
SISSI: An Architecture for Semantic Interoperable Self-Sovereign 
Identity-based Access Control on the Web 

Christoph H.-J. Braun Vasil Papanchev Tobias Käfer 
braun@kit.edu vasilpapanchev@gmail.com tobias.kaefer@kit.edu 

Karlsruhe Institute of Technology Karlsruhe Institute of Technology Karlsruhe Institute of Technology 
Karlsruhe, Germany Karlsruhe, Germany Karlsruhe, Germany 

ABSTRACT 
We present an architecture for authentication and authorization 
on the Web that is based on the Self-Sovereign Identity paradigm. 
Using our architecture, we aim to achieve semantic interoperabil-
ity across diferent approaches to SSI. We build on the underlying 
RDF data model of the W3C’s recommendation for Verifable Cre-
dentials and specify semantic access control rules using SHACL. 
Our communication protocol for an authorization process is based 
on Decentralised Identifers and extends the Hyperledger Aries 
Present Proof protocol. We propose a modular architecture that 
allows for fexible extension, e. g., for supporting more signature 
schemes or Decentralised Identifer Methods. For evaluation, we 
implemented a Proof-of-Concept: We show that a Web-based ap-
proach to SSI outperfoms a blockchain-based approach to SSI in 
terms of End-to-End execution time. 

CCS CONCEPTS 
• Information systems → World Wide Web; • Security and pri-
vacy → Access control; Privacy protections; • Computer systems 
organization → Distributed architectures. 

KEYWORDS 
Web, Solid, Access Control, Linked Data, Self-Sovereign Identity 

ACM Reference Format: 
Christoph H.-J. Braun, Vasil Papanchev, and Tobias Käfer. 2023. SISSI: An 
Architecture for Semantic Interoperable Self-Sovereign Identity-based Ac-
cess Control on the Web. In Proceedings of the ACM Web Conference 2023 
(WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, 
USA, 11 pages. https://doi.org/10.1145/3543507.3583409 

1 INTRODUCTION 
The recent Self-Sovereign Identity (SSI) paradigm, described in the 
seminal [1], aims to put users in center and control of their digi-
tal identity. SSI sees increasing attention [16] and adoption across 
the globe [8, 19, 33, 38] and across domains, e. g., the fnancial sec-
tor [20], public sector [24, 38] or even healthcare [29]. A diverse 
ecosystem of technologies and SSI providers1 has been established 

1A service or organisation providing governance of identifers and associated claims, 
e. g., Sovrin (https://sovrin.org) or Jolocom (https://jolocom.io/). 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9416-1/23/04. 
https://doi.org/10.1145/3543507.3583409 

where now interoperability [52] and seamless support across tech-
nologies and providers becomes a pressing question. 

To address this problem, Web services may be tempted to inte-
grate the various SSI providers in a wrapper-based approach, as 
showcased in [27]. In such scenarios the overall authentication and 
authorization fow remains unchanged to today’s typical e. g. OIDC-
based process [43]. Only the Identity Provider (IDP) is retroftted 
to authenticate SSIs and then to provide verifed attributes to the 
authorization server (AS), as illustrated in Figure 1a. 

With such retroftting approach however, adapting to changes 
from SSI providers remains responsibility and overhead of the Web 
service. Moreover, during interaction between client and AS, the 
IDP still acts as a trusted middleman that is not needed with SSI. 

To help overcome such issues, and to showcase a truly SSI-based 
access control system, we propose an approach as illustrated by 
Figure 1b: Instead of retroftting an IDP, we omit the IDP completely. 
As identities are truly self-sovereign, clients themselves should 
authenticate and prove claims to the AS. No IDP needs to broker 
between client and AS. Moreover, clients should have free choice 
of SSI, i. e., not being locked in to a specifc SSI technology or SSI 
provider. To achieve these design goals, we build on a stack of Web 
technologies: We rely (a) on a uniform data model, the Resource 
Description Framework (RDF) [18], (b) on semantic interoperability 
by means of URIs and ontologies, and (c) communication protocols 
from the SSI community. 

We thus present an architecture for Semantic Interoperable Self-
Sovereign Identity-based (SISSI) access control, i. e., authentication 
and authorization, on the Web. The architecture is based on the 
Self-Sovereign Identity (SSI) paradigm [1] and achieves semantic 
interoperability of corresponding concepts using existing Web Stan-
dards: We build on the semantic data model underlying the W3C’s 
recommendations for Decentralised Identifers (DIDs) [47] and Ver-
ifable Credential (VC) data model [48]. As their data model adheres 
to the Resource Description Framework (RDF) [18], we seamlessly 
model Access Control Rules (ACRs) using the Web Access Control 
(WAC) ontology [14] which is well-established e. g. in the Solid com-
munity [15]. Moreover, we extend WAC to express requirements of 
particular VCs using the W3C recommendation of the Shapes Con-
straint Language (SHACL) [32]. Using SHACL additionally allows 
us to re-use the ACRs for formally validating that a presented VC 
satisfes the requirement without leaving our semantic model. The 
SISSI architecture also builds on well-established protocols within 
the SSI community, specifcally for communication on the HL Aries 
Present-Proof Protocol [31] on top of the DIDComm Messaging 
Protocol [17] in combination with PeerDIDs [28]. 

To prove the viability of the SISSI architecture, we implement 
a simple Proof-of-Concept Access Control System (ACS) which is 

3011

https://orcid.org/0000-0002-5843-0316
https://orcid.org/0000-0002-3766-6717
https://orcid.org/0000-0003-0576-7457
https://doi.org/10.1145/3543507.3583409
https://sovrin.org
https://jolocom.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583409
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583409&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Braun, et al. 

(a) IDP-based approach where the IDP is retroftted to support SSI. (b) Truly SSI-based approach where no IDP is required. 

Figure 1: High-level overview of diferences in SSI-supporting approaches to authentication and authorization. 

comprised by an AS implementing the SISSI architecture. From Fig-
ure 1b, our work focuses on the AS and its interactions with a client. 
Therefore, additionally a user agent acts as a client executing an au-
thorization process at the AS. We evaluate the End-to-End execution 
time of an authorization process to identify bottlenecks and optimi-
sation potential. Moreover, as SSI solutions are typically blockchain-
based, we compare the impact of diferent DID Methods to illustrate 
the diference between Web-based and blockchain-based DIDs on 
system performance, as SISSI is infrastructure-agnostic. 

Our paper is structured as follows: We introduce technical foun-
dations (Section 3) and survey related work (Section 4). The main 
contribution of our work is an interoperable and truly SSI-based 
approach to access control on the Web, see Figure 1b, based on: 

• a formalisation of the SISSI architecture (Section 6) with 
• a uniform semantic data model (Section 5) and 
• a performance evaluation of a Proof-of-Concept implemen-
tation (Section 8). 

In Section 7, we cover the corresponding communication protocol. 
In Section 9, we summarise the design choices in our architecture. 

2 ILLUSTRATING EXAMPLE 
Consider a Web server for cross-university course material shar-
ing where users must be authenticated as students of ofcially 
recognised universities to gain access to the course material. The 
universities follow an SSI-based approach to manage rights and 
thus issue digital credentials to their students, rendering a central 
or federated IDP unnecessary, see Figure 1b. In this SSI approach, 
students would be able to authenticate directly to the Web server. 

Yet, universities may rely on diferent SSI providers for man-
aging student credentials. These SSI providers choose how their 
credentials are designed, i. e., the employed DID Method (Sec. 3.2) 
and VC favour (Sec. 4.4). Alice’s university relies on SSI provider 
M: Her credential is based on Web-based DIDs and the VC favour 
of JSON-LD with BBS+ signatures. Bob’s university uses provider S: 
His credential is based on Indy-based DIDs and JSON Web Tokens 
and Signatures (JWT/JWS). Charlie’s university uses provider U : 
Her credential is based on Web-based DIDs and JWT/JWS. This 
heterogeneity introduces interoperability challenges. 

In a wrapper-based approach to address the interoperability 
challenge, one wrapper is required for each SSI provider: Each 
wrapper comes with its own pair of drivers, one for the DID and 

one for the VC favour; in our example, three wrappers and thus at 
least six drivers are deployed in total. 

With SISSI, the components to implement are pushed down to 
the basis, i. e. only four drivers, two for the DIDs (Web and Indy) 
and two for the VC favours (JSON-LD with BBS+ and JWT/JWS). 
Moreover, when yet another SSI provider is used and the required 
drivers are already deployed in the SISSI-based system (e. g. Indy-
based DID and JSON-LD with BBS+), no additional overhead occurs 
as this provider is already implicitly supported. 

On top, SISSI capitalises on the RDF data model that underlies 
VCs, as a basis for both credentials and access control. We thus 
can employ the existing SHACL W3C Recommendation for RDF 
data shapes to defne access control rules, instead of a custom 
combination of the unfnished JSON Schema and JSONPath, as [10]. 

3 PRELIMINARIES 

3.1 Linked Data 
3.1.1 URIs, HTTP and RDF. The Linked Data principles [4] are a set 
of practices for data publishing on the Web: Uniform Resource Iden-
tifers (URIs) [5] act as names for things. The Hypertext Transfer 
Protocol (HTTP) [22] is used to dereference URIs. When derefer-
encing a URI, the retrieved content is expressed as a graph using 
the Resource Description Framework (RDF) [18]. 

An RDF graph � ∈ G, where G denotes the set of all RDF graphs, 
is defned as a set of triples. RDF graphs can be serialised, e. g. in 
Turtle (our examples) or JSON-LD. With U as the set of all URIs, 
B as the set of all blank nodes, and L as the set of all literals, a 
triple � can be defned as � ∈ (U ∪B) ×U × (U ∪B ∪L). An RDF 
dataset � ∈ D, where D denotes the set of all RDF datasets, is a 
set of named graphs, i. e., couples (�,�� ) where � ∈ (U ∪ B) and 
�� ∈ G, and an unnamed default graph (_,�) with � ∈ G. 

3.1.2 Shapes Constraint Language (SHACL) [32]. allows to describe 
conditions in an RDF graph (shape graph), using which other RDF 
graphs (data graphs) can be validated. With SHACL, we can express 
constraints, e. g. that a VC’s issuer must be from a given set, the VC 
must not be expired, or the VC must assert a specifc attribute. 

3.2 Self-Sovereign Identity (SSI) 
The SSI vision [1] postulates that agents should in control of their 
digital identity. In SSI, agents can assume three roles: Issuer, who 

3012



SISSI: An Architecture for Semantic Interoperable Self-Sovereign Identity-based Access Control on the Web WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

(cryptographically) attests some claims, e. g., about a holder. Holder, 
who manages those attested claims. Verifer, who (cryptographi-
cally) verifes presented claims2, e. g., for authentication and au-
thorization of the holder. Decentralised Identifers (DIDs) [47] and 
Verifable Credentials (VCs) [48] are technical foundations for SSI. 

3.2.1 Decentralised Identifiers (DIDs) [47]. are a W3C Recommen-
dation to allow an agent to prove control over an identifer (DID) 
without involving a third party, and thus to enable decentralized 
verifable digital identity and interactions. A DID is a URI that links 
a DID subject, e. g., an agent, with a DID Document. The DID Docu-
ment provides information on cryptographic keys and verifcation 
methods using which the control over the DID can be proven. 

More formally, let U��� ⊂ U denote the set of all DIDs. A DID 
Document ���� may be serialised in JSON-LD, thus ���� ∈ D. A 
DID Method defnes how to retrieve a DID Document from a DID3. 
Let M denote the set of all DID Methods. We defne resolving a 
DID as �� : ���� ↦→ D with � ∈ M. 

PeerDIDs [28] are one such DID Method; did:peer ∈ M. Peer-
DIDs encode the entire DID Document in the DID itself and are 
therefore static. As PeerDIDs are thus independent from any reg-
istry (e. g. a blockchain), PeerDIDs are fast, cheap and scalable DIDs, 
well-suited for private peer-to-peer interactions. 

DIDComm Messaging [17] is a message-based, connectionless 
and asynchronous protocol used for encrypting and signing mes-
sages. Using the cryptographic keys from the DID Documents of 
the communicating parties, DIDComm messages can be exchanged 
securely between DID subjects, e. g., identifed by PeerDIDs. 

3.2.2 The Verifiable Credentials (VCs) [48] Data Model. is a W3C 
Recommendation for modelling verifable claims. The recommenda-
tion builds on JSON-LD. As per the VC JSON-LD context, a VC � is 
an RDF dataset, thus � ∈ D. VCs can also be serialised as JSON Web 
Token (JWT) [30]; conversely, JWT credentials can be converted to 
JSON-LD [48]. Let D�� ⊂ D denote the set of all VCs. 

A VC is composed of three components: the claim, the credential 
(metadata) and the proof. Claims and credential form the credential 
graph �� ∈ G. The credential graph links to a proof graph �� ∈ G 
with the credential’s digital signature. We thus defne a VC � = 
{(_,�� ), (�� ,�� )}, with the credential graph as the default graph. 

The claims part of the credential graph contains the triples for 
which the VC has been created. The credential metadata contains 
information on the credential itself, e. g. the credential’s issuing date. 
The proof graph consists of all information required to establish a 
credential’s validity such as signature scheme and cryptographic 
key. Various signature schemes exist, see Section 4.4. Let S denote 
the set of all such signature schemes. 

To present a VC to another agent, the VC Recommendation 
introduces the Verifable Presentation (VP) [48]. On top of the in-
formation from a VC, a VP may include information such as a 
license, or a cryptographic challenge to prevent replay attacks. 
Such information is described in a presentation graph �� ∈ G 
that links to credential graphs �� and to a presentation proof 
graph ��� ∈ G with its digital signature. We defne a VP �� = 

2While trusting the issuer about the truthfulness of the attested claims. 
3DID Methods can be defned and registered by anyone, see [50]. 

⊂ D denote the 
set of all VPs. 
{(_, �� ), (�� , �� ), (�� ,�� ), (��� , ��� )}. Let D� � 

3.2.3 The Hyperledger (HL) Aries Present-Proof Protocol [31]. is 
a protocol for VP exchange on top of the DIDComm Messaging 
protocol [17]. DIDComm defnes two core message types: A request-
presentation message that contains a Verifable Presentation Request 
(VPR) and is sent to request VCs, and a presentation message that 
contains a VP and is sent in response. The protocol is agnostic to 
the specifc formats of VPRs, VPs, and VCs. 

4 RELATED RESEARCH 
SISSI enables semantically described SSI-based access control on 
the Web. We thus survey related work in the intersections of access 
control, SSI and Semantic Web, next to challenges in SSI in general. 

4.1 Access Control on the Semantic Web 
Access control on the Semantic Web is mainly developed within the 
Solid project [44]. The Solid Protocol [15] (currently) uses Access 
Control Lists (ACLs) [14] in RDF to specify access control to Web 
resources, e. g. to grant access to specifc agents or agent groups. 
Instead of DIDs, Solid uses WebIDs [45], i. e. HTTP URIs that can 
be dereferenced to yield profle documents, to identify agents. 

Recently, the Solid community started to specify Access Control 
Policies (ACPs) [7], as an alternative to ACLs. The current specif-
cation draft mentions VCs in the context of access requests. The 
draft also specifes a matcher pattern based on a newly developed 
ontology, instead of using a standard such as SHACL, as we do. 

Werbrouck et al. proposed a pattern-based access control frame-
work for Solid [51], also based on SHACL. However, they rely on 
nanopublications [34] (1) as data model for modelling verifable 
claims, which, in contrast to VCs, e. g. does not defne how to iden-
tify the issuing agent, and (2) as verifcation protocol, which builds 
on necessarily public information and is thus not self-sovereign. 

4.2 SSI and the Semantic Web 
The few works in Semantic Web that address the ideas behind SSI 
often do not use the term SSI, as SSI is typically associated with 
blockchain technology [39]: Solid [15, 44] implements the ideas of 
data sovereignty and privacy using Web technologies: Instead of a 
blockchain that stores a DID document about an agent identifed by 
that DID, a Web server under the agent’s control provides a profle 
document about the agent identifed by a WebID [45]. 

Works that combine Solid and VCs include: Ezike’s approach to 
issue, handle and revoke VCs [21], such that access to Web resources 
can be granted using VCs, and Braun and Käfer’s approach for 
selective disclosure of attributes in VCs [9], such that access to 
Web resources can be granted in a privacy-preserving manner. In 
contrast, SISSI considers the modelling of access control rules, and 
the interoperation of diferent DID Methods and VC favours. 

4.3 SSI-based Access Control 
While there is an abundance of blockchain-based access control 
systems for various domains and use-cases [25, 41, 42], and while 
there is a thriving ecosystem around SSI technologies [46, 54], only 
few works exist in the intersection of SSI and access control: 

3013



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Braun, et al. 

SSIBAC [3] is an Access Control System based on SSI, imple-
mented using the SSI framework Hyperledger Indy4. SSIBAC does 
not specify how to defne access control policies. In contrast, SISSI 
ofers a driver-based architecture to interoperate across diferent 
SSI solutions, and defnes access control rules using Web standards. 

Works also exist about retroftting SSI into existing solutions and 
approaches: Kuperberg et al. survey solutions that integrate SSI into 
Identity and Access Management [35] and fnd that solutions are 
very heterogeneous and the feld lacks standardisation. Grüner et 
al. present a solution that retrofts SSI into an IDP, specifcally they 
integrate the SSI providers uPort and Jolocom into an identity man-
agement system that is based on OpenID Connect (OIDC) [43] and 
the Security Assertion Markup Language (SAML) [40]. To achieve 
interoperability, they use one wrapper per API of the correspond-
ing SSI solutions’ SDKs, see Figure 1a. In contrast, SISSI achieves 
interoperability by semantic modelling of the VCs, the use of corre-
spondingly modelled authorization rules, and the direct use of the 
SSI protocols that underly the SSI solutions. 

Regarding the interoperability of SSI systems, Grüner et al. con-
ceptually analyse diferent approaches [26], and show that there is 
no interoperability concepts superior to all others. In their taxon-
omy of SSI interoperability concepts, the server-side identity broker 
concept is the closest match to SISSI, but with the important difer-
ence that in SISSI, the hosting entity does not need to register an 
identity at each SSI provider. In their interoperability level scheme, 
SISSI falls into the highest level by supporting authorisation. 

4.4 General Challenges in SSI 
In expert interviews, Laatikainen et al. [36] identify technical chal-
lenges for the adoption of SSI. We explain those for the Web context: 

Vertical Interoperability: To prevent tight vertical coupling and 
dependencies between diferent technical components within an 
SSI-based information system, components should strive to be ag-
nostic from the details of other technologies, e. g. a messaging 
protocol for VC exchange should be independent of VC formats. 

Horizontal Interoperability: The W3C standards for DIDs [47] 
and VCs [48] contain many degrees of freedom to allow for use-
case specifc optimisations. To date, there are 136 ofcially regis-
tered DID Methods, and we distinguish 4 favours of VCs, cf. [53]: 
JSON-LD VCs with LD-Signatures [49], JSON-LD VCs with BBS+ 
Signatures [37], credentials expressed as JWTs [30], and Anony-
mous Credentials [11] with Camenisch-Lysyanskaya [12, 13] or 
BBS+ signatures [2, 6]. Moreover, diferent VC implementations 
difer in how DIDs are linked or how status verifcation works. 
Laatikainen et al. note that the lack of interoperability between 
diferent SSI solutions signifcantly impedes the adoption of SSI. 

5 DATA MODELING 
To form the foundation for tackeling the outlined challenges, we 
rely on RDF as a uniform data model and achieve semantic inter-
operability by re-using URIs and ontologies across VCs and ACRs. 
In this section, we briefy cover a small addition to the HL Aries 
Present-Proof [31] message types, the proposed semantic VPR and 
ACR format modeling the required credentials using SHACL [32]. 

4https://www.hyperledger.org/use/hyperledger-indy 

5.1 HL Aries Present-Proof DIDComm Messages 
We re-use the DIDComm message types for requesting and pre-
senting VCs as defned by the HL Aries Present-Proof Protocol [31]. 
Additionally, we defne a message type, access-request, to indicate 
the desire to access a particular resource and, if applicable, to receive 
a corresponding VPR, i. e., request-presentation message. Moreover, 
we “semantify” all message types by providing JSON-LD contexts5 

to lift the messages’ content to RDF, i. e., any message ���� ∈ D. 
We defne a semantic VPR format, the SHACL-based Presentation 

Request Format based on SHACL shape graphs describing the re-
quested VCs. More formally, we defne a VPR �� as an RDF dataset; 
�� ∈ D. Let D� �� ⊂ D denote the set of all such VPRs. The SHACL 
shape graphs are specifed in the ACRs that control access to the 
desired resource. Upon access-request, the graphs are used in the 
VPR request-presentation message, see Appendix A for an example. 

5.2 Access Control Rules (ACRs) 
We model ACRs based on the Solid‘s Web Access Control 
(WAC) [14]. We extend the WAC ontology to link a standard WAC 
ACR to a SHACL shape graph describing required VCs. The example 
ACR, illustrated by Listing 1, specifes that a student VC issued by 
one of the specifed agents, e. g., universities, needs to be presented. 
Combinations of multiple VCs can either be specifed by an RDF 
object list or by using the native logic operators of SHACL. 

1 @prefx acl: <http://www.w3.org/ns/auth/acl#> . 
2 @prefx cred: <https://www.w3.org/2018/credentials#>. 
3 @prefx sh: <http://www.w3.org/ns/shacl#> . 
4 @prefx sissi: <https://purl.org/sissi/messages/ns#>. 
5 

6 _:ACR_student 
7 a acl:Authorization ; 
8 acl:accessTo <http://example.org/r1> ; 
9 acl:agent acl:AuthenticatedAgent ; 
10 acl:mode acl:Read ; 
11 sissi:requiredCredential _:studentIssuerShape . 
12 

13 _:studentIssuerShape 
14 a sh:NodeShape ; 
15 sh:targetClass cred:VerifableCredential ; 
16 sh:class <http://example.org/edu#Student> ; 
17 sh:property 
18 [ sh:path cred:issuer ; 
19 sh:in ( <did:ethr:0x3:0x032..5d7> <did:indy:local:YY8..6tZ> ) ] . 

Listing 1: An example ACR using WAC+SHACL 

6 SYSTEM ARCHITECTURE 
Our proposed SISSI architecture, depicted in Figure 2, is comprised 
of the following components: 
For Communication, 

the Message Security (MS) protects external communication 
according to the DIDComm Messaging Protocol [17]. 

the Message Model (MM) generates messages according to our 
extended data model from Section 5.1. 

5https://purl.org/sissi/messages/v1 

3014

https://www.hyperledger.org/use/hyperledger-indy
https://purl.org/sissi/messages/v1
http://example.org/edu#Student
http://example.org/r1
https://purl.org/sissi/messages/ns
http://www.w3.org/ns/shacl
https://www.w3.org/2018/credentials
http://www.w3.org/ns/auth/acl


SISSI: An Architecture for Semantic Interoperable Self-Sovereign Identity-based Access Control on the Web WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Figure 2: The SISSI architecture of an authorization server (AS) from Figure 1, plus a user and their SSI agent as a client. 

For Authorization, 
the RDF Access Control (RAC) manages the ACRs as modelled 
in Section 5.2. Moreover, it validates VCs against those ACRs 
to derive an authorization decision. 

For Authentication, 
the Universal DID Resolver (UR) enables DID interoperability, 
i. e., resolving DIDs of diferent DID Methods to their DID 
Documents. 

the Universal VC Verifer (UV) enables VC Interoperability, 
i. e., verifying diferent VC favours. 

The Controller (C) that orchestrates the internal services and ex-
poses an external API to execute an authorization process. 

More formally, we defne the SISSI architecture as a tuple of its 
components, which we introduce in detail in the upcoming sections: 

����� = (��, ��,� �,�� , ���)
As the Controller (C) only acts as architectural glue and proxy to 
expose the internal service orchestration for executing an autho-
rization process (Section 7), it may be omitted. For completeness 
and with regards to our evaluation, we additionally introduce an 
SSI User Agent (A) along-side our SISSI architecture in Section 6.6. 
The agent A interacts as the client from Figure 1 with our SISSI AS 
as the AS. Thus, the agent A takes also active part in our evaluation 
as the subject that is exposed to the evaluated End-to-End latency 
of our system (Section 8.2). 

6.1 Message Security (MS) 
The Message Security (MS) component is responsible for securing 
the communication between the SISSI AS and the user agent. To this 
end, we propose relying on the DIDComm Messaging Protocol [17] 
in combination with static PeerDIDs [28] for identifcation. We 
specify our MS component as a set of functions: 

�� = ({����,������, ����, ������� ��� }) 
Upon receiving a DIDComm Message, ������ : R ↦→ D is 

applied to decrypt and authenticate the message, and to retrieve its 
content, i. e., an RDF dataset. Such message content is transmitted to 

the Controller for further processing. Once the Controller supplies 
the MS with a response, i. e. an RDF dataset, ���� : D ↦→ R is 
applied to sign and encrypt a DIDComm Message for the supplied 
RDF dataset. The DIDComm message is then ���� to the user agent 
as an HTTP response. To identify the server during communication, 
the MS generates a single PeerDID, henceforth called ServerDID, 
using ���������� : R ↦→ U������� . 

The ServerDID contains the DIDComm Messaging service end-
point, i. e. the AS’s inbox, and the public key to be used by all 
user agents to encrypt their DIDComm Messages. How exactly the 
ServerDID is disseminated on the Web depends on the use-cases 
of the server and is considered out-of-scope for our work. For ex-
ample, a resource server might provide a QR code containing the 
ServerDID or an HTTP URI to an RDF dataset describing the AS. 

6.2 Message Model (MM) 
The Message Model (MM) component provides the messages for 
requesting and receiving VCs. We propose relying on our extended 
protocol model from Section 5.1. We thus formally specify our MM 
component as a set of functions: 

�� = ({������� , ������ , ������� , ������� }) 

with ������� : D ↦→ U, to extract a requested URI from an access 
request message, and ������ : �� ↦→ D, to generate a message 
containing a VPR based on a set of ACRs, and ������� : D ↦→ D� � , 
to extract a VP from a message containing a VP, and ������� : 
{0, 1} ↦→ D to generate a response message based on an access 
control decision. 

6.3 Universal DID Resolver (UR) 
DID interoperability refers to seamless support for DIDs across dif-
ferent DID Methods. An open-source project by the Decentralized 
Identity Foundation (DIF) already implements the desired function-
ality: the DIF Universal Resolver6. It implements a driver-based 

6https://github.com/decentralized-identity/universal-resolver 

3015

https://github.com/decentralized-identity/universal-resolver


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Braun, et al. 

architecture for resolving DIDs of diferent DID Methods. We thus 
formally specify a Universal DID Resolver (UR) in our architecture: 

� � = (�, �, Δ)
with the set of supported DID Methods � ⊆ M, and a function 
� : ���� ↦→ � that determines a DID’s DID Method � ∈ � , and 
the set of implemented driver functions Δ = {�� |� ∈ �} whose 
elements are functions �� : ���� ↦→ D with � ∈ � that resolve a 
DID to its DID Document. Slightly abusing notation, we denote the 
partial composition of � and � by � |�=� : ���� ↦→ (�). A driver 
�� for a particular DID Method � is contributed to the DIF UR by 
the corresponding community. Currently, over 30 DID Methods are 
supported, e. g., {did:btcr, did:ethr, did:indy, did:peer, did:web} ⊂ � . 

6.4 Universal VC Verifer (UV) 
VC interoperability refers to seamless support for VCs across dif-
ferent VC favours’ signature schemes. To this end, we propose 
a driver-based architecture where each driver implements veri-
fcation of VCs of a specifc favour. We thus formally specify a 
Universal VC Verifer (UV) in our architecture: 

�� = (�, �,� )
where � ⊆ S is the set of supported signature schemes, a function 
� : (D�� ∪ D� � ) ↦→ � that determines a VC’s or VP’s signature 
scheme, and � = {�� |� ∈ S} is the set of implemented driver 
functions whose element functions �� : (D�� ∪ D� � ) ↦→ {0, 1}
verify a VC or VP and return a boolean, i. e., true if and only if 
the VC or VP is verifed. Slightly abusing notation, we denote the 
partial composition of � and � by � |�=� : (D�� ∪ D� � ) ↦→ {0, 1}. 

6.5 RDF Access Control (RAC) 
The RDF Access Control component manages Access Control Rules 
(ACRs) for resources on some (external) resource server. ACRs are 
expressed using Solid‘s Web Access Control specifcation [14] which 
we extend with further semantics for defning required credentials 
using SHACL [32]. We thus formally specify an RDF Access Control 
(RAC) component: 

��� = (�, {�, � }) 
with a set of ACRs � ⊆ D, and a set of functions, i. e., a query 
function � : U ↦→ �� that determines any applicable ACR for an 
input URI, and a rule evaluation function � : D�� 

� × �� ↦→ {0, 1}
that matches one or multiple VCs with one or multiple ACRs and 
returns a boolean, i. e., true if and only if the VCs satisfy at least 
one of the ACRs. That is, if all VC shape graphs of at least one ACR 
are matched by the VCs. 

6.6 SSI User Agent 
We formally defne the SSI User Agent (A) and its functionality 
relevant to our archticture: 

� = (� , {��, ����� } ∪ ��)
with a set of wallets � = {� |� = (���� ,�)} and a set of functions. 
Each wallet � is a couple of a DID and a set of associated VCs � 
with � ⊆ D�� . The set of functions is comprised by a function 
�� : � ×D� �� ↦→ �� to select VCs based on a VPR, and a function 
����� : �� × D� �� ↦→ D to generate a message containing a VP 
from some VCs and a VPR, according to the credential exchange 

SSI User Agent SISSI AS

𝑔𝑒𝑛𝑝𝑒𝑒𝑟𝐷𝐼𝐷 ()

𝑈𝑠𝑒𝑟𝐷𝐼𝐷

𝑔𝑒𝑛𝑝𝑒𝑒𝑟𝐷𝐼𝐷 ()

𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝐼𝐷

(𝑠𝑒𝑛𝑑 ◦ 𝑝𝑎𝑐𝑘) (𝑑𝑎𝑟 )

(𝑥𝑡𝑟𝑐𝑡𝑎𝑟 ◦ 𝑢𝑛𝑝𝑎𝑐𝑘) (𝑑𝑚𝑠𝑔)

𝑢

(𝑔𝑒𝑛𝑣𝑝𝑟 ◦ 𝑞) (𝑢)

𝑑𝑣𝑝𝑟

(𝑠𝑒𝑛𝑑 ◦ 𝑝𝑎𝑐𝑘) (𝑑𝑣𝑝𝑟 )

(𝑞𝑟 ◦ 𝑢𝑛𝑝𝑎𝑐𝑘) (𝑑𝑚𝑠𝑔)

𝐶𝑣𝑝𝑟 , 𝑑𝑣𝑝𝑟

𝑔𝑒𝑛𝑣𝑝 (𝐶𝑣𝑝𝑟 , 𝑑𝑣𝑝𝑟 )

𝑑𝑣𝑝

(𝑠𝑒𝑛𝑑 ◦ 𝑝𝑎𝑐𝑘) (𝑑𝑣𝑝 )

(𝑥𝑡𝑟𝑐𝑡𝑣𝑝 ◦ 𝑢𝑛𝑝𝑎𝑐𝑘) (𝑑𝑚𝑠𝑔)

𝑑𝑣𝑝

(𝑣 |𝑠=𝜎 ∧ 𝑟 ◦ 𝑞) (𝑑𝑣𝑝 )

access decision
𝑔𝑒𝑛𝑟𝑒𝑠𝑝 (access decision)

access response
(𝑠𝑒𝑛𝑑 ◦ 𝑝𝑎𝑐𝑘)(access resp.)

Figure 3: Authorization Process (see Section 6 for notation) 

protocol of the MM component, e. g., HL Aries Present-Proof, and 
the functionality provided by an MS component, e. g., (un-) packing 
messages using the DIDComm Messaging Protocol [17]. 

7 COMMUNICATION PROTOCOL 
In this section, we briefy describe the communication protocol be-
tween the user’s SSI agent and the SISSI AS. A compact illustration 
is provided by Figure 3. 

Initialisation. To set up the AS, the set of ACRs � are provided, 
e. g., by connection to a triple store or from Web-accessible RDF 
documents. On the user-side, the SSI user agent � loads its sets 
of wallets � containing the user‘s DIDs and VCs. For communi-
cation, a ServerDID, chosen by the AS, and a UserDID, chosen by 
the user, are used by the corresponding MS in ���� and ������ 
procedures. Either a long-lived DID or a new PeerDID, generated 
via ���������� , is chosen. The ServerDID is made known to user 
agents, e. g., published on the Web or shared upon request. 

3016



SISSI: An Architecture for Semantic Interoperable Self-Sovereign Identity-based Access Control on the Web WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Access Request. The user agent creates an access-request DID-
Comm message ��� ∈ D specifying the requested resource by its 
URI � ∈ U. It submits the message via HTTP POST to the AS’s in-
box: (����◦����) (��� ). Upon receiving the request, the MS ������s 
the ��� from the message and MM extracts the URI � of the re-
quested resource,� = ������� (��� ). Via (������ ◦�) (�), the appropri-
ate ACRs �� = �(�) for the requested resource are determined and 
a corresponding request-presentation message ���� = ������ (�� ) is 
created. The message ���� is packed and sent to the user agent in a 
HTTP response: (���� ◦ ����) (���� ). A HTTP status code [23] of 
401 Unauthorized may emphasise the need for authentication. 

Responding to the VPR. The user agent unpacks the received 
request-presentation message. By matching the VPR’s SHACL shape 
graphs against the user’s VCs, a subset of VCs to present is selected: 
���� = �� (���� ) with ���� ⊆ � . The selected credentials ���� are 
then included in a new VP ��� = ����� (���� , ���� ). Upon the user’s 
approval, the user agent packs the VP presentation message and 
submits it via HTTP POST to the AS’s inbox: (���� ◦ ����) (��� ). 

Handling the VP. Upon receiving the request, the MS ������s 
the presentation message. The VP ��� is extracted from the message 
���� via ��� = ������� (����). Then, (� |�=� ∧ (� ◦ �)) (��� ) is exe-
cuted: The VP ��� is verifed using the UV, � |�=� (��� ). Any DID 
that is associated to any proof in the VP, is resolved using the UR’s 
� |�=� . By verifying the VP’s proof, e. g., including a cryptopgraphic 
challenge, authenticity of the VP is ensured and thus agent A is 
authenticated. In addition, the VCs presented by ��� are validated 
against the ACRs �� , (� ◦�) (��� ). Finally, an authorization decision 
message is generated, ������� , packed and send back to agent A as 
an HTTP response, (���� ◦ ����). 

The exact format of the authorization response depends on how 
the AS is integrated with a resource server (RS). For example, if the 
AS acts solely as an AS, some access token may be provided to the 
user agent. In case the AS is simultaneously an RS, the requested 
resource may be served. 

8 EVALUATION 
To prove the viability of the SISSI architecture, we implement a 
simple Proof-of-Concept SISSI access control system (ACS)7. We 
evaluate the performance of an authorization process, emphasising 
the impact of an implementor’s choice of infrastructure, as SISSI is 
infrastructure-agnostic. The prototype implements all components 
presented in Section 6, i. e., including DIDComm and HL Aries 
Present-Proof Protocol. The user agent is initialized with a wallet 
storing multiple DIDs and VCs, and provides scripts for communica-
tion with the AS as described in Section 7. Overall, we show that the 
End-to-End (E2E) latency for an authorisation process only takes 
a couple seconds depending on network latency and DID Method. 
Web-based DIDs outperform blockchain-based approaches in terms 
of execution time. 

8.1 Setup 
The evaluation was executed on a Virtual Machine (VM) running 
SMP Debian 4.19.98-1+deb10u1 (2020-04-27) x86_64 with 4 CPU 
cores (2.4Ghz) and 8GB RAM. The server is located in Karlsruhe, 
Germany. We host ACS components on Docker version 20.10.18. 
7https://github.com/vpapanchev/ssi-acs 

As an overall evaluation of the SISSI ACS, we analyse the E2E 
latency of an authorization process, as depicted in Figure 3. We use 
an SSI user agent which applies caching and in-memory credentials 
to minimise impact of the user agent on the evaluation. We compare 
two versions of the ACS: One without parallel resolution of DIDs 
and one with parallel execution. Other optimizations have not been 
implemented, i. e., our prototype does not fetch JSON-LD contexts 
in parallel and does not use caching of remote resource. 

We compare three evaluation cases for authorization requests: 
Indy-based, Ethr-based and Web-based requests. The evaluation 
case depends on the type of DID to be resolved when verifying a 
VP or VC. We thus confgure the UR with three DID Methods: an 
EthrDID driver connected to the Ethereum test network Ropsten8 

and an IndyDID driver connected to a locally deployed VON net-
work9. A third driver supports Web-based DIDs, which we serve on 
a Solid Pod hosted at https://solidweb.org. This way, we compare a 
typical Web-based scenario using WebDIDs with blockchain-based 
scenarios distinguishing between a local scenario (Indy) and a re-
mote scenario (Ethr). 

We initialize the SSI user agent with separate wallets, each for 
one type of DIDs. Each wallet stores JSON-LD credentials expressed 
as JWTs. Further, we defne such ACRs that exacly one VC is re-
quired per access request. Therefore, the handling of each request 
requires exactly two DID resolutions: one for the DID associated 
with the VC proof and one for the DID associated with the VP proof. 

8.2 Results 
We calculate the results for the three evaluation cases as the average 
of 500 executions per request type. Figure 4a shows the average E2E 
latency with sequential DID resolution for Indy-based requests, 
2.190 seconds, for Ethr-based requests, 4.809 seconds, and for 
Web-based requests, 1.604 seconds. Figure 4 also decomposes 
the E2E latency into its components; mostly comprised of DID res-
olution time, � |�=� , and the validation of the required VCs against 
ACRs, � (���� , �� ). In � , a signifcant part of execution time is due to 
fetching remote JSON-LD context from the Web, according to our 
measurements around 0.46 seconds. Other overhead is caused by 
minor ACS routines with negligible performance impact on their 
own, e. g., cryptographically verifying VPs, which only takes on 
average around 0.050 seconds. 

During the E2E evaluation, we measure the average resolution 
time for IndyDIDs, 0.396 seconds and for EthrDIDs, 1.704 sec-
onds. Resolution times vary between diferent DID Methods mainly 
due to the diference in network latency between a remote call for 
EthrDIDs and a local one for IndyDIDs. Resolution of Web-based 
DIDs, 0.099 seconds, also requires remote calls to non-local Web 
resources, but those are answered almost instantaneously. 

As network latency to a remote resource can hardly be improved 
here, the only possible optimization option regarding DID reso-
lution is parallel request execution. Moreover, avoiding network 
latency by only deploying local blockchain nodes is hardly feasible 
due to the required resources to support any blockchain-based DID. 
Hence, remote calls pose a more realistic scenario. But even when 
served locally, blockchain-based DIDs induce signifcant overhead. 

8https://ropsten.etherscan.io/
9https://github.com/bcgov/von-network 

3017

https://github.com/vpapanchev/ssi-acs
https://solidweb.org
https://ropsten.etherscan.io/
https://github.com/bcgov/von-network
https://20.10.18


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Braun, et al. 

0 1 2 3 4 5

indy

ethr

web

0.792
2.19

3.408
4.809

0.198
1.604

0.884

0.884

0.884

0.514

0.517

0.522

Other Validate 𝑟 (𝑑𝑣𝑝𝑐 ,𝑅𝑢 ) Resolve 𝛿 |𝑚=𝜇

0 1 2 3 4 5

indy

ethr

web

0.396
1.879

1.704
3.134

0.099
1.525

0.878

0.878

0.878

0.605

0.552

0.548

Other Validate 𝑟 (𝑑𝑣𝑝𝑐 ,𝑅𝑢 ) Resolve 𝛿 |𝑚=𝜇

(a) Composition of E2E latency (in s) with sequential DID resolution. (b) Composition of E2E latency (in s) with parallel DID resolution. 

Figure 4: Composition of E2E latency (in s): Resolve DIDs (red, right-most bar part), Validating VCs against ACRs (blue, center 
bar part), and the sum of other procedures (green, left-most bar part). 

As DID resolution poses the majority of execution time, espe-
cially in the blockchain-based scenarios, we evaluate the same 
procedures in a system with parallel DID resolution. As expected, 
with some parallelisation overhead (noteable in slightly increased 
other time in Figure 4b), total time is reduced roughly by the time 
of one DID resolution. Other diferences are within margin of error. 

Our results show that a barely optimised system, even with-
out caching remote resources, E2E execution time is considerably 
lower for Web-based scenarios. Introducing blockchains into the 
system comes at a signifcant overhead: When participating locally 
in a blockchain network, as in our Indy-based evaluation case, the 
blockchain mainly lies in execution overhead of fetching relevant 
transactions and re-creating the DID document. However, relying 
only on local blockchain nodes is not really feasible in the context 
of our system. Then, any supported DID Method should be locally 
executable and thus any blockchain should be served locally. In-
stead, and more realisticly, blockchain-based DIDs are resolved in 
remote calls as in our Ethr-based evaluation case. For those cases 
however, overhead in the magnitude of seconds is introduced by 
DID Method execution and network latency. 

9 CONCLUSION 
We presented the SISSI architecture for access control on the Web. 
The architecture is based on the Self-Sovereign Identity paradigm 
and achieves semantic interoperability of corresponding concepts 
using existing Web Standards. Instead of retroftting an IDP, we omit 
the IDP completely as identities should remain truly self-sovereign. 

Access control is defned using user- and machine-
understandable ACRs. Moreover, we capitalise on the VC 
data model [48] as it provides an underlying RDF data model out-
of-the-box. This allows for seamless integration with semantically 
modelled ACRs [14] . We rely on W3C standard of SHACL [32] for 
formal validation while providing explicit semantics at the same 
time. 

The SISSI architecture builds on well-established protocols 
within the SSI ecosystem, e. g., relying on the HL Aries Present-
Proof Protocol [31] on top of the DIDComm Messaging Proto-
col [17] for communication. Combining the DIDComm Messaging 
protocol with PeerDIDs [28] provides an additional layer of privacy. 

However, whether to use a PeerDID or a long-lived DID for the 
communication is ultimately still the user’s choice. 

Moreover, our architecture allows for a fexible and incremen-
tal extensibility for adding new services or substituting existing 
components. The independent evolvability is an important bene-
ft, as, due to the decentralized nature and rapid development of 
the SSI paradigm, updates in the core SSI technologies are to be 
expected. For example, as there currently exist 136 registered DID 
Methods [50] allegedly adhering to the W3C DID standard [47] 
without a common interface, we argue that the standard falls behind 
creating interoperability of DID systems. Therefore, approaches as 
used in our architecture have become a necessity in the frst place: 
Resolving DIDs of diferent DID Methods to their DID Documents 
is possible relying on the Universal DID Resolver. Moreover, the 
set of supported DID Methods � can dynamically be extended, 
e. g., to support new DID Methods, by deploying additional drivers. 
Similar to the W3C DID standard [47], the W3C VC data model 
standard [48] does not defne a standard way of verifying a cre-
dential thereby creating the horizontal interoperability challenge 
as outlined in Section 4.4. Hence, approaches as proposed with 
our architecture are necessary to solve such issue: Relying on our 
Universal VC Verifer, support for verifying diferent VC favours is 
provided and extensible by integration of new drivers. The SISSI 
architecture thus achieves the desired interoperability across SSI 
technologies and addresses the in Section 4.4 outlined challenges. 

We found with our evaluation that even a simple Proof-of-
Concept of the SISSI architecture performs reasonably well: Depend-
ing on the DID Methods, an authorization process takes between 
1.5 and 3.1 seconds. A Web-based approach notably outperfoms 
blockchain-based approaches in terms of execution time. 

With our architecture, we aim to provide the foundation for 
tackling practical issues induced by the controversial W3C recom-
mendations for VCs [48] and DIDs[47]. We hope to showcase the 
viability of semantic self-sovereign identities for access control on 
the Web. With our work, we aim to showcase how to leverage the 
already existing explicit semantics in SSI technologies and ecosys-
tems, as we believe that SSI on the Web has a lot of potential, e. g., 
within the Solid Protocol [15]. 

3018



SISSI: An Architecture for Semantic Interoperable Self-Sovereign Identity-based Access Control on the Web WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

ACKNOWLEDGMENTS 
This work is supported in part by the German federal ministry of 
education and research (BMBF) in MANDAT (FKZ 16DTM107B). 

REFERENCES 
[1] Christopher Allen. 2016. The Path to Self-Sovereign Identity. http://www. 

lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html 
[2] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-Size Dynamic k-TAA. In 

Proc. of the 5th SCN. 
[3] Rafael Belchior, Benedikt Putz, Günther Pernul, Miguel Correia, André Vascon-

celos, and Sérgio Guerreiro. 2020. SSIBAC: Self-Sovereign Identity Based Access 
Control. In 19th IEEE International Conference on Trust, Security and Privacy in 
Computing and Communications, TrustCom 2020, Guangzhou, China, December 29, 
2020 - January 1, 2021, Guojun Wang, Ryan K. L. Ko, Md. Zakirul Alam Bhuiyan, 
and Yi Pan (Eds.). IEEE, 1935–1943. 

[4] Tim Berners-Lee. 2006. Linked Data. https://www.w3.org/DesignIssues/ 
LinkedData 

[5] Tim Berners-Lee, Roy Fielding, and Larry Masinter. 2005. Uniform Resource 
Identifer (URI): Generic Syntax. Internet Standards Track document. IETF. https: 
//www.ietf.org/rfc/rfc3986.txt. 

[6] Dan Boneh, Xavier Boyen, and Hovav Shacham. 2004. Short Group Signatures. 
In Proc. of the 24th CRYPTO (LNCS, Vol. 3152). Springer, 41–55. 

[7] Matthieu Bosquet. 2022. Access Control Policy (ACP). Editor’s Draft. W3C 
Solid Community Group. https://solid.github.io/authorization-panel/acp-
specifcation/ 

[8] Andre Boysen. 2021. Decentralized, Self-Sovereign, Consortium: The Future 
of Digital Identity in Canada. Frontiers Blockchain 4 (2021), 624258. https: 
//doi.org/10.3389/fbloc.2021.624258 

[9] Christoph Braun and Tobias Käfer. 2022. Attribute-based Access Control on Solid 
Pods using Privacy-friendly Credentials. In Proceedings of the Posters and Demo 
Track at the 18th International Conference on Semantic Systems (SEMANTiCS) 
(CEUR Workshop Proceedings, Vol. 2451). CEUR-WS.org. 

[10] Daniel Buchner, Brent Zundel, and Martin Riedel. 2021. Presentation Exchange 
v1.0.0. DIF Ratifed Specifcation. DIF: Decentralized Identity Foundation. https: 
//identity.foundation/presentation-exchange/spec/v1.0.0/#json-schema 

[11] Jan Camenisch and Anna Lysyanskaya. 2001. An Efcient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revocation. In 
Proc. of EUROCRYPT 2001 (LNCS, Vol. 2045). Springer, 93–118. 

[12] Jan Camenisch and Anna Lysyanskaya. 2002. A Signature Scheme with Efcient 
Protocols. In Revised Papers of the 3rd SCN (LNCS, Vol. 2576). Springer, 268–289. 

[13] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous 
Credentials from Bilinear Maps. In Proc. of the 24th CRYPTO (LNCS, Vol. 3152). 
Springer, 56–72. 

[14] Sarven Capadisli. 2022. Web Access Control. Editor’s Draft. W3C Solid Community 
Group. https://solid.github.io/web-access-control-spec/ 

[15] Sarven Capadisli, Tim Berners-Lee, Ruben Verborgh, and Kjetil Kjernsmo. 2021. 
Solid Protocol. Version 0.9.0. W3C Solid Community Group. https://solidproject. 
org/TR/protocol 

[16] Spela Cucko and Muhamed Turkanovic. 2021. Decentralized and Self-Sovereign 
Identity: Systematic Mapping Study. IEEE Access 9 (2021), 139009–139027. https: 
//doi.org/10.1109/ACCESS.2021.3117588 

[17] Sam Curren, Tobias Looker, and Oliver Terbu. 2021. DIDComm Messaging. Edi-
tor’s Draft. DIF: Decentralized Identity Foundation. https://identity.foundation/ 
didcomm-messaging/spec/ 

[18] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts and 
Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/rdf11-
concepts/. 

[19] Shelby Solomon Darnell and Joseph Sevilla. 2021. 3 Stages of a Pan-African 
Identity Framework for Establishing Self-Sovereign Identity With Blockchain. 
Frontiers Blockchain 4 (2021), 631640. https://doi.org/10.3389/fbloc.2021.631640 

[20] Flaviene Scheidt de Cristo, Wazen M. Shbair, Lucian Trestioreanu, Radu State, 
and Aanchal Malhotra. 2021. Self-Sovereign Identity for the Financial Sector: 
A Case Study of PayString Service. In 2021 IEEE International Conference on 
Blockchain, Blockchain 2021, Melbourne, Australia, December 6-8, 2021, Yang Xiang, 
Ziyuan Wang, Honggang Wang, and Valtteri Niemi (Eds.). IEEE, 213–220. https: 
//doi.org/10.1109/Blockchain53845.2021.00036 

[21] Kayode Yadilichi Ezike. 2019. SolidVC : a decentralized framework for Verifable 
Credentials on the web. Master’s thesis. MIT EECS. https://hdl.handle.net/1721. 
1/121667 

[22] Roy Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): 
Message Syntax and Routing. Internet Standards Track document. IETF. https: 
//www.ietf.org/rfc/rfc7230.txt. 

[23] Roy Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): 
Semantics and Content. Internet Standards Track document. IETF. https://www. 
ietf.org/rfc/rfc7231.txt. 

[24] Maria Freytsis, Iain Barclay, Swapna Krishnakumar Radha, Adam Czajka, Ge-
ofrey H. Siwo, Ian J. Taylor, and Sherri L. Bucher. 2021. Development of a 
Mobile, Self-Sovereign Identity Approach for Facility Birth Registration in Kenya. 
Frontiers Blockchain 4 (2021), 631341. https://doi.org/10.3389/fbloc.2021.631341 

[25] Fariba Ghafari, Emmanuel Bertin, Julien Hatin, and Noël Crespi. 2020. Authenti-
cation and Access Control based on Distributed Ledger Technology: A survey. 
In 2nd Conference on Blockchain Research & Applications for Innovative Networks 
and Services, BRAINS 2020, Paris, France, September 28-30, 2020. IEEE, 79–86. 

[26] Andreas Grüner, Alexander Mühle, and Christoph Meinel. 2021. Analyzing 
Interoperability and Portability Concepts for Self-Sovereign Identity. In 20th 
IEEE International Conference on Trust, Security and Privacy in Computing and 
Communications, TrustCom 2021, Shenyang, China, October 20-22, 2021. IEEE, 
587–597. 

[27] Andreas Grüner, Alexander Mühle, and Christoph Meinel. 2021. ATIB: Design and 
Evaluation of an Architecture for Brokered Self-Sovereign Identity Integration 
and Trust-Enhancing Attribute Aggregation for Service Provider. IEEE Access 9 
(2021), 138553–138570. 

[28] Daniel Hardman. 2021. Peer DID Method Specifcation. Editor’s Draft. https: 
//identity.foundation/peer-did-method-spec/ 

[29] Bahar Houtan, Abdelhakim Senhaji Hafd, and Dimitrios Makrakis. 2020. A 
Survey on Blockchain-Based Self-Sovereign Patient Identity in Healthcare. IEEE 
Access 8 (2020), 90478–90494. https://doi.org/10.1109/ACCESS.2020.2994090 

[30] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Token (JWT). Internet 
Standards Track document. IETF. https://www.ietf.org/rfc/rfc7519.txt. 

[31] Nikita Khateev and Stephen Curran. 2021. Aries RFC 0454: Present Proof Protocol 2.0. 
Aries RFC. Hyperledger Indy Community. https://github.com/hyperledger/aries-
rfcs/blob/main/features/0454-present-proof-v2/README.md 

[32] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language 
(SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/shacl/ 

[33] Andre Kudra. 2022. Self-Sovereign Identity (SSI) in Deutschland. Datenschutz und 
Datensicherheit 46, 1 (2022), 22–26. https://doi.org/10.1007/s11623-022-1555-1 

[34] Tobias Kuhn, Christine Chichester, Michael Krauthammer, Núria Queralt-
Rosinach, Ruben Verborgh, George Giannakopoulos, Axel-Cyrille Ngonga 
Ngomo, Rafaele Viglianti, and Michel Dumontier. 2016. Decentralized 
provenance-aware publishing with nanopublications. PeerJ Comput. Sci. 2 (2016), 
e78. 

[35] Michael Kuperberg and Robin Klemens. 2022. Integration of Self-Sovereign 
Identity into Conventional Software using Established IAM Protocols: A Survey. 
In Open Identity Summit 2022, Copenhagen, Denmark, July 7-8, 2022 (LNI, Vol. P-
325), Heiko Roßnagel, Christian H. Schunck, and Sebastian Mödersheim (Eds.). 
Gesellschaft für Informatik e.V., 51–62. https://doi.org/10.18420/OID2022_04 

[36] Gabriella Laatikainen, Taija Kolehmainen, and Pekka Abrahamsson. 2021. Self-
sovereign identity ecosystems: benefts and challenges. In Scandinavian Confer-
ence on Information Systems. Association for Information Systems. 

[37] Tobias Looker and Orie Steele. 2022. BBS+ Signatures 2020. Draft CG Report. 
W3C Credentials CG. https://w3c-ccg.github.io/ldp-bbs2020/#the-bbs-signature-
suite-2020 

[38] Stanislav Mahula, Evrim Tan, and Joep Crompvoets. 2021. With blockchain or 
not? Opportunities and challenges of self-sovereign identity implementation 
in public administration: Lessons from the Belgian case. In DG.O’21: The 22nd 
Annual International Conference on Digital Government Research, Omaha, NE, 
USA, June 9-11, 2021, Jooho Lee, Gabriela Viale Pereira, and Sungsoo Hwang 
(Eds.). ACM, 495–504. https://doi.org/10.1145/3463677.3463705 

[39] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya, and Christoph 
Meinel. 2018. A survey on essential components of a self-sovereign identity. 
Comput. Sci. Rev. 30 (2018), 80–86. 

[40] Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and Tom 
Scavo. 2008. Security Assertion Markup Language (SAML) V2.0 Technical Overview. 
Committee Draft 02. OASIS. https://docs.oasis-open.org/security/saml/Post2.0/ 
sstc-saml-tech-overview-2.0.html 

[41] Imen Riabi, Hella Kafel Ben Ayed, and Leïla Azouz Saïdane. 2019. A survey 
on Blockchain based access control for Internet of Things. In 15th International 
Wireless Communications & Mobile Computing Conference, IWCMC 2019, Tangier, 
Morocco, June 24-28, 2019. IEEE, 502–507. 

[42] Sara Rouhani, Rafael Belchior, Rui Santos Cruz, and Ralph Deters. 2021. Dis-
tributed attribute-based access control system using permissioned blockchain. 
World Wide Web 24, 5 (2021), 1617–1644. 

[43] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. 2014. OpenID 
Connect Core 1.0. Final Specifcation. https://openid.net/specs/openid-connect-
core-1_0.html 

[44] A. Sambra, E. Mansour, Sandro Hawke, Maged Zereba, N. Greco, Abdurrahman 
Ghanem, Dmitri Zagidulin, A. Aboulnaga, and Tim Berners-Lee. 2016. Solid : A 
Platform for Decentralized Social Applications Based on Linked Data. Technical 
Report. MIT CSAIL & Qatar Computing Research Institute. 

[45] Andrei Sambra, Henry Story, and Tim Berners-Lee. 2014. WebID 1.0 - Web Identity 
and Discovery. W3C Editor’s Draft. W3C. https://www.w3.org/2005/Incubator/ 
webid/spec/identity/ 

3019

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://www.w3.org/DesignIssues/LinkedData
https://www.w3.org/DesignIssues/LinkedData
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://doi.org/10.3389/fbloc.2021.624258
https://doi.org/10.3389/fbloc.2021.624258
https://identity.foundation/presentation-exchange/spec/v1.0.0/#json-schema
https://identity.foundation/presentation-exchange/spec/v1.0.0/#json-schema
https://solid.github.io/web-access-control-spec/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://doi.org/10.1109/ACCESS.2021.3117588
https://doi.org/10.1109/ACCESS.2021.3117588
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.3389/fbloc.2021.631640
https://doi.org/10.1109/Blockchain53845.2021.00036
https://doi.org/10.1109/Blockchain53845.2021.00036
https://hdl.handle.net/1721.1/121667
https://hdl.handle.net/1721.1/121667
https://www.ietf.org/rfc/rfc7230.txt
https://www.ietf.org/rfc/rfc7230.txt
https://www.ietf.org/rfc/rfc7231.txt
https://www.ietf.org/rfc/rfc7231.txt
https://doi.org/10.3389/fbloc.2021.631341
https://identity.foundation/peer-did-method-spec/
https://identity.foundation/peer-did-method-spec/
https://doi.org/10.1109/ACCESS.2020.2994090
https://www.ietf.org/rfc/rfc7519.txt
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/s11623-022-1555-1
https://doi.org/10.18420/OID2022_04
https://w3c-ccg.github.io/ldp-bbs2020/#the-bbs-signature-suite-2020
https://w3c-ccg.github.io/ldp-bbs2020/#the-bbs-signature-suite-2020
https://doi.org/10.1145/3463677.3463705
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://CEUR-WS.org


WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

[46] Reza Soltani, Uyen Trang Nguyen, and Aijun An. 2021. A Survey of Self-Sovereign 
Identity Ecosystem. Secur. Commun. Networks 2021 (2021), 8873429:1–8873429:26. 

[47] Manu Sporny, Amy Guy, Markus Sabadello, and Drummond Reed. 2022. Decentral-
ized Identifers (DIDs). W3C Recommendation. W3C. https://www.w3.org/TR/did-
core/ 

[48] Manu Sporny, Grant Noble, Dave Longley, Daniel C. Burnett, Brent Zundel, and 
Kyle Den Hartog. 2021. Verifable Credentials Data Model. W3C Recommendation. 
W3C. https://www.w3.org/TR/vc-data-model/ 

[49] Manu Sporny, Drummond Reed, and Orie Steele. 2020. Linked Data Cryptographic 
Suite Registry. Draft Community Group Report. W3C Credentials Community 
Group. https://www.w3.org/TR/vc-data-model/ 

[50] Orie Steele and Manu Sporny. 2023. DID Specifcation Registries. W3C Group Note. 
W3C DID Working Group. https://www.w3.org/TR/did-spec-registries/#did-
methods 

[51] Werbrouck, Jeroen and Taelman, Ruben and Verborgh, Ruben and Pauwels, Pieter 
and Beetz, Jakob and Mannens, Erik. 2020. Pattern-based access control in a 
decentralised collaboration environment. In Proceedings of the 8th Linked Data in 
Architecture and Construction Workshop, LDAC 2020 (Dublin), Vol. 2636. 118–131. 

[52] Hakan Yildiz, Axel Küpper, Dirk Thatmann, Sebastian Göndör, and Patrick 
Herbke. 2022. A Tutorial on the Interoperability of Self-sovereign Identi-
ties. CoRR abs/2208.04692 (2022). https://doi.org/10.48550/arXiv.2208.04692 
arXiv:2208.04692 

[53] Kaliya Young. 2021. Verifable Credentials Flavors Explained. Technical Report. 
COVID-19 Credentials Initiative. https://www.lfph.io/wp-content/uploads/2021/ 
02/Verifable-Credentials-Flavors-Explained.pdf. 

[54] Razieh Nokhbeh Zaeem, Kai Chih Chang, Teng-Chieh Huang, David Liau, Went-
ing Song, Aditya Tyagi, Manah Khalil, Michael Lamison, Siddharth Pandey, and 
K. Suzanne Barber. 2021. Blockchain-Based Self-Sovereign Identity: Survey, Re-
quirements, Use-Cases, and Comparative Study. In IEEE/WIC/ACM International 
Conference on Web Intelligence (WI-IAT). ACM, 128–135. 

A EXAMPLES 

1 { 
2 "@context": "https://purl.org/sissi/messages/v1", 
3 "@type": "AccessRequest", 
4 "@id": "<uuid-access-request>", 
5 "target": "https://example.org/resources/r1", 
6 "mode": "http://www.w3.org/ns/auth/acl#read" 
7 } 

Listing 2: An example access-request message 

1 { 
2 "@context": "https://purl.org/sissi/messages/v1", 
3 "@type": "https://didcomm.org/present-proof/2/ 

request-presentation", 
4 "@id": "<uuid-request-presentation>", 
5 "will_confirm": false, 
6 "present_multiple": false, 
7 "formats": [ 
8 { 
9 "attach_id": "attachment_0", 
10 "format": "https://purl.org/sissi/messages/ns# 

shaclVPR" 
11 }, 
12 { 
13 "attach_id": "attachment_1", 
14 "format": "https://purl.org/sissi/messages/ns# 

shaclVPR" 
15 } 
16 ], 
17 "request_presentations~attach": [ 

Braun, et al. 

18 { 
19 "@id": "attachment_0", 
20 "@type": "https://purl.org/sissi/messages/ns# 

shaclVPR", 
21 "mime-type": "application/json+ld", 
22 "data": { 
23 "string": "<VPR as stringified jsonld | see 

example (vpr_shacl.jsonld)>", 
24 "base64": "<VPR as base64 encoded | as 

alternative>" 
25 } 
26 }, 
27 { 
28 "@id": "attachment_1", 
29 "@type": "https://purl.org/sissi/messages/ns# 

shaclVPR", 
30 "mime-type": "text/turtle", 
31 "data": { 
32 "string": "<VPR as turtle plain string | see 

example (vpr_shacl.ttl)>", 
33 "base64": "<VPR as base64 encoded | as 

alternative>" 
34 } 
35 } 
36 ] 
37 } 

Listing 3: An example request-presentation message 

1 { 
2 "@context": "https://purl.org/sissi/messages/vpr/ 

v1", 
3 "@type": "https://purl.org/sissi/messages/vpr/ns# 

shaclVPR", 
4 "required_credentials": [ 
5 [ 
6 { 
7 "@type":["http://www.w3.org/ns/shacl# 

NodeShape"], 
8 "http://www.w3.org/ns/shacl#targetClass" 

:{"@id":"https://www.w3.org/2018/credentials# 
VerifiableCredential"}, 

9 "http://www.w3.org/ns/shacl#class":[{"@id 
":"<http://example.org/edu#Student>"}], 

10 "http://www.w3.org/ns/shacl#property":[{" 
@id":"_:b2"}] 

11 }, 
12 { 
13 "@id":"_:b2", 
14 "http://www.w3.org/ns/shacl#path": {"@id": 

"https://www.w3.org/2018/credentials#issuer"}, 
15 "http://www.w3.org/ns/shacl#in":[ 
16 {"@id":"_:b3"}]}, 

3020

https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-spec-registries/#did-methods
https://www.w3.org/TR/did-spec-registries/#did-methods
https://doi.org/10.48550/arXiv.2208.04692
https://arxiv.org/abs/2208.04692
https://www.lfph.io/wp-content/uploads/2021/02/Verifiable-Credentials-Flavors-Explained.pdf
https://www.lfph.io/wp-content/uploads/2021/02/Verifiable-Credentials-Flavors-Explained.pdf
http://www.w3.org/ns/shacl#in
https://www.w3.org/2018/credentials#issuer
http://www.w3.org/ns/shacl#path
http://www.w3.org/ns/shacl#property
http://example.org/edu#Student
http://www.w3.org/ns/shacl#class":[{"@id
https://id":"https://www.w3.org/2018/credentials
http://www.w3.org/ns/shacl#targetClass
https://type":["http://www.w3.org/ns/shacl
https://purl.org/sissi/messages/vpr/ns
https://purl.org/sissi/messages/vpr
https://purl.org/sissi/messages/ns
https://purl.org/sissi/messages/ns
https://purl.org/sissi/messages/ns
https://purl.org/sissi/messages/ns
https://didcomm.org/present-proof/2
https://purl.org/sissi/messages/v1
http://www.w3.org/ns/auth/acl#read
https://example.org/resources/r1
https://purl.org/sissi/messages/v1


SISSI: An Architecture for Semantic Interoperable Self-Sovereign Identity-based Access Control on the Web WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

17 {"@id":"_:b3", 
18 "http://www.w3.org/1999/02/22 

-rdf-syntax-ns#first":{"@id":"did:ethr:0x3:0x032 
..5d7"}, 

19 "http://www.w3.org/1999/02/22 
-rdf-syntax-ns#rest":{"@id":"_:b4"}}, 

20 {"@id":"_:b4", 
21 "http://www.w3.org/1999/02/22 

-rdf-syntax-ns#first":{"@id":"did:indy:local:YY8 
..6tZ"}, 

22 "http://www.w3.org/1999/02/22 
-rdf-syntax-ns#rest":{"@id":"http://www.w3.org 
/1999/02/22-rdf-syntax-ns#nil"}} 

23 ] 
24 ], 
25 "options": { 
26 "nonce": "<challenge nonce>", 
27 "domain": "<challenge domain>" 
28 } 
29 } 

Listing 4: An example SHACL VPR as JsonLD 

1 @prefix sh: <http://www.w3.org/ns/shacl#>. 
2 @prefix cred: <https://www.w3.org/2018/credentials#>. 
3 @prefix sissi: <https://purl.org/sissi/messages/vpr/ 

ns#>. 
4 

5 _:vpr a <https://purl.org/sissi/messages/vpr/ns# 
shaclVPR>; 

6 sissi:options [ 
7 sissi:nonce "<challenge nonce>" ; 
8 sissi:domain "<challenge domain>" 
9 ]; 
10 sissi:required_credentials _:studentIssuerShape . 
11 

12 _:studentIssuerShape 
13 a sh:NodeShape ; 
14 sh:targetClass cred:VerifiableCredential ; 
15 sh:class <http://example.org/edu#Student> ; 
16 sh:property 
17 [ sh:path cred:issuer ; 
18 sh:in ( <did:ethr:0x3:0x032..5d7> 
19 <did:indy:local:YY8..6tZ> ) ] . 

Listing 5: An example SHACL VPR as Turtle 

1 { 
2 "@context": "https://purl.org/sissi/messages/v1", 
3 "@type": "https://didcomm.org/present-proof/2/ 

presentation", 
4 "@id": "<uuid-presentation>", 
5 "last_presentation": true, 
6 "formats": [ 

7 { 
8 "attach_id": "attachment_0", 
9 "format": "https://purl.org/sissi/messages/ns# 

shaclVP" 
10 } 
11 ], 
12 "presentations~attach": [ 
13 { 
14 "@id": "attachment_0", 
15 "@type": "https://purl.org/sissi/messages/ns# 

shaclVP", 
16 "mime-type": "application/json+ld", 
17 "data": { 
18 "string": "<VP as stringified jsonld | see 

example (vp.jsonld)>>", 
19 "jwt": "<VP as JWT | as alternative>", 
20 "base64": "<VP as base64 encoded | as 

alternative>" 
21 } 
22 } 
23 ] 
24 } 

Listing 6: An example presentation message 

1 { 
2 "@context": "https://purl.org/sissi/messages/v1", 
3 "@type": "https://purl.org/sissi/messages/ns# 

AccessResponse", 
4 "@id": "<uuid-access-response>", 
5 "target": "https://example.org/resources/r1", 
6 "mode": "<http://www.w3.org/ns/auth/acl#read>", 
7 "ok": "<true|false>", 
8 "accessToken" : "..." 
9 } 

Listing 7: An example access-response message 

3021


	Abstract
	1 Introduction
	2 Illustrating Example
	3 Preliminaries
	3.1 Linked Data
	3.2 Self-Sovereign Identity (SSI)

	4 Related Research
	4.1 Access Control on the Semantic Web
	4.2 SSI and the Semantic Web
	4.3 SSI-based Access Control
	4.4 General Challenges in SSI

	5 Data Modeling
	5.1 HL Aries Present-Proof DIDComm Messages
	5.2 Access Control Rules (ACRs)

	6 System Architecture
	6.1 Message Security (MS)
	6.2 Message Model (MM)
	6.3 Universal DID Resolver (UR)
	6.4 Universal VC Verifier (UV)
	6.5 RDF Access Control (RAC)
	6.6 SSI User Agent

	7 Communication Protocol
	8 Evaluation
	8.1 Setup
	8.2 Results

	9 Conclusion
	Acknowledgments
	References
	A Examples



