
at–Automatisierungstechnik 2023; 71(6): 443–452

Methods

Maximilian Walter*, Sebastian Hahner, Tomáš Bureš, Petr Hnětynka, Robert Heinrich and Ralf

Reussner

Architecture-based attack propagation and
variation analysis for identifying confidentiality
issues in Industry 4.0

Architekturbasierte Angriffsausbreitungs- und Variationsanalyse zur Identifizierung von

Vertraulichkeitsproblemen in Industrie 4.0

https://doi.org/10.1515/auto-2022-0135

Received October 19, 2022; accepted January 10, 2023

Abstract: Exchanging data between entities is an essential

part of Industry 4.0. However, the data exchange should

not affect the confidentiality. Therefore, data should only be

shared with the intended entities. In exceptional scenarios,

it is unclear whether data should be shared or not and

what the impact of the access decision is. Runtime access

control systems such as role-based access control often do

not consider the impact on the overall confidentiality. Static

design-time analyses often provide this information.We use

architectural design-time analyses together with an uncer-

tainty variation metamodel mitigating uncertainty to cal-

culate impact properties of attack paths. Runtime access

control approaches can then use this information to sup-

port the access control decision.We evaluated our approach

on four case studies based on real-world examples and

research cases.

Keywords: attack propagation; confidentiality; software

architecture.

*Correspondingauthor:MaximilianWalter, Dependability of Software-

Intensive Systems Group (DSiS), Karlsruhe Institute of Technology (KIT),

Institute of Information Security andDependability (KASTEL), Am Fasanen-

garten 5, 76131 Karlsruhe, Germany, E-mail: maximilian.walter@kit.edu.

https://orcid.org/0000-0003-0358-6644

Sebastian Hahner, Robert Heinrich and Ralf Reussner, Dependability

of Software-Intensive Systems Group (DSiS), Karlsruhe Institute of Tech-

nology (KIT), Institute of Information Security and Dependability (KASTEL),

Am Fasanengarten 5, 76131 Karlsruhe, Germany,

E-mail: sebastian.hahner@kit.edu (S. Hahner), robert.heinrich@kit.edu

(R. Heinrich), ralf.reussner@kit.edu (R. Reussner)

Tomáš Bureš and Petr Hnětynka, Faculty of Mathematics and Physics,

Charles University, Malostranské Náměstí 25, 118 00 Praha 1, Czech Repub-

lic, E-mail: bures@d3s.mff.cuni.cz (T. Bure), hnetynka@d3s.mff.cuni.cz

(P. Hntynka)

Zusammenfassung: Der Datenaustausch zwischen Part-

nern ist ein zentraler Bestandteil von Industrie 4.0. Der

Austausch sollte aber nicht die Vertraulichkeit verringern.

Daher sollten die Daten nurmit den vorgesehenen Partnern

geteilt werden. In Sonderfällen ist unklar, ob Daten ausge-

tauschtwerden sollen oder nicht undwelcheAuswirkungen

die Zugriffsentscheidung haben kann. Zugriffskontrollsys-

teme wie die rollenbasierte Zugriffskontrolle berücksichti-

gen die Auswirkungen auf die Vertraulichkeit oft nicht.

Entwurfszeitanalysen liefern häufig diese Informationen.

Wir verwenden Architekturanalysen zusammen mit einem

Ungewissheitsvariationsmetamodel, um Angriffspfade zu

berechnen. Zugriffskontrollsysteme können diese Infor-

mationen während der Entscheidung nutzen. Wir haben

unsere Analysen anhand von vier Fallstudien evaluiert, die

auf realen Beispielen und Forschungsbeispielen basieren.

Schlagwörter: Angreiferpropagation; Vertraulichkeit; Soft-

warearchitektur.

1 Introduction

Industry 4.0 is the digitalization of the production process.

It promises, for instance, more efficient usage of resources

and more customization for products. These benefits are

achieved by connecting different systems and enabling

data-exchange for them. The used technologies are Cyber-

Physical-Systems (CPS) and Internet of Things (IoT) devices.

However, with the connected systems also the questions

regarding the security and confidentiality arise. It is vital

that systems only share selected data and keep the other

data secure and confidential. Additionally, these systems

are also often critical and cannot be offline or blocked. For

instance, a stopped assembly line is costly. Still, there could

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2022-0135
mailto:maximilian.walter@kit.edu
https://orcid.org/0000-0003-0358-6644
mailto:sebastian.hahner@kit.edu
mailto:robert.heinrich@kit.edu
mailto:ralf.reussner@kit.edu
mailto:bures@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz

444 — M. Walter et al.: Architecture-based attack propagation and variation analysis

be incidents happening like accidents or system break-

downs. Some of these incidents can be foreseen. Thus, they

are already considered during the system’s design. How-

ever, some situations are not foreseeable or just forgotten

through mistakes and therefore unknown to the system.

These unknown situations lead the system to an unknown

state, and there is uncertainty regarding the access decision.

To support the system’s decision-making in this state, it

can be important that the runtime system gets information

about the impact of its decision.

We now introduce our Industry 4.0 running example.

We could have a system like in Figure 1. It is based on a

scenario from our former Industry 4.0 security research

project with industrial partners [1]. We extended it in [2] for

attacker information. The scenarios consist of two compa-

nies with one manufacturer (M) and one service contractor

(S). S maintains the machine of M. For maintaining the

machine, S needs access to the log data of themachine. How-

ever, access should only be granted when the machine has a

failure since the log data might contain sensitive data. The

system architecture contains three devices (Storage Server,

Terminal Server, Machine Controller) that are connected by

a Local Network. Additionally, it contains four components

(a) the Production Data Storage which stores production

data such as the log data of the machine, (b) the Product

Storage which contains confidential blueprints, (c) the Ter-

minal with the interface for the technician, (d) the Machine

generates the log data and provides a state.

Analyzing this system during the design-time is ben-

eficial, since there are often security problems already in

the design of the software [3] or it has already known

vulnerabilities [4]. Design-time analyses such as our attack

propagation [2] can find potential attack paths based on

the proposed software architecture by using these known

vulnerabilities or can identify critical data elements such as

our dataflow analysis [5, 6]. However, the results of these

analyses are rarely used during the runtime. Additionally,

because of their nature as design-time analyses, there is

uncertainty regarding the actual runtime properties. For

instance, we do not know the initial breaching points or

the concrete attack capabilities for our attack propagation.

These uncertain properties directly affect the results and

reduce the usefulness of the design-time analysis results

during runtime.

To increase the usefulness and bridge the gap between

design-time and runtime analyses, we looked primarily at

runtime access control systems and developed an approach

to provide design-time properties such as attack paths or

classifications based on static design-time analysis. Our con-

tributions are:

(i) We use a newly developed uncertainty model to cal-

culate attack paths for different initial breach locations and

attacker capabilities. These attack paths are used to identify

potentially affected data. Additionally, we use our dataflow

analysis [5, 6] to categorize this found data based on their

criticality. (ii) These properties can then support the access

decision during runtime by providing the impact for access

decisions.

We evaluated our modified design-time analyses,

including the transformation and our uncertainty meta-

model for functional correctness. We used four case studies

based on real-world system breaches, research case stud-

ies, and industrial example scenarios. The results suggest

that our analyses produce correct results. Additionally, we

investigated the applicability of our design-time properties.

For this, we gave access control experts our design-time

properties, and they developed access control rules which

can consider these design-time properties.

Our paper is structured as follows. We give in Section 2

an overview of our approach. In Section 3 we present

our variation metamodel in more detail. We describe

in Section 4 our evaluation. Afterwards, we present in

Section 5 the related work and Section 6 concludes the

paper.

Figure 1: Graphical and architectural representation of the maintenance scenario from Walter, Heinrich, and Reussner [2].

M. Walter et al.: Architecture-based attack propagation and variation analysis — 445

2 Approach overview

Our main idea is to use static design-time analyses results

to enhance the decision-making process for runtime access

control approaches. This allows considering the impact of

enabling potential attack paths to critical data during uncer-

tain access control decisions. In this paper, we focus on the

creation of the design-time properties and illustrate how

these properties can be used during runtime.

Figure 2 gives an overview of our approach. It consists

of the design-time part and the runtime part. The syntax is

based on activity diagrams to describe the process. Rectan-

gles with rounded corners describe activities, and regular

rectangles describe input or output objects. Our design-time

analyses are based on the Palladio Component Model (PCM)

[7]. We use an extended version, which supports dataflow

definitions [6] and vulnerability specifications [2]. The first

part of our approach is the modeling of the software archi-

tecture. Here, architects can specify the criticality of the

data and define vulnerable system elements such as com-

ponents or hardware resources. Afterward, our dataflow

analysis [6] calculates for each data element the criticality

and saves it with a unique ID for later references. Dur-

ing the design-time, it is not clear which components can

be attacked or what capabilities attackers have. Therefore,

we generate multiple architectural variations for different

attack start points and with different attacker capabilities.

Architects can define variation points by using our newly

developed uncertainty variation metamodel (see Section 3).

These variation points are then automatically transformed

into different architectural variations. Each architectural

variation is then analyzed by our attacker propagation anal-

ysis [2], which is based on [8]. We extended the analysis,

so it can output the attack complexity of an attack path.

For each variation, we store the attack complexity, the

starting point, and the affected data for the runtime part.

Additionally, architects can define runtime access control

policies.

These properties alone can already help architects to

increase security. The data classificationdetermines the crit-

ical data. Based on our data model, architects can use this

information to determine components with critical data.

This can then be used to harden these components against

attacks. Using our variation model, we can calculate an

attack path from every component. Architects and security

experts can determine which component is critical and can

easily be attacked with the attack paths. Based on these

results, they can decide which components need special

protection mechanisms or mitigation approaches. This can

help already during the design-time to increase the security

and confidentiality of the system.

Additionally, our design-time properties, namely data

criticality and attack paths with affected data, can then be

considered during runtime. However, this consideration is

only possible if there is no architectural erosion between

the modeled architecture and the runtime system. For

this, we differ between architecture evolution and change

in runtime properties. If structural information of the

Figure 2: Process overview as an activity diagram with different actions and artifacts during design-time and runtime.

446 — M. Walter et al.: Architecture-based attack propagation and variation analysis

architecture is changed, such as the selection of components

or hardware resources, we consider these as an evolution

step. For this kind of step, the architect needs to adapt the

architectural model and rerun our analysis. In other cases,

for instance, that the access request is changed to another

component, the architect does not need to update the archi-

tectural model. Our uncertainty variation model could also

consider some structural changes in the software architec-

ture, such as the known reconfiguration step. However, the

runtime access control systemwould then need to know the

complete system state and need to choose the appropriate

attack path.

At the runtime, the evaluation of the access control

policies could, for instance, consider the access request, the

system state, and especially the results of the design-time

analysis. Thiswould lead then to an access decision. Notably,

the stored list of the criticality and the information about

the attack paths are considered to decide whether access

can be granted or whether granting access would enable an

attacker to access critical data.

3 Enabling security analysis at

design-time

Our existing analyses do not consider uncertainty, yet.

However, at design-time, much is yet unknown about the

system. This includes the system usage and misuse, i.e.,

information about the attacker and the attacker’s behav-

ior. The lack of knowledge introduces uncertainty, e.g.,

about the starting point of the attack, possible attack paths,

and also the system’s environment. Although this uncer-

tainty impedes deterministic statements about the overall

confidentiality of a system, it is not unmanageable at all.

Bymodeling themas variations of the software architecture,

we can make more precise statements about the impact on

confidentiality [9].

The concept of analyzing different versions of an

architectural model and measuring the impact on quality

attributes including for confidentiality has already been

introduced by a PerOpteryx extension [10]. However, Per-

Opteryx so far does not consider attacker propagation and

the data classification. Thus,we present an uncertainty vari-

ation metamodel to analyze software architecture varia-

tions due to uncertainty for attack propagation analyses.

Figure 3 shows the UML class diagram of the

Uncertainty Variation Metamodel. It represents Scenario

Uncertainty as Uncertainty Variations, i.e., variations in

architectural models due to uncertainty as set of zero or

more Variation Points. Each Variation Point has a name and

provides its type by the State Handler that can be used to

calculate architecture variants. The Variation Points also

references all elements of the architectural model that are

affected by the modeled variation, i.e., varying subjects.

To describe all alternatives to choose from as part of the

variation, the model defines the Variation Description. This

description holds one or multiple alternative values or

collections of values that a Variation Point can represent.

Examples are different resources to deploy to or different

sets of characteristics describing the sensitivity of data. All

values, value collections as well as varying subjects are

identifiers that reference elements of the model.

To generate the variations, we first compute the state

space of all possible combinations. Given n Variation Points

𝑣0 … 𝑣n that have all a Variation Description, let |𝑣i| the

number of values of the Variation Description i. Then, the

size of the state space s can be calculated as s = ∏n

i=0|𝑣i|,

i.e., by multiplying the count of all Variation Description’s

values. We iterate over this state space and apply the

Figure 3: Uncertainty variation metamodel class diagram.

M. Walter et al.: Architecture-based attack propagation and variation analysis — 447

variation to the software architecture. In each iteration, we

call the state handlers to modify the referenced varying

subjects of the software architecture. Depending on the type

of the Variation Point, this means changing references and

model elements. Because of our limited scope on our attack

propagation, where we only vary the starting point, the

creation of all variants should not be problematic. For other

scenarios, we plan to further investigate it. Each variation

represents one possible runtime scenario and can be ana-

lyzed using the attacker analysis.

For our running example, we want to create for each

component as a starting point an attack path. We created a

new Variation Point and added as the Variation Description

the attacker. Afterward, the analysis would create for each

component an attacker model. Therefore, we could analyze

potential attack paths from each component.

4 Evaluation

We structure the evaluation based on the Goal Question

Metric approach. Our first goal (G1) is to evaluate the

functional correctness for the properties derived from the

design-time. Our evaluation questions are: Q1.1: Can we

correctly classify the criticality of the data? Q1.2. Can we

correctly determine the affected data of the attack paths?

Q1.3 Can we correctly identify the complexity of the attack

paths? Q1.4 Can we correctly generate all variations? In

contrast to our previous publication [6], we focus in Q1.1

not on access violations but on the classification of data

elements. Determining the data criticality is essential since

a wrong classification might later result in a wrong access

decision during runtime. ForQ1.2, we focus only on the data

elements within an attack path since the attack path itself

is already evaluated in [2]. Q1.3 focuses on the new attack

complexity element. Therefore, evaluating whether it is cal-

culated correctly is essential. The same applies to Q1.4. This

describes our newly developed variation model. Our metric

for answering Q1.1–Q1.4 is the Jaccard Coefficient (JC) [11]:

JC(A,B) = |A∩B|
|A∪B| . It is used to compare the similarity between

two sets, and its values range from 0.0 for no intersection

in the sets and 1.0 if both sets are identical. We can apply

this metrics, since the order of the sets are irrelevant. A

detailed description of the sets can be found in the Evalua-

tion Design. Our second goal (G2) concentrates on the appli-

cability for the runtime. The evaluation question is Q2.1:

Can access control policies be formulated that consider our

design-time properties (data criticality and attack paths with

affected data)? This question is important, since so far we

only evaluatedwhat scenariowe canmodel andhowcorrect

the results of the analyses are. However, if our design-time

properties cannot be considered during the runtime, we

would only have the design-time benefits for the analyses.

Therefore, it is important to investigate, whether an access

control framework can theoretically consider our proper-

ties. Our metric for answering Q2.1 is the ratio (a) between

the scenario (s1), which can consider our properties and all

scenarios sall: a = s1
sall
.

4.1 Evaluation design

We choose four case studies for the evaluation since case

studies might provide better insights, show the applica-

bility and increase the comparability between different

approaches. We reused three case studies from [2]. An in

depth description of the case studies can be found due

to space reason in [2]. Additionally, we investigated the

running example. While the three reused case studies are

not directly settled in the Industry 4.0 environment, they

share important similarities with Industry 4.0 cases such as

the usage of CPS, IoT devices together with business back-

ends. Therefore, the results should be transferable to the

industrial domain. Two case studies (Target, Power Grid)

are based on real-world system breaches. The other ones

are based on a research case study in the confidentiality

community (Travel Planner) or on a scenario from a pre-

vious project with industrial partners (Maintenance Sce-

nario). All the used models and results can be found in our

dataset.1

ForG1, we created for each question a reference output

and compared it to the analysis results. For Q1.1 we consid-

ered the output of our analysis as a set of tuples. Each tuple

contains a data identifier and a classification. The order-

ing of this set is irrelevant since only the tuple describes

a data element, and there is no dependency between the

tuples in the output. We manually created the reference

set by creating a reference list with tuples. For Q1.2, we

looked at one concrete attacker with a concrete starting

point and generated the list of affected data elements. This

is a set of data identifiers for each case study. For the ref-

erence output, we manually investigated the attack path

with an attacker with the same capabilities and the same

starting point. Afterward, we created a set of data objects.

1 Available online: https://doi.org/10.5281/zenodo.7214894.

https://doi.org/10.5281/zenodo.7214894

448 — M. Walter et al.: Architecture-based attack propagation and variation analysis

Again the set of the data elements can have an arbitrary

ordering since there are no dependencies between the dif-

ferent elements in the output, and the ordering is not rele-

vant. For Q1.3, the output can be seen as a triple of attacker

name, attacker starting point, and attack complexity. We

reuse here the attack paths from the previous question. For

this attack path, we analyzed the complexity of the attacks

and then generated the reference output set. Again the

ordering of the set is irrelevant since there is no dependency

between the triples, and the order is not considered. For

Q1.4, we considered the selected attacker as an element in

the set. We created themanual set by referencing the gener-

ated attacker variations. The ordering is not relevant since

each attacker analysis is performed independent, and only

the referenced attacker is necessary andnot the position in a

list.

We evaluated our second goal (Applicability) G2 by giv-

ing our project partners the list of design-time properties

and asking them to model access control policies consider-

ing these properties. Our project partners developed dur-

ing a previous project together with industrial partners an

adaptive access control system [12] for dynamic access con-

trol in Industry 4.0, which they used to specify the policies.

The procedure was, that we gave them for each case study a

scenario tomodel, and they havewritten rules including the

properties.

4.2 Correctness results and discussion

For each case study and question, we got a JC of 1.0. These

are perfect results. It means that our analysis returns, for

each evaluation question and case study, similar results

to our manual-created reference output. This means that

for our cases, the analysis correctly classifies data in our

architecturalmodel (Q1.1). Additionally, it indicates that our

variations creations work correctly (Q1.4). These variations

are then used to calculate the correct list of affected data for

our cases and assign the correct attack complexity (based

on Q1.2 and Q1.3). Thus, the results indicate that our design

analyses produce correct properties for the runtime access

control decision.

4.3 Applicability results and discussion

Overall each scenario could be modeled. Therefore we

achieved for our case study a ratio of 1.0, which is a per-

fect result. In the rest of the section, we will describe one

example in more depth.

Listing 1. Ensemble for the maintenance case study.

Listing one shows an excerpt of the access control spec-

ification of the maintenance case study. A system is speci-

fied via two main concepts – components and ensembles.

Components represent actual entities of a system (e.g. the

machine). Ensembles are dynamically established groups of

components. In detail, an ensemble determines a dynam-

ically emerging situation, identifies components that take

part in the situation, and specifies access rules for the

components. Ensembles can be hierarchically. The top-level

ensemble describes an overall goal of a system, and its

nested ensembles represent individual sub-goals (the top-

level FactorySystem ensemble – line 3 – describes thewhole

factory system while its nested ShiftTeam ensemble – line

4 – describes goals for an individual shift). At runtime,

ensembles are continuously evaluated via an adaptation

controller, and the evaluation also considers the results of

the design-time analysis. The Broken Machines ensemble

is our maintenance scenario. (lines 9–20), which manages

access to machines in need of repair. This ensemble selects

all the broken machines in the factory (line 6) and then,

M. Walter et al.: Architecture-based attack propagation and variation analysis — 449

for each brokenmachine, instantiates the AccessBrokenMa-

chine ensemble (instantiation at line seven and the ensem-

ble at lines 9–16). The AccessBroken Machine selects an

appropriate technician, assigns him the rights to access the

machine (line 11, and notifies him to start the machine fix

(line 12). However, the technician is allowed only in case the

access to the machine does not offer an easy way to attack

the machine (or others in the factory) sensitive and criti-

cal data (the constraint at line 14). This is implemented in

the function attackDifficulty, which internally takes results

computed during the design-time analysis and directly tests

the possible attack paths starting from the given machine

and returns the difficulty of the potential attack.

4.4 Threats to validity

We categorize our threats to validity based on the guidelines

from [13].

4.4.1 Internal validity

The internal validity describes that only expected factors

affect the results. Regarding G1, the results are affected

mainly by the reference sets. We lowered the risk by using

real-world examples and existing literature [3, 14–16] to

create them. While our case studies are comparatively

small, they already cover together most of our design-time

functionality. Thereby, adding more architectural elements

or considering bigger system does not bring new insights

regarding our evaluation goal. The implementation of the

access control policies mainly affects the result of G2. Based

on our evaluation goal, we only investigate, whether poli-

cies considering our properties can be expressed. To avoid

conformation bias, the runtime time policies are formulated

by a different group then the group of the design-time anal-

ysis. This allowed the runtime experts to come to their own

results and reduced the bias of the design-time group.

4.4.2 External validity

This describes how generalizable the results are. Using case

studies and application scenarios increase the insight but

might decrease the generability. For avoiding this specializa-

tion, we choose different external case studies. The Target

and Power Grid case studies are based on actual system

breaches. The Travel Planner case study is also considered

by other confidentiality approaches such as [17]. Addition-

ally, we used these three case studies already in previous

publications [2, 6]. Our fourth case study is based on a

scenario described by industrial partners in a former

research project [1]. Therefore, we assume the risk to be

low. Nevertheless, we plan to extend the evaluation of our

design-time approaches in the future. The choice of the

access control system could affect our external validity.

The chosen access control system is very specific. Other

more restricted access control system might not be use-

able. However, our design-time properties can be reduced

to attributes. Therefore, it should be possible to transfer it

to other more commons approaches like ABAC.

4.4.3 Construct validity

This describes whether our metrics can be used to answer

our research goal. Regarding G1, the correctness is the com-

parison between the result set and the expected set, and this

is the intended usage of our chosenmetric. Additionally, the

order of the set is not relevant. Therefore, our metric can

be applied. For answering G2 we chose a very simple ratio

between the scenarios where we could formulate access

control policies and the overall scenarios. Therefore, we

assume that this is acceptable.

4.5 Assumptions & limitations

One fundamental assumption is that we have architectural

models of the systems. While it is beneficial to design the

software architecture and integrate our design-time anal-

ysis already in the design, legacy systems might not have

architecture models. Generating these models is quite cum-

bersome, and it could limit our approach. However, using

existing reengineering approaches might help here and

reduce the effort. Nevertheless, there is still some manual

effort required. Currently, our approach only considers sim-

ple mitigation strategies such as access control or network

segregation. More advanced strategies such as Trusted Exe-

cution Environments are not supported. A possible solution

might be to remove vulnerabilities manually when mitiga-

tion strategies prohibit them. In the future,wewant to inves-

tigate this aspect more and maybe combine a mitigation

model with our vulnerability model.

5 Related work

We split the discussion about related work along our differ-

ent analyses. In [6], we discuss already related approaches

for the dataflow analysis. Other related model-driven

approaches can be found in [18]. Overall, these related

approaches often do not analyze the dataflow at the archi-

tectural level. We discuss related approaches regarding our

450 — M. Walter et al.: Architecture-based attack propagation and variation analysis

attack propagation in [2]. Kordy et al. [19] also lists different

approaches. Most of the related approaches do not consider

fine-grained access control and vulnerabilities. They focus

only one aspect, or a very specialized for one application

domain. Regarding the variation modeling, there exists the

Peropteryx extension for confidentiality [10], which gener-

ates architectural variations and analyzes them. Also in the

domain of product lines, they use the concepts of variants

[20]. In contrast, our model is more specialized, since it only

should cover uncertainty for confidentiality analyses.

6 Conclusions

In the paper, we presented an approach that analyzes what

data is affected by system breaches based on the software

architecture in Industry 4.0. This is achieved by assigning

data a category for criticality based on our dataflow anal-

ysis and metamodel. The approach considers the uncer-

tainty regarding the attack capabilities and initial breach

point during the design-time with our uncertainty variation

model. This information can be used during the runtime to

enhance the decision-making of access control approaches.

We evaluated our approach on four case studies, and the

evaluation indicates correct results. Additionally, we illus-

trated that our design-time properties can be used in access

control rules.

Using our approach is beneficial to identify potential

problematic breach locations during the design-time. This

can help architects and system designers to harden their

systems and fix security/confidentiality problems in the

design. Additionally, our approach can be used to document

known security problems in the system, and this eases the

communication between different stakeholders. During the

runtime, our generated properties can provide the access

control system with information regarding the impact of

access decisions.

In the future, we want to investigate more case studies

and evaluate the benefit of integrating the design prop-

erties in the access control system. For this, we will look

at different case studies and example models. Regarding

the design-time analyses, we want to integrate approaches,

which can automatically update the vulnerabilities and

the system architecture. This would increase the accuracy

of our impact descriptions for the runtime access control

system.

Acknowledgement: We like to thank Patrick Mehl, who

supported us in the development of the uncertainty varia-

tion metamodel during his practical course.

Author contributions: All the authors have accepted

responsibility for the entire content of this submitted

manuscript and approved submission.

Research funding: This work was supported by the Ger-

man Research Foundation (DFG) under project number

432576552, HE8596/1-1 (FluidTrust), as well as by funding

from the topic Engineering Secure Systems (46.23.03) of

the Helmholtz Association (HGF) and by KASTEL Security

Research Labs. Additionally, it was supported by the Czech

Science Foundation project 20-24814J, and also partially

supported by Charles University institutional funding SVV

260588.

Conflict of interest statement: The authors declare no con-

flicts of interest regarding this article.

References

[1] R. Al-Ali, H. Robert, H. Petr, J.-V. Adrian, S. Stephan, and

W. Maximilian, “Modeling of dynamic trust contracts for

Industry 4.0 systems,” in ECSA-C’18, Madrid, Spain, ACM,

2018.

[2] M. Walter, R. Heinrich, and R. Reussner, “Architectural attack

propagation analysis for identifying confidentiality issues,” in

ICSA’22, Honolulu, HI, USA, IEEE, 2022.

[3] OWASP, OWASP Top Ten Web Application Security Risks, 2021.

Available at: https://owasp.org/www-project-top-ten/ [accessed:

Oct. 25, 2021].

[4] HP, HP Study Reveals 70 Percent of Internet of Things Devices

Vulnerable to Attack, 2014. Available at: https://www.hp.com/us-en/

hp-news/press-release.html1744676 [accessed: Oct. 05, 2021].

[5] S. Seifermann, R. Heinrich, and R. Reussner, “Data-driven software

architecture for analyzing confidentiality,” in ICSA’19, Hamburg,

Germany, IEEE, 2019, pp. 1−10.
[6] S. Seifermann, R. Heinrich, D. Werle, et al., Journal of Systems and

Software, vol. 184, 2022, Art. no. 111138..

[7] R. Reussner, S. Becker, J. Happe, et al., Modeling and Simulating

Software Architectures − the Palladio Approach, Cambridge, MA,

MIT Press, 2016, p. 408.

[8] R. Heinrich, S. Koch, K. Busch, R. Reussner, and B. Vogel-Heuser,

“Architecture-based change impact analysis in cross-disciplinary

automated production systems,” JSS, vol. 146, no. 146,

pp. 167−185, 2018..
[9] S. Hahner, S. Seifermann, R. Heinrich, and R. Reussner,

“A classification of software-architectural uncertainty regarding

confidentiality,” in ICETE. To Appear, Cham, Springer,

2023.

[10] M. Walter, S. Hahner, S. Seifermann, et al., “Architectural

optimization for confidentiality under structural uncertainty,”

ECSA, vol. 2021, pp. 309−332, 2022..
[11] M. Levandowsky and D. Winter, “Distance between sets,” Nature,

vol. 234, no. 5323, pp. 34−35, 1971..
[12] R. Al-Ali, P. Hnetynka, J. Havlik, et al., “Dynamic security rules for

legacy systems,” in ECSA 19 − Volume 2, New York, NY, USA, ACM,

2019, pp. 277−284.

https://owasp.org/www-project-top-ten/ [accessed:
https://www.hp.com/us-en/hp-news/press-release.html
https://www.hp.com/us-en/hp-news/press-release.html

M. Walter et al.: Architecture-based attack propagation and variation analysis — 451

[13] P. Runeson and M. Höst, “Guidelines for conducting and reporting

case study research in software engineering,” Empir. Softw. Eng.,

vol. 14, no. 2, pp. 131−164, 2008..
[14] B. A. Hamilton, “Industrial cybersecurity threat briefing,” Tech. rep.,

p. 82, 2016.

[15] M. Plachkinova and C. Maurer, “Security breach at target,” J. Inf.

Syst. Educ., vol. 29, no. 1, pp. 11−20, 2018.
[16] X. Shu, K. Tian, A. Ciambrone, and D. Yao. “Breaking the target: an

analysis of target data breach and lessons learned.” In:

arXiv:1701.04940 [cs], 2017.

[17] K. Katkalov, Ein modellgetriebener Ansatz zur Entwicklung

informationsflusssicherer Systeme.” doctoralthesis, Augsburg,

Germany, Universität Augsburg, 2017.

[18] P. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, “An extensive

systematic review on the model-driven development of secure

systems,” Inf. Softw. Technol., vol. 68, pp. 62−81, 2015..
[19] B. Kordy, L. Piétre-Cambacédès, and P. Schweitzer, “DAGbased

attack and defense modeling: don’t miss the forest for the attack

trees,” Comput. Sci. Rev., vols. 13−14, pp. 1−38, 2014..
[20] S. Ananieva, S. Greiner, T. Kühn, et al., “A conceptual model for

unifying variability in space and time,” in SPLC ’20 Volume A Online,

New York, NY, USA, Association for Computing Machinery,

pp. 148−158, 2020.

Bionotes

Maximilian Walter

Dependability of Software-Intensive Systems

Group (DSiS), Karlsruhe Institute of

Technology (KIT), Institute of Information

Security and Dependability (KASTEL), Am

Fasanengarten 5, 76131 Karlsruhe, Germany

maximilian.walter@kit.edu

https://orcid.org/0000-0003-0358-6644

Maximilian Walter has been a researcher at the chair of Dependability of

Software-intensive Systems Karlsruhe Institute of Technology (KIT), since

2017. He holds an M.Sc. in Informatics from the University of Augsburg.

He focuses on research regarding security modelling and software

architecture.

Sebastian Hahner

Dependability of Software-Intensive Systems

Group (DSiS), Karlsruhe Institute of

Technology (KIT), Institute of Information

Security and Dependability (KASTEL), Am

Fasanengarten 5, 76131 Karlsruhe, Germany

sebastian.hahner@kit.edu

Sebastian Hahner has been a researcher at the KIT since 2020 where he

graduated with M.Sc. in Informatics. His research is centered around the

impact of uncertainty on confidentiality and access control. Besides his

university activities, he has more than a decade of experience in video

production and has one of Germany’s largest social media presence in

tech education.

Tomáš Bureš

Faculty of Mathematics and Physics, Charles

University, Malostranské Náměstí 25, 118 00

Praha 1, Czech Republic

bures@d3s.mff.cuni.cz

Tomáš Bureš is a professor at the Department of Distributed and

Dependable Systems, Faculty of Mathematics and Physics of the Charles

University, Prague. His research focus is on self-adaptive systems, smart

cyber-physical and IoT systems, machine learning for self-adaptive

systems, edge-cloud systems, model-driven development, and modern

programming languages.

Petr Hnětynka

Faculty of Mathematics and Physics, Charles

University, Malostranské Náměstí 25, 118 00

Praha 1, Czech Republic

hnetynka@d3s.mff.cuni.cz

Petr Hnětynka is an associate professor at the Department of Distributed

and Dependable Systems, Faculty of Mathematics and Physics of the

Charles University, Prague. His research focus is on self-adaptive

systems, dynamic software architectures, component-based

development and model-driven development.

Robert Heinrich

Dependability of Software-Intensive Systems

Group (DSiS), Karlsruhe Institute of

Technology (KIT), Institute of Information

Security and Dependability (KASTEL), Am

Fasanengarten 5, 76131 Karlsruhe, Germany

robert.heinrich@kit.edu

Robert Heinrich heads the Quality-driven System Evolution research

group at KIT and the Mobility Lab at KASTEL. His research interests

include software quality modeling and analysis, in particular, the

(de)composition of model-based analysis to provide more flexibility in

model-driven engineering. He is involved in the organization committees

of several international conferences, initiated and organized various

workshops, and is reviewer for international premium journals.

mailto:maximilian.walter@kit.edu
https://orcid.org/0000-0003-0358-6644
mailto:sebastian.hahner@kit.edu
mailto:bures@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz
mailto:robert.heinrich@kit.edu

452 — M. Walter et al.: Architecture-based attack propagation and variation analysis

Ralf Reussner

Dependability of Software-Intensive Systems

Group (DSiS), Karlsruhe Institute of

Technology (KIT), Institute of Information

Security and Dependability (KASTEL), Am

Fasanengarten 5, 76131 Karlsruhe, Germany

ralf.reussner@kit.edu

Ralf Reussner has been a full professor for software engineering at

Karlsruhe Institute of Technology (KIT) since 2006. He holds the chair for

Dependability of Softwareintensive Systems, heads the Institute for

Information Security and Dependability and is Director at the FZI

Research Center for Information Technology. His research group works

in the interplay of software architecture and predictable software quality

as well as on view-based design methods for software-intensive technical

systems.

mailto:ralf.reussner@kit.edu

	1 Introduction
	2 Approach overview
	3 Enabling security analysis at design-time
	4 Evaluation
	4.1 Evaluation design
	4.2 Correctness results and discussion
	4.3 Applicability results and discussion
	4.4 Threats to validity
	4.4.1 Internal validity
	4.4.2 External validity
	4.4.3 Construct validity

	4.5 Assumptions amp; limitations

	5 Related work
	6 Conclusions
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

