recall independence

assumption (6.9) on page 144). This seems reasonable because no architectural config-

uration changes the way how the environment (i.e. brightness and blurring effects) is

stochastically evolving.

Prediction of quality attributes Asmentioned before, we predict the probability of success

for any sampled state 𝑆 . Therefore, we use our reliability prediction approach for AI-

enabled systems, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙).

9.4.1.3. Experiment Setup

We evaluated each strategy w.r.t. any steering angle prediction model 𝑏−, 𝑏𝐶 , 𝑏𝑅 and 𝑏+.
Hereby, we sampled for each strategy 150 trajectories of length 100 making a total of 15000

sampled states. In the next section, we discuss the results of the validation.

9.4.1.4. Experiment Results

Figure 9.17 depicts the accumulated and averaged rewards generated by each strategy. It

can be seen that the accumulated and averaged rewards of any strategy are fairly stable

and converge towards a fixed reward. Complementing Figure 9.17, Table 9.16 lists the

expected and total rewards for each strategy.

Note that each strategy which safeguards 𝜋 [𝑏−] is not visible on the figures because they

generate zero-valued rewards (which seems reasonable because the success probability

286

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

(a) Non-adaptive strategy 𝜋𝛿∅ [𝑏]. (b) Randomised filter strategy 𝜋𝑅𝑎𝑛 [𝑏].

(c) Image blur mitigation strategy 𝜋𝑀𝑖𝑡 [𝑏].

Figure 9.17.: SimExp results of each strategy individually evaluated for 𝑏− , 𝑏𝐶 , 𝑏𝑅 and 𝑏+.

of 𝑏− is always 0). From section 9.3.6, we know that the accuracy of the steering angle

prediction models corresponds to 𝑏− < 𝑏𝐶 < 𝑏𝑅 < 𝑏+. That is, we expect for each strategy

the following order w.r.t. the expected reward 𝐼𝐸𝜋 [𝑋𝐺0
]:

𝜋 [𝑏−] < 𝜋 [𝑏𝐶] < 𝜋 [𝑏𝑅] < 𝜋 [𝑏+] (9.14)

While in Figure 9.17 and almost all expected rewards shown in Table 9.16 reflect the very

same order, we can observe a slight deviation of strategy 𝜋𝑅𝑎𝑛 [𝑏]. More specifically the

expected reward of 𝜋𝑅𝑎𝑛 [𝑏𝐶] is higher than 𝜋𝑅𝑎𝑛 [𝑏𝑅], i.e. 𝜋𝑅𝑎𝑛 [𝑏𝐶] > 𝜋𝑅𝑎𝑛 [𝑏𝑅]. On the

contrary, however, if we look at the total rewards generated by 𝜋𝑅𝑎𝑛 [𝑏𝐶] and 𝜋𝑅𝑎𝑛 [𝑏𝑅], we
can observe the expected order. Therefore, we suspect that the expected rewards of the

experiment did not converge properly (which can also be a result of the similar success

probabilities of 𝑏𝐶 and 𝑏𝑅). If the convergence assumption holds, we must merely sample

more states, calculate the expected reward again and should observe the proper order.

Therefore, we sampled for 𝜋𝑅𝑎𝑛 [𝑏𝐶] and 𝜋𝑅𝑎𝑛 [𝑏𝑅] 20000 states and calculated the expected

reward again. Hereby, we obtained 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑏𝐶] [𝑋𝐺0
] = 79.3769 (with total reward 18219.2)

and 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑏𝑅] [𝑋𝐺0
] = 80.6528 (with total reward 18310.4) which confirms our suspicion.

Finally, the results show that dynamically activating and deactivating a filter component to

remove blurring does not have a major impact on the reliability of the system. In fact, this

is not surprising as we already observed a small improvement in reliability when using the

287

9. Validation

filtering pattern. Looking at the results of the generated rewards without considering the

performance effects, it is quite obvious that using a filter component does not seem to be a

good decision as it does not add significant value to the overall reliability of the system, but

rather degrades the performance. Nonetheless, the results show that plausibility assertion

(9.4) is preserved by our SimExp method which is in line with our expectations.

9.4.2. Human-Robot-Interaction

In this section, we continue with validating goal 4 by considering the HRI case study

system. Whereas in the last section, we regarded adaptation strategies where only the

filter component has been dynamically activated, we expand the adaptation logic in this

section by considering a second type of adaptation, namely switching the AI component.

In this case, we have two AI components which can be dynamically exchanged by a

self-adaptive system. Recall that the adaptation problem of the HRI system is to strike a

balance between the performance and reliability attributes of the system. Therefore, the

first AI component (hereinafter referred to as 𝑏𝐷) tends to be less reliable in prediction but

less computationally expensive; in turn, the second AI component (hereinafter referred to

as 𝑏𝑅𝑜𝑏) is more robust but computationally expensive. However, this must be taken into

account by a self-adaptive system to balance both attributes as well as possible. Although

the validation primarily concentrates on plausibility assertion (9.4), we complement the

validation results by considering a second reward function which also takes into account

the performance of the system (and not only the reliability as in the last section). Thus,

we demonstrate how SimExp allows software engineers to make trade-off decisions.

9.4.2.1. Instantiation of SimExp

In this section, we outline how the SimExp method is instantiated.

Initial Architecture Model We modelled the software architecture of the HRI system (as

presented in section 1.5.3) as PCM model. Initially, the filter component is deactivated.

Moreover, we consider 𝑏𝐷 as the default AI model which is initially instantiated in the

system.

Adaptations As already mentioned, the first adaptation that we consider is activating or

deactivating a filter component which reduces noise artefacts (just as in the last section).

The second adaptation corresponds to switching the currently deployed AI component

with a different one. As explained earlier, we consider 𝑏𝐷 as the default AI model that can

be dynamically exchanged by the more robust model but computationally expensive 𝑏𝑅𝑜𝑏
and vice versa.

288

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Environment Model Recall that in terms of the HRI case study system, we have two un-

certainties, namely brightness 𝜑𝐵 and sensor noise 𝜑𝑆𝑁 . Hereby, the value space 𝑉𝑎𝑙 (𝑋𝜑𝐵)
is equally discretised as in the Udacity case study; the value space of 𝑋𝜑𝑆𝑁 , however, is

discretised by considering three sensor noise levels 𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁) := {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}.
The structure of the sensitivity model for both AI components is depicted on Figure 7.10.

Just as in the Udacity case study, we assumed the distributions 𝑃 (𝑋𝜑𝐵) and 𝑃 (𝑋𝜑𝑆𝑁) for the
static environment and the dynamic environment (i.e. 𝑃 (𝑋 ′𝜑𝐵 | 𝑋𝜑𝐵) and 𝑃 (𝑋

′
𝜑𝑆𝑁
| 𝑋𝜑𝑆𝑁))

as well. Again, it is important to note that we can assume w.l.o.g. any kind of distribution

which governs the environmental dynamics as long as they are rigorously used for the

evaluation of all strategies. The concrete distributions can be looked up in [157].

Adaptation Strategies We consider three adaptation strategies, namely the by now well-

known non-adaptive adaptation strategy 𝜋𝛿∅ , a randomised strategy 𝜋𝑅𝑎𝑛 and finally a

reliability-prioritised strategy 𝜋𝑅𝑒𝑙 . As before, 𝜋𝛿∅ simulates the behaviour of a static

software system.

The adaptation logic of the reliability-prioritised strategy 𝜋𝑅𝑒𝑙 is depicted on Listing 9.3.

For the sake of clarification, we simplified the strategy and also show only the analyse-

and plan-phase of the adaptation strategy. In principle, analyse-phase checks whether the

brightness and sensor noise levels are increased or deviating from what is considered to

have no significant effect on the prediction of the AI component. If so, the plan-phase is

initiated. If the brightness and sensor noise are not suspicious, but the system response

time exceeds a fixed threshold 𝜀, the plan-phase is also initiated. Otherwise, the strategy

terminates and no adaptation is planned. Since the 𝜋𝑅𝑒𝑙 strategy prioritises reliability, the

planning phase first checks whether the reason for the adaptation is due to potentially

malicious input values (e.g. increased sensor noise or varying image brightness) and

selects appropriate adaptations. Otherwise, performance-improving countermeasures are

taken that mainly reverse reliability-improving adaptations which are computationally

expensive and degrade the response time of the system.

In contrast, strategy 𝜋𝑅𝑎𝑛 randomly selects an applicable adaptation at each time, i.e.

activating the filter component is not possible, if the filter is already activated.

Reward Function We use the same reward function as presented in section 9.4.1 (see

(9.13)). Recall that plausibility assertion (9.4) is formulated based on the motivation to

preserve reliability properties. Therefore, we can only consider reliability predictions (or

the success probability of the system) to assess whether the assertions hold. However,

since the challenge of a self-adaptive system is also to take performance-related attributes

into account, we consider a second reward function:

𝑟𝑃𝑒𝑟 𝑓 : S × Δ × S → [0, 2],
(𝑆, 𝛿, 𝑆′) ↦→ 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙) + (𝑛𝑜𝑟𝑚𝑟𝑡 ◦ 𝑟𝑡) (𝑆′)

(9.15)

To distinguish between both reward functions, we denote 𝑟𝑅𝑒𝑙 the pure reliability-based

reward function (i.e. (9.13)) and 𝑟𝑃𝑒𝑟 𝑓 the reward function from (9.15). Note that 𝑟𝑃𝑒𝑟 𝑓

289

9. Validation

1 public class ReliabilityPrioritizedStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge knowledge) {

5 if (getImgBrightness(knowledge) != "Normal" || getSensorNoise(knowledge)

!= "Low") {

6 return true;

7 }

8 return getResponseTime(knowledge) > THRESHOLD_RT

9 }

10

11 @Override

12 protected QVToReconfiguration plan(State source, Set<QVToReconfiguration>

options, SharedKnowledge knowledge) {

13 var highSensorNoise = getSensorNoise(knowledge) != "Low";

14 var brightChange = getImgBrightness(knowledge) != "Normal";

15 if (highSensorNoise && brightChange && isDefaultMLModelActivated) {

16 return switchToRobustMLModel(options);

17 } else if (highSensorNoise && !isFilteringActivated) {

18 return activateFilteringReconfiguration(options);

19 } else if (brightChange) {

20 return QVToReconfiguration.empty();

21 }

22

23 if (getResponseTime(knowledge) > THRESHOLD_RT) {

24 if (!isDefaultMLModelActivated) {

25 return switchToDefaultMLModel(options);

26 } else if (isFilteringActivated) {

27 return deactivateFilteringReconfiguration(options);

28 } else {

29 return QVToReconfiguration.empty();

30 }

31 }

32 return QVToReconfiguration.empty();

33 }

34 }

Listing 9.3: Adaptation logic of strategy 𝜋𝑅𝑒𝑙

accounts for performance by considering the normalised response time. We use the

normalisation function 𝑛𝑜𝑟𝑚𝑟𝑡 from (9.5) which normalises predicted response times to the

range [0, 1] w.r.t. some upper and lower response time bounds (i.e. by considering the upper

response time bound (i.e. 𝛽+𝑟𝑡 and 𝛽
−
𝑟𝑡). We solely use 𝑟𝑅𝑒𝑙 when checking assertion (9.4);

however, by considering 𝑟𝑃𝑒𝑟 𝑓 , we will demonstrate SimExp supports software engineers

in the decision-making process.

290

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

𝚽

𝒃𝑫 𝒃𝑹𝒐𝒃

Success Failure Success Failure

(𝐻𝑖𝑔ℎ, 𝐻𝑖𝑔ℎ) 0.85 0.15 0.95 0.05

(𝐻𝑖𝑔ℎ,𝑀𝑒𝑑𝑖𝑢𝑚) 0.9 0.1 0.97 0.03

(𝐻𝑖𝑔ℎ, 𝐿𝑜𝑤) 0.95 0.05 0.99 0.01

(𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ) 0.9 0.1 0.98 0.02

(𝑀𝑒𝑑𝑖𝑢𝑚,𝑀𝑒𝑑𝑖𝑢𝑚) 0.95 0.05 0.99 0.01

(𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤) 0.99 0.01 1 0

(𝐿𝑜𝑤,𝐻𝑖𝑔ℎ) 0.85 0.15 0.95 0.05

(𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚) 0.9 0.1 0.97 0.03

(𝐿𝑜𝑤, 𝐿𝑜𝑤) 0.95 0.05 0.99 0.01

Table 9.17.: The sensitivity models of 𝑏𝐷 and 𝑏𝑅𝑜𝑏 .

Interdependency Assumption of Architecture and Environment We assumed no interde-

pendency between the system or architectural configuration and the environment, i.e. the

dynamics of the self-adaptive system is purely environmental-driven (recall independence

assumption (6.9) on page 144).

Prediction of quality attributes For this part of the validation, we consider two quality

prediction tools/approaches. First, we use our reliability prediction approach for AI-

enabled systems, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏 | 𝜑𝐵, 𝜑𝐵𝑙). Second, we use SimuLizar to predict the response

time of a given state 𝑆 .

9.4.2.2. Experiment Setup

In the context of the HRI system, a Mask R-CNN [80, 2] has been used as a detection

component. However, the component has been trained via transfer learning, i.e. the

AI model was trained on a completely unrelated training dataset containing completely

different images as in the HRI context and finally retrained for a smaller set of HRI-related

training data. Therefore, we had not sufficient data to perform a sensitivity analysis.

Instead, we assumed sensitivity models for the AI components 𝑏𝐷 and 𝑏𝑅𝑜𝑏 which are

depicted on Table 9.17.

The monitorable space is defined as Φ := 𝑉𝑎𝑙 (𝑋𝜑𝐵) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁). We have picked the indi-

vidual sensitivity values such that for all uncertainty values 𝑏𝑅𝑜𝑏 indicates higher success

probabilities reflecting the circumstance that 𝑏𝑅𝑜𝑏 is more robust regarding uncertainties

compared to 𝑏𝐷 . We also configured the PCM model such that the initial architecture

configuration produces an acceptable response time, i.e. less than the fixed threshold

𝜀, which we set to 0.1. On the other hand, we have chosen the reliability-improving

adaptations (i.e. activation of the filter component and switching to 𝑏𝑅𝑜𝑏) such that they

introduce a performance overhead, i.e. the response time exceeds the required threshold 𝜀.

291

9. Validation

Name Value Description

𝛽+𝑟𝑡 0.3 The upper response time bound used for response

time normalisation, i.e. 𝑛𝑜𝑟𝑚𝑟𝑡 .

𝛽−𝑟𝑡 0.1 The lower response time bound used for response

time normalisation, i.e. 𝑛𝑜𝑟𝑚𝑟𝑡 .

𝜀 0.1 The response time threshold that must not be ex-

ceeded.

Number of simulations 100 Number of simulations per trajectory (compare

with horizon from SimExp).
Number of trajectories 150 Number of trajectories to simulate.

Table 9.18.: Overview of the parameter setting for the HRI case study system. For some parameters, no

description could be found.

In this way, we artificially generate a situation where performance and reliability compete

with each other but must be balanced by an adaptation strategy in the best possible way.

In the last section, we considered an ideal filter component that was able to deterministically

remove any occurrence of image blur. For the HRI system, we assume that the filter is not

able to remove all sensor noise. Therefore, we defined a probabilistic filter component that

is not always able to successfully remove sensor noise. Depending on the level of sensor

noise, the filter is more or less successful. More specifically, for 𝐻𝑖𝑔ℎ sensor noise, we

assume that the filter can reduce the level to𝑀𝑒𝑑𝑖𝑢𝑚 60% of the time and is unsuccessful

to 40%; for 𝑀𝑒𝑑𝑖𝑢𝑚 sensor noise, we expect the filter to reduce the sensor noise level

to 𝐿𝑜𝑤 70% of the time and be unsuccessful to 30% (where unsuccessful means that the

sensor level remains unchanged). The probabilistic nature of the filter is reflecting the

situation where sensor noise is not sufficiently reduced, or the filtered image is still likely

to produce wrong predictions.

Finally, table Table 9.18 summarises the made setups for the experiment. Just as for the

Udacity case study, we sampled 15000 states.

9.4.2.3. Experiment Results

As before, we calculated for each strategy the accumulated and averaged rewards of each

trajectory. That is, for a strategy 𝜋 , we apply 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) := 1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 to each trajectory (or

rather the rewards generated by 𝜋 of the trajectory). The results are depicted on Figure 9.18

as line plots which indicate the mean reward calculated by 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) for each time step

𝑡 ∈ {0, 1, . . . , 𝑁 = 100} and 95% confidence interval.

We considered three AI black-boxes which are to be safeguarded, namely 𝑏−, 𝑏𝐷 and

𝑏+. Note that 𝑏𝑅𝑜𝑏 is already considered to be a sufficiently robust (but at the cost of

a high resource burden) AI model such that we focus only on 𝑏𝐷 . Because of this high

computational cost, 𝑏𝑅𝑜𝑏 is rather to be considered in situations where the overall reliability

of the system is at risk (and the filter component is not sufficient to maintain reliability

292

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

(a) Pure reliability based rewards of 𝜋𝛿∅ [𝑏]. (b) Pure reliability based rewards of 𝜋𝑅𝑎𝑛 [𝑏].

(c) Pure reliability based rewards of 𝜋𝑅𝑒𝑙 [𝑏].

Figure 9.18.: SimExp results of the strategies 𝜋𝛿∅ [𝑏], 𝜋𝑟𝑎𝑛 [𝑏], 𝜋𝑅𝑒𝑙 [𝑏] evaluated w.r.t. 𝑟𝑅𝑒𝑙 .

objectives). Moreover, when safeguarding 𝑏+ it makes arguably no sense to switch the

perfect AI model 𝑏+ with 𝑏𝑅𝑜𝑏 . For validation, however, only the preservation of assertion

(9.4) matters and not the suitability of the adaptation logic itself.

Therefore, we have the following order of AI models: 𝑏− < 𝑏𝐷 < 𝑏+. Based on the ordering,

we expect to observe

𝜋 [𝑏−] < 𝜋 [𝑏𝐷] < 𝜋 [𝑏+] (9.16)

w.r.t. the expected reward 𝐼𝐸𝜋 [𝑋𝐺0
]. Looking at the results (the left side of Figure 9.18), we

observe the very exact ordering. Complementary to the results of Figure 9.18 consider

Table 9.19 which shows the expected and total rewards for each strategy. Just as in

Figure 9.18, the expected rewards maintain the strategy ordering when considering varying

AI models which conform to the expected ordering (9.16).

Finally, we evaluated the results by considering reward function 𝑟𝑃𝑒𝑟 𝑓 which also accounts

for performance aspects. Let us now put ourselves in the position of a software engineer

who has to choose one of the strategies for safeguarding 𝑏𝐷 , i.e. 𝜋𝛿∅ [𝑏𝐷], 𝜋𝑅𝑎𝑛 [𝑏𝐷] and
𝜋𝑅𝑒𝑙 [𝑏𝐷]. Therefore, consider Figure 9.19 which shows the results of all strategies (i.e.

𝜋𝛿∅ [𝑏𝐷], 𝜋𝑅𝑎𝑛 [𝑏𝐷] and 𝜋𝑅𝑒𝑙 [𝑏𝐷]) applied to 𝑏𝐷 by considering 𝑟𝑅𝑒𝑙 (see Figure 9.19a) and

𝑟𝑃𝑒𝑟 𝑓 (see Figure 9.19b).

293

9. Validation

Strategy 𝑰𝑬𝝅 [𝑿𝑮0]
∑

𝒊 𝒓 𝒊

𝒃− 𝒃𝑫 𝒃+ 𝒃− 𝒃𝑫 𝒃+

𝜋𝛿∅ [𝑏] 0.0 80.1 85.1 0.0 13659 14250

𝜋𝑅𝑎𝑛 [𝑏] 37.1 72.5 75.3 7038 13885 14124

𝜋𝑅𝑒𝑙 [𝑏] 28.4 81.1 82.2 4813 13832 14149

Table 9.19.: Overview of the expected and total rewards of each strategy of the HRI case study.

(a) Results of 𝜋𝛿∅ [𝑏], 𝜋𝑅𝑎𝑛 [𝑏] and 𝜋𝑅𝑒𝑙 [𝑏] based on 𝑟𝑅𝑒𝑙 . (b)Results of 𝜋𝛿∅ [𝑏], 𝜋𝑅𝑎𝑛 [𝑏] and 𝜋𝑅𝑒𝑙 [𝑏] based on 𝑟𝑃𝑒𝑟 𝑓 .

Figure 9.19.: SimExp results of the strategies 𝜋𝛿∅ [𝑏], 𝜋𝑟𝑎𝑛 [𝑏], 𝜋𝑅𝑒𝑙 [𝑏] w.r.t. 𝑟𝑅𝑒𝑙 and 𝑟𝑃𝑒𝑟 𝑓 .

From the figure, it can be seen that the order of the strategies is changing when taking into

account performance attributes. In summary, the results of our SimExp method show the

highest expected reward for the strategy 𝜋𝛿∅ [𝑏𝐷] (≈ 1.92); in comparison, 𝜋𝑅𝑎𝑛 [𝑏𝐷] (≈ 1.68)

and 𝜋𝑅𝑒𝑙 [𝑏𝐷] (≈ 1.7) perform worse. That is, the most reasonable design decision would

be to engineer the system without self-adaptation capabilities. For the reward function

𝑟𝑅𝑒𝑙 , the strategy 𝜋𝑅𝑎𝑛 [𝑏] performed best, arguably making more frequent reliability-

improving adaptations due to the random component of the strategy. However, the

strategy is not balancing the performance and reliability attributes ideally which results in

frequent performance violations. Strategy 𝜋𝑅𝑒𝑙 [𝑏], on the contrary, applies only reliability-

improving adaptations if necessary which leads to better responsiveness of the system. The

strategy 𝜋𝛿∅ [𝑏𝐷], on the other hand, always remains in the initial architecture configuration,

which is known to be performance-friendly, i.e. the configuration achieves the best possible

response time and thus does not show any performance violations. In addition, the AI

model 𝑏𝐷 already has acceptable predictive accuracy which leads to high rewards overall.

Note however that the results are dependent on the defined reward function and the

behaviour of the environment. For example, if we assume a more dynamic environment

and the reward function favours the reliability of the system, the overall result could be

different.

Finally, note that the expected rewards of all strategies safeguarding 𝑏𝐷 (see the third col-

umn of Table 9.19) deviate from the averaged accumulated rewards of Figure 9.19a. In terms

of plausibility assertion (9.4) this has no consequences because the assertion is defined

294

9.5. Discussion of Results and Research Questions

over the same strategy 𝜋 where only the safeguarded AI model 𝑏 varies. Nonetheless, one

would expect the same ordering when comparing the expected reward with the averaged

accumulated reward. However, when considering the total reward (see the sixth column of

Table 9.19), we observe the very same strategy ordering as in Figure 9.19a. Just as in section

9.4.1, we attribute this to the convergence behaviour. More specifically, while 𝜋𝛿∅ and 𝜋𝑅𝑒𝑙
dictate a specific adaptation logic, the resulting sampled trajectory space often contains

more characteristic trajectories. On the contrary, strategy 𝜋𝑅𝑎𝑛 is completely based on

random such that no characteristic trajectories exist but solely trajectories that follow

no pattern or logic. This exploratory property of 𝜋𝑅𝑎𝑛 leads to an increased trajectory

space from which samples are generated (containing no characteristic trajectories but

only random ones). However, this is accompanied by slow convergence behaviour when

estimating 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑋𝐺0
].

9.5. Discussion of Results and Research Questions

In this section, we discuss the results of the validation and answer the research questions

accordingly. Moreover, we discuss the threats to validity.

9.5.1. Goal Achievement

Having carried out the validations for each validation goal, we are now discussing the

results and achievement of each validation goal. As a final remark, we would like to

emphasise that we consider the case study systems load balancing and HRI rather as

supplementary validations. In the case of the load balancing system, this is because

SimuLizar is not fully comparable to SimExp (as SimuLizar is scenario-based); in the case

of the HRI system, we had to assume sensitivity models and could not analyse the existing

AI models. Nevertheless, both case studies are considered an integral part of the validation,

which reinforces the validity of our results.

9.5.1.1. Modelling the Environmental Dynamics

For validation goal 1, we aimed to validate the applicability of our EnvDyn metamodel. In

contrast to the other validation goal, there is no dedicated section where goal 1 is validated.

This is because the validation of all other goals implicitly validates goal 1.

For the validation goal, we focused on two questions: First, whether we can instantiate and

apply our EnvDynmetamodel domain independently (i.e. question 1.1) and second, whether

the essential characteristics of the operating environment are captured (i.e. question 1.2).

For both questions, we considered the metrics used in the remaining validation goals

as their results directly provide answers for the validation questions 1.1 and 1.2. We

were able to instantiate the EnvDyn metamodel for all considered case study systems.

That is, we modelled the operating environment of the individual self-adaptive systems

295

9. Validation

considered for each case study system (each of which belongs to a different domain).

Therefore, we identified the essential variables of the environment which affect the quality

attributes of the system (e.g. activation probability, SNR and wireless interference in the

context of the DeltaIoT case study system), modelled their initial/static distribution (i.e.

the BN describing the static environment) and modelled the environmental dynamics (i.e.

the temporal expansion captured by a DBN). Moreover, the sensitivity models of the AI

components are also modelled with our EnvDyn metamodel (modelled as BN).

Based on the modelled operating environments, we conducted the validation of the goals 2,

3 and 4 as intended. As presented in the respective sections, we showed that the validation

results are in line with our expectations and are considered to be valid. Therefore, we

conclude that our EnvDyn metamodel provides the required capabilities to model and

capture the essential characteristics of an operating environment. In summary, we conclude

that the EnvDyn metamodel is applicable in the sense that the operating environments can

be modelled domain-independently and that the created instances are sufficiently accurate

such that they allow the evaluation of adaptation strategies (i.e. goals 2 and 4) and the

prediction of reliability attributes of AI-enabled systems (i.e. 3).

9.5.1.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

In terms of validation goal 2, we validated our SimExp method in the context of two

case study systems, namely the DeltaIoT and the load balancer system. Moreover, we

formulated three validation questions (i.e. questions 2.1-2.3).

Question 2.1 was concerned with whether our SimExp framework generates comparable

evaluation results compared with a domain-specific simulator. We defined two metrics

(namely metrics 2.1.1 and 2.1.1) to elaborate the question. For metric 2.1.1, we considered

the DeltaIoT system where we compared the evaluation results of adaptation strategies

produced by SimExp with the results of the domain-specific DeltaIoT simulator. The results

demonstrated that the rank of the strategies was preserved by SimExp. Although we found

deviations for a single strategy, the anomaly can be attributed to prediction deviations of

the Prism model-checking tool used for energy consumption prediction. Furthermore, we

have shown that our SimExp method provides accurate evaluation results for this strategy

under certain conditions. For metric 2.1.2, we instantiated the SimExp method in the

performance domain, i.e. the load balancing system based on the ZNN.com system. In the

case study, we considered SimuLizar as a domain-specific simulator to predict the quality

of adaptation strategies in terms of response time. However, SimuLizar is a scenario-based

simulation tool which is only partially comparable with our SimExp method. Nonetheless,

we defined three evaluation scenarios and three adaptation strategies for which SimuLizar

could evaluate each strategy individually. We transformed the scenarios into deterministic

trajectories which we used to evaluate each adaptation strategy with SimExp. We observed

that our SimExp framework produced the same evaluation results as SimuLizar, i.e. the

same quality rank of the strategies.

296

9.5. Discussion of Results and Research Questions

In validation question 2.2, the goal was to validate whether our SimExp method supports

software engineers in decision-making. Hereby, we considered the same metrics as for

question 2.1. Because the results of the metrics demonstrated that our SimExp frameworks

generate the same strategy rank, we can conclude that the framework allows for the

comparison of distinct strategies. Moreover, for the load balancer system we considered

two adaptation strategies of the same adaptation strategy family. Because also in this case,

the proper adaptation strategy rank was maintained, we can also conclude that design

decisions within an adaptation strategy family can be evaluated. Similarly, we considered

several variants of an adaptation strategy in the DeltaIoT system (corresponding to design

decisions within a strategy family) and evaluated them accordingly, e.g. different energy

consumption thresholds.

In validation question 2.3, we focused on whether SimExp enables the comparison of self-

adaptive and static software systems. Again, we considered the same metrics. Recall that

we have always considered the adaptation strategy 𝜋𝛿∅ in each case study system, which

simulates the behaviour of a static software system. Since both, DeltaIoT and SimuLizar

allow the evaluation of static systems, we could validate whether SimExp generates the

same ranks for a set of adaptation strategies including 𝜋∅ and compare the results with

DeltaIoT and SimuLizar. In doing so, we have shown that our SimExp method allows the

comparison between self-adaptive systems and a static software system. Therefore, we

conclude that SimExp provides means to support software engineers in deciding whether

self-adaptation capabilities are necessary or whether a static system already meets the

quality requirements.

Complementary to the results of both case study systems, we showed that SimExp preserves
plausibility assertions when evaluating adaptation strategies for safeguarding AI black-box

components (see validation goal 4 later). The results not only demonstrate the general

validity of SimExp but additionally demonstrates the ability to compare distinct strategies

and design decisions within strategy families. In total, we considered nine different

adaptation strategies (considering all case study systems; three per case study, with

strategy 𝜋∅ being the same in all case studies) to solve the adaptation problem of each

case study. Taking into account the results of all metrics for each validation question, we

conclude that MDPs are appropriate analytical models to evaluate adaptation strategies.

9.5.1.3. Reliability Analysis of AI-enabled Systems

Regarding validation goal 3, we considered the Udacity challenge for predicting steering

angles of self-driving cars. Because our approach is based on an existing reliability approach

(without changing the core prediction logic), we focused on plausibility assertions which

must be preserved by our approach. We considered three validation questions, i.e. questions

3.1-3.3.

In validation question 3.1, we addressed whether sensitivity models are appropriate repre-

sentations of AI models when predicting system-level reliability attributes. We tackled the

question by considering two metrics, i.e. metrics 3.1.1 and 3.1.2. For the metric 3.1.1, we

297

9. Validation

measured the similarity of the individual success/failure probabilities of each sensitivity

model to the resulting success/failure probabilities of the reliability prediction. Since only

the success/failure probabilities of the sensitivity models affect the reliability prediction,

both success/failure probabilities (i.e. those of the sensitivity model and those of the

reliability prediction) must have some similarity. Therefore, we measured the similarities

using the Bhattacharyya distance. In all cases, we determined values close to 0, which

means that the distributions are very close or similar. In addition, we considered metric

3.1.2 which is associated with plausibility assertion (9.1). Regarding plausibility assertion

(9.1), the results demonstrated that for a set of steering angle prediction models which

induce an accuracy order (w.r.t. some performance measure), we could observe the same

order in the reliability predictions. That is, for any two AI models 𝑏 and 𝑏′ with 𝑏 > 𝑏′ (i.e.
𝑏 gives more accurate prediction results compared to 𝑏′), the predicted success probability

of the overall system with 𝑏 is higher than for the same system with 𝑏′. Given the results

of both metrics, we conclude that sensitivity models are adequate representations of AI

models in terms of reliability prediction.

In validation question 3.2, we focused on whether our reliability prediction approach

reflects reliability attributes of AI components. Hereby, we consider metric 3.2.1 which

is associated with plausibility assertions (9.1)-(9.3). Plausibility assertion (9.1) has been

already validated for the previous question. For plausibility assertions (9.2) and (9.3), we

similarly demonstrated that the individual conditional success probabilities of a sensitivity

model (conditioned on a particular uncertainty tuple) are preserved by the individual

conditional success probabilities of our reliability prediction.

Finally, in question 3.3, we validated whether our relaibility prediction approach supports

software engineers in decision-making by considering metric 3.3.1. The metric is associated

with the assertions (9.2) and (9.3). We have considered two architectural patterns (namely

the filter and the n-version patterns), which we have applied and analysed in terms of

the reliability attributes. We have taken advantage of the fact that architectural patterns

(when applied as described in section 7.1) act exclusively on the sensitivity model of an AI

model 𝑏. Consequently, this can be thought of as generating new sensitivity models for

which the assertions (9.2) and (9.3) must still hold. The results of the validation confirm

these effects and demonstrates that both assertions are preserved.

In summary, we consider the validation goal 3 as achieved. We were able to validate

all plausibility assertions and answer each validation question positively. Therefore, we

conclude the plausibility of our reliability prediction.

9.5.1.4. Evaluating Adaptation Strategies of Self-Adaptive Systems to Safeguard AI
Black-Box Components

Finally, for validation goal 4, we expanded the validation of goal 3 to self-adaptive systems.

In doing so, we have considered a single validation question (namely question 4.1) which

elaborates whether our expanded SimExp framework allows the evaluation of adaptation

strategies specifically designed to safeguard AI components. More precisely, we aim

298

9.5. Discussion of Results and Research Questions

to validate whether reliability-specific attributes are sufficiently reflected in the overall

evaluation result of a strategy produced by SimExp.

For validation question 4.1, we have considered an additional plausibility assertion (more

precisely assertion (9.4)) which states in simplified terms that for any two AI models 𝑏 and

𝑏′ with 𝑏 > 𝑏′ it follows that 𝜋 [𝑏] > 𝜋 [𝑏′], i.e. the strategy 𝜋 applied to both AI models

must have a higher expected reward for the safeguarded model with higher accuracy. We

determined the validity of our approach regarding assertion (9.4) by considering various

adaptation strategies and AI models in two case stud systems, namely the Udacity self-

driving car challenge and the HRI system. For both case studies, we demonstrated that

assertion (9.4) has been preserved by our approach.

The results are complementing the results of validation goal 2 and allow the conclusion

that our SimExp method is also capable to evaluate adaptation strategies for safeguarding

AI black-box components.

9.5.2. Answering the Research Questions

Based on the validation results, we are now able to answer the research questions. Recall

that the research questions are structured by one main research question followed by

several sub-research questions which must be answered individually to answer the main

research question. Therefore, we first start to answer the sub-research question and discuss

the main research question afterwards.

Research Question 1 We formulated research question RQ1 as follows:

Research Question 1: How to evaluate adaptation strategies of self-adaptive

systems at design-time regarding the ability to meet quality objectives?

The first research question is mainly concerned with the question of how to evaluate

adaptation strategies at design-time. We have formulated several sub-research questions

whose individual answers enable us to answer the main question:

Research Question 1.1: How can environmental dynamics be formalised domain-

independently at design-time?

To evaluate adaptation strategies at design-time, one has to model the operating environ-

ment or environmental dynamics in which a self-adaptive system operates. Moreover,

we don’t want to restrict ourselves to a certain domain but rather evaluate adaptation

strategies domain-independently. This is essentially what research question RQ1.1 is

about. To tackle this issue, we introduced our EnvDyn metamodel based on the seman-

tics of template-based probabilistic models which allow the instantiation of probabilistic

structures domain-independently. In the validation, we showed that our metamodel

299

9. Validation

could be instantiated for all domains of the four case studies. Therefore, we consider the

sub-research question to be sufficiently addressed by our EnvDyn metamodel.

Research Question 1.2: What is an appropriate level of abstraction to represent

the environmental dynamics domain independently? By appropriateness, we mean

that

• adaptation strategies can be analysed at design-time with sufficient accuracy.

• environmental state spaces can be described flexibly and compactly.

The sub-research question RQ1.2 relates to the level of abstraction that such a formal

modelling language must provide, i.e. the ability to describe large state spaces and still

be meaningful enough to evaluate adaptation strategies. As already discussed for RQ1.1,
we address the problem at a high abstraction level by using template-based probabilistic

models (which generalise the framework of DBNs). To describe the environmental state

spaces compactly and flexibly, we considered each environmental variable as a random

variable which can be related to each other, i.e. they form a network of random variables

or more precisely a DBN. We assumed that the value spaces of the individual random

variables are discrete which reduces the state space tremendously. The discretisation

level can be controlled by a domain expert such that the complexity of the state space

is controllable as well. Finally, the decomposability property of DBNs as well as the

stationary and Markov assumptions that apply to DBNs, allow the compact modelling

of environmental state spaces in a simple and human-understandable way. Because our

EnvDynmetamodel adheres to the semantics of DBNs, we can leverage these characteristics

to describe large state spaces compactly and flexibly. In fact, the validation results confirm

our argumentation. For each case study, we were able to describe the dynamics of the

environment by a compact set of discrete probability distributions. In particular, for the

DeltaIoT system (which has a large environmental state space), we have demonstrated

how large and complex-structured state spaces can be described and handled using our

EnvDyn metamodel and the associated concepts. Also, for each case study, we produced

valid results which are all dependent on the EnvDyn metamodel. Therefore, we conclude

that our EnvDyn metamodel sufficiently addresses RQ1.2.

Research Question 1.3: What is an appropriate analytical model to enable design-

time analyses of self-adaptive systems?

In terms of RQ1.3, we addressed the question by using MDPs as analytical models. More

specifically, we instantiated the generic framework of MDPs in the context of self-adaptive

systems. The rationale for using MDPs is twofold: first, they are prevalent models to

capture the dynamics of self-adaptive systems; second, there are various approaches which

build upon MDPs that can be used for adaptation strategy evaluation. Especially for the

second point, we reused concepts from dynamic programming and Monte Carlo methods.

More specifically, we used Monte Carlo prediction to evaluate adaption strategies based

on the formal semantics of MDPs. With regard to the validation results, using MDPs as

300

9.5. Discussion of Results and Research Questions

analytical models is promising. In terms of the DeltaIoT and load balancing case study

systems, our MDP-based SimExpmethod produced the same ranks as their domain-specific

counterpart, i.e. the DeltaIoT simulator and SimuLizar. Also, for the Udacity challenge

and the HRI case study system, our SimExp method maintained the plausibility assertion

required to consider the results valid.

Research Question 1.4: Are the predictions sufficiently accurate to yield plausible

results?

In terms of accuracy, we showed that for the DeltaIoT and load balancing case study system

our SimExp method was able to produce the same strategy ranks. Therefore, we argue

that our SimExp method produces sufficiently accurate predictions and thus plausible

results. Note that we do not aim to achieve equal or better accuracy as domain-specific

simulators but maintain a certain degree of accuracy sufficient to compare and evaluate

distinct adaptation strategies as well as design decisions.

However, when looking at the prediction results of the quality attributes themselves, we

experienced some deviations compared to the domain-specific simulators. In the DeltaIoT

case study, for example, the energy consumption predictions deviated significantly from

the predictions of the DeltaIoT simulator. Nevertheless, the main characteristics of the

predictionsweremaintained (i.e. if an architectural configuration causes high or low energy

consumption, we observed this in both SimExp and the DeltaIoT simulator). Therefore,

we conclude that at least for adaptation strategy evaluation, the results are sufficiently

accurate and plausible (which also depends on the quality attribute prediction tool used).

Overall, we conclude that RQ1 can only be partially answered. Effectively, the results

indicate that our SimExp method enables the evaluation of adaptation strategies by consid-

ering quality objectives as a primary source to determine the overall quality of a strategy.

The validation, however, revealed a couple of weaknesses in our SimExp method. The first

problem relates to efficiency. In general, the efficiency of SimExp is unproblematic (since

the horizon and the number of sample states per trajectory are fixed) if no convergence

criteria are defined; in this case, the efficiency depends on the complexity of the state

space (which is a general theoretical problem in this area). However, since our SimExp
framework is dependent on quality attribute prediction tools to determine a reward (e.g.

SimuLizar or Prism), the efficiency of SimExp is also dependent on the efficiency of the

prediction tools. This was particularly evident in the validation of the DeltaIoT system

where we used Prism as a prediction tool. Therefore, the selection of the prediction tools is

crucial in terms of efficiency. The same applies to the accuracy of the prediction tools, e.g.

Prism indicated deviations in predicting the energy consumption of the DeltaIoT system.

Moreover, comparable inaccuracies have been observed in the context of the load balancer

case study system and SimuLizar. The SimExp method suffers information loss due to

discretisation, i.e. the continuous simulation of SimuLizar maintains performance-relevant

properties while SimExp applies a simulation for every state such that the simulation

context (and thus performance-relevant properties) is lost after each simulation.

301

9. Validation

However, we consider the SimExp framework not as a fully-fledged approach which

is applicable for any domain but rather as a method, one can take into account when

evaluating adaptation strategies for a specific domain and adaptation problem. That is,

in some domains or scenarios further efforts have to be made to fully apply the SimExp
method. For example, for the DeltaIoT case study, we have additionally created an auxiliary

metamodel to adequately capture the adaptation parameter. Therefore, we argue that

in some cases SimExp needs to be enriched by additional concepts (such as additional

metamodels or state-preserving simulations) to cope with domain-specific particularities,

but that the basic methodology of SimExp remains unaffected. Furthermore, due to the

large number of possible domains where self-adaptive systems are applicable, it cannot be

shown that the SimExp method is applicable in all scenarios. However, this was also not

in the scope of this work but rather to gain insights into the general feasibility of such

an approach/method. Nonetheless, the results of the validation showed that the SimExp
method provides a framework for the evaluation of adaptation strategies.

Research Question 2 We formulated research question RQ2 as follows:

Research Question 2: How can software systems that contain AI black-box

components be evaluated in terms of meeting reliability attributes at design-time?

In the context of the research question, we investigated the following sub-research ques-

tion:

Research Question 2.1: How to deal with the hidden state problem of AI black-box

components?

Recall that the hidden state problem of AI black-box components refers to the inability to

observe the true state of an AI component. We addressed the problem by generating a

sensitivity model for each AI black-box component. The sensitivity model approximates

the predictive uncertainty w.r.t. a set of uncertainties, e.g. image brightness or image blur.

Based on the sensitivity model, we circumvent the problem of knowing the true state of

the AI component but consider the failure potential (i.e. predictive uncertainty) which is

most relevant when we deal with reliability attributes. Since the validation results are in

line with our expectations (i.e. all plausibility assertions were preserved), we conclude

that sensitivity models are a suitable means to represent AI components during reliability

analysis and to deal with the hidden state problem.

Research Question 2.2: How to systematically consider the influence of pre-

dictive uncertainty and causally related environmental variables in the reliability

prediction?

Recall that we distinguished between first-order and second-order uncertainties. First-

order uncertainty refers to predictive uncertainty. Second-order uncertainties relate to

302

9.5. Discussion of Results and Research Questions

monitorable environmental factors or disturbances in the input data that potentially lead

to incorrect predictions and allow conclusions to be drawn about the true state of the AI

component; RQ2.2 focuses on second-order uncertainties. As for RQ2.1, we addressed
the problem by representing AI components with sensitivity models. Sensitivity models

describe how the predictive uncertainty of an AI component changes for a given set of

uncertainties. This is particularly important for analysing the reliability of the overall

system in which the AI model is integrated w.r.t. a set of known uncertainties. The validity

of the validation results confirms the suitability of addressing RQ2.2 using sensitivity

models.

Based on the sub-research questions RQ2.1 and RQ2.2, we can represent and evaluate

the predictive uncertainty of AI components w.r.t. a set of uncertainties. For the reliability

prediction itself, we reused the reliability prediction tool PCM-Rel [33] which predicts the

success probability of a system modelled with PCM. The extended PCM-Rel by including

the sensitivity model of the AI component to account for failure potentials. Because we

did not change the core prediction logic of PCM-Rel, but only implemented an upstream

resolving routine, we did not need to show the accuracy of our reliability prediction

approach (as this would validate the accuracy of PCM-Rel itself, which has already been

done in [33]). Instead, we showed the validity of our approach by checking whether a set

of plausibility assertions are preserved. In the context of the Udacity case study system,

we were able to validate the preservation of all assertions, so we consider RQ2 to be

sufficiently addressed.

Research Question 3 We formulated research question RQ3 as follows:

Research Question 3: How can adaptation strategies of self-adaptive systems that

safeguard uncertain AI black-box components be evaluated in terms of reliability at

design-time?

While research question RQ2 was related to static software systems, RQ3 focuses on

the more general case, i.e. self-adaptive systems. Effectively, the answer of RQ3 directly

follows from the results related to RQ1 and RQ2. In RQ1, we developed the SimExp
method which establishes the basic framework to evaluate adaptation strategies. In RQ2,
we provided the concepts necessary to predict reliability attributes of AI-enabled systems.

Therefore, we have combined the two concepts to provide a framework for evaluating

adaptation strategies of self-adaptive systems to safeguard AI black box components. We

validated the approach in terms of the Udacity challenge and HRI case study system. For

both case studies, we could show that plausibility assertion (9.4) was preserved which we

considered as a prerequisite to consider our approach valid.

303

9. Validation

9.5.3. Threats to Validity

Finally, we complete this section by enumerating possible threats to validity. More specifi-

cally, we discuss internal and external validity.

9.5.3.1. Internal Validity

For the validation of our SimExp method, we estimate the threats of internal validity to be

rather low. This is mainly because we compare SimExp with existing simulators, i.e. the

DeltaIoT simulator and SimuLizar. In both cases, we produced similar results. Although

we observed isolated deviations in the context of the DeltaIoT case study, we were able to

demonstrate experimentally that the deviations are a result of the inaccuracy of Prism.

Consequently, the inaccuracy of the evaluation tools may potentially pose a further threat

to validity. However, all prediction tools that we used are extensively validated and widely

accepted in their corresponding communities, i.e. see [15] for SimuLizar, [109] for Prism

and [33] for PCM-Rel. Although we have found discrepancies in Prism predictions, we

show experimentally that Prism (in conjunction with our SimExp method) gives plausible

predictions under controlled conditions. Furthermore, since we are no Prism experts but

have reused the Prism files from [207] (see [140] with the artefacts), we cannot rule out

the possibility that these files contain implementation bugs. Another possible threat to

validity refers to the inaccuracy of SimuLizar and the DeltaIoT simulator which we used

as a baseline to compare our results. However, both simulators have been used in different

contexts and case studies (see for example [15] for SimuLizar and [168, 194, 143] for the

DeltaIoT simulator), so we consider them suitable baselines.

For validating our reliability prediction approach, we created an architecture model (PCM

model) and applied sensitivity analysis to generate the sensitivity models of the AI compo-

nents. Both crucially impact the validation result and are thus threats to internal validity.

Regarding the architecture model, however, we already explained that as long as the

architecture is used in each reliability prediction consistently, the validity of the results

and plausibility assertions are not impacted. For the sensitivity analysis, we integrated the

insights of Tian et al. [186] which exhaustively investigated the steering angle prediction

models of the Udacity self-driving car challenge. More precisely, we considered uncertain-

ties for which Tian et al. verified erroneous behaviour of the steering angle prediction

models. Moreover, we determined the deviation of the predicted and actual steering angles

based on a metamorphic relation introduced by Tian et al. Finally, at least plausibility

assertions (9.2) and (9.3) are independent of the accuracy of the sensitivity model; that is,

only the causalities between the success probabilities of the sensitivity models and the

associated reliability analysis results are relevant.

9.5.3.2. External Validity

We have instantiated the SimExp method in four different domains. Therefore, we can

safely exclude the possibility that the method is not generalisable.

304

9.5. Discussion of Results and Research Questions

Concerning our reliability prediction approach for AI-enabled systems, it could be argued

that the approach has only been validated for two case studies with similar settings and

a similar experimental setup such that generalisability is not guaranteed. If we recall

the Udacity case study, one will see that the mere fact that our approach preserves the

causalities between the sensitivity model and the predictions is sufficient to conclude that

our approach is generalisable. The same applies to the HRI case study system. Regardless

of what type of uncertainties (i.e. whether image brightness or neuron coverage or other

factors) are considered in the sensitivity model, as long as the sensitivity analysis correctly

captures the corresponding sensitivities, our reliability approach correctly accounts for

them in the prediction results. That is, we could have used other uncertainties for which

we would have analysed the sensitivity model in a completely different context, but

would find the same causalities between the sensitivity model and the prediction results

generated by our approach. Therefore, we conclude that our reliability prediction approach

is generalisable to other application scenarios.

305

Part VI.

Epilogue

10. Conclusion

In this chapter, we conclude the thesis. Hereby, we give in section 10.1 a summary of

the contributions, their related research questions and how they have been validated. In

section 10.2, we recap and discuss the main limitations and assumptions of this thesis.

Finally, in section 10.3, we discuss future work.

10.1. Summary

In summary, this thesis presented approaches to evaluate architectural safeguards of

AI black-box components regarding reliability attributes. Besides classic architectural

approaches such as architectural patterns (e.g. n-version programming pattern), we also

considered self-adaptive systems as architectural safeguards. The central goal of this thesis

was to evaluate the effect of architectural safeguards and to make informed decisions in

the decision-making process, i.e. regarding the selection of an appropriate architectural

safeguard w.r.t. quality requirements. We focused on software reliability as system-level

property or attribute; however, we integrated our approach into the Palladio framework

such that architectural safeguards could be evaluated from the perspective of several quality

attributes (e.g. performance and reliability). Therefore, we presented three contributions

that addressed our central goal. Additionally, we presented a fourth contribution which

complements the aforementioned contributions by a classification structure to evaluate

AI-enabled systems in terms of giving assurances for dependability-related system-level

properties. In the following, we briefly summarise the approaches, research questions and

validation results of each contribution.

Contribution 1: Domain-agnostic instantiation of probabilistic environment models. The

first contribution of this thesis partially addressed research question RQ1 by focusing on

the sub-research questions RQ1.1 and RQ1.2. Hereby, the main result is a formal mod-

elling language for describing probabilistic environments, i.e. the EnvDyn metamodel. The

metamodel serves two purposes: First, it allows the modelling of environmental variables

and their effect on the predictive uncertainty of an AI model. Second, the metamodel

describes concepts to model the temporal expansion of the environmental variables to

describe the operating environment or the Environmental Dynamics of a self-adaptive sys-
tem. Essentially, the semantics of the EnvDyn metamodel is based on Bayesian modelling.

More specifically, for the first part of the metamodel, we employ BNs (Bayesian networks)

to model the environmental variables and their effects on the predictive uncertainty of

309

10. Conclusion

an AI model by a DAG (directed acyclic graph) and a set of probability distributions. For

the temporal expansion, we use DBNs (dynamic Bayesian networks) which extend BNs

by an inductive description capturing the temporal evolution of the random variables

of the original BN. The modelling capabilities form the building blocks for the second

and third contributions because the modelled environments play an essential role in pre-

dicting reliability attributes of AI-enabled software systems (second contribution) and

later as a generalised variant for self-adaptive software systems (third contribution). Fi-

nally, since AI is applicable in various domains, there are also many domain-specific

environmental variables which affect the predictive uncertainty of an AI model. Conse-

quently, the EnvDyn metamodel must allow the instantiation of environmental variables

domain-independently. While arguing from a theoretical perspective that reusing the

formal semantics of Template-based Probabilistic Models leads to domain independence,

we support this claim by instantiating the EnvDyn metamodel in four different domains

(i.e. the four case study systems).

We validated the applicability of the EnvDyn metamodel by considering four case study

systems. However, we do not explicitly validate the applicability but rather implicitly by

validating the second and third contributions. Note that the second and third contribution

highly depends on the EnvDynmetamodel in that instances are used to make reliability pre-

diction for AI-enabled systems and to determine the quality of an adaptation strategy w.r.t.

several quality objectives. Since we were able to successfully validate both contributions,

we implicitly validated the applicability of our EnvDyn metamodel. In addition to the pure

theoretical argument of achieving domain independence by reusing the formal semantics

of template-based probabilistic models, the instantiation of the EnvDyn metamodel in four

different domains supports that claim.

Contribution 2: Reliability prediction of AI-enabled systems at design-time. The second

contribution of this thesis addressed research question RQ2 and its related sub-questions.

The result of the contribution is a reliability prediction approach for AI-enabled systems.

The approach is based on the existing reliability prediction approach of Brosch [33].

We abstracted an AI black-box component by a sensitivity model which captures the

predictive uncertainty of the AI model and the environmental variables affecting the

predictive uncertainty. Hereby, we reuse the modelling capabilities provided by our

EnvDyn metamodel from the first contribution. We apply an upstream sensitivity analysis

to obtain the probability distributions that describe the effect of the environmental variables

on the predictive uncertainty of the AI model. The resulting sensitivity model is integrated

into our extended reliability prediction approach to systematically consider the failure

potentials or the predictive uncertainty of the AI model. We reused the formal modelling

language AT (architectural templates) to describe architectural patterns such as the n-

version programming pattern. Finally, we created an uncertainty-refined failure-type

metamodel which relates architectural templates (described by ATs) with the sensitivity

model of an AI component. Furthermore, the metamodel allows modelling the effect of

the considered architectural safeguard (e.g. an architectural pattern) on the predictive

uncertainty of the AI model (directly or indirectly). Thus, one can predict the effect of an

310

10.1. Summary

architectural safeguard on the overall reliability of the system by considering its effect on

the predictive uncertainty of the AI model.

We validated the approach by considering the Udacity case study system which considers

various AI models for steering angle prediction in the context of autonomous driving.

The primary goal of the validation was to show the plausibility of our approach. Because

we did not change the core logic of the reliability prediction approach of Brosch [33] but

rather use an update routine to account for the failure probability of an AI component

(w.r.t. the sensitivity model), the accuracy of the prediction results didn’t have to be

validated. Instead, we validated a set of plausibility assertions which must be preserved by

our holistic reliability prediction approach. The plausibility assertions account for real

measured properties of the considered AI models. For example, let 𝑏 and 𝑏′ be two AI

models where 𝑏 is more accurate than 𝑏′ w.r.t. some performance measure. If we assume a

fixed architecture in which only the AI component is variable, then the predicted reliability

of the software architecture including 𝑏 must be higher compared to the prediction of the

software architecture including 𝑏′. We could show that our reliability prediction approach

preserves all plausibility assertions. Based on the plausibility assertions we could validate

that our reliability prediction approach allows software engineers to evaluate architectural

safeguards regarding reliability attributes at design-time. Moreover, the validation showed

that our approach enables the comparison of architectural safeguards from the perspective

of different quality attributes (e.g. reliability and performance). This assists software

engineers in decision-making, as they can make informed trade-off decisions (in terms of

the quality requirements of the system) at design-time.

Contribution 3: Evaluation of adaptation strategies of self-adaptive systems at design-time.
The third contribution of this thesis addresses two research questions and is divided into

two parts. The first (and more general) part examines how adaptation strategies of self-

adaptive systems can be evaluated at design-time in general; that is, for any purpose (i.e.

beyond safeguarding AI components) and in any domain. This relates to research question

RQ1 and tackles the sub-questions RQ1.3 and RQ1.4. To evaluate adaptation strategies,

we defined self-adaptive systems as MDPs (Markov decision processes). In MDPs, the

main challenge is to find a policy function that returns for each state a suitable action

such that the accumulated reward over time is maximised w.r.t. some reward function. We

have equated an adaptation strategy with the concept of a policy in MDPs and integrated

quality objectives (which must be addressed by the adaptation strategy) into the reward

function. Moreover, we mapped the remaining concepts to equivalent concepts in the

domain of self-adaptive systems and used model-based techniques to describe them at

design-time, i.e. adaptations are abstracted by model transformations, architectural system

configurations are described by PCM (Palladio Component Model) and the operating

environment is modelled by our EnvDyn metamodel. We implemented the concepts in

our SimExp framework. Internally, SimExp applies Monte Carlo prediction to evaluate

the adaptation strategy at design-time by sampling environmental states (from the DBN

capturing the operating environment modelled by the EnvDyn metamodel of the first

contribution) and applying model transformation whenever the strategy decides (w.r.t.

311

10. Conclusion

the current state) whether an adaptation is applied or not. Each decision of the strategy

is evaluated by the reward function where the reward function makes use of quality

prediction tools to predict the impact of the selected adaptations on the quality objectives.

In the end, the expected accumulated reward is estimated and relates each strategy with a

value and serves as a foundation to compare strategies or assess design decisions within a

strategy.

We validated the appropriateness of this part of the contribution by considering two

case study systems, namely a load balancer and the DeltaIoT case study system. Both

are equipped with a domain-specific simulator that allows the evaluation of adaptation

strategies for the given case study. We applied our SimExp method in both domains, i.e.

we created the corresponding models, model transformations, etc. For each case study, we

considered a fixed set of adaptation strategies that were once evaluated by SimExp and

once evaluated by the respective simulator of each case study. We compared the resulting

ranks of the evaluated strategies. The results were in line with our expectations: The

generated ranks of the adaptation strategies were equal to the ranks produced by the

simulators. Thus, we could not only validate the appropriateness of SimExp but also the

general possibility to evaluate and compare design decisions within an adaptation strategy

and distinct strategies.

The second part of this contribution combines our reliability prediction approach from the

second contribution with the SimExp framework to enable the evaluation of self-adaptive

systems for safeguarding AI black-box components. Hereby, we integrated the reliability

prediction approach into the reward function. Moreover, we discussed how to deal with

large input spaces (e.g. the pixel space) during the evaluation process by focusing on more

manageable spaces, i.e. the Monitorable Space.

For the second part of this contribution, we validated again the plausibility. Just as in the

second contribution, we formulated plausibility assertions which must be maintained by

the approach. For the validation, we considered two case study systems, namely the HRI

and Udacity case study system. The results have shown that all plausibility assertions

were maintained by our approach.

Overall, we can conclude that our SimExp framework allows the evaluation of adaptation

strategies at design-time which greatly supports software engineers in comparing distinct

strategies or design decisions within an adaptation strategy family. Especially when

evaluating adaptation strategies of self-adaptive systems that are acting as architectural

safeguards, software engineers cannot only evaluate the quality of a strategy from the

perspective of reliability but also other quality attributes (e.g. performance). Moreover, we

demonstrated how the SimExp framework can be used to evaluate whether an adaptive

or non-adaptive solution of an architectural safeguard should be considered. Overall, the

SimExp framework provides software engineers with a repertoire of analysis scenarios

to explore multiple design options (in terms of system quality requirements) during the

system design process.

312

10.2. Central Limitations and Assumptions

Contribution 4: Classification structure to assess AI-enabled systems regarding assurances
that can be given for system-level dependability properties. In the last contribution of

this thesis, we elaborated a classification structure to evaluate AI-enabled systems in terms

of assurances that can be given for dependability-related system-level properties. The

contribution relates to research question RQ4 and its corresponding sub-questions. We

defined four classes of architectural dependability assurance into which an AI-enabled

system can be classified. Each class describes the degree (e.g. fully or partially) and point

in the development process (i.e. design-time, runtime or not at all) at which assurances can

be given for a particular system-level property Φ𝑆𝑦𝑠 . Based on the classes, we elaborated

a classification structure consisting of various classification dimensions that classify AI

systems. We identified four dimensions, namely Abstractability (i.e. the extent to which the

system can be abstracted by models to analyse the system in terms of Φ𝑆𝑦𝑠), Approximation
of the SystemDynamics (e.g. the accurate description of the stochastic process that describes
the dynamics the system), Analytic Capacity (i.e. the analytic potential of an AI component

itself) and Fail-Safe (i.e. the ability to transition the system into a fail-safe mode).

Because the classification structure is highly subjective, a comprehensive evaluation was

not possible in this thesis. The classification of multiple AI-enabled systems according to

our classes and classification structure would require the involvement of domain experts

due to the subjective nature of the classification structure. However, this was not realisti-

cally possible in the scope of this thesis. Instead, we applied our classification structure

to AI systems from three representative domains in which AI have been commonly used,

namely AI-supported assistance in automated driving, human-robot-interaction systems

and aircraft collision avoidance systems. However, since we are no experts in none of

the domains, we could only classify the systems according to the information provided

by the scientific publications. Consequently, we could only show the applicability of our

classification dimensions. A comprehensive evaluation of the classification structure in

terms of other aspects (such as completeness or coverage) is planned in future work.

10.2. Central Limitations and Assumptions

Although we have already discussed in each contribution-related chapter the respec-

tive limitations and assumptions, we summarise in this section the central assumptions.

Moreover, we discuss the main limitations complemented by insights we gained during

validation.

Limitations: Recall that we use PCM (Palladio Component Model) as ADL (architectural

description language) to describe software architectures employing models. Although

we described the concepts of SimExp by using PCM, the SimExp method itself is ADL

agnostic. However, this applies not to our reliability prediction approach for AI-enabled

systems. More specifically, the approach builds upon the reliability prediction approach

PCM-Rel of Brosch [33] which requires PCM as modelling language for describing software

architectures. Consequently, our extended reliability prediction approach can only be used

313

10. Conclusion

in combinationwith PCMmodels. The same applies to the reliability prediction logic. Recall

that we did not change the prediction semantics of PCM-Rel but implemented a procedure

which iteratively (w.r.t. considered uncertainties or environmental variables 𝜑1, . . . , 𝜑𝑛)

calculates the failure probability of an AI component, updates the failure probability in

the PCM model and invokes PCM-Rel. As a result, we inherit the prediction semantics of

PCM-Rel as well. For example, while the effect of a wrong prediction might rather affect

other components of the software architecture which are dependent on the prediction

result, PCM-Rel evaluates the failure probability directly at the AI component in the PCM

model. Nonetheless, regarding the evaluation of architectural safeguards at design-time,

we argue that the reliability prediction semantics of PCM-Rel are sufficient. Additionally,

since PCM-Rel annotates PCM models with failure types, it is possible to specify the exact

location in the software architecture (i.e. the modelled software component) that is affected

by incorrect predictions of the AI component.

We applied our reliability prediction approach for AI-enabled systems in the context of

autonomous driving and human-robot-interaction by considering distinct and complex

types of DNNs (deep neural networks), e.g. CNNs (convolutional neural networks) or RNNs

(recurrent neural networks). However, there might be more complex settings (especially

in the context of autonomous driving) where AI models rely on input data from other AI

models. For example, the perception phase of a cognitive system might involve upstream

AI components for sensor fusion of the raw sensor data. In this case, however, the input

of the AI component must rely on outputs of other AI models that are associated with AI-

specific uncertainties as well. One can approach this problem by considering the involved

AI components as an end-to-end approach which produces for some raw sensor data a

corresponding output prediction. In this case, our reliability approach can be applied as

usual in which the predictive uncertainty of the end-to-end AI component is estimated by

considering various uncertainties or environmental variables. It is arguably difficult to

find an appropriate set of uncertainties or environmental variables of the sensitivity model

that allow reasoning about the predictive uncertainty. Although the sensitivity model

doesn’t have to perfectly approximate predictive uncertainty to evaluate design decisions

of architectural safeguards, a poor sensitivity model would still corrupt the reliability

predictions of the entire system significantly. However, as a starting point, we focused on

single AI components. Nonetheless, checking the applicability of our approach for more

complex AI systems can be still considered to be the subject of future work.

Finally, our SimExp does currently not support Transient Effects in the evaluation process of
self-adaptive systems. Recall that transient effects relate to execution times and consumed

resources of applied adaptations [178], i.e. they can be considered as costs associated with

an adaptation. In the domains or case study systems we considered in this thesis (except

the load balancing case study system), transient effects are rather negligible because none

of the adaptations is associated with high costs. Nevertheless, since transient effects are

important in some domains (e.g. performance engineering), it makes sense to include them

in the reward function. As a starting point, however, we solely focused on system-level

quality attributes but plan to account for transient effects in future work.

314

10.3. Future Work

Assumptions: Since our SimExp method strongly builds upon MDPs (Markov decision

processes), we also inherit assumptions made in MDPs. This refers to the Markov as-

sumption, which states that the probability to transition from one state to another solely

depends on the previously given state and not on the history of already past states (see

equation (2.4)). The Markov assumption is essential in the SimExp framework when trajec-

tories (i.e. sequences of states) are sampled w.r.t. a predefined adaptation strategy and the

modelled environmental dynamics. However, as we already pointed out in chapter 4, many

scientific works in the self-adaptive system community make use of MDPs to describe the

stochastic dynamics of self-adaptive systems. Moreover, whenever the Markov assumption

is too strong in a given context, it can always be sharpened by selecting a richer state

representation (i.e. considering more variables in the state description) [105].

The second central assumption of this thesis refers to the assumption of discretising the

environment or environmental dynamics into a set of discrete states. Basically, we made

this assumption to reduce the state space and to tackle the state space explosion problem.

However, the discretisation is at the cost of information loss. For model-based analysis,

it is fairly common to use abstraction and simplification to analyse complex systems at

design-time. In addition, the degree of discretisation can be controlled such that also more

fine-grained states can be considered (at the cost of an increased state space).

Finally, in section 7.2, we made the MAR (missing at random) assumption (𝑖) to justify that
we can focus on environmental variables or properties instead of considering individual

input-output pairs of an AI component and (𝑖𝑖) to deal with the hidden state problem.

This enabled us to ignore potentially large and complex structured input spaces (such as

the pixel space) during the evaluation of self-adaptive systems (or rather their adaptation

strategies) that are specifically designed to safeguard an AI component. However, the

MAR assumption must be considered with care because the assumption might not hold in

some settings. Just like the Markov assumption, the MAR assumption can be sharpened

[105] by identifying “good” properties that allow conclusions to be drawn about the true

state of an AI component.

10.3. Future Work

In this section, we summarise several aspects of the thesis that we identified for extension

in future work.

As we already discussed in section 10.2, one of the limitations of our approach is that

currently no transient effects (i.e. costs associated with adaptations) are considered during

the evaluation of adaptation strategies. Therefore, in future work, we plan to integrate

transient effects in our SimExp framework. An entry point is provided by Stier [178] which

considers transient effects in the analysis of self-adaptive systems in the context of the

Palladio framework. However, the approach focuses on transient effects that relate to

performance and energy efficiency. Nonetheless, the concepts can be used as a starting

point and generalised to other domains.

315

10. Conclusion

In section 6, we presented our SimExp framework for evaluating adaptation strategies

of self-adaptive systems. Currently, some required artefacts are either passed to the

framework via code and not by dedicated models (the adaptation strategy and reward

function implementations) while others are lacking graphical editors which would greatly

reduce the modelling effort (the EnvDyn metamodel). Unfortunately, we could not address

all in the scope of this thesis. For the sake of usability and to make the framework more

amenable to the community, we plan to add more modelling features to the framework in

future work. For example, we already envisioned the design of a DSL (domain-specific

language) for modelling adaptation strategies [147]. In future work, we plan to implement

such a DSL and integrate it into the SimExp framework. Moreover, another potential

aspect for future work is the modelling of reward functions based on quality attributes.

Currently, the reward function must be specified by a java code file which extends a

particular interface provided by the SimExp framework. Hereby, the work of Becker [15,

P.87] might serve as a starting point because it presents a metamodel for describing service

level objectives (e.g. tolerance ranges, violation ranges, etc.). The concepts and ideas might

be potentially reused to represent reward functions. Finally, regarding the modelling

of environment models (i.e. instances of the EnvDyn metamodel), we plan to develop

graphical editors that simplify the creation of environment models. The work of Koller

and Friedman [105, P.157] provides methods for the compact description of such models,

which can be regarded as a starting point.

Although we validated our approach in case study systems that include complex AI models

(e.g. Udacity case study where distinct DNNs are used to predict steering angles based

on image data), we plan to apply our approach to more advanced case study systems that

encompass AI systems with several AI components. For example, in cognitive systems

(e.g. self-driving cars) the sensor data is preprocessed in the perception phase before

it is forwarded to the AI component used in other phases. However, also within the

perception phase, AI models might be used for sensor fusion or representation learning

(i.e. unsupervised learning). That is, the predictive uncertainty of an AI component (e.g.)

used for classification or detection tasks is dependent on the result of other AI compo-

nents. In this case, we must not only account for the environmental variables affecting

predictive uncertainty but also model a kind of failure propagation of the individual AI

components. Intuitively, we can model such a setting with our approach by treating the

random variables capturing the predictive uncertainty of preceding AI components in the

sensitivity model of dependent AI components. However, this is hypothetical and requires

further investigation.

Also in terms of the SimExp framework, we plan to apply the method to further use cases

of different domains. For example, Gerasimou [65] et al. provide a case study system of an

unmanned underwater vehicle which is equipped with a domain-specific simulator one

can use to evaluate adaptation strategies. By applying the SimExp methods to further case

studies, we hope to identify possible vulnerabilities of the method or potential aspects that

can be further automated.

Finally, regarding our classes of architectural dependability assurance and the classification

structure we elaborated to classify AI systems into one of the classes, we plan a more

316

10.3. Future Work

comprehensive evaluation. Currently, we evaluated the applicability of the structure by

applying it to a collection of well-known and representative AI systems. However, the

classification dimensions of the structure are highly subjective such that an objective

assessment is practically difficult to achieve. Moreover, we are no experts in any of the

discussed domains; thus, the discussion of the classification structure is subjective. A

more founded discussion would require the inclusion of domain experts. This is, however,

associated with a high effort which was not possible to be conducted in the scope of this

thesis but is still subject to future work. Moreover, we plan to apply the structure in

systematic literature research to assess the coverage of the classification structure (i.e.

whether any AI system can be classified). As a result, we hope to refine our existing

dimensions (if necessary) or even identify additional dimensions (if any).

317

Bibliography

[1] Vahdat Abdelzad et al. “Detecting out-of-distribution inputs in deep neural net-

works using an early-layer output”. In: arXiv preprint arXiv:1910.10307 (2019).

[2] Waleed Abdulla. Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow. https://github.com/matterport/Mask_RCNN. 2017.

[3] Michael Aeberhard et al. “Automated Driving with ROS at BMW”. In: ROSCon 2015
Hamburg. 2015.

[4] Mohammed Alshiekh et al. “Safe reinforcement learning via shielding”. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[5] Saleema Amershi et al. “Software engineering for machine learning: A case study”.

In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE. 2019, pp. 291–300.

[6] Mehdi Amoui et al. “Adaptive action selection in autonomic software using re-

inforcement learning”. In: Fourth International Conference on Autonomic and Au-
tonomous Systems (ICAS’08). IEEE. 2008, pp. 175–181.

[7] Adina Aniculaesei et al. “Toward a holistic software systems engineering approach

for dependable autonomous systems”. In: 2018 IEEE/ACM 1st InternationalWorkshop
on Software Engineering for AI in Autonomous Systems (SEFAIAS). IEEE. 2018, pp. 23–
30.

[8] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Modeling and analyzing

MAPE-K feedback loops for self-adaptation”. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE.
2015, pp. 13–23.

[9] Paolo Arcaini et al. “Model-Based Testing for MAPE-K adaptation control loops”. In:

2020 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE. 2020, pp. 43–51.

[10] Ashraf Armoush. “Design patterns for safety-critical embedded systems”. Aachen,

Techn. Hochsch., Diss., 2010. PhD thesis. Aachen, 2010, XIV, 181 S. : graph. Darst.

url: https://publications.rwth-aachen.de/record/51773.

[11] Rob Ashmore, Radu Calinescu, and Colin Paterson. “Assuring the machine learning

lifecycle: Desiderata, methods, and challenges”. In: ACM Computing Surveys (CSUR)
54.5 (2021), pp. 1–39.

[12] Earl T Barr et al. “The oracle problem in software testing: A survey”. In: IEEE
transactions on software engineering 41.5 (2014), pp. 507–525.

319

https://github.com/matterport/Mask_RCNN
https://publications.rwth-aachen.de/record/51773

10. Bibliography

[13] Osbert Bastani et al. “Measuring neural net robustness with constraints”. In: Ad-
vances in neural information processing systems 29 (2016).

[14] Dennis Bäuml. “Entwicklung zuverlässiger KI-basierter Software-Systeme in An-

wesenheit von Unsicherheit”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of

Technology (KIT), 2022.

[15] Matthias Becker. “Engineering self-adaptive systems with simulation-based per-

formance prediction”. PhD thesis. University of Paderborn, Germany, 2017. url:

http://nbn-resolving.de/urn:nbn:de:hbz:466:2-28816.

[16] Matthias Becker, Steffen Becker, and Joachim Meyer. “SimuLizar: Design-Time

Modeling and Performance Analysis of Self-Adaptive Systems.” In: Software Engi-
neering 213 (2013), pp. 71–84.

[17] Matthias Becker, Markus Luckey, and Steffen Becker. “Performance analysis of

self-adaptive systems for requirements validation at design-time”. In: Proceedings
of the 9th international ACM Sigsoft conference on Quality of software architectures.
ACM. 2013, pp. 43–52.

[18] Sagar Behere and Martin Torngren. “A functional architecture for autonomous

driving”. In: Automotive Software Architecture (WASA), 2015 First International
Workshop on. IEEE. 2015, pp. 3–10.

[19] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[20] Luca Berardinelli et al. “Multidimensional contextmodeling applied to non-functional

analysis of software”. In: Software & Systems Modeling (2017), pp. 1–40.

[21] Simona Bernardi and José Merseguer. “A UML profile for dependability analysis of

real-time embedded systems”. In: Proceedings of the 6th international workshop on
Software and performance. 2007, pp. 115–124.

[22] Anil Bhattacharyya. “On a measure of divergence between two statistical popu-

lations defined by their probability distributions”. In: Bull. Calcutta Math. Soc. 35
(1943), pp. 99–109.

[23] Alessandro Biondi et al. “A safe, secure, and predictable software architecture for

deep learning in safety-critical systems”. In: IEEE Embedded Systems Letters 12.3
(2019), pp. 78–82.

[24] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. Vol. 4. 4. Springer, 2006.

[25] Peter Bishop, Robin Bloomfield, and Sofia Guerra. “The future of goal-based as-

surance cases”. In: Proc. Workshop on Assurance Cases. Citeseer. 2004, pp. 390–
395.

[26] DavidM Blei, Alp Kucukelbir, and Jon DMcAuliffe. “Variational inference: A review

for statisticians”. In: Journal of the American statistical Association 112.518 (2017),

pp. 859–877.

[27] RE Bloomfield et al. “Ascad—adelard safety case development manual”. In: Adelard
5 (1998).

320

http://nbn-resolving.de/urn:nbn:de:hbz:466:2-28816

10. Bibliography

[28] Rainer Böhme and Ralf Reussner. “Validation of predictions with measurements”.

In: Dependability Metrics. Springer, 2008, pp. 14–18.

[29] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint
arXiv:1604.07316 (2016).

[30] Zoran Bosnić and Igor Kononenko. “An overview of advances in reliability estima-

tion of individual predictions in machine learning”. In: Intelligent Data Analysis
13.2 (2009), pp. 385–401.

[31] Gunnar Brataas, Erlend Stav, and Sebastian Lehrig. “Analysing evolution of work

and load”. In: 2016 12th International ACM SIGSOFT Conference on Quality of Soft-
ware Architectures (QoSA). IEEE. 2016, pp. 90–95.

[32] Eric Breck et al. “The ML test score: A rubric for ML production readiness and

technical debt reduction”. In: 2017 IEEE International Conference on Big Data (Big
Data). IEEE. 2017, pp. 1123–1132.

[33] Franz Brosch. Integrated software architecture-based reliability prediction for it
systems. Vol. 9. KIT Scientific Publishing, 2012.

[34] Franz Brosch et al. “Architecture-based reliability prediction with the palladio com-

ponent model”. In: IEEE Transactions on Software Engineering 38.6 (2011), pp. 1319–

1339.

[35] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. “Making the case

for safety of machine learning in highly automated driving”. In: International
Conference on Computer Safety, Reliability, and Security. Springer. 2017, pp. 5–16.

[36] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. “The goal question

metric approach”. In: Encyclopedia of software engineering (1994), pp. 528–532.

[37] Javier Cámara and Rogério De Lemos. “Evaluation of resilience in self-adaptive

systems using probabilistic model-checking”. In: 2012 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.
2012, pp. 53–62.

[38] Javier Cámara et al. “Adaptation impact and environment models for architecture-

based self-adaptive systems”. In: Science of Computer Programming 127 (2016),

pp. 50–75.

[39] Javier Cámara et al. “MOSAICO: offline synthesis of adaptation strategy repertoires

with flexible trade-offs”. In: Automated Software Engineering 25.3 (2018), pp. 595–

626.

[40] Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra. “Runtime Equilibrium

Verification for Resilient Cyber-Physical Systems”. In: 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE.
2021, pp. 71–80.

[41] Maria Casimiro et al. “Self-Adaptation for Machine Learning Based Systems.” In:

ECSA (Companion). 2021.

321

10. Bibliography

[42] Chauffeur steering angle prediction model. 2016. url: https : / / github . com /
udacity/self-driving-car/tree/master/steering-models/community-models/

chauffeur.

[43] Chenyi Chen et al. “Deepdriving: Learning affordance for direct perception in au-

tonomous driving”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 2722–2730.

[44] Liming Chen and Algirdas Avizienis. “N-version programming: A fault-tolerance

approach to reliability of software operation”. In: Proc. 8th IEEE Int. Symp. on
Fault-Tolerant Computing (FTCS-8). Vol. 1. 1978, pp. 3–9.

[45] Chih-Hong Cheng, Dhiraj Gulati, and Rongjie Yan. “Architecting dependable

learning-enabled autonomous systems: A survey”. In: arXiv preprint arXiv:1902.10590
(2019).

[46] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi Yasuoka. “Runtime moni-

toring neuron activation patterns”. In: 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2019, pp. 300–303.

[47] Shang-Wen Cheng and David Garlan. “Stitch: A language for architecture-based

self-adaptation”. In: Journal of Systems and Software 85.12 (2012), pp. 2860–2875.

[48] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating the effective-

ness of the rainbow self-adaptive system”. In: 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. IEEE. 2009, pp. 132–141.

[49] Tony Clark, Cesar Gonzalez-Perez, and Brian Henderson-Sellers. “A foundation for

multi-level modelling”. In:MULTI 2014–Multi-Level ModellingWorkshop Proceedings.
2014.

[50] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified adversarial robustness

via randomized smoothing”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 1310–1320.

[51] comma.ai’s steering model. 2016. url: https://github.com/commaai/research/
blob/master/train_steering_model.py.

[52] Kai Ding, Andrey Morozov, and Klaus Janschek. “Classification of hierarchical fault-

tolerant design patterns”. In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic
and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd
Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE. 2017, pp. 612–619.

[53] Alexandre Donzé. “Breach, a toolbox for verification and parameter synthesis

of hybrid systems”. In: International Conference on Computer Aided Verification.
Springer. 2010, pp. 167–170.

[54] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. “Compositional falsifica-

tion of cyber-physical systems with machine learning components”. In: Journal of
Automated Reasoning 63.4 (2019), pp. 1031–1053.

322

https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/commaai/research/blob/master/train_steering_model.py
https://github.com/commaai/research/blob/master/train_steering_model.py

10. Bibliography

[55] Yehia Elrakaiby, Paola Spoletini, and Bashar Nuseibeh. “Optimal by Design: Model-

Driven Synthesis of Adaptation Strategies for Autonomous Systems”. In: arXiv
preprint arXiv:2001.08525 (2020).

[56] Wolfgang Ertel. Introduction to artificial intelligence. Springer, 2018.

[57] Naeem Esfahani and Sam Malek. “Uncertainty in self-adaptive software systems”.

In: Software Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 214–238.

[58] José M Faria. “Machine learning safety: An overview”. In: Proceedings of the 26th
Safety-Critical Systems Symposium, York, UK. 2018, pp. 6–8.

[59] Robert Feldt, Francisco Gomes de Oliveira Neto, and Richard Torkar. “Ways of

applying artificial intelligence in software engineering”. In: 2018 IEEE/ACM 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE). IEEE. 2018, pp. 35–41.

[60] Antonio Filieri et al. “Self-adaptive software meets control theory: A preliminary

approach supporting reliability requirements”. In: 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE. 2011, pp. 283–292.

[61] JoaoMFranco et al. “Improving self-adaptation planning through software architecture-

based stochastic modeling”. In: Journal of Systems and software 115 (2016), pp. 42–
60.

[62] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. “An introduction to UML

profiles”. In: UML and Model Engineering 2.6-13 (2004), p. 72.

[63] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe reinforce-

ment learning”. In: Journal of Machine Learning Research 16.1 (2015), pp. 1437–

1480.

[64] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software architecture-

based self-adaptation”. In: Autonomic computing and networking. Springer, 2009,
pp. 31–55.

[65] Simos Gerasimou et al. “UNDERSEA: an exemplar for engineering self-adaptive

unmanned underwater vehicles”. In: 2017 IEEE/ACM 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.
2017, pp. 83–89.

[66] Carlo Ghezzi et al. “Managing non-functional uncertainty via model-driven adap-

tivity”. In: Software Engineering (ICSE), 2013 35th International Conference on. IEEE.
2013, pp. 33–42.

[67] Görkem Giray. “A software engineering perspective on engineering machine learn-

ing systems: State of the art and challenges”. In: Journal of Systems and Software
180 (2021), p. 111031.

[68] Goal Structuring Notation (GSN) community standard version 3. 2011. url: https:
//scsc.uk/publications.

[69] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep learning (adaptive

computation and machine learning series)”. In: Adaptive Computation and Machine
Learning series (2016), p. 800.

323

https://scsc.uk/publications
https://scsc.uk/publications

10. Bibliography

[70] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems 27 (2014).

[71] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and har-

nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[72] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “A model-driven

approach to performability analysis of dynamically reconfigurable component-

based systems”. In: Proceedings of the 6th international workshop on Software and
performance. 2007, pp. 103–114.

[73] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “From design to analy-

sis models: a kernel language for performance and reliability analysis of component-

based systems”. In: Proceedings of the 5th international workshop on Software and
performance. 2005, pp. 25–36.

[74] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with

asynchronous off-policy updates”. In: 2017 IEEE international conference on robotics
and automation (ICRA). IEEE. 2017, pp. 3389–3396.

[75] Xiaozhe Gu and Arvind Easwaran. “Towards safe machine learning for CPS: infer

uncertainty from training data”. In: Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems. ACM. 2019, pp. 249–258.

[76] Riccardo Guidotti et al. “A survey of methods for explaining black box models”. In:

ACM computing surveys (CSUR) 51.5 (2018), p. 93.

[77] Arpan Gujarati, Sathish Gopalakrishnan, and Karthik Pattabiraman. “New wine

in an old bottle: N-version programming for machine learning components”. In:

2020 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE. 2020, pp. 283–286.

[78] S. de Gyves Avila and K. Djemame. “Fuzzy Logic Based QoS Optimization Mecha-

nism for Service Composition”. In: 2013 IEEE Seventh International Symposium on
Service-Oriented System Engineering. IEEE, Mar. 2013. doi: 10.1109/sose.2013.28.

[79] Muhammad Abdullah Hanif et al. “Robust machine learning systems: Reliability

and security for deep neural networks”. In: 2018 IEEE 24th International Symposium
on On-Line Testing And Robust System Design (IOLTS). IEEE. 2018, pp. 257–260.

[80] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 2961–2969.

[81] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-

of-distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136
(2016).

[82] Andreas Henelius et al. “A peek into the black box: exploring classifiers by ran-

domization”. In: Data mining and knowledge discovery 28.5 (2014), pp. 1503–1529.

[83] Marc Hesenius et al. “Towards a software engineering process for developing data-

driven applications”. In: 2019 IEEE/ACM 7th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE). IEEE. 2019, pp. 35–
41.

324

https://doi.org/10.1109/sose.2013.28

10. Bibliography

[84] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[85] Boyue Caroline Hu et al. “If a Human Can See It, So Should Your System: Reliability

Requirements for Machine Vision Components”. In: arXiv preprint arXiv:2202.03930
(2022).

[86] Xiaowei Huang et al. “A survey of safety and trustworthiness of deep neural

networks: Verification, testing, adversarial attack and defence, and interpretability”.

In: Computer Science Review 37 (2020), p. 100270.

[87] Nikolaus Huber et al. “Model-based self-aware performance and resource manage-

ment using the descartes modeling language”. In: IEEE Transactions on Software
Engineering 43.5 (2016), pp. 432–452.

[88] Nikolaus Huber et al. “Modeling run-time adaptation at the system architecture

level in dynamic service-oriented environments”. In: Service Oriented Computing
and Applications 8.1 (2014), pp. 73–89.

[89] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in

machine learning: An introduction to concepts and methods”. In:Machine Learning
110.3 (2021), pp. 457–506.

[90] “IEEE Recommended Practice on Software Reliability”. In: IEEE Std 1633-2016
(Revision of IEEE Std 1633-2008) (2017), pp. 1–261. doi: 10.1109/IEEESTD.2017.
7827907.

[91] M Usman Iftikhar and Danny Weyns. “Activforms: Active formal models for self-

adaptation”. In: Proceedings of the 9th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. 2014, pp. 125–134.

[92] Muhammad Usman Iftikhar et al. “Deltaiot: A self-adaptive internet of things

exemplar”. In: 2017 IEEE/ACM 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE. 2017, pp. 76–82.

[93] Sae International. “Taxonomy and definitions for terms related to driving automa-

tion systems for on-road motor vehicles”. In: SAE (2018).

[94] Kichun Jo et al. “Development of autonomous car—Part II: A case study on the im-

plementation of an autonomous driving system based on distributed architecture”.

In: IEEE Transactions on Industrial Electronics 62.8 (2015), pp. 5119–5132.

[95] Kyle D Julian and Mykel J Kochenderfer. “Guaranteeing safety for neural network-

based aircraft collision avoidance systems”. In: 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC). IEEE. 2019, pp. 1–10.

[96] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. “Deep neural network

compression for aircraft collision avoidance systems”. In: Journal of Guidance,
Control, and Dynamics 42.3 (2019), pp. 598–608.

[97] Kyle D Julian et al. “Policy compression for aircraft collision avoidance systems”.

In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE. 2016,
pp. 1–10.

325

https://doi.org/10.1109/IEEESTD.2017.7827907
https://doi.org/10.1109/IEEESTD.2017.7827907

10. Bibliography

[98] Daniel Kang et al. “Model assertions for monitoring and improving ML models”.

In: Proceedings of Machine Learning and Systems 2 (2020), pp. 481–496.

[99] Guy Katz et al. “Reluplex: An efficient SMT solver for verifying deep neural net-

works”. In: International conference on computer aided verification. Springer. 2017,
pp. 97–117.

[100] Guy Katz et al. “Themarabou framework for verification and analysis of deep neural

networks”. In: International Conference on Computer Aided Verification. Springer.
2019, pp. 443–452.

[101] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”. In:

Computer 36.1 (2003), pp. 41–50.

[102] Edward Kim et al. “A programmatic and semantic approach to explaining and

debugging neural network based object detectors”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 11128–11137.

[103] Anneke G Kleppe et al. MDA explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.

[104] Fabian Kneer, Erik Kamsties, and Klaus Schmid. “Environment modeling for adap-

tive systems: a systematic literature review”. In: arXiv preprint arXiv:2011.07892
(2020).

[105] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[106] Anne Koziolek. Automated improvement of software architecture models for perfor-
mance and other quality attributes. Vol. 7. KIT Scientific Publishing, 2014.

[107] Sanjay Krishnan and Eugene Wu. “Palm: Machine learning explanations for iter-

ative debugging”. In: Proceedings of the 2Nd workshop on human-in-the-loop data
analytics. 2017, pp. 1–6.

[108] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Building up and reason-

ing about architectural knowledge”. In: International conference on the quality of
software architectures. Springer. 2006, pp. 43–58.

[109] Marta Kwiatkowska, Gethin Norman, and David Parker. “Prism: Probabilistic

model checking for performance and reliability analysis”. In: ACM SIGMETRICS
Performance Evaluation Review 36.4 (2009), pp. 40–45.

[110] Philip Langer et al. “EMF Profiles: A Lightweight Extension Approach for EMF

Models.” In: J. Object Technol. 11.1 (2012), pp. 1–29.

[111] Michael Austin Langford and Betty HC Cheng. ““Know What You Know”: Predict-

ing Behavior for Learning-Enabled Systems When Facing Uncertainty”. In: 2021
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE. 2021, pp. 78–89.

[112] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

326

10. Bibliography

[113] Sebastian Michael Lehrig. Efficiently conducting quality-of-service analyses by tem-
plating architectural knowledge. Vol. 25. KIT Scientific Publishing, 2018.

[114] Rogério de Lemos and Marek Grześ. “Self-adaptive artificial intelligence”. In: 2019
IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE. 2019, pp. 155–156.

[115] Grace A Lewis, Ipek Ozkaya, and Xiwei Xu. “Software Architecture Challenges for

ML Systems”. In: 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE. 2021, pp. 634–638.

[116] Shih-Chieh Lin et al. “The architectural implications of autonomous driving: Con-

straints and acceleration”. In: Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
2018, pp. 751–766.

[117] Renting Liu, Zhaorong Li, and Jiaya Jia. “Image partial blur detection and classifi-

cation”. In: 2008 IEEE conference on computer vision and pattern recognition. IEEE.
2008, pp. 1–8.

[118] Yaping Luo et al. “An architecture pattern for safety critical automated driving

applications: Design and analysis”. In: 2017 Annual IEEE International Systems
Conference (SysCon). IEEE. 2017, pp. 1–7.

[119] FumioMachida. “On the diversity ofmachine learningmodels for system reliability”.

In: 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE. 2019, pp. 276–27609.

[120] Anne Martens et al. “Automatically improve software architecture models for

performance, reliability, and cost using evolutionary algorithms”. In: Proceedings
of the first joint WOSP/SIPEW international conference on Performance engineering.
2010, pp. 105–116.

[121] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. “Performance

simulation of runtime reconfigurable component-based software architectures”. In:

European Conference on Software Architecture. Springer. 2011, pp. 43–58.

[122] Nenad Medvidovic and Richard N Taylor. “Software architecture: foundations,

theory, and practice”. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering. Vol. 2. IEEE. 2010, pp. 471–472.

[123] Sean PMeyn and Richard L Tweedie.Markov chains and stochastic stability. Springer
Science & Business Media, 2012.

[124] Tom M Mitchell. Machine Learning. McGraw-Hill, 1997.

[125] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602 (2013).

[126] Gabriel AMoreno et al. “Flexible and efficient decision-making for proactive latency-

aware self-adaptation”. In: ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 13.1 (2018), pp. 1–36.

327

10. Bibliography

[127] Gabriel A Moreno et al. “Proactive self-adaptation under uncertainty: a probabilis-

tic model checking approach”. In: Proceedings of the 2015 10th joint meeting on
foundations of software engineering. 2015, pp. 1–12.

[128] Henry Muccini and Karthik Vaidhyanathan. “Software architecture for ml-based

systems: what exists and what lies ahead”. In: 2021 IEEE/ACM 1st Workshop on AI
Engineering-Software Engineering for AI (WAIN). IEEE. 2021, pp. 121–128.

[129] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[130] Kevin Patrick Murphy. “Dynamic bayesian networks: representation, inference

and learning”. In: (2002).

[131] Patrick Musau et al. “On Using Real-Time Reachability for the Safety Assurance of

Machine Learning Controllers”. In: 2022 IEEE International Conference on Assured
Autonomy (ICAA). IEEE. 2022, pp. 1–10.

[132] Niranjan D Narvekar and Lina J Karam. “A no-reference image blur metric based

on the cumulative probability of blur detection (CPBD)”. In: IEEE Transactions on
Image Processing 20.9 (2011), pp. 2678–2683.

[133] MDA OMG. OMG Unified Modeling Language(OMG UML), Infrastructure, V2.1.2,
2007. url: http://www.omg.org/spec/UML/2.1.2/.

[134] Peyman Oreizy et al. “An architecture-based approach to self-adaptive software”.

In: IEEE Intelligent Systems and Their Applications 14.3 (1999), pp. 54–62.

[135] Nicolas Papernot et al. “Practical black-box attacks against machine learning”. In:

Proceedings of the 2017 ACM on Asia conference on computer and communications
security. ACM. 2017, pp. 506–519.

[136] Kexin Pei et al. “Deepxplore: Automated whitebox testing of deep learning systems”.

In: proceedings of the 26th Symposium on Operating Systems Principles. 2017, pp. 1–
18.

[137] Ana Pereira and Carsten Thomas. “Challenges of machine learning applied to safety-

critical cyber-physical systems”. In: Machine Learning and Knowledge Extraction
2.4 (2020), pp. 579–602.

[138] Ana Petrovska et al. “Defining adaptivity and logical architecture for engineer-

ing (smart) self-adaptive cyber–physical systems”. In: Information and Software
Technology 147 (2022), p. 106866.

[139] Buu Phan et al. “Bayesian uncertainty quantification with synthetic data”. In:

International Conference on Computer Safety, Reliability, and Security. Springer.
2019, pp. 378–390.

[140] Prism artifacts. url: https://people.cs.kuleuven.be/~danny.weyns/software/
ActivFORMS/supplement/index.htm.

[141] Georg Püschel et al. “Towards systematic model-based testing of self-adaptive

software”. In: Proceedings of the 5th International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE). Citeseer. 2013, pp. 65–70.

328

http://www.omg.org/spec/UML/2.1.2/
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/supplement/index.htm
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/supplement/index.htm

10. Bibliography

[142] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[143] Federico Quin, Danny Weyns, and Omid Gheibi. “Reducing large adaptation spaces

in self-adaptive systems using classical machine learning”. In: Journal of Systems
and Software 190 (2022), p. 111341.

[144] Mona Rahimi et al. “Toward requirements specification for machine-learned com-

ponents”. In: 2019 IEEE 27th International Requirements Engineering Conference
Workshops (REW). IEEE. 2019, pp. 241–244.

[145] Pethuru Raj. Architectural Patterns: Uncover essential patterns in the most indispens-
able realm of enterprise architecture. Packt Publishing Limited, 2017.

[146] Rambo steering angle prediction model. 2016. url: https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/rambo.

[147] Martina Rapp, Max Scheerer, and Ralf Reussner. “Design-Time Performability Opti-

mization of Runtime Adaptation Strategies”. In: Companion of the 2022 ACM/SPEC
International Conference on Performance Engineering. ICPE ’22. Bejing, China: As-

sociation for Computing Machinery, 2022, pp. 113–120. isbn: 9781450391597. doi:

10.1145/3491204.3527471. url: https://doi.org/10.1145/3491204.3527471.

[148] Samik Raychaudhuri. “Introduction to monte carlo simulation”. In: 2008 Winter
simulation conference. IEEE. 2008, pp. 91–100.

[149] Ralf H Reussner et al. Modeling and simulating software architectures: The Palladio
approach. MIT Press, 2016.

[150] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision

model-agnostic explanations”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 32. 1. 2018.

[151] Rick Salay and Krzysztof Czarnecki. “Improving ml safety with partial specifica-

tions”. In: International Conference on Computer Safety, Reliability, and Security.
Springer. 2019, pp. 288–300.

[152] Rick Salay and Krzysztof Czarnecki. “Using machine learning safely in automotive

software: An assessment and adaption of software process requirements in ISO

26262”. In: arXiv preprint arXiv:1808.01614 (2018).

[153] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Landscape and

research challenges”. In: ACM transactions on autonomous and adaptive systems
(TAAS) 4.2 (2009), pp. 1–42.

[154] P Santhanam, Eitan Farchi, and Victor Pankratius. “Engineering reliable deep

learning systems”. In: arXiv preprint arXiv:1910.12582 (2019).

[155] Max Scheerer. Environmental Dynamics.url: https://github.com/PalladioSimulator/
Palladio-Addons-EnvironmentalDynamics.

[156] Max Scheerer. Reliability prediction of AI-enabled systems. url: https://github.
com/PalladioSimulator/Palladio-Analyzer-Dependability-ML.

329

https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
https://doi.org/10.1145/3491204.3527471
https://doi.org/10.1145/3491204.3527471
https://github.com/PalladioSimulator/Palladio-Addons-EnvironmentalDynamics
https://github.com/PalladioSimulator/Palladio-Addons-EnvironmentalDynamics
https://github.com/PalladioSimulator/Palladio-Analyzer-Dependability-ML
https://github.com/PalladioSimulator/Palladio-Analyzer-Dependability-ML

10. Bibliography

[157] Max Scheerer and Martina Rapp. SimExp Framework - Evaluation of adaptation
strategies for self-adaptive systems. url: https://github.com/PalladioSimulator/
Palladio-Analyzer-SimExp.

[158] Max Scheerer, Martina Rapp, and Ralf Reussner. “Design-Time Validation of Run-

time Reconfiguration Strategies: An Environmental-Driven Approach”. In: 2020
IEEE International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS). IEEE. 2020, pp. 75–81.

[159] Max Scheerer and Ralf Reussner. “Reliability Prediction of Self-Adaptive Systems

Managing Uncertain AI Black-Box Components”. In: 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.
2021, pp. 111–117.

[160] Max Scheerer et al. “Towards classes of architectural dependability assurance for

machine-learning-based systems”. In: Proceedings of the IEEE/ACM 15th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems.
2020, pp. 31–37.

[161] Gesina Schwalbe and Martin Schels. “A survey on methods for the safety assurance

of machine learning based systems”. In: 10th European Congress on Embedded Real
Time Software and Systems (ERTS 2020). 2020.

[162] David Sculley et al. “Hidden technical debt in machine learning systems”. In:

Advances in neural information processing systems 28 (2015).

[163] Alex Serban, Erik Poll, and Joost Visser. “Towards using probabilistic models to

design software systems with inherent uncertainty”. In: European Conference on
Software Architecture. Springer. 2020, pp. 89–97.

[164] Alexandru Constantin Serban. “Designing safety critical software systems to man-

age inherent uncertainty”. In: 2019 IEEE International Conference on Software Archi-
tecture Companion (ICSA-C). IEEE. 2019, pp. 246–249.

[165] Sanjit A Seshia, Dorsa Sadigh, and S Shankar Sastry. “Towards verified artificial

intelligence”. In: arXiv preprint arXiv:1606.08514 (2016).

[166] Lui Sha et al. “Using simplicity to control complexity”. In: IEEE Software 18.4 (2001),
pp. 20–28.

[167] Sina Shafaei et al. “Uncertainty in machine learning: A safety perspective on

autonomous driving”. In: International Conference on Computer Safety, Reliability,
and Security. Springer. 2018, pp. 458–464.

[168] Stepan Shevtsov, DannyWeyns, and Martina Maggio. “SimCA* A Control-theoretic

Approach to Handle Uncertainty in Self-adaptive Systems with Guarantees”. In:

ACM Transactions on Autonomous and Adaptive Systems (TAAS) 13.4 (2019), pp. 1–
34.

[169] Yong-Jun Shin, Joon-Young Bae, and Doo-Hwan Bae. “Concepts and Models of

Environment of Self-Adaptive Systems: A Systematic Literature Review”. In: 2021
28th Asia-Pacific Software Engineering Conference (APSEC). IEEE. 2021, pp. 296–305.

330

https://github.com/PalladioSimulator/Palladio-Analyzer-SimExp
https://github.com/PalladioSimulator/Palladio-Analyzer-SimExp

10. Bibliography

[170] Hai Shu and Hongtu Zhu. “Sensitivity analysis of deep neural networks”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 4943–
4950.

[171] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the black box of deep neural

networks via information”. In: arXiv preprint arXiv:1703.00810 (2017).

[172] Gagandeep Singh et al. “An abstract domain for certifying neural networks”. In:

Proceedings of the ACM on Programming Languages 3.POPL (2019), pp. 1–30.

[173] Ian Sommerville. Software Engineering, 9/E. Pearson Education India, 2011.

[174] Matthijs TJ Spaan. “Partially observable Markov decision processes”. In: Reinforce-
ment Learning. Springer, 2012, pp. 387–414.

[175] Herbert Stachowiak. Allgemeine modelltheorie. Springer, 1973.

[176] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-driven software
development: technology, engineering, management. John Wiley & Sons, Inc., 2006.

[177] Dave Steinberg et al. EMF: eclipse modeling framework. Pearson Education, 2008.

[178] Christian Stier. “Adaptation-aware architecture modeling and analysis of energy

efficiency for software systems”. PhD thesis. Karlsruhe Institute of Technology,

Germany, 2018.

[179] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep

networks”. In: International Conference on Machine Learning. PMLR. 2017, pp. 3319–

3328.

[180] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
Vol. 1. 1. MIT press Cambridge, 1998.

[181] Marius Take et al. “Software Design Patterns for AI-Systems”. In: Proceedings of
the 11th International Workshop on Enterprise Modeling and Information Systems
Architectures (EMISA 2021). Hrsg.: A. Koschmider. 2021, p. 30.

[182] Moeka Tanabe et al. “Learning environment model at runtime for self-adaptive

systems”. In: Proceedings of the Symposium on Applied Computing. 2017, pp. 1198–
1204.

[183] Ömer Şahin Taş et al. “Functional system architectures towards fully automated

driving”. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE. 2016, pp. 304–309.

[184] R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009. isbn: 9780470167748. url: https : / / books .

google.de/books?id=j9pdGQAACAAJ.

[185] Jakob Thumm and Matthias Althoff. “Provably Safe Deep Reinforcement Learning

for RoboticManipulation inHuman Environments”. In: arXiv preprint arXiv:2205.06311
(2022).

[186] Yuchi Tian et al. “Deeptest: Automated testing of deep-neural-network-driven

autonomous cars”. In: Proceedings of the 40th international conference on software
engineering. 2018, pp. 303–314.

331

https://books.google.de/books?id=j9pdGQAACAAJ
https://books.google.de/books?id=j9pdGQAACAAJ

10. Bibliography

[187] Yuchi Tian et al. “Testing DNN image classifiers for confusion & bias errors”. In:

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
2020, pp. 1122–1134.

[188] David Timmermann et al. “A Hybrid Approach for Object Localization Combining

Mask R-CNN and Halcon in an Assembly Scenario”. In: 2021 IEEE 8th International
Conference on Industrial Engineering and Applications (ICIEA). IEEE. 2021, pp. 270–
276.

[189] Hanghang Tong et al. “Blur detection for digital images using wavelet transform”.

In: 2004 IEEE international conference on multimedia and expo (ICME)(IEEE Cat. No.
04TH8763). Vol. 1. IEEE. 2004, pp. 17–20.

[190] Marc Toussaint, Amos Storkey, and Stefan Harmeling. “Expectation-Maximization

methods for solving (PO) MDPs and optimal control problems”. In: Inference and
Learning in Dynamic Models (2010).

[191] Udacity self-driving car challenge - CH2_001 Dataset. 2016. url: https://github.
com/udacity/self-driving-car/tree/master/datasets/CH2.

[192] Udacity self-driving car challenge 2. 2016. url: https://github.com/udacity/self-
driving-car/tree/master/challenges/challenge-2.

[193] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Elsevier, 2010.

[194] Jeroen Van Der Donckt et al. “Applying deep learning to reduce large adaptation

spaces of self-adaptive systems with multiple types of goals”. In: Proceedings of the
IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 2020, pp. 20–30.

[195] Kush R Varshney and Homa Alemzadeh. “On the safety of machine learning: Cyber-

physical systems, decision sciences, and data products”. In: Big data 5.3 (2017),

pp. 246–255.

[196] David Verstraete et al. “Deep learning enabled fault diagnosis using time-frequency

image analysis of rolling element bearings”. In: Shock and Vibration 2017 (2017).

[197] Andreas Vogelsang and Markus Borg. “Requirements engineering for machine

learning: Perspectives from data scientists”. In: 2019 IEEE 27th International Re-
quirements Engineering Conference Workshops (REW). IEEE. 2019, pp. 245–251.

[198] Markus Völter et al. Model-driven software development: technology, engineering,
management. John Wiley & Sons, 2013.

[199] Laura Von Rueden et al. “Informed machine learning–towards a taxonomy of

explicit integration of knowledge into machine learning”. In: Learning 18 (2019),

pp. 19–20.

[200] Akifumi Wachi and Yanan Sui. “Safe reinforcement learning in constrained markov

decision processes”. In: International Conference on Machine Learning. PMLR. 2020,

pp. 9797–9806.

332

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2

10. Bibliography

[201] Shiqi Wang et al. “Efficient formal safety analysis of neural networks”. In: Advances
in Neural Information Processing Systems. 2018, pp. 6367–6377.

[202] Shiqi Wang et al. “Formal security analysis of neural networks using symbolic

intervals”. In: 27th USENIX Security Symposium (USENIX Security 18). 2018, pp. 1599–
1614.

[203] Hironori Washizaki et al. “Studying software engineering patterns for designing

machine learning systems”. In: 2019 10th International Workshop on Empirical
Software Engineering in Practice (IWESEP). IEEE. 2019, pp. 49–495.

[204] Gereon Weiss et al. “Towards integrating undependable self-adaptive systems in

safety-critical environments”. In: Proceedings of the 13th International Conference
on Software Engineering for Adaptive and Self-Managing Systems. 2018, pp. 26–32.

[205] Wiphada Wettayaprasit, Nasith Laosen, and Salinla Chevakidagarn. “Data filtering

technique for neural networks forecasting”. In: Proceedings of the 7th WSEAS Inter-
national Conference on Simulation, Modelling and Optimization. World Scientific,

Engineering Academy, and Society (WSEAS). 2007, pp. 225–230.

[206] Danny Weyns. An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons, 2020.

[207] Danny Weyns and M Usman Iftikhar. “Activforms: A model-based approach to

engineer self-adaptive systems”. In: arXiv preprint arXiv:1908.11179 (2019).

[208] Danny Weyns and Usman Iftikhar. “Model-based simulation at runtime for self-

adaptive systems”. In: Proceeding Models at Runtime, Würzburg 2016 (2016), pp. 1–
9.

[209] Danny Weyns et al. “Applying architecture-based adaptation to automate the man-

agement of internet-of-things”. In: European Conference on Software Architecture.
Springer. 2018, pp. 49–67.

[210] Who’s responsible when an autonomous car crashes? http://money.cnn.com/2016/

07/07/technology/tesla-liability-risk/index.html. 2016.

[211] Hui Xu et al. “NV-DNN: towards fault-tolerant DNN systems with N-version pro-

gramming”. In: 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE. 2019, pp. 44–47.

[212] Haruki Yokoyama. “Machine learning system architectural pattern for improving

operational stability”. In: 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C). IEEE. 2019, pp. 267–274.

[213] Jie M Zhang et al. “Machine learning testing: Survey, landscapes and horizons”. In:

IEEE Transactions on Software Engineering (2020).

[214] Mengshi Zhang et al. “Deeproad: Gan-based metamorphic testing and input val-

idation framework for autonomous driving systems”. In: 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. 2018,
pp. 132–142.

333

http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html

10. Bibliography

[215] Tianqi Zhao et al. “A reinforcement learning-based framework for the genera-

tion and evolution of adaptation rules”. In: 2017 IEEE International Conference on
Autonomic Computing (ICAC). IEEE. 2017, pp. 103–112.

[216] Qi Zhu et al. “Safety-assured design and adaptation of learning-enabled autonomous

systems”. In: 2021 26th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE. 2021, pp. 753–760.

[217] Luisa M Zintgraf et al. “Visualizing deep neural network decisions: Prediction

difference analysis”. In: arXiv preprint arXiv:1702.04595 (2017).

334

A. Results of Architectural Configurations
Predicted by SimExp for the DeltaIoT
Case Study System

In the following, a collection of tables are depicted which show the averaged architectural

configurations predicted by the SimExp method. In each scenario, 10 trajectories are

sampled where each trajectory has some fixed length 𝑁 . The architectural configurations

are calculated by averaging the transmission powers and distribution factors of the 𝑁 th

sampled state (i.e. the last state) by the factor of 10 (i.e. the total number of sampled

trajectories).

Default Strategy

DeltaIoT SimExp

Link Power Distribution Power Distribution

2 to 4 15 100 15 100

3 to 1 0 100 0 100

4 to 1 12 100 13 100

5 to 9 0 100 0 100

6 to 4 15 100 15 100

7 to 2 0 0 0 3

7 to 3 0 100 0 97

8 to 1 0 100 0 100

9 to 1 0 100 0 100

10 to 6 15 50 15 100

10 to 5 8 50 7.1 0

11 to 7 6 100 5.3 100

12 to 7 0 0 0 1

12 to 3 15 100 15 99

13 to 11 15 100 15 100

14 to 12 0 100 0 100

15 to 12 0 100 0 100

Table A.1.:Overview of the average configurations of DeltaIoT and SimExp to which the strategy 𝜋𝐷 converges

after sampling 96 states for 10 runs.

335

A. Results of Architectural Configurations Predicted by SimExp for the DeltaIoT Case Study System

Q
ua

li
ty
-b
as
ed

St
ra
te
gy

D
el
ta
Io
T

𝛽
=
1
0

Si
m
Ex

p
𝛽
=
3
0
.5

D
el
ta
Io
T

𝛽
=
1
8

Si
m
Ex

p
𝛽
=
3
2

D
el
ta
Io
T

𝛽
=
2
6

Si
m
Ex

p
𝛽
=
3
4
.5

Li
nk

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

2
t
o
4

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

3
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4

1
0
0

4
t
o
1

1
2

1
0
0

1
2

1
0
0

1
2
.1

1
0
0

1
3

1
0
0

1
5

1
0
0

1
3
.9

1
0
0

5
t
o
9

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

6
t
o
4

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

7
t
o
2

0
0

1
5

0
0

9
6

8
.1

1
0
0

1
5

0
1
5

0

7
t
o
3

0
1
0
0

7
1
0
0

0
4

7
0

1
5

1
0
0

1
4
.1

1
0
0

8
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

9
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

1
0
t
o
6

1
5

1
0

1
4
.6

0
1
5

5
1
4
.7

0
1
5

0
1
5

0

1
0
t
o
5

7
9
0

7
1
0
0

7
.1

9
5

8
1
0
0

1
5

1
0
0

1
4

1
0
0

1
1
t
o
7

5
1
0
0

5
1
0
0

5
.1

1
0
0

6
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

1
2
t
o
7

1
5

0
1
5

0
0

1
0
0

8
.1

1
0
0

1
5

9
3

1
4
.6

9
2

1
2
t
o
3

1
5

1
0
0

1
4

1
0
0

1
5

0
1
5

0
1
5

7
1
5

8

1
3
t
o
1
1

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
4
t
o
1
2

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

1
5
t
o
1
2

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

Ta
bl

e
A.

2.
:O

v
e
r
v
i
e
w
o
f
t
h
e
a
v
e
r
a
g
e
c
o
n
fi
g
u
r
a
t
i
o
n
s
o
f
D
e
l
t
a
I
o
T
a
n
d
Si
m
Ex

p
t
o
w
h
i
c
h
t
h
e
s
t
r
a
t
e
g
y
𝜋
𝑄
c
o
n
v
e
r
g
e
s
f
o
r
v
a
r
y
i
n
g
b
o
u
n
d
s
.
I
n
t
e
r
m
s
o
f
Si
m
Ex

p,
9
6
s
t
a
t
e
s

h
a
v
e
b
e
e
n
s
a
m
p
l
e
d
f
o
r
1
0
r
u
n
s
;
r
e
g
a
r
d
i
n
g
D
e
l
t
a
I
o
T
5
0
0
s
t
a
t
e
s
h
a
v
e
b
e
e
n
s
i
m
u
l
a
t
e
d
f
o
r
1
0
r
u
n
s
.

336

	Abstract
	Zusammenfassung
	Danksagungen
	List of Figures
	List of Tables
	List of Listings
	Notations
	Prologue
	Introduction
	Motivation
	Research Gaps
	Challenges and Research Questions
	Modelling and Simulating Adaptation Strategies of Self-Adaptive Systems
	Evaluation of Architectural Safeguards Regarding Reliability Attributes
	Dependability Assurance of AI-enabled Systems

	Contributions
	Example Systems
	Load Balancer
	DeltaIoT
	Human-Robot-Interaction

	Outline

	Foundations and Related Work
	Foundations
	Self-Adaptive Software Systems
	Model-driven Software Development
	Models and Metamodels
	Model Transformation
	EMF Profiles

	The Palladio Approach
	Modelling Component-based Software Architectures
	Simulating Component-based Software Architectures

	Markov Models
	Discrete-time Markov Chain
	Markov Decision Process
	Partially Observable Markov Decision Process

	Dynamic Programming
	Policy Evaluation
	Monte Carlo Prediction

	Probabilistic Graphical Models
	Bayesian Networks
	Dynamic Bayesian Networks
	Template-based Probabilistic Models

	A Brief Introduction to Artificial Intelligence
	Machine Learning
	Deep Learning

	Validation Preliminaries
	Goal-Question-Metric Approach
	Validation Levels
	Bhattacharyya Distance

	Related Work
	Dealing with AI-induced Uncertainty
	Algorithmic Approaches
	System-level Approaches

	Quality Assurance of AI-enabled Systems
	Engineering Processes
	Classifying AI-enabled Systems

	Analysing Self-Adaptive Systems
	Using Markov Models for Decision-Making
	Model-based Analysis of Self-Adaptive Systems

	Design-time Evaluation of Self-Adaptive System
	The Dynamics of Self-Adaptive Systems: A Theoretical Perspective
	Environmental Dynamics
	The Deterministic Adaptation Process
	Considering Self-Adaptive Systems as Stochastic Processes
	Mapping Self-Adaptive Systems to Markov Decision Processes
	The Interdependency of Software Architecture and Environment

	Problem Statement
	State Space Complexity
	The Engineering Problem of Self-Adaptive Systems

	Assumptions
	Summary

	Using Bayesian Modelling to Capture the Environmental Dynamics
	Requirements
	The Environmental Dynamics Metamodel
	Representing Environmental Dynamics with Dynamic Bayesian Networks
	Overview of the Metamodel
	Modelling Domain-Independent Template Variables and Template Factors
	Modelling the Static Environment
	Modelling the Dynamic Environment
	Modelling Probability Distributions
	Discussion

	Instantiating Environmental Dynamics in Domain-Specific Contexts
	Instantiation of Template-based Structures
	Semi-Automated Generation of the Structural Environment Model by Annotation-based Instantiation

	Implementation
	Assumptions and Limitations
	Summary

	Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method
	Evaluating Adaptation Strategies at Design-time
	A Formal Framework for Evaluating Adaptation Strategies
	Using Dynamic Programming to Evaluate Adaptation Strategies
	Using Monte-Carlo-Methods to Generate Simulated Experience

	Simulating Experience by Model-based Quality Analysis
	Modelling Self-Adaptive Systems
	Evaluating Adaptation Strategies by Generating Simulated Experience

	Implementation
	Assumptions and Limitations
	Summary

	Safeguarding Uncertain AI Black-Box Components
	Reliability Prediction of Architectural Safeguards for AI-enabled Systems
	Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty
	Represention of Architectural Safeguards with Architectural Templates
	Sensitivity Analysis of AI Components
	Reliability Prediction of AI-Enabled Systems

	Engineering Self-Adaptive Systems to Safeguard AI Components
	Problem Statement
	Decoupling of the Observation Process
	Analysing the Monitorable Space
	Evaluating Adaptation Strategies

	Implementation
	Assumptions and Limitations
	Summary

	Classes of Architectural Dependability Assurance for AI-Enabled Systems
	Classes of Architectural Dependability Assurance
	Static Analysability
	Monitor Analysability
	A-posteriori Analysability
	Non-Analysability

	Classification Structure
	Classification Dimensions
	Overview of the Classification Structure
	Deriving Dependability Assurance Cases

	Classifying AI-enabled Systems
	AI-supported Assistance in Automated Driving
	Human-Robot-Interaction Systems
	Aircraft Collision Avoidance Systems
	Discussion

	Summary

	Validation
	Validation
	Overview
	Validation Goals, Questions and Metrics
	Case Study Systems
	Validation Process

	Evaluating Adaptation Strategies of Self-Adaptive Systems
	DeltaIoT
	Load Balancing

	Reliability Analysis of AI-enabled Systems
	Udacity Self-Driving Car Challenge
	A Generic Software Architecture for Self-Driving Cars
	Sensitivity Model and Analysis
	Generating Synthetic Data
	Experiment Setup
	Experiment Results

	Evaluating Self-Adaptive Systems to Safeguard AI Components
	Udacity Self-Driving Car Challenge
	Human-Robot-Interaction

	Discussion of Results and Research Questions
	Goal Achievement
	Answering the Research Questions
	Threats to Validity

	Epilogue
	Conclusion
	Summary
	Central Limitations and Assumptions
	Future Work

	Bibliography
	Results of Architectural Configurations Predicted by SimExp for the DeltaIoT Case Study System

