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ABSTRACT:

This paper investigates the enhanced potential of using multi-frequency PolInSAR data for land cover classification. In order to
enable a descriptive analysis that goes beyond the mere comparison of classification accuracies, a two-step classification process
is applied. First, polarimetric and interferometric features are extracted and projected into a 3-dimensional feature space by using
the supervised dimension reduction algorithm Uniform Manifold Approximation and Projection (UMAP). Subsequently, based
on the expressive 3-dimensional representation a simple yet sufficient k-nearest neighbors (KNN) classifier is applied to assign a
land cover class to each pixel. In this way, besides the simplified classification, the visualization of the underlying data structure is
possible and contributes to a better explanation and analysis of classification results. The data analyzed in this way are airborne L-
and S-band PolInSAR data acquired by the F-SAR system. The visual analysis of reduced feature spaces as well as the quantitative
analysis of classification results reveal the benefits of combining both frequencies with regard to class separability.

1. INTRODUCTION

The possibility to acquire images regardless of cloud cover
and daylight makes Polarimetric Synthetic Aperture Radar
(PoISAR) systems a powerful tool for earth observation. By
transmitting and receiving differently polarized microwave
pulses, information-rich measurements are obtained that de-
scribe scattering processes occurring in the target area. The
analysis of the polarization state of backscattered signals allows
deriving information about the geometric shape, orientation and
geophysical parameters of observed scatterers on the ground.
Thus, PoISAR systems provide a rich data basis to generate ac-
curate and up-to-date land cover maps. These maps play an
important role in various application domains such as efficient
planning and management of urban and agricultural land use or
environmental monitoring (Lee and Pottier, 2017).

If an interferometric constellation (InSAR) is used for ima-
ging, the phase difference of SAR image pairs yields addi-
tional valuable information. For example, the coherence of
scattering mechanisms can be quantified that provides insights
about the structure and temporal variability of observed scatter-
ers. Hence, the combination of polarimetry and interferometry
(PolInSAR) results in a powerful observation space and yields
the potential to improve land cover classification even further.

Current airborne PolSAR systems, such as F-SAR or AIRSAR,
additionally enable the simultaneous acquisition in different
frequency bands. Since electromagnetic waves penetrate media
to different depths depending on their frequency, various obser-
vation frequencies result in different backscattering responses
for the same observed area. The question that arises in the con-
text of land cover classification is whether the combination of
different frequency bands contributes to an improved or more
fine-grained class separation.
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The complementary information content of multi-frequency
data was elaborated in detail in (Baronti et al., 1995) us-
ing airborne PolSAR images acquired in P-, L-, and C-band.
First evidence of the added value of using this type of multi-
frequency PolSAR data for land cover classification is demon-
strated in (Chen et al., 1996). Based on classification results,
derived by using a dynamic learning network, the superior dis-
crimination capability of multi-frequency over single-frequency
data sets is shown. In (Turkar et al., 2012), L- C- and X-band
data captured by spaceborne sensors are combined, resulting in
an improvement in classification performance as well. Various
methodical approaches have been proposed for the classifica-
tion of multi-frequency data. These include the unsupervised
H/A/o-Wishart classifier for dual-frequency PolSAR data in-
troduced in (Ferro-Famil et al., 2001) and supervised machine
learning approaches such as the use of a Random Forest (Ha-
gensieker and Waske, 2018), a Support Vector Machine (Lar-
deux et al., 2009) or a Stacked Auto-Encoder as presented in
(De et al., 2018).

In many studies (Chen et al., 1996, Shang et al., 2009, Turkar
et al., 2012, Hagensieker and Waske, 2018) addressing the ad-
vantages of multi-frequency PolISAR or PolInSAR data for land
cover classification, the potential and performance are evalu-
ated in terms of classification accuracies solely. However, these
accuaracies are highly influenced by the selection of training
and test areas. Furthermore, considering quantitative classifica-
tion results only does not support the explainability of misclas-
sifications. This limits the application-specific improvement of
the classifiers.

Aiming at explainability, the main challenge is the high num-
ber of PolInSAR features that are included in the classifica-
tion. For human observers it is difficult to get a complete over-
view of all relevant features and their interaction and influence
on the class separability. In addition to the difficulty of inter-
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Figure 1. Top: Geographic location of the study site. Bottom:
PolSAR image (S-band) color coded corresponding to the Pauli
decomposition.

pretation, the large dimension of the feature space complicates
automatic classification. Since the volume of the feature space
grows exponentially with the number of features, the training
of a classifier requires significantly more labeled data. In addi-
tion, redundant information, that may be present in the feature
representation, can negatively affect the performance of a clas-
sifier. To counteract this problem, feature selection or dimen-
sion reduction approaches have been proposed in the context of
PolSAR data classification. For example, in (Chen et al., 1996)
redundant features are identified and removed based on a correl-
ation analysis. Additionally, methods for dimension reduction
such as ISOMAP (Ainsworth and Lee, 2004), Laplacian Eigen-
maps (Tu et al., 2012) and t-distributed Stochastic Neighbor
embeddings (He et al., 2020) are proposed in order to represent
relevant polarimetric information in just a few components.

In this paper the approach of dimension reduction in conjunc-
tion with a simple classifier is chosen to assess the advantages
of multi-frequency PolInSAR data for land cover classification.
Thereby, both highlighted challenges are overcome at the same
time. First, reducing the feature space to only three dimensions
allows a visualization of the structure of the data underlying
the classification. This enables an instructive visual analysis
of class separability as well as the explainability of classific-
ation results. Second, classification is greatly simplified by
using a low-dimensional yet expressive representation of the
data. In contrast to existing approaches, the method applied
in this paper employs Uniform Manifold Approximation and
Projection (UMAP) for dimension reduction. This algorithm is
chosen, since, according to our analysis presented in (Schmitz
et al., 2021), it is well suited for finding a 3-dimensional rep-
resentation of PolInSAR data that preserves class separability.

The paper content is structured as follows: In Section 2, the
study site and the acquired data are presented. The methods to
perform dimension reduction, classification and visualization
are described in Section 3. In Section 4, a visual analysis and
comparison of single- and multi-frequency data are presented
based on UMAP results and quantitative classification results
are discussed. An additional focus in Section 4 is on the ana-
lysis of misclassifications. In Section 5, a summary is given and
conclusions are drawn.

2. DATA SET AND STUDYSITE

The multi-frequency PolInSAR data set considered in this study
originated from an airborne measurement campaign conducted
in August 2020 on the German North Sea coast. The data
was acquired by the F-SAR system, developed by the Ger-
man Aerospace Center (Horn et al., 2009). This airborne SAR

system is capable of capturing fully polarimetric data in five
different frequency bands, four of which can be used at the
same time. Interferometric measurements can be realized in
single-pass and repeat-pass. Thus, the F-SAR system enables
the acquisition of a highly informative data set. The Polln-
SAR image pairs used in this study are fully polarimetric SAR
images, acquired simultaneously in L- and S-band in repeat-
pass configuration. The resolution of single-look products is
0.6m x 1.29m in azimuth and range direction for L-band im-
ages and 0.5m x 0.65m for S-band images. In both cases the
incidence angles vary between 25 ° (near range) and 55 ° (far
range).

The captured scene considered in this study depicts a coastal
strip on the German Wadden Sea between Neuharlingersiel
and Carolinensiel. The geographic location and the processed
PolSAR image in Pauli representation (S-band) are shown in
Figure 1. The tide was low at the time of data acquisition, so
that dry fallen tidal flats, musselbeds and water-filled tideways
are visible on the seaward side. On the landward side, the tidal
flat is adjoined by lane systems, salt marshes and two small
sandy beaches. Beyond the dike, a large part of the depicted
area represents agricultural land. In addition, two densely built-
up residential areas and isolated farm yards are mapped.

3. METHODS

The approach, which is used to classify single- and multi-
frequency PolInSAR data contains three main steps. First,
based on filtered SAR images, polarimetric and interferomet-
ric features are extracted on pixel level that span a high-
dimensional feature space. The following supervised dimen-
sion reduction is performed by applying UMAP. In this step the
high-dimensional feature representation of each pixel is projec-
ted into a 3-dimensional Euclidean space, while retaining the
local and global topological structure of the data. By mak-
ing use of label information, data points representing the same
class are projected close to each other in the reduced feature
space, whereas data points referenced by different classes get
separated. On the basis of the 3-dimensional feature repres-
entations, a k-nearest neighbors (KNN) classifier is used to as-
sign a class label from a predefined set of land cover classes to
each data point. One result of this approach is the classification
map itself. The additional result is a visually presentable fea-
ture space that gives insights into the underlying data structure
and provides support for analyzing classification results. In the
following, the three main components of the classification ap-
proach and the generation of human interpretable visualizations
are described in detail.

3.1 Feature extraction

Each PolSAR image pixel is represented by its 2x2 scatter-
ing matrix. In order to extract polarimetric features from the
L-band and S-band images, 3x3 coherency matrices are calcu-
lated and averaged over three azimuth bins. For further reduc-
tion of speckle noise, a Refined-Lee filter using a 7x7 window
is applied. To decrease the influence of the incidence angle, co-
variance matrices are projected to the wave front plane using the
~o-convention. Based on the resulting corrected matrices, sev-
eral polarimetric features, summarized in Table 1, are extracted
using the PolSARPro Software (Pottier et al., 2018). The inter-
ferometric coherence, which describes the local phase correla-
tions between two complex SAR images, was delivered along
with the F-SAR data.
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Expression Description

{T3;)] Magnitudes of coherency matrix elements [dB]

SPAN(S) = |Sun|? + 2|Sho|?® + |Svu|? Total scattered power [dB]

H,A « Entropy, Anisotropy (and 4 combinations of these) and mean alpha
angle derived from the Eigenvalue Decomposition (Cloude and Pot-
tier, 1997)

Niy Dis A Eigenvalues [dB], pseudo probabilities and weighted mean of eigen-

values

Liineburg Anisotropy, Polarization Asymmetry,
Polarization Fraction, Radar Vegetation Index,
Pedestal Height Parameter

Scattering Diversity, Scattering Predominance,
Depolarisation Index, Degree of Purity

Shannon Index, Simpson Index, Renyi Entropy,
Index of Qualitative Variation, Gini Simpson In-
dex, Inverse Simpson Index, Perplexity

fodd, fdoubl67 fvolume

Features based on Eigenvalue-Decomposition of the coherency matrix

Features based on the normalized coherency matrix proposed in
(Praks et al., 2009) as alternatives to entropy and alpha angle

Diversity indices based on pseudo probabilities p;

Odd-bounce, double-bounce and volume scattering contribution [dB]

derived from Van Zyl Decomposition (Van Zyl, 1993)

|’Y1m| - ‘<va,15:v,2>/\/<S7’7hls:v,1><s7“’72szv,2>|

Magnitude of interferometric coherence derived from repeat-pass im-
age pair

Table 1. Polarimetric and interferometric features extracted to build a high-dimensional representation of PolInSAR data.

Extracted features from L- and S-band images are projected to
ground-range geometry on a common 1 m x 1m raster. In
order to reduce the high dynamic range that is observed for
several features, a feature-wise clipping based on the 37¢ and
97*® percentile is performed. Subsequently, each feature is
normalized to the value range [0, 1]. By stacking the features
of a single-frequency band, each pixel can be represented by
a 46-dimensional feature vector. For the multi-frequency rep-
resentation, concatenating the vectors consequently results in a
92-dimensional vector.

3.2 Supervised dimension reduction

The high amount of features used to describe scattering prop-
erties not only poses difficulties for direct interpretation by hu-
man observers, but likewise increases the complexity of clas-
sifiers for automatic analysis. Some of the selected features
have closely related physical interpretations. Thus, redundan-
cies arise, which are ideally eliminated without loss of relevant
information. For this step, the nonlinear dimension reduction
method UMAP is applied. The UMAP algorithm, proposed and
described in (Mclnnes et al., 2018), is based on neighborhood-
graphs and makes use of ideas from topological data analysis.
The algorithm can be divided into two main steps: Graph con-
struction and graph projection. In the first step the topology
of the high-dimensional data is approximated and represented
by a fuzzy simplicial complex. This representation essentially
provides a weighted graph, whose edge weights indicate how
likely two data points are to be connected. Thereby, the con-
nection probability depends on the distance of a point to its k-
nearest neighbors, where k is a hyperparameter. The second
step involves determining a low-dimensional topological rep-
resentation of the data that is as similar as possible to the high-
dimensional representation in terms of local and global struc-
ture. This optimization problem is formulated as the minim-
ization of the cross-entropy between the two topological rep-
resentations. In addition to unsupervised dimension reduction,
which is based solely on the data itself, the UMAP algorithm
can be used for supervised dimension reduction that includes

label information from reference data. For this purpose, in ad-
dition to the topological approximation of the high-dimensional
data, a second fuzzy simplicial complex is constructed, which is
based exclusively on the categorical distance of the reference la-
bels. Using the intersection of both complexes, one that relates
to the data and another that relates to the reference labels, a
joint topological representation is generated and subsequently
a low-dimensional representation is optimized. As a result of
supervised dimension reduction, a projection rule is obtained
by which high-dimensional feature representations can be pro-
jected to a low-dimensional space. This is done in such a way
that the data structure is preserved while different classes are
separated from each other. The obtained projection rule can
subsequently be applied to new unseen data without a known
class label.

In this study, supervised UMAP with Euclidean distance is
applied to project high-dimensional feature representations of
single- or multi-frequency PolInSAR data to a 3-dimensional
Euclidean space (in the following referred to as reduced feature
space). Thus, the visualization and intuitive capture of the data
structure of the different data sets is enabled and the subsequent
automatic classification is facilitated.

3.3 Classification

The output of the dimension reduction is not yet a classification
result, but only a compact representation of the data. However,
by using supervised dimension reduction, a data representation
is already learned that separates different classes. Assuming
that the learned representation is also capable of separating un-
seen test data correctly, classifying the data based on this repres-
entation is a straightforward task. Therefore, a simple k-nearest
neighbors vote is used as a classifier that assigns a land cover
class to each data point. This pixel-based classification does not
include any spatial features. Thus, the level of noise still present
in the feature images is directly reflected in the classification
image. To eliminate isolated pixel classification, i.e. pixels as-
signed to class y; surrounded by pixels assigned to class y;, a
majority filter is applied in a 3x3 window in a post-processing
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step. Thus, the final result of the whole processing chain is a
land cover map of the area covered by the PolInSAR data.

3.4 Visualization of reduced feature space

As a result of applying supervised UMAP, each PolInSAR im-
age pixel is characterized by three components, thus can be
visualized in a 3-axis scatterplot. The components plotted on
the x-, y- and z-axis, cannot be interpreted directly in phys-
ical terms. However, the relative position of the data points to
each other in the reduced feature space is meaningful. Data
points describing similar scattering processes, and thus prob-
ably belonging to the same land cover class, are adjacent, while
differences in scattering responses are characterized by a high
distance in the reduced feature space. Consequently, the class
separability as well as intra-class variances in the underlying
PolInSAR data become visible. For the interpretation of scatter-
plots, it should be noted that the inclusion of class information
may lead to an artificial separation of two similar classes.

In order to visualize the low-dimensional representation of the
PolInSAR data within a spatial context, colored images, in the
following referred to as RGB visualization, are generated. For
this purpose, the three components are scaled linearly, yield-
ing a range of values from 0 to 255, and are interpreted as red,
green and blue intensities. Each image pixel is colored based
on its resulting associated RGB value. The RGB visualizations
provide an intuitive way to rapidly identify which land cover
classes are similar or dissimilar in the PolInSAR data set under
consideration.

4. RESULTS

UMAP projection and classification are applied on PollInSAR
data acquired simultaneously in L- and S-band. A visual ana-
lysis based on reduced feature spaces and a quantitative ana-
lysis based on classification results are performed. The object-
ive of the investigations is to compare S- versus L-band data and
to compare single- versus multi-frequency data with respect to
their potential for land cover classification. By means of the
classification results, poorly distinguishable classes are identi-
fied for the different data sets. The 3-dimensional representa-
tions of these classes are considered in detail in order to better
understand the underlying nature of the issues.

4.1 Experimental setup

In order to apply the classification process, annotated train-
ing and test data are required. To this end, the study area is
labeled manually supported by optical data, defining ten land
cover classes. The annotation and division of the scene into
training and test areas are depicted in Figure 2. The number of
annotated pixels per class varies greatly. The classes sand and
asphalt are underrepresented in the training data with a quantity
of approximately 47,000 respectively 18,000 pixels. To reduce
the strong imbalance between the classes, only a subset of the
maximum of 100,000 labeled training pixels per class is used to
determine projection rules for dimension reduction and to train
the classifiers. This represents a compromise of class balance
and the inclusion of valuable label information. To identify suit-
able hyperparameters of KNN classifiers (number of neighbors
k and weight function for prediction), a 5-fold cross validation
is performed using subsets of the training data. Subsequently,
the trained models for dimension reduction and classification
are applied to the unseen test data.

W Water
M Man-Made M High vegetation

W Musselbed W Mudflats W Asphalt M Meadow Sand

M Uncultivated farmland W Low vegetation

Figure 2. Manually generated reference labels for training and
testing, covering ten land cover classes.

4.2 UMAP visualization

The results of the supervised dimension reduction applied on
the single-frequency data sets (L-band, S-band) and the multi-
frequency data set (L- & S-band) are shown in Figure 3. For
each data set, data points projected to the reduced feature space
are displayed using the RGB visualization described in Sec-
tion 3.4, and four scatterplots. In the first scatterplot (con-
sidered from left to right) projected data points belonging to
the training set are mapped and colored according to their ref-
erence labels. The second plot depicts projected data points
belonging to the test set, also colored according to their ref-
erence labels. These two plots provide information about the
class separability and show how well the 3-dimensional rep-
resentation, learned from the training data, can be transferred
to unseen test data. The following two scatterplots show the
same sets of projected data points, but this time colored accord-
ing to their position in the reduced feature space. For coloriz-
ation the axes are interpreted as red-, green- and blue-intensity
scales, thus representing the color scheme of the RGB visualiz-
ation shown above the scatterplots. The color schemes derived
for the three data sets differ significantly, i.e. same land cover
classes appear in different colors. This is due to the fact that
the projection rules used to derive the 3-dimensional represent-
ations were determined individually for the different data sets.
In the resulting representation only the relative position of the
points to each other is meaningful. Thus, the absolute position
of a point, which determines the color in the RGB visualization,
is not directly related to the land cover class.

Based on Figure 3, the following observations are made: For
all data sets, the learned 3-dimensional representations general-
ize sufficiently well to unseen data. This is concluded from the
fact that the layout of the test data replicates that of the train-
ing data, including the internal structure of the clusters. For the
most part, the formation of projected test data points into sep-
arated clusters follows the reference label well. Comparing the
scatterplots of the three data sets with each other, the superiority
of the multi-frequency data set in terms of class separability is
evident. Using only L-band data, the musselbed class (orange)
shows high intra-class variance and does not form a compact
cluster. In addition, test data referenced as man-made (red) are
mixed up with data referenced as high vegetation (dark green)
and confusion occurs between farmland (brown) and meadow
(light green). Compared to the L-band data, the structure of the
S-band data generally shows better class separation. However,
overlapping clusters and confusion between classes of test data
are still present. As already highlighted, the most separable
clusters are formed when using the multi-frequency data set.
The only remaining challenge arises for test points belonging
to the classes farmland (brown) or meadow (light green), that
are located between the corresponding clusters in the reduced
feature space.

In addition to the visual analysis of class separability, the ex-
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Figure 3. RGB visualizations and scatterplots that show the reduced feature spaces resulting from supervised UMAP. Data points of
training and test data are illustrated separately. From left to right: In the first and second scatterplot, data points are colored by their
reference label. In the third and forth scatterplot, data points are colored according to their position in the feature space.
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ploration of the reduced feature spaces reveals further charac-
teristics of the investigated data. One interesting observation is
the split of the water (dark blue) reference class into two sep-
arated clusters which arise for the single- and multi-frequency
data sets. With additional consideration of the RGB visualiz-
ations, it can be concluded that this behavior is related to the
incidence angle dependence of polarimetric features. As a pure
surface scatterer, the water class is particularly affected, so that
water surfaces appear different in the near and far range. This
example illustrates even further the benefits of visualizing the
data structure for the understanding and analysis of the data.

4.3 Classification results

The 3-dimensional feature representations, shown and dis-
cussed in the previous section, provide the input data for the
KNN classifier that is used to assign a land cover class to each
pixel. The achieved classification results based on single- and
multi-frequency data are given in Figure 4 in form of confusion
matrices. Some observations that have already emerged from
the preceding visual analysis are also reflected in the quantitat-
ive results. The two classes water and mudflats, that form visu-
ally separable clusters in the reduced feature spaces, are classi-
fied accurately for all three data sets. The classification based
on L-band data frequently fails to identify the class musselbed,
which has already been indicated in the high intra-class vari-
ance of this class observed from the RGB visualization. High
error rates also occur between the three classes meadow, farm-
land and sand. Overall, the classification based on S-band data
provides significantly better results. Compared to the L-band
based results, the classification accuracy increases for the ma-
jority of classes. The remaining weakness is the confusion of
sand and asphalt and the poor separation of meadow and farm-
land, which have nevertheless improved compared to the L-
band results. One of the exceptions, where the L-band data set
provides better results, is the assignment of the class man-made.
Based on the S-band data set, data points incorrectly classified
as man-made occur frequently in areas of low vegetation. With
the aid of resulting classification images, it was determined that
the affected areas are salt marshes, which are crossed by nar-
row water ditches. A possible explanation is that double reflec-
tions occur between the water surface and the edge of the ditch.
Since double reflections typically occur between the ground and
building walls, there is confusion between the two classes low
vegetation and man-made. The overall accuracy of the classi-
fication based on the multi-frequency data set, namely 88.84 %,
does not significantly exceed the classification result based on
the S-band data alone (88.23 %). However, a detailed review of
the confusion matrix reveals that there is a substantial improve-
ment for certain classes. By using the multi-frequency data,
especially the classes man-made and low vegetation are better
identified than by using only a single-frequency band. Only the
class meadow is more often confused with the class farmland
compared to the S-band based classification.

4.4 Analysis of misclassification

In the following, classes which are often incorrectly assigned
in the classification are considered in more detail. For this pur-
pose, their representations in the 3-dimensional feature space
are used. For the L-band data set, confusion between the classes
farmland, meadow and sand (Figure 5) is analyzed. For the S-
band data set, confusion between sand and asphalt (Figure 6) as
well as between farmland and meadow (Figure 7) is explored.
For the multi-frequency data set, the challenge of distinguishing
farmland and meadow (Figure 8) is investigated.
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Figure 4. Confusion matrices for KNN classification results.

The left scatterplots in Figures 5 to 8 show the 3-dimensional
representation of the training data colored according to their
reference label. The projection of the test data is shown in the
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Figure 5. L-band data set: Missclassification of data points with
reference label farmland.
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M Asphalt Sand B Misclassified
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Figure 6. S-band data set: Missclassification of data points with
reference label sand.

adjacent plot. Here, correctly classified data points are colored
based on their predicted class, while misclassifications are dis-
played in red. The image sections below the scatterplots rep-
resent examples in which the considered misclassification is re-
flected.

From the figures, two phenomena are observed that cause con-
fusion in the classification. The first phenomenon becomes ap-
parent in Figures 5 and 6. Test data points referenced by class
y; are projected to areas, in which a cluster of another class
y; is formed by projected training data. In the case of L-band
data (Figure 5), high-dimensional feature representations with
the reference label farmland are projected to positions in the
3-dimensional space, where the cluster meadow or sand is es-
tablished for the training data set. A similar behaviour is ob-
served in the reduced feature space based on S-band data for the
classes sand and asphalt (Figure 6). The second phenomenon
arises if there is no clear border between two classes but rather
a smooth transition from one class to another. This is illustrated
by the examples shown in Figures 7 and 8 for the classes farm-
land and meadow. In the case of S-band data (Figure 7), an

S-band test data
colored by predicted label

S-band training data
colored by reference label

[ Farmland 71 Meadow B Misclassified

Reference label Predicted label

[l
Ll

Figure 7. S-band data: Confusion of data points with reference
label meadow or farmland.

L-and S-band test data
colored by predicted label

L- and S-band training data
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|
{
|
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Figure 8. L- and S-band data: Confusion of data points with
reference label meadow or farmland.

overlapping area between the two classes is already developed
in the representation of the training data. The misclassifica-
tions of test data arise exclusively in this transition area. For the
multi-frequency data set, data points corresponding to farmland
or meadow are well separated for the training data. However,
several test data points are projected to regions between the two
distinct clusters, resulting in a smooth transition here as well. A
continuous transition of the two classes is comprehensible for
the data used in this study. The areas marked with the reference
label farmland differ among themselves. While some areas are
plowed fields, other fields have not yet been cleared of vegeta-
tion or crop residues. Especially in the area of unplowed fields,
mixed pixels result, in which meadow and farmland fall into
one resolution cell. The projection of such pixels to the area
between the clusters or to the transition area of the two clusters
is thus reasonable.

5. CONCLUSION

In this paper, it has been demonstrated in an illustrative and
comprehensible manner that multi-frequency PolInSAR data
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are beneficial for land cover classification. For this purpose,
a classification approach, which consists of supervised dimen-
sion reduction using UMAP followed by a KNN classifier, was
applied on single- and multi-frequency (S- and L-band) Polln-
SAR data. Using this method provides a meaningful visualiz-
ation of the feature space underlying the classification, and a
simplified class assignment by reducing redundant information
and using the resulting 3-dimensional feature representation.
Based on the reduced feature spaces, the better separability of
land cover classes for multi-frequency data becomes visually
apparent and is equally reflected in the quantitative analysis of
the classification results. The benefit of provided visualizations
was additionally demonstrated in the analysis of misclassific-
ations. Future work will focus on evaluating the added value
of simplified classification through the use of low-dimensional
feature representations. In particular, the hypothesis that the ap-
plied method requires less training data while maintaining the
classification performance will be investigated.

REFERENCES

Ainsworth, T. L., Lee, J., 2004. Polarimetric SAR im-
age classification-exploiting optimal variables derived from
multiple-image datasets. IGARSS 2004. 2004 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, 1, 188—
191.

Baronti, S., Del Frate, F., Ferrazzoli, P., Paloscia, S., Pampa-
loni, P., Schiavon, G., 1995. SAR polarimetric features of agri-
cultural areas. International Journal of Remote Sensing, 16(14),
2639-2656.

Chen, K.-S., Huang, W., Tsay, D., Amar, F., 1996. Clas-
sification of multifrequency polarimetric SAR imagery using
a dynamic learning neural network. IEEE Transactions on
Geoscience and Remote Sensing, 34(3), 814-820.

Cloude, S. R., Pottier, E., 1997. An entropy based classification
scheme for land applications of polarimetric SAR. IEEE Trans-
actions on Geoscience and Remote Sensing, 35(1), 68-78.

De, S., Ratha, D., Ratha, D., Bhattacharya, A., Chaudhuri, S.,
2018. Tensorization of multifrequency PolSAR data for classi-
fication using an autoencoder network. IEEE Geoscience and
Remote Sensing Letters, 15(4), 542-546.

Ferro-Famil, L., Pottier, E., Lee, J., 2001. Unsupervised classi-
fication of multifrequency and fully polarimetric SAR images
based on the H/A/Alpha-Wishart classifier. IEEE Transactions
on Geoscience and Remote Sensing, 39(11), 2332-2342.

Hagensieker, R., Waske, B., 2018. Evaluation of multi-
frequency SAR images for tropical land cover mapping. Remote
Sensing, 10(2), 257-273.

He, C., He, B., Tu, M., Wang, Y., Qu, T., Wang, D., Liao,
M., 2020. Fully Convolutional Networks and a Manifold Graph
Embedding-Based Algorithm for PolISAR Image Classification.
Remote Sensing, 12(9), 1467-1489.

Horn, R., Nottensteiner, A., Reigber, A., Fischer, J., Scheiber,
R., 2009. F-SAR—DLR’s new multifrequency polarimetric air-
borne SAR. 2009 IEEE International Geoscience and Remote
Sensing Symposium, 2, 11:902-11:905.

Lardeux, C., Frison, P-L., Tison, C., Souyris, J.-C., Stoll,
B., Fruneau, B., Rudant, J.-P., 2009. Support vector ma-
chine for multifrequency SAR polarimetric data classification.
IEEE Transactions on Geoscience and Remote Sensing, 47(12),
4143-4152.

Lee, J.-S., Pottier, E., 2017. Polarimetric Radar Imaging: From
Basics to Applications. CRC press.

Mclnnes, L., Healy, J., Melville, J., 2018. Umap: Uniform
manifold approximation and projection for dimension reduc-
tion. arXiv preprint arXiv:1802.03426.

Pottier, E., Ferro-Famil, L., Fitrzyk, M., Desnos, Y.-L., 2018.
Polsarpro-bio: The new scientific toolbox for esa & third party
fully polarimetric sar missions. EUSAR 2018; 12th European
Conference on Synthetic Aperture Radar, VDE, 1-4.

Praks, J., Koeniguer, E. C., Hallikainen, M. T., 2009. Altern-
atives to target entropy and alpha angle in SAR polarimetry.
IEEE Transactions on Geoscience and Remote Sensing, 47(7),
2262-2274.

Schmitz, S., Weidner, U., Hammer, H., Thiele, A., 2021. Evalu-
ating Uniform Manifold Approximation and Projection for Di-
mension Reduction and Visualization of Polinsar Features. IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 1, 39—46.

Shang, J., McNairn, H., Champagne, C., Jiao, X., 2009. Applic-
ation of multi-frequency synthetic aperture radar (sar) in crop
classification. Advances in geoscience and remote sensing.

Tu, S. T., Chen, J. Y., Yang, W., Sun, H., 2012. Laplacian
Eigenmaps-Based Polarimetric Dimensionality Reduction for
SAR Image Classification. IEEE Transactions on Geoscience
and Remote Sensing, 50(1), 170-179.

Turkar, V., Deo, R., Rao, Y., Mohan, S., Das, A., 2012. Clas-
sification accuracy of multi-frequency and multi-polarization
SAR images for various land covers. IEEE Journal of Selec-
ted Topics in Applied Earth Observations and Remote Sensing,
5(3), 936-941.

Van Zyl, J. J., 1993. Application of Cloude’s target decomposi-
tion theorem to polarimetric imaging radar data. Radar Polari-
metry, 1748, 184-191.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-1-2022-49-2022 | © Author(s) 2022. CC BY 4.0 License. 56





