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Abstract

Substantial losses of global soil organic carbon (SOC) have occurred over recent decades, arising

from agricultural intensification and the conversion of natural soils for agricultural uses to feed

the growing population. Enhancing SOC stocks in croplands through improved management

practices—such as reducing tillage, residue application and cover crops—has been identified as a

promising option for climate change mitigation, with co-benefits for soil fertility and crop yields.

However, the large-scale quantification of these management effects on agricultural ecosystems

with ecological models remains uncertain, including the impacts of the cultivation of leguminous

crops, which has the potential to reduce the use of synthetic fertilizer and therefore contributes to

environmental sustainability. To better represent global agricultural managements, in this thesis I

first incorporate two grain legumes (soybean and faba bean) and one herbaceous legume (white

clover), with their inherent process of biological nitrogen fixation (BNF) into the dynamic global

vegetation model LPJ-GUESS. The spatial and temporal patterns of the BNF rates in soybean

and faba bean are quantified over the historical period 1981-2016. Subsequently, the large-scale

influence of alternative management strategies (such as legume cover crops, no-tillage, and

residue retention) on yields and cropland carbon (C) and nitrogen (N) balances is investigated

under present and future climate conditions, through applying and analyzing results from the

updated model version.

Simulations from LPJ-GUESS show that global N fixation in soybean and all pulses

(representing faba bean in the model) are 11.6±2.2 Tg N yr-1 and 5.6±1.0 Tg N yr-1, respectively,

during the period 1981-2016. Spatially, the highest BNF rates are found in tropical and temperate

regions with warm and humid climates. Soil water availability and temperature are most

important factors controlling N fixation, in addition to N fertilization. Overall, the modelled total

N fixation from grain legumes accounts for 12% of the annual N fixed across all global terrestrial

ecosystems (ca. 140 Tg N yr-1), indicating the importance of BNF input in croplands for the

global terrestrial N cycle, although a large amount of the fixed N is removed from the

ecosystems every year through crop harvests.

Practicing legume cover cropping would be quite different to the cultivation of grain legumes

since the fixed N in cover crops is usually returned to soils. Assuming that all croplands

worldwide are to adopt conservation agriculture techniques, the model estimates that combined

N-fixing cover crops with no-tillage management can potentially increase soil carbon levels by
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7% (+0.32 Pg C yr-1 in global croplands) while reducing N leaching loss by 41% (-7.3 Tg N yr-1)

after 36 years of implementation (the maximum duration found in cover cropping field trials in

this thesis). This integrated practice is accompanied by a potential 2% increase in total crop

production (+37 million tonnes per year including wheat, maize, rice, and soybean) in the last

decade of the simulation. In comparison with non-legume cover crops, the adoption of N-fixing

cover cropping in model experiments contributes more to gaining yield benefits in the humid

tropics while it is mitigating production losses under northern temperate climates. This spatial

variation is found to be associated with main-crop types and N fertilizer inputs, with little yield

changes simulated in soybean systems and highly fertilized agricultural soils.

Taking eastern Africa as a case study, legume cover crops, together with six alternative

management strategies, are further assessed to quantify their impacts on crop ecosystems. The

regional simulations reveal that improved managements implemented in the warm and humid

ecosystems can favor climate change mitigation while benefiting crop yields, especially for an

integrated conservation agriculture practice that combines all soil-conserving techniques. When

integrated the simulated grid cells over the study region, this combined strategy—including no-

tillage, residue and manure application, and cover cropping—is found to increase total SOC

stocks by 11% in the long term, accompanied by a 25% enhancement in total crop production

under the present-day climate. Over the same period, practicing N-fixing cover crops is also

identified as a promising strategy to increase cropland soil C levels (+4%) and agricultural

production (+16%), however on the environmental cost of increased total N losses (+28%;

including gaseous emissions and N leaching). These management influences would be possibly

sustained in the future under three climate pathways.

In conclusion, the results of this thesis highlight the importance of accounting for N fixers when

assessing large-scale C-N cycles in conservation agriculture systems. They also demonstrate that,

with improved agricultural managements, it is possible to achieve environmental sustainability

and ensure food security in global croplands.
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Zusammenfassung

In den letzten Jahrzehnten ist es weltweit zu erheblichen Verlusten an organischem Kohlenstoff

(SOC) im Boden gekommen, die auf die Intensivierung der Landwirtschaft und die Umwandlung

natürlicher Böden in landwirtschaftliche Nutzflächen zur Ernährung der wachsenden

Bevölkerung zurückzuführen sind. Die Erhöhung der SOC-Bestände in Ackerflächen durch

verbesserte Bewirtschaftungspraktiken - wie die Verringerung der Bodenbearbeitung, die

Ausbringung von Ernterückständen und der Anbau von Zwischenfrüchten - wurde als

vielversprechende Option für die Eindämmung des Klimawandels identifiziert, mit

gleichzeitigen Vorteilen für die Bodenfruchtbarkeit und die Ernteerträge. Die großflächige

Quantifizierung dieser Bewirtschaftungspraktiken auf landwirtschaftliche Ökosysteme,

einschließlich der Auswirkungen des Anbaus von Leguminosen, ist jedoch nach wie vor unsicher.

Um die globale landwirtschaftliche Produktion besser abzubilden, integriere ich in dieser Arbeit

zunächst zwei Körnerleguminosen (Sojabohne und Ackerbohne) und eine krautige Leguminose

(Weißklee) mit biologischer Stickstofffixierung (BNF) in das dynamische Vegetationsmodell

LPJ-GUESS. Die räumlichen und zeitlichen Muster der BNF-Raten in Sojabohnen und

Ackerbohnen werden über den historischen Zeitraum 1981-2016 quantifiziert. Anschließend

wird der Großflächige Einfluss alternativer Bewirtschaftungsstrategien auf die Ernteerträge und

die Kohlenstoff- (C) und Stickstoff- (N) Bilanzen der Anbauflächen unter gegenwärtigen und

zukünftigen Klimabedingungen untersucht, indem die Ergebnisse der aktualisierten

Modellversion angewendet und analysiert werden.

Die Modellsimulationen zeigen, dass die globale N-Fixierung in Sojabohnen und allen

Hülsenfrüchten (die im Modell die Ackerbohne repräsentieren) im Zeitraum 1981-2016 bei 11,6

±2,2 Tg N yr-1 bzw. 5,6±1,0 Tg N yr-1 beträgt. Räumlich gesehen sind die höchsten BNF-Raten

in tropischen und gemäßigten Regionen mit warmem und feuchtem Klima zu finden. Die

Bodenwasserverfügbarkeit und die Temperatur sind neben der N-Düngung die wichtigsten

Einflussfaktoren für die N-Fixierung. Insgesamt macht die modellierte Gesamt-N-Fixierung

durch Körnerleguminosen 12 % des jährlich in globalen terrestrischen Ökosystemen fixierten N

aus (ca. 140 Tg N yr-1), was auf die Bedeutung des BNF-Eintrags in Ackerflächen für den

globalen terrestrischen N-Kreislauf schließen lässt, obwohl ein großer Teil des fixierten N jedes

Jahr durch die Ernte aus den Ökosystemen entfernt wird.
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Der Anbau von Leguminosen als Deckfrucht in der Zwischenseason unterscheidet sich deutlich

vom reinen Anbau von Körnerleguminosen, da der in Deckfrüchten fixierte Stickstoff in der

Regel in den Boden zurückgeführt wird. Unter der Annahme, dass weltweit alle Anbauflächen

konservierende Landwirtschaftstechniken verwenden, ergibt sich basierend auf den Modelldaten,

dass die Kombination von N-fixierenden Deckfrüchten und minimaler Bodenbearbeitung den

Kohlenstoffgehalt des Bodens um 7 % (+0,32 Pg C yr-1 in den globalen Anbauflächen) erhöhen

und gleichzeitig die N-Auswaschungsverluste um 41 % (-7,3 Tg N yr-1) nach 36 Jahren der

Umsetzung reduzieren kann (die maximale Dauer, die in Feldversuchen mit Deckfrüchten in

dieser Dissertation ermittelt wurde). Diese integrierte Praxis geht mit einem Anstieg der

gesamten pflanzlichen Produktion um 2 % (+37 Millionen Tonnen pro Jahr, einschließlich

Weizen, Mais, Reis und Soja) im letzten Jahrzehnt der Simulation einher. Im Vergleich zu Nicht-

Leguminosen-Deckungskulturen trägt der Einsatz von N-fixierendem Deckungsanbau in den

Modellexperimenten stärker zur Ertragssteigerung in den feuchten Tropen bei, während die

Produktionsverluste in den nördlichen gemäßigten Klimazonen gemildert werden. Diese

räumliche Variation hängt mit den Hauptkulturen und dem Stickstoffdüngereinsatz zusammen,

wobei bei Sojabohnensystemen und stark gedüngten landwirtschaftlichen Böden nur geringe

Ertragsveränderungen simuliert werden.

Am Beispiel von Ostafrika werden Leguminosen zusammen mit sechs alternativen

Bewirtschaftungsstrategien untersucht, um ihre Auswirkungen auf die Ökosysteme von

Nutzpflanzen zu quantifizieren. Die regionalen Simulationen zeigen, dass die verbesserten

Bewirtschaftungsmethoden, die in den tropischen Ökosystemen umgesetzt werden, den

Klimawandel abmildern und gleichzeitig die Ernteerträge steigern können, insbesondere bei

einer integrierten konservierenden Landwirtschaft, die alle bodenschonenden Techniken

kombiniert. In den untersuchten Regionen führt diese kombinierte Strategie, die keine

Bodenbearbeitung, die Ausbringung von Rückständen und Dung sowie den Anbau von

Deckfrüchten umfasst, langfristig zu einer Erhöhung der simulierten SOC-Vorräte um 11 %,

begleitet von einer Steigerung der gesamten Pflanzenproduktion um 25 %. Der Anbau von N-

fixierenden Deckfrüchten ist ebenfalls vielversprechend, um den C-Gehalt im Ackerboden (+4 %)

und die landwirtschaftliche Produktion (+16 %) zu erhöhen, wobei die Umweltkosten in Bezug

auf die gesamten N-Verluste (+28 %; einschließlich gasförmiger Emissionen und N-

Auswaschung) zu berücksichtigen sind. Diese Bewirtschaftungseinflüsse würden bei drei

Klimaszenarien möglicherweise auch in Zukunft bestehen bleiben.
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Zusammenfassend zeigen die Ergebnisse dieser Arbeit, wie wichtig die Berücksichtigung von N-

Fixierern bei der Bewertung großräumiger C-N-Zyklen in Systemen der konservierenden

Landwirtschaft ist. Sie zeigen auch die Möglichkeit einer verbesserten landwirtschaftlichen

Bewirtschaftung auf, um ökologische Nachhaltigkeit zu erreichen und die Ernährungssicherheit

in globalen Anbauflächen zu gewährleisten.
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This thesis is submitted as a cumulative dissertation and consists of three main chapters

(Chapters 3-5). All of these have been published in peer-reviewed journals. The chapters are as

follows:

3. Assessment of biological nitrogen fixation in global grain legumes

This chapter is based on the paper: Ma, J., Olin, S., Anthoni, P., Rabin, S. S., Bayer, A. D.,

Nyawira, S. S., & Arneth, A. (2022). Modeling symbiotic biological nitrogen fixation in grain

legumes globally with LPJ-GUESS (v4.0, r10285). Geoscientific Model Development, 15(2),

815–839. https://doi.org/10.5194/gmd-15-815-2022.

4. Global influence of cover crops on yield and cropland carbon and nitrogen balances

This chapter is based on the paper: Ma, J., Anthoni, P., Olin, S., Rabin, S. S., Bayer, A. D., Xia,

L., & Arneth, A. (2023). Estimating the global influence of cover crops on ecosystem service

indicators in croplands with the LPJ-GUESS model. Earth’s Future, 11(5), e2022EF003142.

https://doi.org/10.1029/2022EF003142.

5. Impacts of agricultural management practices on soil carbon stocks, nitrogen loss, and

crop production in eastern Africa

This chapter is based on the paper: Ma, J., Rabin, S. S., Anthoni, P., Bayer, A. D., Nyawira, S. S.,

Olin, S., Xia, L., & Arneth, A. (2022). Assessing the impacts of agricultural managements on

soil carbon stocks, nitrogen loss and crop production — a modelling study in eastern Africa.

Biogeosciences, 19(8), 2145–2169. https://doi.org/10.5194/bg-19-2145-2022.

Due to the papers being published, and therefore involving the work of co-authors, I detail my

contribution to the Chapters 3-5 as follows:

3. I implemented biological nitrogen fixation process in grain legumes into the LPJ-GUESS

model, based on an original suggestion by Dr. Stefan Olin, designed the experiments, collected

the observational data for evaluation, and led the analysis and the writing of the paper.

4. I implemented biological nitrogen fixation process in a herbaceous legume into the LPJ-

GUESS model, based on an original suggestion by Dr. Stefan Olin, designed the experiments,

collected the observational data for evaluation, and led the analysis and the writing of the paper.

5. I designed the experiments, processed the model input data, performed the simulations and

analysis, and led the writing of the paper.
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1 General introduction

Agricultural intensification and the continuous conversion of natural soils (e.g., forests and

grasslands) for agricultural uses to feed the growing human population has until now been the

dominant drivers of soil degradation and other significant side effects on the environment.

Improved agricultural management practices, such as reducing tillage, manure application, or

leguminous cover crops, are expected to enhance soil fertility, with climate change mitigation co-

benefits while increasing crop production. However, the large-scale quantification of crop

management effects on agricultural ecosystems remains uncertain. In this thesis, I investigate the

influence of agricultural practices on yields and cropland carbon and nitrogen processes by applying

and analyzing results from a process-based dynamic global vegetation model. The introduction of

the thesis starts with an overview about perturbations of the terrestrial carbon cycle and climate

through land-use changes, followed by a closer examination of agricultural land use and its potential

impacts on environmental sustainability. Afterwards, I provide some background information about

agricultural practices aimed at managing soil fertility for improved food security and climate change

mitigation. Lastly, I introduce recent progress in global vegetation modelling in terms of the

improved agricultural managements before describing the structure and research questions

addressed in this thesis.

1.1 Impacts of land-use changes on the terrestrial carbon cycle and climate

Most of the carbon (C) on our planet is stored in the lithosphere as sedimentary carbonates (66 000

000 – 100 000 000 GtC; 1 Gt = 1015 grams), followed by the oceans, mainly in the form of

dissolved inorganic carbon at great depths (37 000 GtC). A much smaller proportion is stored in

rock formations as fossil fuel deposits (4000 GtC), or exists in soil organic matter (SOM; 1700 GtC),

the atmosphere (875 GtC), and terrestrial plants (450 GtC; see Fig. 1.1). Although these carbon

pools seem negligible compared with the stocks in the lithosphere and ocean, carbon exchanges

among Earth’s spheres, mainly in the form of carbon dioxide (CO2), take place much faster in the

small pools, and the larger reservoirs are less involved with the C cycle on a human timescale. Each

year (2010-2019 average), the terrestrial vegetation is estimated to take up 113 GtC from the

atmosphere (gross primary productivity, GPP; Canadell et al., 2021) via the photosynthetic

reduction of CO2 into organic compounds (i.e., natural process without anthropogenic perturbation).

The “fixed” C from the atmosphere is partially used for plant autotrophic respiration, with the

remainder (net primary productivity, NPP) allocated to structural biomass in stems, leaves, roots,
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and fruits for supporting plant growth. After the death of the plant, the C in residues is transferred to

the aboveground and belowground litter pools and released back into the atmosphere as CO2

through the decomposition of soil microorganisms (heterotrophic respiration). Currently, global

total GPP is estimated to exceed global respiration and C emissions from natural disturbances (e.g.,

wildfire), the terrestrial biosphere thus acts as a net C sink, with a mean uptake rate of 3.1 ± 0.6 GtC

yr-1 (2012-2021 average; Friedlingstein et al., 2022).

Figure 1.1 Schematic representation of the global carbon cycle averaged over 2012-2021. The solid circles and

arrows represent reservoir stocks and exchange fluxes, respectively, with values given in the background. The

figure is taken from Friedlingstein et al. (2022).

Since the dawn of the Industrial Revolution, human activities have dramatically altered the C cycle,

mainly by burning fossil fuels (e.g., coal, oil, and gas) and cement production, as well as by land-

use change (LUC). From 1850 to 2021, cumulative CO2 emissions from fossil fuel combustion and

LUC are estimated to be 465 ± 25 GtC and 205 ± 60 GtC, respectively, with an average of 9.6 ± 0.5

GtC yr-1 and 1.2 ± 0.7 GtC yr-1 for the decade 2012-2021 (see Fig. 1.2). As a result, atmospheric

CO2 concentration has significantly increased by over 40% from a pre-industrial level of 280 ppm

to 416 ppm in 2022 (Lan et al., 2023). The conversion of natural forests for agricultural use is the

dominant driver of global LUC emissions (Friedlingstein et al., 2022) through releasing the biomass

C stored in forests into the atmosphere either directly (forests are burned) or subsequently (wood

products are burned or decomposed). In recent decades, significant deforestation happened for
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soybean production in Brazil (Heilmayr et al., 2020) and land clearing for large-scale oil palm

plantation in Indonesia (Austin et al., 2019). On average over the period of 2012-2021, the estimates

of global C loss from deforestation amount to 1.8 ± 0.4 GtC yr-1, two times higher than the C gain

of 0.9 ± 0.3 GtC yr-1 due to re/afforestation (Friedlingstein et al., 2022). Converting forests into

agricultural lands usually leads to continued soil organic carbon (SOC) losses since crop harvest

removes carbon out of the ecosystem and usually only a small portion is returned to the soil. In

addition, erosion/leaching rates and heterotrophic respiration on croplands are usually higher than in

natural vegetation in general (Smith et al., 2016). Estimates suggest that converting forests to

croplands has reduced SOC stocks by 32-36% in temperate (Poeplau et al., 2011) and 25-30% in

tropical regions (Don et al., 2011), with cumulative SOC losses ranging from 133-186 GtC across

the globe since 1850 (Lal, 2004; Smith et al., 2016; Sanderman et al., 2017).

LUC can influence local to global-scale climate via altering atmospheric composition (i.e.,

biogeochemical changes) and the flow of energy and water between the land and the atmosphere

(i.e., biophysical changes). Increases in atmospheric CO2 concentration belong to biogeochemical

changes, with other effects being emissions of methane (CH4; mainly from ruminants and rice

production) and nitrous oxide (N2O; mainly from the intensive use of synthetic fertilizer). In

contrast to global biogeochemical climate change impacts, biophysical changes (e.g., albedo,

evapotranspiration, and surface roughness) arising from LUC mainly impact the climate on the local

to regional scales (Arora & Montenegro, 2011; Peng et al., 2014; Li et al., 2020). For example,

several studies suggest that forests tend to be cooler than herbaceous croplands throughout much of

the tropics, and reforestation in the tropical forests would promote cooling regionally (Anderson et

al., 2011; Mildrexler et al., 2011; Li et al., 2015). These cooling effects in general decrease with

increasing latitude, but the magnitude of the cooling from reforestation is highly dependent on the

specific locations and the season of the year (Wickham et al., 2014; Zhao & Jackson, 2014; Li et al.,

2015). Irrigated agriculture is another big factor affecting global carbon, water and nutrient cycles.

Currently, irrigated agriculture accounts for 22% of cultivated lands (FAOSTAT, 2023), consuming

85-90% of global anthropogenic freshwater use (D ’ Odorico et al., 2018; Rosa, 2022). Such a

substantial water application to croplands can affect climate as well. A modelling study by Gordon

et al. (2005) estimated that cropland irrigation enhanced global water vapor flows to the atmosphere

by 2600 km3 yr-1—an increase that was approximately as large as the decreased vapor flows caused

by deforestation (3000 km3 yr-1). Additionally, due to irrigation-induced increases both in cloud
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cover (Lobell et al., 2009; Sacks et al., 2009) and downwind precipitation (DeAngelis et al., 2010),

irrigated agriculture was found to significantly reduce near-surface air temperatures in some regions

(e.g., northern mid-latitudes and portions of south Asia), although it showed a negligible cooling

effect in terms of global average (Sacks et al., 2009; Sleeter et al., 2018).

Figure 1.2 Cumulative carbon emissions during the 1850-2021 period (left) and mean annual fluxes over 2012-

2021 (right) caused by the anthropogenic perturbation of the global carbon cycle. The figure is taken from

Friedlingstein et al. (2022).

1.2 Agricultural land use and its impacts on environmental sustainability

In year 2020 global agricultural land area was roughly 4700 million hectares (Mha), accounting for

37% of the Earth’s land surface (FAOSTAT, 2023). About one-third of this is used for the

production of crops (i.e., cropland), while the remaining two-thirds are mostly used as pasture for

grazing livestock. As the global population continues to grow, there is increasing demand for food

and therefore land. According to the estimates by Hurtt et al. (2020), the global land surface used

for cropland has increased to 1560 Mha in 2014, compared with pre-industrial agricultural area with

560 Mha in 1850 (Land-Use Harmonization datasets v2—LUH2; see Fig 1.3). In particular, the

harvested area for soybean more than quadrupled from 24 Mha in 1961 to 127 Mha in 2020
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(FAOSTAT, 2023; see Fig. 1.3) as a consequence of the high protein content and attractive cash

return from its grain yield. There are substantial concerns about the sustainability of soybean

production in the last two decades, due to its links to deforestation and loss of native vegetation

especially in South America (Heilmayr et al., 2020; Song et al., 2021). According to the estimates

by Hurtt et al. (2020), the present-day deforestation for cropland expansion is likely to continue

over the next decades in most future scenarios (see Fig. 1.3), as a result of the need to feed 8.4-9.9

billion people by 2050 (Samir & Lutz, 2017; Beltran-Peña et al., 2020). However, in addition to

causing C losses in vegetation and soils (West et al., 2014; Friedlingstein et al., 2022), increasing

food production through agricultural extensification also has other detrimental effects, such as the

decline of the Earth’s biodiversity (Green et al., 2019; Arneth et al., 2020). Estimates suggest that

LUC has caused ecological assemblages to lose on average 13.6% of global terrestrial species in

comparison with pristine habitats, with the worst-affected habitats losing 76.3% (Newbold et al.,

2015; Newbold, 2018).

As an alternative to agricultural extensification, crop production can be increased by increasing

yield on existing croplands via improved technology and management (also known as agricultural

intensification; Rosa, 2022). Since water and nutrients are major limiting factors constraining crop

growth (Mueller et al., 2012), irrigation and fertilizer application are two effective strategies to

enhance crop yields worldwide (Beltran-Peña et al., 2020). Considering the fact that irrigated

agriculture often already depletes freshwater resources at massive scales (D ’Odorico et al., 2018)

and that the scarcity of irrigation water can rarely be solved by physical water transfers over long

distances, it is difficult to close yield gaps—defined as the difference between the theoretical

maximum possible yield level and actual farmers’ yield (Van Ittersum et al., 2013)—in dry regions

through expanding irrigation on currently rain-fed croplands. In contrast, nutrient limitation to crop

productivity can be overcome through fertilizer application wherever nutrients are constraining

yields (Erisman et al., 2008). As a result, anthropogenic N fertilizer inputs on agricultural lands

have increased nearly six-fold between the 1960s and 2010s, reaching 96.5 Tg N yr-1 (1 Tg = 1012

grams) and 8.5 Tg N yr-1 for cropland and pasture, respectively, in the 2010s (Tian et al., 2022).

Nevertheless, estimates indicate that crops’ global average nitrogen use efficiency—the fraction of

N input harvested as product—is only around 42% (Zhang et al., 2015; Xia & Yan, 2023) and that

about half of N investments to agricultural soils are lost to the environment (Sutton et al., 2011;

Zhang et al., 2015; Gu et al., 2023) through gaseous emissions (e.g., N2O and NH3) and
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hydrological processes (e.g., leaching and runoff), contributing to climate change, severe air and

water pollution, and soil acidification.

Figure 1.3 Estimates of global cropland areas over 1850-2014 and 2015-2100 under eight future scenarios (top;

Hurtt et al., 2020), and FAO-reported global harvested areas of six crops for the 1961-2020 period (down;

FAOSTAT, 2023). The top figure is replotted based on the data from Hurtt et al. (2020).

At present, global human-induced N2O emission is estimated at 7.3 Tg N yr-1 (2007-2016 average),

and about 52% of those anthropogenic emissions come from the agricultural sector (3.8 Tg N yr-1;

Tian et al., 2020). Livestock manure (including manure left on pastures by grazing animals and

manure applied to croplands) and synthetic N fertilizer are the biggest drivers of agricultural N2O

emissions; these two activities also contribute 20% and 13% to annual total non-CO2 greenhouse

gas (GHG) emissions, respectively (FAO, 2020; see Fig. 1.4). The rapid increase of atmospheric
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N2O concentrations not only contributes to increasing near-surface air temperature (N2O is about

300 times as potent as CO2 at warming the atmosphere; Canadell et al., 2021), but also depletes

stratospheric ozone, thus increasing surface levels of harmful ultraviolet radiation (Prather et al.,

2015; Revell et al., 2015).

Figure 1.4 Contribution of crops and livestock activities to total non-CO2 greenhouse gas (GHG) emissions from

agriculture in 2018 (5.3 Gt CO2eq). The figure is replotted based on the data reported in FAO (2020).

In addition to enhancing the abundance of N2O in the atmosphere, livestock waste and the overuse

of N fertilizers on agricultural soils are major contributors to global NH3 volatilization (Liu et al.,

2022), a key precursor of secondary aerosol (especially fine particle matter; PM2.5) that have

adverse impacts on air quality and human health (Shen et al., 2020; Vira et al., 2022). Over the past

four decades, global agricultural NH3 emissions has increased by more than 70% from 36 Tg N yr-1

in 1980 to 64 Tg N yr-1 in 2018, in which NH3 emissions caused by synthetic fertilizers and

livestock manure have increased by 128% (14-32 Tg N yr-1) and 45% (22-32 Tg N yr-1),

respectively (Liu et al., 2022). The combination of excessive NH3 deposition and nitrate leaching,

arising from the surplus N in fertilized soils, is harmful to terrestrial and freshwater systems, and

drive soil acidification (Steffen et al., 2015; Shen et al., 2020), eutrophication (Moss, 2008), and

biodiversity loss (Erisman et al., 2013; Gu et al., 2023). To make matters worse, acidified soils and

the continuous SOC loss on croplands (primarily from deforestation, see Sect. 1.1) are accompanied

by low agricultural yields due to land degradation (Lal, 2004; Poeplau & Don, 2015). Accelerated
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soil degradation has been reported on as much as 500 Mha in the tropical region (Lamb et al., 2005),

and a full 90% of the land’s topsoil (i.e., ice-free land surface) is likely to become degraded by 2050

(FAO & ITPS, 2015). Considering the huge food demand to sustain the population growth in the

next decades (Samir & Lutz, 2017; Beltran-Peña et al., 2020) and the ongoing shift to richer diets

(Tilman et al., 2011), it is crucial to improve agricultural productivity in order to ensure food

security while reducing cropland C and N losses and restoring degraded soils for environmental

sustainability (Smith et al., 2020; Arneth et al., 2021).

1.3 Alternative cropland management practices for improved soil carbon sequestration

Restoring degraded agricultural soils and enhancing soil carbon brings benefits to all farms and to

society more generally. The benefits include increased soil water retention (resilience for rain-fed

agriculture), improved soil nutrient potential to maintain long-term agricultural productivity, and

increased C sequestration to reduce GHG emissions for climate change mitigation (Lal, 2015;

Arneth et al., 2021). Given all of the benefits, interests in soil organic carbon, the major indicator of

soil fertility, is now growing through various international initiatives (e.g., ARF100, 4per1000,

ProSoil). For example, launched by the French government during COP 21 in 2015, the 4per1000

initiative sets a target of 3.4 Pg C yr-1 (1 Pg = 1015 grams) SOC sequestration in global agricultural

topsoil (0-40cm) to mitigate climate change and support food security through the implementation

of alternative management strategies (such as agroecology, agroforestry, conservation agriculture).

As mentioned earlier, this thesis mostly explores the interactions between crop ecosystems and the

atmosphere, I thus introduce the background information of the improved management practices on

croplands usually adopted by farmers in the following.

The imbalance between carbon inputs (e.g., plant residue and manure application) and outputs (e.g.,

through crop harvest, decomposition of residues, leaching, and soil erosion) drives SOC storage

changes in croplands. Conservation agriculture (CA)—in particular the adoption of minimum soil

disturbance (e.g., no- or reduced tillage), permanent soil organic cover (e.g., crop residue returned

to the soil, and cover crops), and species diversification through varied crop sequencing—is the

most well-known and widely accepted practice to potentially increase soil carbon levels and

enhance agricultural sustainability globally (Smith et al., 2016; Zomer et al., 2017). At present the

world’s CA area is estimated at 110 Mha, approximately amounting to 7-10% of global croplands

(Porwollik et al., 2019). Much experimental evidence has indicated that SOC stocks under no-till

systems are significantly higher than conventional farming practices due to the reduced



9

decomposition rate of soil organic matter (Pittelkow et al., 2015; Powlson et al., 2016; Sanderman

et al., 2017; Sommer et al., 2018). However, the SOC benefits of no-till farming are statistically

significant only in the topsoil (0-15 cm) and decline with soil depth (Haddaway et al., 2017). In

global meta-analyses (Luo et al., 2010; Powlson et al., 2014), SOC stocks under no-till cropping

systems were sometimes found to even be lower than conventional tillage in the deeper soil layers

(>30 cm). Increasing organic material inputs with high C content as soil amendments are thus

expected to be an alternative management practice for achieving SOC enhancement (Poeplau &

Don, 2015). Retaining crop residue in the fields after harvest—either left on the soil surface or

incorporated to the soils—has for many years been recommended as an important strategy in CA

systems to strengthen resistance of SOC in croplands to soil degradation caused by intensive

agriculture (Lal, 2004). The total crop residue production in the world was estimated as much as 3.8

Pg dry matter yr-1 for 27 food crops in the 2000s (Lal, 2005), and SOC content on croplands has the

potential to increase by 9-13% if all harvested crop residue is returned to the soils (Xia et al., 2018;

Bolinder et al., 2020). However, practical challenges still exist in terms of the wide implementation

of crop residue retention on smallholder farms (Corbeels et al., 2014). In mixed crop-livestock

systems, there is competition for residues between mulching and livestock for feed, particularly in

African countries, where farmers also use residues for fuel and building (Thierfelder et al., 2013). In

addition, short-term yield effects have been found to be variable: there are examples of no yield

benefits and even short-term yield reductions after adoption of no-tillage and residue management

(Corbeels et al., 2014; Stevenson et al., 2014; Pittelkow et al., 2015). Farmers would suffer

economic losses, although it was estimated that these CA practices had a potential to increase global

cropland SOC storage by 0.9-1.85 Pg C annually after more than 20 years of implementation

(Zomer et al., 2017).

Application of livestock manure in agricultural land is also an important and widespread practice in

view of enhancing SOC sequestration and improving crop yields due to the additional C and N

inputs to the soils (Maillard & Angers, 2014). Over the past 150 years, global manure N production

has increased by more than nine-fold from 9.5 Tg N yr-1 in the 1860s to 98.3 Tg N yr-1 in the 2010s,

and is now similar to the amount of synthetic fertilizers applied to agricultural soils (105 Tg N yr-1;

Tian et al., 2022). Cattle (including dairy cows) dominated the manure N production among various

livestock species, accounting for over 40% of total manure N production in the 2010s, followed by

goats, sheep, and swine. Poultry (e.g., chickens and ducks) contributed the least to manure N

compaction, they only played an important role in Canada and Russia (Zhang et al., 2017). Manure
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might increase carbon stocks in soils as it has high carbon content or high C:N ratio. In global meta-

analyses (Maillard & Angers, 2014; Gross & Glaser, 2021), the application of manure on average

enhanced SOC sequestration on agricultural soils by 9.4-10.7 Mg C ha-1 (1 Mg = 106 grams)

compared with the unfertilized treatments, or equivalent to a 35% increase in soil carbon stocks.

Additionally, cropland SOC increases in response to manure use were found to be proportional to

the cumulative manure-C input, but the scale of these positive effects varied widely across the

region due to the differences in local climates, soil properties, manure application rates, as well as in

manure types (considerable variation in C:N ratio arising from different plant species consumed by

the farm animals; Maillard & Angers, 2014). Large-scale studies from regional to global levels are

thus needed to comprehensively quantify the responses of SOC stocks to manure application.

Cover crops (CCs), also known as catch crops, are plants that mostly grow during the fallow period

and are incorporated into the soils as “green manure” before planting the subsequent main crop.

Experimental evidence has indicated that CC cultivation within agricultural rotations may increase

SOC stocks by 13.8-17.3% over a period of up to 54 years, compared with management in which

the off-season is left fallow (Poeplau & Don, 2015; Jian et al., 2020). Replacing bare fallows with

cover cropping was estimated to sequester 0.16 Pg C yr-1 of soil carbon if 15% of global croplands

were to adapt CC practice (Jian et al., 2020), which is 13% of current LUC emissions (1.2 Pg C yr-1),

or equivalent to about 2% of carbon emissions from fossil fuels (9.6 Pg C yr-1; see Fig. 1.2). In

addition to increasing organic matter inputs, CCs are also able to take up excess N from the soil and

thus reduce N leaching (Tonitto et al., 2006; Thapa et al., 2018; Nouri et al., 2022; Blanchy et al.,

2023), as well as to prevent the soils from compaction and erosion that happen when soils are bare

(Kaye & Quemada, 2017). Moreover, compared with non-legumes, using legume CCs as green

manure is more effective to maintain and/or improve soil fertility and crop productivity, since they

not only increase soil organic matter via returning their biomass to soils, but also bring additional N

into the soil as a result of their symbiotic association with rhizobial bacteria in root nodules—a

process called biological nitrogen fixation (BNF). In general, the production of grain legumes

increases linearly with legume BNF rate (Unkovich et al., 2010; Córdova et al., 2019), and the N

benefit to soil fertility from green manure is strongly determined by N fixation capacity of CCs

(Fageria, 2007; Meena et al., 2018). In some field trials, practicing legume CCs with high BNF rate

(e.g., soybean and faba bean) has the potential to produce main-crop yields comparable with N

fertilized treatments (McDonagh et al., 1995; Garba et al., 2022; Zhao et al., 2022). This indicates

that environmental N pollution associated with fertilizer use can be possibly mitigated through
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substituting chemical fertilizers with N-fixing green manure. However, detailed assessment of

legume cover cropping impacts on global cropland remains a challenge, since the BNF rate in

legumes is highly dependent on the effectiveness of rhizobial strains (Chen et al., 2016; Denton et

al., 2017) and varies widely among sites and CC species (Liu et al., 2011; Ciampitti & Salvagiotti,

2018; Herridge et al., 2022).

1.4 Representing agricultural managements in Dynamic Global Vegetation Models

The benefits of soil nutrient and crop productivity from improved agricultural managements can be

quantified at field sites and/or in controlled environments, but this empirical evidence is hard to

scale up. Hence, this poses a challenge for large-scale modelling, for which dynamic global

vegetation models (DGVMs) are useful due to their mathematical representation of vegetation and

soil interactions under varying environmental and management conditions (Smith et al., 2014;

McDermid et al., 2017; Pongratz et al., 2018; Herzfeld et al., 2021). Crops in DGVMs are

parameterized as specific crop functional types (CFTs), which are groups of crops with similar

agricultural plant traits (Bondeau et al., 2007; Levis et al., 2012; Drewniak et al., 2013). Progress

over the last decade in representing cropland management strategies in DGVMs includes irrigation

(Jägermeyr et al., 2015; Zhang et al., 2018), the implementation of dynamic sowing and harvest

dates (Lindeskog et al., 2013), tillage (Ciais et al., 2011; Pugh et al., 2015; Lutz et al., 2019),

residue management (Lindeskog et al., 2013; Ren et al., 2020), the incorporation of the N cycle

enabling N fertilizer and manure application (Zaehle et al., 2011; Tian et al., 2012; Olin et al.,

2015a; Von Bloh et al., 2018), and cover crops (Olin et al., 2015a; Porwollik et al., 2022).

Compared with site-level modelling studies, an assessment of the impacts of agricultural practices

across regions or globally is still lacking, as a result of inadequate management information (e.g.,

spatial pattern of soil-conserving techniques) and missing or incomplete representation of land

management options in models. For large-scale C-N cycle modelling assessments, alternative

agricultural practices so far have been evaluated through stylized model setups with homogenous

assumptions of management intensities (Olin et al., 2015a; Lutz et al., 2020; Jang et al., 2021). For

example, Olin et al. (2015a) used the LPJ-GUESS DGVM to explore the impacts of soil-conserving

strategies on SOC sequestration rate across global agricultural ecosystems, assuming that all

cropland grid cells were to adopt no-till and 100% of residue retention managements. Similarly, to

realistically reflect the spatial pattern of cover cropping, a recent modelling study performed by

Porwollik et al. (2022) estimated with the LPJmL DGVM how conservation agriculture globally
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might affect soil C-N and yields in response to non-legume CCs across four cropping systems.

Their model results showed the potential of cover cropping for climate change mitigation via

enhanced soil C pools, but the authors suggested that future modelling assessment of N-fixing CCs

would be needed since this practice is identified as one practical strategy to address the conflict

between the growing needs for crop production and the environmental problems associated with N

fertilizer use (Abdalla et al., 2019; Nouri et al., 2022). To date, no study has applied DGVMs

globally to investigate how N-fixing cover cropping affect agricultural ecosystem services,

particularly in terms of cropland SOC sequestration, N losses, and crop yields.

1.5 Thesis structure and objectives

The main research questions of this thesis are:

– How much nitrogen is fixed from the atmosphere in grain legumes globally?

– Can legume cover crops contribute to environmental sustainability without compromising crop

production in global croplands?

– If so, how significant are these impacts from cover crops compared with other agricultural

practices under present and future climate conditions?

To answer these questions, the results of this thesis are split into three main chapters (Chapters 3-5),

each presenting the results of a peer-reviewed publication. Chapter 2 presents the common

methodology used in all chapters of this thesis, as well as the specific methodologies used in

Chapters 3-5. Chapter 3 describes how the incorporation of two new legume crops—soybean and

faba bean—into the LPJ-GUESS DGVM improves the representation of agricultural production

worldwide. The research questions addressed are:

– What are the global spatial and temporal patterns of the nitrogen fixation rate in soybean and

faba bean?

– How much does the nitrogen fixed through BNF contribute to total nitrogen uptake in legumes?

Using the updated LPJ-GUESS model version from Chapter 3, Chapters 4 and 5 directly assess the

large-scale influence of agricultural management practices on crop ecosystems, particularly with

respect to soil carbon stocks, cropland nitrogen loss, and crop production. Chapter 4 focuses on

potential effects from practicing two cover crop types—legumes and non-legumes—at a global

scale. The research questions addressed are:
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– To what extent can the implementation of cover cropping support carbon sequestration and soil

nitrogen loss reduction?

– Do cover crop types, management duration, and nitrogen fertilization impact on the

effectiveness of cover cropping in main-crop yields? If so, how?

In addition to cover crop managements assessed in Chapter 4, Chapter 5 comprehensively evaluates

the possibility of seven management practices for achieving long-term environmental sustainability

and food security. Chapter 5 focuses on eastern Africa as a case study, a region where agricultural

soils have been experiencing strong degradation over recent decades. The research questions

addressed in Chapter 5 are:

– Which alternative management practice is the best strategy for climate change mitigation via

enhanced soil carbon pools?

– How could conservation agriculture contribute to crop ecosystems in the future?

Chapters 3-5 are based on the results from three papers: Chapter 3 builds upon the paper “Modeling

symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)”

by Ma et al. (2022) published in Geoscientific Model Development; Chapter 4 is based on the paper

“Estimating the global influence of cover crops on ecosystem service indicators in croplands with

the LPJ-GUESS model” by Ma et al. (2023) published in Earth’s Future; Chapter 5 builds upon the

paper “Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss and

crop production—a modelling study in eastern Africa” by Ma et al. (2022) published in

Biogeosciences. The three published papers are attached in the Appendix of this thesis. A general

conclusion and outlook section with respect to the overall research questions is presented in Chapter

6, providing a broader perspective on the findings of this thesis.

As much of the work presented in the following is involved with inputs from the co-authors in the

published/submitted papers, I will use “we” instead of “I” throughout the Chapters 2-5.
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2 Methods

2.1 Model description of LPJ-GUESS

The research tool used in this thesis is the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-

GUESS). LPJ-GUESS is a process-based DGVM that can be used to investigate plant and soil C-N

dynamics and their interactions in response to changes in environment (e.g., climate, atmospheric

CO2 levels, and N deposition) and management (e.g., crop type, N fertilizer, and harvest) through

simulating individual- and patch-level plant physiological and biogeochemical processes on a daily

time step (Smith et al., 2014). Natural vegetation implemented in the model is characterized by 12

plant functional types (PFTs), with ten woody and two herbaceous types included. PFTs differ in

their phenology, photosynthetic pathway (C3 or C4), growth strategy, and bioclimatic limitations.

Pastures are described as the competition between C3 and C4 grass PFTs, with half of aboveground

biomass harvested annually to represent grazing impacts (Lindeskog et al., 2013). Four crop

functional types (CFTs)—two temperate C3 crops with spring and autumn sowing dates, a tropical

C3 crop representing rice, and a C4 crop representing maize—are simulated to represent croplands,

with crop-specific differences in morphological traits, dynamic C-N allocation patterns, heat

requirements for growth, and N fertilization management (Olin et al., 2015b). For large-scale

applications, the sowing date in each grid cell depends on a set of rules driven by crop- and climate-

specific characteristics, with five seasonality types represented (see Waha et al. (2012) for details).

Crops are prescribed as either rain-fed or irrigated and are harvested annually when the dynamic

potential heat units (PHU; accumulated degree-days above a base temperature for each CFT) are

fulfilled (Olin et al., 2015b). To account for post-harvest losses caused by mechanical damage or

poor handling conditions, a harvest efficiency of 90% is used to adjust the modelled crop yields

(Lindeskog et al., 2013). At present, within-year multi-cropping systems, which are common in

tropical regions, have not been implemented in the model.

Cropland management options represented in LPJ-GUESS include irrigation, tillage, crop residue

retention, N fertilizer and manure application, and cover crop grasses grown between two cropping

seasons. Irrigation water is estimated as the amount of plant water deficit in the model and is added

to the soil automatically when crops suffer from water stress. The effect of conventional tillage on

heterotrophic respiration is simulated as a tillage factor of 1.94, which modifies the decay rate of

four SOM carbon pools throughout the year and accelerates the soil decomposition on agricultural

lands (Chatskikh et al., 2009; Pugh et al., 2015). In the standard LPJ-GUESS setup, 75% of
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aboveground crop residue is removed from the fields after harvest; the rest, combined with root

biomass, is assumed to enter to the soil litter pool for decomposition. Synthetic N fertilizer is added

to the soil mineral N pool for plant uptake at three crop development stages, with varying

application rates for each CFT. Manure is applied as a single input to cropland at sowing to account

for the time required for manure N to be made available for crops. Manure is assumed to have a

C:N value of 30 and is added to metabolic and structural SOM pools for decomposition (Olin et al.,

2015a). Cover crops implemented in LPJ-GUESS so far have been simulated as competing

temperate C3 and tropical C4 grasses grown annually between two consecutive growing seasons of

main crops, replacing bare-soil fallow periods. Cover crop grass is sown on the 15th day after the

harvest of the main crop, starting with a seedling that has an initial C mass of 0.01 kg C m-2 and

C:N ratio of 16 (Olin et al., 2015a). Daily C and N mass in grasses are allocated to root and leaf

pools based on a prescribed root:shoot partitioning ratio of 2 (Sainju et al., 2017), which is

dynamically adjusted depending on plant water status. In the case of water stress, root allocation is

increased (i.e., root:shoot partitioning ratio > 2) to help plants overcome the water limitation,

following Penning de Vries et al. (1989). Cover crop grasses on fallow cropland in the simulations

do not receive any management inputs (i.e., they grow under rain-fed and unfertilized conditions).

Fifteenth days before planting the next main crop their shoot and root biomass are added to the

surface litter and the soil metabolic/structural SOM pools, respectively, for further decomposition.

Interplanting cover crops with main crops (i.e., two plants growing beside each other at the same

time) is not implemented in the model.

C-N dynamics of the soils in LPJ-GUESS are modelled by 11 SOM pools differing in C:N ratios

and resistance to decay, following the CENTURY model (Parton et al., 1993). Decomposition of

SOM pools results in the release of CO2 to the atmosphere (respiration) and C and N transfers

between soil pools (Smith et al., 2014). C input to the receiver pool drives N mineralization or

immobilization, as a result of maintaining mass balance and prescribed C:N ratios of the donor and

receiver pool. Net N mineralization (i.e., mineralization minus immobilization), together with

industrial N fertilizer and atmospheric N deposition, determine the size of the total soil mineral N

pool, which is depleted by plant N uptake, as well as by crop ecosystem N losses through gaseous N

emission and N leaching on a daily time step (Zaehle and Friend, 2010; Wårlind et al., 2014).

Gaseous N emission produced in the soil to the atmosphere is simulated as NH3, NO, N2O and N2,

with the representation of soil N dynamic processes including ammonification, nitrification, and

denitrification in the SOM pools. Following Parton et al. (1993), mineral N leaching in the model is
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proportional to soil nitrate concentration and constrained by percolation rate and soil water content.

N losses through soluble organic leaching are also added in LPJ-GUESS and determined by N

decreases in soil microbial SOM nitogen pool (due to decomposition), water percolation, and soil

sand fraction (Wårlind et al., 2014).

2.2 Implementation of legumes to LPJ-GUESS

Considering the importance of soybean in overall agriculture and trade, and the higher BNF rate in

faba bean compared with other pulses (Peoples et al., 2021; Herridge et al., 2022), we incorporated

these two grain legumes with BNF processes into LPJ-GUESS. In addition, a nitrogen-fixing

grass—white clover (Trifolium repens), an herbaceous cover crop often used in conservation

agriculture systems—is also included, by modifying the existing C3 grass type (Olin et al., 2015a)

but with BNF capabilities added (see Sect. 2.2.2 below). This updated LPJ-GUESS version (v4.0,

r10285) will be used throughout the Chapters 3-5.

2.2.1 Updated daily carbon allocation parameters in grain legumes

Similar to most ecosystem and crop models, LPJ-GUESS uses accumulated heat requirements to

simulate crop growth development (Lindeskog et al., 2013). To better represent C and N allocation

in different phenological phases, Olin et al. (2015b) defined crop development stage by

implementing the effects of temperature, verbalization days and photo-period, following Wang &

Engel (1998). Here, we simplified the processes and assumed that the development of grain

legumes is linearly correlated to its accumulated heat units, given the field-based soybean

experiments (Irmak et al., 2013). It is estimated as:

�� =
aveg + bveg × ��ℎ� ��ℎ� ≤ fphuanthesis
arep + brep × ��ℎ� ��ℎ� > fphuanthesis

2.1

where DS is crop development stage, ranging from 0 to 2 (DS=0, sowing; DS=1, flowering; DS=2,

harvest); fphu is the fraction of today’s accumulated heat units to total heat requirement; fphuanthesis
is the threshold of fphu when anthesis starts, below (above) which crop growth belongs to the

vegetative (reproductive) stage; and a and b are the linear regression coefficients, varying between

the vegetative and reproductive phases. The values of a and b , and the crop-specific base

temperature (°C) to estimate the accumulated heat units are both given in Table 2.1.

Allocation of assimilated C to leaves, stems, and roots is an important process before storage organs

are formed. Unlike cereal crops, nodulated plants, particularly soybeans, are more likely to achieve
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a higher photosynthesis rate and delay leaf senescence due to the continued N supply from N

fixation (Abu-shakra et al., 1978; Kaschuk et al., 2010). A precise representation of assimilate

partitioning to the plant organs when modelling BNF in grain legumes is especially important

considering the high C cost from fixing N from the atmosphere. Productivity loss would be

simulated if the leaf photosynthesis rate would not increase to compensate for the costs (Kaschuk et

al., 2009).

Following Olin et al. (2015b), relationships between assimilate allocation to legume organs were

established based on data from Penning de Vries et al. (1989) and Boote et al. (2002). We fitted the

allocation functions using the Richards logistic growth curve (Eq. 2.2; Richards, 1959) to model the

allocation to each organ dynamically and separately. Since the NPP cost to maintain BNF in the

reproductive stage would reduce the flow of carbon assimilate to storage organs, we adjusted the

allocation functions from Olin et al. (2015b) so that the model could dynamical1y adapt the

allocation to grain over the seed-filling period in response to BNF cost (see Eqs. 2.3-2.5 for details).

�� = �� +
�� − ��

1 + �−��× ��−��
2.2

where fi represents the three allocation functions (see Eqs. 2.3-2.5 below); DS is crop development

stage; ai, bi, ci, di are fitting coefficients for the three functions, with the specific values given in

Table 2.1.

2.2.1.1 Yield vs. the whole plant

After anthesis (DS > 1), most assimilates are allocated and retranslocated from the vegetative organs

to the grains. During the late seed-filling period (DS ≥ d1, see Eq. 2.3), we assumed that the fraction

of carbon allocated to yield would increase to partly compensate the productivity loss caused by

spending on N fixation, with the cost of reducing the flow of carbon to leaves and stem (see Eq. 2.4).

We established the ratio of the allocation to yield relative to the whole plant as:

�1 =
������

���� + ������
=

�1 +
�1 − �1

1 + �−�1× ��−�1
�� < �1

�1 +
�1 − �1

1 + �−�1× ��−�1
× 1+ �������� �� ≥ �1

2.3

where Pyield and Pveg are the fraction of carbon allocated to yield and vegetative organs, respectively,

ranging from 0 to 1; PBNFcost is the proportion of NPP used for BNF to today’s total NPP; d1 is the

fitting coefficient, representing the DS of maximum growth rate of grain (see Table 2.1).
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2.2.1.2 Leaf vs. shoot vegetative organs

Similarly, the ratio of leaf vs. shoot vegetative allocation is specified as:

�2 =
�����

���� − �����
=

�2 +
�2 − �2

1 + �−�2× ��−�2
�� < �1

�2 +
�2 − �2

1 + �−�2× ��−�2
− �������� �� ≥ �1

2.4

where Pleaf and Proot are the fraction of carbon allocated to leaf and root, respectively.

2.2.1.3 Root vs. vegetative organs

When a plant experiences water or nutrient stress, it invests more assimilate to roots relative to

shoot vegetative organs (Penning de Vries et al., 1989). We implemented dynamic increases in the

allocation to roots during the late seed-filling period to help legumes cope with the C loss from BNF

cost, and established the relationship between the allocation to root and that to vegetative organs as:

�3 =
�����
����

=
�3 +

�3 − �3
1 + �−�3× ��−�3

�� < �1

�3 +
�3 − �3

1 + �−�3× ��−�3
+ 1 − �1 × �������� �� ≥ �1

2.5

In addition, carbon partitioning to vegetative organs (Pveg) can be calculated by subtracting the

reproductive allocation (i.e., Pyield) from the whole plant as:

���� + ������ = 1 ⇒ ���� = 1 − ������ = 1 − �1 (2.6)

Finally, we can achieve dynamic carbon allocation to the plant organs over the growing season by

combining Eqs. 2.3-2.6:

������ = �1
����� = �2 × 1 − �1 × 1 − �3
����� = ���� − ����� − ����� = 1 − �1 × 1 − �2 × 1 − �3 (2.7)
����� = �3 × 1 − �1
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Table 2.1 List of parameters for the daily carbon allocation (Eqs. 2.1-2.7) for soybean and faba bean.

Parameter Description Soybean Faba bean Reference

aveg Regression intercept, vegetative phase -0.06 -0.06 Irmak et al. (2013)

bveg Regression slope, vegetative phase 3.29 3.29 Irmak et al. (2013)

arep Regression intercept, reproductive phase 0.71 0.71 Irmak et al. (2013)

brep Regression slope, reproductive phase 1.31 1.31 Irmak et al. (2013)

fphuanthesis The threshold of fphu when anthesis starts 0.34 0.34 Irmak et al. (2013)

Tb Base temperature for heat sum requirement 10 °C 4 °C Etemadi et al. (2018)

f1

a1 0 0

This thesis
b1 1 1

c1 8.93 9.59

d1 1.41 1.46

f2

a2 0.67 0.75

This thesis
b2 0 0

c2 30.78 7.69

d2 1.73 1.38

f3

a3 0.56 0.59

This thesis
b3 0 0

c3 3.74 5.53

d3 0.53 0.51

2.2.2 Representation of BNF

Fixing N from the atmosphere and N uptake from soils are two N sources for grain legumes to meet

their total plant N demand. The latter has a higher priority for plants because the process needs less

energy than N fixation (Macduff et al., 1996). Following on this idea, in LPJ-GUESS, N fixation is

triggered when the following two assumptions are valid simultaneously (see Fig. 2.1): (a) today’s

plant growth still suffers from N limitation after N uptake from soils (i.e., the N deficit, plant N
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demand minus soil N uptake, is greater than zero), and (b) today’s NPP is positive, so that adequate

C supply can be provided to fulfill the BNF cost.

The BNF scheme in LPJ-GUESS is adapted from previously published methods (Liu et al., 2011) in

which it is parameterized as a combined response function to (a) the potential N fixation rate, (b)

temperature, (c) soil water availability, and (d) the crop development stage:

���� = ������� × �� × �� × ��� 2.8

where Nfix is the N fixation rate; Nfixpot is the potential N fixation rate; and fT, fW, fDS are limitation

functions of soil temperature, soil water status, and crop growth stage to BNF, respectively.

The potential N fixation rate is often related to the size and biomass of root nodules (Soussana et al.,

2002; Voisin et al., 2003; Voisin et al., 2007). However, due to the difficulties in collecting roots

and nodules under field conditions, some studies adopted aboveground biomass as an alternative to

estimate the legume BNF rate, following the empirical relationship between shoots and roots (Yu et

al., 2002; Corre-Hellou et al., 2009; Wu et al., 2020). Given the absence of the nodulation process

in LPJ-GUESS at present, Nfixpot is assumed to be linearly related to root dry matter:

������� = Nmaxfixpot × ������ 2.9

where Nmaxfixpot is the maximum nitrogen fixation rate of roots (g N g-1 root DM) and DMroot is root

dry matter (g root DM m-2). As the experiment-based parameter Nmaxfixpot is highly dependent on the

effectiveness of rhizobial strains, and shows considerable variation between species and sites, it is

difficult to obtain this parameter for large-scale applications. Here, we assume that legume plants

are inoculated (or there are high enough populations of strains in the soil) and grown in a robust soil

ecosystem, so that Nmaxfixpot is not constrained by the absence of rhizobia. For the two grain legumes,

Nmaxfixpot is assumed to be a constant of 0.03 g N g-1 root DM, a moderate value taken from the

literature (Eckersten et al., 2006; Boote et al., 2009). For white clover grass, Nmaxfixpot is set to 0.012

g N g-1 root DM, a mean value from the field-based range of 0-0.03 g N g-1 root DM reported in

Michaelson-Yeates et al. (1998) and Soussana et al. (2002).

Soil temperature is a major factor affecting both microbial activities and plant growth. For soybean,

the optimal soil temperature for N fixation can range between 20-35°C (Boote et al., 2009). For

white clover, Halliday & Pate (1976) observed in experiments that nitrogenase activity appeared to

have a broad optimum range of 13-26°C with a sharp decline below 13°C and above 26°C. The
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influence of soil temperature on legume BNF is represented in the model as a number of linear

relationships:

�� =

0 � < Tmin �� � > Tmax
�−����

�����−����
(Tmin ≤ � < ToptL)

1 (ToptL ≤ � ≤ ToptH)
����−�

����−�����
(ToptH < � ≤ Tmax)

2.10

where T is soil temperature (°C) at 25 cm depth, representing the mean temperature of the topsoil

layer in the model (0-50cm); Tmin (Tmax) is the minimum (maximum) temperature below (above)

which N fixation stops; and ToptL and ToptH are the lower and higher optimal temperatures within

which N fixation is not limited by temperature. The values of these four temperature thresholds vary

among legume plants and are shown in Table 2.2.

Water deficit as well as waterlogging can also affect N fixation. Too little or too much water

dramatically inhibits BNF due to impacts of drought stress and oxygen deficit, respectively, on

nodule nitrogenase activity (Marino et al., 2007). Following previously published methods (e.g.,

APSIM, Robertson et al., 2002; EPIC, Cabelguenne et al., 1999; SOILN, Wu & McGechan, 1999),

a linear water-limitation function is incorporated into LPJ-GUESS, and is represented as:

�� =
0 (�� ≤ ��)

�1 + �2 ×�� �� < �� < ��

1 (�� ≥ ��)
(2.11)

where Wf is relative soil water content in the top soil layer (0-50cm), ranging between 0 and 1; φ1
and φ2 are empirical coefficients; Wa is the threshold of Wf below which N fixation is fully

restricted by soil water deficit and Wb is the value above which N fixation is not inhibited by soil

water content. The values of the parameters are given in Table 2.2.

Much experimental evidence has indicated that the N fixed by grain legumes varies widely among

growth stages, reflecting the development of root nodules from establishment to senescence

(Córdova et al. 2020). In the CROPGRO model (Boote et al., 2009), N fixation in soybean starts in

the early vegetative stage and continues until the end of physiological maturity, whereas it ceases at

the middle of the seed-filling period in the EPIC model (Cabelguenne et al., 1999). In this study, a

more specific function, similar to the temperature response function, is implemented to the BNF

scheme to represent the variation of N fixation with the course of life cycle in grain legumes:
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��� =

0 ��� < NDSmin �� ��� > NDSmax
���−NDS���

NDSoptL−NDSmin
(NDSmin ≤ ��� < NDSoptL)

1 (NDSoptL ≤ ��� ≤ NDSoptH)
NDSmax−���

NDSmax−NDSoptH
(NDSoptH < ��� ≤ NDSmax)

2.12

In contrast to grain legumes, white clover, as an herbaceous perennial plant in cover cropping

systems, is often killed chemically or mechanically after several months of growth to prevent

potential penalties to the subsequent main crops. Nodule senescence is thus not a major factor

affecting N fixation in grass-based cover cropping. Accordingly, we modify Eq. 2.12 to only

account for the nodule establishment effects on N fixation at the early development stage of white

clover:

��� =

0 ��� < �DSmin
���−�DS���

�DSoptL−NDSmin
(NDSmin ≤ ��� < NDSopt)

1 (�DS ≥ NDSopt)
2.13

where NDS is normalized legume development stage, ranging from 0 to 1; NDSmin is the time before

which there is no N fixation due to inadequate nodulation; NDSmax is the time after which N fixation

suspends due to nodule senescence; and NDSoptL and NDSoptH define the period within which

legume BNF rate is not inhibited by development stage. The values of the parameters for soybean,

faba bean, and white clover are derived from the literature and listed in Table 2.2.

Apart from the environmental limitation factors, soil mineral N concentration and the amount of

daily NPP also affect BNF rate. The NPP requirement for BNF costs (Eq. 2.14 below) in LPJ-

GUESS is computed based on the estimated N fixation rate (Nfix; Eq. 2.8) by multiplying the C cost

per unit fixed N, which is set to a constant of 6 g C g-1 N fixed as a moderate value taken from

previous studies (Patterson & Larue, 1983; Boote et al., 2009). Kaschuk et al. (2009) reported that

fixing N from the atmosphere would cost 8-32% of net photosynthetic C to maintain legume

symbiotic growth, activity, and reserves. To catch rare cases where the simulated C cost may

exceed the reported range, we thus assume that at most 50% of today’s NPP in legumes can be used

for N fixation. When daily C cost is more than 50% of NPP, the modelled BNF rate (Nfix; Eq. 2.8) is

further adjusted as:

�������� = 6 × ����/�������� 2.14
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����_����� =
���� �������� < 0.5
0.5 × ��������/6 �������� ≥ 0.5 2.15

where PBNFcost is the fraction of today’s NPP used for BNF; Nfix is the estimated BNF rate from Eq.

2.8; NPPtoday is today’s NPP; Nfix_today is today’s final fixed N in legumes. The fixed N is partly

transported to plant leaves and continues to support the photosynthesis activity next day, resulting in

additional C benefits by reducing N limitation on leaf carboxylation capacity. More details on the

BNF scheme in LPJ-GUESS can be found in Fig. 2.1.

Figure 2.1 Representation of the N fixation route used in grain legumes in LPJ-GUESS. Today’s N deficit is

calculated as the difference between plant N demand and soil mineral N uptake. Nfix in dotted boxes are

intermediate values.
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Table 2.2 Overview of BNF-related variables and parameters used in the model for three legumes.

Parameter Description Soybean Faba White clover Unit

N deficit plant N demand minus soil N uptake dynamic dynamic dynamic g N m-2 d-1

NPP net primary productivity dynamic dynamic dynamic g C m-2 d-1

Nmaxfixpot maximum BNF rate of roots 0.03 0.03 0.012 g N g-1 root DM

DMroot root dry matter dynamic dynamic dynamic g root DM m-2

C cost carbon cost per unit fixed N 6 6 6 g C g-1N fixed

T soil temperature at 25 cm depth dynamic dynamic dynamic °C

Tmin
the minimum temperature for the start
of BNF 5 1 9 °C

ToptL
lower bound of optimal temperature for
BNF 20 16 13 °C

ToptH
upper bound of optimal temperature for
BNF 35 25 26 °C

Tmax
the maximum temperature for the stop
of BNF 44 40 30 °C

Wf relative soil water content (0-50 cm) dynamic dynamic dynamic fraction

Wa
lower bound of water content below
which BNF is limited by soil water 0.2 0 0 fraction

Wb
upper bound of water content above
which BNF is not limited by soil water 0.8 0.5 0.5 fraction

φ1 coefficient of soil water content -0.33 0 0 –

φ2 coefficient of soil water content 1.67 2 2 –

NDS normalized crop development stage dynamic dynamic dynamic –

NDSmin the minimum development stage for the
start of BNF 0.1 0.1 0.1 –

NDSoptL lower bound of development stage for
BNF 0.3 0.3 0.3 –

NDSoptH upper bound of development stage for
BNF 0.7 0.6 – –

NDSmax the maximum development stage for the
stop of BNF 0.9 0.8 – –
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2.3 Specific methodology in Chapter 3

In Chapter 3, field-based soybean and faba bean data from published sources, together with global

yield statistics from legume-producing countries and region-level N fixation data from the literature,

are compared with LPJ-GUESS model runs to examine the performance of the new implementation

in simulating BNF rates and yields from site scale to a large region.

In order to build up the stabilized soil C-N levels on cropland, all LPJ-GUESS simulations are

initialized with a 500-year spin-up using atmospheric CO2 concentration from 1901 and repeating

de-trended climate from 1901-1930 (see Sect. 2.3.1 for data information). During spin-up, potential

natural vegetation (PNV) is simulated for the first 470 years, and then the cropland fraction linearly

increases from zero to the first historic value (1901) in the last 30 years. This protocol of model

spin-up will be used throughout the Chapters 3-5.

2.3.1 Model evaluation at site scale

To evaluate the model’s ability to simulate BNF rates and yields, N fixation trials under field

conditions with detailed measurements of soil N uptake and biomass were collected from the

literature. A total of 17 soybean and 7 faba bean sites between ~33°S and ~53°N were compiled

(Fig. 2.2). In this data set, grain yield, dry biomass and N mass of plant various tissues, together

with the proportion of plant N derived from the atmosphere (%Ndfa), soil N uptake and N fixation

were widely-reported variables. These data were thus chosen as target variables for model

evaluation. Additionally, to convert plant C mass to dry matter, a conversion factor of 2.0 was used.

Dry weight was converted to wet weight by assuming a water fraction of 0.13 in grain legumes

(Córdova et al., 2019).

Since specific leaf area (SLA) and target grain C:N ratio play a significant role in determining N

uptake and N retranslocation to grain during seed-filling in the model (Camargo-Alvarez et al.,

2022), we conducted two simulations to explicitly examine model performance across all sites. For

‘site-specific’ runs, the reported SLA and grain C:N ratio were used for the simulation at sites for

which these were available. For ‘global-uniform’ parameter runs, SLA was represented as a

constant of 40 m2 kg-1 C for soybean and 45 m2 kg-1 C for faba bean (Penning de Vries et al., 1989),

and target grain C:N ratio was set to 8 and 10, respectively (Kattge et al., 2020).

Because weather data for most evaluated sites was not available, a gridded daily climate data set at

0.5° resolution from GSWP3-W5E5 (Lange, 2019; Cucchi et al., 2020) was used as input (air
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temperature, precipitation, and solar radiation), choosing the grid cell where the experimental sites

were located. Likewise, there was not much information on land use during the years preceding the

field trials for most sites. Therefore, to maintain SOM pools in equilibrium after model spin-up, we

decided to implement a common cropping system of maize-legume rotation annually from 1901 to

the year before the trials start, with no N fertilizer applied to both crops. Over the trial period, the

management practices were implemented based on information provided in the literature. In

addition, site-specific soil physical properties—bulk density, fractions of sand, silt, and clay—

derived from the literature were used as external forcing to further calculate corresponding soil

water characteristics in the model.

The agreement between modelled and observed variables was assessed using adjusted R2 (the

goodness of fit for the linear regression analysis), mean error (ME), mean absolute error (MAE),

root mean square error (RMSE), and Pearson correlation coefficient (r):

�� =
1
�

�=1

�

(
�� − ��

��
)� × 100% (2.16)

��� =
1
�
�=1

�

(
|�� − ��|

��
)� × 100% (2.17)

���� =
1
�
�=1

�

(�� − ��)2� (2.18)

� = �=1
� (�� −��)(�� − ��)�

�=1
� (�� −��)2 �=1

� (�� − ��)2��
(2.19)

where Mi and Oi indicate modelled and observed values, with the mean value given as �� and O�

respectively. n is the number of observations.
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Figure 2.2 Soybean (red circles) and faba bean (magenta triangles) sites used for BNF evaluation. The map

background is cropland fraction (%) averaged over 1996-2005 at the resolution of 0.5° × 0.5°, derived from the

LUH2 data set (Hurtt et al., 2020).

2.3.2 Global yields and BNF rates

To test model performance in simulating large-scale legume yields and BNF rates, FAO-reported

national yields (FAOSTAT, 2023) were collected and compared with LPJ-GUESS output.

Furthermore, Peoples et al. (2009) collated the N fixation rates in widely-grown legumes from a

range of published sources and divided them into different geographical regions. In order to

compare our simulated BNF with the literature reports, each simulated 0.5°×0.5° grid cell was

classified to be in one of the following ten regions given in Peoples et al. (2009): West Asia, South

Asia, South-East Asia, East Asia, Central Asia, Africa, Europe, North America, South America, and

Oceania.

For regional comparison, the modelled gridded yield and BNF rate were aggregated to national and

continental scales, respectively, using information of crop-specific cover area on spatial pattern:

��������� = �=1
� [ ������� � × �������� � + ������� � × �������� �]�

�=1
� [ �������� � + �������� �]�

2.20

where Var is yield or BNF rate; Varregion is the aggregated result in a given region; i is the grid cell

number in that region, ranging from 1 to n; Varrain and Varirri represent the modelled yield or BNF
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rate under rain-fed and irrigated conditions, respectively; Arearain and Areairri are the crop-specific

rain-fed and irrigated areas used in simulations, respectively (see below).

Similar to the site-level setup in Sect. 2.3.1, the daily climate data set GSWP3-W5E5 was also used

for the global simulation, spanning from 1901-2016 at 0.5° resolution. Annual atmospheric CO2

concentration was taken from Meinshausen et al. (2020). Historical land use/land cover input data

between 1901 and 2014 were adopted from LUH2 (Hurtt et al., 2020) and remapped from 0.25° to

0.5° with fractions of natural vegetation, pasture, and cropland given for each grid cell. The growth

distribution of various crop types, distinguishing shares of rain-fed and irrigated crop-specific

fraction per grid cell, was based on the MIRCA data set around the year 2000 (Portmann et al.,

2010). Since no detailed information was available on the fractional cover of faba bean, the ‘pulse’

fraction in MIRCA was used as input instead, and ‘pulses’ country-level yield statistics provided by

FAOSTAT (2023) were collected to compare with faba bean outputs by LPJ-GUESS. In addition,

to parameterize soil hydraulic properties, cropland soil texture classes in the upper soil layer (0-30

cm) from ISIMIP/GGCMI phase 3 (Volkholz & Müller, 2020) were used and held constant over the

course of the model experiments.

In terms of timing of N fertilizer application, a recent synthetic analysis by Mourtzinis et al. (2018)

showed that splitting N application at planting and early reproductive stage led to dramatically

higher soybean yields than a single application method. Mineral N fertilizer was thus applied to

legumes at the time of sowing and flowering with equal applications in our implementation. To

realistically account for the time required for manure N to be available to plants, manure was added

to soils at the time of sowing as a single application. Crop-specific mineral N fertilizer and manure

inputs from 1901-2014 were taken from Ag-GRID (Elliott et al., 2015) and Zhang et al. (2017),

respectively. Moreover, monthly atmospheric N deposition simulated by CCMI from 1901 to 2014

was used and interpolated to the same resolution of the climate forcing (0.5°×0.5°) (Tian et al.,

2018).

2.4 Specific methodology in Chapter 4

This chapter is divided into two parts. First, we test the model’s ability to reproduce the observed

responses in SOC stocks, N leaching, and crop yields to N-fixing and non-N-fixing cover crops

(CCs) at various field trial sites around the world. Next, we perform four global simulations of CC

cultivation in different tillage systems (Table 2.3). Our analyses focus on the earlier mentioned

three ecosystem service indicators, first evaluating the model results against estimates from global-
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level studies and statistics, then analyzing and discussing the potential contribution of CCs to

environmental sustainability and food security under three conservation agriculture scenarios (see

Sect. 2.4.2 for details). Model simulation spin-up follows the protocol run described in Chapter 3

(see Sect. 2.3 above). All input data used for simulations are summarized in Table 2.4, with the

specific experimental setups explained in detail below.

2.4.1 Model evaluation at site scale

To examine the model performance, cover crop field trials that also report observations of SOC

stocks, N leaching, and crop yields were collected from the existing literature. Due to the absence of

intercropping systems in the model, we only selected field trials in which CCs were either grown

during the bare fallow period or undersown in main crops. For the latter case, CCs usually coexist

with the main food crops for a short while (ca. 1-2 months before the main crop is harvested); CC

growth is dormant during the winter months, but continues in spring, and CC crops are then

terminated several days prior to the next planting of the main crop (Valkama et al., 2015).

Additionally, to capture the variability of the observed data, CC treatments needed to cover at least

two growing seasons, with the whole plant used as green manure or mulch returning to the fields.

As a result, a total of 43 studies carried out at 41 different sites were compiled for evaluation. These

studies investigated the effects of two cover crop functional types—legumes (CCL) and non-

legumes (CCNL)—on soil C sequestration (12 sites), N leaching (13 sites), and crop yields (29 sites)

across four cropping systems (wheat, maize, rice, and soybean) and under various water and N

management practices (Fig. 2.3).

Following the site-level simulation setup in Chapter 3 (Sect. 2.3.1), the gridded climate data set

GSWP3-W5E5 at 0.5° resolution was used as input due to the absence of weather data for most

selected sites. Also, because there was not much information on land use during the years preceding

the field trials, we assumed that all sites were under grassland systems from 1901-1905, followed by

a cropland period of 1906-1910, with this 5-year alternation between grassland and cropland

repeated until the field trials began. Since cropland at most sites had already been present for

several years at the beginning of the CC experiment, we simulated five years of cropland preceding

the site trials at those locations for which no other information was reported. Over the experimental

period, model runs were performed according to management information reported in the literature.

At the moment LPJ-GUESS does not simulate the cultivation of two crops simultaneously on the

same field, whereas undersown CCs in the field experiments are generally grown together with
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main crops at least one or two months. To better represent the total length of the cover crop growing

season in the model simulations, we adjusted the sowing date of undersown CCs (referred to as the

4-A1 runs in Table 2.4) to one day after the main crop harvest (instead of the default 15) and

terminated the plants one day before the establishment of the next primary crop. For CCs solely

grown on fallow cropland (4-A2 runs; Table 2.4), their planting and harvest dates were assumed to

be the same as the LPJ-GUESS standard setup, following the common field practice at most sites

(Mazzoncini et al., 2011; Kaspar et al., 2012; Duval et al., 2016).

Figure 2.3 Distribution of cover cropping field studies used for model evaluation of cropland SOC stocks (a), N

leaching loss (b), and crop yield (c). All studied SOC sites (12) had continuously practiced CC cultivation for

more than three years, and the leached N loss at the evaluated sites (13) were reported as either total N (mineral

plus organic) or nitrate (NO3). The influence of CC practice on crop production was investigated in four cropping

systems (maize, wheat, rice, and soybean) at 29 sites from 16 countries. Overall measurement information in

cover crop field experiments—cover crop types (legumes or non-legumes), growth patterns (undersown or fallow),

and water and N fertilizer managements to main crops—is shown in (d).
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2.4.2 Global agricultural ecosystem response to cover cropping

In this experiment we performed simulations with four CFTs—wheat (including spring wheat and

winter wheat), maize, rice, and soybean—which jointly provide more than two-third of the world’s

food supply (FAOSTAT, 2023). To detect how CCs affect cropland ecosystem services, two cover

crop types—leguminous (CCL) and non-leguminous (CCNL) grasses—were assessed. An additional

combined practice, with N-fixing cover crop and no tillage (CCLNT), was used to represent

important aspects of conservation agriculture. Model outputs of these three practices were compared

to a control simulation with bare fallow (NoCC), applying the simulation setup given in Table 2.3.

The model experiments started with a baseline simulation of the historical period (1901-2014) under

NoCC management after model spin-up, using dynamic gridded climate, land use/land cover, and N

fertilizer data (0.5°×0.5°), together with atmospheric CO2 concentration. The result of this run was

to produce present-day SOM pools on off-season fallow cropland across the globe (Table 2.4). This

baseline simulation is referred to as 4-B1. Subsequent runs of four management practices listed in

Table 2.3 branched from this present-day state in 2015 and are referred to as the 4-B2 runs. These

simulations ran for 36 years (the maximum duration found in cover cropping field trials in our

analyzed sites) but are not intended to estimate SOC storage, N leaching and crop production

through 2050; rather, they are designed to detect the relative changes in these three ecosystem

indicators due to replacing bare fallows with cover crops. For that reason, we use constant repeated

1995-2014 climate with temperature de-trended, combined with 2014 land use, fertilizer, manure,

and CO2 concentration (Table 2.4). In order to contrast short- with long-term cover crop impacts,

model outputs in the first (years 1-10) and last (years 27-36) decades were used for analysis.

Rather than the daily weather data that can be used for spin-up and historical simulations, during

such “extended” simulations, LPJ-GUESS can only be driven by monthly de-trended climate. The

observation-based monthly data set CRUJRA v2.1 was thus adopted for all simulation described in

this subsection. Specifically, we used mean air temperature, total precipitation, solar radiation, and

number of wet days from 1901-2014 at 0.5° resolution (Kobayashi et al., 2015; Harris et al., 2020).

The rest of the model input data—including atmospheric CO2 concentration, historical land use/land

cover, CFTs-specific growth distribution, synthetic N fertilizer and manure application, N

deposition, and soil physical properties—were consistent with global simulation setups in Chapter 3

(see Sect. 2.3.2). Since large-scale statistics on actual cover crop acreage do not exist, the

conservation agriculture (CA) area was used to represent the potential cover crop distribution on
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croplands, following setups in a recent modelling study (Porwollik et al., 2022). We performed all

global simulations under three CA area scenarios: (1) CAhis, representing the approximate area of

CA practice currently adopted in global croplands; (2) CApot, representing the potential agricultural

lands that might implement CA systems under present socio-economic and soil biophysical

conditions; (3) CAall, assuming all cropland that was under CA management. Spatial pattern of

CAhis and CApot were taken from a gridded data set developed by Porwollik et al. (2019), in which

national FAO-reported CA area around the year 2005 was downscaled to grid cell level and the

potential CA-suitable agricultural lands were estimated based on a range of rule-based approaches.

To characterize the CAall scenario, LUH2 land use data at the year 2014 were used (Hurtt et al.,

2020). The spatial distribution of these three CA scenarios, as well as their total areas, are shown in

Fig. 2.4.

Figure 2.4 Maps of three conservation agriculture (CA) area scenarios for cover crop managements assumed in

this study: (a) current CA areas adopted in global cropland (CAhis); (b) potential agricultural lands that might

implement CA practices (CApot); (c) all cropland under CA managements (CAall).
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Table 2.3 Global-scale simulation setups representing different cover crop managements in Chapter 4.

Simulation* NoCC CCL CCNL CCLNT

Legume cover crop No N-fixing C3 grass No N-fixing C3 grass

Non-legume cover crop No No Competing C3 and C4 grasses No

Residue retention 25% 25% 25% 25%

Manure application Yes Yes Yes Yes

Mineral N fertilizer Yes Yes Yes Yes

Tillage Yes Yes Yes No

* Abbreviations: NoCC – control treatment with bare fallows; CCL – legume cover crops; CCNL – non-legume cover

crops; CCLNT – combined management practice with legume cover crops and no tillage.

2.4.3 Data analysis

Model performance at site scale was evaluated by comparing the simulated and observed ecosystem

service indicators—SOC stocks, N leaching loss, and crop yield—in response to the implementation

of cover crops. For SOC stocks comparison, when the observed values in some field experiments

were only provided as concentrations (g kg-1), we converted these to stocks (Mg ha-1) using the

following equation:

SOCstock = (SOCcon × BD × D)/10 2.21

where SOCstock and SOCcon represent soil organic carbon stocks (Mg ha-1) and concentration (g kg-1),

respectively. BD is bulk density (g cm-3) and D is soil depth (cm).

The sampled soil depth for SOC and N leaching in our compiled data set varied from 15-40 cm and

60-150 cm, respectively. To compare model outputs with observations, we standardized the

measured SOC and N leaching from the original depth to the modelled depth of 150 cm, following

the depth distribution function developed by Jobbágy & Jackson (2000) and further described by

McClelland et al. (2021):

� = 1 − �� 2.22

���150 =
1 − �150

1 − ��0
× ����0 2.23
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where Y is the cumulative proportion of the SOC or N leaching from the surface to depth D (cm)

and β is the relative rate of decrease in these two variables with soil depth. The value of β was

obtained from a meta-analysis study and set to 0.9786 for SOC and 0.9831 for N leaching (Abdalla

et al., 2019). VAR denotes SOC or N leaching; D0 is the original soil depth available in the literature;

VAR150 and VARD0 represent the cumulative SOC stocks or N leaching at 0-150 cm and original soil

depth, respectively.

Based on these post-processed site-level observed data, the accuracy of the model in predicting

cropland SOC stocks, N leaching, and crop yield was assessed using adjusted R2, ME, MAE, and

RMSE given in Sect. 2.3.1. In addition, to quantify the response of cropland soil C storage to CCs

in comparison with the control treatment (NoCC), the annual SOC sequestration rate, ΔSOCrate (Mg

C ha-1 yr-1), was calculated as:

∆������� =
SOCX − SOCNoCC

YR
2.24

where SOCX and SOCNoCC are the respective SOC stocks under the cover crop and control treatments,

� denotes any cover crop practices (CCL, CCNL, and CCLNT; see Table 2.3 for management

abbreviations), and �� represents the duration (years) of management.

2.5 Specific methodology in Chapter 5

Over recent decades farmlands in eastern Africa have been experiencing strong degradation due to

the combined effects of agricultural intensification and mismanagement. In Chapter 5 we choose

Kenya and Ethiopia as a case study to evaluate the potential impacts of improved agricultural

practices on cropland SOC stocks, N loss (gaseous emissions plus N leaching), and crop production.

The structure of this chapter includes three parts. First, we test the model performance in simulating

the SOC and maize yield response to different managements by comparing with observed data from

two long-term field sites in Kenya. Next, country-level yields of six CFTs modelled by LPJ-GUESS

are evaluated against FAO-based statistics in Kenya and Ethiopia. In the last part, the isolated

effects of each alternative management practice are first investigated for the historical period and

subsequently explored under future climate pathways by forcing the model with simulated climate

from five general circulation models (GCMs, Eyring et al., 2016). All simulations’ spin-up follows

the protocol run described in Chapter 3 (see Sect. 2.3 above). The input data used for simulations in

this chapter are summarized in Table 2.5, with the specific experimental setups explained in detail

below.
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2.5.1 Model evaluation at site scale

To examine model performance, we use data from two long-term experimental sites in western

Kenya. The INM3 trial (34.40°E, 0.14°N) mainly evaluates soil fertility effects of manure and

maize residue management under tillage systems, while the CT1 trial (34.41°E, 0.13°N) is designed

to study the combined effects of conservation tillage and residue application on SOC dynamics in

maize systems (Sommer et al., 2018). A total of 16 trials from 2003-2015 in a double-maize

cropping system (within a year) at the INM3 site were performed: 0 and 4 t ha-1 of manure dry

matter application with 0 and 2 t ha-1 maize residue retention under four levels of N fertilizer

addition (0, 30, 60, and 90 kg N ha-1). Similar simulations over the same period were modelled at

the CT1 site, but minimum and conventional tillage are dominant practices with no manure

application. Double-cropping systems within a year has not been incorporated in LPJ-GUESS since

the second “short rainy” growing season, from a yield perspective, is not largely relevant for most

parts of eastern Africa. Here, the second growing period in maize-maize systems was simulated as a

herbaceous cover crop without N fixation. To parameterize the N application and residue retention

in the model, the application rate of 4 t dm ha-1 of manure was set to 70 kg N ha-1 assuming the N

content of 1.75% in animal waste (Gichangi et al., 2006). The residue management with 2 t ha-1

application was converted to 50% of maize straw retained in the field, following the proportion

reported in Sommer et al. (2018). Furthermore, in the simulations we switched off (on) the tillage

option to represent the minimum (conventional) tillage experiment at CT1. A summary of these

trials is listed in Table 2.6.

Following the site-level simulation setups in Chapter 3 (Sect. 2.3.1), the gridded climate data set

GSWP3-W5E5 was used as input, choosing the grid cell with coordinates 34.25°E and 0.25°N

representative for the two trial sites. In terms of land use data in years prior to the field experiments,

we followed the simulation setups in Nyawira et al. (2021) and assumed that INM3 was under

grassland systems for the period 1901-2002 (5-A1 runs; Table 2.5), while at CT1 grassland was

simulated from 1901 to 1991. After this the land use for CT1 trials was implemented given the

recorded information in Sommer et al. (2018): rain-fed maize cropping systems from 1992-1994

(unfertilized), followed by a crop-free period of 1995-2000 (grassland), then two years with

fertilized maize until 2002 (5-A2 runs; Table 2.5).

To assess the agreement between simulations and observations in SOC stocks, the measured SOC

values were scaled from the original depth (0-15 cm) to the modelled soil depth 0-150 cm, using the
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depth distribution functions described in Sect. 2.4.3 (also see Eqs. 2.22-2.23). The site-specific

empirical parameter—β in Eq. 2.22—was set as 0.971 and 0.974 for INM3 and CT1, respectively,

according to the measured values in Nyawira et al. (2021).

Table 2.6 Treatment-specific data used for model evaluation at the INM3 and CT1 trials in Chapter 5.

Site and its soil
physical properties

Treatment namea Tillage Manure
(kg N ha-1)

Residue
Retention

(%)

N fertilizer
(kg N ha-1)

Tb N0 N30 N60 N90

INM3
(34.40°E, 0.14°N)

Topsoil (0-20cm):
Sand: 26%
Silt: 18%
Clay: 56%
Bulk density: 1.1 g cm-3

Nx_NoMan_NoRR Yes No No

P 0 10 20 30
Nx_NoMan_RR Yes No 50

Nx_Man_NoRR Yes 70 No

Nx_Man_RR Yes 70 50

CT1
(34.41°E, 0.13°N)

Topsoil (0-40cm):
Sand: 16%
Silt: 15%
Clay: 69%
Bulk density: 1.1 g cm-3

Nx_NoTill_NoRR No No No

HV 0 20 40 60
Nx_NoTill_RR No No 50

Nx_Till_NoRR Yes No No

Nx_Till_RR Yes No 50

a) The “x” in the treatment names denotes any mineral N application rate of 0, 30, 60, and 90 kg N ha-1. Abbreviations:

NoMan – no manure application; NoRR – no residue retention; NoTill – no-tillage; Man – 70 kg N ha-1 of manure

application converted from 4 t ha-1 dry matter; RR – 50% of residue retention; Till – Tillage; b) Abbreviations: T –

timing of N fertilization; P – planting date of maize; HV – halfway through the vegetative phase of maize.

2.5.2 Regional crop yields evaluation

In this experiment we only performed one simulation with six CFTs included—maize, pulses,

sorghum, wheat, rice, and soybean—which are widely-grown crops in Kenya and Ethiopia

(FAOSTAT, 2023). In a previous modelling study (Olin et al., 2015a), sorghum in LPJ-GUESS was

simulated as the maize CFT due to the absence of crucial growth parameters (e.g., photosynthetic

carbon partitioning) for sorghum. Here, we updated the parameters of assimilate allocation to

sorghum organs based on the data from Penning de Vries et al. (1989). The performance of the

model for sorghum and five other crops was evaluated by comparing the simulated and reported

yields at the national level. For regional comparison, statistics-based yield data were derived from

FAOSTAT (2023) while the simulated gridded crop productions were aggregated to country level
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using Eq. 2.20 (see Sect. 2.3.2). Regionally, this model simulation (5-B1 run; Table 2.5) was

implemented at 0.5° resolution over the period 1901-2014 after model spin-up, with all six CFTs

under a conventional management prevalent in eastern Africa (STD; see Table 2.7 for management

details). Model forcings—including climate, CO2 concentrations in the atmosphere, historical land

use/land cover, CFTs-specific growth distribution, synthetic N fertilizer and manure application, N

deposition, and soil physical properties—were the same as the global simulation setups in Chapter 4

(see Sect. 2.4.2).

2.5.3 Ecosystem responses to management practices in eastern Africa

At the regional level five alternative management practices—legume cover crop (CCL), non-legume

cover crop (CCNL), residue retention (RR), manure application (MAN), and no-tillage (NT)—

together with an integrated management were assessed (Table 2.7). The latter, which included most

individual practices, was selected to be representing conservation agriculture (CONSERV; see

Table 2.7). Simulated outputs of these six management practices were compared with a standard

simulation (STD) with setups shown in Table 2.7.

Table 2.7 Simulation setups used for detecting the responses of crop ecosystems to various managements over

eastern Africa in Chapter 5.

Simulation* CCL CCNL RR MAN NT CONSERV STD

Legume cover crop Yesa No No No No Yesa No

Non-legume cover crop No Yesb No No No No No

Residue retentionc 10% 10% 100% 10% 10% 100% 10%

Manure applicationd Yes Yes Yes No Yes Yes Yes

Mineral N fertilizer Yes Yes Yes Yes Yes Yes Yes

Tillage Yes Yes Yes Yes No No Yes

* Abbreviations: CCL – legume cover crop; CCNL – non-legume cover crop; RR – residue retention; MAN – manure

application; NT – no-tillage; CONSERV – conservation agriculture; STD – standard simulation, representing a

conventional management prevalent in eastern Africa; a) N-fixing C3 grass; b) Competing C3 and C4 grasses; c) The

value of 10% residue retention is taken from the investigated data in farm fields in Ethiopia (Laekemariam et al., 2016;

Lemma et al., 2021); d) The C:N ratio of farmyard manure is set to 16 in the model simulations, following the

literature-reported value in eastern Africa (Gichangi et al., 2006).
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The practice that produced the largest SOC increase at each grid cell was chosen as the optimal C

management (OPT) for the historical and future simulations:

��� = ��� (SOCi − SOCSTD), i = 1: 5} 2.25

where OPT is the calculated best-performing C management in a given grid cell; i represents the

five management practices of CCL, CCNL, RR, MAN, and NT. SOCi and SOCSTD are the modelled

SOC stocks from these five practices and standard simulation, respectively.

An initial simulation was performed to simulate the effects of these management practices under

constant climate, CO2, and land use in order to isolate effects of management from environmental

change. This began with a run of the historical period (1901-2014) after model spin-up, using time-

dependent gridded climate, land cover, and N inputs (deposition and fertilizer) at 0.5° resolution.

This run generated present-day cropland soil C and N pools under STD management over eastern

Africa (5-B1 run; Table 2.5). Subsequent runs, one using each management practice, branched from

this present-day state in 2015. In these simulations de-trended climate (repeating 1995-2014) and

fixed CO2 concentration, together with N fertilizer and land cover data of the year 2014, were

repeated for 86 years to allow soil C and N pools to reach a new equilibrium after the management

shift (5-B2 runs; Table 2.5).

In a second experiment, simulations were driven with future monthly climate data taken from five

GCMs, for 1901-2100 at 0.5° spatial resolution (see Table 2.5 for GCMs information). For the

historical period (1901-2014), the management setup was the same as the simulation of 5-B1, but

with GCM-based climate input (5-C1 runs; Table 2.5). The seven management practices listed in

Table 2.7 started in the year 2015, with dynamic climate, CO2 concentration, and N deposition

throughout. Land cover and fertilizer use (mineral N and manure) were fixed from 2014 onwards to

exclude their effects on cropland SOC sequestration (5-C2 runs; Table 2.5). N deposition and

climate data for SSP1-RCP2.6 (SSP1-26), SSP3-RCP7.0 (SSP3-70) and SSP5-RCP8.5 (SSP5-85)

climate change scenarios were selected for future simulations (Meinshausen et al., 2020). Similar to

the 5-B2 runs, the long-term management effects excluding environmental change impacts were

also investigated using repeated GCM-based climate (5-C3 runs, Table 2.5). The modelled SOC in

the last ten years of the 5-C2 simulations (2091-2100) were compared with the 5-C3 outputs over

the same period in order to explore the potential transition of the optimal C management (OPT)

caused by future climate change. Experimental setup details are available in Table 2.5.
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3 Assessment of biological nitrogen fixation in global grain legumes

This chapter evaluates the model performance to simulate BNF-related variables—such as grain

yield, legume biomass, soil N uptake, and N fixation rate—in soybean and faba bean using field-

based trial data from the literature. Global spatial and temporal patterns of crop yields and BNF

rates in these two grain legumes from LPJ-GUESS are subsequently quantified and compared

against previously published large-scale estimates.

3.1 Results

3.1.1 Model evaluation at site scale

The overall evaluation of model performance in simulating BNF-related variables across all grain

legumes sites is shown in Fig. 3.1. Modelled yields generally agreed well with observations,

especially in the site-specific simulation setup. These had higher regression slope (0.83) and lower

mean absolute error (28%) compared with the global-uniform simulation setup (Fig. 3.1a). Grain

legumes’ N content in grains and shoots showed a low agreement, with simulated values

underestimating the observations for most sites (Fig. 3.1b-c). This result could be attributed to two

important N sources to grain legumes not being captured well by the model (i.e., soil N uptake and

BNF, given in Fig. 3.1d-e). The global-uniform run produced a low agreement with observations in

N fixation, with a regression slope of 0.22 and mean absolute error of 39%. The simulated

underestimation in BNF compared with observations was largely eliminated by using site-specific

parameters, with the regression slope increasing to 0.41 and the mean absolute error reducing to

31% (Fig. 3.1e). The field-based measurements showed that the N derived from the atmosphere

(%Ndfa) was the main contributor to the legumes’ total N uptake, ranging from 15 to 95%, with a

mean of 64% across all field trials. LPJ-GUESS in general captured the mean response well, with

simulated %Ndfa being 60% and 58% in the site-specific and global-uniform runs, respectively,

despite several extreme disagreements at several faba bean sites (Fig. 3.1f).

A linear relationship between legume yields and the rate of BNF was found across a range of field

sites in this study (Fig. 3.2a). Simulations from LPJ-GUESS mostly captured the close correlation

between these variables, with R2 ranging from 0.46-0.63 (p<0.001) in both runs, not far from the

measured value 0.67 (Fig. 3.2a). Also fitted linear regression parameters (i.e., slope and intercept) in

both simulations were close to the observations, indicating that the model reproduces well the N

fixation effect on yield for individual sites.
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Figure 3.1 Comparison of modelled and observed yield (a), grain N mass (b), shoot N mass (c), soil N uptake (d),

BNF (e) and %Ndfa (the proportion of plant N derived from the atmosphere) (f) at harvest across all soybean and

faba bean sites. Filled red and grey circles depict ‘site-specific’ and ‘global-uniform’ run, respectively. The dashed

line is fitted linear regression; *** and ** denote regressions statistically significant at p=0.001 and 0.01,

respectively; MAE is mean absolute error, represented in percent (%); the unit of RMSE is the same as the

associated variable; AVG in (f) is the averaged value of %Ndfa across all field trials.

A negative exponential relationship was observed between N fertilizer application rate and N

fixation when all field trials were included (Fig. 3.2b). LPJ-GUESS reasonably reproduced the

decreased trend of BNF to N fertilizer increase, with the similar fitting functions to observations,

although higher N fixation rates were modelled in the highest-fertilized trial (600 kg N ha-1)

compared with measurements. Additionally, the amount of crop N uptake from soils, as expected,

was sensitive to soil mineral N concentration: a significant linear relationship between soil N uptake

and N fertilizer application rate (p<0.001) was found in both model simulations and field

measurements (Fig. 3.2c).
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Figure 3.2 Comparison of modelled and observed yield and N fixation rate (a) and the response of BNF (b) and

soil N uptake (c) to N-fertilizer addition across all field trials. The shaded areas represent the 95% confidence

interval in linear regression.

3.1.2 Global attained yields

Applying the global-uniform parameters introduced in Sect. 2.3.1 (i.e., specific leaf area of soybean

and faba bean is set to 40 and 45 m2 kg-1 C, while target grain C:N ratio is represented as a constant

of 8 and 10, respectively), together with the time-dependent gridded N fertilizer and manure

application data, we modelled soybean and all pulses (adopting the faba bean parameterization, see
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Sect. 2.3.2) at a global scale. We mainly calculated data for the period 1996-2005, as the map of

crop-specific growth distribution from the MIRCA data set was available for the year 2000.

Figure 3.3 Per-country-year comparison of modelled yields of soybean (a) and pulses (b) against FAO statistics

from 1996–2005. Each filled circle in (a) represents one year and one country; thus, a country can have up to 10

circles over 1996–2005. In total, 887 and 1506 country-year yield data were used for comparison in soybean and

pulses, respectively. The top 10 producer countries shown in color were chosen based on their total production

over the same period, and marker size from large to small indicates their total production in descending order.

Rep.� ���� and Mod.� ���� indicate the reported and modelled yields (t ha-1 yr-1) averaged from 1996–2005, respectively. ME

is mean error, represented in percent (%). RMSE is root mean square error, with the unit of t ha-1 yr-1 for yield.

Modelled yields in the top ten soybean-producing countries showed a good agreement, with a

higher R2 of 0.52 (p<0.001) and lower RMSE value of 0.8 t ha-1 yr-1 when low-productivity

countries (defined as all countries not belonging to the top ten producer countries) were excluded.

With all producer countries included, R2 of 0.17 (p<0.001) and RMSE of 1.4 t ha-1 yr-1 was reached

(Fig. 3.3). LPJ-GUESS in general tended to overestimate the reported yield for most countries

where soybean production is low (e.g., most African countries), with a mean error in such countries

ranging from 100-300% (Fig. 3.4). Modelled low yields were found in some arid and semi-arid

countries (e.g., Egypt, Iran, Turkey, and Syria), with a range of underestimation from 10-70% (Fig.

3.4). Similarly, overestimated yields were found when comparing simulated yields using the faba

bean parameterization against FAO-based report values for pulses in general, with an

overestimation also visible for some of the top producing countries (Fig. 3.3). The higher yields
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modelled by LPJ-GUESS are most likely resulting from the fairly high N fixation capacity

simulated with the faba bean parameterization (see Sect. 3.1.3 below), as well as the widespread

distribution of pulses worldwide, which grow under a broad range of climate and soil conditions.

A good fit of the interannual variability of modelled and reported yields is a further indicator of

model performance. Despite the deviation between simulations and observations for individual

years, modelled variation in soybean production over the period 1981-2016 matched well with

FAO-based statistics among the top ten producer countries—particularly in Argentina, India, and

China—with a fair Pearson correlation coefficient (r) around 0.60 (p<0.001) and similar standard

deviations (Fig. 3.4). The degree of yield variability between years was larger than seen in the FAO

records, especially in the U.S., Canada, and Italy (Fig. 3.4), indicating high sensitivity of simulated

soybean production to changing environmental factors on spatial patterns, such as weather, N

fertilizer application rates, and climate-related N fixation.

3.1.3 Global N fixation and %Ndfa

The spatial pattern of soybean N fixation modelled by LPJ-GUESS presented large discrepancies

(Fig. 3.5). Simulated BNF rates as high as 250 kg N ha-1 yr-1 were found in western South America

and most parts of Africa, where neither water nor temperature were critical limitations for N

fixation. Moreover, the relatively low fertilizer application in Africa leaves a nitrogen deficit that

leads to increased N fixation rates. Conversely, in arid and semi-arid regions, soil water constrains

BNF, while temperature limitation is seen in high latitudes and alpine areas (e.g., Andes in Peru).

BNF rates in most regions (South Asia, West Asia, Sub-Saharan Africa and northwest China) were

as low as 50 kg N ha-1 yr-1, particularly in Pakistan and northern India, where simulated BNF is

severely constrained by the extreme high temperature over the cropping season (Fig. 3.6). Eastern

United States, Europe, Southern China and central-west Brazil showed intermediate fixation rates,

which were greater than 150 kg N ha-1 yr-1. In general, the spatial variation of modelled legume

BNF rate reflects to large degree the spatial climate patterns, in addition to N fertilizer investment.

The low simulated %Ndfa of 45±3% in East Asia might indicate high soil N uptake by crops in

response to substantial fertilizer application in China over the past four decades. In contrast, the

modelled %Ndfa in Africa—with lower N fertilizer use—was as high as 70±3%, despite still lower

than the reported mean value of 77% (Table 3.1). The spatial response of N fixation rate to climate

constraining factors (i.e., soil temperature and water) is shown for pulses in Fig. 3.6.
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We partitioned the simulated grid cells into ten continents described in Sect. 2.3.2 to better compare

modelled results with the findings from Peoples et al. (2009). Overall, at regional scale, the

simulated outputs showed a good agreement with N fixation rates from the literature (Fig. 3.5). For

example, in South America and North America, both major soybean production regions, simulated

BNF rates were 156±14 and 127±44 kg N ha-1 yr-1 over the period 1981-2016, respectively,

compared with literature-derived values of 136 and 144 kg N ha-1 yr-1 (Peoples et al., 2009).

Globally, the modelled soybean N fixation rate of 132±21 kg N ha-1 yr-1 was close to the meta-

analysis result of 111-125 kg N ha-1 yr-1 from Salvagiotti et al. (2008), but lower than a recent

estimate of 200 kg N ha-1 yr-1 based on country-level FAO statistics (Herridge et al., 2022). The

contribution of N fixation to total N uptake in soybean was somewhat underestimated in several

regions. A similar trend to underestimate reported %Ndfa was also found for pulses (Table 3.1).

Due to large soybean planting areas and high productions, South America and North America were

two leading continents fixing N from the atmosphere and jointly contributed 80% of simulated total

N fixation in soybean, followed by East Asia, South Asia and Europe (Table 3.1). Globally, the

amount of annual N fixed by soybean in model simulation was 11.6±2.2 Tg N over the period 1981-

2016, which showed a fairly good agreement with the estimate of 16.4 Tg N yr-1 reported by

Herridge et al. (2008) and the extrapolated result of 10.4 Tg N yr-1 provided by Gelfand &

Robertson (2015) based on the U.S. field trials. In addition, our simulated total pulses can fix

5.6±1.0 Tg N from the atmosphere every year, which is about two times higher than an earlier

estimate of 2.95 Tg N yr-1 (Herridge et al., 2008), but close to a recent finding of 7.2 Tg N yr-1

(Herridge et al., 2022). The difference between the estimates in Herridge et al. (2008) and our study

is likely due to the low BNF rate used for calculation in Herridge et al. (2008), ranging from 23-86

kg N ha-1 yr-1, far lower than the mean value of 119±15 kg N ha-1 yr-1 in model simulations (Table

3.1).
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3.2 Discussion

3.2.1 Model performance at site scale

The simulated legume yields and grain N mass at harvest were on average 20-30% lower than

values reported in the measurements across a range of field sites (Fig. 3.1). A similar, small,

underestimation was found in the shoot N mass (Fig. 3.1), indicating that the productivity generally

is somewhat too low in the model. One factor contributing to the underestimation is that LPJ-

GUESS applies a conversion factor of 2.0 from plant C mass to dry matter, ~10% lower than the

published measurement of 2.24 reported in Osaki (1993). Additionally, we found that the model

underestimated aboveground biomass while simultaneously overestimating belowground

productivity at the three sites where measured root biomass was available (not shown). This could

be addressed by adjusting the root:shoot allocation (Eq. 2.5), but this is currently prevented by the

insufficient observed root biomass information.

Modelled soil N uptake was sensitive to soil mineral N concentration and hence driven by fertilizer

application rates (Fig. 3.2). Generally, LPJ-GUESS tended to underestimate soil N uptake in regions

where legumes were well-fertilized (Fig. 3.2). This might be partially due to the saturation effect of

mineral N concentration on N uptake implemented in the model, which can cause the

discontinuation of N uptake when soil available N is abundant (Zaehle & Friend, 2010; Wårlind et

al., 2014). Under high fertilization rates, a strong underestimation in soil N uptake was expected due

to the simulated saturation-response to high soil mineral N, resulting in little changes in the level of

soil N uptake no matter how much N fertilizer was applied.

The percentage of plant N derived from the atmosphere (i.e., %Ndfa) is a key parameter required

for quantifying N fixation in the field (Peoples et al., 2021). LPJ-GUESS captured the range and

mean value of %Ndfa well across different field trials despite some disagreements between

simulations and observations for individual experiments (Fig. 3.1). An underestimated %Ndfa is

likely a result from the combined effects of underestimated N fixation and overestimated soil N

uptake. Nevertheless, we found modelled %Ndfa to decline with increasing N fertilizer application,

which is consistent with the observed response in the field trials. A negative correlation

between %Ndfa and fertilizer application rates was also reported by Salvagiotti et al. (2008) based

on a range of reviews and experimental papers. These results all suggest that LPJ-GUESS is able to

effectively capture the observed overall patterns of soil mineral N uptake and N fixation in grain

legumes and their responses.
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Since the SLA and C:N ratio of plant organs are of importance in determining N uptake when

modelling vegetation C-N dynamics (Camargo-Alvarez et al., 2022), it is expected that applying

measured values for site-scale simulation resulted in much better agreement when comparing

modelled results with measurements (Fig. 3.1). Remaining disagreement between simulated and

observed N variables may reflect missing processes in the model, such as inoculation effectiveness

and phosphorus limitation, particularly in terms of inoculant application. Field experiments indicate

that proper inoculation of rhizobia promotes nodulation and results in an efficient increase in N

fixation (Mínguez et al., 1993; Tewari et al., 2004; Denton et al., 2017). Using a fixed parameter

(Nmaxfixpot; Eq. 2.9) to represent all inoculation situations such as in global-uniform calibration

cannot reflect this variability. Moreover, due to the difficulties in measuring both nodules and roots

under field condition, in many studies the observed BNF rates were determined by legumes’

aboveground biomass. Excluding the root contribution to the whole plant BNF rates likely cause an

underestimation of N fixation: N associated with nodules and roots in soybean and faba bean may

account for 20-40% of the total N accumulation at mid-flowering phase (Unkovich & Pate, 2000;

Khan et al., 2003).

3.2.2 Global yields, N fixation, and %Ndfa

In some arid and semi-arid countries, the simulated national-level soybean yields were up to 70%

lower than FAO-based statistics likely in response to the simulated low BNF rate caused by water

constraints (Fig. 3.6). Conversely, simulations from LPJ-GUESS overestimated crop production by

100-300% in some African countries, with modelled BNF rates of 300-350 kg N ha-1 yr-1 (Fig. 3.5).

More recent studies from African farms have suggested that the soybean N fixation rate can be as

low as 0-50 kg N ha-1 yr-1 in most farmer fields, due to the inconsistent effectiveness of inoculation

in the acid soils (Ulzen et al., 2016; Vanlauwe et al., 2019). Unfortunately, current BNF

implementation and soil representation in LPJ-GUESS do not account for inoculation effectiveness

in response to soil pH.

In our simulations, the annual amount of N fixed by soybean and all pulses of 17.2±2.9 Tg averaged

over the period 1981-2016 agreed well with the estimate of 19.4 Tg provided by Herridge et al.

(2008), in which the crop production statistics from FAO and legume-specific %Ndfa from farmer

fields were used for estimating global N fixation. In an earlier study, a total of 10 Tg N was

estimated from legume crop BNF annually (Smil, 1999), far lower than our findings. The

discrepancy between the estimates in Smil (1999) and Herridge et al. (2008) likely reflect the lower
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values of % Ndfa for soybean and pulses used for calculations in Smil (1999). Also, Smil (1999)

excluded belowground fixed N associated with roots and nodules, which contributes to the low

estimate. Our modelled N fixation from grain legumes amounts to 12% of the annual mean of ca.

140 Tg N that were estimated to be fixed across global terrestrial ecosystems (Cleveland et al.,

2013;Vitousek et al., 2013; Meyerholt et al., 2016; Davies-Barnard & Friedlingstein, 2020; Davies-

Barnard et al., 2022), indicating the importance of BNF input in croplands for the global terrestrial

N cycle, although large percent of the fixed N is removed by grain yields from the ecosystems

annually.

At present three environmental factors, soil temperature, moisture, and soil mineral N concentration,

affect N fixation in the model. As discussed above, increased soil N concentration would depress N

fixation as plant N demand can be fulfilled more ‘cheaply’ via soil mineral N uptake. This effect is

also visible from the spatial pattern of %Ndfa in the northern temperate region, such as the United

States, western Europe, and China. Here, anthropogenic N deposition, together with the intensive

application of fertilizers result in soils being N-rich, inhibiting simulated BNF. This could explain

why our modelled soybean N fixation rate was not high in East Asia. In comparison, the high rate of

N fixation found in tropical regions is mostly due to their high nitrogenase activity under warm and

moist soil conditions, resulting in %Ndfa of ~70% being modelled for all grain legumes in the

tropics (Table 3.1). A similar spatial variation between temperate and tropical regions in N fixation

was also reported by other modelling studies (e.g., Wang & Houlton, 2009; Meyerholt et al., 2016;

Xu-Ri & Prentice, 2017). Taken together, these results reveal that LPJ-GUESS broadly captures

how N managements and climate variation affect soil N uptake and N fixation in grain legumes at

large spatial scales.

Although N fixation can help grain legumes to significantly enhance their total N accumulation and

to achieve higher N concentration in seeds, these benefits are usually accompanied by the increase

in respiration cost of 8-32% of net photosynthetic carbon (Kaschuk et al., 2009; 2010). Such a

respiratory photosynthate consumption would reduce productivity if photosynthesis rate does not

increase to compensate for the cost. In LPJ-GUESS, we assumed that up to 50% of daily NPP can

be used for N fixation. This approach has the advantage that legumes are able to seek to maximize

photosynthetic gain due to reduced N limitation in leaf carboxylation capacity, but it entails the risk

of lower productivity if too much NPP is invested into fixation. Nevertheless, we did not observe

any modelled extreme C expense on N fixation over the entire growing season, where soybeans
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were usually spending 5-25% of daily NPP on fixation worldwide (Fig. 3.7). Such NPP

consumption was not only lower than our assumed upper limit of 50%, but also appropriately in line

with the reported range of 8-32% in Kaschuk et al. (2009), demonstrating the reasonable C cost

scheme implemented for N fixation in our model. Taken together, the modelled C profits due to N

fixation can be attributed to the positive feedback between BNF and photosynthesis in LPJ-GUESS:

C cost-based N fixation results in a higher rate of photosynthesis due to the enhanced leaf N content;

in turn, the increased rate compensates for the C cost, and allocates more assimilate to roots and

thus enhances N fixation.

Figure 3.7 Map of daily NPP used for N fixation (%) in soybean (a) and pulses (b) modelled by LPJ-GUESS,

averaged over 1996-2005 throughout the growing season. Here we assumed that at maximum 50% of daily NPP

can be used for N fixation (Eq. 2.15).

3.3 Conclusions

In this chapter we implemented a process of symbiotic biological N fixation in grain legumes into

the crop module of LPJ-GUESS. The modelled C-N variables of soybean and faba bean were

extensively evaluated with observed data from site scale to a large region. Our results showed that

the BNF scheme adopted in LPJ-GUESS realistically responded to water and N managements, as

well as to climate variation, and produced N fixation and yields which generally agreed with

measurements.

Our model estimated that global biological N fixation in soybean and total pulses was 17.2±2.9 Tg

N yr-1 during the period 1981-2016 and that the highest fixation rate occurred in tropical and

temperate regions with warm and moist climate. Soil water and temperature were dominant controls

on N fixation, in addition to N fertilizer application. On a global average, fixing N from the
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atmosphere was the main source to meet the legume N demand, contributing 57±4% and 60±1% to

total N uptake in soybean and pulses, respectively. However, processes missing from the model,

such as inoculation effectiveness and soil acidity, might have biased estimates on N fixation and

yields at a global scale.

Combining the N dynamic process of N fixation with a C-N allocation scheme for crops in LPJ-

GUESS provides an opportunity to estimate the changes in global grain legume production and

global terrestrial C and N pools under future land use or climate change scenarios. It can also help

to predict and detect the potential contribution of N-fixing plants as “green manure” to benefiting

soil fertility and agricultural production in global croplands.



56

4 Global influence of cover crops on yield and cropland carbon and nitrogen

balances

This chapter explores the potential contribution of herbaceous N fixers to the sustainable

development of agricultural production based on the updated LPJ-GUESS model version from

Chapter 3. The objective of this section is to assess and compare the effects of two cover crop

functional types—leguminous (CCL) and non-leguminous (CCNL) grasses—on SOC stocks, N

leaching loss, and agricultural productivity across four cropping systems globally (i.e., maize, wheat,

rice, and soybean). These three simulated ecosystem service indicators are extensively examined

with worldwide site-level observed data and compared against global-level estimates from the

existing literature.

4.1 Results

4.1.1 Model evaluation at site scale

Modelled SOC generally agreed well with observations, with high regression slopes (0.75-0.81) and

low absolute errors (13-15%) in the control (i.e., NoCC) and cover crop treatments (Fig. 4.1a). We

found enhanced cropland soil carbon stocks in the two simulated cover crop types compared with

NoCC, indicated by positive annual SOC sequestration rates of 0.28 and 0.45 Mg C ha-1 yr-1 (on

average) in the CCNL and CCL simulations, respectively (Table 4.1). These compared well with the

observed values of 0.78 and 0.48 Mg C ha-1 yr-1 although the model underestimated the soil carbon

enhancement (the range between the 5th and 95th percentiles) when all cover crop types were

included (the ranges of -2.1 to 17.2% and 0.8 to 5.8% for observations and simulations, respectively;

Fig. 4.1b).

Simulated N leaching from bare fallow cropland (NoCC) tended to be somewhat lower than the

measurements, with a mean underestimation of 14%. In contrast, the model overestimated N losses

by 57% in the cover crop experiments (Fig. 4.1a). A positive exponential relationship between N

fertilizer rate and N leaching (p<0.01) was observed across a range of field sites in this study (Fig.

4.2). Simulations from LPJ-GUESS mostly captured this relationship, although higher leached N

rates were modelled in the high fertilized trials (224-260 kg N ha-1) compared with measurements

(Figs. 4.1-4.2). Replacing bare fallows with cover crops on average reduced N leaching by 54% in

the field experiments, with the decreases ranging from 20-87% for non-legume types and 40-68%

for legume types (Table 4.1). LPJ-GUESS reproduced these mean differences well, but
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underestimated the relative changes in response to cover crops, with the modelled reduction of 5-

53% and 4-65% in the CCNL and CCL simulations, respectively (Table 4.1; Fig. 4.1b).

Figure 4.1 Comparison of modelled and observed cropland SOC stocks, N leaching and crop yield (a) and their

responses to CCs (b) across all field trials. The dashed line in (a) is the 1:1 line and the black bold line is a fitted

linear regression; ME and MAE indicate mean error and mean absolute error, respectively, representing in percent

(%); RMSE is root mean square error, with units of Mg C ha-1 for SOC, kg N ha-1 for N leaching, and t ha-1 for

yield. Box plots in (b) denote the 5th and 95th percentiles by the whiskers, median and interquartile range are the

box lines, and means are symbolized as diamonds.

In comparison with observations, LPJ-GUESS underestimated crop yields on average by 17-22%

across all field trials (Fig. 4.1a), mainly as a result of simulated lower agricultural productivity in
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the unfertilized systems, particularly in wheat and rice (Fig. 4.2). Compared with the bare fallows,

using non-legume CCs during the off-season was modelled to reduce the subsequent main-crop

production by 2-16% across four assessed farming systems, larger than the mean observed yield

reductions (1-4%) in the field measurements. However, the implementation of N-fixing CCs in our

simulations resulted in yield increases in some cases, with the production changes from -18.0 to

16.0% when all crop types were included, falling within the reported range of -21 to 52% (Table 4.1;

Fig. 4.1b). In field experiments the yield increase due to legume CCs was largest in unfertilized

systems, and the impact of legume cover cropping gradually declined when main crops received

high N application rates. The model reasonably reproduced the decreased trend of yield benefits to

N fertilizer increases, but generally underestimated these effects in most N fertilization trials (Fig.

4.2).

Table 4.1 Modelled and observed responses of SOC stocks, N leaching, and crop yields to cover crop

management compared with bare fallows (NoCC). The changes are represented as the mean values across all field

trials, with a range between the 5th and 95th percentiles given in parentheses.

Unit CCNL CCL Overall

Observed Modelled Observed Modelled Observed Modelled

ΔSOCrate*
Mg C
ha-1 yr-1

0.78
(0.13, 1.69)

0.28
(0.05, 0.52)

0.48
(-1.21, 2.19)

0.45
(0.16, 0.60)

0.73
(-0.36, 2.19)

0.38
(0.07, 0.60)

SOC
change % 7.0

(2.1, 13.5)
2.4

(0.6, 5.9)
6.3

(-4.6, 17.5)
3.5

(1.2, 5.7)
7.1

(-2.1, 17.2)
3.0

(0.8, 5.8)

N leaching
loss % -53.2

(-86.5, -20.4)
-20.0

(-52.2, -5.2)
-58.3

(-67.7, -40)
-35.2

(-64.4, -4.0)
-53.6

(-82.8, -24.1)
-21.0

(-53.0, -5.2)

Wheat
yield % -0.7

(-19.4, 15.9)
-2.8

(-9.7, 1.3)
-1.1

(-34.1, 30.6)
-15.1

(-48.1, 13.4)
-0.8

(-22.0, 22.3)
-6.2

(-31.3, 2.2)

Maize
yield % -0.6

(-7.0, 7.5)
-15.9

(-24.2, 0.5)
26.7

(-3.6, 80.4)
1.4

(-8.1, 12.7)
11.8

(-6.3, 26.4)
-10.5

(-23.4, 7.6)

Rice yield % -4.1
(-27.8, 24.1)

-12.6
(-24.6, -6.6)

31.1
(7.1, 55.3)

3.8
(-10.9, 17.2)

14.6
(-15.4, 44.4)

-3.9
(-15.7, 14.5)

Soybean
yield % -3.2

(-15.2, 6.3)
-2.1

(-5.9, 0.8)
2.3

(4.2, 7.9)
1.6

(-3.3, 5.0)
-1.5

(-13.2, 7.9)
-0.5

(-4.1, 3.6)

Yield of all
crops % -1.6

(-18.0, 16.0)
-5.7

(-19.1, 1.0)
16.4

(-21.1, 52.6)
0.8

(-18.3, 15.5)
5.2

(-19.0, 34.3)
-3.8

(-19.1, 10.0)

* ΔSOCrate: annual SOC sequestration rate, see Eq. 2.24 for calculation details.
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Figure 4.2 Comparison of modelled and observed responses of N leaching (a) and main-crop yield (b) to N

fertilizer application across all field trials in the control (bare fallows) and cover crop managements. The modelled

and observed influence of cover crops on main-crop production in response to N fertilizer application are shown

in (c). Abbreviations: CCNL- non-legume cover crops; CCL- legume cover crops.

4.1.2 Global crop ecosystem responses to cover crops

4.1.2.1 Soil carbon stocks

Our simulations of the three explored CC managements resulted in a net soil C increase across

global croplands compared with the control treatment (NoCC), with the largest SOC sequestration

rates (ΔSOCrate; Eq. 2.24) found in warm and moist regions (e.g., Southern China and Eastern
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Europe; Figs. 4.3-4.4). For the 36-year simulation period, the maximum annual rates of soil C

sequestration in the CCNL and CCL runs were reached in the sixth year after introducing cover

cropping, whereas in the CCLNT simulation they were already achieved in the fourth year after the

implementation of altered management (Fig. 4.4). After these initial peaks, the annual soil C

accumulation effect persisted over the course of the remaining simulation period, but with declining

rates. On average, using CCs was modelled to sequester 0.10, 0.14, and 0.32 Mg C ha-1 yr-1 of soil

carbon in the CCNL, CCL, and CCLNT runs, respectively (Fig. 4.4).

Figure 4.3 Maps of annual soil C sequestration rate (ΔSOCrate; Mg C ha-1 yr-1) in response to CCNL (a), CCL (b),

and CCLNT (c) managements, relative to the control treatment with bare fallows (NoCC) in the 36th simulated

year. The inset donut plots represent the area proportion of each classified ΔSOCrate from the total cropland area.

Assuming all current cropland under cover cropping practice worldwide (i.e., CAall scenario),

modelled total soil C stocks (0-150 cm) of the various managements ranged from 164.9 to 176.4 Pg

C across global croplands, somewhat larger than the published estimates for the topsoil layer (140

Pg C in 0-30 cm, Zomer et al., 2017; 115 Pg C in 0-50 cm, Ren et al., 2020) and within the reported

values for the depth 0-100 cm ranging between 157 and 164 Pg C (Jobbágy & Jackson, 2000;

Global Soil Data Task, 2014) and 210 Pg C (for 0-200 cm; Jobbágy & Jackson, 2000). In

comparison with bare fallows (NoCC), simulations from LPJ-GUESS resulted in an increase of soil
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C storage by 3.8 (+2.3%) and 5.4 Pg C (+3.3%) after 36 years of implementation of non-legume

(CCNL) and legume cover crops (CCL), respectively, between the main cropping seasons. Adopting

no tillage (CCLNT) further contributed to increasing simulated soil C storage by 11.5 Pg C (+7.0%)

in global croplands (CAall scenario; Table 4.2).

Table 4.2 Modelled total cropland SOC stocks (0-150 cm), N leaching loss, and crop production with alternative

cover crop managements under three CA area scenarios in the first and last simulated decades, compared with

literature-based estimates. See Fig. 2.4 for spatial pattern of three CA area scenarios.

Scenario Management Soil C stock, total
(Pg C)

N leaching, total
(Tg N yr-1)

Crop productiona
(million tonnes per year)

1-10 years 27-36 years 1-10 years 27-36 years 1-10 years 27-36 years

CAhis
(126 Mha)

NoCC 15.8 15.6 0.88 0.80 301 287

CCNL 15.9 15.9 0.52 0.49 286 292

CCL 16.0 16.1 0.58 0.54 295 306

CCLNT 16.2 16.7 0.51 0.48 279 294

CApot
(590 Mha)

NoCC 68.9 68.0 5.2 5.4 1145 1126

CCNL 69.4 69.5 3.3 3.2 1068 1119

CCL 69.6 70.2 3.7 3.6 1105 1172

CCLNT 70.3 72.5 3.2 3.2 1034 1125

CAall

(1597 Mha)

NoCC 167.3 164.9 18.4 17.8 2785 2743

CCNL 168.5 168.7 10.8 10.5 2635 2765

CCL 169.1 170.3 12.2 11.7 2714 2875

CCLNT 171.1 176.4 10.7 10.5 2557 2780

Other studies
(global cropland) 115b; 140c; 157-210d; 164e 14-20f; 23g; 26h; 31i 2806j

a) Summed yield of four crop types: maize, wheat, rice, and soybean. b) Ren et al. (2020), 0-50 cm, 1667 Mha. c)

Zomer et al. (2017), 0-30 cm, 1631 Mha. d) Jobbágy & Jackson (2000), the estimate for 0-100 cm is 157 Pg C, and that

for 0-200 cm is 210 Pg C, 1400 Mha. e) Global Soil Data Task (2014), 0-100 cm, 1518 Mha. f) Smil (1999). g)Liu et al.

(2010). h) Lin et al. (2001). i) Liu et al. (2019). j) FAOSTAT (2023); reported total production in the year 2014 were

used for comparison: 1040, 729, 731, and 306 million tonnes for maize, wheat, rice, and soybean, respectively.
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Figure 4.4 Area-weighted aggregated average annual soil C sequestration rate (Eq. 2.24; Mg C ha-1 yr-1) across

global (1597 Mha), temperate (987 Mha), and tropical (606 Mha) croplands for three cover crop practices in the

CAall scenario (a), and relative responses (%) of SOC stocks to these cover crop strategies compared with the

control treatment (bare fallows) in the first and last decades of the 36-year simulation period (b). The temperate

region here is defined as the latitudes from 23.5° to 60° N/S of the equator, and latitudes between 23.5°S and

23.5°N are classified as the tropics. Box plots in (b) denote the 5th and 95th percentiles with whiskers, median and

interquartile range with box lines, and mean with diamonds across all cropland grid cells (global:35039;

temperate:21223; tropical:12942).

4.1.2.2 Cropland N leaching and yields

In addition to soil C benefits, cover crops resulted in a reduction in simulated N leaching in most

global croplands (i.e., CAall scenario), with the largest decreases (~75-90%) found in Russia and

large parts of Africa, regions where mineral N fertilizer application were rather low. Modelled N

leaching reduction in response to CCs in China, Western Europe, and the United States—areas with
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substantial fertilizer application—were still 0-45% for the 36-year simulation period (Fig. 4.5). Our

simulated total nitrogen loss of 17.8-18.4 Tg yr-1 from fallow cropland (NoCC) was in good

agreement with statistics-based estimates of 14-23 Tg N yr-1 (Smil, 1999; Liu et al., 2010), but

lower than the findings of 26-31 Tg N yr-1 in Lin et al. (2001) and Liu et al. (2019) who uses a

modelling approach (Table 4.2). Replacing bare fallows with cover cropping across global

croplands was simulated to reduce N leaching by 7.3-7.6 and 6.1-6.2 Tg N yr-1 in the CCNL and CCL

runs, respectively. The latter (i.e., CCL) was ~17% lower than the decreases of 7.3-7.7 Tg N yr-1

from CCLNT (Table 4.2), supporting arguments for practicing conservation tillage techniques to

mitigate hydrological N losses.

Figure 4.5 Maps of simulated responses (%; 36-year average) of cropland N leaching to CCNL (a), CCL (b), and

CCLNT (c) managements, relative to the control treatment with bare fallows (NoCC) in the CAall scenario. Box

plots of these responses in the first and last simulated decades are shown in (b), denoting the 5th and 95th

percentiles with whiskers, median and interquartile range in box lines, and mean with diamonds across all

cropland grid cells (35039). The inset donut plots represent the area proportion of each classified N leaching

change from the total cropland area.
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Figure 4.6 Maps of simulated response (%; 36-year average) of main-crop yield to CCL management relative to

the control treatment with bare fallows (NoCC) in the CAall scenario: maize (a), wheat (b), rice (c), and soybean

(d). Modelled crop yield at each grid cell is calculated as the area-weighted aggregated results in rain-fed and

irrigated conditions. Global total cropping areas in 2014 modelled here are 184.5, 247.7, 151.7, and 95.9 Mha for

maize, wheat, rice, and soybean, respectively, with rain-fed proportions of 84, 77, 44, and 94% for those four crop

types. The inset donut plots represent the area proportion of each classified yield change from the total crop-

specific area.

The modelled impacts of legume cover crops (CCL) on yields of the main crops showed large

spatial variation (Fig. 4.6). Small, and inconclusive with respect to their direction, yield changes

between -5% and 5% (36-year average) were found in China across all crop types, likely as a

consequence of the high N fertilizer input. A widespread yield loss in response to CCs was seen in

northern cold and temperate dry climates, whereas yields in humid regions—such as the eastern

USA, southern China, and most of South America and Africa—increased (Fig. 4.6), reflecting high

biomass and high N fixation rates (see Sect. 4.2.3 below for details). However, these modelled

impacts varied widely between different cropping systems, with the largest yield variability found
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in maize and wheat, followed by rice. Productivity of soybean crops responded only little to legume

CCs (Fig. 4.7).

Figure 4.7 Box plots of simulated response of main-crop yield to CCNL, CCL, and CCLNT managements, relative

to the control treatment with bare fallows (NoCC) in the first and last simulated decades under the CAall scenario:

maize (a), wheat (b), rice (c), and soybean (d). Modelled main-crop yield at each grid cell is calculated as the area-

weighted aggregated results in rain-fed and irrigated conditions. Box plots of yield relative changes (%) denote the

5th and 95th percentiles with whiskers, median and interquartile range with box lines, and mean with diamonds

across all crop-specific grid cells (maize: 31635; wheat: 27126; rice: 21598; soybean: 23306).

Our model simulations under bare fallow management (NoCC) resulted in a total crop production of

2743-2785 million tonnes per year globally, consistent with FAO-reported estimate of 2806 million

tonnes in the year 2014 (Table 4.2), implying the reliability of the current model version to

reproduce food production at the global scale. Compared with fallow soils during off-season period,

using cover crops was modelled to potentially reduce main-crop yield in the first decade for the 36-

year simulation, with mean decreases of 6, 3, and 8% in CCNL, CCL, and CCLNT, respectively.

However, these negative yield effects were gradually diminished over the course of simulation, and
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turned to positive impacts in the last decade, with slight production increases of 1-5% simulated for

the three assessed managements in comparison with the control treatment (Table 4.2).

4.2 Discussion

4.2.1 Soil carbon stocks

LPJ-GUESS simulates cropland soil carbon stocks across all the evaluated sites well, although the

measured SOC increase in response to CCs is generally underestimated (Fig. 4.1). One likely

explanation for this discrepancy is the low biomass production of CCs in the model experiments

(not shown), resulting in less C inputs to the soil pools compared with the field measurements.

Experimental evidence from the field sites has shown that the amount of biomass C added to the

soil through CCs varies widely between cover crop species (Sainju et al., 2002; Constantin et al.,

2010). Using two grass functional types to represent all cover crop situations in our standardized

evaluation cannot reflect this variability. Also, when comparing herbaceous CC effects on soil

carbon stocks, belowground C input via roots has been proven to stably enhance SOC sequestration

in the field measurements (Rasse et al., 2005; Blanco-Canqui et al., 2015). For instance, in a 2-year

U.S. trial, Kuo et al. (1997) found that the root-to-shoot ratio of plant biomass C grown under

natural conditions ranged from 0.5-0.8 for ryegrass (non-legume) and 0.2-0.5 for hairy vetch

(legume). In comparison, higher root-to-shoot ratios in perennial grasses ranging from 1.0-3.5 were

reported in another U.S. field experiment with continental climate, depending on soil sampling

depth and nutrient availability (Sainju et al., 2017). In our study we implemented a prescribed root-

to-shoot ratio of 2.0 to broadly represent below- and aboveground biomass productions in

herbaceous plants based on literature values (see Sect. 2.1). Whether or not this set value affects the

simulated root-derived carbon from CCs is difficult to assess because root biomass information was

typically unavailable from the test sites.

Our modelled global-scale small SOC increase of 1.0-2.8% for non-legume cover crops (CCNL) and

1.5-4.1% for legumes (CCL) (Fig. 4.4) agreed with the meta-analysis of Poeplau & Don (2015) and

Abdalla et al. (2019), in which replacing bare fallows with CCs statistically showed no significant

difference between cover crop types for SOC sequestration, with a mean increase of 4.1% and 4.5%

found for non-legumes and legumes, respectively. However, these reported impacts were somewhat

lower than a recent synthesis conducted by Jian et al. (2020), who found that cover cropping would

result in a net SOC sequestration of 0.56 Mg C ha-1 yr-1with all cover crop types included, ~15.5%

higher than the bare-fallow control treatment. In our model experiments, only the combined
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agricultural practice, i.e. legume CCs and no tillage (CCLNT), produced a mean SOC increase of

9.7% after a 36-year simulation (Fig. 4.4), which is more comparable to but still below the findings

in Jian et al. (2020). The discrepancy between the global simulation and site-level field experiments

likely reflects their difference in the investigated geographical scales and land-use history, as well

as to the diverse managements and methodologies among field studies (such as CC species and

retained residue proportion). Nevertheless, the potential of obtaining higher SOC stocks via cover

crop management seems realistic, even though the exact magnitude of the effect remains unresolved.

In the global experiment, the annual SOC sequestration rate was modelled to be largest in the early

years after introduction of CCs, and it then gradually declined over the course of the remaining

simulation period (Fig. 4.4), similar to published findings. Sommer & Bossio (2014) reported

annual SOC stock changes in response to the improved agricultural practices approaching a

maximum between the third and seventh year after adopting soil-conserving techniques and a

subsequent decreasing trend for 15-20 years. A meta-analysis of tropical crop ecosystems also

indicated reduced SOC sequestration rates (after an initial peak) to persist for 4-25 years until a new

SOC equilibrium state was reached, but the duration was highly dependent on climates and soil

types (Powlson et al., 2016). In our model experiments, at the end of 36-year simulation the

continued trends indicate that a new steady state in soil C and N pools had not yet been achieved,

which was similar to results in Porwollik et al. (2022), who found no dynamic steady state after 50

years of simulation with the LPJmL model in response to planting herbaceous CCs in global

croplands during fallow period.

In our study we attempted to quantify the contribution of CCs to enhancing soil C pools globally,

which could also be interpreted as a climate change mitigation measure. After 36 years of

implementation, using two herbaceous CCs was found to sequester ~0.01 Pg yr-1 soil carbon across

the simulated 126 Mha cropland (CAhis scenario, ~8% of current cropland areas worldwide; Table

4.2). If all agricultural lands were to adopt cover crop practices (CAall scenario), the SOC

sequestration potential could be as high as 0.11, 0.15, and 0.32 Pg C yr-1 (i.e., 0.40, 0.55, and 1.17

Pg CO2 yr-1) for non-legumes (CCNL), legumes (CCL), and the combined agricultural practice

(CCLNT), respectively, compensating for 8-22% of annual direct greenhouse gas (GHG) emissions

from crops and livestock activities (5.3 Pg CO2eq yr-1; FAO, 2020), or equivalent to 10-29% of

GHG emissions from agricultural land use change (4.0 Pg CO2eq yr-1; FAO, 2020). Planting

anywhere near 100% of global cropland with CCs is impractical for a number of reasons: a large



68

share of agricultural area used for winter crops (Poeplau & Don, 2015; Kaye & Quemada, 2017),

potential water limitations or too low winter temperature during off-season periods (Dabney et al.,

2001), and insufficient growing windows for CCs in multi-cropping systems in the tropics (Hu et al.,

2018). Nevertheless, these estimates from our simulations do provide an upper bound for the

amount of atmospheric carbon that might be sequestered through cover crop cultivation. Under the

more realistic adoption scenario of CApot (590 Mha, ~37% of current cropland areas; Table 4.2),

carbon sequestrated by individual cover crop practice (0.15 and 0.22 Pg CO2 yr-1 for CCNL and CCL,

respectively) and the combined conservation management (CCLNT; 0.46 Pg CO2 yr-1) was expected

to approximately offset 3-9% of direct yearly GHG emissions from crops and livestock activities.

4.2.2 N leaching

Both model and field experiments showed that N leaching from cropland ecosystems was strongly

associated with N management: applying chemical fertilizer resulted in higher hydrological N loss

compared with the unfertilized treatments (Fig. 4.2), likely a consequence of the enhanced size of

the nitrate pool. However, several disagreements between simulated and measured N leaching were

found in some field trials despite of similar N fertilizer inputs (Fig. 4.1), indicating that other factors,

such as soil texture type and drainage water, are at play as well. For example, two of the field

experiments included in our analysis sites showed a decreasing trend in total N leaching (mineral

plus organic) from coarse-, medium-, to fine-textured soils (Lemola & Turtola, 2000; Aronsson et

al., 2011). When testing our simulation setup at these two locations, the reported soil texture effect

was not captured well by the model (not shown), suggesting that the N leaching representation in

LPJ-GUESS should be further improved. Moreover, compared with observations, the overall

smaller reduction in N leaching in response to the simulated CCs (Fig. 4.1) might be partially

attributed to the underestimated biomass of CCs, which would also underestimate plant N demand

and soil N uptake. In addition, since the model cannot simulate two plants growing at the same time,

the total length of the undersown-CC growing period in our simulations was approximately 1-2

months shorter than the field trials across all northern European sites (see Sect. 2.4.1), which further

limited cover crop capacity for uptake of excess N remaining in the soil column in the model.

Compared with the bare-fallow setup, mean decreases of 41% and 34% in N leaching were

simulated across the globe in response to the experiment with non-legume (CCNL) and legume cover

crops (CCL), respectively (Table 4.2), close to the lower end of the wide reported reduction range

between 30-70% in the literature (Tonitto et al., 2006; Quemada et al., 2013; Thapa et al., 2018;



69

Abdalla et al., 2019; Nouri et al., 2022). The reduction in N leaching due to CCs partially reflects

the decreases in leachate volume and soil reactive N concentration because of enhanced water and

N uptake by CCs during their growth (Thapa et al., 2018; Blanchy et al., 2023). This process may

also underlie the smaller decreases in N leaching under N-fixing CCs compared with non-legumes

for both field measurements (Abdalla et al., 2019; Nouri et al., 2022) and model simulations (CCNL

vs. CCL). Where biological N fixation is the dominant N source for leguminous plants, it diminishes

the capacity for mineral N uptake from soils (Fontaine et al., 2022). Moreover, including the no-till

technique in cover cropping in our simulations had the potential to further mitigate N leaching (41%

in CCLNT vs. 34% in CCL; Table 4.2) mainly due to the reduced net N mineralization rates (Fig.

4.8). This is in line with the findings from a meta-analysis by Thapa et al. (2018) and a recent

modelling study by Porwollik et al. (2022).

Figure 4.8 Area-weighted aggregated average annual net N mineralization rate (kg N ha-1 yr-1) across (a) global

(1597 Mha), (b) tropical (606 Mha) and (c) temperate (987 Mha) croplands with four cover crop managements

(CCNL: blue; CCL: red; CCLNT: black; NoCC: black dashed) under the CAall scenario over the 36-year simulation

period. Temperate region here is defined as the latitudes from 23.5° to 60° N/S of Equator, and latitudes between

23.5°S and 23.5°N are classified as the tropics.
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Figure 4.9 Maps of annual cover crop biomass (shoot and root) returned to the soils in the CCNL (a) and CCL (b)

simulations, and biological N fixed by legume cover crop in the CCL run (c). Biomass and N fixation rates in maps

are given as the mean values for the 36-year simulation period. See Sect. 2.4.2 for details on three conservation

agriculture (CA) area scenarios.

Globally, the largest percent decreases in N leaching due to CCs were modelled in regions with

relatively little N fertilizer use (such as Russia and large parts of Africa), where soil reactive N

pools were small. Results from a six-year field experiment implemented by Wittwer et al. (2017)

also showed that the effectiveness of CCs in reducing N leaching decreased with management

intensity (e.g., tillage regimes and fertilizer application rates). This effect underlies discrepancies at

some national borders, such as Indonesia and Papua New Guinea (Fig. 4.5), countries with similar

climates but with contrasting fertilizer applications. Likewise, in some arid and semi-arid regions,

as well as temperature-limited areas in the high latitudes (e.g., Canada) a slight decrease of N

leaching in response to cover cropping systems was found, as poor growth conditions constrained

the CC capacity for soil N uptake. In addition, the rapid turnover rate of SOM pools driven by warm

and moist climate (Olin et al., 2015a), together with abundant precipitation may increase N leaching
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with cover crop practices in the humid tropics as a result of high biomass of N returned to soils (Fig.

4.9) and enhanced water drainage (Porwollik et al., 2022).

4.2.3 Crop yields

Accounting for the impacts of management practices, particularly regarding water and N limitations

to crop growth in LPJ-GUESS, resulted in a good agreement between simulated and observed crop

yields across different field trials. For both modelling and field-based experiments, yields in the

main crops following non-legume CCs declined, although overall difference to fallow controls

(NoCC) was small (Table 4.1). The difference between periods of soil N mineralization and high N

demand of main crops (Marcillo & Miguez, 2017), and enhanced soil N immobilization shortly

after the planting of non-legume CCs (Erenstein, 2003; Abdalla et al., 2019) may contribute to the

declines in yields of the main crops in the field experiments. In comparison, N-fixing CCs with

relatively low C:N ratios are expected to stimulate soil N release during their decomposition,

enhancing plant available N in soils (Quemada et al., 2013; Thapa et al., 2018). This was in line

with our model findings, wherein legume CCs generally resulted in higher net N mineralization

rates than non-legumes (Fig. 4.8), and thus increased the productivity of the main crops in some

cases (Fig. 4.1). However, it should be noted that these CC effects were highly dependent on

cropping systems, with little impacts found on productivity of soybeans (Table 4.1). This is likely

due to their N fixation capacity, which diminished the N competition between CCs and soybeans in

both field trials and model simulations.

Our modelled global mean main-crop yield losses due to CCs in the first decade of the simulations

(-3% for CCL and -6% for CCNL; CAall scenario in Table 4.2) compared well with a recent meta-

analysis by Garba et al. (2022), who reported a mean crop production change of -4.9% and -10.1%

for legume and non-legume CCs, respectively, after 2-17 years of management. Main-crop yield

reduction under cover cropping systems likely reflected (a) the indirect competition for water and

nutrients between CCs and subsequent main crops (Valkama et al., 2015), and (b) the time that soil

SOM pools need to adjust to management shifts (Figs. 4.4 and 4.8). Garba et al. (2022) also pointed

out that cover cropping systems under the no-till practice resulted in lower main-crop yields

compared with conventional tillage, in line with our model findings in terms of total crop

productions worldwide (CCLNT vs. CCL; Table 4.2). However, at least in our simulations, these

negative yield effects induced by conservation tillage may be mitigated over the course of the

simulation (Table 4.2) because of the gradual stabilization of soil C and N pools over time (Figs. 4.4
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and 4.8). A similar finding from a meta-analysis by Pittelkow et al. (2015) indicated that yield

benefits, globally, in cereal- and legume-based cropping systems may be attained after 10+ years of

conversion from conventional tillage to no-till management.

N fertilizer application was found to be another factor that influenced the effectiveness of CCs on

subsequent crop yields for both site-level (Fig. 4.2) and large-scale simulations (Fig. 4.6). The

smallest impacts on main-crop production were found for well-fertilized cover cropping systems,

consistent with previous field-based reviews (Tonitto et al., 2006; Quemada et al., 2013; Marcillo &

Miguez, 2017; Daryanto et al., 2018; Zhao et al., 2022), since enhanced soil mineral N pools driven

by fertilization reduce the N competition between CCs and main crops. This can explain the small

yield penalty (or benefit) from cover cropping in soybean (Figs. 4.6-4.7), which is a nitrogen fixer

and experiences less N stress during the growing season compared with cereal crops. Likewise, the

spatial variability regarding CC impacts on rice production was also much smaller than simulated

maize and wheat CFTs (Figs. 4.6-4.7), primarily because rice in our simulations was mostly

irrigated (Fig. 4.6), which reduced water limitation on crop growth caused by CCs in rice-producing

areas. Furthermore, the broadly negative impacts of CCs on simulated yields in northern temperate

climatic regions (Fig. 4.6) can be attributed to the slow decomposition of SOM in response to low

temperature, where the N retained in the SOM is released evenly throughout the year and not easily

available for main crop uptake after CC growth (Olin et al., 2015a). In contrast and as discussed

above, plant materials from CCs in the humid tropics are expected to rapidly decompose due to the

fast turnover rate, continuously releasing reactive N for plant uptake in the next cropping season

and therefore enhancing main-crop productions. This contrasting spatial difference in yield changes

between temperate and tropical climates supports a meta-analysis finding that cultivating CCs

during bare-fallow period, on average, has a risk to reduce main-crop productivity by ~12% in

temperate agricultural soils while gaining ~15% of yield benefits in the tropics (Garba et al., 2022).

4.3 Conclusions

In this chapter we investigated the influence of cover cropping management on global crop

ecosystems using the updated LPJ-GUESS model version from Chapter 3. The simulated C-N

variables and main-crop productions in response to two herbaceous cover crop types (i.e., non-

legumes and legumes) were widely evaluated against measured data from site level to global. Our

model estimates revealed that crop ecosystems implemented in LPJ-GUESS realistically responded
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to non-legume and legume cover cropping under a range of water and N managements, and resulted

in comparable C-N variables with observations, particularly for cropland SOC stocks.

Our simulations demonstrated that the impacts of CCs on global agricultural lands can be beneficial

for long-term environmental sustainability without compromising crop productions, particularly for

the integrated management practice with N-fixing CCs and no-till technique included. This

combined strategy was modelled to potentially increase soil carbon levels by 7% (+0.32 Pg C yr-1)

and reduce cropland N leaching by 41% globally (-7.3 Tg N yr-1; 36-year average), but with a 8% of

loss in total crop production during the first simulated decade. However, these negative effects on

crop production were diminished over the course of managements and turned to a slight increase (~

2%; +37 million tonnes per year including maize, wheat, rice, and soybean) after 36 years of

implementation. In comparison with non-legume CCs, the adoption of N-fixing cover cropping, at

least in our model experiments, contributed more to gaining yield benefits in humid tropics while it

is mitigating production losses under northern temperate climates. This spatial variation due to CCs

was also found to be associated with main-crop types and N fertilizer inputs, with little yield

changes simulated in soybean systems and highly fertilized agricultural soils.

The dynamic process of N fixation for grass CCs in LPJ-GUESS provides an opportunity to overall

assess atmospheric carbon and nitrogen flows to agricultural lands during fallow periods, and thus is

relevant for the estimates of global terrestrial C-N fluxes and pools under present-day and future

climate. It can also help to examine the possibility of conservation agriculture for achieving

sustainable food production, through comparing with the impacts from other management strategies.
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5 Impacts of agricultural management practices on soil carbon stocks, nitrogen

loss, and crop production in eastern Africa

This chapter further investigates the potential responses of crop ecosystems to improved agricultural

practices, in addition to cover cropping management shown in Chapter 4. Here, we choose two

eastern Africa countries—Kenya and Ethiopia—as a regional case study, primarily due to their

severe land degradation on agricultural soils over the past decades. The objective of this section is

to examine whether these alternative management practices favor soil degradation restoration and

crop production while minimizing N loss (including gaseous emissions and N leaching) from the

cropland situated in the tropical climates. Model results are first assessed on experimental data from

two long-term (>10 years) field sites in western Kenya and compared against country-level yield

statistics. The management effects on soil C pools, crop yields, and N losses in Kenya and Ethiopia

are subsequently investigated under present and future climate scenarios.

5.1 Results

5.1.1 Model performance at site scale

In most cases, the simulated maize yields in the long rainy season (from March to August) were

higher than the measurements, with the mean overestimation ranging from 18% to 21% at the two

experimental sites (Fig. 5.1). The averaged yields over the entire experimental period (2004-2015)

between simulations and observations compared well across all the evaluated treatments, with the

simulated values falling within the range of measured standard deviation (Fig. 5.2). However, LPJ-

GUESS did not well predict the interannual variations of the yields, producing a low Pearson

correlation coefficient (r) and high mean absolute error (MAE) in all the INM3 and CT1

experiments. As expected, the measured and simulated estimates from the combined conservation

managements (e.g., manure with residue retention at INM3) were higher than the individual ones in

the little-fertilized treatments, but yield discrepancies between managements became small and

insignificant when maize received a high N application rate of 90 kg N ha-1 (Fig. 5.2).

The simulated SOC at both sites showed a declining trend from 2004-2015 under all the assessed

treatments, agreeing well with the observation of soil carbon loss over the same period; however,

the model generally underestimated SOC at the beginning of experiment while overestimating soil

carbon stocks in the last two sampling years (Fig. 5.2). A linear correlation (p<0.01) between the

simulated and measured SOC stocks was found when all the managements were included, with the
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model explaining 82% and 64 % of the variation in observed SOC at INM3 and CT1, respectively

(Fig. 5.1). Low mean absolute error of 4.2% and RMSE value of 4.1 Mg C ha-1 were found for the

INM3 treatments, and 3.5% and 3.9 Mg C ha-1 for the CT1 treatments (Fig. 5.1). The field-

measurements showed that SOC stocks from the combined conservation managements were

significantly higher than the conventional ones (i.e., Nx_NoMan_NoRR at INM3 and

Nx_Till_NoRR at CT1). The model can broadly capture this response well, but it had difficulty in

reproducing SOC difference between the individual managements (Figs. 5.1-5.2).

Figure 5.1 Comparison of modelled and observed maize yields (long rainy season, i.e. the main growing period)

and SOC stocks (0-150 cm) at INM3 (a) and CT1 (b) sites across all evaluated treatments. The dashed line is 1:1

line and black bold line is fitted linear regression; ME and MAE are mean error and mean absolute error,

respectively, representing in percent (%); RMSE is root mean square error, with the unit of t ha-1 yr-1 for yield and

t C ha-1 for SOC. See Table 2.6 for the treatment abbreviations and their explanations.
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Figure 5.2 The modelled and observed SOC stocks (a) and maize yields (b) for the evaluated treatments at the

INM3 site, with two levels of N fertilizer shown in plots (N0 and N90 for SOC; N30 and N90 for yields). The

dashed lines are simulations, and closed circles and triangles represent the observations averaged over the four

replicates in the trials, with standard deviation given in the vertical bar. See Table 2.6 for the treatment

abbreviations.
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Compared with observations, LPJ-GUESS in general underestimated absolute SOC loss—i.e., SOC

stocks in 2015 minus the values in 2005—across all the INM3 experiments (Fig. 5.2). Due to the

additional C input to soils from manure and residue retention, the simulated combination of these

two managements produced the lowest loss of 6.7 Mg C ha-1 at INM3 site (N0_Man_RR), with this

loss mitigated by N fertilizer use (6.3 Mg C ha-1, N90_Man_RR). Conversely, simulation from LPJ-

GUESS yielded the highest C reduction of 8.9 Mg C ha-1 in the unfertilized maize cropping system

with no manure and no residue addition (N0_NoMan_NoRR). This estimate was somewhat close to

the modelled SOC reduction of 8.6 t C ha-1 in maize residue only (N0_NoMan_RR) and manure

application only (N0_Man_NoRR) managements. Taken together, practicing manure and residue

retention strategies, combined with 90 kg N ha-1 of fertilizer use was simulate to mitigate SOC loss

by 29% in comparison with the control treatment, lower than the observed reduction of 43% (Fig.

5.2).

5.1.2 Regional yields comparison

We simulated six crop types under the conventional management (STD; see Table 2.7 for

management details) to realistically represent agricultural production in eastern Africa from 1901-

2014 (referred to as 5-B1 run in Table 2.5). The simulated results from 1961-2014 and 1993-2014

were chosen to compare with annual FAO-based yield data in Kenya and Ethiopia, respectively, due

to their different time frames reported in statistics.

Modelled maize yields in two countries showed a good agreement with observations, with a mean

error (ME) of -6 % and RMSE value of 0.22 t ha-1 yr-1 in Kenya, and -21% and 0.54 t ha-1 yr-1 in

Ethiopia (Fig. 5.3). LPJ-GUESS tended to broadly overestimate the reported yields in pulses and

sorghum, with the country-level overestimation spanning from 48-257% and 72-203%, respectively.

Apart from sorghum production in Kenya, the simulated and reported yields in most crop types

showed a strong correlation, with a high range of Pearson correlation coefficient (r) from 0.55-0.90

(p<0.001; Fig. 5.3), reflecting that the model was able to capture the interannual variability in yields

despite some disagreement between simulations and observations for individual years. Additionally,

the simulated total maize production in eastern Africa increased from 5.4 million tonnes in 1993 to

9.8 million tonnes in 2014, close to the reported range of 3.6-11.2 million tonnes per year over the

same period (Fig. 5.3). With all six agricultural crops included, LPJ-GUESS generated a total

production of 19.7 million tonnes per year averaged over 1993-2014, ~45% above the reported

value of 13.6 million tonnes per year from FAO. This overestimation in total agricultural production
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was most likely due to the largely overestimated crop yields in pulses systems, where modelled

yields were 4.4 million tonnes per year greater than FAO records (6.6 and 2.2 million tonnes per

year for simulation and FAO statistics, respectively).

Figure 5.3 Comparison of modelled and FAO-reported crop annual yields on country level from 1961-2014 in

Kenya (a), Ethiopia (b), and total crop production (c). The upper and lower bounds of shade areas in (a) and (b)

represent the simulated yields under irrigated and rain-fed conditions, respectively, with their area-weighted

aggregated results as given in red solid lines. Rep.� ���� and Mod.� ���� indicate the reported and simulated yields averaged

over FAO-based periods (1961-2014 for Kenya and 1993-2014 for Ethiopia), respectively. ME is mean error,

represented in percent (%). RMSE is root mean square error, with the unit of t ha-1 yr-1 for yields. r is Pearson

correlation coefficient, where *** denote the correlation to be statistically significant at p=0.001 level.

5.1.3 Ecosystem responses to management practices

5.1.3.1 Historical period

Including six crop types, all the assessed management practices that address aspects of sustainable

land management led to a net increase in simulated cropland soil carbon in Kenya and Ethiopia

compared with the conventional management prevalent in eastern Africa (Fig. 5.4). Our simulation

of the integrated conservation agriculture practice, as expected, produced the largest increase in soil
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carbon sequestration of ~11%, followed by cover cropping implementation (legumes and non-

legumes), residue management, and manure application, with the lowest increase of ~2% found in

no-tillage management option. Most of these explored practices also gained the extra benefit of

increased yields—despite being in model simulations accompanied by larger N losses (gaseous

emissions and N leaching)—with the exception of cover crops in some regions. Compared with the

implementation of non-legume cover crops, practicing legume cover cropping technique was

simulated to generally result in larger N loss over Kenya and Ethiopia. However, this strategy was

accompanied by an enhancement in modelled crop production of ~18%, most likely due to extra N

addition into soils through symbiotic N fixation in herbaceous legumes, which facilitates a N-rich

soil environment to subsequent crops for better growth and productivity. Returning 100% of crop

residues to the field after harvest and using manure as fertilizer were the two simulations that

increased crop production for most parts of eastern Africa but with the large environmental “cost”

of an increase in N loss. The enhancement in both yield and N loss from residue retention might

reflect that N becomes available for plant uptake over a longer period, and nothing grows during

crop fallow period which can increase the N leaching from soils. In addition, no-tillage, as an

important component in conservation agriculture in the tropics of Africa, had a potential (at least in

our simulations) to reduce the N loss from cropland with slight yield benefits depending on region

(Fig. 5.4).

The influence of individual (and integrated) management options varied widely between different

parts of Kenya and Ethiopia, depending on soil properties and climate at a location, as well as on

specific cropping systems implemented in agricultural soils. With all agricultural crops included,

legume cover cropping practice was in general identified as a promising option for potentially

sequestering soil carbon, with 43% of cropland grid cells having this technique as the optimal C

management (OPT), followed by manure application (MAN), residue retention (RR), and the

conventional management practice (STD, Fig. 5.4). However, this spatial pattern showed distinct

difference among specific cropping systems. For instance, leaving all crop residue in the field was

simulated to dominate SOC enhancement in maize and sorghum systems in eastern Africa, but it

only slightly contributed to sequestering soil carbon in wheat and pulses cropping systems (Fig. 5.5),

likely reflecting the differences in biomass production, phenological responses to climate change,

manure application, and N fertilizer investment among these crop types.
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Figure 5.4 The modelled relative response (%) of cropland SOC, N loss, and yield to alternative management

practices compared with the conventional management prevalent in eastern Africa (a), and the optimal SOC

sequestration strategy (OPT; Eq. 2.25) simulated by LPJ-GUESS in agricultural soils over Kenya and Ethiopia (b).

Box plots in (b) denote the 5th and 95th percentiles by the whiskers, median and interquartile range are the box

lines, and means are symbolized as white circles across all cropland grid cells (428). The inset donut plot

represents the area proportion of each optimal management from the total grid area. The conventional

management (STD, black in b) was chosen when none of other alternative practices produced a net increase in

SOC. Abbreviations: CONSERV – conservation agriculture; CCL – legume cover crop; CCNL – non-legume cover

crop; RR – residue retention; MAN – manure application; NT – no-tillage; STD – conventional management.
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Figure 5.5 Maps of the optimal SOC sequestration strategy (OPT; Eq. 2.25) simulated by LPJ-GUESS in maize

(a), pulses (b), sorghum (c), and wheat (d) cropping systems over Kenya and Ethiopia. The inset donut plots

represent the area proportion of each optimal management from the total grid area. The conventional management

(STD, black in plots) was chosen when none of other alternative practices produced a net increase in SOC. See

Fig. 5.4 for management abbreviations.

The modelled total cropland SOC storage (0-150 cm) from different managements ranged from

932-1038 Tg C in Kenya and 2569-2895 Tg C in Ethiopia, which, as expected, was higher than the

published estimates for the depth layer 0-30 cm (Zomer et al., 2017). However, these simulated soil

C stocks were close to the scaled-up published values using the depth distribution functions (Eqs.

2.22-2.23), with 727-2227 Tg carbon estimated for the depth of 0-150 cm in those two counties

(Table 5.1). In Kenya the simulated N loss of 45-134 Gg N yr-1 (1 Gg= 109 grams) from various
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management options was comparable with the statistic-based estimates of 111 Gg N yr-1 in Zhang et

al. (2021). Furthermore, the simulated total maize production of 8.7-14.3 million tonnes per year in

eastern Africa were consistent with the FAO-reported yield of 11.2 million tonnes per year (Table

5.1). With six crop types included, an overall overestimation of 7-47% was found, primarily due to

the overestimated yields in pulses and sorghum shown in Fig. 5.3.

Table 5.1 Modelled total cropland soil C stocks (0-150 cm), N loss (gaseous emissions and N leaching), and total

crop production with alternative management practices in Kenya and Ethiopia, compared with literature-reported

estimates. See Fig. 5.4 for management abbreviations.

Management Soil C stock, total
(Tg C)

N loss, total
(Gg N yr-1)

Crop production
(million tonnes per year)

Kenya Ethiopia Kenya Ethiopia Kenya Ethiopia

Maize All cropsa Maize All cropsa

STD 939 2592 61 157 3.9 7.3 7.3 21.7

NT 948 2623 64 164 3.8 7.6 7.1 23.4

MAN 932 2569 45 79 3.2 6.7 5.5 19.9

RR 957 2653 134 359 4.2 8.4 8.2 26.7

CCNL 969 2696 64 190 3.9 7.7 7.7 23.1

CCL 979 2710 75 204 4.9 8.9 8.5 24.7

OPT 993 2786 81 229 4.6 9.0 8.3 25.8

CONSERV 1038 2895 127 375 5.1 9.4 9.2 27.0

Other studies 414b

727c
1268b

2227c
111

(76-297)d — 3.5e 5.2e 7.7e 19.6e

a) Summed yield of six crop types: maize, pulses, sorghum, wheat, rice, and soybean; b) Zomer et al. (2017); c) Zomer

et al. (2017), soil C stocks were scaled up to 0-150 cm from the original depth of 0-30 cm using the depth distribution

functions (see Eqs. 2.22-2.23); d) Zhang et al. (2021), the mean estimate over 2006-2015 was chosen, with a range

given in bracket; e) FAOSTAT (2023), the reported total production in the year 2014 were used for comparison, since

the simulated cropland area was fixed from 2014 onwards (~6.2 and 17.4 Mha for Kenya and Ethiopia, respectively),

see 5-B2 runs in Table 2.5.

5.1.3.2 Future projection

Comparing with the standard model simulation (STD), all management practices were simulated to

increase cropland SOC storage in the last decade of this century (i.e., 2091-2100) but with

insignificant discrepancies among three future climate and CO2 scenarios (Fig. 5.6). Although no-



83

tillage showed slight impacts on crop production, it was accompanied by a reduction of N loss (Fig.

5.6). A clear yield difference among three SSP scenarios was consistently seen in practices of

legume cover crop and the integrated conservation agriculture, with yield increases being higher for

SSP5-85 than for SSP1-26 climate pathway (Fig. 5.6). This likely suggests the stronger CO2

fertilization impact on the growth of herbaceous legumes under SSP5-85. Overall, the future

projection revealed that legume cover cropping represented a near win-win situation in terms of soil

carbon sequestration and yield benefits in eastern Africa, also with lower N loss compared to

manure and residue managements.

Table 5.2 The relative (%) number of cropland grid cell and areas regarding the potential transition of optimal

SOC sequestration practice (OPT; Eq. 2.25), comparing the historical period (GCM-based climate; 5-C3 runs in

Table 2.5) with three future SSP scenarios from 2091-2100 (5-C2 runs in Table 2.5). See Fig. 5.4 for management

abbreviations.

From

(GCMs historical)

To

(future)

Amount of cropland grid cells (%) Amount of cropland areas (%)

SSP1-26 SSP3-70 SSP5-85 SSP1-26 SSP3-70 SSP5-85

STD

RR 0.70 1.17 1.17 0.00 0.01 0.01

MAN 2.80 3.04 2.57 0.03 0.03 0.02

CCL 1.87 1.17 1.17 0.03 0.03 0.03

RR

STD 0.23 0.47 0.23 0.00 0.49 0.00

MAN 0.47 0.00 0.23 0.04 0.00 0.01

CCL 12.85 14.02 16.12 17.74 17.73 19.40

MAN

STD 1.64 1.87 2.34 0.01 0.01 0.02

RR 3.27 4.21 4.21 1.12 0.38 0.50

CCL 14.02 15.65 15.89 9.88 11.10 11.12

CCL

STD 0.00 0.00 0.00 0.00 0.00 0.00

MAN 0.47 0.00 0.00 0.01 0.00 0.00

RR 1.17 2.10 1.87 0.84 1.52 1.46

Total change 39.5 43.7 45.8 29.7 31.3 32.6
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Given the Fig. 5.7, the simulated cropland SOC stocks (0-150 cm) under future conditions varied

widely among the evaluated management practices, with the integrated conservation agriculture as

the only strategy that exhibited positive C sequestration over the entire simulation time frame

(2015-2100). Practicing N-fixing cover crops was simulated to enhance SOC stocks in the first two

decades, after which stable SOC for SSP1-26 and slight C loss for SSP3-70 and 5-85 scenarios were

found. Other practices, like the conventional management and no-tillage, showed an obvious

declining trend in total C storage from 2015-2100. In addition, there were substantial shifts in the

optimal C sequestration practice for the future scenarios, with ~30% of cropland areas in Kenya and

Ethiopia (Table 5.2) having the potential transitions at the end of this century in comparison with

the present-day climate (5-C2 vs. 5-C3 runs; Table 2.5). Most of these shifts were simulated to

come from the other management options to legume cover crop, such as manure application and

residue retention (Table 5.2).

5.2 Discussion

5.2.1 Uncertainties on model evaluation at site scale

Simulations from LPJ-GUESS compares well with the average maize yields from observed

treatments during the experimental period (2004-2015), but the measured interannual variability of

the yields for the evaluated management treatments was not reproduced well. The poor performance

in modelling yield variability is likely due to the precipitation discrepancy between the gridded

climate input data and field-based weather records (not shown), leading to the effects of extreme

weather events being difficult to account for. Also, these impacts of extremes on physiological

processes such as flowering or grain filling so far are not well represented in crop models, including

LPJ-GUESS, but known to cause yield losses (Olin et al., 2015a; Nyawira et al., 2021).

Multi-cropping within a year has not been implemented to LPJ-GUESS at the moment, absence of

maize residue and manure application events in the second cropping season (i.e., the short rainy

season from September to January) might thus contribute to underestimating the measured SOC

when evaluating the treatments associated with these two practices. In addition, compared with the

fixed amount of maize residue left in the field (2 t ha-1), using 50% of residue retention in the model

parameterization is not equivalent to these stable and continuous C inputs to soils due to the varying

biomass of simulated maize residue between years. This can in part explain the differences in the

rates of SOC loss between the observed and simulated values at both sites.
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Despite more than 10 years of implementing the improved management practices, the negative soil

C sequestration rates were unexpectedly found in both model simulations and filed measurements

from 2004-2015. Both INM3 and CT1 sites were under natural grassland prior to the start of the

experiments (5-A1 and 5-A2 runs; Table 2.5), hence SOC losses during the experimental period

reflected (1) that grassland soils tend to store more carbon than cropland, and (2) that a new SOC

equilibrium has not been achieved in the maize systems after 10+ years of management (Lal, 2008).

A similar trend was reported by Moebius-Clune et al. (2011), who showed that SOC in western

Kenya was still declining even after more than 50 years of conversion from primary forest to maize.

In addition, rapid turnover of the SOM in tropics may be another factor influencing SOC trends

because of the prevailing warm and moist climate. The turnover-driven C losses at the sites may

exceed C increases due to manure and residue application (Kihara et al., 2020; Nyawira et al., 2021).

LPJ-GUESS in general underestimated the rates of SOC loss at the two experimental sites (Figs.

5.1-5.2). Previous studies have shown that high termite activity in western Kenya can significantly

accelerate litter decomposition rates in the no-till maize system (Ayuke et al., 2011; Kihara et al.,

2015). We do not know if this particular process played an important role at the field trials, but it is

not included in the model representation of SOM decay. In principle, decomposition by soil animals

could be addressed by adjusting the decomposition parameters in the structural and metabolic litter

pools (Nyawira et al., 2021), but adopting such an approach is currently prevented by the lack of

assessment information.

To compare the simulated SOC stocks with observations, we scaled up the measured SOC in the

upper soil (0-15 cm) to the modelled depth of 150 cm using a simple extrapolation function.

However, the extrapolated SOC values are likely to be different from observations at 0-150cm

depth due to the varying management effects on SOC changes with depth. For example, a recent

analysis suggested that an intermediate and high intensity of tillage can greatly decrease SOC

storage in agricultural soils, but large variations existed between soil layers (Haddaway et al., 2017).

The scaling of SOC stocks with depth in the analysis cannot reflect this variation, and introduces

uncertainties on soil carbon estimates in our assessment.

5.2.2 Crop production at regional scale

Our simulated maize yields at the national level matched FAO statistics in Kenya and Ethiopia, but

productions for most other crop types were generally overestimated (Fig. 5.3). One factor

contributing to the overestimation is that LPJ-GUESS uses a harvest efficiency of 90% to adjust the
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simulated crop yields on large spatial scales (see Sect. 2.1). This value was chosen to account for

the crop post-harvest losses caused by mechanical and/or manual damage during harvest operation,

or poor handling and/or storage conditions (Stathers et al., 2020). FAO (2011) reports that cereal

production losses vary widely across regions due to differences in management techniques, ranging

from 5-7% in Europe and North America to 18% in sub-Saharan Africa (SSA). If the reported

losses for SSA also apply to Kenya and Ethiopia, the value of 90% implemented in the model

would result in a 10% overestimation of production in the region.

Pulse productions in both countries were largely overestimated in the model simulations (Fig. 5.3).

This is mainly due to the high N fixation rate in legumes simulated by LPJ-GUESS under warm and

humid climate (see evaluation results in Chapter 3). High BNF rate may reduce the N limitations to

leaf photosynthesis and subsequently enhance the carbon assimilation flow to storage organ, leading

to the high production in N-fixing crops. Similar to pulses, sorghum yields we simulated at the

national level were also significantly higher than FAO records (Fig. 5.3). This suggest that other

factors are at play as well. For example, insect pests, particularly shoot flies and stalk borers, have

been considered to be the major constraint to sorghum production in SSA (Wortmann et al., 2009),

reducing yields by an estimate of 11-49% in western Africa and 15-88% in eastern Africa (Okosun

et al., 2021). The present LPJ-GUESS crop module does not account for insect pests, which may

lead to the large overestimation of sorghum production in our studied region. Additionally, a good

representation of photosynthate allocation to various plant organs is particularly important when

modelling crop yields (Bondeau et al., 2007). In this chapter we updated the daily assimilate

partitioning scheme for sorghum based on the existing literature (see Sect. 2.5.2), but this process

has not been parameterized and calibrated against observations from field experiments. Whether

this related to the large-scale yield overestimation needs to be further investigated in future work.

5.2.3 Impacts of management practices on crop ecosystems

5.2.3.1 Soil carbon stocks

Statistic-based estimates of management improvement impact on the potential cropland SOC

increase in Kenya and Ethiopia range from 15.5-32.7 Tg yr-1 assuming that improved managements

are continuously implemented over 20 years (Zomer et al., 2017). Across the eastern African study

region, LPJ-GUESS produced a SOC enhancement of 2.9 Tg yr-1 under the optimal C management

(OPT) and 4.7 Tg yr-1 under the integrated conservation agriculture practice (CONSERV) compared

with the conventional management (STD; Table 5.1). The difference between the estimates in
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Zomer et al. (2017) and our simulation may be attributed to our longer model experimental period.

When a change in management causes soil C stock to increase, it moves towards a new equilibrium

value over a period of years or decades depending on climate and soil type (Johnston et al., 2009;

Sommer & Bossio, 2014). In the early years after the change in management the annual rate of

increase is largest, and it then gradually declines when the new SOC equilibrium value is achieved

(see ΔSOCrate in Fig. 4.4 in Chapter 4). The 86 years of simulations in the model experiment is

around four times longer than the 20 years studied in Zomer et al. (2017). If we consider the rates of

SOC sequestration over the first 20 years of simulation, the modelled soil C increase of 13.6 Tg yr-1

from CONSERV practice (not shown) is close to the lower end of the range reported in Zomer et al.

(2017).

Regionally, our simulated small SOC increase of 2% under no-tillage (NT) and 3% under residue

retention (RR) agree with a recent meta-analysis of Githongo et al. (2021), in which converting

from a conventional tillage to a no-till system in SSA on average showed only slight SOC increase

in a maize cropping system. This reported insignificant impact contrasts with an earlier synthesis

conducted by Powlson et al. (2016), who reported that the combination of minimum tillage and

residue retention in SSA would result in a net SOC increase of 0.45 Mg C ha-1 yr-1 after three to

nine years of implementation, ~24% higher than the control management (i.e., tillage and residue

removal). In our model experiments, only the integrated conservation agriculture practice

(CONSERV) results in a fairly large SOC increase of 11% (varying from 4-22%; Fig. 5.4), more

comparable but still below the findings in Powlson et al. (2016). The reason for the disagreement

between the regional simulation and field-based experiments is difficult to assess because of the

difference in the studied geographical scales, land-use history, sampled soil depth and implemented

duration of practices.

The regional-scale simulated results are consistent with a recent meta-analysis finding that N-fixing

cover crops contribute more to increasing SOC storage than non-legume plants (Abdalla et al.,

2019). However, it should be noted that in LPJ-GUESS we assumed that cover crops in eastern

Africa are rotated with the main crops and thus solely grown during the short rainy season. This

assumption is likely to cause cover crop biomass addition to the soil pools being too high since we

overestimate the length of the bare-fallow period for cover crop cultivation (Porwollik et al., 2022).

Compared to the conventional management with no cover crops, such an overestimation would then

be possibly reflected in high SOC sequestration rates. At present more than 90% of total annual
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crop yields in Ethiopia are achieved in the long rainy season (Central Statistical Agency, 2016);

nevertheless, few farmers are willing to adopt a “main crop + cover crop” rotation pattern as this

practice will sacrifice one season of maize production. Our model simulations support earlier

findings that implementing legume cover crops solely in the short rainy season is expected to

achieve SOC enhancement and may gain yield benefits in the tropics of SSA (Rao & Mathuva,

2000; Carsky et al., 2001), although at some smallholder farms yield increases from N-fixing cover

cropping may not completely compensate for the production loss of the short rainy season (Carsky

et al., 2001).

The opinion that applying conservation agriculture techniques can enhance cropland SOC stocks is

often based on comparing differences among management practices, but without a time perspective

(Martinsen et al., 2019; Kihara et al., 2020). The future projections done here show that the

measured SOC loss in 12-year experiments in western Kenyan (Fig. 5.2) would continue to take

place in other parts of eastern Africa under most evaluated management practices, consistent with

the finding of a recent modelling study in Kenya (Nyawira et al., 2021). The 4p1000 initiative

launched at COP 21 sets a target of 3.4 Pg C yr-1 SOC sequestration in agricultural soils (0-40cm)

worldwide to mitigate climate change (Corbeels et al., 2019). However, our modelling results

indicate that croplands situated in eastern Africa can potentially achieve this target only if the

combined management practice (i.e., CONSERV) would be adopted and sustained. But even if

alternative managements may not always support a positive SOC sequestration regionally, they

nonetheless are here projected to mitigate soil C losses and show co-benefits for crop production

(Kihara et al., 2020).

5.2.3.2 Cropland N loss and yields

Our model simulated a lower N loss of 45-134 Gg N yr-1 in Kenya, in comparison with the

statistics-based estimates of 76-297 Gg N yr-1, using a nitrogen-budget method (Zhang et al., 2021).

Likewise, our conventional management experiment (STD) predicted a regional mean N loss of 9.2

kg N ha-1 yr-1 (Table 5.1), again below the finding of 16.7-18.2 kg N ha-1 yr-1 reported in

Kaltenegger et al. (2021). One possible explanation for these differences may be missing processes

in LPJ-GUESS, such as N loss through surface runoff and soil erosion. Additionally, the nitrogen-

budget method used by Zhang et al. (2021) and Kaltenegger et al. (2021) assumed that all crop

residues were incorporated to the soils after harvest, almost contrasting with the parameterization in

our STD simulation (only 10% of residue retention; Table 2.7). Removing most residues from
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cropland in the model experiment is expected to produce low N loss because of less N inputs to the

soils compared with 100% of residue retention. To leave all residues in the field, the model

regionally produced N loss of 20.8 Gg N yr-1 (RR; Table 5.1), comparable with the findings in

Kaltenegger et al. (2021).

Compared with the conventional management (STD), an increase of 89% in N losses was simulated

over eastern Africa as a result of 100% of residue retention (Fig. 5.4). A global meta-analysis

showed that returning residues to the field may enhance gaseous N emissions by 8%-37%, but the

same study also pointed to that straw application reduced hydrological N losses by 10%-26% (Xia

et al., 2018). At the moment soil hydraulic properties in response to residue management has not

been represented in LPJ-GUESS. This missing process is likely to cause the overestimated

hydrological N losses since straw return usually mitigates N leaching via enhancing soil water

retention in reality (Blanco-Canqui et al., 2007). Additionally, crop residues after harvest in eastern

Africa are expected to rapidly decompose as a result of the warm and humid climate, continuously

releasing mineralized N for subsequent crop uptake (Kihara et al., 2015). As discussed earlier, only

a single growing season within a year was simulated by LPJ-GUESS, the bare-fallow period under

the modelled residue management would increase N losses since the reactive N is not used to plant

growth in the short rainy season. Nonetheless, simulated crop yields due to residue application still

on average increased by 18% regionally (Fig. 5.4) by reason of the enhanced size of the mineral N

pool. This result agrees with two previous studies that indicated a yield gain of 19%-35% in

Ethiopian wheat systems with 66% of residue return (Adimassu et al., 2019), and another reporting

-1%-39% of maize yield changes caused by residue application in semi-arid Kenya (Kihara et al.,

2011).

Practicing cover cropping systems enhanced N losses in some simulated grid cells, particularly for

legume cover crops (CCL; Fig. 5.4). One possible reason for this simulation is that the enhanced

available N derived from the fast decomposition of cover crops would serve as substrate for N

losses instead of being taken up by the main crop, as a result of the temporal inconsistency between

periods of soil N mineralization and high N demand of the main crop (Marcillo & Miguez, 2017).

Compared with the bare-fallow simulation under the conventional management (STD; Table 2.7),

LPJ-GUESS produced a small yield gain of 6% under non-legume cover cropping systems but a

large increase of 19% in legume cover crops (Fig. 5.4), agreeing with the meta-study findings that

using N-fixing cover crops often contributes more to benefiting subsequent crop yields than non-
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legumes when N fertilizer investments to main crops are low (Quemada et al., 2013; Marcillo &

Miguez, 2017; Thapa et al., 2018). These small simulated yield benefits (even decreased production

in few grid cells; see Fig.5.4) from non-legume cover cropping mostly resulted from indirect

competition for water and nutrients, which may be unavailable for the following crops cultivated in

the long rainy season.

5.3 Conclusions

Using the updated LPJ-GUESS model version from Chapter 3, this chapter presented a large-scale

modelling study in eastern Africa, highlighting long-term potential influence of improved

management practices on crop ecosystems under various climate change scenarios. The model

performance was evaluated against observations from two maize field trials (>10 years

implementation of conservation agriculture) in western Kenya and large-scale reported estimates

from published sources. Our results showed that crop ecosystems simulated by LPJ-GUESS

realistically responded to alternative management strategies and climate variation, and generated the

comparable SOC storage, N losses (including gaseous emissions and N leaching) and crop

productivity with measurements in the studied region.

Our regional simulations revealed that the improved managements practiced in agricultural soils

over eastern Africa can contribute to climate change mitigation while benefiting in crop production,

in particular for the integrated conservation agriculture practice with all soil-conserving techniques

included. Under the present climate condition, this combined strategy was simulated to increase

total soil C storage by 11% in the long term, accompanied by a 25% enhancement in total crop

production, in comparison with the conventional management. Adopting legume cover cropping in

the model simulations was also identified as a promising individual practice in eastern Africa to

increase cropland soil C levels (+4%) and agricultural production (+16%), but with environmental

cost of increased total N losses (+28%). These management effects could be also sustained in

simulations of three future climate change scenarios. However, it should be noted that absence of

processes in the model, such as multi-cropping system and N losses through runoff and soil erosion,

might regionally have biased the evaluated management effects on agricultural ecosystems.
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6 General conclusions and outlook

This thesis studied the importance and effects of improved management practices—in particular the

cultivation of N-fixing legumes—on agricultural ecosystems using the LPJ-GUESS DGVM. The

following paragraphs aim to summarize the key findings of this thesis, highlight major sources of

uncertainty, and propose possible directions of future model development.

6.1 Answers to the underlying research questions

Chapters 3-5 give answers to the main research questions addressed in this thesis.

– How much nitrogen is fixed from the atmosphere in grain legumes globally?

At a global scale, annual biological N fixation is modelled to be 11.6±2.2 Tg N for soybean and

5.6±1.0 Tg N for all pulses, with a total fixation rate of 17.2±2.9 Tg N yr-1 in all grain legumes for

the period 1981-2016. The highest BNF rates are found in tropical and temperate regions with warm

and humid climates. Soil water availability and temperature are most important factors controlling

the N fixation, in addition to N fertilizer application. On a global average, fixing N from the

atmosphere is the main source for meeting the N demand of legumes, and contributes 57±4% and

60±1% to total N uptake in soybean and pulses, respectively, for the period 1981-2016.

– Can legume cover crops contribute to environmental sustainability without compromising
crop production in global croplands?

Yes, the improved LPJ-GUESS model estimates that the impacts of N-fixing cover crops on global

agricultural lands can be beneficial for environmental sustainability without compromising crop

production. This potential is highly dependent on location, main-crop type, and management

duration. If all current croplands in the world were under conservation agriculture systems,

combining legume cover cropping with no-tillage resulted in increased soil carbon levels by 7%

(+0.32 Pg C yr-1 in global croplands) while reducing N losses by 41% (-7.3 Tg N yr-1) after 36 years

of implementation. This integrated practice is accompanied by a potential 2% increase in total crop

production (+37 million tonnes per year including wheat, maize, rice, and soybean) in the last

decade of the simulation. The identified effect on global SOC sequestration (i.e., 0.32 Pg C yr-1 =

1.17 Pg CO2eq yr-1) would compensate for 22% of annual direct GHG emissions from crop and

livestock activities (5.3 Pg CO2eq yr-1 in 2018; FAO, 2020), or is equivalent to 29% of GHG

emissions from agricultural land use change (4.0 Pg CO2eq yr-1 in 2018; FAO, 2020).
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– How significant are these impacts from cover crops compared with other agricultural
practices under present and future climate conditions?

Taking eastern Africa as a case study, the six assessed different management practices (which

address a range of aspects of sustainable land management) result in a net increase in simulated

cropland soil carbon compared with conventional management. Most of the six practices (with the

exception of cover crops in some regions) also achieve the extra benefit of increased yields, even

through simulations show larger N losses (including gaseous emissions and N leaching). When

integrated over Kenya and Ethiopia, the combined conservation agriculture practice—including no-

tillage, residue and manure application, and cover cropping—increases total simulated SOC stocks

by 11% in the long term, accompanied by a 25% enhancement in total crop production. Practicing

legume cover crops in simulations is also identified as a promising individual practice to increase

cropland soil C levels (+4%) and agricultural production (+16%), but with environmental cost of

increased total N losses (+28%). These management impacts would be also sustained in simulations

of three future climate pathways (SSP1-26, 3-70 and 5-85 scenarios taken from five GCMs) over

eastern Africa.

6.2 Limitations and future work

6.2.1 Modelling N fixation in legumes

The challenges of modelling N fixation in legumes are mainly due to their large variation in species,

sites, and managements. Symbiotic nitrogen fixation by rhizobia is a complex natural process,

which is related not only to the N status of host plants and soils in the macro-environment, but also

to the process of Rhizobium or Bradyrhizobium bacteria in root nodules in the micro-environment

(Rice et al., 2000). It is hard to incorporate these two different but highly associated processes into

one model (Liu et al., 2011; Chen et al., 2016). Furthermore, there is insufficient observed

information to establish a reliable relationship between BNF and other factors such as soil pH

(Vanlauwe et al., 2019), inoculation effectiveness (Denton et al., 2017), salinity (Zahran, 1999;

Bruning & Rozema, 2013), and phosphorus availability (Le Roux et al., 2009; Singh et al., 2012),

which are at the moment absent in LPJ-GUESS and other crop models, although many field trials

have demonstrated their importance.

Adding mineral N to the soil in LPJ-GUESS can increase soil N uptake, reducing the plant’s N

deficit and therefore also reducing the upper limit of daily N fixation rate. Although the modelled

negative relationship between fertilizer application rates and N fixation showed a generally good
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agreement with the observed response across a range of field sites, the simulated BNF rates at the

high-fertilized trials were higher than the measured values (Fig. 3.2). This might be partially

explained by the underestimation in soil N uptake under high N concentration, resulting in plant N

demand remaining very high and substantial N still being fixed. The large discrepancies between

modelled and observed N uptake in the high-fertilized treatments suggest that the N uptake

representation in LPJ-GUESS should be further improved. A step forward could be to incorporate

the inhibitory effects of soil mineral N content on N fixation into the model (Chen et al., 2016; Wu

et al., 2020), since experimental evidence indicates that high soil mineral N not only affects plant N

uptake in roots, but also depresses legume nodule initiation, nodule size and specific nodule activity,

therefore reducing the amount of N fixation from the atmosphere (Herridge et al., 1984; Purcell &

Sinclair, 1990; Thornley & Cannell, 2000).

Although high soil-reactive N concentration limits root nodulation and further affects N fixation

(Mourtzinis et al., 2018; Brar & Lawley, 2020), moderate soil N levels during the legume vegetative

stage favors root growth and nodule formation and stimulates N fixation (Salvagiotti et al., 2008).

In field trials, a specific threshold of soil N concentration above (below) which N fixation is

inhibited (stimulated) is difficult to measure. Moreover, the timing of N application remains

challenging. Studies reported that using N fertilizer as starter N at sowing can increase yields

because of sufficient soil reactive N to stimulate soybean growth in the early season (Osborne &

Riedell, 2011; Gai et al., 2017). However, other studies argued that early reproductive growth stages

are the best time to apply fertilizer, as this is when legumes have the greatest N demand for grain

development, soil N reserves are depleting, and N fixation begins to slow (Mourtzinis et al., 2018;

Córdova et al., 2019). Unfortunately, there are no consistent conclusions regarding these factors,

making it difficult to parameterize the mechanistic processes or setups in LPJ-GUESS at present.

6.2.2 Impacts of cover cropping on crop ecosystems

A detailed evaluation of simulating cover crop (CC) impacts on croplands worldwide remains

challenging due to various cover crop species, farming rotation systems, and managements in the

field trials. We mainly examined the model performance by categorizing herbaceous CCs as non-

legume and legume functional types, with site-specific management practices considered (Fig. 2.3).

Although the updated LPJ-GUESS model version from Chapter 3 can reproduce the observed

responses of ecosystem service indicators to CC cultivation, the magnitude of these changes did not

always match experimental measurements (Fig. 4.1). This likely reflects differences between highly
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controlled field conditions and model parameterization in land-use history, initial SOM levels,

cropping system managements, and the C-N allocation scheme in CCs. In addition, important

processes that determine CC impacts in the field experiments—such as weeds (Mazzoncini et al.,

2011), intercropping (Valkama et al., 2015), erosion (Daryanto et al., 2018), and soil structural

modification via grass roots (Nouri et al., 2022)—have not been accounted for in the model.

Legume CCs are usually identified as a promising strategy to substitute synthetic N fertilizer in

agricultural production due to their high N fixation rates (Peoples et al., 2021; Herridge et al., 2022).

Our modelled N fixed by natural C3 grass (a surrogate for white clover; see Sect. 2.2) during off-

season periods is 30-70 kg N ha-1 yr-1 in warm and humid regions (Fig. 4.9), which is lower than the

reported range of 49-154 kg N ha-1 yr-1 but these latter estimates were for the entire year (Ledgard et

al., 2001; Burchill et al., 2014; Anglade et al., 2015). Nonetheless, in our simulations employing

legume CCs results in higher yield benefits in the humid tropics compared with non-legumes (Fig.

4.6). As introduced in Sect. 2.1, one main growing season within a year is modelled in LPJ-GUESS,

total agricultural production achieved by multi-cropping systems in the tropics are not yet captured.

As a consequence, N fixation rate and biomass in legume CCs may be too high since we

overestimate the length of the off-season period for cover crop cultivation (Porwollik et al., 2022).

Compared with controls with no CCs, such an overestimation would then be possibly reflected in

high SOC sequestration rates and yield benefits in tropical climates.

Rather than employing herbaceous CCs, it is more common to use legume crops (e.g., faba bean

and field peas) as “green manure” in some temperate regions (Rinnofner et al., 2008; Andersen et

al., 2020). These grain legumes are often intercropped with other cash crops, and incorporated to

soils at full bloom stage to maximize N fixation rates while minimizing soil water depletion

(Williams et al., 2014; Denton et al., 2017). To better represent region-specific cover crop practices,

the implementation of N-fixing grain legumes as intercrops, together with multi-cropping systems

within a year, remains to be taken into account in future model work.

6.2.3 Trade-offs and win-win strategy in eastern Africa

Taking eastern Africa as a case study, we attempted to identify synergistic management strategies

for achieving environmental sustainability and ensuring food security at a large spatial scale. None

of the assessed managements accomplished a win-win situation in terms of enhancing soil carbon

stocks and crop production while minimizing N losses when integrated over the study regions.
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Synergies and trade-offs among the three examined indicators varied between locations and

cropping systems.

From the perspectives of food demand and SOC sequestration only, conservation agriculture

(CA)—a combined management with no-tillage, residue and manure application, and N-fixing

cover crops—is found to be the most promising practice in our simulations for both present-day and

future climate conditions. Nonetheless, considering the potential yield loss in the first several years

under CA systems (Stevenson et al., 2014; Pittelkow et al., 2015), it may be difficult to convince

farmers to employ such a practice in reality, if indeed 1-25% of yield reduction could be expected

compared with the conventional management. Farmers would suffer economic losses despite the

accompanying 1-10% of increase in the simulated SOC stocks (Fig. 5.6). Furthermore, labor

demand and cost-ineffective investment in CA maintenance may prevent this practice from being

adopted widely in the study regions (Thierfelder et al., 2013; Kihara et al., 2020). To change this

situation, a payment scheme for carbon sequestration legislated by the government or volunteered

by corporations and individuals (Salzman et al., 2018) may be needed to compensate for farmer’s

economic losses, particularly in the context of future climate change.

6.3 Final remarks

Increasing crop productivity while keeping detrimental side-effects on the environment low is a

major challenge for global agriculture today. This thesis highlights the possibility of implementing

improved agricultural management to mitigate climate change and support food security in global

croplands. It also reveals the importance of the cultivation of N-fixing legumes when targeting the

long-term sustainable development of agricultural production, particularly in the context of future

climate change.
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Abstract. Biological nitrogen fixation (BNF) from grain
legumes is of significant importance in global agricultural
ecosystems. Crops with BNF capability are expected to sup-
port the need to increase food production while reducing
nitrogen (N) fertilizer input for agricultural sustainability,
but quantification of N fixing rates and BNF crop yields
remains inadequate on a global scale. Here we incorporate
two legume crops (soybean and faba bean) with BNF into
a dynamic vegetation model LPJ-GUESS (Lund–Potsdam–
Jena General Ecosystem Simulator). The performance of this
new implementation is evaluated against observations from
a range of water and N management trials. LPJ-GUESS
generally captures the observed response to these manage-
ment practices for legume biomass production, soil N up-
take, and N fixation, despite some deviations from obser-
vations in some cases. Globally, simulated BNF is domi-
nated by soil moisture and temperature, as well as N fer-
tilizer addition. Annual inputs through BNF are modeled to
be 11.6± 2.2 Tg N for soybean and 5.6± 1.0 Tg N for all
pulses, with a total fixation of 17.2± 2.9 Tg N yr−1 for all
grain legumes during the period 1981–2016 on a global scale.
Our estimates show good agreement with some previous sta-
tistical estimates but are relatively high compared to some
estimates for pulses. This study highlights the importance of
accounting for legume N fixation process when modeling C–
N interactions in agricultural ecosystems, particularly when
it comes to accounting for the combined effects of climate
and land-use change on the global terrestrial N cycle.

1 Introduction

The agricultural sector is the main contributor to anthro-
pogenic nitrous oxide (N2O) emissions (Reay et al., 2012;
Tian et al., 2020) and a key nitrate pollution source to fresh-
water systems (Moss, 2008), mostly due to the intensive use
of synthetic nitrogen (N) fertilizer and animal manure (Lu
and Tian, 2017). This trend has been amplified by the ex-
pansion of agricultural land to provide food for a growing
population and changing dietary patterns (FAO, 2018). The
use of crops with biological N fixation (BNF) capability in
agriculture has been discussed as one option to address the
conflict between the need to increase food production and
the associated environmental problems of N loss (Becker,
et al., 1995; Fageria, 2007; Northup and Rao, 2016). N-
fixing crops, like grain and forage legumes, not only provide
protein-rich food for the human population and farmed ani-
mals (Voisin et al., 2014; Stagnari et al., 2017), but they are
also directly useable as “green manure”, reducing the amount
of chemical N fertilizer required in agricultural systems (Liu
et al., 2011; Meena et al., 2018).

Soybean (Glycine max L.), with its countless and varied
uses, is now one of the most widely grown crops in the world
because of attractive cash return from its grain yield (FAO-
STAT, 2021). There are concerns about the sustainability of
soybean production, in particular because of its links to de-
forestation and loss of native vegetation in the Amazon and
other areas of South America (Fehlenberg et al., 2017; Heil-
mayr et al., 2020). Other grain legumes, such as faba bean
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(Vicia faba L.), chickpea (Cicer arietinum L.), and cowpea
(Vigna unguiculata L.), play an important role in improv-
ing soil quality as green manure when they are rotated or
used as intercrops between cereals depending on the region
(Williams et al., 2014; Denton et al., 2017). In comparison to
non-legume plants, using legumes as green manure is more
effective to build up or maintain soil fertility, as they not only
increase soil organic matter when adding their biomass to
soils, but also add extra N into the soil as a result of their
symbiotic association with bacteria (Peoples et al., 2009;
Ciampitti and Salvagiotti, 2018). The enriched soil N and
soil organic carbon contents jointly support growth and pro-
ductivity in subsequent crops (Jensen et al., 2012; Hajduk
et al., 2015). Much experimental evidence has indicated that
grain legume biomass increases linearly with an increasing
BNF rate (Salvagiotti et al., 2008; Unkovich et al., 2010;
Córdova et al., 2019) and that the N benefit to soil fertility
from green manure is closely correlated with N fixation ca-
pacity, assuming that the entire legume plant is tilled into the
soil (Fageria, 2007; Meena et al., 2018). Estimating the rate
of BNF is thus important not only for an accurate prediction
of grain legume production but also for a better understand-
ing of where and to what degree N loss (i.e., N leaching and
gaseous N emission) in cropland systems can be reduced by
partially or fully replacing chemical N fertilizer with legume
green manure.

Although grain legumes’ BNF rates can be measured at
field sites and in controlled environments, ecological models
are needed for understanding and quantifying the rate of BNF
on larger spatial scales and longer temporal perspectives. In
many process-based crop models, a common method of rep-
resenting BNF is to use a pre-defined potential or maximum
N fixation rate that is adjusted by limiting environmental fac-
tors (Liu et al., 2011). The potential N fixation rate is then
estimated either from plant nodule, root, and aboveground
biomass (e.g., Boote et al., 2008; Corre-Hellou et al., 2009;
Wu et al., 2020) or from plant N demand status (e.g., Ca-
belguenne et al., 1999; Robertson et al., 2002), varying with
plant life cycle. Environmental constraining factors, such as
soil temperature, water availability, soil mineral N concen-
tration, and plant growth stage, are mostly taken into account
(Liu et al., 2011; Chen et al., 2016). The big challenge in
modeling legume BNF is that the process of symbiotic N fix-
ation is always accompanied by the cost of fixed total photo-
synthetic carbon (C) to maintain legume symbiotic growth,
activity, and reserves, which may be around 4 %–16 % of C
(Kaschuk et al., 2009). Such a photosynthetic consumption
strength would result in productivity loss if the photosynthe-
sis rate did not increase to compensate for the cost (Kaschuk
et al., 2010). In most models C cost mechanisms have not
been implemented into N fixation, consistent with the as-
sumption that the plant N uptake from soils does not cost car-
bon (e.g., Cabelguenne et al., 1999; Robertson et al., 2002;
Corre-Hellou et al., 2009; Drewniak et al., 2013; Von Bloh
et al., 2018; Wu et al., 2020), despite many field experi-

ments demonstrating that the energy consumption required
for BNF is far larger than soil mineral N uptake (Ryle et
al., 1979; Harris et al., 1985; Macduff et al., 1996). In several
other models, root substrate C concentration was adopted as
an alternative to represent the C demand of N fixation (e.g.,
Thornley and Cannell, 2000; Yu and Zhuang, 2020). Only a
few models assume that such a consumption can be assessed
directly against C acquired in photosynthesis, in which the
C cost per unit of fixed N is defined as either a constant of
6 kg C kg N−1 (Boote et al., 2008; Meyerholt et al., 2016)
or a dynamic function of soil temperature ranging between
7.5 and 12.5 kg C kg N−1 (Houlton et al., 2008; Fisher et
al., 2010).

The global production and consumption of grain legumes
have greatly increased over recent decades (FAOSTAT,
2021). Accurately representing and quantifying the dynamic
process of biological N fixation in models is important for
better understanding grain legumes’ contribution to food se-
curity and agriculture sustainability, particularly in the con-
text of global environmental change. However, because of in-
adequate information on the environment and crop manage-
ment, as well as the missing or incomplete BNF mechanism
in models (e.g., C cost as mentioned above), current simu-
lation of grain legume N fixation and its yield is still very
weak, especially when it comes to global-scale modeling.

Thus, in this study, by accounting for the importance
of soybean in overall agriculture and trade, as well as the
higher N fixation capacity of faba bean compared to other
pulses (Peoples et al., 2009; Unkovich et al., 2010; Denton et
al., 2017; Liu et al., 2019), we implement these two grain
legumes with BNF into a process-based vegetation model
(LPJ-GUESS; Smith et al., 2014; Olin et al., 2015). Processes
are added to LPJ-GUESS to estimate the symbiotic relation-
ship between legumes and bacteria, also taking into account
the plant C cost of BNF. Model results are extensively eval-
uated with worldwide site-level observed data and compared
against country-level yield statistics, as well as continent-
level BNF rates. The model-based and large-scale quantifi-
cation of the N fixation capacity in legumes provides a scien-
tific foundation for predicting the present and future N cycle
in agro-ecosystems, allowing recommendations for fertilizer
N application under different climatic conditions in legume-
based farming systems.

2 Methods

2.1 Model description

LPJ-GUESS is a process-based dynamic vegetation model
that simulates carbon and nitrogen (C–N) dynamics at scales
typically ranging from regional to global (Smith et al., 2014).
The model represents vegetation and soil dynamic processes
as well as their interactions in response to changes in the en-
vironment and management, such as climate, CO2 concentra-
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tion, soil physical properties, N deposition, and N fertiliza-
tion. Three land-use types are included in the model: natural
vegetation, pasture, and cropland. Vegetation on natural land
is represented as the establishment, growth, and mortality of
12 plant function types (PFTs). Pastures are simulated by
competing C3 and C4 grasses, in which 50 % of aboveground
biomass is annually harvested to account for the effects of
grazing (Lindeskog et al., 2013). Crops in LPJ-GUESS are
described by crop functional types (CFTs), which differ in
their C allocation scheme, morphological traits, and heat sum
requirement for growth. At present, four CFTs are repre-
sented in the C–N version of LPJ-GUESS: two temperate C3
crops with sowing carried out in spring and autumn, a trop-
ical C3 crop (representing rice), and a C4 crop (representing
maize). Sowing dates on a large scale are determined dynam-
ically in the model based on local climatology in each grid
cell with five seasonality types represented (a combination
of temperature- and precipitation-limited behaviors; Waha
et al., 2012), and crops are harvested once each year when
prescribed heat sum requirements are fulfilled (Lindeskog et
al., 2013). Multi-cropping systems within a year are not yet
implemented in the model. The recent representation of crops
includes the incorporation of soil N transformation (Tian et
al., 2020) together with a C–N allocation for crops operating
on a daily time step (Lindeskog et al., 2013; Olin et al., 2015).
Cropland management options for global-scale application
include irrigation, tillage, N application, cover crop grass be-
tween the main growing seasons, and residue retention (Pugh
et al., 2015; Olin et al., 2015). In this study, soybean is simu-
lated as one additional crop because of its large importance as
a food, fodder, and oil crop, and the parametrization of faba
bean is representative for the group of pulses in general. The
model schematic and other calculations including the C cy-
cle and the N cycle follow an earlier version of LPJ-GUESS
(Smith et al., 2014; Wårlind et al., 2014; Olin et al., 2015).

2.2 Updated daily carbon allocation parameters

Similar to most ecosystem and crop models, LPJ-GUESS
adopts crop-specific accumulated heat requirements to model
plant growth development, and crops are allowed to adapt to
the local climate by dynamically adjusting the heat require-
ments to different climatic zones (Lindeskog et al., 2013).
To better represent C and N allocation in various phenologi-
cal phases, Olin et al. (2015) defined crop development stage
by considering the effects of temperature, vernalization days,
and photo-period following Wang and Engel (1998). In this
study, we assume that the grain legume development stage is
linearly correlated with its accumulated heat units according
to the field-based soybean experiments described in Irmak et
al. (2013). It is estimated as

DS=

{
aveg+ bveg× fphu

(
fphu≤ fphuanthesis

)
arep+ brep× fphu

(
fphu > fphuanthesis

) , (1)

where DS is crop development stage ranging from 0 to 2
(DS= 0, sowing; DS= 1, flowering; DS= 2, harvest); fphu
is the fraction of today’s accumulated heat units to the total
heat requirement; fphuanthesis is the threshold of fphu when
anthesis starts, below (above) which crop growth belongs to
the vegetative (reproductive) stage; and a and b are the linear
regression coefficients, varying between the vegetative and
reproductive phases. The values of a and b, as well as the
crop-specific base temperature (◦ C) to estimate the accumu-
lated heat units, are both given in Table S1 in the Supplement.

The daily fraction of assimilate allocation to leaves, stems,
and roots is an important process before storage organs are
formed. The assimilate invested in roots can help crops over-
come water or nutrient limitation when they suffer from
stress in the vegetative stage, whereas new assimilate in-
vested in leaves generally gives a highly efficient return from
the photosynthesis product (Penning de Vries et al., 1989).
Unlike cereal crops, nodulated plants, particularly soybeans,
are more likely to achieve a higher photosynthesis rate and
delay leaf senescence due to the continued N supply from
biological N fixation (Abu-shakra et al., 1978; Kaschuk et
al., 2010). A precise representation of assimilate partitioning
to the plant organs when modeling BNF in grain legumes is
especially important considering the high C cost from fixing
N from the atmosphere. Productivity loss would be simulated
if the leaf photosynthesis rate did not increase to compensate
for the costs (Macduff et al., 1996; Kaschuk et al., 2009).

Following Olin et al. (2015), relationships between assim-
ilate allocation to legume organs were established based on
the data from Penning de Vries et al. (1989) and Boote et
al. (2002). We fitted the allocation functions using a Richards
logistic growth curve (Eq. 2, Richards, 1959) to model the al-
location to each organ dynamically and separately. For each
allocation function fi (see Eqs. 3–5 below),

fi = ai +
bi − ai

1+ e−Ci×(DS−di )
, (2)

where DS is crop development stage, and ai , bi , ci , and di

are fitting coefficients for the three functions (specific values
given in Table S1).

Maintaining BNF in the reproductive stage (i.e., after an-
thesis; DS > 1) would reduce the flow of carbon assimilation
to storage organs. We adjusted the allocation functions from
Olin et al. (2015) so that the model allowed a dynamic adap-
tation of the allocation to grain over the seed-filling period in
response to BNF cost (see Eqs. 3–5 for details).

2.2.1 Yield vs. the whole plant

After anthesis (DS > 1), most assimilates are allocated and
re-translocated from the vegetative organs to the grains. Dur-
ing the late seed-filling period (DS≥ d1, see Eq. 3), we as-
sumed that the fraction of carbon allocated to yield would in-
crease to partly compensate for the productivity loss caused
by spending on N fixation at the cost of reducing the flow
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of carbon to leaves and stem (see Eq. 4). We established the
ratio of the allocation to yield relative to the whole plant as

f1 =
Pyield

Pveg+Pyield

=

 a1+
b1−a1

1+e−c1×(DS−d1)
DS < d1(

a1+
b1−a1

1+e−c1×(DS−d1)

)
× (1+PBNFcost) DS≥ d1

, (3)

where Pyield and Pveg are the fraction of carbon allocated to
yield and vegetative organs, respectively, ranging from 0 to
1; PBNFcost is the proportion of net primary production (NPP)
used for BNF to today’s total NPP; and d1 is the fitting co-
efficient representing the DS of the maximum growth rate of
grain (d = 1.41 for soybean and 1.46 for faba bean, see Ta-
ble S1).

2.2.2 Leaf vs. shoot vegetative organs

Similarly, the ratio of leaf vs. shoot vegetative allocation is
specified as

f2 =
Pleaf

Pveg−Proot

=


a2+

b2−a2
1+e−c2×(DS−d2)

DS < d1(
a2+

b2− a2

1+ e−c2×(DS−d2)

)
−PBNFcost DS≥ d1

, (4)

where Pleaf and Proot are the fraction of carbon allocated to
leaf and root, respectively. The fitting function of leaf vs.
shoot vegetative organs in soybean is given in Fig. 1a.

2.2.3 Root vs. vegetative organs

When a plant experiences water or nutrient stress, it invests
more assimilate to roots relative to shoot vegetative organs
(Penning de Vries et al., 1989). We implemented dynamic
increases in the allocation to roots during the late seed-filling
period to help legumes cope with the C loss from BNF cost
and established the relationship between the allocation to
root and that to vegetative organs as

f3 =
Proot

Pveg

=


a3+

b3−a3
1+e−c3×(DS−d3)

DS < d1(
a3+

b3− a3

1+ e−c3×(DS−d3)

)
+ (1− f1)×PBNFcost DS≥ d1

. (5)

In addition, carbon partitioning to vegetative organs (Pveg)
can be calculated by subtracting the reproductive allocation
(i.e., Pyield) from the whole plant as

Pveg+Pyield = 1⇒ Pveg = 1−Pyield = 1− f1. (6)

Finally, we can achieve dynamic carbon allocation to the
plant organs over the growing season by combining Eqs. (3)–

(6).
Pyield = f1
Pleaf = f2× (1− f1)× (1− f3)

Pstem = (1− f1)× (1− f2)× (1− f3)

Proot = f3× (1− f1)

(7)

Partitioning functions are plotted for soybean in Fig. 1b and
for faba bean in Fig. S1 in the Supplement. Significant dif-
ferences in allocation patterns can exist between cultivars.
Compared to cereals (Olin et al., 2015), we found that grain
legumes are more likely to allocate more assimilate to leaves
not only in partitioning proportion but also in the length of
allocation time, probably corresponding to their higher leaf
activities in response to N fixation (Kaschuk et al., 2010).

2.3 Representation of BNF

Fixing N from the atmosphere and N uptake from soils rep-
resents two N sources for grain legumes to meet their total
plant N demand. The latter has a higher priority for plants
because the process is less energy-consuming than N fixa-
tion (Ryle et al., 1979; Macduff et al., 1996). Following on
this idea, in LPJ-GUESS, N fixation will only be triggered
when the following two assumptions are valid at the same
time (Fig. 2): (1) if today’s plant growth still suffers from N
limitation after N uptake from soils (i.e., the N deficit, plant
N demand minus soil N uptake, is greater than zero). The
plant will then be allowed to fix N from the atmosphere to
fill the N deficit. (2) Since N fixation is strongly related to
photosynthetic assimilate due to its high energy consump-
tion, BNF in the model is assumed to take place only when
today’s NPP is positive so that adequate C supply can be pro-
vided to meet the BNF cost.

Modeling the BNF rate is adapted from previously pub-
lished methods (e.g., CROPGRO, EPIC, APSIM; see Liu et
al., 2011) in that it considers (1) the potential N fixation rate,
(2) the limitation of temperature, (3) soil water status, and
(4) the crop growth stage as

Nfix =Nfixpot× fT× fW× fDS, (8)

where Nfix is the N fixation rate; Nfixpot is the potential N
fixation rate; and fT, fW, and fDS are limitations (ranging 0
to 1) on BNF by soil temperature, soil water availability, and
crop development stage function, respectively.

The definition of the potential N fixation rate in some stud-
ies is based on the strong relationship between N fixation
and either nodule size, biomass (Weisz et al., 1985; Voisin et
al., 2003), or root dry matter (Soussana et al., 2002; Voisin
et al., 2007). Due to the difficulties in measuring both nod-
ules and roots in the field directly, some studies also adopt
shoot biomass to replace nodule or root biomass based on
the empirical relationship between these two variables (Yu et
al., 2002; Corre-Hellou et al., 2009; Wu et al., 2020). In our
implementation, since the nodulation process of legumes has
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Figure 1. The organ’s relative allocation (a) and assimilate partitioning (b) to roots, leaves, stem, and yields for soybean. Solid lines represent
the fitted Richards functions in this study, and dashed lines are the allocation scheme from Penning de Vries et al. (1989). f2 in (a) denotes
leaf relative allocation to shoot vegetative organs (Eq. 4), whereas f3 is root relative allocation to vegetative organs (Eq. 5).

not yet been implemented in LPJ-GUESS, Nfixpot is assumed
to be proportional to root dry matter:

Nfixpot = Nmaxfixpot×DMroot, (9)

where Nmaxfixpot is the maximum nitrogen fixation rate
of roots (g N g−1 root DM), and DMroot is root dry
matter (g root DM m−2). Since the experimental parameter
Nmaxfixpot is strongly related to the effectiveness of rhizo-
bial strains and varies widely between species and sites, it
is not easy to obtain the parameter for each legume crop.
In this study, we assume that legumes are either inocu-
lated or there are high enough populations of strains in the
soil that Nmaxfixpot is not constrained by the effectiveness
of rhizobia. Here Nmaxfixpot is assumed to be a constant as
0.03 g N g−1 root DM for both grain legumes as a moderate
value taken from the literature (Soussana et al., 2002; Ecker-
sten et al., 2006; Boote et al., 2008).

Soil temperature is a controlling factor for both micro-
bial activities and plant growth. For soybean, 20–35 ◦C has
been found to be optimal for nitrogenase activity and for faba
bean the optimal soil temperature can range from 16–25 ◦C
(Boote et al., 2008). The influence of soil temperature on
legume BNF is represented in the model as a four-threshold-
temperature function:

fT =



0 (T < Tmin or T > Tmax)

T − Tmin

ToptL− Tmin

(
Tmin ≤ T < ToptL

)
1

(
ToptL ≤ T ≤ ToptH

)
Tmax− T

Tmax− ToptH

(
ToptH < T ≤ Tmax

)
, (10)

where T is soil temperature (◦C) at a depth of 25 cm rep-
resenting the mean temperature of the topsoil layer in the

model (0–50 cm), Tmin (Tmax) is the minimum (maximum)
temperature below (above) which N fixation stops, and ToptL
and ToptH are the lower and higher optimal temperatures
within which N fixation is not limited by temperature. The
values of these four temperature thresholds vary among
legume crops and are given in Table 1.

In addition to temperature, soil water content is a major
factor controlling the rate of N fixation (Srivastava and Am-
basht, 1994). Too little water strongly inhibits BNF due to
impacts of drought stress on nodule nitrogenase activity (Ser-
raj et al., 1999; Marino et al., 2007). Although oxygen is
needed to support the respiration of legume roots and bac-
teria in the nodules, nitrogenase is more active in anoxic,
waterlogged environments (Jiang et al., 2021). A linear wa-
ter limitation function is thus incorporated into LPJ-GUESS
(Wu and McGechan, 1999) and is represented as

fW =


0

(
Wf ≤Wa

)
ϕ1+ϕ2×Wf

(
Wa < Wf < Wb

)
1

(
Wf ≥Wb

) , (11)

where Wf is relative soil water content in the topsoil layer
(0–50 cm) ranging from 0 to 1, ϕ1 and ϕ2 are empirical co-
efficients, Wa is the threshold of Wf below which N fixation
is fully restricted by soil water deficit, and Wb is the value
above which N fixation is not inhibited by soil water content.
The values of the parameters are shown in Table 1.

The influence of plant growth stage on legume BNF rate is
taken into account in very few models; the process is gener-
ally stopped forcibly after the crop reaches a certain develop-
ment stage. For example, in the CROPGRO model (Boote et
al., 2008), N fixation in soybean starts in the second trifolio-
late stage and continues until the end of physiological matu-
rity, whereas it ceases at the middle of the seed-filling period
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in the EPIC model (Cabelguenne et al., 1999). Much experi-
mental evidence has indicated that the N fixed by legumes
varies widely among crop growth stages, with the largest
BNF rate observed between the late vegetative phase and the
early seed-filling period (Santachiara et al., 2017; Córdova
et al., 2020; Ciampitti et al., 2021). In this study, a specific
function, similar to the temperature response function, is thus
implemented in the BNF scheme to represent the variation of
N fixation with the course of the legume life cycle:

fDS

=



0 (NDS < NDSmin or NDS > NDSmax)

NDS−NDSmin

NDSoptL−NDSmin

(
NDSmin ≤ NDS < NDSoptL

)
1

(
NDSoptL ≤ NDS≤ NDSoptH

)
NDSmax−NDS

NDSmax−NDSoptH

(
NDSoptH < NDS≤ NDSmax

)
(12)

where NDS is normalized crop development stage ranging
from 0 to 1 (0, sowing; 0.5, flowering; 1, harvest), NDSmin is
the time before which there is no N fixation due to inadequate
nodulation, NDSmax is the time after which N fixation sus-
pends due to nodule senescence, and NDSoptL and NDSoptH
define the period within which the legume BNF rate is not
inhibited by development stage. The values of the parame-
ters for two grain legumes are derived from the literature and
listed in Table 1.

In addition to the environmental limitation factors, the
amount of daily NPP also affects N fixation in the model.
The NPP requirement for BNF cost is computed based on
the estimated N fixation rate (Nfix, Eq. 8) by multiplying
the C cost per unit fixed N, which is assumed to be a fixed
value of 6 g C g−1 N as a moderate value taken from previous
studies (Ryle et al., 1979; Patterson and Larue, 1983; Boote
et al., 2008; Kaschuk et al., 2009). The NPP cost to main-
tain BNF is released as CO2 to the atmosphere and mod-
eled as part of the autotrophic respiration of the soil (Fig. 2).
Since the fixed N is partly transported to plant leaves and
continues to support photosynthesis, the plant may get addi-
tional C profits from the investment of BNF by enhancing
the leaf N content that optimizes the carboxylation capacity
(Vmax) (Kull, 2002). Following on this idea, another assump-
tion adopted in this study is that at most 50 % of today’s NPP
can be used for N fixation before the crops reach the devel-
opment stage of grain maximum growth rate (DS < d1, see
Eq. 13). After this the maximum proportion of today’s NPP
used for BNF cost is dynamically reduced and assumed to be
the fraction of carbon allocation to leaves and stem:

MAXNPPBNFcost

=

{
0.5 DS < d1

Pleaf+Pstem = (1− f1)× (1− f3) DS≥ d1
, (13)

where MAXNPPBNFcost is the maximum proportion of to-
day’s NPP used for N fixation varying from 0–0.5, and Pleaf
and Pstem are the fraction of carbon (i.e., NPP) allocated to

leaf and stem, respectively (see Eq. 7 for details). A flowchart
of the BNF scheme in LPJ-GUESS is shown in Fig. 2.

2.4 Experimental setup

Field-based data from the literature, together with global
yield statistics from legume-producing countries and region-
level N fixation data from published sources, were compared
to model runs to examine performance in simulating yields
and BNF rate from the site scale to a larger region.

In order to build up cropland soil C and N pools, all
simulations were initialized with a 500-year spin-up using
atmospheric CO2 from 1901 combined with repeating de-
trended 1901–1930 climate from GSWP3-W5E5 (Dirmeyer
et al., 2006; Lange, 2019; Cucchi et al., 2020). The crop-
land fraction linearly increased from zero to the first historic
value (1901) during the last 30 years of spin-up. Monthly at-
mospheric N deposition (NHx , NOy) was used as simulated
by CCMI (NCAR Chemistry–Climate Model Initiative). The
value was interpolated to 0.5◦× 0.5◦ from the original res-
olution (1.9◦ × 2.5◦) to match the resolution of the climate
data (Tian et al., 2018). Below, the setup of the different ex-
periments is explained in detail.

2.4.1 Model evaluation at site scale

To evaluate the model’s ability to simulate BNF rate and
yields, field-based N fixation trials with detailed measure-
ments of soil N uptake, biomass, and N mass allocation were
collected from the published literature. This dataset com-
prised 17 soybean and 7 faba bean sites located between
∼ 33◦ S and ∼ 53◦ N (Fig. 3). In these trials, BNF response
to various management practices (such as N fertilizer ad-
dition and irrigation) were investigated. Details about these
sites – their geographic coordinates, BNF trials, and the years
of available data, as well as corresponding site-specific plant
traits (e.g., specific leaf area and grain C : N ratio) – are pro-
vided in Table S2.

In some field experiments, BNF rate and/or soil N uptake
are not directly reported in the literature, so we estimated
these values as{

BNFobs =%Ndfa×Nplant
SoilNuptakeobs = (100−%Ndfa)×Nplant,

(14)

where %Ndfa is the proportion of plant N derived from the
atmosphere (ranging 0–100), representing the contribution of
N fixation to the plant total N uptake, and Nplant is the amount
of N accumulated in the plant (kg N ha−1), defined as either
the shoot or the whole plant N mass, depending on the mea-
surement method adopted in the experiment.

In general, grain yields, plant tissue dry mass, and N mass,
together with %Ndfa, soil N uptake, and N fixation, are
widely measured variables in field-based BNF trials (see Ta-
ble S2). These data were chosen as our target variables used
for model evaluation. In addition, to convert plant C mass
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Figure 2. Representation of the N fixation route used in grain legumes in LPJ-GUESS. Today’s N deficit is calculated as the difference
between plant N demand and soil mineral N uptake. Nfix in dotted boxes represents intermediate values.

to dry matter, a conversion factor of 2.0 was used (Smith et
al., 2014). Dry weight was converted to wet weight by as-
suming a water fraction of 0.13 in the grain legumes (Cór-
dova et al., 2019).

Since specific leaf area (SLA) and target grain C : N ratio
play a very important role in determining N uptake and N re-
translocation to grain during seed-filling in the model (Olin et
al., 2015), we implemented two simulations to explicitly ex-
plore model performance across all sites. For “site-specific”
simulations, the reported SLA and grain C : N ratio listed in
Table S2 were adopted for the simulation (for sites for which
these were available). For “global uniform” parameter sim-
ulations, SLA was set to 40 and 45 m2 kg−1 C (Penning de
Vries et al., 1989), and the target grain C : N ratio was rep-
resented as a constant of 8 for soybean and 10 for faba bean
(Kattge et al., 2020). These values were also used for global-
scale simulations.

Due to the unavailable information on weather data at the
majority of the sites evaluated, gridded daily climate data for

air temperatures (maximum, minimum, and mean), precip-
itation, and solar radiation were used from GSWP3-W5E5
(Dirmeyer et al., 2006; Lange, 2019; Cucchi et al., 2020),
chosen for the 0.5◦×0.5◦ grid cell representative for each ex-
perimental site. We compared model-required input variables
from GSWP3-W5E5 with observations at three sites, finding
that the gridded climate data had fairly good agreement with
weather records in the field, despite some solar radiation de-
viations between two datasets for individual days over the
experimental period (Fig. S2). There was no information on
land-use and management practices in years preceding the
experiments at most sites. Therefore, to maintain soil N and
C pools in equilibrium after model spin-up, we decided to
implement a common cropping system of maize–legume ro-
tation annually from 1901 to the year before the trial start,
with no N fertilizer applied to legumes. Over the trial pe-
riod, the management practices were implemented accord-
ing to information provided in the literature (Table S2). In
addition, site-specific soil physical properties, such as frac-
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Table 1. Overview of BNF-related variables and parameters used in the model for soybean and faba bean.

Parameter Description Soybean Faba bean Unit Reference

N deficit plant N demand minus soil N uptake dynamic dynamic g N m−2 d−1

NPP net primary productivity dynamic dynamic g C m−2 d−1

Nmaxfixpot maximum nitrogen fixation rate of roots 0.03 0.03 g N g−1 root DM Soussana et al. (2002),
Eckersten et al. (2006),
Boote et al. (2008)

DMroot root dry matter dynamic dynamic g root DM m−2

C cost carbon cost per unit fixed N 6 6 g C g−1 N fixed Ryle et al. (1979),
Boote et al. (2008),
Kaschuk et al. (2009)

T soil temperature at a depth of 25 cm dynamic dynamic ◦C

Tmin the minimum temperature for the start of N fixation 5 1 ◦C Boote et al. (2008)

ToptL lower bound of optimal temperature for N fixation 20 16 ◦C Boote et al. (2008)

ToptH upper bound of optimal temperature for N fixation 35 25 ◦C Boote et al. (2008)

Tmax the maximum temperature for the stop of N fixation 44 40 ◦C Boote et al. (2008)

Wf relative soil water content in the top layer (0–50 cm) dynamic dynamic –

Wa lower bound of water content below which N fixation 0.2 0 – Robertson et al. (2002)
is fully limited by soil water deficit

Wb upper bound of water content above which N fixation 0.8 0.5 – Robertson et al. (2002)
is not inhibited by water content

ϕ1 coefficient of soil water content −0.33 0 – Robertson et al. (2002)

ϕ2 coefficient of soil water content 1.67 2 – Robertson et al. (2002)

NDS normalized crop development stage dynamic dynamic – Wang and Engel (1998)

NDSmin the minimum development stage for the start of N fixation 0.1 0.1 – Bouniols et al. (1991)

NDSoptL lower bound of development stage for N fixation 0.3 0.3 – Bouniols et al. (1991)

NDSoptH upper bound of development stage for N fixation 0.7 0.6 – Bouniols et al. (1991)

NDSmax the maximum development stage for the stop of N fixation 0.9 0.8 – Bouniols et al. (1991)

tions of sand, silt, and clay, were also used as forcing to fur-
ther compute corresponding soil water characteristics in the
model (Olin et al., 2015).

2.4.2 Global yields and BNF rate

To evaluate the model’s ability to simulate legume yields and
BNF on a large scale, national crop yield statistics from FAO-
STAT (http://www.fao.org/faostat/en/#data/QC, last access:
9 May 2021) were collected and compared with modeled
output. Furthermore, Peoples et al. (2009) divided N fixation
data for widely grown legume crops collated from a range of
published sources into different geographical regions. In or-
der to compare our simulated BNF with the literature-based
records, each simulated 0.5◦× 0.5◦ grid cell was classified
to be in one of the 10 regions given in Table 1 in Peoples et
al. (2009) (Fig. S3).

For regional comparison, the modeled gridded yield and
BNF rate were aggregated to national and continental scales,
respectively, using information on crop-specific cover area in
the spatial pattern (described below):

Varregion

=

∑n
i=1

[
(Varrain)i × (Arearain)i + (Varirri)i × (Areairri)i

]
∑n

i=1

[
(Arearain)i + (Areairri)i

] , (15)

where Var is yield or BNF rate; Varregion is the aggregated re-
sult in a given region; i is the grid cell number in that region,
ranging from 1 to n; Varrain and Varirri represent the modeled
yield or BNF rate under rain-fed and irrigated conditions,
respectively; and Arearain and Areairri are the crop-specific
rain-fed and irrigated areas used in simulations, respectively.

As land-use and land cover input, data from LUH2 (Land-
Use Harmonization 2, Hurtt et al., 2020) with fractions of
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cropland, pasture, and natural vegetation at each grid cell
were adopted, spanning from 1901 to 2014 in 0.5◦ resolu-
tion. The fractional cover of different crop species was de-
rived from MIRCA (Monthly Irrigated and Rain-fed Crop
Areas; Portmann et al., 2010). Since no detailed information
was available on the growth distribution of the faba bean,
the “pulse” fraction in MIRCA was used as input instead,
and pulse country-level yield statistics provided by FAO-
STAT (2021) were collected to compare with faba bean out-
puts by LPJ-GUESS. As information on cropland soil char-
acteristics, data in the top layer (30 cm) were derived from
the GGCMI (Global Gridded Crop Model Intercomparison)
phase 3 soil input dataset (Volkholz and Müller, 2020). In
general, although the total cropland cover in a grid cell could
change annually over the course of the simulation, the rela-
tive fractions of each crop species within that cover fraction
were held constant.

In terms of timing of N fertilizer application, a recent
meta-analysis conducted by Mourtzinis et al. (2018) indi-
cated that splitting N application between planting and the
early reproductive stage resulted in significantly greater soy-
bean yields than a single application. Mineral N fertilizer for
legumes in the model was thus split into two equal applica-
tions at the time of sowing (DS= 0) and flowering (DS=
1.0). Manure was added to soils at the time of sowing as a
single application to reflect real-world practices that account
for the time required for manure N to be made available to
plants. Data sources for mineral N fertilizer and manure over
the period 1901–2014 were derived from Ag-GRID (AgMIP
GRIDded Crop Modeling Initiative; Elliott et al., 2015 and
Zhang et al., 2017, respectively) (Fig. S4).

2.5 Statistical methods

In order to quantify the agreement between modeled and ob-
served variables, the coefficient of determination (adjusted
R2), relative bias (RB, Eq. 16), absolute bias (AB, Eq. 17),
and the root mean square error (RMSE, Eq. 18) were com-
puted:

RB=
Mi −Oi

Oi

× 100%, (16)

AB=
|Mi −Oi |

Oi

× 100%, (17)

RMSE=

√√√√1
n

n∑
i=1

(Mi −Oi)
2, (18)

where Mi and Oi indicate modeled and observed values, and
n is the number of observations. To evaluate the fit of the in-
terannual variability of modeled and reported yields on the
country level, the standard deviation (SD) and Pearson cor-
relation coefficient (r , Eq. 19) were calculated:

r =

∑n
i=1

(
Mi −M

)(
Oi −O

)√∑n
i=1
(
Mi −M

)2∑n
i=1
(
Oi −O

)2 , (19)

Figure 3. Spatial distribution of soybean (red circles) and faba bean
(magenta triangles) sites used for BNF evaluation. The map back-
ground is cropland fraction ( %) averaged over 1996–2005 at the
resolution of 0.5◦× 0.5◦, derived from the LUH2 dataset (Hurtt et
al., 2020).

where M and O represent modeled and observed mean, and
n is the number of reported years.

3 Results

3.1 Model evaluation at site scale

3.1.1 Model performance across all sites

In order to examine model performance in simulating BNF-
related variables across all grain legume sites described in
Table S2, we compiled six widely measured variables re-
lated to N fixation at harvest, as shown in Fig. 4. Modeled
yields generally agreed well with observations, especially in
the site-specific simulation setup. These had a higher regres-
sion slope (0.83) and lower absolute bias (28 %) compared
with the global uniform simulation setup (Fig. 4a). N con-
tent in grains and shoots showed lower agreement, with sim-
ulated values underestimating the observations for most sites
(Fig. 4b–c), likely arising from two important N sources to
grain legumes not being captured well by the model (i.e., soil
N uptake and BNF, shown in Fig. 4d–e). The global uniform
run did not capture observed N fixation well, with a regres-
sion slope of 0.22 and absolute bias of 39 %. The simulated
BNF compared to observations was notably improved when
using site-specific parameters, with the regression slope in-
creasing to 0.41 and the absolute bias being reduced to 31 %
(Fig. 4e). The field-based measurements showed that the N
derived from the atmosphere (%Ndfa) was the main contrib-
utor to the legumes’ total N uptake, ranging from 15 % to
95 %, with a mean of 64 % across all field trials. LPJ-GUESS
generally captured the mean response well, with simulated
%Ndfa being 60 % and 58 % in the site-specific and global
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uniform runs, respectively, despite several extreme disagree-
ments at several faba bean sites (Fig. 4f).

A linear relationship between legume yields and the rate
of BNF was found across a range of field sites in this study
(Fig. S5a). Simulations from LPJ-GUESS mostly captured
the close correlation between these variables, with R2 rang-
ing 0.46–0.63 (p < 0.001) in both runs, which is not far from
the measured value of 0.67 (Fig. S5a). Linear regression pa-
rameters (i.e., slope and intercept) in both runs were close to
the observations, indicating that the model reproduces the N
fixation effect on yield well for individual sites.

A negative exponential relationship was observed be-
tween N fertilizer application rate and N fixation across the
field trials (Fig. S5b). LPJ-GUESS reasonably reproduced
the decreased trend of BNF to N fertilizer increase, with
similar fitting functions to observations, although higher N
fixation rates were modeled in the highest-fertilized trial
(600 kg N ha−1) compared with measurements (Fig. S5b).

3.1.2 Response to irrigation

The ability of the model to simulate the observed response of
soybean tissue biomass and N mass to irrigation management
was examined using data from an experiment with rain-fed
and irrigated treatments in Florida, USA (82.4◦W, 29.6◦ N;
see Table S2). Since the timing and quantity of irrigation
were not reported in the literature (DeVries et al., 1989a, b),
we assumed that soybean was irrigated automatically when
it experienced water stress in the model, with the amount of
plant water deficit as supplemental irrigation.

The mean observed grain yields at harvest were 2.0 and
2.9 t ha−1 under rain-fed and irrigated conditions, respec-
tively, whereas the modeled yields were 1.9 and 2.5 t ha−1

for the site-specific parameter run and 1.6 and 2.1 t ha−1 for
the global uniform parameter run, suggesting good model
performance for rain-fed crops but an underestimation of
the effect of irrigation on yields (Fig. 5a). Grain dry mat-
ter over the cropping season was simulated to increase by
32 % and 45 % on average in response to irrigation in the
site-specific and global uniform runs, respectively. The ob-
servations show a similar response but with a higher increase
of 75 %. The modeled increase in grain N content caused by
irrigation also showed good agreement, with an increase of
35 %–58 % in both runs, in line with the observed response
of 42 % (Fig. 5b).

The model generally reproduced observed leaf biomass
and N mass better than the total aboveground production un-
der rain-fed and irrigated treatments, with higher accuracy in
the site-specific run. Over the growing season there was an
obvious underestimation of the total aboveground produc-
tion of biomass for both runs (Fig. 5a). This may be par-
tially due to the fact that LPJ-GUESS at this point does not
model soybean hulls, which account for ∼ 15 %–20 % of the
total aboveground dry matter at harvest in the US soybean
rain-fed cropping system (Córdova et al., 2020). The ob-

served increase in shoot and leaf biomass due to water sup-
ply was 19 % and 21 %, respectively. In comparison, the site-
specific parameterized model resulted in increases of 13 %
and 14 %, respectively (15 % and 14 % for the global uni-
form parameter run, see Fig. 5b). Overall, the observed soy-
bean tissue biomass and N content under rain-fed and irri-
gated conditions, as well as their response to irrigation man-
agement, were captured reasonably well by the model at the
US Florida site, despite some deviations from observations
in some cases.

3.1.3 Response to nodulating soybean

In Zapata et al. (1987), two field trials with non-nodulating
and nodulating soybean were conducted in Seibersdorf, Aus-
tria (16.5◦ E, 48.0◦ N; see Table S2), resulting in different
plant C and N production at various growth stages. As de-
scribed in Sect. 2.3, the nodulation process of legumes has
not yet been implemented in LPJ-GUESS; we thus switched
off (on) the BNF function in the model to simply represent
the non-nodulating (nodulating) soybean experiment.

During the growing season, yield and grain N mass in the
field trials increased rapidly after the vegetative stage, peak-
ing around harvest. Simulations from LPJ-GUESS mostly
captured those seasonal dynamics and the response to nodu-
lating soybean (Fig. 6a–b): the modeled increase in yield and
grain N mass due to nodulation was 34 % and 51 % in the
site-specific run (34 % and 45 % in the global uniform run),
respectively, in line with the observed response of 20 % and
41 % at harvest (Table 2), which suggests appropriate sensi-
tivity of yield and N content in grain to N addition from N
fixation. Similarly, the model generally reproduced the ob-
served seasonal pattern of shoot N mass well, but with some
underestimations in the nodulation trial (Fig. 6c).

Accumulated soil N uptake was captured reasonably well
over the entire growing season, with higher accuracy at har-
vest in the global uniform simulation (Fig. 6d). Measured
mineral N uptake from soils declined on average by 25 % in
response to nodulation. In comparison, the simulated reduc-
tion in uptake was 50 % and 46 % for the site-specific and
global uniform runs (Table 2). The BNF rates were low at
the early growth stages when nodules were still establishing
and increased rapidly between floral initiation and the early
seed-filling, after which nodule senescence occurred and the
increase in N fixation rate declined until physiological ma-
turity (Fig. 6e). Simulations from LPJ-GUESS reproduced
the seasonal pattern of N fixation with some overestimations
in the accumulated BNF at the end of the growth period;
the site-specific and global uniform runs simulated 113 and
140 kg N ha−1, respectively, compared to the measured value
of 103 kg N ha−1 (Table 2).
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Figure 4. Comparison of modeled and observed yield (a), grain N mass (b), shoot N mass (c), soil N uptake (d), BNF (e), and %Ndfa (the
proportion of plant N derived from the atmosphere) (f) at harvest across all soybean and faba bean sites. Filled red and grey circles depict
the “site-specific” and “global uniform” runs, respectively. The dashed line is a fitted linear regression with red for site-specific and grey
for global uniform; ∗∗∗ and ∗∗ denote regressions statistically significant at p = 0.001 and 0.01, respectively; AB is absolute bias (Eq. 17),
represented in percent (%); the unit of RMSE is the same as the associated variable; AVG in (f) is the averaged value of %Ndfa across all
field trials.

Table 2. Comparison of modeled and observed yield (t ha−1), grain N mass (kg N ha−1), shoot N mass (kg N ha−1), soil N uptake
(kg N ha−1), and N fixation rate (kg N ha−1) from a soybean nodulation and non-nodulation experiment at harvest. The observed data were
compiled using Tables 2–4 in Zapata et al. (1987).

Nodulation Non-nodulation Nodulation effect (%)

Obs. Mod. site-s. Mod. global-u. Obs. Mod. site-s. Mod. global-u. Obs. Mod. site-s. Mod. global-u.

Yield 3.01 3.24 3.06 2.42 2.41 2.29 20 34 34
Grain N mass 162 166 148 115 110 102 41 51 45
Shoot N mass 222 198 181 158 134 138 41 48 31
Soil N uptake 119 76 86 158 152 159 −25 −50 −46
N fixation 103 140 113 – – – – – –

3.1.4 Response to N fertilizer in faba bean

In the N fertilizer experiment from Mínguez et al. (1993),
four field trials were compared with N applications between
0 and 300 kg N ha−1 at three crop growth stages and two
faba bean varieties grown in a Mediterranean climate (Spain,
4.8◦W, 37.9◦ N; see Table S2). Over the entire growing sea-
son, leaf biomass and N content in the field trials increased
until around May, after which leaf senescence started and
biomass and N content declined (Fig. 7a–b). The model

broadly reproduced these seasonal patterns and the response
to different N application rates. The largest difference be-
tween modeled and measured leaf biomass was found at
the end of the growing season as a result of the simulated
leaf senescence rate being much lower than derived from
measurements (Fig. 7a). In addition, the simulations showed
modeled leaf N mass to decline rapidly during the late re-
productive phase. This can be attributed to the transfer of N
from vegetative parts to grain because of the high N demand
in seeds during the grain-filling period.
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Figure 5. Comparison of modeled and observed soybean tissue biomass and N mass (a) and their responses to irrigation management (b)
compared with those grown at rain-fed conditions. Red and grey circles depict “site-specific” and “global uniform” run, respectively; the
dashed line is fitted linear regression; ∗∗∗ denotes the regression statistically significant at p = 0.001. Box plots in (b) denote the 5th and
95th percentiles with whiskers, median and interquartile range with box lines, and mean with a white dot (all data distributed next to the box).
The seasonal data at each phenological stage for tissue biomass are available from 1978–1979 and 1984–1985 with rain-fed and irrigated
treatments; those for N mass are available for 1979 and 1984, while the seasonal shoot N mass is only available for 1984.

As seen in Fig. 7c, modeled soil N uptake was stimulated
by soil mineral N availability, with an increase of 120 %–
160 % compared to the unfertilized treatment. In contrast,
fixing N from the atmosphere was constrained in the pres-
ence of elevated levels of soil mineral N, with a reduction
of 15 %–20 %. The total N uptake for the cropping season
1987–1988 was observed to only increase by 3 % in response
to N application as a consequence of the inoculation imple-
mented in the unfertilized treatment (Mínguez et al., 1993).
By contrast, LPJ-GUESS produced relatively large increases
of 14 %–16 % in both runs, resulting in the observed increase
in plant biomass and N mass accumulation caused by N ad-
dition being largely overestimated in the model (Fig. 7c).

3.2 Model evaluation at global scale

3.2.1 Attained yields

Using the global uniform parameters described in Sect. 2.4.1,
combined with the time-dependent gridded N fertilizer
dataset introduced in Sect. 2.4.2, we simulated soybean and
all pulses (applying the faba bean parameterization, see
Sect. 2.4.2) at a global scale. We computed data for the pe-
riod 1996–2005, since crop-specific fractional cover from the
MIRCA dataset was available for the year 2000 (Portmann et
al., 2010).

Modeled yields in the top 10 soybean-producing coun-
tries showed good agreement, with a higher R2 of 0.52
(p < 0.001) and lower RMSE value of 0.8 t ha−1 yr−1 when
low-productivity countries (defined as all countries not be-
longing to the top 10 producer countries) were excluded.
With all producer countries included, R2 of 0.17 (p < 0.001)

Geosci. Model Dev., 15, 815–839, 2022 https://doi.org/10.5194/gmd-15-815-2022



J. Ma et al.: Modeling biological N fixation with LPJ-GUESS 827

Figure 6. Observed (circles) and modeled (lines) yield (a), grain N
mass (b), shoot N mass (c), soil N uptake (d), and BNF (e) for a field
site in Austria (Zapata et al., 1987) for the cropping season 1984
with nodulating and non-nodulating soybean. The observed values
of soil N uptake and BNF across all growth stages were calculated
based on Fig. 1 given in Zapata et al. (1987), and the vertical bars
represent the standard error of a four-replicate mean in the origi-
nal literature. Veg. and Rep. indicate vegetative and reproductive
growth phase, respectively.

and RMSE of 1.4 t ha−1 yr−1 were found (Fig. 8a). LPJ-
GUESS generally tended to overestimate the reported yield
for most countries where soybean production is low (e.g.,
most African countries, see Fig. 9a), with a mean relative
bias in such countries of 81 % (Fig. 8a). Modeled low yields
were found in some arid and semi-arid countries (e.g., Egypt,
Iran, and Turkey), with the underestimation spanning from
10 %–70 % (Fig. 9a). Overestimated yields were also found
when comparing simulated yields using the faba bean param-
eterization against FAO-reported values for pulses in general,
with an overestimation also visible for some of the top pro-
ducing countries (Fig. 8b). Likely, the higher yields simu-
lated by LPJ-GUESS arise from the fairly high N fixation
capacity simulated with the faba bean parameterization (see
Sect. 3.2.2) and the wide distribution of pulses worldwide,

which grow under a broad range of climate and soil condi-
tions.

A good fit of the interannual variability of modeled and re-
ported yields is a further indicator of model performance. De-
spite the deviation between the model and observations for
individual years, simulated variation in soybean yield over
the period 1981–2016 matched reported yields well among
the top 10 producer countries – especially in Argentina, In-
dia, and China – with a high Pearson correlation coefficient
(r) around 0.60 (p < 0.001) and similar standard deviations
(Fig. 9). The degree of yield variability between years was
larger than seen in the FAO records, especially in the US,
Canada, and Italy (Fig. 9), indicating high sensitivity of mod-
eled soybean yield to changing environmental factors on spa-
tial scales, such as weather, N fertilizer application rates, and
climate-related N fixation.

3.2.2 N fixation and %Ndfa

The modeled spatial pattern of soybean N fixation showed
large spatial variation (Fig. 10a). Modeled BNF rates as high
as 250 kg N ha−1 yr−1 were found in western South America
and most of Africa, where neither water nor temperature was
a critical limitation for N fixation. Moreover, the relatively
low fertilizer application in Africa (0–20 kg N ha−1 yr−1,
Fig. S4b) leaves a nitrogen deficit that causes enhanced soy-
bean N fixation. In contrast, in arid and semi-arid regions,
soil water constrains BNF, while temperature limitation is
seen in high latitudes and alpine areas (e.g., Andes in Peru).
BNF rates in most regions (South Asia, West Asia, sub-
Saharan Africa, and northwestern China) were as low as
50 kg N ha−1 yr−1, particularly in Pakistan and northern In-
dia, where simulated BNF is severely constrained by the ex-
treme high temperature over the cropping season. The eastern
United States, Europe, southern China, and central-western
Brazil showed intermediate fixation rates, which were greater
than 150 kg N ha−1 yr−1. Overall, the spatial variation of the
modeled legume BNF rate reflects to a large degree the spa-
tial climate patterns, in addition to N fertilizer application.
The low modeled %Ndfa of 45±3 % in East Asia may reflect
high N uptake from soils in response to substantial fertilizer
investment in China (80–180 kg N ha−1 yr−1, Fig. S4b) over
the past 40 years. In contrast, the modeled %Ndfa in Africa –
with lower N application rates – was as high as 70± 3 %, al-
though still lower than the reported mean value of 77 % (Ta-
ble 3). The spatial response of N fixation rate to climate con-
straining factors (i.e., soil temperature and water) is shown
for pulses in Fig. S6.

At a regional scale, the modeled outputs compare well
with N fixation rates from the literature (Fig. 10b–f, Ta-
ble 3). For example, in South America and North America,
both major soybean-producing regions, simulated BNF rates
were 156± 14 and 127± 44 kg N ha−1 yr−1 over the period
1981–2016, respectively, compared with literature-derived
values of 136 and 144 kg N ha−1 yr−1 (Peoples et al., 2009).
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Figure 7. Observed and modeled seasonal pattern of leaf biomass (a) and leaf N (b) of faba bean in Spain for the cropping season 1987–
1988, with two different levels of N fertilizer input (0 and 300 kg N ha−1 represented as N0 and N300, respectively), and the response of
faba bean yields and N uptake to fertilized treatment at harvest (c) compared with those grown in unfertilized conditions in the 1986–1987
and 1987–1988 cropping seasons. The observed values were derived from the average of two faba bean varieties described in Mínguez et
al. (1993), and their measured ranges are shown by the vertical bars. The vertical dashed lines in (a)–(b) represent the timing and amount of
fertilizer applied in the N300 treatment.

Figure 8. Per-country and per-year comparison of modeled yields of soybean (a) and pulses (b) against reported FAO statistics from 1996–
2005. Each filled circle in (a) represents 1 year and one country; thus, a country can have up to 10 circles over 1996–2005. In total, 887 and
1506 country–year yield data points were used for comparison in soybean and pulses, respectively. The top 10 producer countries (shown
in color) were chosen based on their total production over the same period, and marker size from large to small indicates their total relative
production in descending order. Rep. and Mod. respectively denote reported and modeled yield (t ha−1 yr−1) averaged from 1996–2005. RB
is relative bias (Eq. 16), represented in percent (%). The unit of RMSE is the same as yield (t ha−1 yr−1).
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Figure 9. Comparison of simulated and FAO-reported yields on the country level averaged over 1996–2005 (a), as well as time series of
modeled soybean yield (red solid line) and reported FAO statistics (black dashed line) in the top 10 producer countries over the period
1981–2016. The top 10 producer countries (b–k, in descending order) were chosen based on their total production from 1996–2005. r is the
Pearson correlation coefficient (Eq. 19), where ∗∗∗, ∗∗, and ∗ denote the correlation as statistically significant at the p = 0.001, 0.01, and
0.05 level, respectively. RB is relative bias (Eq. 16), represented in percent (%). SDRep and SDMod denote respectively reported and modeled
yield standard deviations (t ha−1 yr−1) from 1981–2016.

Globally, the modeled soybean N fixation rate of 132±
21 kg N ha−1 yr−1 was reasonably consistent with the meta-
analysis result of 111–125 kg N ha−1 yr−1 in Salvagiotti et
al. (2008) and the FAO-based estimate of 176 kg N ha−1 yr−1

from Herridge et al. (2008). The contribution of N fixation
to total N uptake in soybean was somewhat underestimated
in several regions. A similar trend to underestimate reported
%Ndfa was also found for pulses (Table 3).

Having large soybean-planting areas and high yields,
South America and North America contributed 80 % of simu-
lated global soybean N fixation, followed by East Asia, South
Asia, and Europe (Table 3). Globally, simulated annual N
fixed over the period 1981–2016 was 11.6± 2.2 Tg in soy-
bean, which showed good agreement with the estimate of
16.4 Tg N reported by Herridge et al. (2008) and the extrapo-
lated result of 10.4 Tg N estimated by Gelfand and Robertson
(2015) based on US field trials. However, we modeled pulses
to fix 5.6±1.0 Tg N annually, which is almost 2 times higher
than the 2.95 Tg N estimated by Herridge et al. (2008). The
difference in the case of pulses is most likely due to the low N

fixation rate used by Herridge et al. (2008) ranging from 23–
107 kg N ha−1 yr−1, which is lower than the mean value of
119± 15 kg N ha−1 yr−1 modeled by LPJ-GUESS (Table 3).

4 Discussion

4.1 Model performance at site scale

The overall model agreement with measured legume yield
and grain N mass was good across a range of field sites
(Fig. 4). Values at harvest were on average about 20–30 %
lower than values reported in the measurements (Fig. 4a–
b). A similar small underestimation was found in the shoot
N mass (Fig. 4c), indicating that the productivity is gener-
ally somewhat too low in the model. One factor contributing
to the underestimation is that LPJ-GUESS applies a conver-
sion factor of 2.0 from plant C mass to dry matter (Smith et
al., 2014), which is ∼ 10 % lower than a published measure-
ment of 2.24 reported in Osaki (1993). In addition, we found
that the model underestimated aboveground biomass while
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Figure 10. Map of soybean N fixation modeled by LPJ-GUESS averaged over 1996–2005 (a) and the comparison of simulated BNF rate
(red line) and %Ndfa (blue line) with literature-reviewed data (open circle; Peoples et al., 2009) on a regional level (b–f). Reported data
shown in open circles do not represent specific years but the potential over time in Peoples et al. (2009); the vertical bars denote the range of
estimations based on the original literature given in Table 1 in Peoples et al. (2009).

simultaneously overestimating belowground productivity at
the three sites where measured root biomass was available.
This could be addressed by adjusting the root : shoot alloca-
tion (i.e., modifying the daily assimilate partitioning function
in grain legumes; Eq. 5), but this is currently prevented by the
lack of sufficient observed root biomass information.

Modeled soil N uptake was sensitive to soil mineral N
concentration and hence driven by fertilizer application rates
(Figs. 7c, S5c). Generally, LPJ-GUESS tended to overesti-
mate soil N uptake in regions where legumes were not fer-
tilized or only lightly fertilized (Fig. S5c). This might be
partially due to the selected legume cultivars at the exper-
imental plots, which have been reported to have low min-
eral N uptake potential (Gan et al., 2002, 2003; Santachiara
et al., 2017, 2018). Moreover, the saturation effect of min-
eral N concentration on N uptake implemented in the model
might result in the discontinuation of N uptake when soil-
available N is abundant (Zaehle and Friend, 2010; Wår-
lind et al., 2014). Under high fertilization rates (up to 260–
600 kg N ha−1, Fig. S5c), a strong underestimation in soil N
uptake was expected because of the modeled saturation re-
sponse to high soil mineral N, resulting in little change in the
level of soil N uptake no matter how much N fertilizer was
applied.

Adding mineral N to the soil in LPJ-GUESS can increase
soil N uptake, reducing the plant’s N deficit and therefore
also reducing the upper limit of the daily N fixation rate
(Fig. 2). Although the modeled negative relationship between
fertilizer application rates and N fixation showed generally

good agreement with the observed response across a range
of field sites, the simulated BNF rates in the highly fertilized
trials (i.e., 260–600 kg N ha−1, Fig. S5b) were about 50 %–
80 % higher than the measured values (Figs. 4e, S5b). This
might be partially explained by the underestimation in soil N
uptake under higher N concentration, resulting in plant N de-
mand remaining very high and substantial N still being fixed.
The large discrepancies between modeled and observed N
uptake in the highly fertilized treatments suggest that the N
uptake representation in LPJ-GUESS should be further im-
proved. A step forward could be to incorporate the inhibitory
effects of soil mineral N content on N fixation into the model
(Chen et al., 2016; Wu et al., 2020), since experimental evi-
dence indicates that high soil mineral N not only affects plant
N uptake in roots, but also depresses legume nodule initia-
tion, nodule size, and specific nodule activity, therefore re-
ducing the amount of N fixation from the atmosphere (Her-
ridge et al., 1984; Purcell and Sinclair, 1990; Thornley and
Cannell, 2000).

The percentage of plant N derived from the atmosphere
(i.e., %Ndfa) is a key parameter required for quantifying N
fixation in the field and varies widely, caused by differences
in climate, soil type, and degree of N fertilization (Herridge
et al., 2008). LPJ-GUESS captured the range and mean value
of %Ndfa well across different field trials, with some dis-
agreements, especially for faba bean (Fig. 4f). An underes-
timated %Ndfa is likely caused by the combined effects of
underestimated N fixation (Fig. 4e) and overestimated soil N
uptake (Fig. 4d). Nevertheless, we found modeled %Ndfa to
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decline with increasing N fertilizer application, which is also
the observed response in the field trials. A negative correla-
tion between %Ndfa and fertilizer application rates was also
reported by Salvagiotti et al. (2008). These results all suggest
that LPJ-GUESS is able to effectively capture the observed
overall patterns of soil mineral N uptake and N fixation in
grain legumes and their responses.

Since the SLA and C : N ratio of plant organs play a vi-
tal role in determining N uptake when modeling vegetation
C–N dynamics (Olin et al., 2015), it is to be expected that
applying measured values for site-scale modeling resulted in
much better agreement when comparing simulation results
to measurements (Figs. 4–7). Remaining discrepancies be-
tween modeled and observed N-cycle variables may reflect
missing processes in the model, such as inoculation effec-
tiveness, phosphorus limitation, and soil acidity, especially in
terms of inoculant application. Field experiments have shown
that proper inoculation of rhizobia promotes nodulation and
results in an efficient increase in N fixation, although there
are large variations between strains of rhizobia (Mínguez et
al., 1993; Sanginga et al., 1997; Tewari et al., 2004; Denton
et al., 2017). Using a fixed parameter (Nmaxfixpot, Eq. 9) to
represent all inoculation situations such as in a global uni-
form calibration cannot reflect this variability. In addition,
due to the difficulties in measuring both nodules and roots
in the field directly, in many studies the observed BNF rates
were determined from plant aboveground biomass. Exclud-
ing the root contribution to the whole plant BNF rates most
likely results in an underestimation of N fixation (Córdova et
al., 2019, 2020): N associated with nodules and roots in soy-
bean and faba bean may account for 20 %–40 % of the total
N accumulation at the mid-flowering phase (Unkovich and
Pate, 2000; Khan et al., 2003).

Compared to non-BNF (i.e., non-nodulation treatment, see
Sect. 3.1.3), BNF in LPJ-GUESS greatly improves simulated
soybean yield and aboveground N mass, with an overall in-
crease in both variables of 30 %–50 % (Table 2). Córdova
et al. (2019) found a yield increase of 150 % in response to
nodulation in an unfertilized treatment, but that increase was
reduced to 55 % – similar to our modeled yield increase –
when a high N input was applied (i.e., 135 kg N ha−1). N fix-
ation can help grain legumes to dramatically enhance their
total N accumulation and to achieve higher N concentration
in seeds. However, these benefits are accompanied by an in-
crease in respiration cost amounting to 4 %–16 % of fixed to-
tal photosynthetic carbon (Kaschuk et al., 2009, 2010). Such
a respiratory photosynthate consumption would reduce pro-
ductivity if the photosynthesis rate was not increased to com-
pensate for the cost. In LPJ-GUESS, as described in Sect.
2.3, we assumed that up to 50 % of daily NPP can be con-
sumed to fix N. This approach has the advantage that legumes
are able to maximize photosynthetic gain due to reduced
N limitation in carboxylation capacity (Vmax), but it entails
the risk of lower productivity if too much NPP is invested
in fixation. Nevertheless, in most cases our modeled NPP
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cost over the soybean growing season ranged from 1 %–40 %
at the site scale (Fig. S7) and 5 %–25 % on a large region
(Fig. S8). Such NPP consumption was not only lower than
our assumed upper limit of 50 %, but also appropriately con-
sistent with the reported range of 14 %–32 % described by
Kaschuk et al. (2009), demonstrating that the C cost scheme
implemented for N fixation in our model is reasonable. Taken
together, the modeled C profits due to N fixation can be at-
tributed to the positive feedback between BNF and photo-
synthesis in LPJ-GUESS: C-cost-based N fixation results in
a higher rate of photosynthesis because of the enhanced leaf
N concentration; in turn, the increased rate compensates for
the C cost, allocates more assimilate to roots, and thus en-
hances N fixation.

4.2 Global yields, N fixation, and %Ndfa

Agreement between FAO-reported and simulated yields at
the country level was reasonable for the major soybean-
producing countries. However, in some arid and semi-arid
countries, the modeled yields were up to 70 % lower than
FAO-reported values, probably because of the simulated low
N fixation rate caused by severe water constraints (Fig. S5).
By contrast, LPJ-GUESS produced an overestimation of
100 %–300 % in yield production among some African coun-
tries, with BNF rates of 300–350 kg N ha−1 yr−1 being mod-
eled in these regions (Fig. 10a). More recent studies that re-
port data from African farms have indicated that the soy-
bean N fixation rate can be as low as 0–50 kg N ha−1 yr−1

in most farmers’ fields, largely because of the inconsis-
tent effectiveness of inoculation in the acid soils (Ulzen et
al., 2016; Muleta et al., 2017; Vanlauwe et al., 2019). The
BNF implementation and soil representation in LPJ-GUESS
do not account for inoculation effectiveness in response to
soil pH.

In our simulations, the annual amount of N fixed by global
grain legumes (i.e., soybean and all pulses) of 17.2± 2.9 Tg
averaged over the period 1981–2016 agreed well with the es-
timate of 19.4 Tg provided by Herridge et al. (2008), who
used crop production statistics from FAOSTAT and legume-
specific %Ndfa from farmers’ fields for estimating global
N fixation. In an earlier study, a total of 10 Tg N (range of
8–12 Tg N) was estimated from legume crop BNF annually
(Smil, 1999), which is far lower than our findings. The dis-
crepancy between the estimates in Smil (1999) and Herridge
et al. (2008) likely reflects the lower values of %Ndfa for soy-
bean and pulses used for calculations in Smil (1999). Also,
Smil (1999) excluded belowground fixed N associated with
roots and nodules, which contributes to the low estimate. Our
modeled N fixation from grain legumes amounts to ∼ 12 %
of the annual mean of ca. 140 Tg N that was estimated to
be fixed in all global terrestrial ecosystems (Cleveland et
al., 1999, 2013; Galloway et al., 2004; Wang and Houlton,
2009; Vitousek et al., 2013; Meyerholt et al., 2016; Xu-Ri
and Prentice, 2017; Yu and Zhuang, 2020; Davies-Barnard

and Friedlingstein, 2020), indicating the importance of BNF
input in agricultural systems for the global terrestrial N cy-
cle, although a large proportion of the fixed N is removed in
grains from the ecosystems each year.

Currently, three environmental factors, soil temperature,
moisture, and soil mineral N concentration, affect modeled N
fixation. As discussed in Sect. 4.1, increased soil N availabil-
ity would depress N fixation as plant total N can be met more
“cheaply” via soil mineral N uptake. This effect can also be
seen from the spatial pattern of %Ndfa in the northern tem-
perate region, such as the United States, western Europe, and
China. Here, anthropogenic N deposition, together with the
intensive application of fertilizers, results in soils being N-
rich, inhibiting simulated BNF. This could explain why our
modeled soybean N fixation rate was not high in East Asia
and only contributed 45± 3 % of plant total N uptake (Ta-
ble 3). In comparison, the high rate of N fixation found in
tropical regions is primarily due to their high nitrogenase ac-
tivity under warm and moist soil conditions (Fig. S6), result-
ing in %Ndfa of∼ 70 % being modeled for all grain legumes
in the tropics (i.e., Africa and Southeast Asia; Table 3). A
similar spatial variation between temperate and tropical re-
gions in N fixation was also reported by other modeling stud-
ies in global terrestrial ecosystems (e.g., Wang and Houlton,
2009; Meyerholt et al., 2016; Xu-Ri and Prentice, 2017; Yu
and Zhuang, 2020). Taken together, these results reveal that
LPJ-GUESS broadly captures how N management practices
and climate variation affect soil N uptake and biological N
fixation in grain legumes at large spatial scales.

4.3 Modeling challenges and future work

Similar to most ecosystem and crop models, specific leaf area
(SLA) in LPJ-GUESS is used to compute leaf area index
(LAI) and indirectly affects the amount of photosynthesis.
SLA also further impacts plant total N uptake since the N de-
mand in plant organs is always associated with the photosyn-
thetic assimilate in the model. The disagreements between
modeled and observed C–N variables in the seasonal pattern
(Figs. 6–7) can therefore be partially attributed to the static
value of SLA implemented in LPJ-GUESS. Some studies
have shown that SLA varies with crop growth development
(Boote et al., 2002; Ainsworth et al., 2007) and environmen-
tal conditions (Poorter et al., 2009). In addition, low temper-
ature, excess radiation, water deficit, or rising CO2 concen-
tration would also result in reduced SLA through affecting
leaf area expansion and internode elongation (Ainsworth and
Long, 2005; Yin and Struik, 2010). Applying SLA as a con-
stant in the model (see Sect. 2.4.1) cannot reflect these re-
sponses. Incorporation of dynamic SLA over the crop grow-
ing season and its response to the environment remains to be
taken into account in future model development.

Despite many experimental studies on the limitation of
soil water deficit in biological N fixation, the nature of the
relationship between legume BNF and soil water content is
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not well characterized in models. A linear water-limitation
function incorporated in LPJ-GUESS (Eq. 11) implies, for
instance, that the model has little potential to represent the
situation when plants experience stress from excessive wa-
ter (flooding). The impact of excess soil water on legume N
fixation is either omitted or oversimplified in most crop mod-
els. For instance, a simple assumption adopted in Sinclair’s
model is that the N fixation process is stopped forcibly when
flooding takes place (Sinclair et al., 1987). In STICS, the N
fixation inhibition by water excess is represented as stress
from hypoxia in the roots (Brisson et al., 2003). The pro-
cess of legume BNF restraint by flooding is implemented into
CROPGRO (Boote et al., 2008) by calculating the proportion
of water-filled pore space. N fixation is assumed to only be
restricted when all pore space is filled with water; however,
this rule has not been well evaluated so far.

Although high soil mineral N concentration suppresses
legume root nodulation and further impacts N fixation (Xia et
al., 2017; Mourtzinis et al., 2018; Brar and Lawley, 2020), a
moderate level of soil N in the vegetative growth stage is con-
ducive to root growth and nodule formation, stimulating N
fixation (Waterer and Vessey, 1993; Salvagiotti et al., 2008).
In the field trials a specific threshold of soil N concentra-
tion above (below) which N fixation is inhibited (stimulated)
is hard to measure. In addition, the timing of N application
remains a challenge (Córdova et al., 2020). Some studies re-
ported that applying N fertilizer at planting as starter N can
increase yield gains because of sufficient soil-available N to
stimulate early season soybean growth (Pikul et al., 2001;
Osborne and Riedell, 2011; Gai et al., 2017). However, other
studies argued that the best time to apply additional N would
be at early reproductive growth stages, during which legumes
have the greatest N demand for seed development; also, soil
N reserves are depleting and N fixation rate starts slowing
down (Mourtzinis et al., 2018; Córdova et al., 2019; Zhou
et al., 2019). Unfortunately, as mentioned earlier, there are
no consistent results on these measured factors, resulting in
the difficulties in incorporating the mechanistic processes or
setups into LPJ-GUESS at this point.

Taken together, the challenge of modeling legume N fix-
ation is primarily due to its large variance between species,
sites, and managements. Symbiotic nitrogen fixation by rhi-
zobia is an extremely complex natural process, which is as-
sociated not only with host plant and soil N status in the
macro-environment (see Fig. 2), but also with the process
of Rhizobium or Bradyrhizobium bacteria in root nodules in
the micro-environment (Rice et al., 2000). It is difficult to
incorporate these two different but highly related processes
into one model (Liu et al., 2011; Chen et al., 2016). Further-
more, there is an inadequate amount of information avail-
able to establish a reliable relationship between BNF and
other factors such as soil pH (Rice et al., 2000; Vanlauwe
et al., 2019), inoculation effectiveness (Tewari et al., 2004;
Denton et al., 2017; Liu et al., 2019), salinity (Zahran, 1999;
Bruning and Rozema, 2013), oxygen (Jiang et al., 2021), and

other nutrition availability (Le Roux et al., 2009; Singh et
al., 2012), which are currently missing from LPJ-GUESS and
other crop models despite many field experiments demon-
strating their importance.

5 Conclusions

In this study we implemented a mechanistic process of sym-
biotic biological N fixation in grain legumes into the crop
module of LPJ-GUESS. The modeled C–N variables of soy-
bean and faba bean were extensively evaluated with observed
data from the site scale to a larger region. Our results showed
that the BNF scheme adopted in LPJ-GUESS realistically re-
sponded to water and N managements, as well as to climate
variation, and produced N fixation and yields which gener-
ally agreed with measurements.

Our model estimated that global biological N fixation
in grain legumes (i.e., soybean and all pulses) was 17.2±
2.9 Tg N yr−1 during the period 1981–2016 and that the high-
est fixation rate occurred in tropical and temperate regions
with a warm and moist climate. Soil water and temperature
were dominant controls on N fixation, in addition to N fer-
tilizer application rate. Processes missing from the model,
such as inoculation effectiveness and soil acidity, might have
biased our estimates of N fixation and yields at a global scale.

The dynamic process of N fixation with a C–N alloca-
tion scheme for crops in LPJ-GUESS provides an opportu-
nity to estimate the changes in global grain legume produc-
tion and global terrestrial C and N pools under future land-
use or climate change scenarios. It can also help to predict
and detect the potential contribution of N-fixing plants as
“green manure” to reducing or removing the use of N fertil-
izer in global agricultural systems, considering different cli-
mate conditions, management practices, and land-use change
scenarios.

Code and data availability. Global daily cli-
mate data from GSWP3-W5E5 are available at
https://doi.org/10.48364/ISIMIP.342217 (Lange et al., 2021).
National soybean and pulse yield statistics from FAO-
STAT presented in this study can be retrieved from
http://www.fao.org/faostat/en/#data/QC (last access: 9 May
2021, FAOSTAT, 2021). The rest of the model input data and
measurement results used in this study can be accessed at
https://doi.org/10.5281/zenodo.5148255 (Ma et al., 2021).

LPJ-GUESS is tested, refined, and developed by a global re-
search community, but the model code is managed and maintained
by the Department of Physical Geography and Ecosystem Science,
Lund University, Sweden. The source code can be made available
with a collaboration agreement under the acceptance of certain con-
ditions. The code used in this paper is available to the editor and re-
viewers via a restricted link on the condition that the code is only for
review purposes. Additional details and information can be found
at the LPJ-GUESS website (https://web.nateko.lu.se/lpj-guess/, last
access: 14 July 2021) or by contacting the corresponding author.
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1. Introduction
Over recent decades, both global cropland areas and synthetic nitrogen (N) fertilizer application have greatly 
increased to feed the growing population (FAOSTAT, 2023) but with large detrimental side-effects on the envi-
ronment. Estimates suggest that the conversion of natural vegetation (e.g., forests and grasslands) to cropland has 
reduced soil organic carbon (SOC) stocks by 32%–36% in temperate (Poeplau et al., 2011) and 25%–30% in trop-
ical regions (Don et al., 2011). Management intensification has also caused soil fertility decline (Lal, 2004), air 
pollution (Reay et al., 2012; Tian et al., 2020), and freshwater eutrophication (Moss, 2008). Gaseous N emissions 
from fertilizer application have increased by 46% (to 3.8 Tg N yr −1) for nitrous oxide (N2O) (Tian et al., 2020) 
and by 78% (to 58 Tg N yr −1) for ammonia (NH3) (L. Liu et al., 2022) over the past four decades. The SOC loss 
from the expansion and management of agricultural land, combined with the N loss from the intense use of 

Abstract Cover crops (CCs) can improve soil nutrient retention and crop production while providing 
climate change mitigation co-benefits. However, quantifying these ecosystem services across global agricultural 
lands remains inadequate. Here, we assess how the use of herbaceous CCs with and without biological nitrogen 
(N) fixation affects agricultural soil carbon stocks, N leaching, and crop yields, using the dynamic global 
vegetation model LPJ-GUESS. The model performance is evaluated with observations from worldwide field 
trials and modeled output further compared against previously published large-scale estimates. LPJ-GUESS 
broadly captures the enhanced soil carbon, reduced N leaching, and yield changes that are observed in the 
field. Globally, we found that combining N-fixing CCs with no-tillage technique could potentially increase 
soil carbon levels by 7% (+0.32 Pg C yr −1 in global croplands) while reducing N leaching loss by 41% 
(−7.3 Tg N yr −1) compared with fallow controls after 36 years of simulation since 2015. This integrated 
practice is accompanied by a 2% of increase in total crop production (+37 million tonnes yr −1 including 
wheat, maize, rice, and soybean) in the last decade of the simulation. The identified effects of CCs on crop 
productivity vary widely among main crop types and N fertilizer applications, with small yield changes found in 
soybean systems and highly fertilized agricultural soils. Our results demonstrate the possibility of conservation 
agriculture when targeting long-term environmental sustainability without compromising crop production in 
global croplands.

Plain Language Summary Increasing crop productivity while maintaining a healthy environment is 
a major challenge for global agriculture. Cover crops (CCs), mostly grown during the fallow period and plowed 
into in soils, are expected to improve soil fertility and crop yields while reducing chemical fertilizer use, but 
their overall impacts on global croplands remain unknown. This study investigates the long-term influence of 
cover cropping on three ecosystem service indicators across four dominant farming systems (wheat, maize, rice, 
and soybean) using an ecological model. We find that adoption of CCs can enhance soil carbon stocks, which 
would contribute to slowing climate change, and benefit environments through reducing nitrogen pollution 
to water bodies. Among the modeled cover crop species, legumes show higher potential in increasing cash 
crop yields than non-legumes, but the effect is highly dependent on the crop rotation, chemical fertilizer rate, 
and management duration. Our results highlight that proper implementation of legume CCs can support food 
security and environmental sustainability in global agricultural ecosystems.
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Key Points:
•  Cover crops (CCs) can increase 
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in global croplands compared with 
fallow management

•  The influence of CCs on cash crop 
yields varies widely among crop 
rotations, climates, management 
duration, and N fertilizer applications

•  Legume CCs in no-tillage system 
is overall identified as a promising 
practice to achieve environmental 
sustainability without compromising 
crop production in agricultural 
ecosystems
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fertilizer greatly contribute to greenhouse gas (GHG) emissions and accelerate global warming, while undermin-
ing sustainable food production (Lu & Tian, 2017). It is crucial to enhance cropland SOC sequestration and to 
reduce N losses in order to mitigate climate change while still maintaining and/or increasing agricultural produc-
tion for food security (Arneth et al., 2021; Poeplau & Don, 2015; P. Smith et al., 2020).

The imbalance between carbon (C) inputs (e.g., plant residue and manure application) and outputs (e.g., through 
crop harvest, decomposition of residues, leaching, and soil erosion) drives SOC storage changes in croplands. 
The adoption of minimum soil disturbance (e.g., no- or reduced tillage) has for many years been recommended as 
an important strategy in conservation agriculture (CA) systems to slow down the decomposition of soil organic 
matter (SOM) pools (Lal, 2004). However, it has been reported that the SOC benefits of no-till farming are statis-
tically significant only in the topsoil (0–15 cm) and decline with soil depth (Haddaway et al., 2017). In global 
meta-analyses (Luo et al., 2010; Powlson et al., 2014), SOC stocks under no-till cropping systems were some-
times found to be even lower than conventional tillage in the deeper soil layers (>30 cm). Increasing C inputs to 
the soils are thus expected to be an alternative management practice for achieving SOC enhancement (Poeplau & 
Don, 2015). Cover crops (CCs) are plants that mostly grow during the fallow period and are incorporated into the 
soils as “green manure” before sowing the subsequent main crop. Experimental evidence has indicated that plant-
ing CCs within agricultural rotations may significantly increase SOC stocks by 13.8%–17.3% over a period of 
up to 54 years, compared to management in which the off-season is left fallow, with a global mean sequestration 
rate of 0.32–0.56 Mg ha −1 yr −1 (Jian et al., 2020; Poeplau & Don, 2015). In addition to increasing organic matter 
inputs, CCs also are able to take up excess N from the soil and thus reduce N leaching (Nouri et al., 2022; Thapa 
et al., 2018; Tonitto et al., 2006), as well as to prevent the soils from the compaction and erosion that happen 
when soils are bare (Kaye & Quemada, 2017). Moreover, using legume CCs in particular as “green manure” has 
been discussed as a promising technique to maintain and/or improve soil fertility and crop production because 
of their capacity to fix N from the atmosphere, with the co-benefits of reducing chemical fertilizer use (Abdalla 
et al., 2019; Ciampitti & Salvagiotti, 2018). However, these CC effects vary widely regionally due to soil proper-
ties, climate at a location, crop management, and cover crop types (Abdalla et al., 2019; Jian et al., 2020; Marcillo 
& Miguez, 2017; Quemada et al., 2013).

Process-based ecological models have the potential to quantify the impacts of agricultural practices on ecosystem 
carbon-nitrogen (C-N) and water cycles over large geographic regions and long time periods due to their math-
ematical representation of vegetation and soil interactions under varying environmental conditions and manage-
ment (McDermid et al., 2017; Pongratz et al., 2018). These models have been widely used to investigate soil C-N 
dynamics and crop yields in response to CCs in different farming systems (e.g., APSIM, Chatterjee et al., 2020; 
DSSAT, Salmerón et al., 2014; DNDC, Singh & Kumar, 2022; ECOSYS, Qin et al., 2023). However, compared 
to site-level modeling studies, an assessment of the impacts of CCs across regions or globally is still lacking, as a 
result of inadequate management information (e.g., spatial pattern of cover crop types) and missing or incomplete 
cover cropping representation in models (Porwollik et al., 2022). For large-scale C-N cycle modeling assess-
ments, alternative agricultural practices so far have been evaluated through stylized model setups with homoge-
nous assumptions of management intensities (Jang et al., 2021; Lutz et al., 2020; Ma, Rabin, et al., 2022; Olin, 
Lindeskog, et al., 2015). For example, Olin, Lindeskog, et al. (2015) used the LPJ-GUESS dynamic vegetation 
model to explore the impacts of CCs on SOC sequestration rate across global agricultural ecosystems, assuming 
that all cropland grid cells adopted the same herbaceous cover crop without symbiotic N fixation. Similarly, 
to realistically reflect the spatial pattern of cover cropping, a recent modeling study performed by Porwollik 
et al. (2022) estimated with the LPJmL dynamic vegetation model how CA globally might affect soil C-N and 
yields in response to non-legume CCs across four cropping systems. Their model results showed the potential 
of cover cropping for climate change mitigation via enhanced soil C pools, but the authors suggested that future 
modeling assessment for N-fixing CC cultivation would be needed since this practice is identified as one practical 
strategy to address the conflict between the growing needs for crop production and the associated environmental 
problems of N loss (Abdalla et al., 2019). To date, no study has applied process-based models globally to inves-
tigate how no-till farming and legume CCs jointly affect agricultural ecosystem services, particularly in terms of 
soil C sequestration, N leaching from cropland, and crop yields.

Here, we employ the process-based vegetation model LPJ-GUESS (Ma, Olin, et  al.,  2022; Olin, Schurgers, 
et al., 2015; B. Smith et al., 2014) to explore the potential contribution of herbaceous N fixers to the sustainable 
development of agriculture production. The objective of this study is to assess and compare the effects of two 
cover crop types—leguminous and non-leguminous grasses—and tillage practices on SOC stocks, N leaching 
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loss, and agricultural productivity across global cropping systems. These three modeled ecosystem service 
indicators are extensively examined with worldwide site-level observed data and compared against global-level 
estimates from the existing literature. We aim to quantify the temporal and spatial pattern of CC impacts and 
to discuss the potential of this practice for climate change mitigation and crop production enhancement under 
present-day climate conditions.

2. Materials and Data
2.1. Model Description

LPJ-GUESS is a process-based global vegetation model that can be used to investigate plant and soil C-N dynamics 
and their interactions in response to changes in environment (e.g., climate, atmospheric CO2 levels, and N deposi-
tion) and management (e.g., crop type, N fertilizer, and harvest) through simulating individual- and patch-level plant 
physiological and biogeochemical processes on a daily time step (B. Smith et al., 2014). Natural vegetation imple-
mented in the model is characterized by 12 plant functional types (PFTs), with 10 woody and two herbaceous types 
included. PFTs differ in their phenology, photosynthetic pathway (C3 or C4), growth strategy, and bioclimatic limi-
tations. Pastures are described as the competition between C3 and C4 grass PFTs, with half of aboveground biomass 
harvested annually to represent grazing impacts (Lindeskog et al., 2013). Four crop functional types (CFTs)—two 
temperate C3 crops with spring and autumn sowing dates, a tropical C3 crop representing rice, and a C4 crop repre-
senting maize—are simulated to represent croplands, with crop-specific differences in morphological traits, dynamic 
C-N allocation patterns, heat requirements for growth, and N fertilization management (Olin, Schurgers, et al., 2015). 
Two new CFTs (i.e., soybean and pulses) with biological N fixation (BNF) have recently been added to account for 
the effects of legume-based cropping systems on global terrestrial N cycle (Ma, Olin, et al., 2022). For large-scale 
applications, the sowing date in each grid cell depends on a set of rules driven by crop- and climate-specific character-
istics, with five seasonality types represented (see Waha et al. (2012) for details). Crops are harvested annually when 
the dynamic potential heat units (i.e., accumulated degree-days above a base temperature for each CFT) are fulfilled 
(Olin, Schurgers, et al., 2015). To account for crop post-harvest losses caused by mechanical damage or poor handling 
conditions, a harvest efficiency of 90% is used to adjust the modeled crop yields (Lindeskog et al., 2013). At present, 
within-year multi-cropping systems, which are common in tropical regions, have not been implemented in the model.

Cropland management options represented in LPJ-GUESS include irrigation, tillage, crop residue retention, N 
fertilizer and manure application, and cover crop grasses grown between two cropping seasons. Irrigation water 
is estimated as the amount of plant water deficit in the model and is added to the soil automatically when crops 
suffer from water stress. The effect of conventional tillage on heterotrophic respiration is simulated as a tillage 
factor of 1.94, which modifies the decay rate of four SOM carbon pools throughout the year and accelerates the 
soil decomposition on agricultural lands (Chatskikh et al., 2009; Pugh et al., 2015). In the standard LPJ-GUESS 
setup, 75% of aboveground crop residue is removed from the fields after harvest; the rest, combined with root 
biomass, is assumed to enter to the soil litter pool for decomposition. Synthetic N fertilizer is added to the soil 
mineral N pool for plant uptake at three crop development stages, with varying application rates for each CFT (see 
Table A2 in Olin, Lindeskog, et al., 2015). Manure is applied as a single input to cropland at sowing to account 
for the time required for manure N to be made available for crops. Manure is assumed to have a C:N value of 30 
and is added to metabolic and structural SOM pools for decomposition (Olin, Lindeskog, et al., 2015). A variety 
of cover cropping options are used in this study and are described in detail below (see Section 2.2).

C-N dynamics of the soils in LPJ-GUESS are modeled by 11 SOM pools differing in C:N ratios and resistance 
to decay, following the CENTURY model (Parton et al., 1993). Decomposition of SOM pools results in release 
of CO2 to the atmosphere (respiration) and C and N transfers between soil pools (B. Smith et al., 2014). C input 
to the receiver pool drives N mineralization or immobilization, as a result of maintaining mass balance and 
prescribed C:N ratios of the donor and receiver pool. Net N mineralization (i.e., mineralization minus immobi-
lization), together with industrial N fertilizer and atmospheric N deposition, determine the size of the total soil 
mineral N pool, which is depleted by plant N uptake, as well as by crop ecosystem N losses through N leaching 
and gaseous N emission on a daily time step (Wårlind et al., 2014; Zaehle & Friend, 2010). Following Parton 
et al. (1993), mineral N leaching in the model is proportional to soil nitrate concentration and constrained by 
percolation rate and soil water content. N losses through soluble organic leaching are also added in LPJ-GUESS 
and determined by N decreases in soil microbial SOM nitrogen pool (due to decomposition), water percolation, 
and soil sand fraction (Wårlind et al., 2014).
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2.2. Representation of Cover Crops

CCs implemented in LPJ-GUESS so far have been simulated as competing temperate C3 and tropical C4 grasses 
grown annually between two consecutive growing seasons of main crops, replacing bare-soil fallow periods. 
Cover crop grass is sown on the fifteenth day after the harvest of the main crop, starting with a seedling that 
has an initial C mass of 0.01 kg C m −2 and C:N ratio 16 (Olin, Lindeskog, et al., 2015). Daily C and N mass 
in grasses are allocated to root and leaf pools based on a prescribed root:shoot partitioning ratio of 2 (Sainju 
et al., 2017), which is dynamically adjusted depending on plant water status. In the case of water stress, root 
allocation is increased (i.e., root:shoot partitioning ratio > 2) to help plants overcome the water limitation, follow-
ing Penning de Vries et al. (1989). Cover crop grasses on fallow cropland in the simulations do not receive any 
management inputs (i.e., they grow under rain-fed and unfertilized conditions). Fifteen days before planting the 
next main crop their shoot and root biomass are added to the surface litter and the soil metabolic/structural SOM 
pools, respectively, for further decomposition. At this point, interplanting CCs with main crops (i.e., two plants 
growing beside each other at the same time) is not implemented in the model.

To account for legume CC impacts on agricultural ecosystems, we developed a new herbaceous PFT in 
LPJ-GUESS based on the existing C3 grass type (Olin, Lindeskog, et al., 2015) but with BNF processes added. 
As in our previous work (Ma, Olin, et al., 2022), the amount of N fixed by the BNF C3 grass is a function of 
soil temperature, soil water and N availability, plant development stage, and a potential N fixation rate that is 
dependent on net primary productivity (NPP; see Text S1 in Supporting Information S1). The fixed N is partially 
transported to leaves and subsequently supports photosynthesis, resulting in additional C benefits through reduc-
ing N limitation on leaf carboxylation capacity. Since fixing N from the atmosphere requires substantial chemical 
energy (Ryle et al., 1979), we assume that up to 50% of daily NPP may be consumed for N fixation in the model, 
following the findings from previous studies (Kaschuk et al., 2009, 2010; Ma, Olin, et al., 2022). More details are 
provided in Supporting Information S1 and in B. Smith et al. (2014).

2.3. Experimental Setups

Our study is divided into two parts. First, we test the model’s ability to reproduce the observed responses in SOC 
stocks, N leaching, and crop yield to N-fixing and non-N-fixing CCs at various field trial sites around the world. 
Next, we perform four global simulations of cover crop cultivation and tillage systems (Table 1). Our analyses 
focus on impacts on SOC stocks, N leaching, and crop yield, first evaluating the model results against estimates 
from global-level studies and statistics, then analyzing and discussing the potential contribution of CCs to envi-
ronmental sustainability and food security under three CA scenarios (see Section 2.3.2 below).

Model spin-up follows the protocol in Ma, Olin, et al. (2022). In order to build up the stabilized soil C-N levels 
on cropland, all simulations in this study are initialized with a 500-year spin-up using atmospheric carbon dioxide 
(CO2) concentration from 1901 and repeating de-trended climate from 1901 to 1930 (see Table S1 in Supporting 
Information S1 for data sources). During spin-up, potential natural vegetation (PNV) is simulated for the first 
470 years, and then the cropland fraction linearly increases from zero to the first historic value (1901) in the last 
30 years. Monthly atmospheric N deposition simulated by CCMI (NCAR Chemistry-Climate Model Initiative) 
from 1901 to 2014 is used and interpolated to the same resolution of the climate forcing (0.5° × 0.5°) (Tian 

Table 1 
Global Simulation Setups Representing Different Cover Crop Managements (See Section 2.3.2)

Simulation NoCC CCL CCNL CCLNT

Legume cover crop No N-fixing C3 grass No N-fixing C3 grass

Non-legume cover crop No No Competing C3 and C4 grasses No

Main-crop residue retention 25% 25% 25% 25%

Manure application Yes Yes Yes Yes

Mineral N fertilizer Yes Yes Yes Yes

Tillage Yes Yes Yes No

Note. NoCC—control treatment with bare fallows; CCL—legume cover crops; CCNL—non-legume cover crops; CCLNT—
combined management practice with legume cover crops and no tillage.
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et al., 2018). Model input data are summarized in Table S1 in Supporting Information S1, with the specific simu-
lation experiment setups described in detail below.

2.3.1. Model Evaluation at Site Scale

To examine the model performance, cover crop field trials that also report observations of SOC stocks, N leaching, 
and crop yield were collected from the existing literature using the following criteria: (a) a control treatment with bare 
fallows (NoCC) had to be present as part of the field-based cropping experiments. We excluded greenhouse-based 
and vegetable farming studies, which cannot be represented by LPJ-GUESS at present. (b) Due to the absence of 
intercropping systems in the model (see Section 2.2 above), we only selected field trials in which CCs were either 
grown during the bare fallow period or undersown in main crops. For the latter case, CCs usually coexist with the 
main food crops for a short while (ca. 1–3 months before the main crop is harvested); CC growth is dormant during 
the winter months, but continues in spring, and CC crops are then terminated several days prior to the next planting 
of the main crop (Valkama et al., 2015). (c) To capture the variability of the observed data, CC treatments needed 
to cover at least two growing seasons, with the whole plant used as green manure or mulch returning to the fields. 
(d) Other managements, such as N fertilizer applied to main crops, had to be the same for both control and CC treat-
ments. Cover crop trials that substituted synthetic fertilizer with green manure were thereby excluded.

A total of 43 studies carried out at 41 different sites were compiled for evaluation. Studies investigated the effects 
of two cover crop functional types, that is, legumes (CCL) and non-legumes (CCNL), on soil C sequestration (12 
sites), N leaching (13 sites), and crop yields (29 sites) across four cropping systems (wheat, maize, rice, and 
soybean) and under various water and N management practices (Figure 1) and climatic zones (Ma et al., 2023). 
Details for these sites—their geographic coordinates, CC and main crop types, the treatment duration, as well as 
field management practices—are provided in Tables S2–S4 in Supporting Information S1.

Because weather data for most study locations was not available, a gridded climate data set at 0.5° resolution 
from GSWP3-W5E5 (Cucchi et al., 2020; Dirmeyer et al., 2006; Lange, 2019) was used as input, choosing the 
grid cell where the experimental sites are located. Likewise, there was not much information on land use during 
the years preceding the field trials for most sites. Therefore, to maintain SOM pools in equilibrium after model 
spin-up, we assumed that all sites were under grassland systems from 1901 to 1905, followed by a cropland 
period of 1906–1910, with this 5-year alternation between grassland and cropland repeated until the field trials 
began. Since cropland at most sites had already been present for several years at the beginning of the CC experi-
ment, we simulated 5 years of cropland preceding the site trials at those locations for which no other information 
was reported. Over the experimental period, model runs were performed according to management information 
reported in the literature (Tables S2–S4 in Supporting Information S1). At the moment LPJ-GUESS does not 
simulate the cultivation of two crops simultaneously on the same field, whereas undersown CCs in the field 
experiments are generally grown together with main crops at least 1–3 months (Valkama et al., 2015). To better 
represent the total length of the cover crop growing season in the model simulations, we adjusted the sowing 
date of undersown CCs (referred to as the A1 runs in Table S1 in Supporting Information S1) to 1 day after the 
main crop harvest (instead of the default 15) and terminated the plants 1 day before the establishment of the next 
primary crop. For CCs solely grown on fallow cropland (A2, Table S1 in Supporting Information S1), their plant-
ing and harvest dates were assumed to be the same as the LPJ-GUESS standard setup (see Section 2.2), following 
the common field practice at most sites (Duval et al., 2016; Kaspar et al., 2012; Mazzoncini et al., 2011). In 
addition, site-specific soil physical properties—bulk density and fractions of sand, silt, and clay—derived from 
the literature (Ma et al., 2023) were used as external forcing to further calculate corresponding soil water charac-
teristics and held constant across all CC simulations.

2.3.2. Global Agricultural Ecosystem Response to Cover Cropping

In this experiment we performed simulations with four CFTs—wheat, maize, rice, and soybean—which jointly 
provide more than two-third of the world's food supply (FAOSTAT,  2023). To detect how CCs affect crop-
land ecosystem services, two cover crop types—leguminous (CCL) and non-leguminous (CCNL) grasses were 
assessed. An additional combined practice, with N-fixing cover crop and no tillage (CCLNT), was used to repre-
sent important aspects of CA. Model outputs of these three practices were compared to a control simulation with 
bare fallow (NoCC), applying the simulation setup given in Table 1.

The model experiments started with a baseline simulation of the historical period (1901–2014) under NoCC 
management after model spin-up, using dynamic gridded climate, land use/land cover, and N fertilizer data 
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(0.5° × 0.5°), together with atmospheric CO2 concentration (data information described below). The result of this 
run was to produce present-day SOM pools on off-season fallow cropland across the globe (Table S1 in Support-
ing Information S1). This baseline simulation is referred to as B1.

Subsequent runs of four management practices listed in Table 1 branched from this present-day state in 2015 
and are referred to as the B2 runs. These simulations ran for 36 years (the maximum duration found in cover 
cropping field trials in our analyzed sites; see Tables S2–S4 in Supporting Information S1) but are not intended 
to estimate SOC storage, N leaching and crop production through 2050; rather, they are designed to detect the 
relative changes in these three ecosystem indicators when replacing bare fallows with CCs. For that reason, we 
use constant repeated 1995–2014 climate with temperature de-trended, combined with 2014 land use, fertilizer, 
manure, and CO2 concentration (Table S1 in Supporting Information S1). In order to contrast short-with long-term 
cover crop impacts, model outputs in the first (years 1–10) and last (years 27–36) decades were used for analysis.

For global-scale applications, LPJ-GUESS was driven by monthly mean temperature, precipitation, solar radi-
ation, and number of wet days from the observation-based CRUJRA v2.1 data set, spanning from 1901 to 2014 
at 0.5° resolution (Harris et al., 2020; Kobayashi et al., 2015). Annual atmospheric CO2 concentration was from 
Meinshausen et al. (2020). Historical land use/land cover input data between 1901 and 2014 were adopted from 
LUH2 (Hurtt et al., 2020) and were remapped from 0.25° to 0.5° with fractions of natural vegetation, pasture, 
and cropland given for each grid cell. The growth distribution of various crop types, distinguishing shares of 

Figure 1. Distribution of cover cropping field studies used for model evaluation of cropland soil organic carbon (SOC) stocks (a), N leaching loss (b), and crop yields 
(c). All studied SOC sites (12) had continuously practiced cover crop (CC) cultivation for more than 3 years, and the leached N loss at the evaluated sites (13) were 
reported as either total N (mineral plus organic) or nitrate (NO3). The influence of CC practice on crop production was investigated in four cropping systems (maize, 
wheat, rice, and soybean) at 29 sites from 16 countries. A summary of field experiments—cover crop types (legumes or non-legumes), growth patterns (undersown or 
fallow), and water and N fertilizer managements to main crops—is shown in (d).
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rain-fed and irrigated crop-specific fraction per grid cell, was based on the MIRCA data set around the year 2000 
(Portmann et al., 2010) and aggregated to the four CFTs simulated in this study. Thus, although the total cropland 
area at each grid cell varied annually over the simulation period, the relative fraction of each CFT within that 
cropland area remained static. To parameterize soil hydraulic properties, cropland soil texture classes in the upper 
soil layer (0–30 cm) from ISIMIP/GGCMI phase 3 (Volkholz & Müller, 2020) were used and held constant over 
the course of the model experiments. In addition, CFT-specific industrial N fertilizer and manure inputs were 
derived from Ag-GRID (Elliott et al., 2015) and Zhang et al. (2017), respectively, ranging from 1901 to 2014 at 
0.5° resolution (Figure S1 in Supporting Information S1).

Since large-scale statistics on actual cover crop acreage do not exist, the CA area was used to represent the potential 
cover crop distribution on agricultural soils, following setups in a recent modeling study (Porwollik et al., 2022). We 
here performed all global simulations under three CA area scenarios: (a) CAhis, representing the approximate area of 
CA practice currently adopted in global croplands; (b) CApot, representing the potential agricultural lands that might 
implement CA systems under present socio-economic and soil biophysical conditions; (c) CAall, assuming all crop-
land that was under CA management. Spatial pattern of CAhis and CApot were taken from a gridded data set devel-
oped by Porwollik et al. (2019), in which national FAO-reported CA area around the year 2005 was downscaled 
to grid cell level and the potential CA-suitable agricultural lands were estimated based on a range of rule-based 
approaches. To characterize the CAall scenario, LUH2 land use data at the year 2014 were used. The spatial distribu-
tion of these three CA scenarios, as well as their total areas, are shown in Figure S2 in Supporting Information S1.

2.4. Data Analysis

Model performance at site scale was evaluated by comparing the simulated and observed ecosystem service 
indicators—SOC stocks, N leaching loss, and crop yield—in response to the implementation of CCs. For SOC 
stocks comparison, when the observed values in some field experiments were only provided as concentrations 
(g kg −1), we converted these to stocks (Mg ha −1) using Equation 1:

SOCstock = (SOCcon × BD × D)∕10 (1)

where SOCstock and SOCcon represent SOC stocks (Mg ha −1) and concentration (g kg −1), respectively. BD is bulk 
density (g cm −3) and D is soil depth (cm).

The sampled soil depth for SOC and N leaching in our compiled data set varied from 15 to 40 cm and 60–150 cm, 
respectively (Tables S2–S3 in Supporting Information S1). To compare model outputs with observations, we stand-
ardized the measured SOC and N leaching from the original depth to the modeled depth of 150 cm, following the depth 
distribution function developed by Jobbágy and Jackson (2000) and further described by McClelland et al. (2021):

𝑌𝑌 = 1 − 𝛽𝛽𝐷𝐷 (2)

VAR150 =
1 − 𝛽𝛽150

1 − 𝛽𝛽𝐷𝐷0
× VAR𝐷𝐷0 (3)

where Y is the cumulative proportion of the SOC or N leaching from the surface to depth D (cm) and β is the rela-
tive rate of decrease in these two variables with soil depth. The value of β is obtained from a meta-analysis study 
and set to 0.9786 for SOC and 0.9831 for N leaching (Abdalla et al., 2019). VAR denotes SOC or N leaching; D0 
is the original soil depth available in the literature; VAR150 and VARD0 represent the cumulative SOC stocks or N 
leaching at 0–150 cm and original soil depth, respectively.

Based on these post-processed site-level observed data, the accuracy of the model in predicting cropland SOC 
stocks, N leaching, and crop yield was assessed using adjusted R 2 (the goodness of fit for the linear regression 
analysis), mean error (ME), mean absolute error (MAE), and the root mean square error (RMSE). In addition, 
to quantify the response of cropland soil C storage to CCs in comparison with the control treatment (NoCC), the 
annual SOC sequestration rate, ΔSOCrate (Mg C ha −1 yr −1), was calculated as:

∆SOCrate =
SOC𝑋𝑋 − SOCNoCC

YR
 (4)

where 𝐴𝐴 SOC𝑋𝑋 and 𝐴𝐴 SOCNoCC are the respective SOC stocks under the cover crop and control treatments, and 𝐴𝐴 𝐴𝐴 
denotes any cover crop practices (CCL, CCNL, and CCLNT; see Table 1 for management abbreviations), and 𝐴𝐴 YR 
represents the duration (years) of management.
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3. Results
3.1. Model Evaluation at Site Scale

3.1.1. Model Performance Across All Sites

Modeled SOC generally agreed well with observations, with high regression slopes (0.75–0.81) and low absolute 
errors (13%–15%) in the control (i.e., NoCC) and cover crop treatments (Figure 2a). We found enhanced cropland 
soil carbon stocks in the two simulated cover crop types compared with NoCC, indicated by positive annual SOC 
sequestration rates of 0.28 and 0.45 Mg C ha −1 yr −1 (on average) in the CCNL and CCL simulations, respectively 
(Table S5 in Supporting Information S1). This compared well with the observed value of 0.48 Mg C ha −1 yr −1 

Figure 2. Comparison of modeled and observed cropland soil organic carbon (SOC) stocks, N leaching and crop yield (a) and their responses to cover crops (b) across 
all studied sites. The dashed line in (a) is the 1:1 line and the black bold line is a fitted linear regression; ME and MAE indicate mean error and mean absolute error, 
respectively (in percent); RMSE is root mean square error, with units Mg C ha −1 for SOC, kg N ha −1 for N leaching, and t ha −1 for yield. Box plots in (b) denote the 
5th and 95th percentiles by the whiskers, median and interquartile range are the box lines, and means are symbolized as diamonds. See Section 2.3.1 for treatment 
abbreviations and their explanations.
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in the CCL case, although the model underestimated the soil carbon enhancement (the range between the 5th and 
95th percentiles) when all cover crop types were included (the ranges of −2.1% to 17.2% and 0.8%–5.8% for 
observations and simulations, respectively; Figure 2b).

Simulated N leaching from bare fallow cropland (NoCC) tended to be somewhat lower than the measurements, 
with a mean underestimation of 14%. By contrast, the model overestimated N losses by 57% in the cover crop 
experiments (Figure 2a). A positive exponential relationship between N fertilizer rate and N leaching (p < 0.01) 
was observed across a range of field sites in this study (Figure S3 in Supporting Information S1). Simulations 
from LPJ-GUESS mostly captured this relationship, although higher leached N rates were modeled in the highly 
fertilized trials (224–260 kg N ha −1) compared with measurements (Figure 2a and Figure S3 in Supporting Infor-
mation S1). Replacing bare fallows with CCs on average reduced N leaching by 54% in the field experiments, 
with the decreases ranging from 20% to 87% for non-legume types and 40%–68% for legume types (Table S5 
in Supporting Information S1). LPJ-GUESS reproduced these mean differences well, but underestimated the 
relative changes in response to CCs, with the modeled reduction of 5%–53% and 4%–65% in the CCNL and CCL 
simulations, respectively (Table S5 in Supporting Information S1, Figure 2b).

In comparison with observations, LPJ-GUESS underestimated crop yields on average by 17%–22% across all 
field trials (Figure 2a), mainly as a result of simulated lower agricultural productivity in the unfertilized systems, 
particularly in wheat and rice (Figure S3 in Supporting Information S1). Compared with the bare fallows, using 
non-legume CCs during the off-season was modeled to reduce the subsequent main-crop production by 2%–16% 
across four assessed farming systems, larger than the mean observed yield reductions (1%–4%) in the field meas-
urements. However, the implementation of N-fixing CCs in our simulations resulted in yield increases in some 
cases, with the production changes from −18.0% to 16.0% when all crop types were included, falling within the 
reported range of −21% to 52% (Table S5 in Supporting Information S1, Figure 2b). In field experiments the 
yield increase due to legume CCs was largest in unfertilized systems, and the impact of legume cover cropping 
gradually declined when main crops received high N application rates. The model reasonably reproduced the 
decreased trend of yield benefits to N fertilizer increases, but generally underestimated these effects in most N 
fertilization trials (Figure S3 in Supporting Information S1).

3.1.2. Soil Organic Carbon Response to Cover Crops

In a long-term (15 years) experiment Mazzoncini et al. (2011) tested the SOC response to agricultural management. 
Three cover crop treatments (NoCC, CCNL, and CCL) with two tillage strategies and four N fertilization rates were 
conducted in a cropping system that grew first maize, followed by wheat-maize rotation, and sunflower in the last 
year (Italy, 10.3°E, 43.7°N; see Table S2 in Supporting Information S1). Since the main crop—sunflower—has 
not been incorporated in the current version of LPJ-GUESS, we modeled this crop type as wheat aiming to test 
whether we could nevertheless reproduce the general response of SOC to the different managements.

After 15 years of cover cropping, the observed mean SOC stocks in the field trials increased from 92.5 to 89.7 Mg C ha −1 
in 1993 to 97.7 and 102.3 Mg C ha −1 in 2008 for CCNL and CCL treatment, respectively (Mazzoncini et al., 2011). 
The modeled soil carbon changes, averaged across a range of management options, were 91.2–97.1 Mg C ha −1 in 
the CCNL simulation and 91.2–98.6 Mg C ha −1 in the CCL simulation over the same period, suggesting overall good 
model performance although SOC increases in the CCL simulation were underestimated (Figure 3a). The 15-year 
adoption of non-legume and legume CCs was simulated to sequester 0.07 and 0.17 Mg C ha −1 yr −1 of soil carbon 
(ΔSOCrate, Equation 4), respectively, relative to bare fallows (NoCC). The observations showed similar responses 
but with higher sequestration rates of 0.26 and 0.57 Mg C ha −1 yr −1 (Table S6 in Supporting Information S1). Over 
the experimental period there was an obvious underestimation of the simulated total aboveground biomass for all 
treatments. This may be partially due to the lower shoot biomass of CCs in the model experiments compared with 
observations (Figure 3b). Moreover, LPJ-GUESS at this point does not simulate the growth of weeds, which amount 
to ∼10%–30% of the total aboveground dry matter in the field measurements (Figure 3b).

3.1.3. Nitrate Leaching and Crop Yield Response to Cover Crops

The ability of the model to simulate observed nitrate leaching and crop yields in response to CCs was examined 
using data from a 4-year field experiment carried out in a rain-fed maize-soybean rotation system in Ames, USA 
(93.7°W, 42.1°N; see Tables S3–S4 in Supporting Information S1). At this site, ryegrass was the overwintering 
cover crop (Kaspar et al., 2012), solely cultivated on fallow cropland; a legume cover cropping experiment was 
not conducted in the field.
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Shoot biomass and N mass of the C3 herbaceous CCs in our simulations first increased rapidly between October 
and November, and then commenced again in late March in response to the increasing temperature in spring 
(Figure 4a). With exception of 2008, the modeled aboveground production of CCs was lower than the field meas-
urements; differences between modeled and measured were 0.7 and 0.5 t ha −1 in 2007 and 2009, respectively. 
Over the cropping seasons there was an underestimation of maize yield for all simulations, ∼15%–26% lower than 
the observed values of 11.2–11.7 t ha −1 (Figure 4a). Replacing bare fallows with CCs was simulated to reduce 
maize production by 6%–8%, in line with the observed loss of 1%–4%, likely reflecting indirect competition for 
water and nutrients between CCs and main crops. These negative impacts of CCs on yield were also found in the 
field-grown soybean trials (reduction of 1%–13%) but not found in our model experiments (Figure 4a).

The simulated nitrate leaching from bare fallow cropland (NoCC) ranged from 32 to 95 kg N ha −1 yr −1 during 
2006–2009 (with a total cumulative loss of 219 kg N ha −1 until 2009; Figure 4b), and exceeding the observed 
values of 29–67 kg N ha −1 yr −1 over the same period (195 kg N ha −1 in total; Kaspar et al., 2012). Using CCs 
mitigated this hydrological N loss by 35%–75% to 9–37 kg N ha −1 in the field trials, comparable but higher than 
our modeled reduction of 13%–34%. The cause for the underestimated reduction in N leaching may be that the 
simulated soil N uptake by CCs was lower than the field measurements, given that shoot N mass of CCs was 

Figure 3. Modeled and observed cropland soil organic carbon (SOC) (a) and aboveground biomass (b) under three cover crop treatments at a rain-fed field site with 
Mediterranean climate in Pisa (Italy) between 1993 and 2008. The main crop of sunflower only planted in the last year of the field experiments was modeled as wheat. 
The observed SOC stocks in Mazzoncini et al. (2011) were reported as the mean values of two tillage strategies and four N fertilizer levels and were labeled as “All 
average” in (a). N0, N1, N2, and N3 in (a) are respectively no N, low N, medium N and high N fertilization rates, with 0, 60, 120, and 180 kg N ha −1 for wheat and 0, 
100, 200, and 300 kg N ha −1 for maize. The observed aboveground biomass shown in dashed lines in (b) represents the mean values from 1993 to 2008. Abbreviations: 
NoTill—no tillage; Till—Tillage; RR—100% of main-crop residue retention; M—maize; W—wheat; SF—sunflower; MCRs—main crop residues; CCs—cover crops.
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below the observations (Figure 4a). Step changes in simulated N leaching over the cropping seasons 2006 and 
2008 (Figure 4b) corresponded to the high fertilization rates of 198–225 kg N ha −1 in maize systems. Such an 
increase was absent in 2007 and 2009 mainly because soybeans were not fertilized. In addition, the replacement 
of bare fallows with CCs in our simulations had the potential to reduce soil percolation water by 3%–12%, agree-
ing well with the observed decreases of 4%–20% (Figure 4b).

3.2. Global Crop Ecosystem Responses to Cover Crops

3.2.1. Soil Carbon Stocks

Our simulations of the three explored CC managements resulted in a net soil C increase across global croplands 
compared with the control treatment (NoCC), with the largest SOC sequestration rates (ΔSOCrate, Equation 4) 
found in warm and moist regions (Figure 5 and Figure S4 in Supporting Information S1). For the 36-year simu-
lation period, the maximum annual rates of soil C sequestration in the CCNL and CCL runs were reached in the 
sixth year after introducing cover cropping, whereas in the CCLNT simulation they were already achieved in the 
fourth year after the implementation of altered management (Figure 5). After these initial peaks, the annual soil 
C accumulation effect persisted over the course of the remaining simulation period, but with declining rates. On 

Figure 4. Modeled and observed shoot biomass and shoot N mass of cover crops, and main crop yield (a) in a rain-fed maize-soybean rotation system in Ames (USA) 
from 2006 to 2009, and the response of cumulative percolation water and nitrate leaching to cover crop practice compared to the control treatment with bare fallows 
(b). The observations from overwintering cover crops(ryegrass) reported in Kaspar et al. (2012) were chosen for model evaluation. Maize during the growing season 
received 225 and 198 kg N ha −1 of fertilizer application in 2006 and 2008, respectively, and no chemical N fertilizer was applied to soybean over the entire experimental 
period. Abbreviations: NoCC—control treatment with bare fallows; CCNL—non-legume cover crops; d—day of the year; P—planting date of main crops; H—harvest 
date of main crops; Soy—soybean.
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average, using CCs was modeled to sequester 0.10, 0.14, and 0.32 Mg C ha −1 yr −1 of soil carbon in the CCNL, 
CCL, and CCLNT runs, respectively (Figure 5).

Under the CAall scenario, modeled total soil C stocks (0–150 cm) of the various managements ranged from 164.9 to 
176.4 Pg C across global croplands, somewhat larger than the published estimates for the topsoil layer (140 Pg C 
in 0–30 cm, Zomer et al., 2017; 115 Pg C in 0–50 cm, Ren et al., 2020) and within the reported values for the 
depth 0–100 cm ranging between 157 and 164 Pg C (Global Soil Data Task, 2014; Jobbágy & Jackson, 2000) 
and 210 Pg C (for 0–200 cm; Jobbágy & Jackson, 2000). In comparison with bare fallows (NoCC), simulations 
from LPJ-GUESS resulted in an increase of soil C storage by 3.8 (+2.3%) and 5.4 Pg C (+3.3%) after 36 years of 
implementation of non-legume (CCNL) and legume cover crops (CCL), respectively, between the main cropping 
seasons. Adopting no tillage (CCLNT) further contributed to increasing modeled C storage by 11.5 Pg C (+7.0%) 
across global croplands (CAall scenario; Table 2).

Figure 5. Area-weighted aggregated average annual soil C sequestration rate (Equation 4, Mg C ha −1 yr −1) across global (1,597 × 10 6 ha), temperate (987 × 10 6 ha), 
and tropical (606 × 10 6 ha) croplands for three cover crop managements (CCNL: blue; CCL: red; CCLNT: black) in the CAall scenario (a), and relative responses (%) of 
soil organic carbon stocks to these cover crop strategies compared with the control treatment (bare fallows, NoCC) in the first and last decades of the 36-year simulation 
period (b). The temperate region in this study is defined as the latitudes from 23.5° to 60° N/S of the equator, and latitudes between 23.5°S and 23.5°N are classified 
as the tropics. Box plots in (b) denote the 5th and 95th percentiles with whiskers, median and interquartile range with box lines, and mean with diamonds across all 
cropland grid cells (global:35,039; temperate:21,223; tropical:12,942).
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3.2.2. Cropland N Leaching and Yields

In addition to soil C benefits, CCs resulted in a reduction in simulated N leaching in most global croplands (i.e., 
CAall scenario), with the largest decreases (∼75%–90%) found in Russia and large parts of Africa, regions where 
mineral N fertilizer application were rather low (Figure S1 in Supporting Information S1). Modeled N leaching 
reduction in response to CCs in China, Western Europe, and the United States—areas with substantial fertilizer 
application (Figure S1 in Supporting Information  S1)—were still 0%–45% for the 36-year simulation period 
(Figure 6). Our simulated total nitrogen loss of 17.8–18.4 Tg yr −1 from fallow cropland (NoCC) was in good 
agreement with statistics-based estimates of 14–23 Tg N yr −1 (J. Liu et al., 2010; Smil, 1999), but lower than the 
findings of 26–31 Tg N yr −1 in Lin et al. (2001) and Q. Liu et al. (2019) who uses a modeling approach (Table 2). 
Replacing bare fallows with cover cropping across global croplands was modeled to reduce N leaching by 7.3–7.6 
and 6.1–6.2 Tg N yr −1 in the CCNL and CCL runs, respectively. The latter (i.e., CCL) was ∼17% lower than the 
decreases of 7.3–7.7 Tg N yr −1 from CCLNT (Table 2, Figure 6), supporting arguments for practicing conserva-
tion tillage techniques to mitigate hydrological N losses.

The modeled impacts of legume cover crops (CCL) on yields of the main crops showed large spatial variation 
(Figure 7; see Figure S5 in Supporting Information S1 for the spatial patterns of CCNL and CCLNT). Small, and 
inconclusive with respect to their direction, yield changes between −5% and 5% (36-year average) were found in 
China across all crop types, likely as a consequence of the high N fertilizer input (Figure S1 in Supporting Infor-
mation S1). A widespread yield loss in response to CCs was seen in northern cold and temperate dry climates, 
whereas yields in humid regions—such as the eastern USA, southern China, and most of South America and 
Africa—increased (Figure 7), reflecting high biomass and high N fixation rates (Figure S6 in Supporting Infor-
mation S1). However, these modeled impacts varied widely between different cropping systems, with the largest 
yield variability found in maize and wheat, followed by rice. Productivity of soybean crops responded only little 
to legume CCs (Figure 8).

Our model simulations under bare fallow management (NoCC) resulted in a total crop production of 2,743–2,785 
million tonnes yr −1 globally, consistent with FAO-reported estimate of 2,806 million tonnes in the year 2014 
(Table 2), implying the reliability of the current model version to reproduce food production at the global scale. 

Table 2 
Modeled Total Cropland Soil Organic Carbon Stocks (0–150 cm), N Leaching Loss, and Crop Production With Alternative Cover Crop Managements Under Three 
CA Area Scenarios in the First and Last Simulated Decades, Compared With Literature-Based Estimates

Soil C stock, total (Pg C) N leaching, total (Tg N yr −1) Crop production b (million tonnes per year)

Scenario a Management 1–10 years 27–36 years 1–10 years 27–36 years 1–10 years 27–36 years

CAhis (126 × 10 6 ha) NoCC 15.8 15.6 0.88 0.80 301 287

CCNL 15.9 15.9 0.52 0.49 286 292

CCL 16.0 16.1 0.58 0.54 295 306

CCLNT 16.2 16.7 0.51 0.48 279 294

CApot (590 × 10 6 ha) NoCC 68.9 68.0 5.2 5.4 1,145 1,126

CCNL 69.4 69.5 3.3 3.2 1,068 1,119

CCL 69.6 70.2 3.7 3.6 1,105 1,172

CCLNT 70.3 72.5 3.2 3.2 1,034 1,125

CAall (1,597 × 10 6 ha) NoCC 167.3 164.9 18.4 17.8 2,785 2,743

CCNL 168.5 168.7 10.8 10.5 2,635 2,765

CCL 169.1 170.3 12.2 11.7 2,714 2,875

CCLNT 171.1 176.4 10.7 10.5 2,557 2,780

Other studies (global cropland) 115 c; 140 d; 157–210 e; 164 f 14–20 g; 23 h; 26 i; 31 j 2806 k

 aSee Figure S2 in Supporting Information S1 for spatial pattern of three CA area scenarios.  bSummed yield of four crop types: maize, wheat, rice, and soybean.  cRen 
et al. (2020), 0–50 cm, 1,667 × 10 6 ha.  dZomer et al. (2017), 0–30 cm, 1,631 × 10 6 ha.  eJobbágy and Jackson (2000), the estimate for 0–100 cm is 157 Pg C, and that 
for 0–200 cm is 210 Pg C, 1,400 × 10 6 ha.  fGlobal Soil Data Task (2014), 0–100 cm, 1,518 × 10 6 ha.  gSmil (1999).  hJ. Liu et al. (2010).  iLin et al. (2001).  jQ. Liu 
et al. (2019).  kFAOSTAT (2023); reported total production in the year 2014 were used for comparison: 1,040, 729, 731, and 306 million tonnes for maize, wheat, rice, 
and soybean, respectively.
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Compared with fallow soils during off-season period, using CCs was modeled to potentially reduce main-crop 
yield in the first decade for the 36-year simulation, with mean decreases of 6%, 3%, and 8% in CCNL, CCL, 
and CCLNT, respectively. However, these negative yield effects were gradually diminished over the course of 
simulation, and turned to positive impacts in the last decade, with slight production increases of 1%–5% simu-
lated for the three assessed managements in comparison with the control treatment (Table 2).

4. Discussion
4.1. Soil Carbon Stocks

LPJ-GUESS simulates cropland soil carbon stocks across all the evaluated sites well, although the measured SOC 
increase in response to CCs is generally underestimated (Figure 2). One likely explanation for this discrepancy 
is the low biomass production of CCs in the model experiments (Figures 3 and 4), resulting in less C input to 
the soil pools compared to the field measurements. Experimental evidence from the field sites has shown that 
the amount of biomass C added to the soil through CCs varies widely between cover crop species (Constantin 
et al., 2010; Kuo et al., 1997; Sainju et al., 2002). Using two grass functional types (i.e., groups of grasses with 
similar functional behaviors; see Section 2.2) to represent all cover crop situations in our standardized evaluation 
cannot reflect this variability. Also, when comparing herbaceous CC effects on soil carbon stocks, belowground 
C input via roots has been proven to stably enhance SOC sequestration in the field measurements (Blanco-Canqui 

Figure 6. Maps of the simulated responses (%, 36-year average) of cropland N leaching to CCNL (a), CCL (b), and CCLNT (c) managements, relative to the control 
treatment with bare fallows (NoCC) in the CAall scenario. Box plots of these responses in the first and last simulated decades are shown in (d), denoting the 5th and 95th 
percentiles with whiskers, median and interquartile range in box lines, and mean with diamonds across all cropland grid cells (35,039). The inset donut plots in (a–c) 
represent the area proportion of each classified ΔN leaching from the total cropland area.
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et al., 2015; Rasse et al., 2005) but with large variability due to differences in soil types, local climate, and CC 
species (Sainju et al., 2017). For instance, in a 2-year U.S. trial, Kuo et al. (1997) found that the root-to-shoot 
ratio of plant biomass C grown under natural conditions ranged from 0.5 to 0.8 for ryegrass (non-legume) and 
0.2–0.5 for hairy vetch (legume). In comparison, higher root-to-shoot ratios in perennial grasses (e.g., intermedi-
ate wheatgrass and smooth bromegrass) ranging from 1.0 to 3.5 were reported in another U.S. field experiment 
with continental climate, depending on soil sampling depth and nutrient availability (Sainju et al., 2017). Here, 
we implemented a prescribed root-to-shoot ratio of 2.0 to broadly represent below- and aboveground biomass 
productions in herbaceous plants based on literature values (see Section 2.2). Whether this set value affects the 
simulated root-derived carbon from CCs is difficult to assess because root biomass information was typically 
unavailable from the test sites. In addition, at this point LPJ-GUESS does not account for potential C inputs 
through weeds (Figure 3; Mazzoncini et  al., 2011), which may further bias our assessed CC effects on SOC 
sequestration rates at site scale.

Our modeled global-scale small SOC increase of 1.0%–2.8% for non-legume cover crops (CCNL) and 1.5%–4.1% 
for legumes (CCL) (Figure 5) agreed with the meta-analysis of Abdalla et al. (2019) and Poeplau and Don (2015), 
in which replacing bare fallows with CCs statistically showed no significant difference between cover crop types 
for SOC sequestration, with a mean increase of 4.1% and 4.5% found for non-legumes and legumes, respectively. 
However, these reported impacts were somewhat lower than a recent synthesis conducted by Jian et al. (2020), 
who found that cover cropping would result in a net SOC sequestration of 0.56 Mg C ha −1 yr −1 with all cover 

Figure 7. Maps of simulated crop-specific production in response to legume cover crops (CCL) compared to the control treatment with bare fallows (NoCC) in the CAall 
scenario: maize (a), wheat (b), rice (c), and soybean (d). Modeled crop-specific production at each grid cell is calculated as the area-weighted aggregated results in rain-
fed and irrigated conditions. Global total cropping areas (rain-fed and irrigated) in the year 2014 used in this study are 184.5, 247.7, 151.7, and 95.9 × 10 6 ha for maize, 
wheat, rice, and soybean, respectively, with rain-fed proportions of 84%, 77%, 44%, and 94% for those four crop types. Yield relative changes (%) in maps are given as 
the mean values for the 36-year simulation period. The inset donut plots represent the area proportion of each classified Δyield from the total crop-specific area.
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crop types included, ∼15.5% higher than the bare-fallow control treatment. In our model experiments, only the 
combined agricultural practice, that is, legume CCs and no tillage (CCLNT), produced a mean SOC increase 
of 9.7% after a 36-year simulation (Figure 5), which is more comparable to but still below the findings in Jian 
et al. (2020). The discrepancy between the global simulation and site-level field experiments likely reflects their 
difference in the investigated geographical scales and land-use history, as well as to the diverse managements 
and methodologies among field studies (such as CC species, retained residue proportion, and implementation 
duration). Nevertheless, the potential of obtaining higher SOC stocks via cover crop management seems realistic, 
even though the exact magnitude of the effect remains unresolved.

In the global experiment, the annual SOC sequestration rate was modeled to be largest in the early years after 
introduction of CCs, and it then gradually declined over the course of the remaining simulation period (Figure 5), 
similar to published findings. Sommer and Bossio  (2014) reported annual SOC stock changes in response to 
the improved agricultural practices approaching a maximum between the third and seventh year after adopting 
soil-conserving techniques and a subsequent decreasing trend for 15–20 years. A meta-analysis of tropical crop 
ecosystems also indicated reduced SOC sequestration rates (after an initial peak) to persist for 4–25 years until 
a new SOC equilibrium state was reached, but the duration was highly dependent on climates and soil types 
(Powlson et al., 2016). In our model experiments, at the end of 36-year simulation the continued trends indicate 
that a new steady state in soil C and N pools had not yet been achieved, which was similar to results in Porwollik 

Figure 8. Box plots of the simulated crop-specific production in response to three cover crop managements (CCNL: blue; CCL: red; CCLNT: black), compared to the 
control treatment with bare fallows (NoCC) in the first and last simulated decades under the CAall scenario: maize (a), wheat (b), rice (c), and soybean (d). Modeled 
crop-specific production at each grid cell was calculated as the area-weighted aggregated results in rain-fed and irrigated conditions. Box plots of yield relative changes 
(%) denote the 5th and 95th percentiles with whiskers, median and interquartile range with box lines, and mean with diamonds across all crop-specific grid cells (maize: 
31,635; wheat: 27,126; rice: 21,598; soybean: 23,306).
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et al. (2022), who found no dynamic steady state after 50 years of simulation with the LPJmL model in response 
to planting herbaceous CCs on global cropland during fallow period.

In our study we attempted to quantify the contribution of CCs to enhancing soil C pools globally, which could 
also be interpreted as a climate change mitigation measure. After 36 years of implementation, using two herba-
ceous CCs was found to sequester ∼0.01 Pg yr −1 soil carbon across the simulated 126 × 10 6 ha cropland (CAhis 
scenario, ∼8% of current cropland areas worldwide; Table 2). If all agricultural lands were to adopt cover crop 
practices (CAall scenario), the SOC sequestration potential could be as high as 0.11, 0.15, and 0.32 Pg C yr −1 
(i.e., 0.40, 0.55, and 1.17 Pg CO2 yr −1) for non-legumes (CCNL), legumes (CCL), and the combined agricul-
tural practice (CCLNT), respectively, compensating for 8%–22% of annual direct GHG emissions from crops 
and livestock activities (5.3 Pg CO2eq yr −1; FAO, 2020), or equivalent to 10%–29% of GHG emissions from 
agricultural land use change (4.0 Pg CO2eq yr −1; FAO, 2020). Planting anywhere near 100% of global cropland 
with CCs is impractical for a number of reasons: a large share of agricultural area used for winter crops (Kaye 
& Quemada,  2017; Poeplau & Don,  2015), potential water limitations or too low winter temperature during 
off-season periods (Dabney et al., 2001), and insufficient growing windows for CCs in multi-cropping systems 
in the tropics (Hu et al., 2018; Zhu et al., 2012). Nevertheless, these estimates from our simulations do provide 
an upper bound for the amount of atmospheric carbon that might be sequestered through cover crop cultivation. 
Under the more realistic adoption scenario of CApot (590 × 10 6 ha, ∼37% of current cropland areas; Table 2), 
carbon taken up in response to individual cover crop practices (0.15 and 0.22 Pg CO2 yr −1 for CCNL and CCL, 
respectively) and the combined conservation management (CCLNT; 0.46  Pg  CO2  yr −1) could approximately 
offset 3%–9% of direct yearly GHG emissions from crops and livestock activities. However, additional N inputs 
to the soil from CCs could also potentially offset the CO2 mitigation effect on the field scale as these would lead 
to increased N2O emissions (Lugato et al., 2018; Quemada et al., 2020). Whether such a trade-off between soil 
carbon and nitrogen GHG fluxes due to cover cropping would emerge at the global level was not considered in 
this study and thus needs to be quantified in future modeling work.

4.2. N Leaching

Both model and field experiments showed that N leaching from cropland ecosystems was strongly associated 
with N management: applying chemical fertilizer resulted in higher hydrological N loss compared with the unfer-
tilized treatments (Figure 4 and Figure S3 in Supporting Information S1), likely a consequence of the enhanced 
size of the nitrate pool. However, several disagreements between simulated and measured N leaching were found 
for some field trial locations despite similar N fertilizer inputs (Figure 2 and Figure S3 in Supporting Informa-
tion S1), indicating that other factors, such as soil texture type, climate condition, or throughflow, are at play as 
well. For example, two of the field experiments included in our analysis sites showed a decreasing trend in total 
N leaching (mineral plus organic) from coarse-, medium-, to fine-textured soils (Aronsson et al., 2011; Lemola & 
Turtola, 2000). When testing our simulation setup at these two locations, the reported soil texture effect was not 
captured well by the model (not shown), suggesting that the N leaching representation in LPJ-GUESS should be 
further improved. Moreover, compared with observations, the overall smaller reduction in N leaching in response 
to the simulated CCs (Figure 2) might be partially attributed to the underestimated biomass of CCs (Figures 3 
and 4), which would also underestimate plant N demand and soil N uptake. In addition, since the model cannot 
simulate two plants growing at the same time (see Section 2.3.1), the total length of the undersown-CC growing 
period in our simulations was approximately 1–2 months shorter than the field trials across all northern European 
sites (Table S3 in Supporting Information S1), which further limited cover crop capacity for uptake of excess N 
remaining in the soil column in the model.

Compared with the bare-fallow setup, mean decreases of 41% and 34% in N leaching were simulated across 
the globe in response to the experiment with non-legume (CCNL) and legume cover crops (CCL), respectively 
(Table 2), close to the lower end of the wide reported reduction range between 30% and 70% in the literature 
(Abdalla et al., 2019; Nouri et al., 2022; Quemada et al., 2013; Thapa et al., 2018; Tonitto et al., 2006). The reduc-
tion in N leaching due to CCs partially reflects the decreases in leachate volume and soil reactive N concentration 
because of enhanced water and N uptake by CCs during their growth (Thapa et al., 2018). This process may 
also underlie the smaller decreases in N leaching under N-fixing CCs compared with non-legumes for both field 
measurements (Abdalla et al., 2019; Nouri et al., 2022) and model simulations (CCNL vs. CCL). Where biological 
N fixation is the dominant N source for leguminous plants, it diminishes the capacity for mineral N uptake from 
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soils (Fontaine et al., 2022). Moreover, including the no-till technique in cover cropping in our simulations had 
the potential to further mitigate N leaching (41% in CCLNT vs. 34% in CCL; Table 2) mainly due to the reduced 
net N mineralization rates (Figure S7 in Supporting Information S1). This is in line with the findings from a 
meta-analysis by Thapa et al. (2018) and a recent modeling study by Porwollik et al. (2022).

Globally, the largest percent decreases in N leaching due to CCs were modeled in regions with relatively 
little N fertilizer use (such as Russia and large parts of Africa; Figure 6 and Figure S1 in Supporting Infor-
mation S1), where soil reactive N pools were small. Results from a 6-year field experiment implemented by 
Wittwer et al. (2017) also showed that the effectiveness of CCs in reducing N leaching decreased with manage-
ment intensity (e.g., tillage regimes and fertilizer application rates). This effect underlies discrepancies at some 
national borders, such as Indonesia and Papua New Guinea (Figure 6), countries with similar climates but with 
contrasting fertilizer applications (Figure S1 in Supporting Information S1). Likewise, in some arid and semi-arid 
regions, as well as temperature-limited areas in the high latitudes (e.g., Canada) a slight decrease of N leaching 
in response to cover cropping systems was found, as poor growth conditions constrained the CC capacity for soil 
N uptake. In addition, the rapid turnover rate of SOM pools driven by warm and moist climate (Olin, Lindeskog, 
et al., 2015), together with abundant precipitation may increase N leaching with cover crop practices in the humid 
tropics (Figure 6) as a result of high biomass of N returned to soils (Figure S6 in Supporting Information S1) and 
enhanced throughflow (Porwollik et al., 2022).

4.3. Crop Yields

Accounting for the impacts of management practices, particularly regarding water and N limitations to crop 
growth in LPJ-GUESS, resulted in a good agreement between simulated and observed crop yields across different 
field trials despite some outliers in rice and wheat systems (Figures S3 and S8 in Supporting Information S1). 
For both modeling and field-based experiments, yields in the main crops following non-legume CCs declined, 
although the overall difference from fallow controls (NoCC) was small (Figure  2b). The difference between 
periods of soil N mineralization and high N demand of main crops (Marcillo & Miguez, 2017), and enhanced 
soil N immobilization shortly after the planting of non-legume CCs (Abdalla et al., 2019; Erenstein, 2003) may 
contribute to the declines in yields of the main crops in the field experiments. In comparison, N-fixing CCs 
with relatively low C:N ratios are expected to stimulate soil N release during their decomposition, enhancing 
plant-available N in soils (Li et al., 2020; Quemada et al., 2013; Thapa et al., 2018). This was in line with our 
model findings, wherein legume CCs generally resulted in higher net N mineralization rates than non-legumes 
(Figure S7 in Supporting Information S1) and thus increased the productivity of the main crops in some cases 
(Figure 2b). However, it should be noted that these CC effects were highly dependent on cropping systems, with 
little impact found on productivity of soybeans (Table S5 in Supporting Information S1). This is likely due to 
their N fixation capacity, which diminished the N competition between CCs and soybeans in both field trials and 
model simulations.

Our modeled global mean yield losses due to CCs in the first decade of the simulations (−3% for CCL and −6% 
for CCNL; CAall scenario in Table 2) compared well with a recent meta-analysis by Garba et al.  (2022), who 
reported a mean crop production change of −4.9% and −10.1% for legume and non-legume CCs, respectively, 
after 2–17 years of management. Main-crop yield reduction under cover cropping systems likely reflected (a) the 
indirect competition for water and nutrients between CCs and subsequent main crops (Valkama et al., 2015), and 
(b) the time that soil SOM pools need to adjust to management shifts (Figure 5 and Figure S7 in Supporting Infor-
mation S1). Garba et al. (2022) also pointed out that cover cropping systems under the no-till practice resulted 
in lower main-crop yields compared with conventional tillage, in line with our model findings in terms of total 
crop production worldwide (CCLNT vs. CCL; Table 2). However, at least in our simulations, these negative yield 
effects induced by conservation tillage may be mitigated over the course of the simulation (Table 2) because of 
the gradual stabilization of soil C and N pools over time (Figure 5 and Figure S7 in Supporting Information S1). 
A similar finding from a meta-analysis by Pittelkow et al. (2015) indicated that yield benefits, globally, in cereal- 
and legume-based cropping systems may be attained after 10+ years of conversion from conventional tillage to 
no-till management.

N fertilizer application was found to be another factor that influenced the effectiveness of CCs on subsequent crop 
yields for both site-level (Figure S3 in Supporting Information S1) and large-scale simulations (Figure 7). The 
smallest impacts on main-crop production were found for well-fertilized cover cropping systems, consistent with 
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previous field-based reviews (Daryanto et al., 2018; Marcillo & Miguez, 2017; Quemada et al., 2013; Tonitto 
et al., 2006; Zhao et al., 2022), since enhanced soil mineral N pools driven by fertilization reduce the N compe-
tition between CCs and main crops. This can explain the small yield penalty (or benefit) from cover cropping 
in soybean (Figures 7 and 8), which is a nitrogen fixer and experiences less N stress during the growing season 
compared with cereal crops. Likewise, the spatial variability regarding CC impacts on rice production was also 
much smaller than simulated maize and wheat CFTs (Figures 7 and 8), primarily because rice in our simulations 
was mostly irrigated (Figure 7), which reduced water limitation on crop growth caused by CCs in rice-producing 
areas. Furthermore, the broadly negative impacts of CCs on simulated yields in northern temperate climatic 
regions (Figure 7) can be attributed to the slow decomposition of SOM in response to low temperature, where 
the N retained in the SOM is released evenly throughout the year and not easily available for main crop uptake 
after CC growth (Olin, Lindeskog, et al., 2015). In contrast and as discussed above, plant materials from CCs in 
the humid tropics are expected to rapidly decompose due to the fast turnover rate, continuously releasing reactive 
N for plant uptake in the next cropping season and therefore enhancing main-crop productions. This contrasting 
spatial difference in yield changes between temperate and tropical climates supports a meta-analysis finding that 
cultivating CCs during bare-fallow period, on average, has a risk to reduce main-crop productivity by ∼12% in 
temperate agricultural soils while gaining ∼15% of yield benefits in the tropics (Garba et al., 2022).

4.4. Modeling Limitations and Implications

A detailed evaluation of modeling CC impacts on cropland worldwide remains a challenge due to various cover 
crop species, farming rotation systems, and managements in the field trials. We mainly examined the model 
performance via categorizing herbaceous CCs as non-legume and legume functional types, with site-specific 
management practices considered (Tables S2–S4 in Supporting Information  S1). Although the current C-N 
version of LPJ-GUESS can reproduce the observed responses of ecosystem service indicators to CC cultivation, 
the magnitude of these changes did not always match experimental measurements (Figure 2, Table S5 in Support-
ing Information S1). This likely reflects the differences between highly controlled field conditions and model's 
representation of management history, initial SOM levels, cropping system management, and the C-N allocation 
scheme in CCs. In addition, important processes that determine CC impacts in the field experiments—such as 
occurrence of weeds (Mazzoncini et al., 2011), intercropping (Valkama et al., 2015), termination methods of CCs 
(Bloszies et al., 2022); erosion (Daryanto et al., 2018), and soil structural modification via grass roots (Nouri 
et al., 2022)—have not been accounted for in the model.

To compare model outputs with observations, as introduced in Section 2.4, we standardized the measured SOC 
from the original depth to the modeled depth of 150 cm using an empirical depth distribution function. There are 
large uncertainties associated with these extrapolated SOC stocks due to the varying management effects on soil 
C pools with depth. For example, a global meta-analyses is found SOC benefits of no-till farming to be statisti-
cally significant in the topsoil (0–15 cm) and decline with soil depth (Haddaway et al., 2017). Scaling SOC stocks 
with a simple extrapolation function cannot reflect the observed variability in the field and thus our approach by 
necessity is a simplified one.

Legume CCs are usually identified as a promising strategy to substitute chemical N fertilizer in agricultural 
productions due to their high N fixation rates (Herridge et al., 2022; Peoples et al., 2021). Our modeled N fixed 
by natural C3 grass (a surrogate for white clover; see Text S1 in Supporting Information S1) during main-crop 
off-season periods are 30–70 kg N ha −1 yr −1 in warm and moist regions (36-year average; Figure S6 in Supporting 
Information S1), which are lower than the reported range of 49–154 kg N ha −1 yr −1 but these latter estimates were 
for the entire year (Anglade et al., 2015; Burchill et al., 2014; Ledgard et al., 2001). Nonetheless, in our simula-
tions employing legume CCs results in higher yield benefits in the humid tropics compared with non-legumes 
(Figure 7 and Figure S5 in Supporting Information S1). As described in Section 2.1, one main growing season 
within a year is modeled in LPJ-GUESS, total agricultural production achieved by multi-cropping systems in the 
tropics are not yet captured. As a consequence, the N fixation rate and biomass in legume CCs may be too high 
since we overestimate the length of the bare-fallow period for cover crop cultivation (Porwollik et al., 2022). 
Compared to controls with no CCs, such an overestimation would then be possibly reflected in high SOC seques-
tration rates and yield benefits in tropical climates.

The inclusion of the no-till technique in cover cropping is an effective practice under CA systems for mitigating 
climate change (Blanco-Canqui et al., 2015). This combined strategy in our study is also modeled as a win-win 
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management option in terms of enhancing SOC stocks while reducing N leaching rates, despite the accompany-
ing ∼8% of decrease in total crop production when integrated over global cropland for the first simulated decade 
(Table 2). It should be noted that assessing the effects of no-till management on cropland N leaching remains 
uncertain. Some studies reported that conservation tillage can slightly reduce this hydrological N loss because 
of the diminished net N mineralization rates (Porwollik et al., 2022; Salahin et al., 2021; Thapa et al., 2018). 
However, other studies found enhanced nitrate leaching in the reduced-tillage soils compared with conventional 
tillage systems, mainly due to the enhanced water drainage caused by greater abundance of macropores (prefer-
ential flow channels) and better soil infiltrability (Daryanto et al., 2017). It remains unknown which of these two 
processes played a more important role in the field trials, but the modifications of soil structural and hydraulic 
properties in response to tillage are not included in the version of the LPJ-GUESS used in this study.

Rather than planting herbaceous CCs, it is more common to use legume crops (e.g., faba bean and field peas) as 
“green manure” in some temperate regions (Andersen et al., 2020; Rinnofner et al., 2008). These grain legumes 
are usually intercropped with other cash crops, and incorporated to soils at full bloom stage to maximize N fixa-
tion rates while minimizing soil water depletion (Denton et al., 2017; Williams et al., 2014). To better represent 
region-specific cover crop practices, the implementation of N-fixing grain legumes as intercrops, together with 
multi-cropping systems within a year (see discussion above), remains to be taken into account in future model 
work.

5. Conclusions
In this study we developed a new C3 grass functional type with biological N fixation in LPJ-GUESS to better 
account for legume CC effects on global crop ecosystems. The simulated C-N variables and main-crop produc-
tions in response to two herbaceous cover crop types (i.e., non-legumes and legumes) were widely evaluated 
against measured data from site level to global. Our model estimates demonstrated that crop ecosystems imple-
mented in LPJ-GUESS realistically responded to non-legume and legume cover cropping under a range of water 
and N managements, and resulted in comparable C-N variables with observations, particularly for cropland SOC 
stocks.

When integrated over global croplands, our long-term simulations revealed that the impacts of CCs on agricul-
tural soils can be beneficial for environmental sustainability without compromising crop production, particularly 
for the integrated management practice with legume CCs and no-till technique included. This combined strategy 
was modeled to achieve an annual SOC sequestration rate of 0.32 Mg C ha −1 yr −1 and to reduce N leaching by 
41% (36-year average), also with a yield increase of 2% in the last simulated decade. The influence of CCs on 
crop production was strongly associated with main crop types and N fertilizer inputs, with small yield changes 
found in soybean systems and highly fertilized agricultural soils. Processes missing in the model, such as weeds, 
within-year multi-cropping systems, and cover crop management, may have biased our estimates of CC impacts 
on cropland globally.

The dynamic process of N fixation for grass CCs in LPJ-GUESS provides an opportunity to overall assess atmos-
pheric carbon and nitrogen flows to agricultural lands during fallow periods, and thus is relevant for the estimates 
of global terrestrial C-N fluxes and pools under present-day and future climate, including how CO2 uptake versus 
N2O emissions might interplay. It can also help to predict the possibility of substituting synthetic fertilizer with 
N-fixing green manure in global crop ecosystems, with various management strategies and climate conditions 
considered.
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Data Availability Statement
Global historical climate data of GSWP3-W5E5 are available at https://doi.org/10.48364/ISIMIP.342217 (Lange 
et al., 2021). The monthly climate forcing data set of CRUJRA can be downloaded at https://data.ceda.ac.uk/
badc/cru/data/cru_jra/cru_jra_2.1 (Harris et al., 2020; Kobayashi et al., 2015). National yield statistics of four 
crop types presented in this paper are from http://www.fao.org/faostat/en/#data (FAOSTAT, 2023). The site-level 
observations collected from the existing literature, together with large-scale model inputs and outputs as shown 
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in the figures of this study, can be publicly accessed through the Zenodo repository at https://doi.org/10.5281/
zenodo.7646911 (Ma et al., 2023).
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Abstract. Improved agricultural management plays a vital
role in protecting soils from degradation in eastern Africa.
Changing practices such as reducing tillage, fertilizer use,
or cover crops are expected to enhance soil organic carbon
(SOC) storage, with climate change mitigation co-benefits,
while increasing crop production. However, the quantifica-
tion of cropland management effects on agricultural ecosys-
tems remains inadequate in this region. Here, we explored
seven management practices and their potential effects on
soil carbon (C) pools, nitrogen (N) losses, and crop yields
under different climate scenarios, using the dynamic vege-
tation model LPJ-GUESS. The model performance is eval-
uated against observations from two long-term maize field
trials in western Kenya and reported estimates from pub-
lished sources. LPJ-GUESS generally produces soil C stocks
and maize productivity comparable with measurements and
mostly captures the SOC decline under some management
practices that is observed in the field experiments. We found
that for large parts of Kenya and Ethiopia, an integrated con-
servation agriculture practice (no-tillage, residue and manure
application, and cover crops) increases SOC levels in the
long term (+11 % on average), accompanied by increased
crop yields (+22 %) in comparison to the conventional man-
agement. Planting nitrogen-fixing cover crops in our sim-
ulations is also identified as a promising individual prac-

tice in eastern Africa to increase soil C storage (+4 %) and
crop production (+18 %), with low environmental cost of
N losses (+24 %). These management impacts are also sus-
tained in simulations of three future climate pathways. This
study highlights the possibilities of conservation agriculture
when targeting long-term environmental sustainability and
food security in crop ecosystems, particularly for those with
poor soil conditions in tropical climates.

1 Introduction

Soils contain the largest amount of organic carbon (C) in
terrestrial ecosystems, storing around 1500 PgC (petagrams
of carbon) globally (Lal, 2004). However, substantial losses
of soil organic carbon (SOC) have occurred over the last
decades, arising from agricultural intensification and the con-
tinuous conversion of natural soils for agricultural uses to
support the food demand of a growing population (Olsson
et al., 2019). The estimates of cumulative SOC loss from
agricultural land vary widely, with a range of 30 to 160 PgC
across the globe for the post-1850 period (Ruddiman, 2003;
Lal, 2004; Pugh et al., 2015; Smith et al., 2016; Sander-
man et al., 2017). This soil carbon loss contributes to green-
house gas (GHG) emissions in the atmosphere and thus ac-
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celerates global warming. Increasing SOC storage in agri-
cultural ecosystems through improved management practices
has been repeatedly discussed as a promising option to miti-
gate climate change (Smith et al., 2020; Arneth et al., 2021),
with co-benefits for soil fertility and crop production (Seufert
et al., 2012; Knapp and van der Heijden, 2018; Shang et al.,
2021).

Conservation agriculture (CA) – particularly the use of
minimum soil disturbance (e.g., zero tillage), organic mat-
ter addition (e.g., crop residue retention and cover crops),
and species diversification through crop rotation – is the most
well-known practice to potentially enhance SOC sequestra-
tion and improve agricultural sustainability in sub-Saharan
Africa (SSA; Thierfelder et al., 2013; Smith et al., 2016).
Much experimental evidence has indicated that SOC stocks
under CA systems are significantly higher than conventional
farming practices in well-managed trials for SSA (Pittelkow
et al., 2015a; Cheesman et al., 2016; Powlson et al., 2016;
Sommer et al., 2018) but vary across the region due to the
differences in soil properties, climate condition, and the spe-
cific management implemented in farming systems (Sander-
man et al., 2017). It has been estimated that CA would in-
crease cropland SOC by 1.2 to 2.4 PgC over both the eastern
and southern African regions if soil-conserving techniques
were completely implemented over 20 years (Zomer et al.,
2017). However, adoption of CA remains a challenge in the
region as positive crop production effects over time can be
hidden by large interannual variability in yields (Giller et al.,
2009; Corbeels et al., 2014; Stevenson et al., 2014; Pittelkow
et al., 2015b). Furthermore, nitrogen (N) trace gas emissions
and nitrate leaching related to agricultural fertilizer also need
to be investigated; these N-associated losses from agriculture
have negative effects on air quality, freshwater systems, and
climate from regional to global scales (Reay et al., 2012; Olin
et al., 2015a; Tian et al., 2020).

Process-based ecological models with soil carbon–
nitrogen (C–N) dynamics have the potential to understand
and quantify the trade-offs between yields, carbon seques-
tration, and negative environmental effects on larger spa-
tial scales and longer temporal perspectives due to their
mathematical representation of plant growth, organic mat-
ter input, and soil decomposition (Parton et al., 1993; Li
et al., 1994). These models have been widely used to ex-
plore SOC response to alternative management practices
in different cropping systems (e.g., Century, Lugato et al.,
2015; LPJ-GUESS, Olin et al., 2015a; RothC, Mesfin et al.,
2021; LPJmL, Herzfeld et al., 2021). However, compared
to temperate crop ecosystems – particularly in heavily stud-
ied North America, western Europe, and East Asia – there
are limited SOC modelling studies in the tropical agro-
ecosystems of SSA (Lemma et al., 2021; Nyawira et al.,
2021). This may partially reflect the relative paucity of long-
term and field-based SOC measurements in the region (Powl-
son et al., 2016), which limits the calibration and implemen-
tation of process-based models in assessing the impacts of

land managements on SOC dynamics in the tropical SSA.
In one example, Nyawira et al. (2021) examined DayCent
model performance in simulating SOC and crop yield re-
sponses to improved management practices (e.g., manure and
crop residue application) for maize-based cropping systems,
using experimental data from two long-term field sites in
western Kenya. Although model results showed a fairly good
agreement with observations, the authors suggested that fu-
ture model evaluation for other managements (such as cover
crops) in sequestering SOC and/or reducing N losses through
leaching and gaseous N emissions would be needed to sup-
port the recommendation of sustainable agricultural prac-
tices in the tropics of SSA. To date, no studies have ap-
plied process-based models on the regional scale to detect the
long-term joint impacts of environmental change and alter-
native management practices on associated changes in crop
production, C sequestration, and cropland N losses in eastern
Africa, a region where agricultural soils have been experienc-
ing strong degradation due to the combined effects of agricul-
tural intensification and mismanagement over recent decades
(Wynants et al., 2019; Mugizi and Matsumoto, 2020).

Thus, in this study, accounting for the most common and
important soil-conserving techniques implemented by small-
holder farms (such as conservation tillage, mineral fertil-
izer, and organic matter/manure incorporation), we employ
a process-based dynamic vegetation model (LPJ-GUESS,
Smith et al., 2014; Olin et al., 2015b) to explore and quan-
tify the effectiveness of these alternative management prac-
tices that aim to enhance soil carbon and/or mitigate the
negative effects of agriculture on the N cycle. Model re-
sults are extensively tested on experimental data from long-
term (> 10 years) field trials in western Kenya and com-
pared against country-level yield statistics, as well as region-
level cropland SOC stocks from published sources. The man-
agement effects on soil C pools, crop yields, and N losses
in Kenya and Ethiopia are subsequently investigated under
present and future climate scenarios. The model-based and
large-scale quantification of these management impacts on
crop ecosystems provides a scientific understanding for iden-
tifying strategies that possibly minimize negative environ-
mental effects while still addressing society’s growing needs
for food production, allowing recommendations for sustain-
able agricultural practices under different farming systems in
the tropics of SSA.

2 Methods

2.1 Model description

LPJ-GUESS is a dynamic vegetation model with process-
based representation of plant physiological and biogeochem-
ical processes designed for regional to global applications
(Smith et al., 2014). The model has been widely used to in-
vestigate vegetation and soil C–N dynamics and their inter-
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actions in response to both environmental changes and man-
agement, such as changes in climate, atmospheric CO2 con-
centration, N input (deposition and fertilizer rates), or irri-
gation. Three distinct land-use types are represented in the
model: natural land, pasture, and agricultural land. Vegeta-
tion on natural land is described by the growth, disturbance,
and mortality of 12 plant function types (PFTs), which dif-
fer in their bioclimatic preferences, morphological traits, and
growth strategies. C3 and C4 grasses are modelled to repre-
sent pastures, with 50 % of aboveground biomass removed
each year at harvest; the rest, together with root biomass, is
assumed to return to soils as litter (Lindeskog et al., 2013).
Croplands in the model are characterized by four crop func-
tional types (CFTs, i.e., two temperate C3 crops sown in
spring and autumn, a C4 crop representing maize, and a trop-
ical C3 crop representing rice), with crop-specific processes
including C–N allocation, plant development stages, and ex-
plicit sowing and harvest representation at daily temporal
resolution (Olin et al., 2015b). Crops in LPJ-GUESS are pre-
scribed as either rain-fed or irrigated, with their proportions
given as an external input (Lindeskog et al., 2013). Plant-
ing date is determined dynamically based on local climatol-
ogy in each grid cell with five seasonality types represented
(a combination of temperature- and precipitation-limited be-
haviours; Waha et al., 2012), and crops are harvested once
every year when accumulated heat requirements are fulfilled
(Lindeskog et al., 2013). At this point multi-cropping sys-
tems within a year and intercropping practices are not yet
incorporated in the model. Recent relevant developments in-
clude the implementation of soil N transformation and two
new legume CFTs (i.e., soybean and pulses) with symbiotic
biological N fixation (BNF; Ma et al., 2022).

Soil C–N dynamics in LPJ-GUESS are simulated by a
soil organic matter (SOM) scheme derived from the Century
model (Parton et al., 1993), in which SOM and litter are char-
acterized by 11 pools with prescribed C : N ratios and decay
rates (Smith et al., 2014). The transfer of SOM between pools
drives N mineralization or immobilization, as a result of the
altered C : N ratios in the donor and receiver pool. Soil min-
eral N after the process of mineralization and immobilization
is partially depleted by plant N uptake, which is assumed to
be proportional to plant root biomass and is constrained by
soil temperature, plant N status, and the mineral N pool it-
self (Zaehle and Friend, 2010; Wårlind et al., 2014). Leach-
ing of mineral N is a function of the remaining nitrate con-
centration, percolation rate, and available soil water content.
N losses through organic leaching are also included in LPJ-
GUESS and associated with soil sand fraction, percolation,
and the size of soil microbial SOM N pool (Smith et al.,
2014; Wårlind et al., 2014). Gaseous N emission produced
in the soil to the atmosphere is simulated as NH3, NO, N2O,
and N2, with the representation of soil N dynamic processes
including ammonification, nitrification, and denitrification in
the SOM pools. In this study, we combine N leaching and N
gas emissions into one value to represent total N loss from

crop ecosystems. The model schematic and other calcula-
tions on cropland C–N cycles follow an earlier version of
LPJ-GUESS described in Smith et al. (2014) and Olin et al.
(2015b).

2.2 Alternative management practices

Agricultural management options incorporated in the model
include variable sowing and harvest dates, irrigation, cover
crop grass between two growing seasons, crop residue man-
agement, N fertilizer application, and tillage. The latter four
practices are varied in the evaluation of management options
in this study and described in detail below.

2.2.1 Cover crops

Using cover crops as “green manure” in between the main
cropping seasons is an effective practice to build up or main-
tain soil fertility, as they can enrich soil N and soil organic
carbon contents if their biomass is fully tilled into the soil.
Cover crops implemented in LPJ-GUESS are modelled as C3
and C4 grasses grown between two agricultural growing pe-
riods of main crops, if the bare fallow duration exceeds 30 d.
The cover crop leaf and root biomass are added to the surface
and the soil metabolic/structural SOM pools, respectively,
15 d before the sowing date of the subsequent main crop.
N-fixing herbaceous legumes such as Kenya white clover
(Trifolium johnstonii Oliv.) and alfalfa (Medicago sativa) are
sometimes rotated or used as intercrops between cereals to
improve the soil quality in east African smallholder farming
systems (Sileshi et al., 2008; Muoni et al., 2019). We thus
incorporate the process of biological N fixation to C3 grass
in the model, following Liu et al. (2011), to account for the
effects of herbaceous legumes on C–N cycles in crop ecosys-
tems. The evaluation of soil C stocks, N leaching, and crop
production in response to different cover crop types will be
published in a forthcoming paper and therefore is not pre-
sented and discussed here. Grain legumes as cover crops are
not yet implemented in LPJ-GUESS.

2.2.2 Residue retention

Leaving crop residues in field after harvest can prevent soil
degradation, while also retaining water and nutrients (Smith
et al., 2012). In the standard LPJ-GUESS setup, this practice
is represented by removing 75 % of the aboveground biomass
after harvest, thus returning the remaining 25 % of C and N
mass to the soil litter pool for decomposition. In this study,
we increase the residue removal fraction to 90 % for the re-
gional simulations based on the investigated data in Ethiopia
(Laekemariam et al., 2016; Lemma et al., 2021), where most
smallholder farms practice mixed crop-livestock systems in
which crop residues are usually removed from fields after
harvest and used as fodder for livestock (Valbuena et al.,
2012; Baudron et al., 2014).
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2.2.3 N fertilizer and manure application

Application of N fertilizer in agricultural land is an impor-
tant and widespread practice in improving crop production
and enhancing SOC storage. However, if not managed ap-
propriately, this practice can easily give rise to negative envi-
ronmental impacts, like increasing soil N2O emission (Reay
et al., 2012) and/or promoting nitrate leaching to waterways
(Tian et al., 2020). N fertilizer in LPJ-GUESS is applied as
forms of mineral N and manure. Synthetic fertilizer appli-
cation takes place at three crop development stages – sow-
ing, halfway through the vegetative phase, and flowering –
with different application rates depending on crop type (Olin
et al., 2015b; Ma et al., 2022). All manure is applied to crops
at the time of sowing as a single application to reflect real-
world practices that account for the time required for ma-
nure N to be made available to plants. The manure applica-
tion in the model is represented as N addition to metabolic
and structural SOM N pools with the equal application rate.
The amount of C added to soils via manure is then com-
puted assuming a prescribed C : N ratio. The default manure
C : N value of 30 (Olin et al., 2015a) was chosen to repre-
sent the C and N content from sources ranging from poultry
waste (C : N of ca. 15) to straw-rich manure from livestock
(C : N of 40 or more). Here, we adjust the C : N ratio of farm-
yard manure to 16 in all the model experiments, following
the literature-based value for smallholder farming systems in
eastern Africa (Gichangi et al., 2006; Nyawira et al., 2021).

2.2.4 Tillage

Different forms of tillage have been used to increase the re-
lease of nutrients from the soils for uptake by crops, but the
mechanical disturbance of the soil profile increases soil ero-
sion and heterotrophic respiration and thus enhances soil C
losses to the atmosphere (Chatskikh et al., 2009; Badagli-
acca et al., 2018). Tillage is implemented in the model using
a tillage factor, which accelerates the soil decomposition on
agricultural land in the surface microbial and humus SOM C
pools and the microbial and slow turnover C pools of the soil.
To account for the long-term effects on heterotrophic respi-
ration (Pugh et al., 2015; Olin et al., 2015a), the tillage factor
is assumed to be a fixed value of 1.94, which is taken from
Chatskikh et al. (2009) and used to modify the decay rate of
the four SOM pools throughout the year.

2.3 Experimental setups

Our study is divided into three parts. In the first part we ex-
amine the model’s ability to simulate the SOC and maize
yield response to various managements by comparing with
observed data from two long-term field sites in Kenya. Next,
we update the growth parameters for sorghum in the model to
better represent the agricultural production in eastern Africa
because of this widely grown crop in the region. Yields for

six crop types, including the new sorghum parameteriza-
tion (see Sect. 2.3.2 below), are evaluated against FAO-based
statistics in Kenya and Ethiopia. In the last part, the isolated
effects of each alternative management practice are first in-
vestigated for the historical period and subsequently explored
under future climate scenarios by forcing the model with
simulated climate over the 21st century from five general cir-
culation models (GCMs, Eyring et al., 2016).

In order to build up cropland soil C and N pools, all simu-
lations were initialized with a 500-year spin-up using atmo-
spheric CO2 from 1901 and repeated de-trended 1901–1930
climate (see Table 1 for data information). During spin-up,
potential natural vegetation (PNV) was simulated for the first
470 years, and then the cropland fraction linearly increased
from zero to the first historic value (1901) during the last
30 years of spin-up. Model input data are summarized in Ta-
ble 1, with the different experiment setups explained in detail
below.

2.3.1 Model evaluation at site scale

To evaluate the model performance, we use data from two
long-term experimental sites (INM3 and CT1) managed by
the International Center for Tropical Agriculture (CIAT)
since 2003. The INM3 trial (0.14◦ N, 34.40◦ E) is designed to
study soil fertility effects of manure and maize residue reten-
tion under conventional tillage systems, while the CT1 trial
(0.13◦ N, 34.41◦ E) mainly evaluates the combined effects of
conservation tillage and residue application on SOC dynam-
ics in maize-based cropping systems (Sommer et al., 2018).
A total of 16 different trials for the period 2003–2015 in a
continuous maize system (two cropping periods a year) at the
INM3 site were simulated: 0 and 4 tha−1 (dry matter) of ma-
nure application with 2 tha−1 maize residue retention or re-
moval under four treatments of mineral N fertilizer addition
(0, 30, 60, and 90 kgNha−1). Similar simulations over the
same period were performed at the CT1 site, but with the dif-
ference that minimum and conventional tillage are dominant
practices, and no trials receive any manure application. At
present, a double-cropping system within a year has not yet
been implemented in LPJ-GUESS (Olin et al., 2015a) since
the second “short rainy” growing season is – from a yield
perspective – not hugely relevant for most regions of east-
ern Africa (Wainwright et al., 2019). In this study, the sec-
ond growing period under the continuous maize systems was
modelled as a non-N-fixing cover crop with all the above-
ground biomass removed from the field at both sites. To pa-
rameterize the N application and residue retention practices
in the model, the application rate of 4 tha−1 of manure dry
matter was converted to 70 kgNha−1 by assuming an N con-
tent of 1.75 % in farmyard manure with a fixed C : N ra-
tio of 16 (Gichangi et al., 2006; Nyawira et al., 2021). The
residue management with 2 tha−1 retention was set to 50 %
of maize residue left in the field, following the reported pro-
portion described in Sommer et al. (2018) and Nyawira et al.
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Table 2. Site- and treatment-specific data used for model evaluation at the INM3 and CT1 long-term (2003–2015) trials. The “x” in the
treatment names denotes any mineral N application rate of 0, 30, 60, and 90 kgNha−1. A total of 33 % and 66 % of the mineral N fertilizer
are applied at the time of sowing and halfway through the vegetative stage, respectively, following the description in Sommer et al. (2018).
Abbreviations: NoMan – no manure application; NoRR – no residue retention; NoTill – no-tillage; Man – 70 kgNha−1 of manure application
converted from 4 tha−1 dry matter; RR – 50 % of residue retention; Till – Tillage.

Site and its soil physical
properties

Treatment name Tillage Manure
(kgNha−1)

Residue
retention (%)

Mineral N application (kgNha−1)

N app. timing N0 N30 N60 N90

INM3
(34.40◦ E, 0.14◦ N)
Topsoil (0–20 cm):
Sand: 26 %
Silt: 18 %
Clay: 56 %
Bulk density: 1.1 gcm−3

Nx_NoMan_NoRR Yes No No Sowing 0 10 20 30
Nx_NoMan_RR Yes No 50 Halfway through

the
vegetative stage

0 20 40 60
Nx_Man_NoRR Yes 70 No
Nx_Man_RR Yes 70 50

CT1
(34.41◦ E, 0.13◦ N)
Topsoil (0–40 cm):
Sand: 16 %
Silt: 15 %
Clay: 69 %
Bulk density: 1.1 g cm−3

Nx_NoTill_NoRR No No No The same as INM3
Nx_NoTill_RR No No 50
Nx_Till_NoRR Yes No No
Nx_Till_RR Yes No 50

(2021). In addition, we switched off (on) the tillage option
in the model to represent the minimum (conventional) tillage
experiment at CT1. A summary of these trials is available in
Table 2.

The gridded daily climate data set from GSWP3-W5E5
(Dirmeyer et al., 2006; Lange, 2019; Cucchi et al., 2020)
at 0.5◦ resolution was used, and the grid cell with coordi-
nates 34.25◦ E and 0.25◦ N is representative for the two ex-
perimental sites. We compared the required input variables
from GSWP3-W5E5 with site-based weather observations,
finding that the gridded climate data had a fairly good agree-
ment with field records, although precipitation diverged be-
tween two data sets on individual days over the experimen-
tal period (Fig. S1 in the Supplement). There was not much
information available on the land use in years prior to the
field experiments. Therefore, to maintain soil N and C pools
in equilibrium after model spin-up, we followed the simula-
tion setups in Nyawira et al. (2021) and assumed that INM3
was under grassland systems for the period 1901–2002 with
all the aboveground biomass returned to the soils (A1, Ta-
ble 1), while at CT1 grassland was simulated from 1901
to 1991. After this the land use for CT1 trials was imple-
mented according to information provided in the literature
(Sommer et al., 2018): rain-fed maize farming systems from
1992–1994 (unfertilized), followed by a crop-fallow period
of 1995–2000 (grassland), then 2 years with fertilized maize
(18 kgNha−1) until 2002 (A2, Table 1). The modelled SOC
stocks from 1901–2002 at both sites are given in Fig. S2 in
the Supplement. In addition, soil physical properties in the
topsoil at both sites, such as clay content (%) and bulk den-
sity (g cm−3), were taken from Sommer et al. (2018) and

used as external inputs to further calculate corresponding soil
hydraulic properties in LPJ-GUESS (Olin et al., 2015a).

Model performance was assessed comparing the simulated
and observed maize yields and SOC stocks in response to
varying management practices. For SOC comparison, the
measured SOC values were scaled to 0–150 cm from the
original depth (0–15 cm) to match the modelled soil depth,
using the empirical depth distribution functions proposed by
Jobbágy and Jackson (2000):

Y = 1−βd , (1)

SOC150 =
1−β150

1−β15 × SOC15, (2)

where Y is the cumulative proportion of the SOC pool from
the surface to depth d (cm), and β is the relative rate of de-
crease in SOC stock with depth depending on the measured
SOC content along the soil profile. The value of β is obtained
from the existing literature and set as 0.971 for INM3 and
0.974 for CT1 (Nyawira et al., 2021); SOC15 and SOC150
represent the cumulative SOC stock (MgCha−1) at 0–15 and
0–150 cm, respectively.

2.3.2 Regional crop yield evaluation

In this study we performed simulations with six CFTs –
maize, pulses (representing faba bean and common bean),
sorghum, wheat, rice, and soybean – which are grown widely
in Kenya and Ethiopia (FAOSTAT, 2021). In a previous mod-
elling study (Olin et al., 2015a), sorghum in LPJ-GUESS was
simulated as the maize CFT. Here, we developed a CFT that
better represents allocation to sorghum organs based on the
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data from Penning de Vries et al. (1989) (Fig. S3 and Ta-
ble S1 in the Supplement). The performance of the model
for sorghum and five other crops was evaluated by compar-
ing the simulated and reported yields at country level. For
regional comparison, the crop yield statistics were collected
from FAOSTAT (2021) while the simulated gridded yield
(B1, Table 1) was aggregated to the national level using land-
use maps (described below):

Yieldcountry =

n∑
i=1
[(Yieldrain)i × (Arearain)i + (Yieldirri)i × (Areairri)i ]

n∑
i=1
[(Arearain)i + (Areairri)i ]

, (3)

where Yieldcountry is the aggregated yield in Kenya or
Ethiopia; i is the number of grid cells in that country, vary-
ing from 1 to n; Yieldrain and Yieldirri denote the modelled
yield under rain-fed and irrigated conditions, respectively;
and Arearain and Areairri are the CFT-specific rain-fed and
irrigated areas used in simulations, respectively (Fig. S4a in
the Supplement).

As climate input, monthly data at 0.5◦ resolution from
1901–2014 were taken from observation-based CRUJRA
v2.1 (Harris et al., 2020; Kobayashi et al., 2015). Annual at-
mospheric CO2 concentration over the same period was from
the data set provided by Meinshausen et al. (2020). Land use
and land cover information was used from LUH2 (Land-Use
Harmonization 2; Hurtt et al., 2020) with fractions of natural
vegetation, pasture, and cropland at each grid cell, spanning
from 1901 to 2014 and remapped to the same resolution of
climate forcing. The fractional cover of various crop species
in the year 2000 came from MIRCA (Monthly Irrigated and
Rain-fed Crop Areas; Portmann et al., 2010) and was ag-
gregated to the six CFTs modelled in this study. Generally,
the total cropland cover in a grid cell could change annu-
ally over time, but the relative fractions of each CFT within
that cover fraction were held constant. In addition, the soil
fractions of sand, silt, and clay in the topsoil (0–30 cm) from
GGCMI phase 3 (Global Gridded Crop Model Intercompar-
ison; Volkholz and Müller, 2020) were used to parameterize
soil hydraulic properties at each modelled grid cell.

Monthly atmospheric N deposition (NHx, NOy) for 1901–
2014 was used as simulated by CCMI (NCAR Chemistry-
Climate Model Initiative). The value was interpolated to
0.5◦× 0.5◦ from the original resolution (1.9◦× 2.5◦) to
match the resolution of the climate data (Tian et al., 2018). In
terms of N fertilizer input to the cropland, CFT-specific data
for mineral N fertilizer and manure over 1901–2014 came
from Ag-GRID (AgMIP GRIDded Crop Modeling Initiative;
Elliott et al. (2015) and Zhang et al. (2017), respectively)
(Fig. S4b in the Supplement). Details on the fractions of min-
eral fertilizer applied to different crop development stages are
provided in Table S1.

2.3.3 Ecosystem responses to management practices in
eastern Africa

To detect the effects of agricultural practices on food security
and environmental sustainability regionally, five alternative
management practices – N-fixing cover crop (FCC-BNF), non-
N-fixing cover crop (FCC-NoBNF), residue retention (FRR),
manure application (FMan), and no tillage (FNT) – together
with an integrated management were assessed (Table 3); the
latter integrated management with most individual practices
included was selected to represent conservation agriculture
(Fconserv). Simulated outputs of these six practices were com-
pared with a conventional management prevalent in eastern
Africa (Fstd) with standard setups shown in Table 3. The
practice that produced the largest SOC increase at each grid
cell was chosen as the optimal soil C management (Fopt) for
the historical and future simulations:

Fopt = {MAX(SOCi − SOCFstd), i = 1 : 5}, (4)

where Fopt is the calculated optimal (i.e., best performing)
C management in a given grid cell; i represents the five man-
agement practices of FCC-BNF, FCC-NoBNF, FRR, FMan, and
FNT. SOCi and SOCFstd are the modelled SOC stocks from
these five practices and conventional management, respec-
tively.

An initial experiment (B, Table 1) was performed to simu-
late the effects of these management practices under constant
climate, CO2, and land use in order to isolate management ef-
fects from environmental change impacts. This began with a
run of the historical period (1901–2014) after model spin-up,
using time-dependent gridded climate, land cover, and N in-
puts (deposition and fertilizer) at 0.5◦ resolution, combined
with CO2 concentration described in Sect. 2.3.2. The result
of this run was to generate present-day cropland soil C and
N pools under Fstd over eastern Africa (B1, Table 1). Subse-
quent runs, one using each management practice, branched
from this present-day state in 2015. In these simulations de-
trended climate (repeating 1995–2014) and fixed CO2 con-
centration (∼ 397 ppm), together with N fertilizer and land
cover data of the year 2014, were repeated for 86 years to
allow soil C and N pools to reach a new equilibrium after
the management shift (B2, Table 1). Our aim here was not
to realistically reproduce the size of soil C and N pools in
2100 with different management practices, but rather to as-
sess potential long-term management effects on crop ecosys-
tems relative to the conventional practice (i.e., Fstd). All sim-
ulated outputs in the last 10 years of the model experiments
were taken for analysis.

In a second experiment (C, Table 1), simulations were
driven with future monthly climate data taken from five
GCMs (Eyring et al., 2016), for 1901–2100 at 0.5◦ spatial
resolution (see Table 1 for each GCM information). The cli-
mate data were used for the entire simulation period to avoid
any inconsistency between the historic and future periods.
For the historical period (1901–2014), the management setup
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Table 3. Simulation setups used for comparison of SOC sequestration, crop yields, and cropland N losses with different managements over
eastern Africa for historical and future runs (see Sect. 2.3.3).

Simulation∗ FCC-BNF FCC-NoBNF FRR FMan FNT Fconserv Fstd

N-fixing cover crop Yes No No No No Yes No
Non-N-fixing cover crop No Yes No No No No No
Residue retention 10 % 10 % 100 % 10 % 10 % 100 % 10 %
Manure application Yes Yes Yes No Yes Yes Yes
Mineral N fertilizer Yes Yes Yes Yes Yes Yes Yes
Tillage Yes Yes Yes Yes No No Yes

∗ Abbreviations: CC-BNF – N-fixing cover crop; CC-NoBNF – non-N-fixing cover crop; RR – residue retention; Man – manure
application; NT – no tillage; conserv – conservation agriculture; std – standard simulation, representing a conventional management
prevalent in eastern Africa.

was the same as the simulation of B1 as described above, but
with GCM-based climate forcings (C1, Table 1). The seven
management practices listed in Table 3 started in the year
2015, with dynamic climate, CO2 concentration, and N de-
position throughout. Land cover and fertilizer use (mineral N
and manure) were fixed from 2014 onwards to exclude their
effects on cropland SOC sequestration (C2, Table 1). N depo-
sition and climate data for SSP1-RCP2.6 (SSP1-26), SSP3-
RCP7.0 (SSP3-70), and SSP5-RCP8.5 (SSP5-85) radiative
forcing projections were selected due to the contrasting cli-
mate change and CO2 concentration of the three scenarios
(Meinshausen et al., 2020; see also Fig. S4c in the Supple-
ment). Similar to the B2 simulation, the long-term manage-
ment effects excluding environmental change impacts were
also investigated using GCM-based repeated climate (C3, Ta-
ble 1). The modelled SOC in the last 10 years of the C2
simulation (2091–2100) was taken to compare with the C3
output over the same period in order to explore the potential
transition of the optimal soil C management (Fopt) caused
by future climate change. Details on experimental setups are
provided in Table 1.

2.4 Data analysis

The accuracy of the model in predicting SOC and yields was
assessed using the coefficient of determination (adjustedR2),
relative bias (RB), absolute bias (AB), and root mean square
error (RMSE):

RB=
Mi −Oi

Oi
× 100%, (5)

AB=
|Mi −Oi |

Oi
× 100%, (6)

RMSE=

√√√√1
n

n∑
i=1
(Mi −Oi)

2, (7)

whereMi andOi indicate modelled and observed values, and
n is the number of observations. To evaluate the agreement
of the interannual variability of modelled and reported yields
in the long term, the Pearson correlation coefficient (r) was

calculated:

r =

n∑
i=1

(
Mi −M

)(
Oi −O

)
√

n∑
i=1

(
Mi −M

)2 n∑
i=1

(
Oi −O

)2 , (8)

where M and O represent modelled and observed mean, and
n is the number of years.

3 Results

3.1 Model performance at site scale

The simulated maize yields in the long rainy season (from
March to August) tended to be somewhat higher than the
measurements, with the mean overestimation ranging from
18 % to 21 % at the two experimental sites (Fig. 1). The
averaged yields over the entire experimental period (2004–
2015) between simulations and observations compared well
across all the evaluated treatments, with the simulated val-
ues falling within the range of measured standard deviation
(Fig. S5 in the Supplement). However, LPJ-GUESS did not
capture the interannual variations in the yields well, produc-
ing a low Pearson correlation coefficient (r) and high abso-
lute bias (AB) in all the INM3 and CT1 experiments (Ta-
ble S2 in the Supplement). As expected, measured and sim-
ulated yields in combined conservation managements (e.g.,
manure with residue retention at INM3) were higher than the
individual ones in the little-fertilized treatments, but yield
discrepancies between managements became small and in-
significant when maize received a high N application rate of
90 kgNha−1 (Table S2).

The simulated SOC at both sites showed a declining trend
from 2004–2015 under all the assessed treatments, agreeing
well with the observation of soil C loss over the same period;
however, the model generally underestimated SOC at the be-
ginning of experiment while overestimating soil C stocks in
the last 2 sampling years (Figs. 2 and 3). A linear correla-
tion (p < 0.01) between the simulated and measured SOC
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Figure 1. Comparison of modelled and observed maize yields (long rainy season, i.e., the main growing period) and SOC stocks at INM3 (a)
and CT1 (b) sites for all treatments listed in Table 2. The dashed line is the 1 : 1 line, and the black bold line is the fitted linear regression;
RB and AB are relative bias (Eq. 5) and absolute bias (Eq. 6), respectively, represented in percent (%); RMSE is root mean square error, with
the unit of t ha−1 yr−1 for yield and MgCha−1 for SOC. See Table 2 for the treatment abbreviations and their explanations.

was found when all the managements were included, with the
model explaining 82 % and 64 % of the variation in observed
SOC at INM3 and CT1, respectively (Fig. 1). Low absolute
bias of 4.2 % and RMSE value of 4.1 MgCha−1 were found
for the INM3 treatments, and 3.5 % and 3.9 MgCha−1 for the
CT1 treatments (Fig. 1). The field measurements showed that
SOC stocks from the combined conservation managements
were significantly higher than the conventional ones (i.e.,
Nx_NoMan_NoRR at INM3 and Nx_Till_NoRR at CT1).
The model can generally capture this response well, but it
had difficulty in predicting SOC difference between the indi-
vidual managements at both sites (Figs. 1–3).

Compared to observations, LPJ-GUESS underestimated
absolute SOC loss in the INM3 experiments (Table 4). Due
to the extra C input to soils from manure and residue re-
tention, the simulated combination of these two manage-
ments yielded the lowest loss of 6.7 MgCha−1 at the INM3
site (N0_Man_RR), with this loss reduced by mineral N
addition (6.3 MgCha−1, N90_Man_RR). By contrast, the
model produced the largest C loss of 8.9 MgCha−1 in the
unfertilized maize control treatment with no manure and
residue application (N0_NoMan_NoRR). This estimate was
also similar to the simulated loss of 8.6 MgCha−1 in maize

residue only (N0_NoMan_RR) and manure application only
(N0_Man_NoRR). In general, the application of manure and
residue retention, together with 90 kgNha−1 of fertilizer in-
put, was modelled to reduce SOC loss by 29 % in comparison
with the control treatment, lower than the observed reduction
of 43 % (Table 4).

Similar to INM3, the observed absolute SOC loss across
all the CT1 treatments was underestimated but with smaller
absolute differences (Table 4). As expected, LPJ-GUESS
simulated a high C loss of 4.6 and 4.5 MgCha−1 in the
tilled cropping systems with no maize residue retained
(N0_Till_NoRR and N90_Till_NoRR). Implementing min-
imum tillage reduced this loss to 4.4 and 4.3 MgCha−1 in
treatments with residue retention included (N0_NoTill_RR
and N90_NoTill_RR). Compared to the control treatment
(N0_Till_NoRR), the simulated application of maize residue
with 90 kgha−1 of N fertilizer reduced SOC loss by 2 %
(N90_Till_RR), while adopting minimum tillage could fur-
ther reduce the loss by 7 % (Table 4).

https://doi.org/10.5194/bg-19-2145-2022 Biogeosciences, 19, 2145–2169, 2022



2154 J. Ma et al.: Crop ecosystem responses to agricultural managements in eastern Africa

Figure 2. The modelled and observed SOC stocks (0–150 cm) for the evaluation treatments (a–h) at the INM3 site, with two levels of mineral
N fertilizer input (N0 and N90). The dashed line is the modelled SOC, and the closed circle represents the observed value (scaled to 150 cm
depth) averaged by the four replicates in the trials, with standard deviation as given in the vertical bar.

Figure 3. The same as Fig. 2, but at the CT1 site. See Table 2 for the treatment abbreviations and their explanations.
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Table 4. Comparison of modelled and observed SOC stocks and absolute SOC loss for all the evaluated treatments over 2005–2015 at the
INM3 and CT1 sites. The absolute SOC loss of each treatment was calculated as the difference between the first (years 2005 and 2006 for the
INM3 and CT1 trials, respectively) and last sampling years (i.e., 2015). The observed SOC is represented as mean± 1 standard deviation,
deriving from the four replicates in each treatment.

SOC Absolute SOC loss
(MgCha−1) (MgCha−1)

Year 2005 Year 2015 2015 minus 2005
(or 2006) (or 2006)

Observed Modelled Observed Modelled Observed Modelled

INM3 site

N0_NoMan_RR 93.5± 1.3 90.5 76.1± 4.8 81.9 −17.4 −8.6
N0_Man_NoRR 92.5± 6.7 90.8 79.9± 7.1 82.2 −12.6 −8.6
N0_NoMan_NoRR 96.9± 1.9 90.3 74.1± 2.8 81.4 −22.8 −8.9
N0_Man_RR 90.7± 6.3 91.6 80.9± 4.2 84.9 −9.8 −6.7
N90_NoMan_RR 94.6± 2.3 90.5 76.7± 4.8 82.0 −17.9 −8.5
N90_Man_NoRR 92.9± 8.4 90.9 80.7± 6.6 82.4 −12.2 −8.5
N90_NoMan_NoRR 94.9± 1.9 90.4 74.4± 3.7 81.6 −20.5 −8.8
N90_Man_RR 96.5± 8.0 91.5 83.5± 6.0 85.2 −13.0 −6.3

CT1 site

N0_NoTill_RR 102.2± 1.5 99.2 93.2± 5.8 94.8 −9.0 −4.4
N0_Till_NoRR 90.2± 3.4 97.8 85.3± 4.9 93.2 −4.9 −4.6
N0_Till_RR 97.8± 6.5 98.0 87.6± 4.6 93.5 −10.2 −4.5
N0_NoTill_NoRR 99.2± 2.6 99.0 89.6± 2.1 94.2 −9.6 −4.8
N90_NoTill_RR 103.2± 7.3 99.4 94.6± 8.4 95.1 −8.6 −4.3
N90_Till_NoRR 96.8± 7.5 97.8 86.5± 5.7 93.3 −10.3 −4.5
N90_Till_RR 95.9± 3.7 98.1 90.5± 5.4 93.6 −5.4 −4.5
N90_NoTill_NoRR 97.4± 1.9 99.1 89.9± 3.6 94.5 −7.5 −4.6

3.2 Regional yield comparison

Using the CFT-specific parameters given in Table S1, com-
bined with the time-dependent gridded N-fertilizer data set
introduced in Sect. 2.3.2, we simulated crop yields in east-
ern Africa under conventional management (Fstd, Table 3)
from 1901–2014. The modelled outputs from 1961–2014 and
1993–2014 were chosen to compare with annual FAO yields
in Kenya and Ethiopia, respectively, due to their different
time frames reported in statistics.

Modelled maize yields in the two countries showed a good
agreement with observations, with a low relative bias (RB)
of −6 % and RMSE value of 0.22 tha−1 yr−1 in Kenya and
−21 % and 0.54 tha−1 yr−1 in Ethiopia (Fig. 4a and b). LPJ-
GUESS tended to overestimate the reported yields in pulses
and sorghum, with the country-level overestimation spanning
from 48 %–257 % and 72 %–203 %, respectively. With the
exception of sorghum in Kenya, the correlation between the
simulated and reported yields was positively significant in
most crop types, with a Pearson correlation coefficient (r)
from 0.55–0.90 (p< 0.001, Fig. 4a and b), indicating that
the model was able to capture the interannual variability in
yields despite some deviations from observations for indi-
vidual years. Also, the total modelled maize production on

a regional scale increased from 5.4 million tonnes in 1993
to 9.8 million tonnes in 2014, in line with the reported val-
ues of 3.6–11.2 million tonnes per year over the same period
(Fig. 4c). Including all six agricultural crops in LPJ-GUESS
gave a mean total production of 19.7 million tonnes per year
from 1993–2014, ∼ 45 % higher than the FAO statistics of
13.6 million tonnes per year, mainly due to the large over-
estimation in pulse production regionally (6.6 and 2.2 mil-
lion tonnes per year for modelled and reported yields, respec-
tively).

3.3 Ecosystem responses to management practices in
eastern Africa

3.3.1 Historical runs

With six crop types included, all the explored management
options that address aspects of sustainable land manage-
ment resulted in a net increase in simulated cropland SOC
in Kenya and Ethiopia compared to the conventional man-
agement (Fig. 5a). As expected, our simulation of the inte-
grated conservation agriculture practice generated nearly the
largest increase in soil C sequestration of ∼ 11 %, followed
by cover crops (both N-fixing and non-N-fixing), residue
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Figure 4. Comparison of modelled and FAO-reported annual crop yields at the country level from 1961–2014 in Kenya (a), in Ethiopia (b),
and for total crop production (c). The upper and lower bounds of shade areas in (a) and (b) represent the simulated yields in irrigated and
rain-fed conditions, respectively, with their area-weighted aggregated results as given in red solid lines. Rep. and Mod. indicate the reported
and modelled yields averaged over FAO-based periods (1961–2014 for Kenya and 1993–2014 for Ethiopia), respectively; RB is relative bias,
represented in percent (%); RMSE is root mean square error, with the same unit as yield (t ha−1 yr−1); r is Pearson correlation coefficient,
where ∗∗∗ denotes the correlation being statistically significant at the p = 0.001 level.

retention, and manure application, with the lowest increase
of ∼ 2 % found in no-tillage management practice. Most of
these investigated practices also achieved the extra benefit
of increased yields – despite being accompanied by larger N
losses in our simulations – with the exception of cover crops
in some regions. Compared to a non-N-fixing cover crop, the
implementation of a N-fixing cover crop was modelled to
broadly produce higher N loss over eastern Africa. However,
this practice was accompanied by an increase in simulated
yields of ∼ 18 %, as a result of additional N input through
symbiotic N fixation in herbaceous legumes, which facili-
tates a N-rich soil environment to subsequent crops for better
growth and productivity. Leaving all the crop residues in the
field and applying manure as fertilizer were the two treat-
ments that increased the modelled yields for most croplands
but with the large environmental “cost” of an increase in N
loss. The increase in both yield and N loss from residue reten-
tion likely reflects that N becomes available for crop uptake
over a longer period, and nothing grows between the grow-
ing periods, which can increase the N leaching from soil. In

addition, no tillage, as an important component in conser-
vation agriculture in the tropics of Africa, was simulated to
potentially reduce the N loss from cropland with slight yield
benefits depending on region (Fig. 5a) and cropping system
(Fig. S6 in the Supplement).

The impacts of individual (and combined) management
techniques varied widely between different parts of Kenya
and Ethiopia, depending on climate and soil condition, as
well as crop types (Fig. S6). In general, N-fixing cover crop
was identified as a promising option for potentially seques-
tering SOC, with 43 % of cropland grid cells having this prac-
tice as the optimal soil C management (Fopt), followed by
manure, residue retention, and the conventional management
practice (Fstd, Fig. 5b). However, this spatial pattern showed
a distinct difference between crop types. For instance, incor-
porating crop residue into soil was simulated to dominate
soil C responses in maize and sorghum systems, but it only
slightly contributed to SOC enhancement in wheat and pulse
cropping systems (Fig. S7 in the Supplement), likely reflect-
ing their differences in biomass production, phenological re-
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Figure 5. The modelled relative response (%) of cropland SOC, N loss, and yield to alternative management techniques (see Table 3 for
abbreviations) compared to the conventional management prevalent in eastern Africa (a) and the optimal soil C sequestration practice (Fopt,
Eq. 4) simulated by LPJ-GUESS in Kenya and Ethiopia (b). Box plots in (a) denote the 5th and 95th percentiles with whiskers, median and
interquartile range with box lines, and mean with asterisks across all cropland grid cells (428). The numbers in (b) represent the grid cell
proportion of each optimal management from the total grid area. The conventional management (Fstd, black in b) was chosen when no other
alternative managements yielded a net increase in SOC.

sponses to climate change, and N-fertilizer application rates
(Fig. S4b).

The simulated cropland soil C stock (0–150 cm) from vari-
ous managements ranged from 932–1038 TgC (teragrams) in
Kenya and 2569–2895 TgC in Ethiopia, which, as expected,
was larger than the published sources for the depth layer 0–
30 cm (Zomer et al., 2017). However, these modelled soil
C stocks compared reasonably with the scaled-up published
estimates based on the depth distribution functions (Eqs. 1
and 2), with 727 and 2227 Tg carbon estimated for the depth
of 0–150 cm in Kenya and Ethiopia, respectively (Table 5).
The simulated N loss of 61 GgNyr−1 (gigagrams) under

the conventional management (Fstd) in Kenya is lower than
the statistic-based estimate of 111 GgNyr−1 (Zhang et al.,
2021), but returning all the residues to the soils (FRR), the
model gave a N loss of 134 GgNyr−1 (Table 5), comparable
to the findings in Zhang et al. (2021). Additionally, the total
simulated maize production of 8.7–14.3 million tonnes per
year on a regional scale was close to the FAO-reported yield
of 11.2 million tonnes per year. With all agricultural crops
included, an overall overestimation of 7 %–47 % was found
(Table 5), primarily reflecting the overestimated production
in pulses and sorghum described in Sect. 3.2 (Fig. 4).
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Table 5. Modelled total cropland soil C stocks (0–150 cm), N loss, and total crop production with different management options in Kenya
and Ethiopia, compared to literature-based estimates. See Table 3 for abbreviations.

Management Soil C stock, N loss Crop production
total (TgC) (GgNyr−1) (million tonnes per year)

Kenya Ethiopia Kenya Ethiopia Kenya Ethiopia
Maize All cropsa Maize All cropsa

Fstd 939 2592 61 157 3.9 7.3 7.3 21.7
FNT 948 2623 64 164 3.8 7.6 7.1 23.4
FMan 932 2569 45 79 3.2 6.7 5.5 19.9
FRR 957 2653 134 359 4.2 8.4 8.2 26.7
FCC-NoBNF 969 2696 64 190 3.9 7.7 7.7 23.1
FCC-BNF 979 2710 75 204 4.9 8.9 8.5 24.7
Fopt 993 2786 81 229 4.6 9.0 8.3 25.8
Fconserv 1038 2895 127 375 5.1 9.4 9.2 27.0

Other studies 414b 1268b 111 – 3.5e 5.2e 7.7e 19.6e

727c 2227c (76–297)d

a Summed yield of six crop types: maize, pulses, sorghum, wheat, rice, and soybean. b Zomer et al. (2017). c Zomer et al. (2017); soil C stocks
were scaled up to 0–150 cm from the original depth of 0–30 cm using the depth distribution functions (see Eqs. 1 and 2). d Zhang et al. (2021);
the mean estimate over 2006–2015 was chosen, with a range given in parentheses. e FAOSTAT (2021); the reported total production in the
year 2014 was used for comparison, since the simulated cropland area was fixed from 2014 onwards (∼ 6.2× 106 and 17.4× 106 ha for
Kenya and Ethiopia, respectively); see B2 in Table 1.

Figure 6. The simulated response (%) of cropland SOC (a), N loss (b), and yield (c) to alternative management techniques, relative to the
conventional management (Fstd). The dark black, blue, and red lines denote the mean of simulations using five GCMs (see Table 1) for
SSP1-26, 3-70, and 5-85 scenarios, respectively. Lines in lighter colours represent the simulation driven by individual GCMs. Numbers in
plots indicate the averaged results between 2091 and 2100.
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Figure 7. The relative (%) number of cropland grid cells regarding their optimal soil C sequestration practice (Eq. 4) for the historical period
(C3, Table 1) and three future SSP scenarios from 2091–2100 (C2, Table 1). The numbers in the figure represent the mean of simulations
using five GCMs, and transitions are indicated by the coloured bands. See Table 3 for management abbreviations.

3.3.2 Future projection

Compared to the standard model setup (Fstd), all manage-
ment practices were simulated to enhance the C storage
in agricultural soils at the end of this century (i.e., 2091–
2100) but with insignificant differences between three fu-
ture climate change and CO2 scenarios (Fig. 6a). Although
no tillage had nearly no impact on crop production, it was
accompanied by the environmental benefit of N loss reduc-
tion (Fig. 6b). A clear yield difference between the three
SSP scenarios was consistently seen in experiments with
N-fixing cover crop and conservation agriculture practices,
with production increases being higher for SSP5-85 than for
the SSP1-26 climate pathway (Fig. 6c). This likely reflects
the stronger CO2 fertilization effect on the growth of herba-
ceous legumes under SSP5-85. Overall, the future projection
showed that N-fixing cover crop represented a near win–win
situation in the sense of SOC enhancement and yield increase
in eastern Africa, also with lower N loss compared to manure
and residue application practices.

The simulated cropland soil C stocks (0–150 cm) under
future conditions varied widely between the assessed man-
agement options, with the integrated conservation agriculture
being the only practice that showed positive soil C seques-
tration over the simulation period (2015–2100). Adoption of
N-fixing cover crops contributed to increasing SOC stocks
in the first 2 decades of the model experiments, after which
stable SOC for SSP1-26 and slight C loss for SSP3-70 and
5-85 scenarios were simulated (Fig. S8 in the Supplement).
Other practices, such as the conventional management and no
tillage, generally exhibited an obvious declining trend in total
C storage between 2015 and 2100. Also, there were substan-

tial changes in the optimal C sequestration practice for the
future scenarios, with∼ 30 % of cropland areas in Kenya and
Ethiopia (Table S3 in the Supplement) showing the potential
transitions in the last 10 years of this century in compari-
son to the present-day climate (GCM-based historical sim-
ulation; see C3, Table 1). Most of these shifts were simu-
lated to come from the other management type options for
N-fixing cover crop, such as manure application and residue
retention (Fig. 7).

4 Discussion

4.1 Uncertainties on model evaluation at site scale

LPJ-GUESS simulates the average maize yields among treat-
ments over the experimental period well (2004–2015; see A1
and A2 in Table 1), but the measured interannual variability
of the yields for the different management treatments was not
well predicted. This issue is not unique to our study and has
also been found at the same sites using the DayCent model
(Nyawira et al., 2021). The poor performance in modelling
yield variability is likely due to the precipitation discrepancy
between the gridded climate input data (i.e., GSWP3-W5E5)
and field-based weather records (Fig. S1), resulting in the ef-
fects of extreme weather events (e.g., drought, rainstorms, or
flooding) being difficult to account for. Also, these impacts
of extremes on physiological processes such as flowering or
grain filling are not well represented in crop models so far, in-
cluding LPJ-GUESS, but known to cause yield losses (Olin
et al., 2015a; Nyawira et al., 2021).

Since LPJ-GUESS at this point does not simulate multi-
cropping within a year, absence of maize residue and manure
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application events in the second cropping season (i.e., the
short rainy season from September until January in western
Kenya) may contribute to the underestimation of the mea-
sured SOC in the treatments with these two practices in-
cluded (Table 4). In addition, compared to the fixed amount
of maize residue retained in the field trials (2 tha−1), using
50 % of residue retention in the model setup will introduce
some variation in terms of C inputs to soils because of the
varying biomass of simulated maize residue between years
(∼ 1.3–2.2 and 1.4–2.4 tha−1 of residue returned to the fields
in CT1 and INM3 simulations, respectively; not shown). This
may partially explain the differences in the rates of SOC loss
between the observed and simulated values at both sites.

All investigated management practices led to decline in
SOC stocks in the field trials (Figs. 2 and 3); the over-
all trends were also reproduced by the model. Nonethe-
less, the soil C loss rates from 2004–2015 were unexpected,
since addition of farmyard manure and residues can enhance
SOC storage via additional C inputs to soils while conser-
vation tillage slows down decomposition in the SOM pools.
Both INM3 and CT1 sites in this study were under natural
grassland before the trials start (see A1 and A2, Table 1);
hence SOC losses in observations and simulations reflected
(a) grassland soils tending to store more carbon than crop-
land (Fig. S2), and (b) a new SOC equilibrium may not have
been reached in the maize cropping systems after 10+ years
of cultivation (Lal, 2008). A similar finding was reported by
Moebius-Clune et al. (2011), who showed declining SOC
in western Kenya even after more than 50 years of conver-
sion from primary forest to maize. Furthermore, fast turnover
of the SOM in the humid tropics could be another factor
affecting the SOC trends because of the prevailing warm
and moist climate (i.e., western Kenya in this study). The
turnover-driven C losses at the sites may exceed the gains
from the C addition from manure and residue application
(Kihara et al., 2020; Nyawira et al., 2021).

Agreement between the observed and simulated SOC de-
clines was reasonable for all the considered treatments, al-
though LPJ-GUESS generally underestimated the rates of
SOC loss at the two experimental sites (Table 4). Previ-
ous studies have shown that high termite activity in west-
ern Kenya can strongly promote litter decomposition rates
in the non-tilled maize cropping system (Ayuke et al., 2011;
Kihara et al., 2015). We do not know whether this particu-
lar process played an important role in the field trials, but
it is not included in the representation of SOM decay in the
model (see Sect. 2.1). In principle, decomposition by soil an-
imals could be addressed by adjusting the decomposition pa-
rameters in the structural and metabolic litter pools (Nyawira
et al., 2021), but adopting such an approach is currently pre-
vented by the lack of information for evaluation.

In order to compare the modelled SOC stocks with obser-
vations, as described in Sect. 2.3.1, we scaled up the mea-
sured SOC in the upper soil (0–15 cm) to the modelled depth
of 150 cm using a simple extrapolation function. However,

the extrapolated SOC values are most likely different from
observations for the depth of 0–150 cm because of the vary-
ing management effects on SOC changes with depth. For in-
stance, a recent analysis indicated that an intermediate and
high intensity of tillage can significantly reduce SOC stor-
age in agricultural soils, but large variations existed between
soil layers (Haddaway et al., 2017). Scaling the SOC values
with depth in the analysis cannot reflect this variability and
introduces uncertainties on soil carbon estimates in our eval-
uation.

4.2 Regional yield comparison

Our simulated maize production at the country level agreed
well with FAO statistics in Kenya and Ethiopia, but a gen-
eral yield overestimation was found for most other crop types
(Fig. 4). One factor contributing to the overestimation is
that LPJ-GUESS applies a harvest efficiency of 90 % to ad-
just the modelled crop yields on large spatial scales (Lin-
deskog et al., 2013). This value has been chosen to account
for the crop post-harvest losses arising from mechanical
and/or manual damage during harvest operation or poor han-
dling and/or storage conditions (Sheahan and Barrett, 2017;
Stathers et al., 2020). The FAO (2011) reports that the quan-
tity loss for cereals varies widely between regions due to the
differences in management technology, ranging from 5 %–
7 % in Europe and North America to 18 % in sub-Saharan
Africa (SSA). If the reported losses for SSA also apply to
Kenya and Ethiopia, the value of 90 % implemented in the
model would lead to a yield overestimation by 10 % region-
ally.

A strong overestimation in pulse production was seen for
both countries (Fig. 4). This can likely be explained by the
high legume N fixation capacity modelled by LPJ-GUESS
in warm and moist climates (Ma et al., 2022). A high rate
of BNF may reduce the N constraints on leaf photosynthesis
and subsequently strengthen the flow of carbon assimilation
to storage organs, resulting in high production in N-fixing
crops. Yet, similar to pulses, our simulated sorghum yields
at the country level were also significantly greater than FAO
records (Fig. 4). This suggest that other factors are at play as
well. For example, insect pests, particularly shoot flies and
stalk borers, have been identified as the major constraint to
sorghum production in SSA, leading to an estimated yield
reduction of 11 %–49 % in western Africa and 15 %–88 %
in eastern Africa (Okosun et al., 2021). LPJ-GUESS does
not yet take pests into account, which could contribute to the
large overestimation of sorghum production in our studied
region. Additionally, a good representation of photosynthate
allocation to various plant organs is important when mod-
elling crop yields (Bondeau et al., 2007). In this study we
updated the daily assimilate partitioning scheme of sorghum
based on the existing literature (Fig. S3), but this process has
not yet been parameterized and calibrated against observa-
tions from field experiments. Whether or not this is related
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to the large-scale yield overestimation needs to be further in-
vestigated in future work.

4.3 Ecosystem responses to management practices in
eastern Africa

4.3.1 Soil carbon stocks

Published estimates of management improvement effects on
the potential SOC increase on Kenya and Ethiopia cropland
vary between 15.9–32.7 Tgyr−1, assuming that the improved
managements are continuously practised over 20 years
(Zomer et al., 2017). Across the eastern African study re-
gion, LPJ-GUESS predicted a SOC increase of 2.9 Tgyr−1

for the optimal C management (Fopt) and 4.7 Tgyr−1 for the
integrated conservation agriculture practice (Fconserv) com-
pared to the conventional management (Fstd, Table 5). The
difference between the estimates in Zomer et al. (2017) and
our study may well be caused by our longer simulation pe-
riod. When a change in management causes soil C stock to
increase, it moves towards a new equilibrium value over a
period of years or decades depending on climate and soil
type (Johnston et al., 2009; Sommer and Bossio, 2014). In
the early years after the change in management, the annual
rate of increase is largest, and it then gradually declines when
the new SOC equilibrium value is approached (Poeplau and
Don, 2015; Powlson et al., 2016). The 86 years of simula-
tions in our study are roughly 4 times longer than the 20 years
studied in Zomer et al. (2017), and hence lower simulated an-
nual rates of SOC increases are expected. If we consider the
rates of SOC change over the first 20 years of simulation, the
modelled soil C increase of 13.6 Tgyr−1 from Fconserv prac-
tice (not shown) is close to the lower end of the range found
in Zomer et al. (2017).

Most CA techniques adopted in sub-Saharan Africa (SSA)
are the combined treatments of minimum tillage and residue
retention (Thierfelder et al., 2013; Cheesman et al., 2016).
At the regional level, our modelled small SOC increase of
2 % in no tillage (FNT) and 3 % in residue retention (FRR)
agree with a recent meta-analysis of Githongo et al. (2021),
in which converting from a conventional tillage to a no-till
system in SSA on average showed only slight SOC increase
in a maize cropping system. This reported insignificant im-
pact contrasts with an earlier synthesis conducted by Powl-
son et al. (2016), who reported that the combination of min-
imum tillage and residue retention in SSA would result in
a net SOC increase of 0.45 tCha−1 yr−1 after 3 to 9 years
of implementation, ∼ 24 % higher than the control manage-
ment (i.e., tillage and residue removal). In our model exper-
iments, only the integrated conservation agriculture practice
(Fconserv) results in a fairly large SOC increase of 11 % (vary-
ing from 4 %–22 %, Fig. 5a), more comparable but still be-
low the findings in Powlson et al. (2016). The reason for
the disagreement between the regional simulation and field-
based experiments is difficult to assess because of the dif-

ference in the studied geographical scales, land use history,
sampled soil depth, and implemented duration of practices.
Nevertheless, they point robustly to the potential of affecting
soil C storage positively through management, even though
the magnitude remains unresolved.

Reflecting poor soil condition and limited manure avail-
ability, cropland SOC stocks are generally proportional to
the applied amount of manure in SSA (Gross and Glaser,
2021). In our study, the regional mean application rate of
manure from the year 2014 is modelled to vary from 12–
32 kgNha−1 yr−1 among crop types (Fig. S4b), resulting in
an overall SOC increase of 3 %, with a range of 0.2 %–
9.1 % depending on grid cell (FMan, Fig. 5a). This simu-
lated increase is comparable with results from the field ex-
periments. For instance, in a 4-year trial, Alemu and Bayu
(2005) found that the SOC in Ethiopian sorghum fields with
21 and 42 kgNha−1 yr−1 of manure inputs was 7.8 % and
9.4 % higher than the control treatment, respectively. A simi-
lar SOC increase of 8 %–11 % was also reported under maize
systems with residue removal in western Kenya, but with
140 kgNha−1 yr−1 organic fertilizer applied for 12 years
(Sommer et al., 2018). In our study we implemented a uni-
form C : N ratio of manure for all the simulated years and
grid cells based on literature values (see Sect. 2.2.3). These
set values cannot reflect the known considerable variation in
C : N between manure types and locations in eastern Africa
that arise from different plant species consumed by the farm
animals and from different farm animal species (Zhu et al.,
2020). Absence of spatial variations in C : N ratio could bias
the amount of C added via manure application events and
thus increase the uncertainty in the model predictions on
SOC stocks.

Our modelled regional-scale results are consistent with
a recent meta-analysis finding that N-fixing legume cover
crops contribute more to increasing SOC storage than do
non-legume plants (Abdalla et al., 2019). However, it should
be noted that in LPJ-GUESS we assumed that cover crops
in eastern Africa are rotated with the main crops and thus
solely grown during the short rainy season. This assump-
tion is likely to result in cover crop biomass input to the
soil pools being too high as we may overestimate the length
of the fallow period for cover crop growth (Porwollik et al.,
2022). Such an overestimation would then also be reflected
in high SOC estimates. At present more than 90 % of total
annual crop yields in Ethiopia are achieved in the long rainy
season (Central Statistical Agency, 2016); nevertheless, most
farmers are reluctant to implement a “main crop (long rainy
season)+ cover crop (short rainy season)” rotation system
since this practice still requires sacrificing one (short) sea-
son of maize production. Our model experiments support ear-
lier findings that planting leguminous cover crops during the
short rainy season is expected to sustainably achieve SOC
and may lead to yield increases in the tropics of SSA (Rao
and Mathuva, 2000; Carsky et al., 2001), although yield ben-
efits from N-fixing cover crops at some smallholder farms
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may not fully compensate for the production loss of the short
rainy season (Carsky et al., 2001).

The view that adopting CA techniques can increase SOC
storage in agricultural soils for SSA is based on analyses
of differences between management practices, but without a
time perspective (Martinsen et al., 2019; Kihara et al., 2020).
The future projections done here point out that the observed
SOC decline in 12-year trials in western Kenyan (Figs. 2
and 3) would continue to be found in other parts of east-
ern Africa under most assessed management practices with
the exception of Fconserv (Fig. S8), in line with the finding
of a recent modelling study in Kenya (Nyawira et al., 2021).
The 4p1000 initiative (https://www.4p1000.org/, last access:
14 November 2021) launched at COP 21 in Paris sets a target
of 3.4 PgCyr−1 SOC sequestration in agricultural soils (0–
40 cm) worldwide to contribute to mitigating global climate
change (Corbeels et al., 2019). Our modelling results indicate
that croplands situated in eastern Africa can achieve this tar-
get only if a combination of management practices would be
adopted and sustained. But even though altered management
practices may not always support a positive soil C sequestra-
tion at regional scale (especially under climate change), they
nonetheless are here projected to lower SOC losses and have
co-benefits for crop production (Kihara et al., 2020; see also
Figs. 5 and 6).

4.3.2 Cropland N loss and yields

Compared to North America, western Europe, and East
Asia, annual total N loss from agricultural soils in SSA
is rather small, mainly due to the low N fertilizer use
across the region (Liu et al., 2010; Bouwman et al., 2013).
Our model-simulated N loss of 45–134 GgNyr−1 in Kenya
is approximately half of statistics-based estimates of 76–
297 GgNyr−1, using a nitrogen-budget method (Zhang et al.,
2021). Likewise, our standard model setup (Fstd) simulated
regional mean N loss of 9.2 kgNha−1 yr−1 (Table 5), again
about half of the estimated 16.7–18.2 kgNha−1 yr−1 in east-
ern Africa reported by Kaltenegger et al. (2021). One possi-
ble reason for these discrepancies may be missing processes
in LPJ-GUESS, such as N loss via soil erosion or surface
runoff. Also, the nitrogen-budget method adopted in Zhang
et al. (2021) and Kaltenegger et al. (2021) assumed that all
the crop residues were retained in the soils after harvest, con-
trasting with the setups in our Fstd simulation (only 10 %
residue retention, Table 3). Removing most residues from
cropland in the model experiment is expected to produce
low N loss because of less N inputs to the soils compared
to 100 % of residue retention. With all the residues left in the
fields (FRR, Table 3), the model regionally showed N loss
of 20.8 GgNyr−1 (Table 5), comparable to the findings in
Kaltenegger et al. (2021).

For untilled maize and pulse cropping systems, we found a
negative correlation between simulated crop production and
N loss (Fig. S6), implying that yield increases derived from

N loss reduction are possible in eastern Africa by no-till man-
agement in the medium to long term. However, at least in our
simulations, these production benefits may not be attained in
the first 2 decades of simulations (Fig. 6c) because of the
time that soil C and N pools need to adjust to the change in
management. A similar finding also emerged from a meta-
analysis of Pittelkow et al. (2015b), which pointed to in-
creased yields, globally, in cereal and legume cropping sys-
tems only after more than 10 years of conversion from a con-
ventional tillage to a no-till system.

An increase of 89 % in N losses was simulated across the
study region in response to leaving crop residues in the field
compared to the model standard setup (Fig.5a). A global
analysis found that leaving residues behind might increase
gaseous N emission by 8 %–37 % (Xia et al., 2018), but the
same study also estimated straw return to reduce hydrologi-
cal N losses by 10 %–26 %. At present the crop residue im-
plementation and soil representation in LPJ-GUESS do not
account for soil hydraulic properties in response to residue
application. This missing process is likely to result in an
overestimation of hydrological N losses since straw return
generally reduces N leaching through enhancing soil water
retention in reality (Blanco-Canqui et al., 2007). In addition,
crop residues after harvest in eastern Africa are expected to
rapidly decompose in response to the warm and moist cli-
mate, continuously releasing reactive N for plant uptake in
the subsequent cropping period (Kihara et al., 2015). As dis-
cussed earlier, only a single growing season within a year
was represented in LPJ-GUESS, and without cover crops,
the relatively long bare fallow period under the simulated
residue retention systems would amplify N losses as the min-
eralized N is not used to support plant growth during the
short rainy season. Nevertheless, modelled crop production
induced by retained residues still increased by 18 % on re-
gional average (Fig. 5a) because of the enhanced size of the
mineral N pool. This result is in line with two previous stud-
ies that showed a mean increase of 19 %–35 % over a 3-year
period in Ethiopian wheat systems with 66 % residue reten-
tion (Adimassu et al., 2019) and another reporting −1 %–
39 % of maize yield changes in response to residue retention
management in semi-arid Kenya (Kihara et al., 2011).

In some simulated grid cells, using cover crops moderately
enhanced N losses, in particular for N-fixing cover crops
(FCC-BNF, Fig. 5a). One possible explanation for this sim-
ulation is that the enhanced available N derived from the
fast decomposition of cover crops would serve as substrate
for N losses instead of being taken up by the main crop,
mainly due to the temporal inconsistency between periods
of soil N mineralization and high N demand of the main crop
(Marcillo and Miguez, 2017). Compared to the bare fallow
model setup (see Fstd, Table 3), our simulations regionally
predicted a slight yield increase of 6 % in non-legume cover
crop systems but a high increase of 19 % for N-fixing cover
crops (Fig. 5a), supporting the meta-analysis findings that
legume cover crops usually contribute more to increasing
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subsequent crop yields than non-legumes when N fertilizer
inputs are low (Tonitto et al., 2006; Quemada et al., 2013;
Marcillo and Miguez, 2017; Thapa et al., 2018). These slight
yield benefits (also reduced productivity in few grid cells; see
Fig. 5a) found in non-legume cover crop simulations primar-
ily resulted from indirect competition for water and nutrients
(Valkama et al., 2015), which may not be available for the
following main crops planted in the long rainy season.

4.4 Trade-offs and win–win management options

In our study, we attempted to identify synergistic manage-
ment strategies for achieving environmental sustainability
without compromising crop production in eastern Africa.
None of the assessed management options fully achieved a
win–win situation in terms of increasing soil C stocks and
crop production while minimizing N losses when integrated
over the study regions. Synergies and trade-offs among the
three examined indicators varied between locations (Fig. 5a)
and cropping systems (Fig. S6).

From the perspectives of food demand and SOC seques-
tration only, conservation agriculture (CA, Fconserv), as an
integrated management with no tillage, residue, and manure
application, and N-fixing cover crops included, was simu-
lated to be the most promising practice for both present-
day conditions and future scenarios. Nevertheless, consid-
ering the potential yield reduction in the first several years
under CA systems (Stevenson et al., 2014; Pittelkow et al.,
2015b), it may be difficult to convince smallholder farm-
ers to adopt such a practice; if indeed 1 %–25 % of crop
production loss could be expected compared to the conven-
tional management practice (Fig. 6c), farmers would suffer
economic losses despite the accompanying 1 %–10 % of in-
crease in SOC storage (Fig. 6a). Furthermore, labour demand
and cost-ineffective investment in CA maintenance may pre-
vent this practice from being implemented widely in eastern
Africa (Thierfelder et al., 2013; Kihara et al., 2020). How-
ever, in our study this practice was modelled as the only one
showing a net SOC sequestration in the future, with annual
carbon uptake rates of 1.1 and 2.7 TgCyr−1 between 2015
and 2100 for Kenya and Ethiopia, respectively (Fig. S8). The
economic considerations would be potentially quite different
if, in a carbon trading scheme, land management that leads to
enhanced carbon sequestration would receive monetary com-
pensation for the resulting yield reductions.

Rather than adopting a fully integrated CA, it is more com-
mon to use N-fixing legumes as cover crops or intercrops in
smallholder farming systems over eastern Africa (Rao and
Mathuva, 2000; Ngome et al., 2011). This crop management
approach in our simulations (FCC-BNF) also had positive im-
pacts for soil C storage and food production, with low en-
vironmental cost in terms of N losses (Fig. 5). This win–
win situation could also be sustained under future climate
change (Fig. 6). However, it should be noted that the absence
of soil pH constraints on legume inoculation in LPJ-GUESS

(Ma et al., 2022) most likely results in an overestimate of
the N fixation rate in the FCC-BNF simulation. For example,
our modelled N fixed by herbaceous legumes can be up to
70–90 kgNha−1 yr−1 in some grid cells (Fig. S9 in the Sup-
plement), while much experimental evidence from African
farms indicates that the nodulation of roots in grain and for-
age legumes in SSA may not be successful, primarily caused
by the inconsistent effectiveness of inoculation in the acid
soils (Ulzen et al., 2016; Muleta et al., 2017; Vanlauwe et al.,
2019). The overestimated N fixation in the model may thus
bias the contribution of legume cover crops to the C–N cycle
and crop production – but possibly also to N losses. To bet-
ter represent cover crop management, the evaluation of mod-
elled N-fixing herbaceous legumes against targeted field ex-
periments, together with implementation of multi-cropping
systems (see Sect.4.3.1), is needed in future model work.

5 Summary

In this study we presented a large-scale modelling analysis
with LPJ-GUESS, highlighting potential long-term effects of
management practices on crop ecosystems in eastern Africa
under different climate change scenarios. The modelled C–
N variables and crop yields in responses to varying agri-
cultural practices were evaluated. Our results showed that
crop ecosystems represented in LPJ-GUESS realistically re-
sponded to different management strategies and climate vari-
ation and produced soil C stocks, N losses, and crop produc-
tivity comparable to measurements in the studied region.

Our model demonstrated that the effects of management
on agricultural ecosystems in eastern Africa can be beneficial
for climate change mitigation without compromising crop
yields, in particular for the combined conservation agricul-
ture practice with all soil-C-conserving techniques included.
This integrated strategy was the only practice simulated to
potentially achieve a positive SOC sequestration under cli-
mate change. Adopting N-fixing cover crop systems was
identified as a dominant practice to regionally increase food
production and C storage in agricultural soils, with low en-
vironmental costs in the form of N losses. This win–win sit-
uation was shown to persist under a range of future climate
pathways. However, processes missing from the model, such
as multi-cropping system and N losses via runoff and soil
erosion, might have biased our assessed management effects
on crop ecosystems regionally.

The adoption of these management practices by farmers
is promising from a climate change mitigation perspective
but perhaps difficult to achieve in reality because of the yield
losses in the first several years under conservation agricul-
ture systems. Farmers are mostly risk-averse when faced
with new management practices. To change this situation, a
payment scheme for carbon sequestration legislated by the
government or volunteered by corporations and individuals
(Salzman et al., 2018) may be needed to fully compensate

https://doi.org/10.5194/bg-19-2145-2022 Biogeosciences, 19, 2145–2169, 2022
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for farmers’ economic losses in eastern Africa, particularly
in the context of future environmental change.

Code and data availability. Global historical climate
data of GSWP3-W5E5 and future climate projec-
tion from five GCMs (ISIMIP3b) are available at
https://doi.org/10.48364/ISIMIP.342217 (Lange et al., 2021).
The monthly climate forcing data set of CRUJRA can be down-
loaded at https://data.ceda.ac.uk/badc/cru/data/cru_jra/cru_jra_2.1
(Harris et al., 2020; Kobayashi et al., 2015). National yield
statistics of six crop types presented in this paper are from
https://www.fao.org/faostat/en/#data (FAOSTAT, 2021). The code
and post-processing scripts used in this study are available upon
request to the corresponding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-2145-2022-supplement.
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