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Kurzfassung

Die Lithium-Ionen-Batterie wird heutzutage in der mobilen Kommunikation, der stationären En-
ergiespeicherung sowie der Elektromobilität eingesetzt. Die stark steigende Nachfrage führt zu
einem hohen Interesse an der Herstellung und deren Auswirkung auf die Leistungsmerkmale.
Es ist notwendig, Produktionsanlagen zu schaffen, die die Nachfrage nach hochwertigen Batte-
rien bedienen können. Dafür ist es erforderlich zu untersuchen, wie sich Abweichungen in den
Produkteigenschaften, z. B. von strukturellen Merkmalen, auf die Qualität auswirken. Dies trägt
langfristig dazu bei, die Ausschussrate zu reduzieren und damit die Qualität und Nachhaltigkeit
zu verbessern.
Im Rahmen der Dissertation wird untersucht, wie sich Unsicherheiten, die in der Produk-
tion entstehen, auf die Elektrodenstruktur und die elektrochemischen Eigenschaften auswirken.
Mit Hilfe von mathematischer Modellierung wird analysiert, wie sich verschiedene Arten von
Schwankungen über die verketteten Herstellungsprozesse fortpflanzen, entwickeln und die elek-
trochemischen Eigenschaften der Batterie beeinflussen. Ziel ist es, sensitive Prozesse und Struk-
turparameter zu identifizieren. Darüber hinaus werden robuste Elektrodenstrukturen identifiziert,
die aufgrund ihrer spezifischen Struktur zu geringeren Abweichungen führen.
Im ersten Teil wird untersucht, wie sich Schwankungen in den Produktionsprozessen auf die
Leistungsmerkmale von Lithium-Ionen-Batterien auswirken. Um dies zu analysieren, wird eine
modellbasierte Beschreibung der Fertigungsprozesse mit einem elektrochemischen Batteriemod-
ell gekoppelt. Das erlaubt die kontinuierliche Beschreibung von Abhängigkeiten zwischen Pro-
duktionsprozessen, Elektrodenstruktur und elektrochemischen Eigenschaften. Die dadurch en-
twickelte Plattform wird in einer Fallstudie angewendet, um zu untersuchen, wie sich Schwankun-
gen in der Elektrodenproduktion ausbreiten und die Leistung beeinflussen. Für die analysierten
Szenarien zeigt sich, dass der Beschichtungsprozess den höchsten Einfluss auf die Leistung-
seigenschaften hat. In diesem Prozess wird die Beladung der Elektroden mit Aktivmaterial
eingestellt und damit auch die Leistung der Elektrode beeinflusst. Die Plattform ermöglicht
ebenso die Untersuchung von Wechselwirkungen zwischen Produktionsschritten. So kommt
es zwischen dem Beschichten und Kalandrieren zu relevanten Wechselwirkungen, da in beiden
Prozessen die gleichen Strukturparameter verändert werden. Im Anschluss an die Fallstudie
wird untersucht, wie die Elektrodenstruktur angepasst werden muss, damit die Leistungseigen-
schaften von Kathoden robust gegen Schwankungen in der Struktur reagieren. Es zeigt sich,
dass Elektroden mit hoher Schichtdicke und geringer Porosität in Betriebspunkten, in denen der
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Kurzfassung

Massentransport im Elektrolyten der begrenzende Faktor ist, zu hohen Leistungsabweichungen
neigen. Durch den Einsatz von robuster Optimierung wird die volumetrische Energiedichte le-
icht verringert, ohne dass es zu einem limitierenden Massentransport im Elektrolyten kommt.
Dadurch wird ein deutliches Absinken der Leistung bei Schwankungen in der Struktur verhin-
dert. Infolgedessen sinkt die Standardabweichung und die Ausschussrate in der Herstellung kann
deutlich reduziert werden.
Im zweiten Teil der Arbeit wird die Mikrostruktur der Elektrode untersucht. Der Schwerpunkt
liegt auf der Struktur der Leitruß-Binder-Matrix. Trotz gleicher Volumenanteile kann allein eine
veränderte Netzwerkstruktur der Matrix zu deutlichen Unterschieden in der Leistung und der
Alterung führen. Es werden unterschiedliche elektrische Netzwerkstrukturen untersucht und ro-
buste und bevorzugte Strukturen identifiziert, um geringere Schwankungen der volumetrischen
Energiedichte und Degradation zu erzielen.
Zusammenfassend tragen die Ergebnisse der Dissertation dazu bei, ein wissensbasiertes Ver-
ständnis darüber aufzubauen, wie sich Unsicherheiten im Bereich der Produktion und der Elek-
trodenstruktur auf die elektrochemischen Eigenschaften von Lithium-Ionen-Batterien auswirken.
Es werden Modelle entwickelt, welche eine Beschreibung der notwendigen Zusammenhänge
ermöglichen. Basierend auf den Modellen werden verschiedene Untersuchungen durchge-
führt, die es erlauben, Schwankungen zu verringern und die Produktqualität der Batterien zu
verbessern. Weiterhin wird die robuste Optimierung eingesetzt, um gezielt den Ausschuss im
Bereich der Produktion zu verringern. Dadurch wird die Nachhaltigkeit von Lithium-Ionen-
Batterien verbessert, da es zu weniger Materialverbrauch im Bereich der Produktion kommt.
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Abstract

Nowadays, lithium-ion batteries are applied in mobile communications, stationary energy stor-
age, and electromobility. The great demand for batteries results in an increased interest in pro-
duction and its impact on performance characteristics. It is necessary to establish production
facilities capable of meeting the demand for high-quality batteries. Therefore, it is mandatory to
investigate how deviations in product characteristics, e.g., structural features, affect quality mea-
sures. In the long term, this will help to reduce the scrap rates and thus improve the sustainability
and quality of lithium-ion batteries.
The dissertation studies how uncertainties induced by the production processes affect the elec-
trode structure and the electrochemical properties. Mathematical models are used to analyze how
different types of deviations propagate and evolve along with the production processes and affect
the electrochemical properties of the battery. The goal is to identify sensitive production pro-
cesses and structural parameters. In addition, robust electrode structures are identified, resulting
in reduced deviations based on their specific design.
The first part discusses how deviations caused by the production affect the performance of
lithium-ion batteries. For analyzing that, models describing the single production processes are
coupled with an electrochemical battery model. The approach allows the continuous description
of the relationships between the process parameters, the electrode structure, and the electrochem-
ical properties. The resulting platform is applied in a case study to investigate how deviations
in production propagate and consequently affect performance. It is shown, that the electrode
coating process is the most sensitive process for the analyzed settings. That process defines
the loading of the electrode with active material and thus also the performance. The approach
further enables studying interactions between production steps. It is identified that interactions
occur between the coating and calendering process since the same structural parameters are af-
fected. Following the case study, a robust optimization is implemented on an electrochemical
battery model. The goal is to identify cathode structures that provide consistent performance
even when the structure is affected by deviations. It is observed that high-energy electrodes with
high layer thickness and low porosity tend to have high deviations in performance at operating
points where mass transport in the electrolyte is the limiting factor. By applying robust opti-
mization, the volumetric energy density is slightly reduced, and limitations in mass transport in
the electrolyte are avoided. That prevents a drop in performance. Consequently, the standard
deviation is decreased, and the scrap rate in production is significantly reduced.
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Abstract

In the second part of the work, the microstructure of the electrode is studied in detail. The fo-
cus is on the structure of the carbon black-binder matrix. Despite identical volume fractions, a
changing network structure of the matrix can result in deviations in performance and aging. Dif-
ferent electrical network structures are investigated, and robust and preferred ones are identified
to achieve low deviations.
In summary, the results of the dissertation contribute to building a knowledge-based understand-
ing of how uncertainties in production and electrode structure affect the electrochemical prop-
erties of lithium-ion batteries. Models are developed which enable representing the relevant
relationships. Based on the models, investigations are carried out, enabling a reduction of devi-
ations and improving product quality. Furthermore, robust optimization is used to reduce scrap
in production. That improves the sustainability of lithium-ion batteries, as there will be less
material consumption in the production area.
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1 Introduction

1.1 Motivation

Climate change caused by human-induced emissions is one of the biggest challenges of our time,
whereas still the global energy consumption and emission of greenhouse gases are steadily in-
creasing [1]. That is critical, as drastic reductions in CO2 emissions are needed to comply with
the Paris Agreement, whose goal is to limit global warming to well below 2 ◦C. Hence, tech-
nology is needed that covers the global energy demand and simultaneously pollutes and stresses
the environment less to enable sustainable growth. For enabling renewable energy, carbon-free
mobility, and mobile communication, the critical issue of energy storage must be solved. Here,
electrochemical systems provide promising and sustainable solutions [2]. Especially the lithium-
ion battery (LIB) is currently the most industrialized and advanced electrochemical system due
to its high energy density and relatively low production costs [3].
Despite its success in recent years, the LIB needs further improvement. The main challenges
are increasing the energy and power density, prolonging the lifetime, improving safety, and re-
ducing the environmental impact [4]. Tackling these points is commonly done by adapting the
cell design, optimizing the electrode structure, or changing the materials [5–7]. Besides, mass
production of large-format LIBs is crucial for providing large volumes of batteries. The growth
rates in electric mobility result in a sharp increase in the demand for high-quality batteries [8].
Hence, improving the production process is important for producing highly optimized LIBs with
consistent quality [9]. That is especially of interest when assembling single battery cells into
large battery packs consisting of hundreds of cells. Strong performance deviations between the
individual cells electrically coupled within the battery pack are known to result in decreased life-
times. The current distribution within the pack becomes strongly inhomogeneous, and balancing
the cells is more advanced [10, 11]. Hence, it is necessary to generate electrode structures that
react robust against deviations and provide consistent performance. Thereby, the scrap rate in
the production is reduced. Consequently, the amount of waste decreases and the sustainability of
battery production is improved and costs are lowered.
To improve the quality of LIBs it is crucial to understand how deviations occur, how they are in-
fluenced, and, most importantly, how to adjust them through targeted optimization. Experimental
studies have analyzed and quantified how deviations in electrode structure result in performance
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1 Introduction

deviations between single cells. That is referred to as cell-to-cell deviations. The impact of struc-
tural features like electrode thickness, porosity, electrode mass, and density was studied [12–14].
Besides cell-to-cell deviations, also the impact of local heterogeneities within the electrode struc-
ture is of interest. Here, two electrodes have the same averaged structural features, but varying
local microscopic structures lead to deviations in performance [14, 15]. The presented analyses
provide an overview of how deviations in battery production can be related to structural features
of the LIB. However, they are limited in correlating the deviations in structure with the internal
physical processes of the LIB.
Enabling that is possible by implementing electrochemical models describing the physical pro-
cesses based on material and structural parameters. Analyzing the effect of uncertainties was
already done by applying methods of uncertainty quantification to these models to identify the
most sensitive parameters and to predict deviations in performance [15, 16]. These model-based
studies focus on correlating the impact of structural and material parameters on electrochemical
performance. Detailed analysis of how deviations in production and electrode structure evolve
and how they affect the physical processes within the battery does currently not exist. Addi-
tionally, the studies lack performing knowledge-driven optimization of the LIB to reduce the
deviation of battery performance.

1.2 Scope

The scope of the thesis is on developing model approaches and methods able to estimate robust
electrode designs. Thereby, deviations in quality are reduced because uncertainties in structure
have a minor impact on performance. Therefore, approaches are developed focusing on mapping
the impact of different types of deviations and their effect on the internal physical processes and
performance. As already discussed in the motivation, two types of deviations are distinguished.
Considering both types is done by dividing the thesis into two parts and providing individual
modeling approaches.
The first part focuses on cell-to-cell deviations arising in the production process. Here, coupled
modeling of production and operation of a LIB enables knowledge-driven analysis of uncer-
tainties and optimization of the production process and electrode structure. Sensitive process
parameters and robust design points are identified.
In the second part, the impact of local heterogeneity in the electrode microstructure is studied.
In this study, the focus is solely on the structure of the electrical network. A model is established
able to represent the effect of a varying network structure and analyze the impact on uncertainties
in performance and degradation. Thus, robust electrical network structures are identified.
By addressing these two topics, the impact of structural deviations on battery quality is studied,
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1.3 Outline

and the robustness of the electrode microstructure is improved. That includes considering un-
certainties between homogeneous electrodes (Part 1) and deviations arising from heterogeneities
within the electrode (Part 2).

1.3 Outline

Identifying robust electrode structures requires a detailed understanding of LIBs as a system.
That allows correlating uncertainties in electrode microstructure to physical processes and per-
formance. A brief overview of relevant aspects of this work is provided in the fundamentals.
First, the operation, porous microstructure, degradation, and production processes of LIBs are
discussed. Furthermore, a physical-based modeling approach is presented, and mathematical
methods regarding uncertainty quantification, meta modeling, and sensitivity analysis are pro-
vided. Studying two different types of uncertainties is done in two separate parts in this work.
In Part 1, the focus is on process-induced uncertainties in the production process and estimating
robust electrode structures. In Chapter 3, a coupled model approach is presented that combines
a process chain model and a battery cell model in a digitalization platform. This framework en-
ables studying the correlations between the process, structure, and electrochemical performance
properties. In Chapter 4, the framework is applied to analyze the propagation of uncertainties
along the production process and rate the impact on the electrochemical performance. A case
study following a Monte-Carlo-based approach is conducted. This enables identifying sensitive
process parameters regarding their effect on electrochemical performance. In Chapter 5, the de-
sign of cathodes is optimized under consideration of uncertainty. The aim is to identify electrode
designs whose performance is robust against deviations in the structure. Consequently, the scrap
rate in production is reduced.
In Part 2, the focus is on heterogeneous electrode microstructures and the resulting uncertainties.
The heterogeneous structure of the carbon black-binder matrix is studied in-depth, and the effect
on electrochemical performance and degradation is studied. This includes studying uncertainties
arising from different network structures. In the end, robust structures are identified in terms of
reduced uncertainties in energy density and a more robust degradation.
The obtained results improve the understanding of correlations between process, structure, and
properties by physical-based modeling approaches. The generated knowledge is used to opti-
mize the design of LIBs. Methods are applied and established to study the effect of various
uncertainties and heterogeneities. The methods are applied to improve the quality of produced
LIBs.
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2 Fundamentals

This chapter provides an overview of LIBs and topics relevant to this thesis. It covers the fun-
damentals of structure, operation, aging, and production of LIBs. These topics are of interest
because the thesis aims to improve understanding of how they are related and interact. That is
to be achieved by model-based approaches. Therefore, in the following, models are presented,
focusing on the physical processes and operation of the LIB. Finally, mathematical methods for
sensitivity analysis and meta modeling are presented.

2.1 Lithium-ion battery

Here, basic information is provided necessary to understand the LIB as an electrochemical sys-
tem. First, the structure, components, and materials are briefly introduced. The porous mi-
crostructure of the electrode has a significant impact on the physical processes occurring in the
battery and is established and affected in production. Evaluating and optimizing this structure is
the focus of this work, and hence it is discussed in detail. In addition to the initial electrochem-
ical performance at the beginning of the lifetime, the degradation is analyzed in the second part
of this work. For better understanding, an overview of the aging and degradation mechanisms of
LIBs is provided.

2.1.1 Structure, operation and materials

The lithium-ion battery is an electrochemical system converting chemical energy directly into
electrical energy via electrochemical reactions. The oxidation and reduction occur spatially sep-
arated by an electrolyte and separator but electrically connected via an external conductor. The
physical processes are reversible, making the battery rechargeable. Thus it belongs to the group
of secondary batteries [17].
The LIB consists of a positive and negative intercalation electrode storing and releasing lithium
ions, the electrolyte enables ionic transport between the two electrodes, and the separator pre-
vents physical and electrical contact of the electrodes while allowing ionic transport. The cell
structure is illustrated in Figure 2.1. The single components are discussed in the following.
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Figure 2.1: Structure of the lithium-ion battery (LIB) with its four main components (anode, separator, cathode, and
electrolyte). The most relevant physical processes are indicated. The light blue background represents the
liquid electrolyte and the spheres the active material (AM) particles in the respective electrode.

The separator is a porous membrane placed between the two electrodes. It is commonly made
of polymers or a composite of polymers and ceramics. The separator should not involve in any
cell reactions and thus needs to be chemically and electrochemically stable. Due to temperature
changes in the battery, it also needs to be thermally stable. Detailed information about require-
ments, properties, and materials can be taken from Lee et al. [18]. The porous electrodes and
the separator are flooded with the liquid electrolyte. Commonly, it is a lithium salt, e.g., LiPF6,
dissolved in a solvent, e.g., ethylene carbonate (EC). The composition of the electrolyte affects
the formation of the solid electrolyte interface (SEI) at the surface of the anode active material
particles. For more information about the SEI it is referred to Chapter 2.1.3. Additives in the
electrolyte can be used to tune the SEI in terms of uniformity and stability. That is beneficial in
terms of internal resistance and aging. An overview and perspectives concerning electrolytes and
additives are provided by Haregewoin et al. [19]. The lithium ions transported in the electrolyte
are stored and released by the crystal host structure of the active material (AM) in the electrodes.
That process is called intercalation and deintercalation of the ions. The major structural features
of the host are not affected by this process. An overview of the mechanisms and relevant inter-
calation materials is provided by Winter et al. [20]. Commonly, the AM at the anode is graphite,
and at the cathode, a lithium metal oxide (LMO) or phosphate is used. The AM defines the
storage capacity of the LIB and thus highly affects the electrochemical performance. Due to its
impact, conventional AMs are discussed at the end of this section in detail. For enabling electro-
chemical reactions and thus the intercalation/deintercalation, sufficient electron supply must be
ensured by the electrode. The AM is coated on a current collector for electrically connecting the
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coating to the external circuit and enabling electron transport. Usually, the current collector at
the cathode is made of aluminum, and copper is used at the anode. The different metals are used
due to the local electric potentials at the two electrodes and the electrochemical stability of the
materials.
At this point, the structure and components of the battery are defined. However, the physical
processes occurring during operation were only briefly mentioned and not explained. That is the
focus in the following.
The operation of the LIB is characterized by the kinetics of the electrochemical reactions and
transport processes. They run simultaneously and interact with each other. The most important
physical processes are indicated in Figure 2.1.
For initiating the electrochemical reactions, a potential difference must be present between the
two electrodes. In a LIB with graphite at the anode and lithium metal oxide at the cathode the
overall reactions at the surfaces of the AM particles can be summarized as

LiC6 � Li1–xC6+ xe–+ xLi+ (2.1)

for the anode,
LiMO2 � Li1–xMO2+ xe–+ xLi+ (2.2)

for the cathode, and
LiMO2+C6 � Li1–xMO2+Li1–xC6 (2.3)

for the full cell. Focusing on the discharge process of the LIB, oxidation occurs at the surface
of the graphite particles in the anode. During the charge-transfer reaction, lithium ions enter
the electrolyte and free electrons are released into the conductive solid phase (see eq. 2.1). The
concentration and potential gradient in the electrolyte enable ionic transport. Hence, lithium ions
are transported from the anode to the cathode due to diffusion and migration. Simultaneously,
electrons pass through an external electrical circuit and can be used to power electronic devices.
At the surface of the cathode AM, the lithium ions enter the crystal structure by counterbalancing
their charge with an electron from the solid phase (see eq. 2.2). In both AM particles, lithium
is transported by diffusion from the center to the surface or vice versa depending on the concen-
tration gradient. Charging the battery leads to a reversal of the physical processes by applying
an external electrical power source and adapting the electrical potential. The described physical
processes define the electrochemical performance of the battery.
The two main quantities evaluating the performance of a battery are the battery cell capacity
and voltage. The capacity is defined by the utilizable concentration difference in the respective
intercalation materials and the voltage by the potential difference between the electrodes. Addi-
tionally, the battery needs reasonable charge/discharge rate capability, consistent and low aging
rates, and safety must be ensured. The battery cell capacity is the most important characteristic
and is mainly affected by the selected active material. Therefore, different AMs are discussed in
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detail in the following.
Extensive research was already carried out on suitable electrode materials to increase the ca-
pacity and voltage of the lithium-ion battery. The most common materials at the cathode are,
for example, lithium cobalt oxide (LiCoO2, LCO), lithium iron phosphate (LiFePO4, LFP), or
the mixed nickel-manganese-cobalt dioxide (LiNi1–y–zMnyCozO2, NMC). In particular, NMC
is widely used, with changing proportions of the individual metallic components, the trend is
towards higher nickel proportions and lower proportions of cobalt and manganese. Detailed in-
formation about these materials can be taken from Whittingham [21]. More recent advances
in terms of positive electrode materials are summarized by Ellis et al. [22]. Here, additionally,
materials for recent developments in lithium-ion batteries and next-generation batteries, e.g.,
lithium-sulfur or lithium-air cells, are reviewed. At the anode, alloy negative electrodes are of
interest to increase the theoretical capacity and the rate capability, especially for fast charging
applications. Here, Si-C (silicon-carbon) is already used, but different materials are possible. A
detailed review of negative alloy electrodes is provided by Obrovac et al. [23].
The active material in the electrode defines the theoretical capacity and equilibrium potential of
the LIB by its intrinsic thermodynamic limits [22, 23]. The porous electrode structure, on the
other hand, needs to be designed to achieve the highest possible utilization and efficiency by
favorable kinetics. The electrode structure needs to be designed suitable for the respective oper-
ating conditions. In the following this porous electrode structure is discussed in detail, especially
concerning its effect on the kinetics.

2.1.2 Porous electrode microstructure

In industrial applications of electrochemical storage devices, porous electrodes are widely used.
Compared to plane electrodes, the porous microstructure strongly affects the dynamic charac-
teristics [24]. The reason for this is that the structure has a direct impact on electrical and ionic
transport pathways and the active surface area, being reactive interfaces. Hence, it has a sig-
nificant impact on the kinetic processes characterizing the electrochemical performance of the
LIB [25–27]. That’s why it is of interest to study the porous microstructure in-depth.
In Figure 2.2, the complex porous microstructure is simplified in a schematic representation
and the kinetic processes are indicated. Understanding the correlations between porous mi-
crostructure, reaction kinetics, and transport properties are essential to produce batteries of high
and consistent quality, reaching the theoretical potential of the AM [28]. In this chapter, the
microstructure of anode and cathode is treated similarly, even though the materials and compo-
sitions might vary, the overall effects are comparable.
The porous microstructure in lithium-ion batteries consists of two phases in the same volume:
the liquid and solid phase. The liquid phase is defined by porosity (void volume fraction) that
is filled with liquid electrolyte [24]. The solid phase provides the porous matrix and consists of
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Figure 2.2: The different components and processes are shown schematically. The active material (AM) and the carbon
black-binder matrix (CBM) form the porous microstructure. Pores are filled with electrolyte. The electrolyte
enables a flow of lithium ions and the CBM provides the electron transport. At the surface of the AM
particles the charge transfer reaction occurs.

the active and inactive components. Detailed information about common AMs is provided in
Chapter 2.1.1. The inactive materials are binder and conductive additives. The binder enables
the mechanical integrity of the composite structure and the conductive additives allow electrical
charge transport. In both electrodes, polyvinylidene fluoride (PVDF) is used as a binder. Due to
environmental issues and processing costs, manufacturers start to replace PVDF. Especially, at
the anode, aqueous base materials, e.g., styrene-butadiene rubber (SBR), are used. The conduc-
tive additives are commonly a carbon black (CB) or conductive graphite [29].
The porous structure is mainly established to increase the active surface area and compensate
for the overall sluggish reaction kinetics [24]. Furthermore, the electrochemical reactions are
evenly distributed through the electrode volume rather than being focused at the cross-sectional
reaction-front facing the counter electrode. Thus, the local current density is reduced and kinetic
bottlenecks and high local concentrations of reactants are avoided. This is beneficial in terms
of the reversibility, coulombic efficiency, and cycle life [30]. At the same time, however, the
microstructure affects the species and charge transport in the liquid and solid phase. Especially
the ionic diffusion and migration in the liquid phase are hindered by the solid phase matrix,
blocking direct transport paths [31, 32]. The length of these paths is increased due to the porous
structure, that is quantified by the tortuosity. Limitations occur and affect the performance and
lifetime of the battery. The electrical charge transport in the solid phase is mainly provided by
a matrix consisting of CB and binder, i.e., the carbon black-binder matrix (CBM). This matrix
has a complex three-dimensional structure that needs to be taken into account when describing
the physical transport processes within the electrode. Furthermore, the CBM affects the reaction
kinetics by reducing the active surface area [26, 33].
To sum up, the microstructure affects the transport processes and the electrochemical reactions.
That has to be considered in the design process. The microstructure requires to be designed to
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enable fast reactions but non-limiting transport. Due to its importance, the design and optimiza-
tion of the electrode microstructure are the subjects of various experimental and model-based
scientific research studies. [34, 35]. However, universal optimization is not possible because the
design is highly dependent on the field of application. For example, lithium-ion batteries with
high energy densities usually have increased layer thicknesses and therefore a distinct decrease
in capacity and voltage is already noticeable at moderate discharge rates [36]. Here, e.g., special
structuring of the electrodes is conceivable [37]. The complexity of lithium-ion battery electrode
optimization is discussed by Witt et al. [38], as they distinguish between special requirements
for charging and discharging. Hence, the design issues for batteries are multifaceted. This leads
to different challenges that have to be taken into account during design and manufacturing of
electrodes and battery cells.

2.1.3 Degradation and aging

A consistent and low aging rate was mentioned previously as an important quality aspect for
LIBs. Batteries need to be durable, especially for being a viable alternative in terms of sustain-
ability. Hence, long-term cycling and a consistent storage capacity are of interest. Different
aging mechanisms occur reducing the lifetime of the battery. In general, aging can be classified
into calendaric and cyclic aging. Calendaric aging happens during storage. Cyclic aging occurs
during operation and thus charge and discharge of the battery. Here, the focus is on cyclic aging.
For detailed information about calendaric aging, it is referred to Broussely et al. [39].
Aging in lithium-ion batteries and thus capacity decrease and energy fade do not originate from
a single cause, but various processes interact with each other. The aging effects and processes
differ between anode and cathode. In the following the main aging mechanisms for both elec-
trodes are briefly reviewed based on the work of Vetter et al. [40] and Barré et al. [41]. In Figure
2.3, the different aging mechanisms are summarized and visualized.
At the graphite anode, aging is driven by changes at the electrode/electrolyte interface. The anode
operates at potentials outside of the electrochemical stability of the electrolyte components. In
the charged state, i.e., at low potential, a reductive decomposition of the electrolyte accompanied
by irreversible loss of lithium ions occurs at the electrode/electrolyte interface. The decompo-
sition products form a layer at the surface of the AM particles, the SEI [43]. It is permeable
for lithium cations but rather impermeable for the electrolyte components and electrons. Hence,
the layer mainly forms at the beginning of the battery utilization. During further cycling of
the battery, the SEI protects the electrolyte components from further reduction and the charged
electrode from corrosion. However, the electrolyte decomposition is still an ongoing process
throughout the entire battery life but compared to the first cycles to a lower extent [43]. Com-
parable to SEI formation, lithium plating appears at the graphite anode when a high diffusion
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Figure 2.3: Degradation mechanisms in lithium-ion battery cells. Taken from Birkl et al. [42] (CC BY 4.0).

resistance occurs, e.g., due to low temperature. Hence, the potential is close to lithium metal and
metallic lithium plating, and lithium dendrites can grow. This can induce, or accelerate aging and
can lead to critical safety issues [44]. In the anode, only minor changes occur for the AM. The
volume change during intercalation and deintercalation is with approx. 10 % relatively low. Still,
graphite exfoliation and graphite particle cracking will lead to degradation and aging. However,
using alloy anode materials with silicon makes this aspect more relevant, since a significantly
higher volume expansion of up to 300 % is observed for silicon [45]. The mechanical stability
of the microstructure can be affected by different degradation effects. Contact loss between the
different components can occur due to disintegration. The SEI and the volume change of the
AM affect the porosity and thus the ionic diffusion and conductivity. Corrosion can occur at the
current collector and result in loss of electrical contact between the porous electrode coating and
the metallic current collector. [40, 41]
At the cathode, the electrode/electrolyte interface is not critical due to the electrochemical stabil-
ity of the electrolyte at the respective potential. However, at very high potentials a decomposition
of the electrolyte can occur at the cathode and form the cathode electrolyte interface (CEI) [46].
Aging in the cathode can be distinguished between inactive and active components. The AM can
be aged due to structural disordering, phase transitions, and metal dissolution. Structural disor-
dering occurs when transition metal replaces lithium ions in the structural sites. Phase transition
occurs during lithiation and delithiation of the AMs. This leads to a distortion of the crystal
lattice, resulting in mechanical stresses and particle cracking. Parts of the metallic host structure
at the cathode dissolute into the electrolyte and are transported to the negative electrode. This
results in side reactions and aging. The inactive materials in the microstructure can also be af-
fected by aging. Binder decomposition leads to a disintegration of the porous electrode structure
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and the electrical transport paths. The conductive agents can be affected by oxidation and the
current collector can be degraded by corrosion. Both processes result in a loss of contact and
a rise in impedance. Hence, the performance of the battery reduces. With higher disintegra-
tion/degradation of the inactive materials (CBM), the electrical charge transport to the reaction
sites can be affected, and thus also the capacity can decrease due to isolated AMs [42]. [40, 41]

The discussed aspects concerning structure, operation, porous microstructure, and degradation
of the LIB elucidate that the electrochemical system has high complexity. It is mandatory to
achieve good interaction between the micro kinetics of the charge-transfer reaction at the surface
of the AM particles and the macro kinetics, transporting the charges and species to the desired
locations. For production of the battery cell, the established materials and structures must be
carefully designed to be robust against deviation in performance, mechanical disintegration, side
reactions, and electrolyte decomposition.

2.2 Production of lithium-ion batteries

In the previous section, the impact of material and microstructure on electrochemical perfor-
mance and degradation was discussed. For production of LIBs, it is of interest to generate the
desired structure defined in the development process with sufficient accuracy to achieve high
performance and long cycle life.
The production process of LIBs is divided into three parts: electrode preparation, cell assembly,
and formation. An overview of the production process is provided in Figure 2.4. The single
steps are discussed in the following. The focus is on electrode preparation, as it mainly defines
the discharge capacity of the battery by defining the mass loading of the active material and the
microstructure. Cell assembly and formation are introduced for completeness. Additionally, a
short discussion about battery quality is added. The following review is based on the work of
Kwade et al. [9] and Liu et al. [47].

2.2.1 Electrode preparation

State-of-the-art electrode preparation is based on liquid suspension and web coating. In the be-
ginning, the individual components are weighted according to the recipe. Commonly, the elec-
trode slurry consists of AM, conductive additives, polymer binder, and solvent. The formulation
of the electrode suspension starts with the mixing process (see Figure 2.4). Here, wet mixing is
mandatory, while additional dry mixing is optional. The dry mixing is used to blend and struc-
ture the AM with the conductive additives and the binder. The premixed dry components and the
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Figure 2.4: Overview of the manufacturing processes for conventional lithium-ion batteries. The figure is reproduced
and simplified based on Kwade et al. [9].

solvent are fed into a batch process for the wet mixing. Therefore a planetary mixer or a different
type of high-intensity mixer is used. The conductive additives are structured and homogeneously
dispersed in the suspension. The intensity used in the two mixing processes must be set to obtain
defined product quality, i.e., particle size distribution and slurry homogeneity. In the end, the
suspension is degassed and filtered to achieve a stable, homogeneous suspension free of gas and
agglomerates. Rating the quality of the suspension is done by rheological properties, e.g., density
and viscosity. These properties are also of interest for a matching coating process as its param-
eters are affected and defined based on the mixing process. The performance of the lithium-ion
battery is directly affected by the mixing process. The active surface area and the electrical and
ionic pathways in the electrode microstructure are defined dependent on the amount and structure
of the established agglomerates consisting of binder and conductive additives [48, 49]. [9, 47]
The suspension is applied in a slot die coating process on both sides of the current collector in
consecutive process steps. The coating can be conducted continuously or in patterns, i.e., in-
termittently in single or multiple strips. The type of coating depends on the electrode, current
collector and targeted cell geometry, throughput, calendering technology, and minimization of
the scrap rate. The last points are especially of interest due to interactions between coating and
calendering, e.g., wrinkling of the electrode may occur [9]. The coating speed is commonly in
the range of 25–50 m/min. Increasing the speed is possible, but then the coupled drying process
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must be adjusted. The length of the dryer must be increased, resulting in a higher number of
process parameters that then need to be controlled. The dryer usually operates based on con-
vective principles. Inside the dryer, a dry air or nitrogen environment is created. Minimal dwell
times (1–2 min), high throughput, and favorable microstructure are achieved by adjusting the
drying rate. Solvent recovery and closed-loop handling are required for N-Methyl-2-Pyrrolidone
(NMP) based cathodes to reduce the environmental impact. The structure of the dry electrode is
defined by mass loading, porosity, and tortuosity. Here, mass loading is directly linked to elec-
trode thickness. Furthermore, it is of interest to prevent binder migration during drying. This can
result in reduced mechanical stability and affect electrical and ionic transport properties due to
blocking of the electrode surface and a gradient of conductive additives [31, 36]. The structural
features affected by the coating and drying process are of interest for optimizing battery perfor-
mance. The interaction between electrode thickness, porosity, and tortuosity is of interest for
multiple optimization problems and needs to be defined in detail depending on the application of
the lithium-ion battery. [9, 47]
In the following process step, the dry electrode is compressed in a two-roller calender at line
speeds of 30–100 m/min to increase the volumetric energy density and enhance other physical
properties. Especially, porosity, tortuosity, adhesion, and electrical conductivity are affected by
the compression of the electrode. Besides the line speed, the line loading with approx. 500 N/m
for graphite anodes and 1000 N/m for NMC cathodes is important. Improving the quality can be
achieved by heating the rolls and thus wrinkling of the electrodes can be reduced. The structure
of the compressed electrode is described by the coating density, i.e., the ratio of the electrode
coating mass and volume (neglecting the current collector). The calendering process is of spe-
cial interest as multiple features of the electrode microstructure are affected simultaneously. The
thickness, porosity, and tortuosity are defined and thus the reaction kinetics and the transport of
species and charges are affected. The lithium-ion battery performance strongly depends on these
processes and thus the calendering is of high relevance [27, 32]. [9, 47]
After calendering, the electrodes are slit to length and width and again dried before they are
transported to the clean and dry room where the cell assembly is done. This final drying step is
important to limit and adjust the moisture of the cell and thus minimize the effect of water on the
lifetime due to unwanted side reactions[50]. [9, 47]
At the end of the electrode preparation, different quantities can be used to rate the manufactured
electrode. Here, structural parameters, mechanical properties, and electrical properties are of
interest. The thickness of the electrode needs to be consistent, the edge geometry of the slitted
electrodes needs to be exact, low porosity and tortuosity should be achieved, high adhesion to
the substrate, no defects, sufficient mechanical coating stability, low electrical resistance, and
impedance are important. [9]
These processes represent the current and industrialized state of electrode preparation. They are
constantly adapted, and new processes are investigated. The focus is on improving the electro-
chemical performance of the battery, reducing the environmental impact, and lowering costs.
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One example for improving battery production is using an extruder in the mixing process. It en-
ables a continuous process and lowers the solvent content [51]. Furthermore, dry coating is also
investigated where the solvent is completely removed. This reduces the environmental impact
and lowers energy consumption by removing the drying process [52, 53]. These promising new
technologies could help to reduce energy consumption and improve sustainability in production.

2.2.2 Cell assembly

The cell assembly is performed in a dry room (ambient temperature around 20 ◦C, dew point
usually −40 to −60 ◦C) to prevent moistening of the electrode. The main steps in cell assem-
bly are defined by the desired cell format (round wound, prismatic wound, stacked, Z-folded)
and thus the structure of the electrode-separator assemble (ESA). Three prevailing processes are
currently used to generate the ESA. The first is winding, which is commonly used for small cell
formats. In this process, the electrode format and the energy density are limited. Bending stress
in the electrodes causes formation of cracks and increasing the electrode thickness supports this
issue. The second process is stacking. Compared to winding thicker electrodes are possible due
to reduced stress while handling of the electrodes and thus the achieved energy density of the
assembled cell is increased. In comparison to winding, it is difficult to achieve the same level
of productivity and precision. The third process is Z-folding where discrete electrode sheets are
inserted into a zigzag folded endless separator. This process provides improved safety and in-
creased energy density. [9]
In the following, the assembled ESA is contacted internally at the tabs. That is commonly done
by ultrasonic or laser welding. The ESA is then inserted into the housing which can either be a
hard case or pouch bag. The electrolyte is filled into the housing under a weak vacuum and in
extremely dry conditions. In the filling process, metering precision, foaming, and the proportion
of electrolyte evaporation have to be considered. Following the filling process the housing is
sealed. The battery is now closed and electrochemically active. The batteries are stored under
temperature-controlled conditions to ensure wetting and gas diffusion. [9]

2.2.3 Formation

The production process of the LIB is completed by the formation. In the formation process,
an electrical current is applied for the first time on the battery. In these first cycling steps, the
pristine surface of the graphite particles is covered with the SEI layer due to electrolyte decom-
position at the electrochemically active surfaces [43]. Information about causes and processes of
the SEI growth can be taken from Chapter 2.1.3. Concerning the formation process, it is again
highlighted that the surface of the AM particles in the anode is passivated. The SEI is permeable
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to lithium ions but impermeable for electrons and electrolyte components and thus the further
decomposition of the electrolyte is hindered. Hence, the formation process is crucial for the
product quality, because it has a significant impact on aging and thus on the lifetime of the bat-
tery. However, due to the formation process approx. 10 % of the reversible lithium is consumed
and consequently the cell capacity is reduced [54]. In comparison, the protective mechanism of
the SEI is more important and it is of interest to generate homogeneous and stable layers in the
first cycling steps. This is mainly achieved by low current densities in the first cycling steps and
defined environmental conditions. The process control of the formation is discussed in various
scientific papers, as still many physical effects are not clear and achieving a fast and reliable
process is challenging [55, 56].

2.2.4 Quality in battery production

Following the formation, the quality of the produced LIB is evaluated. That is done in end-of-
line testing and includes, e.g., measuring the cell capacity, the internal resistance, and the aging
behavior within a reasonable and defined time (1-2 weeks). Battery cells that do not provide the
desired quality within certain boundaries are defined as scrap. They are disposed of or given into
the recycling to partially recover the used raw materials. Gaines et al. [57] stated scrap rates de-
pending on the technical maturity level of the production of up to 30 %. A high scrap rate results
in increased costs and has a negative impact on the sustainability of the battery production.
Deviations in the quality of the battery are influenced by various factors. They can be caused by
the raw materials, or the environment during the production (e.g., moisture) [58]. The main rea-
son, however, is process-induced deviations. Tolerances within the production processes result
in non-distinct product properties. Consequently, these deviations affect the performance char-
acteristics. In the coating process, for example, the electrode thickness cannot be set distinctly
by the slot die coating [59], and in the drying, the binder migration affects the performance [60].
The line load in the calendering is not constant, and as a result, the thickness and porosity of
the electrode microstructure are not equal for all electrodes [59]. In cell assembly, the stacking
accuracy is limited, resulting in reduced positioning accuracy of the electrode sheets [61]. All
these exemplary deviations affect the battery performance. Hence, the question is how strong the
impact of the single deviations is.
In summary, improving the quality of batteries requires a detailed understanding of how ma-
terials, process, structure, and performance correlate and interact. It is important to study the
correlations between process and product in detail. That is possible by modeling approaches.
There, the complexity is reduced by focusing on the main processes and interactions. That can
generate a basic understanding.
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2.3 Modeling in context of lithium-ion batteries

Summarizing the up to this point gathered information concerning the operation and produc-
tion of LIBs, it is of interest to analyze correlations between material, process, structure, and
application. Therefore, it is necessary to describe the impact of structure and material on the
internal physical processes and consequently on the performance characteristics of the LIB. In
addition to using experiments, mathematical models can provide fundamental insights. They en-
able studying individual physicochemical processes, and by coupling these, the operation of the
LIB can be described. Detailed analysis of the processes greatly increases the understanding of
the battery. In addition, models can be used to study physical processes that cannot be resolved
by experiments. The execution of model studies and various optimizations will further contribute
to reducing the number of experiments through a more targeted approach.
In the following, an overview of models focusing on the performance evaluation of LIBs is pro-
vided. The models are discussed regarding the implemented physical processes and their varying
complexity and predictability. In the end, a homogeneous electrochemical model is introduced
that is implemented and adapted throughout this thesis.

2.3.1 Modeling operation of lithium-ion batteries

Modeling the operation of LIBs is challenging, due to various physical processes interacting
on multiple lengths and timescales. Depending on the desired scope, it is of interest to select a
model suitable in terms of physical detail and computational costs. The model has to describe the
most relevant physical processes for addressing the raised research question, but non-sensitive
processes should be neglected to keep the model simple and reliable.
In general, models describing the LIB can be divided into three categories: (I) lumped electro-
chemical models, (II) homogenized continuum models, and (III) multiphysics models [62]. The
models are listed according to increasing complexity. Adjusting and extending the models can
change the predictability and level of physical detail, e.g., creating a multiscale model can help
predict film formation during operation. Figure 2.5 shows an overview and classification of the
different models. Extending the predictability and thus the complexity of the homogenized con-
tinuum models and multiphysics models by, e.g., multi-scale modeling, is indicated.
The lumped electrochemical models (I) are non-discretized models without direct consideration
of the physicochemical processes. Commonly, they are described as empirical models or equiva-
lent circuit models. They enable fast calculation but are based on the fitting of experimental data.
Hence, the prediction for varying battery design and operation is comparably poor. They are
commonly applied for battery management and control of battery systems, e.g., for fast charging
protocols [62–64].

17



2 Fundamentals

physical details

c
o

m
p

u
ta

ti
o

n
al

co
st

s

Empirical 
models

Equivalent
circuit
models

single
particle
model

p2D model

multiphysics3D
models

(I) 
lumped models

(II)
homogenized contin

uum models

(III)
multip

hysics models

adding physical processes (e.g., kMC, m
ulti-s

cale modeling)

U(I,t) =
f(x1,x2,…,xi)

Figure 2.5: Ranking of different models, describing the operation of LIBs. Physical detail and computational costs are
displayed for the model types. Adding physical processes and thus increasing model complexity results in
improved predictability and higher computational costs.

The most well known homogenized continuum model (II) is the p2D model, established by
Doyle, Fuller, and Newman [65–67]. The model considers discretized mass and charge transport
in one linear coordinate in the electrolyte/electrode and mass transport in one radial coordinate in
the AM particles. Micro kinetics are incorporated in the model. Direct consideration of various
physical processes results in more accurate predictions in terms of battery operation. Thus, they
enable design optimization of the battery. However, homogenization of the electrode volume
simplifies the processes and local effects, e.g., lithium-plating can hardly be resolved. The p2D
model is applied for various research questions and several extensions are available for increased
model prediction [26, 27, 68]. Due to its high relevance and the application in this work, the
homogeneous p2D model is described in Chapter 2.3.2.
The multiphysics models (III) may consider the three-dimensional and heterogeneous porous
electrode microstructure in detail [69, 70]. This structure is either artificial, i.e., generated by
a stochastic approach, or a reconstruction based on, e.g., micro-CT or FIB-SEM images. The
model considers spatial current distribution and the impact of the local microstructure on physi-
cal processes can be displayed [69]. Furthermore, multiphysics model can also couple a homog-
enized 1D electrochemical model with a 3D thermal-electric model to analyze the impact and
interaction of electrochemical, thermal and electrical processes for large-format pouch cells [71].
Especially, when studying film formation related to SEI or lithium plating, the incorporation of
kinetic Monte-Carlo (kMC) models is an advanced method. In kMC models, the movement,
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2.3 Modeling in context of lithium-ion batteries

adsorption, and desorption of reactants at the surface of the AM particles are modeled based
on stochastic principles and effects. Coupling these models to p2D or 3D models results in
multi-scale modeling approaches where information from the macroscopic continuum models
describing the operation of the LIB is used to model film formation. The coupling results in
increased complexity and computational costs. [72]

2.3.2 Homogeneous electrochemical model1

The homogeneous physicochemical battery model implemented here is based on the work of
Doyle, Fuller, and Newman [65, 66]. In the classical model, a homogenized pseudo 1D+1D
(p2D) approach is used to describe the reaction kinetics and transport processes by a set of cou-
pled partial differential equations (PDE). In Figure 2.6, the considered processes and spatial
dimensions for the classical model approach are displayed. Discretization is implemented in the
x-direction from anode to cathode and in the radial direction in the AM particles from center to
surface.
In this work, the classical model and a higher discretized model are used. In the case of the
latter one, the electrode is discretized in three dimensions (x,y,z), resulting in a 3D+1D (p4D)
representation. In the following, the equations for the p4D approach are introduced. The con-
sidered physical processes, and thus the solved PDEs are similar to the classical model, but the
spatial discretization differs. The model equations are not derived, but only briefly introduced.
For detailed information about the model approach, readers can refer to [67, 74].
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Figure 2.6: Pseudo 1D+1D model for a lithium-ion battery.

1 Part of this chapter has been published in (Schmidt et al., ACS Appl. Energy Mater. 2021, 4, 5, 4845–4860,
2021 [73])
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The main governing model equations are summarized in Table 2.1. The equations are classified
concerning the macro kinetics by eqs. 2.4-2.7 and the micro kinetics are given by eqs. 2.8-2.9.
Further relevant equations and the respective boundary conditions are listed in eqs. 2.10-2.18.
Solving the coupled PDE system enables to estimate the time-dependent state variables for the
ionic concentration in the electrolyte ce, the lithium concentration in AM particles cs, the po-
tential of the electrolyte phase φe and the solid phase potential φs. In the following the physical
relationship of these variables is briefly explained and further necessary quantities and equations
are introduced.
In the model, a dual intercalation cell is implemented with the following reaction at both elec-
trodes (detailed half-cell reactions are listed in Chapter 2.1.1):

Lis � Li +
s +Θs + e –

s , (2.19)

with Lis as intercalated lithium and Θs as an intercalation vacancy at the surface of the solid
particles. The electron e –

s is in the electrical conducting phase of the electrode [74].
The volume rate of the charge-transfer reaction jLi is modeled with the Butler-Volmer equation,
see eq. 2.8 in Table 2.1. The exchange current density i0 is calculated based on eq. 2.9. It
considers the reaction rate constant and the total number of sites available in the AM particles
and the electrolyte, by evaluating the respective concentrations [74]. Furthermore, the volume
rate of the reaction is driven by the local overpotentials defined as

η = (φs−φe)−Eeq, (2.20)

where Eeq is the equilibrium potential that depends on the intercalated lithium concentration at
the surface of the AM particles [74]. The active surface area as in the electrode is described by a
volume-averaged effective value defined as [67]:

as =
3 · (1− εe)

RP
, (2.21)

with the particle size RP and the porosity ε of the electrode microstructure.
The estimated reaction fluxes jLi at the surface of the particles serve as the boundary condition
for the mass transport in the AM, described in eq. 2.13 and as source term in eq. 2.6 for the ionic
mass transport in the electrolyte. At the AM particle surface a double layer is considered, see eq.
2.10 and 2.11 [67].
The mass and charge conservation in the solid and liquid phases is ensured by eqs. 2.4-2.7. In the
liquid phase, the mass and charge transport is represented by homogenized transport coefficients
defined as

De,eff =
εe

τ
De (2.22)

20



2.3 Modeling in context of lithium-ion batteries

Table 2.1: Governing equations for 3D+1D (P4D) electrochemical model. [67, 74]

Equations

Macro Kinetics:

∂cs

∂ t
=

1
r2 ·

∂

∂ r

(
Ds · r2 · ∂cs

∂ r

)
(2.4)

jtot = ∇(κs,eff ·∇φs) (2.5)

εe
∂ce

∂ t
= ∇ · (De,eff∇ce)+

(
1− tp

)
· jLi

F
(2.6)

jtot =−∇

(
κe,eff∇φe−2

RT
F

(
tp−1

)
·κe,eff ·∇ lnce

)
(2.7)

Micro Kinetics:

jLi = asi0

(
exp
(

α
ηF
RT

)
− exp

(
(1−α)

ηF
RT

))
(2.8)

i0 = kctF (ce)
α (cs,max− cs)

α (cs)
(1−α) (2.9)

Further Equations:

jtot = jDL + jLi (2.10)

∂ (φs−φe)

∂ t
=

jDL

asCDL
(2.11)

Ucell = φs(L)−φs(0) (2.12)

Boundary Conditions

Solid Phase:

∂cs

∂ r
=

jLi

asF
, r = RP (2.13)

∂cs

∂ r
= 0, r = 0 (2.14)

∂φs

∂x
=
−icell

κs,eff
, x = {0,Lcell} (2.15)

∂φs

∂x
= 0, x =

{
dneg,Lcell−dpos

}
(2.16)

Liquid Phase:

∂ce

∂x
= 0, x = {0,Lcell} (2.17)

∂φe

∂x
= 0, x = {0,Lcell} (2.18)
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and
κe,eff =

εe

τ
κe, (2.23)

with De being the diffusion coefficient and κe the ionic conductivity of the liquid electrolyte. The
impact of the porous electrode structure is considered with the Bruggeman relation by taking the
porosity ε and tortuosity τ of the electrode structure into account. The electrical charge transport
in the solid phase is described by Ohm’s law and the porous structure is considered with the
effective electrical bulk conductivity written as

κs,eff = εs ·κs. (2.24)

Based on the solid-state potentials at the current collector of the electrodes, the cell voltage dur-
ing the charge/discharge process can be derived by eq. 2.12. The energy density of the battery
cell is estimated by integrating the product of current and voltage over the discharge time.

2.4 Uncertainty quantification

In the fundamentals, interactions between manufacturing, electrode structure, and electrochemi-
cal performance were already discussed. In reality, it must be taken into account that the manu-
facturing process is subject to deviations, as tolerances in the processes affect the battery structure
and do not allow a discrete product [14, 59]. The arising uncertainties propagate and affect the
electrochemical performance and the aging behavior. Applying methods regarding uncertainty
quantification (UQ) to physical battery models allows studying the impact of product uncertain-
ties, which is in the scope of this dissertation.
Methods of UQ have been applied successfully for a wide range of computational models. For
example, it has been applied in chemical engineering [75, 76]. Applications related to chemical
engineering are of special interest here, due to its proximity in terms of manufacturing and op-
eration of LIBs. In the field of chemical process models, methods of uncertainty quantification
have been used to efficiently determine parameter sensitivities and, based on this, perform robust
process optimization in pharmaceutical manufacturing [77, 78]. In the context of lithium-ion
battery modeling, UQ has been used to determine parameter sensitivities, by implementing point
estimate methods and polynomial chaos expansion [15, 16, 79].
The homogeneous electrochemical p2D model was derived for discrete input parameters. If the
propagation of uncertainties is to be analyzed these parameters must be represented by a random
vector described by a probability density function (PDF). The challenge is to evaluate the effect
of these uncertain parameters and estimate the parametric sensitivities. In this work, two dif-
ferent methods are applied: (I) the Monte-Carlo (MC) approach and (II) the polynomial chaos
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expansion (PCE). The MC method is sample-based and rather simple. The parameter space is
mapped with random samples and every sample point is calculated individually in the model.
Hence, the computational costs are high due to an excessive number of model calls [80]. In
contrast, the PCE is a fast-to-evaluate polynomial surrogate model mapping the model output.
The number of model calls for generating the PCE is reduced compared to the MC approach.
The polynomial nature of these surrogates results in low calculation times for evaluation. Hence,
the PCE is of particular interest for optimization. In the following, the generation of the PCE is
discussed. Then Sobol’ indices are introduced as a measure of parametric sensitivity.
In this work, uncertainty quantification is implemented with UQLab, an open-source MATLAB-
based software framework for uncertainty quantification with a focus on academic research [81].
The fundamentals are briefly summarized based on the manuals available for the UQLab frame-
work [82, 83]. This ensures the introduction of later implemented and used methods. The funda-
mentals are slightly extended with relevant literature.

2.4.1 Polynomial chaos expansion

The PCE was introduced in the 1930s by Wiener et al. [84]. The method was defined for solv-
ing stochastic finite element problems in various engineering applications. The classical ap-
proach was constructed for standard normal variables but has since then been generalized for
other standard random variables, e.g., uniform or beta distributions. The goal is to replace the
expensive-to-evaluate computation model with inexpensive-to-evaluate surrogates and thus pro-
vide an efficient tool for estimating stochastic problems. The metamodel provides a functional
approximation of the computational model through a spectral representation on a suitably built
basis of polynomial functions. In the following it is briefly described how the basis and the
coefficients of the PCE are estimated. For detailed information it is referred to the previously
mentioned technical reports of UQLab [82], Sudret et al. [80], Xie et al. [75], and Wiener et
al. [84], all providing the information summarized here.
We assume a random vector with independent components X ∈ RM described by a probability
density function (PDF) fX and a finite variance computational model H(X). The PCE of this
mathematical model is defined as:

Y = H(X) = ∑
α∈NM

yα ψα(X) (2.25)

where ψα(X) are multivariate polynomials, α ∈ NM is an index identifying the number of com-
ponents of the polynomials, and yα are the corresponding coefficients of infinite degree. The

23



2 Fundamentals

multivariate polynomials ψα(X) are constructed by a set of univariate orthonormal polynomials
ξ
(i)
k (xi) which satisfy the definition of orthonormal polynomials defined as:

〈ξ (i)
j (xi),ξ

(i)
k (xi)〉=

∫
DXi

ξ
(i)
j (xi)ξ

(i)
k (xi) fXi(xi)dxi = δ jk (2.26)

here i describes the input variable, j and k the polynomial degree, fXi(xi) is the ith-input marginal
distribution and δ jk is the Kronecker delta. It is equal to 1 if j and k have identical values and 0
otherwise.
The multivariate polynomials ψα(X) are defined by the product of the univariate parts:

ψα(x) =
M

∏
i=1

ξ
(i)
αi (xi) (2.27)

The orthonormality of the univariate polynomials results in also orthonormal multivariate poly-
nomials.
The probability distribution of the random variables defines the families of univariate orthonor-
mal polynomials. For example, Gaussian random variables are mapped with Hermite polynomi-
als. As stated above, the PCE has been extended in the recent years to also map other types of
statistical distributions. The Beta distribution, for example, can be represented by Jacobi polyno-
mials. If the input random variables are not independent, or no standard polynomials are defined
for their distribution, the PCE can be adapted by performing an isoprobabilistic transform, or
computation of a custom set of polynomials. However, this is not discussed in detail here.
For realistic applications, the sum in eq. 2.25 needs to be reduced to a finite sum to approximate
the random variables

Y = H(X)≈
P−1

∑
α=0

yα ψα(X) (2.28)

here P is the dimension of the polynomial basis and it depends on the maximum order pmax and
the dimension of the input variable (nX). The optimal solution of the order is a trade-off between
the lowest possible value providing a target accuracy.
Beside the definition of the multivariate polynomials, the estimation of the coefficients yα is es-
sential for the PCE. This is mostly done by methods that can be divided into two groups: (I)
intrusive methods and (II) non-intrusive methods. The intrusive methods, e.g., Galerkin projec-
tion, are characterized by high accuracy but the computational model needs to be adapted and
this can be challenging for complex models solving a system of PDEs. In comparison, the non-
intrusive methods estimate the coefficients based on post-processing of the model evaluations
and can thus be applied for models of different complexity. In this work, only non-intrusive
methods based on regression are applied. More specific, only the least angle regression (LAR)
is used in this work. The LAR is suggested as stable and efficient solution and was applied in
the context of PCE by Blatman et al. [85]. It is a linear regression tool and based on least-square
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minimization but modified by adding a penalty term. However, different methods are possible
and may have certain advantages for different scopes.
By defining the polynomial basis and the coefficients the PCE is able to represent the output of
the computational methods with a defined set of polynomials.

2.4.2 Sensitivity analysis

The sensitivity analysis (SA) aims to describe how the variability of the model response Y =

H (X) is affected by the variability of the single input variables or a combination of these. The
SA is especially of interest to rank the parameters according to their importance and the infor-
mation can, e.g., be used to reduce the dimension of the model. The SA treats the model as a
black box and sensitivity is only evaluated based on the model response for a certain sample of
inputs. In general, sensitivity methods aim to reduce the number of model evaluations by imple-
menting efficient approaches. In the following, a brief introduction concerning SA and methods
for estimation of sensitivity indices are presented. The following information is taken from the
literature. Detailed description of the methods can be taken from the technical report of UQLab,
and Xie et al. [75, 83].
In general, SA can be divided into: (I) local sensitivity analysis, and (II) global sensitivity anal-
ysis. In local SA the sensitivity is evaluated based on the derivative at the nominal value and
only small step changes close to this nominal value are considered. This allows simple imple-
mentation and interpretation and a reduced number of model evaluations. However, only a single
parameter point is considered and information concerning the entire parameter space and pa-
rameter interactions are neglected. The global SA considers the entire parameter space and this
allows for more rigorous definition and capability of describing influence from parameter inter-
actions. In this work the global SA is applied for analyzing the effect of manufacturing induced
uncertainties on the electrochemical performance. This allows to screen a wide parameter range
and consider parameter interactions. More preciously, the Sobol’ sensitivity analysis is imple-
mented and applied in this thesis. Basic information concerning this method is provided in the
following.
The Sobol method is a variance-based approach and the estimation of the Sobol’ indices is based
on the idea of defining the expansion of the computational model into summands of increasing
dimension. Hence, the total variance of the model is described in terms of the sum of the vari-
ances of the summands. This method is referred to as ANOVA (ANalysis Of VAriance) and
assumes independent input variables.
The stochastic version of a model is represented as

Y = H (X) , (2.29)
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the model input X is a random vector, characterized by a joint probability density function. The
Sobol’ decomposition of this model H (X) is given by

H(X) = H0 +
M

∑
i=1

Hi (xi)+ ∑
1≤i< j≤M

Hi j (xi,x j)+ · · ·+H1,2,...,M (x1, . . . ,xM) . (2.30)

Based on this decomposition the total variance of function H (X) can be deduced and is written
as

Var(Y ) =
M

∑
i=1

Vi + ∑
1≤i< j≤M

Vi j + · · ·+V12...n. (2.31)

Var(Y ) is the total variance of function H (X) and Vi, Vi j, and V12...n are partial variances related
on the effects of individual parameters or parameter interacions on Var(Y ).
The first-order Sobol’ index represents the relative contribution of each group of variables and is
defined as the ratio of the partial variance to the total variance. This is shown in eq. 2.32.

Si =
Vi

Var(Y )
(2.32)

The index is estimated for one input variable xi and only represent the effect of this variable. The
higher-order Sobol’ indices Si j represent the effect of multiple-term indices, e.g., Si, j, i 6= j and
are defined by

Si j =
Vi j

Var(Y )
. (2.33)

The higher order indices consider the interaction of the variables xi and x j and they cannot be
decomposed into the contribution of those variables separately.
The total Sobol’ index of the input variable xi is defined as the sum of all Sobol’ indices including
contributions of the single variables and their interactions and is denoted as ST

i

STi =
Vi +Vi j + · · ·+V1...i...M

Var(Y )
. (2.34)

The Sobol’ indices can be calculated based on various methods. The most common is the Monte
Carlo-based estimation. It creates random values dependent on a given stochastic distribution.
The estimation requires a cumbersome amount of model calls and evaluations. The PCE pre-
sented in Section 2.4.1 is also capable to estimate the Sobol’ indices. The advantage here is
that the computational effort is less, since the Sobol decomposition can be estimated analytically
based on the PCE coefficients. Due to the focus in this work on the PCE, the estimation of the
Sobol indices for this method is briefly discussed in the following.
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Continuing from the equations presented in Section 2.4.1 concerning the PCE, now a truncated
PCE with a random variable X is assumed

Hu(Xu)≈ ∑
α∈Au

yα ψα(x), (2.35)

where Au ⊂ A and is defined as:

Au = {α ∈ A : αi 6= 0↔ i ∈ u, i = 1, . . . ,M}. (2.36)

The mean and variance of the function H(X) can be directly obtained from the coefficients of the
PCE:

EY,A = y0 (2.37)

VY,A = ∑
α∈A,α 6=0

y2
α (2.38)

Following this representation, the Sobol sensitivity indices can easily be calculated with:

Su =
1

VY,A
∑

α∈Au

y2
α , (2.39)

where Su is either the first order sensitivity if u contains only one element, or an interaction
sensitivity if it contains more than one. The total sensitivity indices can be calculated with:

STi =
1

VY,A
∑

α∈Ai

y2
α , (2.40)

where Ai ⊂ A and includes all basis polynomials related to xi:

Ai = {α ∈ A |αi 6= 0} (2.41)
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3 Modeling Process-Product
Interdependencies in Battery
Production2

3.1 Introduction

The production aims to establish the electrode and cell design defined in the development. The
challenge is to meet the specified structural parameters with high accuracy and reduced devia-
tions to ensure the desired cell performance within a defined uncertainty range [9]. Understand-
ing relationships between the individual production processes, electrode structure, and electro-
chemical performance is critical for producing batteries with high and consistent quality [88].
It is necessary to understand cause-effect relations within single process steps and along the con-
secutive production chain. The processes reveal strong interactions as the intermediate product
is continuously transferred and adapted. Changes in one process might affect the following [88].
That could be a direct interaction of consecutive processes, e.g., the coating process is affected
by the rheological properties of the slurry generated in the mixing process [9, 89]. Furthermore,
interactions can occur between processes not directly coupled. The electrolyte filling is affected
by the electrode microstructure and thus by the drying and calendering process [90, 91]. The
correlations between the applied process parameters and the resulting structural parameters are
important to describe and evaluate the production process. However, the LIB is not fully charac-
terized by design but rather by electrochemical performance. Hence, improving the production
process is only reasonable if the impact of the cell design on the performance is considered. In
particular, evaluating uncertainties that arise in the process steps is only sufficient if it can be
determined how the resulting structural deviations affect the electrochemical performance.
It follows that the holistic consideration of the process-structure-property relation enables knowledge-
driven production optimization [88]. That holds the potential to lower costs, improve cell quality,

2 Part of this chapter has been published in: Thomitzek, Schmidt, Röder, Krewer, Herrmann, Tiede, Procedia CIRP,
2018 [86], and Thomitzek, Schmidt, Silva, Karaki, Lippke, Krewer, Schröder, Kwade, Herrmann, Sustainability, vol.
14, no. 3, 2022 [87]
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and reduce scrap rates. Solely, experimental-based analyses are not feasible to estimate the ef-
fects of all parameter correlations. Due to the large number of parameters being considered,
multiple experiments on single process levels and the coupled process chain would be neces-
sary. Establishing a platform that integrates mechanistic models for every production step can
contribute to storing the currently known correlations and identifying white spots. Furthermore,
model-based analysis enables studying various parameter sets in a reduced amount of time and
at lower costs. Consequently, there is a demand for a model-based framework that allows a
non-invasive improvement of the battery cell and its production chain to further continue the
emergence of a battery-driven mobility and energy sector by strengthening sustainability and
cost-effectiveness.
Establishing a platform that considers both the process-structure and structure-property relations
requires coupling modeling approaches from the field of process engineering with that of elec-
trochemical systems. In literature, examples for coupling these two approaches already exist.
Ngandjong et al. [92] applied a multiscale simulation platform to understand the formation of
various electrode structures and to enable a detailed prediction of the electrochemical perfor-
mance. Further, Chouchane et al. [93] used the platform to investigate the impact of carbon-
binder spatial location on the electrochemical performance properties. In both works, the focus
is on highly resolved model approaches for studying selected physical effects of the electrode
microstructure in detail, and the impact of the process parameters on the structural parameters is
not studied in detail.
In this work, a coupled model approach is introduced as a framework integrating mechanistic
models for every production step and the operation of LIBs. That holistic approach is later
referred to as the digitalization platform. The complexity of the implemented models can be
adapted depending on the scope being addressed. The approach enables a virtual representation
able to determine the effect of production on battery cell performance. Thus, the framework can
analyze correlations along with the production. It allows rating the impact of production pro-
cesses and structural parameters on the electrochemical performance of the LIB. In this chapter,
the approach is introduced by defining assumptions and requirements for the consisting models.
In Chapters 4 and 5, the framework is applied and used to analyze the impact of production un-
certainties and subsequently to establish a knowledge-driven optimization approach to estimate
a robust electrode design while considering the effect of uncertainties.

3.2 Computational methods: The framework

The digitalization platform is a flexible framework enabling one to understand, visualize and an-
alyze correlations concerning the production process and its impact on the product performance.
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That includes correlations within the production chain and correlations between the production
process and the electrochemical performance of the product. To map these, the platform con-
sists of three parts: (I) the process chain model, (II) the battery cell model, and (III) the analysis
module. In Figure 3.1, the structure is visualized. The coupled framework [86, 87] was jointly
developed with Matthias Thomitzek (IWF, TU Braunschweig), with the process chain model
being established and implemented by Thomitzek and the battery cell model by me. For better
understanding, also the process chain model will be introduced in the following pages.
The platform is based on the process-structure-property relation established by Bockholt et
al. [88]. The process-structure dependency is modeled based on mechanistic cause-effect re-
lations within (I) the process chain model. The approach of a process chain model for battery
production is taken from Schönemann et al. [94]. The estimated structural parameters are for-
warded to (II) the battery cell model for evaluating the structure-property relation. Coupling the
two approaches covers the whole process-structure-property relation. Here, the structural param-
eters also contain information regarding the materials.
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Figure 3.1: Concept of the digitalization platform. It consists of three modules: (I) process chain model, (II) battery cell
model, (III) analysis module. [87]

The holistic consideration of various parameters and correlations ensures an in silico analysis
of process-product interactions. In this thesis, the focus is on uncertainty quantification and
propagation. These uncertainties are induced by tolerances in each production step or based
on stochastic processes occurring in the steps (e.g., evolving of the porosity). Furthermore, the
framework allows for robust design optimization and to identify sensitive parameters. All these
aspects are considered in (III) of the analysis module. This module is coupled to (I) and (II) and
has access to all parameters.
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3.2.1 Process chain model

In Chapter 2.2, it was discussed that the production of lithium-ion batteries consists of single
process steps coupled with each other. In the beginning, the raw materials are given into the
mixing process. Along with the production steps, an electrode is created, which changes its
structure in each step until it reaches its final structure. The electrodes are then assembled into
battery cells.
The process chain model (work by Thomitzek [86, 87]) is a mathematical representation of the
production process considering the individual steps. For each process, a model is implemented. It
describes the correlations between the structural parameters of the input, the process parameters,
and the structural parameters of the output. The structural parameters specified here also contain
information regarding material properties. Coupling the individual process steps in the process
chain model enables studying the propagation of uncertainties, and the interaction between the
process steps. It is important to note that not all structural properties of the electrodes are altered
in every production process. Structural parameters may remain unchanged over several steps. At
the same time, new structural parameters may appear. For example, the porosity of the electrode
emerges after the solvent evaporates in the drying process. Figure 3.2 displays an exemplary
process chain model for mixing, coating, and drying. The structural parameters are changed
depending on the applied process parameters. Furthermore, it is indicated that new structural
parameters are created or parameters pass unchanged.
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Figure 3.2: Exemplary process chain model implemented by coupled model containers. They are connected via struc-
tural parameters. The process chain is reduced and only exemplary models are presented for mixing, coating,
and drying. [87]

The process models incorporated in the process chain model are defined as containers. The
specific type of models is not defined. The only requirement is that the impact of the production
process on the product structure must be described. Depending on the scope and the desired
complexity, different models can be implemented. The simplest approach is an analytical model.
It is a top-down description of the process mechanisms and can be quickly solved. It can be
applied for various processes along the process chain and is either a first principle equation [95]
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or derived from experiments [96, 97]. However, the physical correlations are not represented
in detail, resulting in poor predictability. Increasing the complexity can be done by applying
DEM, CFD, or FEM models for the process steps. DEM simulations are used to understand and
optimize the physical processes in the dry mixing and the calendering process [98–100]. The
CFD model is used for the electrolyte filling to understand how the wetting time is affected by
the electrode microstructure and the cell stack. Implementing FEM models is possible for the
stacking process. These highly resolved models have an advantage in terms of predictability. At
the same time, however, they have higher computation time, and implementing a wide variety of
software in the process chain model is challenging.
In order to correctly predict the influences of the production processes on the electrode structure
and also to map the interactions along the process chain, detailed parameterization is necessary.
For this purpose, the process models must be validated and parameterized individually. In the
next step, however, the process chain model must also be examined and validated to ensure that
the interactions between the individual processes are correctly mapped.

3.2.2 Battery cell model

In Chapter 2.3.1, an overview is provided of various modeling approaches suitable for represent-
ing the operation of LIBs. In general, all model types can be implemented in the digitization
platform. However, the process chain model calculates various structural parameters, and based
on these the battery cell model must estimate the electrochemical performance. The implemented
model must predict the impact of the manufactured battery structure on the physical processes
and performance. Empirical models are therefore not suitable for the digitalization platform.
The battery cell model must be based on physical correlations to enable reliable prediction of
performance with varying structural parameters.
In this work, the p2D model is selected and implemented as the battery cell model in the dig-
italization platform. The model was described in detail in Chapter 2.3.2. In addition, Figure
3.1 indicates that the p2D model can be extended by structural surrogate models. These can be
included to improve the predictability of the p2D model by estimating selected effective parame-
ters defining the transport and the reaction kinetics in the electrode. In the p2D model, the impact
of the microstructure is modeled with volume averaged effective kinetic parameters (e.g., De,eff,
κe,e f f , as). The classical estimation of these effective parameters with the Bruggeman relation
lacks in predictability [26, 33]. Implementation of structural surrogate models based on artificial
electrode structures can lead to improved prediction of these effective parameters, allowing the
effects of deviations in electrode microstructure on kinetic processes to be estimated with higher
accuracy [27]. The structural surrogate model is not mandatory in the battery cell model. In
Chapter 4, solely the classical p2D model approach is applied. In Chapter 5, the model is ex-
tended to include the surrogate models, and therefore they are discussed in detail there.

35



3 Modeling Process-Product Interdependencies in Battery Production

Nevertheless, the battery cell in the digitalization platform is designed as a container. It is not
limited to the p2D model. It could also be a three-dimensional battery model considering the het-
erogeneous electrode micro structure in detail. However, the estimation of uncertainties and the
resulting cumbersome amount of model runs do not support the high-resolution battery model
due to high computation times. Furthermore, the full-3D model requires a detailed reconstruc-
tion of the electrode microstructure. The implemented process chain model is not able to provide
this.

3.2.3 Analysis module

The analysis module consists of several mathematical methods that can be applied to the coupled
model approach. It has access to all parameters considered within the digitalization platform.
Thereby a knowledge-driven assessment is possible. In particular, the analysis of uncertainties
is covered in the analysis module. Methods for sensitivity analysis, uncertainty quantification,
and robust optimization can be implemented. That enables the identification of sensitive process
parameters, optimization of process-induced tolerances, or a robust design of the LIB to reduce
the scrap rate and lower the deviation of the quality-related parameters. However, the analysis
module can be used to implement mathematical methods for classical optimization and various
other topics depending on the scope of the study.

3.3 Concluding remarks

The digitalization platform couples the model-based consideration of the production steps and
the electrochemical modeling of the final product in a single framework. It enables studying the
impact of the production on the performance of the LIB directly. The focus of developing that
method was on evaluating the impact of uncertainties. Those are induced in the single process
steps, propagate along the process chain, and affect the electrochemical performance. Enabling
that can only be achieved by computationally efficient modeling approaches. That is the ad-
vantage of the method compared to common approaches available in the literature. Considering
correlations between various parameters allows quantitative evaluation in terms of parameter
sensitivity, uncertainty propagation, and robust optimization. That enables knowledge-driven
improvements in battery production. The single models are defined as containers and can be re-
placed with models of varying complexity. Simple analytical equations, data-driven models, and
multidimensional and multiphysics models are possible. Choosing the respective models defines
the complexity and computational costs of the platform and must be selected depending on the
scope.
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Based on the approach presented here, specific analyses will be carried out in the further course
of the work. In the following chapters, exemplary models are selected and implemented into
the framework, and analysis concerning the uncertainty propagation (see Chapter 4) and robust
optimization (see Chapter 5) are conducted and discussed.
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4 Impact of Production Induced
Uncertainties on Battery
Performance3

4.1 Introduction

In this chapter, the digitalization platform introduced in Chapter 3, is applied to study the impact
of production-related uncertainties on the electrochemical performance of the LIB. The focus is
on coating, drying, and calendering as consecutive production steps. The chapter provides in-
sights into how the digitalization platform can be used to identify sensitive production steps by
considering the process-structure-property relations.
Process-induced tolerances in the production of LIBs result in structural uncertainties on the
electrode and cell level [59]. Additionally, natural deviations can be induced by the processes,
e.g., the formation of the porous microstructure in the drying process, resulting in local inho-
mogeneity. The uncertainties in structural parameters lead to deviations of the electrochemical
properties, which cause deviations in cell level and affect the lifetime and overall performance.
An et al. [12] presented an experimental-based analysis of cell-to-cell deviations. The rate depen-
dence of these deviations was studied with a statistically relevant amount of commercial cells,
focusing on the correlation of capacity vs. weight and capacity vs. resistance and kinetics. For
low rates of 0.2 C, a nearly linear correlation with the cell weight was identified. Increasing the
rate leads to a more non-linear behavior due to the increased effect of the kinetics. Experimental
work that investigates process uncertainties is rare since it requires a significant amount of man-
ufactured cells and a high number of electrochemical measurements.
The application of mathematical models can reduce the experimental effort and thus cut costs and
time. In literature, several studies exist focusing on the effect of uncertain structural parameters
on electrochemical performance. Santhanagopalan et al. [13] analyzed the influence of cell-to-
cell deviations on impedance. The effect of structural parameters of different components on the
cell impedance was analyzed and the sensitive parameters and components were identified. Nan

3 Part of this chapter has been published in Schmidt, Thomitzek, Röder, Thiede, Herrmann, Krewer, J. Electrochem.
Soc.,167(6),060501, 2020 [101]
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et al. [79] conducted a polynomial chaos expansion (PCE) based sensitivity analysis with a 3D
multiphysics model of a multilayer cell. It was concluded that the cell discharge capacity and
the thermal behavior at 1 C are most sensitive to the electrode parameters and their pore struc-
ture. Hadigol et al. [16] studied the effect of parametric model uncertainties on the cell capacity,
voltage, and concentrations. The focus was on a limited number of structural parameters, e.g.,
porosity, particle size, Bruggeman coefficient, and various kinetic parameters. Laue et al. [15]
studied the influence of cell-to-cell deviations and subcell deviations. It was concluded that sub-
cell deviations, i.e., deviations within a single electrode sheet, have a significant impact on the
overall cell behavior. However, the influence of the production processes on the examined struc-
tures was not taken into account. This impedes a consecutive consideration of the propagation of
uncertainties from the machine-defined process parameters to the evolving structural parameters
and the electrochemical properties.
In the previous chapter, the digitalization platform was introduced as a framework considering
the process chain and the operation of the LIB by a coupled model approach. This enables study-
ing the impact of process-induced uncertainties and their propagation throughout the process
chain and rate the effect on electrochemical performance. Thus, sensitive process parameters
can be identified. Studying the propagation of uncertainties requires a computationally efficient
framework. In this chapter, the digitalization platform is applied with analytical models and a
homogenized p2D model for the operation of the LIB. The analytical process models are widely
developed in process engineering, e.g., by Mayer et al. [48] for the mixing and dispersing process
and by Jaiser et al. [102] for the drying process. Homogenized battery cell models are frequently
applied to study the impact of structural parameters on cell performance, which has been used,
e.g., by Lenze et al. [103] to investigate the influence of the calendering process, by Smekens
et al. [104] to analyze the effect of the electrode density on the performance and by Kenney et
al. [105] to study the impact of deviations in the structural parameters.
In this chapter, the impact of different uncertainty scenarios are analyzed based on the digital-
ization platform. Therefore, uncertainties are induced in the process models for coating, drying
and calendering. Due to the coupled approach, it is possible to track the propagation of uncer-
tainties and rate the effect of uncertain process parameters on electrochemical performance. This
allows identifying weak points in the production process, which is needed for knowledge-driven
optimization.

4.2 Computational methods

In Chapter 3, the digitalization platform was introduced with flexible containers for the process
chain model and the battery cell model. Here, analytical models taken from the literature are
applied in the process chain model. They are introduced in the following.
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The battery cell model is a p2D model which was already introduced in Chapter 2.3.2. The
discretization in the electrolyte is only done in x-direction. The structural surrogate models
mentioned in Chapter 3 are not applied. Relevant parameters for the battery cell model are
estimated in Section 4.3 and listed there.

4.2.1 Process chain model

The process chain model was implemented by Thomitzek (IWF, TU Braunschweig). The pro-
cess steps represented in the process chain model are the coating, drying and calendering. The
process models describe relevant process-structure relations for the respective process step. The
selected process steps are successive. A propagation of uncertainties along the process chain can
be determined. The models focus on the structural parameters coating thickness, coating density,
porosity and tortuosity. Please see, Chapter 2.2 to get an overview of the production steps and
other relevant parameters. Analytical models are applied to describe the single process steps.
The models take the impact of single process parameter on changes in the structure of the inter-
mediate product into account. Although reality is much more complex, they are sufficient as a
first approximation to describe the cause-effect relations.

4.2.1.1 Coating model

The coating process defines slurry mass loading of the electrodes, e.g. via a blade gap operated
process. The process model assumes a direct transfer of the height between the doctor blade gap
and the current collector to the coating thickness. Based on the slurry composition the initial wet
coating thickness d0 can be determined (eq. 4.1). Further, the solid mass loading Msolid can be
deduced (eq. 4.2).

d0 =
ρSlurry

Mwet
(4.1)

Msolid = Mwet−Msolvent =
Mwet

1+Xsolvent,0
(4.2)

ρSlurry, Mwet, Msolid, Msolvent and Xsolvent,0 are structural parameters of the electrode. They repre-
sent the density of the slurry after coating, the mass loading of the wet film after coating, the mass
loading of solids and the solvent, and the liquid-to-solid ratio of the coating. d0 is the process
parameter during the coating which sets the initial wet coating thickness.
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4.2.1.2 Drying model

In the drying process, the solvent is removed from the coated electrode. The drying process was
modeled according to Jaiser et al. [102]. There, the authors assume a linear relation between
drying time t and the decrease in coating thickness until the end of film shrinkage due to the
constant drying rate ṁ . Eq. 4.3 determines the time until the end of film shrinkage is reached.
The decreasing coating thickness was modeled using eq. 4.4. The solvent of the slurry evaporates
steadily causing a decrease in film thickness. As the coating consolidates, pores start to empty.
The coating thickness of the electrode after drying is modeled by eq. 4.5 [106]. The coating
density initially increases until the end of film shrinkage is reached due to the decrease in coating
volume but eventually decreases due to further solvent evaporation and the development of the
porous structure. The coating density of the dry film can be determined by eq. 4.6.

tEoFS =
Xsolvent,0−Xsolvent,EoFS

ṁ
·Msolid (4.3)

d(t) = d0−
d0−ddry

tEoFS
· t (4.4)

ddry =
Msolid

ρPM · (1− εdry)
(4.5)

ρdry =
Msolid

ddry
(4.6)

tEoFS, t and ṁ are process parameters. The parameters represent the time until the end of film
shrinkage, the overall drying time and the drying rate. Xsolvent,0, Xsolvent, EoFS, d(t), ddry, ρPM, ρdry

and εdry are structural parameters of the coating describing the initial liquid-to-solid ratio after
coating, the liquid-to-solid ratio at end of film shrinkage, the coating thickness during drying and
after drying, the density of the particulate matter, the density of the dry coating and the initial
porosity of the coating.

4.2.1.3 Calendering model

In the calendering process, the rolls of the calender compress the coating in order to reduce the
coating thickness and adjust the structure of the porous composite. Meyer et al. [96] investigated
the effect of the calendering process on electrode structure. The cause-effect relation between
line load qL and final coating density ρc (eq. 4.7) and final porosity εe (eq. 4.8) was mod-
eled using exponential equations. The equations also require the compaction resistance γc of the
coating in addition to the line load, the initial and maximum density (ρdry, ρmax) and the initial
and minimum porosity (εdry, εmin). The compaction resistance is affected by the used material,
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formulations, pore structure and roll temperature and can be fitted directly based on measured
values using equations 4.7 or 4.8. Minimum porosity εmin and maximum density ρmax are de-
termined according to equation 4.9 and 4.10 with ρph being the physical density of the solid
material [97, 106].

ρc(qL) = ρmax− (ρmax−ρdry)exp
(
−qL

γc

)
(4.7)

εe(qL) = εmin +(εdry− εmin)exp
(
−qL

γc

)
(4.8)

εmin = p · εdry (4.9)

ρmax = (1− εmin) ·ρph (4.10)

The coating thickness after calendering del is modeled using a mass balance approach before and
after calendering (eq. 4.11). The equation requires the coating thickness ddry and the coating
density ρdry before calendering and coating density ρc after calendering (provided by eq. 4.7).

del =
ρdry ·ddry

ρc
(4.11)

The approach assumes there is no elongation in lateral and forward direction during calender-
ing. Finally, tortuosity of the calendered electrode τ is acquired using the empirical Bruggeman
relation (eq. 4.12) [107]. The Bruggeman parameter βB was identified based on the differential
effective medium approximation using a top and cross section electrode image by Ebner and
Wood [108].

τ = ε
−βB
e (4.12)

4.3 Model parameterization

In this part the implemented models are parameterized and validated. The aim of this step is to
determine parameters in such a way that measurements can be mapped. For the process models,
the process parameters need to be identified so that the structural parameters of the simulation
match the structural parameters of the reference electrode. In the case of the battery model the
electrochemical measurements were used to estimate kinetic and effective transport parameters
for the battery model by identifying the simulation on the measurements with a least square
algorithm approach.
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4.3.1 Process chain model

The process chain model uses parameters from Jaiser et al. [102] and Meyer et al. [96, 97] for
the coating, drying and calendering processes. The simulation was applied to produce cathodes
with a mean coating thickness del of around 65 µm and a porosity εcal of 0.31. Based on the
process models and the parameters of the three processes, an initial wet coating thickness d0

of 144.90 µm was determined. Table 4.1 shows the process and structural parameters for the
individual process steps. The standard deviations for the process parameters are based on data
of the machines used in the work by Meyer et al. [96, 97]. The deviations of the drying rate ṁ
and the drying time t do not affect the structural parameters since they are employed to predict
the final film thickness only (see eq. 4.4). Thus, no standard deviations were considered for
the drying rate and the drying time. The structural parameters were kept constant except for the
porosity of the dried electrode εdry and the compaction resistance γc. The standard deviation for
both parameters were set according to measurements in the Battery LabFactory Braunschweig.

Table 4.1: Input parameters for the process chain model.

Process parameters Structural parameters

Coating d0 / µm 144.90±2.04 ρSlurry / gcm−3 2.715

Xsolvent,0 / kgkg−1 1.00

Drying ṁ / gm−2 s−1 1.00±0.00 Xsolvent,EoFS / kgkg−1 1.00

t / s 200 εdry / - 0.47±0.2

Calendering qL / Nmm−1 160±11 γc / Nmm−1 193.4±4.3

p / - 0.4

ρph / gcm−3 4.40

βB / - 0.55

4.3.2 Battery cell model

Electrochemical experiments were conducted with a three-electrode setup. Therefor PAT-Cells
from the EL-CELL GmbH were used. They use a cylindrical electrode with a diameter of 18 mm
and a separator with an included lithium reference electrode. Graphite and NMC622 were used
for the anode and cathode and were produced by the ZSW in Ulm, Germany. For each electrode
the OCP curves were measured. The structural data of the electrodes are displayed in Table 4.2.
The electrolyte was 1.0 M LiPF6 in EC:EMC (3:7 in weight) with 2wt% VC. The separator is
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a glass fiber separator by EL-CELL GmbH (ECC1-00-0210-O/X). All experiments were con-
ducted in an ESPEC SU-642 temperature chamber at (25.0±0.3) ◦C . The assembled PAT-Cells
were used to measure the electrochemical properties. The MACCOR 4000 test system was used
to perform the formation of the cells and a discharge rate capability test. For the formation step,
the cells were charged and discharged three times with a constant current step at 0.1 C in the volt-
age range of 2.9 V to 4.2 V. The discharge rate capability test was performed at three different
discharge rates of 0.5 C, 1 C and 2 C in a voltage range from 2.9 V to 4.2 V.
In the first step of the parametrization, the OCP curves for the electrode materials are identified
with the following Redlich-Kister approach [74]:

Eeq
ref =

∆G◦33
F

+
RT
F

ln
(

1−XLiI

XLiI

)
+

1
F

N

∑
m=0

Am

[(
2XLiI −1

)m+1−

(
2mXLiI

(
1−XLiI

)(
2XLiI −1

)1−m

)]
(4.13)

A least square algorithm is used to identify the Redlich-Kister coefficients Am for the anode
and cathode. The estimated coefficients are listed in Table A.1 (see appendix). The final set of
parameters for the battery model is listed in Table 4.2. The adjusted parameters were defined
with a least square based parametrization step. The kinetic model parameters were adjusted to
represent the measurements with the simulation. The determined parameters were compared with
the literature and are of a similar order of magnitude [27, 74, 105]. The electrical conductivity
of the anode is below the usual values, however, in literature comparable results due to different
causes in production and sample preparation are estimated [103]. The parameterized model is
able to reproduce the electrochemical performance of the assembled lithium-ion batteries for
the investigated discharge rates (see Figure A.1, appendix). Minor discrepancies between the
simulation and the measurements may result from the homogenization of the electrode structure.
This effect increases with an increasing discharge rate. Overall, the parameterized model is
considered sufficiently accurate to map the measurements.
The parameterization and validation only apply to the reference point. Small scale deviations
around the reference point can be represented, but with a reduced precision. This allows to realize
the scope of the work, i.e., to study the general propagation and impact of minor uncertainties
around a reference value for lithium ion battery electrode production.
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Table 4.2: Battery model parameters used in the applied model. The diffusion coefficient in the electrolyte, ionic con-
ductivity and transference number are dependent on electrolyte concentration.

Parameter Symbol Unit Anode Separator Cathode

Layer thicknessm del m 63.5×10−6 100×10−6 65.1×10−6

Porositym ε - 0.40 0.5 0.31
Particle sizem RP m 9.50×10−6 - 5.00×10−6

Tortuositya τ - 2.09 1.0 1.896
Maximum concentration solida cs,max molm−3 32741 - 44949
Initial concentration solida c0 molm−3 32132 - 17827
Initial concentration electrolytea ce molm−3 1200 1200 1200
Diffusion coefficient solida Ds m2 s−1 3.75×10−12 - 2.96×10−15

Diffusion coefficient electrolytec De m2 s−1 f (c) [36] f (c) [36] f (c) [36]
Electronic conductivitya κs Sm−1 0.0116 - 6.8215
Ionic conductivityc κe Sm−1 f (c) [36] f (c) [36] f (c) [36]
Transference numberc tp - f (c) [36] f (c) [36] f (c) [36]
Charge transfer coefficients α - 0.5 - 0.5
Reaction rate constanta k - 1.36×10−8 - 2.72×10−11

Double layer capacitys CDL Fm−2 0.2 - 0.2

m measured by ZSW (department of production research)
a adjusted
s set, from ref. [67]
c concentration dependence, see eq. in [36]

4.4 Definition of the case study

This section describes the case study applied to the model approach in this work. It was chosen in
such a way that the effect of production tolerances, i.e., varying process parameters, on the struc-
tural parameters and the electrochemical properties of a lithium-ion battery can be studied. The
case study is thus used to reveal the propagation and interactions of uncertain structural parame-
ters along the consecutive process steps and study the influence of varying structural parameters
on electrochemical properties. The models presented in section 4.2.1 and 2.3.2 are validated for
the parameterized reference cell. The estimated uncertainties for the structural parameters and
the electrochemical properties are not validated, but will be compared to literature.
For the case study, the previously presented process chain model with models for the coating,
drying and calendering processes is considered. Uncertainties are only taken into account for
the production of the cathode, the anode parameters are kept constant. Four distinct production
scenarios, illustrated in Figure 4.1, are discussed where each has a different combination of un-
certainties along the production chain. The first scenario is defined as the nominal scenario, as
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Process Chain Simulation

Figure 4.1: Displayed is the basic model approach and the scenarios that were simulated for the case study.

all processes are assumed to be free of process and parameter uncertainties in order to provide
a reference scenario. In the other scenarios, the porosity after the drying process always varies
because the formation of the electrode structure in the drying process is subject to natural de-
viation caused by the non-uniform evaporation of the solvent. A constant value of the porosity
can not be achieved even with very tight tolerances. In addition, uncertainties occur in at least
one other production step. Scenario two assumes uncertain parameters due to the coating and
drying processes. The applied mass loading varies, as an uncertain coating thickness is applied
on the substrate in the coating process, also the slurry density is an uncertain structural input
parameter resulting for example from deviations in the previous mixing and dispersing process.
Scenario three considers deviations caused by the drying and calendering process. Here, the min-
imal porosity εc,min, the maximal density ρc,max, the resistance factor γc and the line load qL are
assumed to be uncertain. The line load is the varying process parameter for this production step.
The other parameters vary due to uncertainties in the material. Finally, scenario four assumes
that uncertainties arise from all three production processes. Mean values and standard deviations
for the input process and structural parameters for each production step are displayed in Table
4.3.
For each scenario the production process of 500 cells were simulated in the process chain model.
The varying input parameters for each cell were estimated with a Monte-Carlo based approach.
For each input parameter a Gaussian distribution was assumed. For this study only cell-to-cell
deviations are considered, i.e., each parameter is assumed to be constant within a single cell, but
parameters vary between cells. Deviations over the thickness and the area of the electrode are
not considered. In the work of Laue et al. [15] these aspects were considered and analyzed. The
assumed uncertainties in the production process lead to uncertainties in the structural parameters
entering the battery model. These are: the thickness, porosity and tortuosity of the cathode. The
volumetric energy density is chosen as the main performance property for evaluating the effect of
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Table 4.3: Uncertain input parameters for the models in the process chain model for scenarios S1-S4. Mean values are
given in scenario four, and deviations in scenario two to four.

Coating Drying Calendering
Parameter Mwet ρslurry εdry εmin ρc,max γc qL

Unit mgcm−2 gcm−3 - - gcm−3 Nmm−1 Nmm−1

S1 39.3 2.72 0.470 0.232 3.38 592 642
S2 ±0.4 ±0.03 ±0.009 - - - -
S3 - - ±0.009 ±0.002 ±0.03 ±12 ±44
S4 ±0.4 ±0.03 ±0.009 ±0.002 ±0.03 ±12 ±44

uncertainties in the production on the cell performance, because it contains the effect of a vary-
ing discharge capacity and the voltage losses, and thus is capable of evaluating the performance.
The energy density depends on the modus of operation. All simulations are conducted at four
different discharge rates: 0.1 C, 0.3 C, 0.5 C and 1 C. Understanding the impact of uncertain-
ties for different C-Rates will also allow to identify and thus to tailor the production process for
maximum allowable deviations for a given battery application.

4.5 Discussion of the simulation results

The results part is divided in two parts. In the first section the correlation between the production
processes and the electrode structure generated from the process chain model is discussed. In the
second part, the influence of the uncertain structural parameters on the electrochemical properties
of the cells is evaluated, and the findings are connected to the insights of the first part. This leads
to a continuous analysis of the interactions and uncertainties from the process to the structure to
the electrochemical properties.

4.5.1 Production impact on structural parameters

In this part the impact of uncertainties in the production processes on the electrode structure
will be analyzed. The uncertainties were estimated based on the process models presented in
section 4.2.1 and the input parameters listed in Table 4.3. In Table 4.4, the resulting mean values,
standard deviations and relative standard deviations for cathode thickness, porosity and tortuosity
are listed for each scenario after the calendering process. Based on the data in the table, it can be
seen that the mean value of the structural parameters remain relatively constant for all production
scenarios. The layer thickness of the cathode shows high deviations for scenario two and four.
The standard deviation of the porosity and tortuosity of the cathode is high for scenario three and
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four.

Table 4.4: Mean value, standard deviation and relative standard deviation of the resulting structural parameters after
calendering for the cathode thickness, porosity and tortuosity with the implemented process models. These
structural parameters are used as input parameters for the battery cell simulation.

Parameter Layer thickness del Porosity εe Tortuosity τ

Unit µm - -

S1 65.09 0.3124 1.896
S2 65.05±1.95(±3%) 0.3122±0.003(±1.1%) 1.897±0.011(±0.6%)

S3 65.12±0.76(±1.2%) 0.3124±0.007(±2.3%) 1.897±0.024(±1.3%)

S4 65.12±2.16(±3.3%) 0.3131±0.007(±2.3%) 1.894±0.024(±1.3%)

In the following paragraphs the determined uncertainties for the layer thickness, porosity and
tortuosity are discussed in relation to the production scenarios and compared to literature values.
In Figure 4.2a, the distributions of the cathode thickness for the different production scenarios are
displayed. The width of the distribution is greatest for scenario two and four and narrowest for
scenario three. The second scenario deals with the influence of uncertainties in the coating and
drying process, while the fourth scenario is a combination of the second and third scenario (see
Table 4.3). The results show that the cathode layer thickness is mainly affected by uncertainties in
the coating process. Due to eq. 4.1, the deviation of the layer thickness is based on the uncertain
mass loading applied on the substrate. According to the scenarios, the mass loading varies for
scenario two and four, but stays constant for scenario three (Figure 4.2b). The distribution of the
cathode layer thickness estimated for scenario four can be compared to the results of scenario
two. This is supported by the values of the standard deviation and relative standard deviation
in Table 4.4. It can be concluded that the cathode layer thickness and the mass loading are
sensitive to uncertainties in the coating process. Furthermore, the calendering process is effective
at setting a certain electrode thickness even if the calendering process itself is not that accurate,
but it cannot maintain or adjust a constant height if a varying mass loading is applied, due to
uncertainties in the coating process.
In Figure 4.3a, the distributions of the cathode porosity for the simulated scenarios are displayed.
In contrast to Figure 4.2a and b, the width of the distribution is greatest for scenario three and
four and narrow for scenario two. In the third scenario, uncertainties arise in the drying and
calendering process, while the fourth scenario is a combination of the second and third scenario.
Taking the figure and the values for the standard deviation and the relative standard deviation into
consideration it can be concluded that the cathode porosity is sensitive against uncertainties in
the calendering process. Furthermore, it can be observed that for a constant calendering process
(scenario 2) the relative standard deviation of the porosity is lowered from approximately 2 %
after the drying process (see Table 4.3) to 1.1 % after the calendering process. The constant
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(a) (b)

Figure 4.2: Histogram of the cathode thickness (a) and mass loading (b) for the different scenarios.

calendering step led to a homogenization of the porosity within the cathode. This is caused by
the process control of the calendering process. Applying a constant line load leads to an evenly
adjusted porosity of the electrode after calendering, as thicker electrode sections are compressed
with the same force. The effect of the line load on the porosity is discussed in depth by Meyer et
al. [97]. This is also the reason why a constant line load in the calendering process does not lead
to a homogenization of the layer thickness. The use of a gap-controlled machine would lead to
an interaction between the layer thickness and the porosity, since thicker sections of the electrode
are also more strongly calendered.

(a) (b)

Figure 4.3: Histogram of the cathode porosity (a) and tortuosity (b) for the different scenarios.

The distribution of the cathode tortuosity is displayed in Figure 4.3b. The resulting distributions
are comparable to the results of the cathode porosity due to the calculation of the tortuosity based
on equation 4.12 with a constant Bruggemann coefficient.
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In a study from Hoffmann et al. [59], the deviation of structural parameters for pilot production
processes were analyzed. For a double-sided coating process the deviations of the layer thickness
for the cathode was approximately ±0.89 µm. This is slightly above the estimated values for
the process chain model. In the study a double-sided coating process was analyzed and the
complexity of the applied models in the process chain model are limited. However, the structural
parameters generated with the model are comparable to the results of the work. For the porosity
of the cathode, Hoffmann evaluated a deviation of ±1.73 % and this can be compared to the
results of the process chain model. The tortuosity of the electrodes were not evaluated in the
work of Hoffmann.
In summary, it can be stated that the production steps considered in this study have a varying
impact on the structural parameters and the effect could be estimated with the model approach.
Within the framework of the process models used in this study, the following assumptions arise:

• Scenario 1: Reference - no uncertainties in all production steps

• Scenario 2: Load dominated - high uncertainties for the mass loading and the cathode
thickness due to the uncertainties in the coating process

• Scenario 3: Porosity dominated - high uncertainties for the porosity due to uncertainties
in the calendering process

• Scenario 4: Combination - high uncertainties for the thickness, porosity and tortuosity
due to uncertainties in all production steps

Furthermore, it can be concluded that for the applied models in this study no relevant interactions
and superposition between the thickness and the porosity occur, due to the process control of the
calendering step. Changing the process models and the process control will result in a different
outcome.

4.5.2 Battery performance

In this part, the propagation of the uncertainties in structural parameters and the impact on the
electrochemical performance properties is analyzed. In combination with the results from the
previous section, conclusions can be made on how uncertainties in the production process affect
the performance of the simulated battery. The estimated varying structural parameters (see Table
4.4) are taken as an input for the battery model described in section 2.3.2. Also included are the
measured, identified and chosen parameters listed in Table 4.2.
Firstly, the distribution of the volumetric energy density is studied in depth as an indicator for
the electrochemical performance properties. Simulations were conducted at 0.1 C, 0.3 C, 0.5 C
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and 1 C. The results for 0.5 C are not discussed in detail, as they follow the trend of the other
discharge rates. In Figure 4.4, the distributions for the different production scenarios are plotted
for all considered discharge rates. The mean value, standard deviation and relative standard devi-
ation extracted from these data are listed in Table 4.5. Based on these results it can be stated that
the mean value of the volumetric energy density remains approximately constant for a certain
discharge rate for all scenarios. Additionally the results show, that an increasing discharge rate
leads to a decreasing energy density. The load dominated and the combined scenario (Scenario
2 and 4) show always the widest distribution. The shape of the resulting distribution for the en-
ergy density is skewed for low discharge rates and the shape and the width shifts to a Gaussian
distribution with increasing discharge rate.

(a) (b)

(c)

Figure 4.4: Histogram of the volumetric energy density estimated with the battery model. Included are the different
scenarios and three different discharge rates 0.1 C (a), 0.3 C (b), 1 C (c).
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Table 4.5: Mean value, standard deviation and relative standard deviation for the estimated energy density for each
discharge rate.

Property Energy Density at 0.1 C Energy Density at 0.3 C Energy Density at 1 C
Unit Whl−1 Whl−1 Whl−1

S1 483.88 464.66 398.06
S2 480.97±6.43(±1.34%) 463.81±9.05(±1.95%) 397.91±10.48(±2.63%)

S3 483.64±3.08(±0.64%) 464.78±3.72(±0.80%) 398.21±3.75(±0.94%)

S4 480.38±6.84(±1.42%) 463.34±9.57(±2.07%) 397.54±11.07(±2.78%)

Table 4.6: Mean value, standard deviation and relative standard deviation for the estimated discharge capacity for each
discharge rate.

Property Capacity at 0.1 C Capacity at 0.3 C Capacity at 1 C
Unit Ahm−2 Ahm−2 Ahm−2

S1 30.09 29.11 25.66
S2 29.88±0.65(±2.2%) 29.06±0.84(±2.9%) 25.65±0.91(±3.6%)

S3 30.07±0.24(±0.8%) 29.11±0.28(±0.97%) 25.67±0.28(±1.1%)

S4 29.85±0.69(±2.3%) 29.04±0.89(±3.1%) 25.63±0.96(±3.8%)

In order to gain a deeper understanding of how uncertainties of structural parameters affect the
electrochemical performance properties, three essential aspects of the electrochemical simula-
tions will be analyzed in the following. Firstly, limiting processes of the reference scenario are
analyzed. This is used to explain the sensitivity of the uncertainties on the electrochemical per-
formance properties. In the second part, the effect of uncertainties in varying production steps
on the volumetric energy density is studied in depth and sensitive parameters and processes are
identified. The last part deals with how the different shapes of distributions arise and how they
can be interpreted and evaluated.

4.5.2.1 Analysis of the physical limitations of the reference battery

The decrease of the energy density with increasing discharge rates results from slow solid diffu-
sion in the cathode AM particles. The analysis of the results for the reference case shows that
for all discharge rates the lithium concentration in the AM particles of the cathode is not uniform
(Figure 4.5). Whereas it is uniform for the anode with a maximum lithium concentration differ-
ence of 0.5 % at high discharge rates between the inner particle and the area close to the surface.
The depletion in the cathode particles happens due to the relatively slow solid diffusion com-
pared to the fast reaction kinetics at the surface of the particle for higher discharge rates. Further
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the lithium-ion transport in the electrolyte is not limiting the performance of the battery for the
considered discharge rates up to 1 C as the lithium ion concentration in the electrolyte does not
drop under 1000 molm−3. In Figure 4.5, the lithium concentration in the cathodic solid particles
at a discharge rate of 0.1 C is close to the maximum lithium concentration of 44949 molm−3

(see Table 4.2) at the surface, thus the utilization of the AM at the cathode is relatively high. The
lithium concentration of the anode in the solid particles is relatively low with around 800 molm−3

at 0.1 C. This indicates, that the battery is well balanced at a discharge rate of 0.1 C. Increasing
the cathode layer thickness leads to a limitation of the discharge capacity due to an undersized an-
ode, while decreasing the cathode thickness leads to a limiting cathode. This aspect is discussed
in depth in section 4.5.2.3.

Figure 4.5: Lithium concentration in the solid particles of the cathode averaged over the electrode thickness for the
reference scenario at the end of discharge.

4.5.2.2 Impact of the uncertainties in varying production processes on the
volumetric energy density

Uncertainties in the the mass loading based on tolerances in the coating process have a significant
effect on the distribution of volumetric energy density. From nominal behavior the simulation
results show that for all discharge rates the deviation of the energy density is greatest for sce-
nario two (load dominated) and four (combination). Uncertainties in the mass loading lead to
similar relative standard deviations for the discharge capacities of the individual cells as for the
volumetric energy density (Table 4.6). This behavior is also described by An et al. [12], who
showed that the deviation of the discharge capacity is correlated to the deviation of the cell
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weight. The third production scenario (porosity dominated) is characterized by uncertain poros-
ity and tortuosity. These deviations mainly affect the kinetics of the electrode. The effective
transport coefficients are varying due to both uncertain structural parameters. The effective ionic
conductivity and the effective diffusion coefficient in the electrolyte vary around ±2.19%, and
the effective solid conductivity varies around ±0.64%. Additionally the active surface area is
changing due to the uncertainties in the porosity of the cathode. The active surface area varies at
around ±0.64%. Overall the deviations of the effective transport coefficient have a minor effect
on the electrochemical performance, due to the non-existent limitation in the transport processes
in the electrolyte discussed previously.
In Figure 4.6, the energy densities for every simulated cell for all scenarios are plotted for dif-
ferent discharge rates. Additionally, a surface plot illustrates the dependence of the volumetric
energy density on changing thickness and porosity of the cathode. The surface is generated by
deterministic simulation using an equidistant deviation of cathode thickness and porosity. Note
that although tortuosity deviation is not taken into account the results of the scenarios are located
on the surface. This shows the low impact of tortuosity for this surface generation, on the volu-
metric energy density (max. deviation approx. 0.005 %).
Based on the figure it can also be concluded that the production scenarios lead to differently
arranged distributions on the surface. If the deviation induced by the process is oriented in the
direction of a steep slope, the process has a significant impact on the volumetric energy density.
The load dominated scenario (S2) and the combined scenario (S4) are defined by their wide dis-
tribution of the cathode thickness, thus they are oriented towards a steep gradient of the surface.
The porosity dominated scenario (S3) is oriented in the direction of a flat gradient of the surface.
Hence, S2 has more impact on the battery performance than S3. The combined model approach
thus is able to identify the coating process as the most sensitive one. The results indicate to first
tackle the tolerances in the coating process, due to the high sensitivity on the volumetric energy
density.

4.5.2.3 Shape and width of the distributions for varying discharge rates

The analysis of the distributions for the volumetric energy density shows that for low discharge
rates of 0.1 C and 0.3 C, skewed distributions and not Gaussian distributions are obtained for the
volumetric energy density (see Figure 4.4). At higher discharge rates of 1 C, the shape of the
distribution shifts in the direction of a Gaussian distribution. To evaluate quantitatively whether
the estimated distributions are normally distributed, a one-sample Kolmogorov-Smirnov test was
conducted. The test statistic is the maximum absolute difference between an empirical cumula-
tive distribution function describing the data and a hypothesized cumulative distribution function.
The hypothesis is either accepted or rejected. The one-sample Kolmogorov-Smirnov test leads
to the conclusion that the distributions are not Gaussian distributed with a 5% significance level
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(a) (b)

(c)

Figure 4.6: Simulated energy densities for three different discharge rates 0.1 C (a), 0.3 C (b), 1 C (c). Grid: model results
for equidistant deviation in porosity and thickness, symbols are results of the reference case (•) and scenarios
(4). The colours are consistent to the previous plots. Blue: Scenario 1, Red: Scenario 2, Yellow: Scenario
3, Purple: Scenario 4.

for all discharge rates.
The shape and the width of the distribution is mainly affected by the behavior of the volumetric
energy density in the considered uncertainty range of the structural parameters. In Figure 4.6,
the surface plot visualizes the behavior of the volumetric energy density as a function of layer
thickness and porosity for a low discharge rate. Characteristic for the surface plot is the ridge
defining an optimal volumetric energy density depending on the cathode layer thickness and the
cathode porosity. This is decisively influenced by the utilization of the electrodes as discussed
in the part of the physical limitations of the reference battery in section 4.5.2.1. Additionally, it
is observed that the slope in front of the ridge, i.e., for low cathode thicknesses, is steeper than
behind it. Two different processes can be related to this behavior. For low cathode layer thick-
nesses the volumetric energy density is increasing with thickness, because the mass loading in
the cathode is increased and thus the storage capacity for lithium in the AM is enhanced. Hence,
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the cathode is limiting the performance. Behind the ridge, i.e., for thick cathodes, the volumetric
energy density is decreasing, because increasing the cathode mass loading leads to a not fully
utilized capacity of the cathode, and unused AM is added and the anode is the limiting electrode.
Thus the volumetric energy density decreases.
Increasing the mass loading is also achieved by reducing the porosity of the cathode. This leads
to an orientation of the ridge non-orthogonal to the varying layer thickness. Furthermore, the
surface is slightly tilted. This happens due to the consideration of the volumetric energy density.
At lower cathode layer thickness and porosity, the discharge capacity and the overpotentials are
almost identical, but the volume of the battery is smaller due to the reduced layer thickness.
The impact of the lower porosity could be seen by looking at the gravimetric energy density. In
summary, it can be seen that there is a non-linear dependence of the volumetric energy density
on the layer thickness and the porosity.
The location and orientation of the uncertainties on the previously described surface is crucial
for whether a skewed distribution occurs. This aspect will be illustrated at an simplified example
shown in Figure 4.7.

Figure 4.7: Illustration of the impact of an uncertain input parameter x with Gaussian distribution on the output y. This
is shown for an arbitrary function with an optimum (a) and an arbitrary linear function (b).

The distribution function h1(x) represents a deviation of the input x, e.g. the thickness, and is
chosen as a Gaussian distribution. The distribution function h1(x) is transferred to the distri-
bution function h2(y), which represents the distribution of the output, e.g. the energy density.
Distributions are transferred using simple function f (x), e.g. describing the battery performance.
We show two examples for the function f (x). A second order polynomial function with a maxi-
mum within the distribution of h1(x) is shown in Figure 4.7a. It can be seen that functions with
non linearity yields skewing of the function h2(y) and the functions maximum yields an upper
bound for the output distribution h2(y). In contrast a linear function only yields transfer of the
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variables proportional to the slope, but preserves the distribution shape. With this in mind the
results in Figure 4.4 and 4.6 will be discussed in more detail.
In Figure 4.6a, the volumetric energy density for 0.1 C is plotted. It is observed, that the volumet-
ric energy density of the reference battery is located on the ridge of the meshed surface and the
deviations cluster around this reference point. The orientation of the deviations arising in Sce-
nario 2 and 4 is mainly arranged in the direction of the cathode thickness and nearly orthogonal
to the ridge. This orientation and location lead to the skewed shape of the distribution, analogous
to the behavior described in Figure 4.7a.
Increasing the discharge rate up to 0.3 C, the reference battery and the deviations are located
further away from the ridge of the meshed area (see Figure 4.6 b). This happens due to the effect
of the kinetic limitations in the solid diffusion in the cathode particles illustrated and discussed
in section 4.5.2.1 and in Figure 4.5. The optimum shifts in the direction of thicker cathodes,
because the increased volume leads to a decrease of the reaction current jLi, and the thicker
cathode has the ability to store more lithium despite the limitation of solid diffusion and thus
leads to a higher utilization of lithium in the anode. The impact of the optimum is still visible
in the histogram of 0.3 C in Figure 4.6b which reveals that a bimodal shape of the distribution
exists for this discharge rate.
Increasing the discharge rate up to 1 C, the impact of the kinetics on the volumetric energy den-
sity increases and the simulated cells move further away from the ridge and are located in an
area of an approximately constant slope (see Figure 4.6c). A Gaussian distribution in an area
of a constant slope will lead to a Gaussian distribution. This behavior is analogous to the linear
function illustrated in Figure 4.7b. This effect is observed in Figure 4.4: with increasing the
discharge rate, the shape of the distributions is close to a Gaussian distribution.
Additionally, it can be observed that the width of the distribution is increasing while increasing
the discharge rate. In Table 4.5, it can be seen, that the standard deviation for the volumetric
energy density is increasing more rapidly for scenario two and four. This effect also results from
the less skewed shape of the distributions at higher discharge rates and the increased slope. While
the shape is shifting, the distributions start to spread out, due to the more normalized shape and
a steep constant slope.
The values estimated for the capacity displayed in Table 4.6 can be compared to the results gener-
ated by Hoffmann et al. [59]. The overall capacity for Hoffmann is at around 39.60 Ahm−2. This
is slightly higher than for the cells studied in this study. The standard deviation for Hoffmann is
given at around 1.14 Ahm−2. This is also above the values estimated in this study, but overall
the range of the deviation can be compared between these two studies. Taking into account
the simplifications done in this study, e.g. not considering the whole production chain and the
reduced precision of the battery model in terms of the microstructure, a reasonable prediction of
the electrochemical performance and the varying performance is achieved.
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4.6 Concluding remarks

The chapter contributes to understanding the propagation of uncertainties arising in the produc-
tion process and quantifying their impact on electrochemical performance. Therefore, the digital-
ization platform introduced in Chapter 3 was implemented and applied. Studying the propagation
of uncertainties was done by analyzing four different uncertainty scenarios. The sets of randomly
distributed input parameters were generated with the Monte Carlo method.
The process chain model in the digitalization platform was applied with analytical models for
the coating, drying, and calendering steps. The structural parameters estimated there are for-
warded to the p2D electrochemical battery model. It describes the operation of the digital battery
and can evaluate the electrochemical performance. The model is parameterized based on mea-
surements conducted for a reference cell. A case study was conducted with the digitalization
platform by analyzing four scenarios with varying origins of the uncertainties in the three ana-
lyzed production processes. Evaluating these four cases revealed that the model approach can
identify the coating process as highly sensitive related to the volumetric energy density. Hence,
tight tolerances are required for the layer thickness and mass loading due to their high impact
on performance. Analyzing the propagation of uncertainties within the process chain demon-
strates that a consistent calendering process with low tolerances can decrease deviations in the
porosity induced by coating and drying. Hence, the calendering process can homogenize the
porosity of the electrode structure. Furthermore, it was observed that uncertainties in the range
of a performance optimum lead to skewed distributions. Analyzing the data of production cells
and observing skewed distributions could indicate that batteries are produced close to the perfor-
mance optimum.
It was shown that the digitalization platform can evaluate the effects of uncertainties and de-
scribe their propagation. That is accomplished by pointing out relevant parameter correlations.
Weaknesses, such as the coating process, can thus be identified. However, generating the sample
points with a Monte Carlo method is not suitable for in-depth analysis, and the computational
effort is high. Furthermore, the evaluation is based on qualitative descriptions and observations
and lacks in the quantitative determination of sensitivities.
In the next chapter, the approach is further extended to investigate the effects of uncertainties
in more detail and to enable robust design optimization. Therefore, mathematical methods for
uncertainty quantification, metamodeling, and sensitivity analysis are applied to overcome the
trial-and-error approach and provide a knowledge-based analysis.
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5 Robust Design of Lithium-Ion
Battery Cathodes4

5.1 Introduction

The digitalization platform was introduced in Chapter 3 and applied in Chapter 4. It was shown
that the approach could quantify the impact of uncertainties in the production process. The coat-
ing process, and thus the mass loading was identified to have the highest impact on the electro-
chemical performance. However, uncertainties were used for evaluating only a specific electrode
design.
In this chapter, the focus is shifted to the battery cell model and the analysis module of the
platform. The scope is to establish a method that enables knowledge-driven optimization under
consideration of uncertainties. The process chain model is excluded, but the studied input pa-
rameters for the electrochemical model are closely related to the output of the process models.
Model-based optimization of the electrode structure for improving the electrochemical perfor-
mance has already been carried out extensively in the literature. Establishing the p2D model by
Doyle, Fuller, and Newman in the early 1990s enabled distinct predictability of the performance
by correlating the physical processes with structural features of the electrodes [65, 66]. Thus,
optimizing the structure in terms of thickness and porosity was conducted after establishing the
model [34, 110, 111]. Constantly increasing the requirements for lithium-ion batteries results
in extended and more complex models. These can improve predictability and thus enable en-
hanced optimization possibilities [26, 27]. Furthermore, new structural features like multi-layer
and graded electrodes are in focus for improved performance and need to be studied. Witt et
al. analyzed these electrode structures and distinguished between the charge and discharge pro-
cesses due to their different requirements. That is especially of interest when optimizing the
electrode structure for fast charging applications [38]. Thus, knowledge-driven optimization of
the electrode microstructure is one main aspect when applying electrochemical models.

4 Part of this chapter has been published in Schmidt, Krewer, in preparation [109]
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The so far presented literature neglects the impact of structure-related uncertainties in optimiza-
tion. Therefore, identified design points might not be favorable in terms of robustness. Uncer-
tainties in the identified optimal design parameters might result in significant deviations from the
predicted optimal performance. Indeed, Laue et al. [15] stated that robust optimization taking
process-related uncertainties into account would be beneficial. Witt et al. [38] discussed that
considering uncertainties in the optimization is of high interest for the production process to im-
prove sustainability and production-related performance variances. Thus, implementing robust
optimization in the framework of the digitalization platform is of high interest for knowledge-
driven optimization to tackle especially the aspects of improve sustainability and performance
variances induced by process uncertainties.
The goal of robust optimization is to identify the best performance while reducing the deviation
of the model output for an uncertain input. That is achieved by changing the impact of the input
parameters [112]. It is mandatory to recognize that the deviation of the input is not changed, as it
is assumed to be inherent to the production process. Instead, the mean value is shifted to change
the parametric sensitivity. Implementing robust optimization was already successfully applied in
various fields, for example, in chemical engineering [113, 114]. In the production of pharma-
ceutical products, the method was applied to increase the robustness of processes against uncer-
tainties. Optimizing the process under consideration of parametric uncertainties ensures distinct
product quality and robustness, for example, against deviations of process temperature [75, 77].
In the field of battery design, the consideration of uncertainties and a robust design has not yet
been explored in depth. Yoo et al. [115] introduced a study on reliability-based design optimiza-
tion for lithium-ion batteries. The impact of uncertainties in thickness, porosity, and particle
size on the specific energy and power were analyzed. Establishing the robust design approach
resulted in a reduced probability of failure. However, the limitations of different designs and
operations were not discussed in-depth, and the selected parameters are not coupled directly to
the production processes.
In this chapter, optimizing the cathode structure is done while considering uncertainties. The
goal is to identify an optimal design in terms of performance that holds even under uncertain
production conditions. The cathode structure is optimized for different operating conditions
while reducing the deviation of performance and the scrap rate in production. Therefore, an elec-
trochemical half-cell model is implemented, focusing on the cathode. First, the dependence of
electrochemical performance on mass loading and coating density is analyzed. The focus is on
identifying limitations in performance due to slow kinetics and transport. In the second part, the
mass loading and coating density are adjusted to generate cathodes with a maximized volumetric
energy density while providing the desired capacity at a given current density. This is the ref-
erence case of optimization, which does not take uncertainties into account yet. Subsequently,
uncertainties in the mass loading and coating density are induced on the identified optimal cath-
ode structures, and the impact on the electrochemical performance is studied. In the last part,
robust optimization is conducted by considering uncertainties to identify optimal mass loading
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and coating density. Hence, the electrochemical performance is robust against uncertainties in
the cathode design. Additionally, in the objective function, a penalty term is added for reduc-
ing the scrap rate. An efficient optimization algorithm is implemented using metamodels for
time-efficient uncertainty quantification.

5.2 Experimental cell setup

The electrochemical model used in this chapter represents a half cell which was measured elec-
trochemically. The cell consisted of an NMC622 cathode as the working electrode and a lithium
foil as the counter reference electrode. The half cell was assembled in a coin cell setup. The
NMC622 cathode was manufactured and provided by the FPL from the ZSW in Ulm, and the
coin cell was assembled and electrochemically measured by Lea Kremer from the ZSW in Ulm.
The electrodes were circular with a diameter of 1.2 cm. The separator consisted of two layers of
GF/A (Whatman glass fiber) and the electrolyte was a 1.0 M LiPF6 in EC:EMC (3:7 in weight)
with additional 2wt% VC. Detailed structural and material information concerning the cathode
and separator is provided in Appendix A.2. For this experimental cell, the formation was done
with three consecutive, galvanostatic constant current cycles at C/10 in an operational voltage
range between 3 and 4.3V. The rate capability measurement was performed after the formation,
including current densities between 1 and 12mA/cm2 in the operational voltage range between 3
and 4.3V. The lithiation curves of the rate capability measurements are displayed in Figure A.2,
in the appendix.

5.3 Electrochemical model

The electrochemical model is based on the p2D model as introduced in Chapter 2.3.2. The
discretization in the electrolyte is only done in x-direction. Here, the model is adapted and
extended to be applicable for modeling the impact of production on performance with increased
accuracy.
The first adaption takes into account that only a half cell battery is evaluated in this chapter, as
described in Section 5.2. The cell consists of an NMC622 cathode, a separator, and a lithium foil
anode and is used for parameterization and validation of the model. The setup with the ideal, yet
not technically relevant lithium metal anode is chosen to solely focus on the cathode to reduce
the complexity of the system. This neglects effects such as the impact of electrode balancing,
gradients and losses in the anode, and SEI formation. The model uses a coupled PDE system in
the cathode and separator. The state variables for the liquid electrolyte (ce and φe) are solved in
both domains. In the cathodic domain, the variables for the solid (cs, and φs) are estimated. The
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lithium foil anode is implemented as an infinite lithium source providing the necessary lithium
ions for the reaction in the cathode. Therefore, the boundary condition of the species transport in
the liquid phase is replaced. The new boundary condition is implemented at the separator on the
opposite side of the cathode, i.e., the separator side facing the counter electrode being the lithium
foil anode. In detail, eq. 2.17 from Table 2.1 is replaced by

∂ce

∂x
(0) =

−Icell

Acell ·F
(
1− tp

)
,

∂ce

∂x
(Lcell) = 0. (5.1)

The boundary condition enables the infinite lithium ion supply because the amount of ions en-
tering the separator at the anode interface is equal to the number of lithium ions reacting at the
surface of the cathode particles. The open-cell potential of the lithium foil anode is zero, and
independent of the state-of-charge [65]. The charge transport in the solid of the lithium anode is
neglected, and thus the solid potential of the anode is zero and eq. 2.12 simplifies to

Ucell = φs(Lcell). (5.2)

Summing up, the cell voltage only depends on the solid phase potential at the current collector
of the cathode. The other equations are similar to the full cell model.
The second adaption focuses on the transport processes and the reaction kinetics of the battery.
In this chapter, the structure of the porous electrode is changed due to the varying mass loading
and coating density of the cathode. Hence, layer thickness, porosity, and tortuosity are affected.
In Chapter 2.1.2, an overview is provided on how the micro and macro kinetics of the elec-
trode is affected by the porous microstructure. Therefore, it is of interest to map the impact of
structural changes on the effective parameters describing the kinetic processes in the p2D model.
Commonly, the Bruggeman relations introduced in Chapter 2.3.2 (eq. 2.23,2.24,2.22,2.21) are
implemented. However, these model equations are known to be not accurate enough for predict-
ing the effects of production processes on the electrochemical performance [26, 27, 33].
The correlations between porous microstructure and volume-averaged effective kinetic proper-
ties must be represented with increased accuracy. In literature, several solutions are provided
for increasing the predictability of the p2D model by calculating the effective transport param-
eters based on artificial electrode structures [26, 27]. For this work, the approach by Laue et
al. [27, 33] is implemented into the p2D model. In the following the main equations are briefly
summarized.
In the beginning, effective volume fractions are introduced which are used for the empiric surro-
gate equations:

ε
∗
AM =

εAM− εcrit,s

1− εcrit,s
, ∀εAM : εAM > εcrit,s, (5.3)

ε
∗ =

εe− εcrit,e

1− εcrit,e
, ∀ε : ε > εcrit,e, (5.4)
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ε
∗
CBM = εCBM

εCBM + εAM− εcrit,s

1− εcrit,s
, ∀εCBM : εCBM + εAM > εcrit,s (5.5)

The effective volume fractions for the AM ε∗AM and the electrolyte ε∗ take a critical percola-
tion threshold volume fraction εcrit,e for the electrolyte and εcrit,s for the solid into account (see
eq. 5.3, 5.4). Hence, the surrogate equations implemented in the following allow combining
the Bruggeman relations with the existence of a percolation threshold of a conducting network
affecting the effective parameters. The critical percolation threshold for the solid phase εcrit,s is
related to the combined volume of the carbon black-binder matrix (CBM) and the active material
(AM). For the effective volume fraction of the CBM in eq. 5.5, the strong interaction of the AM
and the CBM is taken into account. Thereby the effective volume fraction of the CBM considers
that in a dense AM structure the CBM percolates at lower volume fractions compared to a less
dense AM structure.
The ionic conductivity calculated with the Bruggeman relation does not take the impact of the
CBM into account. The surrogate equation is extended by this effect and thus the new model
equation for the effective ionic conductivity is

κe,eff = κe · (ε∗)β1+β2 . (5.6)

That equation is strongly related to Bruggeman, but for representing the effect of the CBM on
the tortuosity an empiric term β2 is added, which is:

β2 = ε
ν1
CBM. (5.7)

It represents the increase of liquid phase tortuosity due to the CBM in the microstructure. The
fitting parameters for this equation are εcrit,e, β1, and ν1. The exponent β1 considers the tortuosity
due to the active material like the classical Bruggeman coefficient. However, it deviates due to
fitting from the classical value.
The equation for the solid phase conductivity in the empiric surrogate model takes the impact
of a percolating CBM network into account. That results in a low solid phase conductivity
before a percolating network of CBM is established in the electrode. Increasing the volume
fractions results in a steep increase in solid phase conductivity as most of the electrical current is
transported via the CBM and its higher electrical conductivity.

κs,eff = κCBM · (ε∗CBM)β3 · 1
2

(
1+ tanh
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1
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∗
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))

+
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1
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)β4
+

1

2κAM ·
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)β4

)−1

. (5.8)
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The fitting parameters are εcrit,s, β3, β4, ν2, and ν3. In the absence of CBM the equation simpli-
fies to the classical Bruggeman relation.
The effective active surface area relevant for the kinetics of the charge-transfer reaction is intro-
duced by:

aS =

(
1−ν4

ε
ν5
CBM
εAM

)
ν6

1−4(0.75− εAM)2 · εe

RP
. (5.9)

The fitting parameters for this equation are: ν4, ν5, and ν6. The equation takes the blocking of
the active surface by the CBM into account and the particle-to-particle contact.
The introduced equations replace the ones stated in Chapter 2.3.2 for the p2D model and result
in a more accurate description of the correlation between microstructure and kinetics. The fitting
parameters for eqs. 5.3 to 5.9 are taken from Ref. [27]. Those are based on artificial 3D NMC
microstructures generated and analyzed in detail in the reference.
The simulations conducted in this chapter are done with the described extended p2D model. The
required model parameters can be taken from Tables A.2 and A.3, in the appendix. The parame-
ters were estimated based on the electrochemical measurements conducted with the experimental
coin cell (see Chapter 5.2) and parameters taken from the literature. The upper and lower values
for the voltage range in all simulations were set to the experimental values of 3-4.3 V.

5.4 Impact of mass loading and coating density

In this part, the impact of mass loading and coating density on the electrochemical performance
of the NMC cathode is studied. The coating density describes the proportion of solid material
within the electrode volume and thus provides information about the compaction of the electrode.
It is mainly adjusted in the calendering process and influences the coating thickness, porosity, and
tortuosity. In particular, the interaction between mass loading and coating density is of interest
since both have an impact on the kinetic and transport processes.
First, the mass loading is changed. The coating density is kept constant, which suggests similar
line loadings in the calendering. Thus, the internal microstructure of the electrode, including
porosity and effective parameters, is comparable. Subsequently, the coating density for the cath-
ode with the highest mass loading is changed, and its impact on the electrochemical performance
is studied. The performance of the cathodes is rated by the areal capacity and volumetric energy
density.
Evaluating the impact of mass loading and coating density requires calculating structural input
parameters for the battery model, i.e., porosity and thickness of the electrode. Additionally, the
specific areal capacity of the electrode based on the specific capacity of the NMC622 is esti-
mated. Calculating these quantities is based on simple geometric and mass fraction calculations
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and considers the composition of the electrode and material properties. An overview and short
explanation of the equations are provided in the appendix (see eq. B.1-B.7). The electrode com-
position and materials are based on the experimental cathode and are given in Table B.1, in the
appendix.

Table 5.1: Specifications of seven cathodes with varying mass loadings and the coating densities. The data for the
experimental electrode are highlighted by the star.

fixed parameters estimated parameters

mass loading coating density thickness porosity specific capacity (C/10)
mgcm−2 gcm−3 µm - mAhcm−2

5 3.0 16.7 0.32 0.8
14.5* 3.0* 48.3* 0.32* 2.4*

25 3.0 83.3 0.32 4.2
35 3.0 116.6 0.32 5.9
45 3.0 150.0 0.32 7.5

45 2.7 166.7 0.39 7.5
45 3.3 136.4 0.25 7.5

* experimental cathode

To see the impact of the mass loading, five cathodes are analyzed with loadings between 5 and
45 mgcm−2 and constant coating density of 3.0 gcm−3. In addition, to see the impact of the
coating density, besides a coating density of 3.0 gcm−3, two additional coating densities of 2.7
and 3.3 gcm−3 were evaluated, where the mass loading was kept constant at 45 mgcm−2. The
estimated parameters for all cathodes are provided in Table 5.1. The experimental electrode is
highlighted by a star in the table. Kremer et al. [36] analyzed a comparable material system
based on an NMC622 cathode within a similar range of mass loadings and coating density in an
experimental study. The thicknesses, porosities, and specific areal capacities of the manufactured
electrodes match well with the theoretical values estimated here.
In the following simulations, the lithiation of the cathode is analyzed for increasing current den-
sities in the range of 1 to 12 mA/cm2. The respective C-rates depend on the mass loading. The
cathode with the lowest mass loading will experience up to 15 C, while thick cathodes will barely
achieve 2 C. The C-rate can be calculated using the specific areal capacity provided in Table 5.1
and the applied current density.
In Figure 5.1a, the capacities of the seven cathodes are displayed for increasing current densities.
In Figure 5.3a, the volumetric energy densities are plotted. Please note that the volumetric en-
ergy density is calculated based on the volume of the cathode coating and not the volume of the
battery cell.
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(b)(a)

Figure 5.1: (a) areal capacity, and (b) minimal ion concentration ever occurring in the electrolyte during the simulation,
for cathodes with varying mass loading (solid lines) and coating density (dashed lines) at increasing current
densities. The detailed specifications of the cathodes are listed in Table 5.1

The results for the areal capacity in Figure 5.1a show the rate performance of the cathodes. At
first, the focus is on the cathodes with increasing mass loadings (solid lines). At low current
densities, all cathodes provide the estimated specific capacity based on material and structural
parameters as given in Table 5.1. Increasing the mass loading at low current densities results in an
increased capacity, as the absolute amount of active material in the cathode increases and kinetic
losses are not relevant. Cathodes with a low mass loading can deliver most of their capacity even
for high current densities. The cathodes with mass loadings of 14.5 mgcm−2 and 25 mgcm−2

can still provide approx. 70 % of their initial capacity at a current density of 12 mAcm−2. The
cathode with mass loading of 5 mgcm−2 can only provide 40 % of its initial capacity at this
current density, but the absolute capacity loss is in the same order of magnitude as for load-
ings of 14.5 mgcm−2 and 25 mgcm−2. In contrast, cathodes with high mass loadings reveal
pronounced performance losses above a specific current density recognized by a steep decrease
of the capacity. The cathode with 45 mgcm−2 can only provide 20 % of its initial capacity at
the highest analyzed current density. It is observed that increasing the mass loading shifts the
location of the steep capacity decrease to lower current densities. For 35 mgcm−2, it occurs
at around 10 mAcm−2, while for 45 mgcm−2 the steep decrease starts at a current density of
around 8 mAcm−2. The additional performance losses related to the steep decrease in capacity
are caused by the relatively slow diffusion of the lithium ions in the liquid electrolyte. In the
electrochemical model, the electrolyte concentration is a state variable and solved during the
simulation. In Figure 5.1b, the lowest ion concentration ever occurring in the electrolyte close
to the current collector is displayed for increasing current densities. Comparing Figure 5.1a and
b show that the lithium ion concentration in the electrolyte drops to zero for current densities
where the steep decrease in capacity occurs. Increasing the mass loading, and thus the electrode
thickness, results in prolonged diffusion lengths, whereas increasing the current density leads to
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faster reaction rates at the surface of the particles. Close to the transition to the rapid capacity
drop, the fast reaction rate starts to cause the depletion of lithium ions in the electrolyte at the
current collector because the diffusion of the ions in the electrolyte is not sufficient to provide
enough ions. Further increase of the current density beyond this point shifts the area of depletion
in the direction of the separator. In Figure 5.2, the ion concentration in the electrolyte at the end
of the discharge is displayed for the cathode with a mass loading of 45 mgcm−2 and a coating
density of 3.0 gcm−3. It can be observed that increasing the current density results in more pro-
nounced depletion that spread out from the current collector to the separator. Consequently, the
discharge capacity decreases. The limitations in performance for thick electrodes due to slow
diffusion in the electrolyte were already discussed in literature [32, 116]. The current density
causing a depletion of the ion concentration in the electrolyte at the current collector is often
described as the diffusion limiting current or maximum working current.
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Figure 5.2: Ion concentration in the electrolyte at UCell = 3.0V vs. the electrode thickness for three different current
densities. The results are displayed for the cathode with a mass loading of 45 mgcm−2 and a coating density
of 3.0 gcm−3.

In Figure 5.1a, the impact of the coating density on the capacity is shown by the dashed lines.
Decreasing the coating density from 3.3 gcm−3 to 3.0 gcm−3 and then to 2.7 gcm−3 results in
improved capacities at higher current densities. That is correlated to the increase in porosity from
25 % to 39 % (Table 5.1), which improves the effective diffusion coefficient in the electrolyte.
Thus, the depletion of the Li+ in the electrolyte and the drop in capacity is shifted to higher
current densities. The ion concentration in the electrolyte is displayed in Figure 5.1b and it can
be observed that decreasing the coating density results in improved ion concentrations during
lithiation of the cathode.
In Figure 5.3a, the volumetric energy density is displayed for the seven cathodes for increasing
current densities. At first, the effect of varying mass loadings is discussed (solid lines). At low
current densities, all cathodes provide the same volumetric energy density. Here, the energy is
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(b)(a)

Ucell = 3V

Figure 5.3: (a) volumetric energy density, and (b) the volume averaged state of lithiation in the active material particles
at the lower voltage boundary of 3 V for cathodes with varying mass loadings and coating densities.

not affected by the kinetics but solely by the theoretical storage capacity per volume, which is
identical for all cells due to the similar coating density and structure. Increasing the current den-
sity reveals mainly two transport processes affecting the volumetric energy density. That is the
solid diffusion in the active material particles for thin electrodes and the ion diffusion in the liquid
electrolyte for thick electrodes as discussed previously. Thin cathodes with a low mass loading
of only 5 mgcm−2 or 14.5 mgcm−2 reveal a decrease in volumetric energy density compared to
cathodes with a mass loading above 25 mgcm−2. Due to the low mass loading, high C-rates are
already achieved for low current densities. Interactions of the relatively slow solid diffusion in
the active material particles and the fast reaction kinetics at the surfaces of the particles worsen
the lithiation of the active material particles and thus the utilization of the electrode. This is em-
phasized by Figure 5.3b. Here, the state of lithiation of the active material particles at the end of
the simulation is displayed. Increasing the mass loading results in reduced C-rates and reduced
volumetric reaction fluxes at the surface of the particles. The utilization of the active material im-
proves. Cathodes with a mass loading of approx. 25 mgcm−2 show overall good lithiation of the
active material. Further increasing the mass loading is not beneficial for increasing the volumet-
ric energy density. For high mass loadings and high current densities, additional limitations on
the volumetric energy density by diffusion in the electrolyte are visible. The effects are identical
to those in Figure 5.1a and thus occur at the same current densities. Again, increasing the mass
loading shifts the drop in volumetric energy density in the direction of lower current densities.
The impact of the slow diffusion in the liquid electrolyte can also be observed in the lithiation of
the active material (see Figure 5.3b). Decreasing the coating density from 3 gcm−3 to 2.7 gcm−3

results mainly in a decreased volumetric energy density as can be seen in Figure 5.3a. The vol-
ume of the electrode increases without providing higher capacities (see Figure 5.1a). However,
at very high current densities the improved ion diffusion in the electrolyte results in slightly in-
creased volumetric energy densities as the depletion is hindered. Increasing the coating density
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to 3.3 gcm−3 results in higher volumetric energy densities at low current densities. The volume
is decreased and the cathode can store the same amount of lithium. However, the drop in capacity
and energy density occurs already at relatively low current densities.
Kremer et al. [117] analyzed the impact of mass loading and coating density on the volumetric
energy density of NMC622 cathodes in an experimental study. It was observed that increasing
the mass loading results in a decreasing volumetric energy density at high current densities. In-
creasing the coating density resulted in an increasing volumetric energy density at lower current
densities but a steep decrease in volumetric energy density already at moderate current densities.
These results match well with the results obtained with the electrochemical model. Additionally,
the model is capable of visualizing the depletion of the lithium ion concentration and thus can
give additional insights into the limiting processes.
In summary, mass loading and coating density both affect the ion transport in the electrolyte.
As a result, there is a steep decrease in performance at higher current densities, observed in the
capacity and the volumetric energy density. However, the capacity is mainly affected by the mass
loading. The coating density only influences capacity when there are limitations in the transport
of the electrolyte. The coating density, in turn, has a higher impact on the volumetric energy
density at lower current densities. At high current densities, the volumetric energy density and
the capacity are influenced by both parameters, since they affect the transport in the electrolyte.
The interactions between the mass loading and the coating density are of interest to achieve good
performance.

5.5 Deterministic optimization of the cathode
design

In the previous section, the electrochemical model was used to analyze the impact of mass load-
ing and coating density on the electrochemical performance. It was shown, that varying the mass
loading and coating density affects the diffusion of the lithium ions in the electrolyte resulting
in relevant performance limitations. Thus, both parameters have to be considered when gener-
ating high-energy cathodes. In this section, the mass loading and coating density is adjusted to
identify an optimal cathode design using deterministic optimization. The goal is to maximize the
volumetric energy density of the cathode.
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5.5.1 Implementation

The deterministic optimization is conducted under the constraint that a certain capacity is re-
quired at a set current density. Two cathode designs should be identified providing a discharge ca-
pacity of 6 mAhcm−2, but at two current densities of 3 mAcm−2 for case (I-6-3) and 8 mAcm−2

for case (II-6-8). Thus, a high capacity is achieved, but at two different operational points at a
low and high current density.
The constrained optimization problem is defined as:

maximize
Msolid,ρC

Q(Msolid,ρC)

subject to C−Cset = 0

5mgcm−2 < Msolid < 50mgcm−2

2.5gcm−3 < ρC < 3.5gcm−3

(5.10)

with the volumetric energy density Q(Msolid,ρC) as objective function to be maximized. The
volumetric energy density depends on the mass loading Msolid and coating density ρC as ad-
justable variables. The optimization is conducted under the equality constraint that the cathodes
should achieve a capacity Cset of 6 mAhcm−2. The mass loading is bound between limits of
10 mgcm−2 and 50 mgcm−2. The coating density is bound between 2.5 gcm−3 and 3.5 gcm−3.
The optimization is conducted twice for the two different current densities.
The optimization is carried out in Mathworks MATLAB vR2018b, and the fmincon algorithm,
which is a gradient-based method is combined with the GlobalSearch algorithm to find a global
optimum by repeatedly running the local solver.

5.5.2 Simulation results

The starting point of the deterministic optimization is provided by setting the coating density
of an initial cathode to 3.0 gcm−3. The mass loading is calculated following eq. B.8 and the
specific capacity of the NMC622. Thus, at a low current density, a specific areal capacity of
6 mAhcm−2 is achieved by considering the material properties. Consequently, the initial value
is already close to the deterministic optimum. However, the capacity at higher current densities
will differ from this theoretical value. The initial values for mass loading and coating density are
provided in Table 5.2. The initial cathode design was analyzed with the electrochemical battery
model at the current densities of 3 mAcm−2 for case (I-6-3) and 8 mAcm−2 for case (II-6-8).
The estimated capacities and volumetric energy densities are provided in Table 5.2.
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Table 5.2: Mass loadings and coating densities, and the respective performance characteristics for the initial cathode
design and the values obtained by the deterministic optimization for the two different cases (I-6-3) at low
current densities and (II-6-8) at high current densities.

Case (I-6-3) Case (II-6-8)
Initial Deterministic Initial Deterministic

mass loading mgcm−2 35.7 36.9 35.7 40.1
coating density gcm−3 3.0 3.34 3.0 2.95

current density mAcm−2 3.0 3.0 8.0 8.0

capacity mAhcm−2 5.8 6.0 5.4 6.0
vol. energy density WhL−1 1808.9 1966.5 1544.7 1490.4

The results of the deterministic optimization are provided in Table 5.2. For the cathode design
at case (I-6-3), the volumetric energy density is increased by approx. 9 % up to 1966.5 WhL−1.
The equality constraint of the optimization is fulfilled by achieving a capacity of 6 mAhcm−2.
The mass loading is slightly increased by 3 % for reaching the desired capacity. The coating
density is increased by 12 % for improving the volumetric energy density. The identified optimal
cathode design at case (II-6-8) also fulfills the constraint regarding the capacity. The volumetric
energy density decreases by 4 % down to 1490.5 WhL−1 compared to the performance of the
initial design. It is not possible to achieve a comparable volumetric energy density to the initial
design while providing 6 mAhcm−2 at 8 mAcm−2 by solely changing the mass loading and
coating density. The mass loading is increased for achieving the desired capacity by 12 %. The
coating density is only slightly affected by the deterministic optimization.
The changes for both designs fit well with the observations described in Section 5.4, as the mass
loading is increased for achieving the desired capacity and the coating density is increased for
improving the volumetric energy density. However, the limitations in ion diffusion in the elec-
trolyte must be considered to prevent a steep decrease in capacity and volumetric energy density.

The results obtained by the deterministic optimization for the two cases are analyzed by studying
the rate capability, similar to Section 5.4. The two identified optimal cathode designs are com-
pared to the initial design. In Figure 5.4a and b, the results for capacity and volumetric energy
density are displayed for current densities in the range of 1 to 12 mA/cm2 by the solid lines for
the deterministic optimization. For case (I-6-3) the increase in discharge capacity and volumetric
energy density is visible compared to the initial design. Increasing the volumetric energy density
is mainly achieved by increasing the coating density. Consequently, the drop in capacity and
volumetric energy density due to lithium ion depletion in the electrolyte is close to the applied
current of 3 mAcm−2. For case (II-6-8) the discharge capacity is achieved by mainly increasing
the mass loading. That results in thick electrodes and the operational point is at high current
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(b)(a)

Case (I-6-3)

Case (II-6-8)

Figure 5.4: (a) capacity, and (b) volumetric energy density for increasing current densities for the initial electrode, and
the designs estimated by the deterministic optimization and robust optimization for case (I-6-3) and (II-6-8).

densities where transport of lithium ions in the electrolyte is already a limiting factor. Conse-
quently, it is not possible to maximize the volumetric energy density at that point compared to
the initial design as long as the constraint of the desired discharge capacity is mandatory for the
optimization. Decreasing the coating density does not result in an increasing volumetric energy
density, as it does not significantly improve the transport in the electrolyte and simultaneously
decreases the volumetric energy density by increasing the thickness of the cathode. This effect
has been discussed in Section 5.4 for the 2.7 gcm−3 and 3.0 gcm−3 cells. A possible solution
for improving the volumetric energy density of these highly loaded cathodes is increasing the
lithium salt concentration in the electrolyte, as discussed by Kremer et al. [118].
Overall, the estimated results indicate that the objective function can determine electrode designs
that provide the desired capacity at defined current densities. Maximizing the volumetric energy
density is achieved but the results strongly depend on the operational point of the cathode. A
cathode may be optimized for one operating point but may then not be competitive over a typical
full range of operations. For example, cells optimized at high current density may be outper-
formed by others at lower current density and vice versa. In this regard, it will also be important
to understand, how sensitive the results and the optima are to uncertainties, which will be ana-
lyzed in the following.
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5.6 Influence of uncertainties on optimal cathode
design

In the next step, it is assumed that the cathode designs identified by the deterministic optimiza-
tion are produced, but the coating density and mass loading are affected by uncertainties from
the production process. The following analysis reveal how this will affect the electrochemical
performance. The aim is to study the impact of uncertainties in mass loading and coating density
on capacity and volumetric energy density of highly optimized cathodes.

5.6.1 Implementation

The uncertainty quantifiaction (UQ) is done via metamodels generated by polynomial chaos
expansion (PCE) to reduce the computational burden. Mathematical details regarding the PCE
are provided in Chapter 2.4.1. In the following, relevant information for the implementation of
the PCE is briefly provided. All UQ methods are implemented with UQLab, an open-source
MATLAB-based software framework [81].
The non-intrusive generation of the PCE model requires a design of experiment to estimate the
polynomial coefficients. The input parameters are the mass loading and coating density. The
evaluated outputs are the capacity and volumetric energy density. The random vectors for both
input parameters are assumed to be Gaussian distributed. The average values are the parameters
at the respective design points and the standard deviation is assumed to be 2 % of the average
values. The standard deviation is set based on values provided by Hoffmann et al. [59], as they
analyzed the deviation of mass loading and coating density for pilot production processes and
estimated a standard deviation in the range of 1.5-2.5 %. The metamodel is generated with the
PCE based on a sample size of 1000, and the degree is adapted during the generation. The
sample size is selected to achieve an error estimated by the UQLab framework below 0.001 to
ensure sufficient accuracy of the metamodel. The coefficients of the PCE are estimated with a
least-angle regression. The first order and total order Sobol’ indices are estimated in the UQ
analysis.

5.6.2 Simulation results

In the following discussion, we assume that a minimum capacity may not be 2 % below the set
point. All cells below this value are considered as scrap, i.e., the cells are identified as waste in
the end-of-line test. Consequently, all batteries providing a capacity lower then 5.88 mAhcm−2

are defined as scrap. An upper-quality boundary is not implemented in this study. It is assumed

75



5 Robust Design of Lithium-Ion Battery Cathodes

that well-performing electrodes could be used for different applications [119]. The scrap rate is
the relative amount of cells providing a capacity lower than the lower quality boundary.

(b)(a)

(c) (d)

Figure 5.5: Distributions of the performance characteristics after applying uncertainties to the design points estimated in
the deterministic design optimization. (a) distribution of the capacity at case (I-6-3), (b) distribution of the
volumetric energy density at case (I-6-3), (c) distribution of capacity at case (II-6-8), and (d) distribution of
volumetric energy density at case (II-6-8). The grey area in (a) and (c) indicate the region defined as scrap.

In Figures 5.5a and c, the capacity distributions for the designs estimated at optimization cases
(I-6-3) and (II-6-8) are displayed. The metamodel was solved for 10000 data points with varying
mass loadings and coating densities. The average values and standard deviations are provided
in Table 5.3. For both cases, the distributions are skewed to lower values. That results from the
non-linear dependence of the capacity on mass loading and coating density. It can be observed,
that applying uncertain input parameters results in a reduced average capacity for both cases.
The average value is indicated by the solid line and the standard deviation by the dashed lines
in the figures. For case (I-6-3) an average capacity of 5.8 mAhcm−2 is estimated and for case
(II-6-8) 5.9 mAhcm−2. The distribution is thinner for case (II-6-8) with a standard deviation of
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0.17 mAhcm−2, compared to case (I-6-3) with 0.38 mAhcm−2. The grey region highlights the
area defined as scrap below a capacity of 5.88 mAhcm−2. Due to the reduced deviation for case
(II-6-8), the scrap rate is 26 % and is lower compared to case (I-6-3) with 37 %. In Figure 5.5b
and d, the distributions of the volumetric energy density are displayed for cases (I-6-3) and (II-6-
8). Similarly as for the capacity, the two distributions show a skewed shape, and the mean values
shift to lower values. This results from the optimization of the volumetric energy density in the
deterministic optimization. The standard deviation of the volumetric energy density is lower for
case (II-6-8) compared to case (I-6-3), as it was already observed for the capacity.
Analyzing the distributions of the capacity and volumetric energy density revealed that case (II-
8-6) results in lower standard deviations and scrap rates. Due to the increased current density,
this was not expected. Explaining this effect is done by analyzing the total Sobol’ indices repre-
senting the parametric sensitivities.
Generating the metamodel by the PCE enables estimating the Sobol’ indices of the input param-
eters for no cost. In Figure 5.6a, the total Sobol indices for mass loading and coating density
are displayed related to the capacity for the initial design and the designs estimated by the deter-
ministic optimization. The parametric sensitivities shift due to the optimization. For the initial
cathode in case (I-6-3), the mass loading was highly sensitive, and after the deterministic op-
timization, the coating density is more sensitive. That is supported by the results presented in
Figure 5.4. The design estimated by the deterministic optimization reveals a steep capacity drop
close to the operational point for the case (I-6-3). The coating density is increased for maximiz-
ing the volumetric energy density. Consequently, the capacity is not limited by mass loading,
but by coating density and thus by slow transport in the electrolyte. The sensitivities of the cath-
ode design in case (II-6-8) also shift, but the difference is not as prominent. In Section 5.4, it
was stated that for high current densities, the performance limitations can not solely be related
to mass loading or coating density, but the interaction between these two parameters is of in-
terest. This statement is supported by analyzing the parametric sensitivities for case (II-6-8).
Optimizing the cathode design for 8 mAcm−2 still results in increased sensitivity for the coating
density, but the mass loading still has a significant effect on capacity. The impact of the coating
density in case (II-6-8) is lower in comparison to the optimized design in case (I-6-3). Hence,
uncertainties of the coating density have a lower impact on the discharge capacity, and thus the
standard deviation for case (II-6-8) is lower in comparison to (I-6-3). In Figure 5.6b, the total
Sobol indices are displayed related to the volumetric energy density. It can be concluded that the
coating density has the highest impact on the volumetric energy density for all cases. That is in
good agreement with the results obtained in Section 5.4. It was discussed that the mass loading
only has a minor impact on the volumetric energy density if the utilization of the active material
is sufficient. At higher current densities the mass loading becomes more relevant as the coating
thickness increases and the transport in the electrolyte is affected. The coating density has a high
impact on the volumetric energy density by changing the volume of the electrode. It can be ob-
served that for case (II-6-8), the mass loading has an increased impact on the volumetric energy
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density, as the current density is increased.

(b)(a)

Figure 5.6: Total Sobol’ indices for the mass loading and coating density related on: (a) capacity and (b) volumetric
energy density for the initial cathode design and the designs estimated in the deterministic optimization.

The results obtained for the parametric sensitivities are in contrast to Chapter 4. It is emphasized
that the cathodes used in the two analyses are different. In Chapter 4, a full cell was analyzed.
Consequently, the mass loading of the cathode has an impact on the volumetric energy density,
especially when considering the balancing with the anode. Furthermore, the cathode has lower
thicknesses and mass loadings compared to the cathodes analyzed here. In Section 5.4, it was
shown that the mass loading has an impact on the volumetric energy density for thin electrodes
by improving the utilization of the active material. The utilization was also an issue described
in Chapter 4.5.2.1. For thick electrodes with a high mass loading the utilization of the active
material is not an issue, as analyzed in Figure 5.6. The estimated sensitivities and limitations
strongly depend on the structure of the electrode, and the operational point. Changing one of
these factors might result in different results.
The results generated in this section indicate that considering uncertainties is especially of inter-
est when analyzing the quality and scrap rate of batteries in production. At end-of-line testing,
the batteries must fulfill a certain quality gate. In this work, that is represented by a lower quality
limit concerning the capacity. Inducing uncertainties on the mass loading and coating densities
of optimized electrodes results in rather high scrap rates of 37 % for case (I-6-3) and 26 % for
case (II-6-8). The scrap rate in lithium-ion battery production is approx. 10 %. However, the
best producers achieve scrap rates of roughly 5 % [57].
In the next chapter, the optimization is repeated, but with consideration of uncertainties. There-
fore, the lower quality boundary is already considered during the optimization. The goal is to
reduce the scrap rate to improve the sustainability in production already in the design process.
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5.7 Robust design optimization of the cathode
design

Previously, it was shown that deterministic optimization is capable of estimating designs for
cathodes with a maximized volumetric energy density. However, the performance characteris-
tics are not robust against uncertainties resulting in high standard deviations and scrap rates. In
the following, the goal is to estimate cathode designs with a maximized volumetric energy den-
sity but simultaneously good robustness against uncertainties in performance. Therefore, robust
optimization is implemented considering uncertainties.

5.7.1 Implementation

The robust optimization is done using a metamodel generated by the PCE. The uncertainties are
estimated based on the metamodel. That enables fast calculation times in the optimization rou-
tine. The procedure for the optimization described in the following is based on the work of Xie
et al. [120]. The aim is to reduce the number of computationally expensive evaluations of the
PCE.
The metamodel is generated with uniformly distributed parameters. The parameter space is de-
fined by a mass loading between 30 mgcm−2 and 45 mgcm−2 and the coating density is between
2.4 gcm−3 and 3.5 gcm−3. The metamodel is sampled in a wider range compared to the bound-
aries used in the robust optimization. Thus, it is ensured that uncertainties at the upper and lower
boundaries of the optimization are not in an undefined parameter region. The sample size for
generating the PCE is 1000, and the degree is adapted during the generation. The sample size
is selected to achieve an error estimated by the UQLab framework below 0.001 to ensure suffi-
cient accuracy of the metamodel. The coefficients of the PCE are estimated with a least-angle
regression. The generated metamodel is used for robust optimization. During each iteration of
the optimization, the metamodel is sampled with Gaussian distributed parameters. The average
value of the mass loading and coating density is adapted during the optimization, and the stan-
dard deviation is assumed to be 2 % of the average values. The metamodel provides the average
values and standard deviation of the output parameters that can be analyzed in the objective func-
tion.
The described procedure allows for a single time-consuming generation of the PCE prior to the
optimization. Hence, it is not necessary to generate a metamodel in every iteration. Conse-
quently, fast computing times are achieved.
The objective function used for the robust optimization is closely related to the problem stated for
the deterministic optimization, which maximizes the volumetric energy density Q, see eq 5.10.
In contrast, the desired capacity is not implemented as a constraint but as a weighted part of the
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objective function to allow for more freedom during the optimization. Additionally, the objective
function is extended by a term considering the scrap rate SR. The optimization problem is given
by

minimize
mL,ρC

a ·
(
C (Msolid,ρC)−Cset

)2−b ·Q(Msolid,ρC)+ c · (SR (Msolid,ρC)−SR,set)
2 .

(5.11)
The first term is minimized by achieving the desired discharge capacity Cset on average. The
second term maximizes the average value of the volumetric energy density Q. The third term is
added to minimize the scrap rate. A target for the scrap rate can be defined in the objective func-
tion by setting a value for SR,set, and the difference between the estimated and target scrap rate is
reduced by the objective function. It was aimed at achieving a scrap rate of approx. 4 % to reach
values in the range of the best producers on market. The scrap rate is defined by the lower qual-
ity boundary and is defined so that all batteries providing a capacity lower than 5.88 mAhcm−2

are defined as scrap. The single terms of the objective function are weighted by three factors.
They are set to a = 100, b = 0.01, and c = 5000. The objective function has to find a trade-off
between optimal performance and reduced scrap rate. Changing the weighting factors will result
in different results, as the scope of the optimization might shift.
The optimization is carried out in Mathworks MATLAB vR2018b, and the fmincon algorithm,
which is a gradient-based method is combined with the GlobalSearch algorithm to find a global
optimum by repeatedly running the local solver. The initial points for the robust design optimiza-
tion are equal to the initial design of the deterministic design, listed in Table 5.2. The impact of
the uncertainties is estimated by sampling 10000 different cathodes with a standard deviation of
2 % for mass loading and coating density.

5.7.2 Simulation results

The results obtained in the robust optimization for cases (I-6-3) and (II-6-8) are provided in
Table 5.3. Additionally, the results for the deterministic designs after applying uncertainties are
provided for the two cases.
For case (I-6-3) a cathode structure is identified that provides an average capacity of 6.1 mAhcm−2.
That is slightly above the desired value of 6 mAhcm−2. The deterministic design provides an
average capacity of 5.8 mAhcm−2 after considering uncertainties. Consequently, the robust op-
timization estimates a design with a smaller difference from the desired capacity. The standard
deviation of the capacity is 0.13 mAhcm−2 after the robust optimization and is lowered by ap-
prox. 35 % compared to the deterministic design. Increasing the capacity and thus increasing the
distance between the average value and the lower quality boundary and simultaneously reducing
the standard deviation results in a lower scrap rate. Consequently, the scrap rate is reduced from
37 % for the deterministic design down to 4.5 % for the robust design. The desired scrap rate of
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Table 5.3: Estimated mean values and standard deviations for the mass loading and coating density and the respective
performance characteristics for the deterministic design and the values estimated by the robust design opti-
mization. The values in the brackets indicate the difference to the deterministic optimal value displayed in
Table 5.2.

Case (I-6-3) Case (II-6-8)
Deterministic Robust Deterministic Robust

mean mass loading mg/cm2 36.9 37.3 40.2 40.5
std. mass loading mg/cm2 0.74 0.75 0.8 0.81
mean coating density g/cm3 3.34 3.17 2.98 2.9
std. coating density g/cm3 0.07 0.06 0.06 0.058

mean capacity mAh/cm2 5.8 (-0.2) 6.1 (+0.1) 5.9 (-0.1) 6.1 (+0.1)
std. capacity mAh/cm2 0.38 0.13 0.17 0.11
mean energy density Wh/L 1914.8 (-51.7) 1901.3 (-65.2) 1476.5 (-13.9) 1460.6 (-29.8)
std. energy density Wh/L 105.2 31.1 26.74 24.3
scrap rate % 37 4.5 26 4.4

4 % is not achieved, but the difference is relatively small, and the result is rated sufficient. The
capacity distribution for case (I-6-3) after the robust optimization is displayed in Figure 5.7a.
The standard deviation is relatively small, and only a minor amount of cathodes are located in
the grey region representing the area defined as scrap. The shape of the distribution is close to
a normal distribution and not skewed as observed for the deterministic design in Figure 5.5a.
The average volumetric energy density after the robust optimization is 1901.3 WhL−1 and is
in a similar range as the deterministic design when considering uncertainties. Both values are
lower compared to the deterministic optimum of 1966.5 WhL−1, listed in Table 5.2 for case
(I-6-3). However, the robust design achieves significantly lower scrap rates while still achieving
a competitive volumetric energy density. The standard deviation of the volumetric energy den-
sity reduces from 105.2 WhL−1 down to 31.1 WhL−1 due to the implementation of the robust
optimization. In Figure 5.7b, the distribution of the volumetric energy density is shown and the
average and standard deviation are provided. For case (I-6-3) the performance characteristics
are achieved by slightly increasing the mass loading compared to the deterministic design from
36.9 mgcm−2 up to 37.3 mgcm−2, thereby the capacity increases. The coating density estimated
by the robust optimization is at 3.17 gcm−3 and is thus decreased by 0.15 gcm−3 compared to
the deterministic design. Consequently, the volumetric energy density is not maximized to the
upper limit. However, this results in improved transport of the lithium ions in the electrolyte.
In Figure 5.4, the rate capability of the average design estimated by the robust optimization is
displayed by the dashed lines. It can be observed, that for case (I-6-3), the drop in capacity and
volumetric energy density is not close to the design point. Deviations resulting in an increased
mass loading or coating density will not result in a steep decrease in capacity and volumetric
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energy density, and consequently the standard deviation decreases.

(b)(a)

(c) (d)

Figure 5.7: Distributions of the performance characteristics after the robust optimization. (a) distribution of the capacity
at case (I-6-3), (b) distribution of the volumetric energy density at case (I-6-3), (c) distribution of capacity at
case (II-6-8), and (d) distribution of volumetric energy density at case (II-6-8). The grey area in (a) and (c)
indicate the region defined as scrap.

The results estimated for case (II-6-8) in the robust optimization are comparable to those for
case (I-6-3). The average capacity is increased up to 6.1 mAhcm−2 and is thus above the de-
sired capacity. Comparing the deterministic and robust design while considering uncertainties
indicates a similar absolute difference between the average capacity and the desired capacity of
approx. 0.1 mAhcm−2. The standard deviation of the capacity after the robust optimization is
estimated with 0.11 mAhcm−2 and is lowered by 35 % compared to the deterministic design. As
described previously for case (I-6-3), increasing the average capacity and lowering the standard
deviation results in a scrap rate of only 4.3 %. As for case (I-6-3), the scrap rate is rated as
sufficient. The capacity distribution is displayed in Figure 5.7c, the mean value shifts to higher
values, and the standard deviation is reduced. Consequently, the amount of cells located in the
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grey area is reduced, and the shape of the distribution is not skewed compared to Figure 5.5c.
The average volumetric energy density is comparable to the results obtained by the deterministic
optimization. Compared to the deterministic optimum the volumetric energy density decreases
by roughly 30 WhL−1, but still, a relatively high volumetric energy density is achieved. The
standard deviation of the volumetric energy density only slightly decreases from 26.7 WhL−1 to
24.3 WhL−1. In Figure 5.5d, the volumetric energy density distribution is displayed. The perfor-
mance characteristics are achieved by slightly increasing the mass loading as already discussed
for case (I-6-3) and by lowering the coating density by roughly 0.1 gcm−3. That explains the
drop in volumetric energy density as the thickness of the cathode increases without improving
the capacity. In Figure 5.4, the rate capability of the average design estimated by the robust
optimization is displayed for case (II-6-8). It is shown that for capacity the slope close to the
design point is slightly decreased. That is achieved by decreasing the coating density. The volu-
metric energy density nearly shifts in parallel to lower values due to the increased volume of the
electrode without increasing the capacity.

(b)(a)

Figure 5.8: Total Sobol’ indices for the mass loading and coating density related on: (a) capacity and (b) volumetric
energy density for the cathode design estimated in the robust design optimization.

Comparable to the uncertainty quantification for the deterministic design, the parametric sensi-
tivities are studied on the cathode designs estimated by the robust design approach. In Figure 5.8,
the parametric sensitivities are displayed related to the capacity and volumetric energy density.
They can be compared to the results obtained for the deterministic optimization, plotted in
Figure 5.6. In Figure 5.8a, the total Sobol’ indices related to the capacity are displayed. It is ob-
served that the mass loading has the highest parametric sensitivity rate on capacity. Contrary, the
coating density has a high impact on the volumetric energy density, as displayed in Figure 5.8a.
The parametric sensitivities estimated after the robust optimization support the statement that the
capacity improves by increasing the mass loading, and the design points are not close to limita-
tions in the transport of ions in the electrolyte. Comparing the cathodes with a coating density
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of 3.0 gcm−3, 2.7 gcm−3, and 3.3 gcm−3 in Figure 5.1a (dashed lines) indicated that the coating
density has no impact on the capacity as long as no limitations occur. That is a central difference
from the deterministic optimization, where the coating density had pronounced sensitivity on
capacity. The volumetric energy density is mainly affected by the coating density as the volume
of the electrode is affected.
The results obtained by the PCE-based metamodel are verified by applying a Monte-Carlo sim-
ulation on the electrochemical model. The design points identified in the robust optimization
are mapped by 1000 Gaussian distributed input samples. The mean value and standard devia-
tion of capacity and volumetric energy density are estimated directly with the electrochemical
model. The difference between the mean values obtained by the electrochemical model and the
PCE-based metamodel is below 1 % for capacity and volumetric energy density. The difference
in standard deviation is approx. 1 % for capacity and volumetric energy density. The scrap rates
estimated directly by the electrochemical model are 4.6 % for case (I-6-3) and 5 % for case (II-
6-8). It turns out that slightly higher scrap rates are estimated with the electrochemical model.
However, the results obtained in the robust optimization by implementing PCE-based metamod-
els could be verified by directly sampling the electrochemical model.
The results obtained in the robust design optimization showed that the implemented objective
function is able to find a sufficient trade-off between maximizing the volumetric energy density,
achieving the desired discharge capacity and reducing the scrap rate. Changing the weighting
factor in the objective function could further optimize the results depending on the scope. The
high technical relevance of this improved optimization lies especially in the significant reduction
of the scrap rate, which was reduced by more than 20 % for this optimization case to economi-
cally relevant values below 5 %. As discussed that is achieved by increasing the average capacity
and reducing the impact of limitations in transport in the electrolyte to reduce the standard devi-
ation. However, that is only achieved by decreasing the volumetric energy density. The robust
optimization helps to reduce the scrap rate while still providing high performance characteristics.
Hence, the sustainability in the production increases as the cathode microstructure is designed to
be robust against deviations in the production process.

5.8 Concluding remarks

In this chapter, a method was established for identifying a robust optimal cathode design taking
structural uncertainties into account. Therefore cathodes with varying mass loadings and coating
densities were analyzed in depth. It was shown that both parameters are relevant for improving
the electrochemical performance. Their impact depends on the operational point and the elec-
trode structure. Limitations in performance occur due to insufficient transport of the lithium ions
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in the electrolyte and slow diffusion in the solid particles. Deterministic optimization of the vol-
umetric energy density of cathodes by changing the mass loading and coating density identified
designs are estimated which operational points are close to limitations concerning the transport
of the lithium ions in the electrolyte. Applying uncertainties to the identified optimal electrode
structures resulted in high standard deviations and scrap rates. Additionally, the average per-
formance characteristics were reduced compared to the deterministic optimum. The standard
deviation of the performance is high because of the steep decrease in capacity and volumetric
energy density close to the operational point. Applying robust optimization with a flexible objec-
tive function allows for reducing the standard deviation and scrap rate drastically. That is mainly
achieved by avoiding limitations in the electrolyte transport by estimating cathode designs with
a less dense electrode coating. However, reducing the standard deviation and scrap rate is only
achieved by slightly reducing the volumetric energy density compared to the deterministic opti-
mum. In general, the objective function shows good results by identifying a trade-off between
high volumetric energy density and reduced scrap rate.
In summary, the established methodology of robust optimization demonstrated its power in terms
of reducing the standard deviation and scrap rate when considering uncertainties. Future work
may target validating the methodology experimentally. Here, also the uncertainties may be spec-
ified for the actual production process, similarly to Chapter 4.
The chapter concludes the first part of the dissertation. The influence of uncertainties arising in
the production process of lithium-ion batteries were studied in depth. However, the electrode
microstructure of a electrode or battery was assumend homogeneous and deviations occurred
due to varying properties between cells. In the next part of the dissertation, the average property
of electrodes is assumed to be constant but heterogeneous local effects result in uncertainties
in performance. That is studied exemplary for varying electrical networks established by the
carbon-black binder matrix in the electrode microstructure.
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6 Uncertainty of Heterogeneous
Conductive Networks5

6.1 Introduction

In the first part of the thesis a coupled model approach, i.e., the digitalization platform, was
introduced and applied for studying the impact of process parameters on electrochemical per-
formance. The focus was on the propagation and optimization of process-induced uncertainties,
where uncertainties were defined as cell-to-cell deviations. The electrode microstructure within
the battery cell was assumed to be homogeneous. The electrode, however, is a heterogeneous
composite microstructure that highly affects kinetic processes related to reaction and transport.
Thus, it affects electrochemical properties like performance and aging. The heterogeneous elec-
trode structure leads to local effects. Even with similar average electrode properties the perfor-
mance characteristics may vary. Thus, the structure needs to be robust for reducing performance
uncertainties. In this chapter, the impact of intrinsic structure-related uncertainties is addressed.
Using the carbon black-binder matrix (CBM) as an example, the effect of its structure on perfor-
mance and of structural degradation is studied in depth.
In Chapter 2.1.2, the composite electrode microstructure of LIBs and their impact on physical
processes is discussed in detail. The CBM is introduced as an essential part in the structure for
transporting electrons and establishing mechanical stability. The conductive additives provide
an electrical network in the microstructure that significantly influences the performance of the
lithium-ion battery. Dominko et al. [49, 121] showed that the use of small particles of CB can be
beneficial for the overall performance of the battery, due to an increased electrical conductivity.
Liu et al. [122–124] analyzed the influence of the binder composition and conductive additives
and concluded, that a higher binder content leads to an improved CB particle network, resulting
in better overall electrical conductivity. They additionally discussed the importance of a percola-
tion threshold for the conductive network and explained that reaching this threshold results in a
jump to high conductivity. Mayer et al. [48] investigated the impact of the dispersion process on

5 Part of this chapter has been published in Schmidt, Röder, ACS Appl. Energy Mater. 2021, 4, 5, 4845–4860,
2021 [73]
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the CB particle size and showed that the structure and the particle size define the electrode prop-
erties. They additionally pointed out that a decreased particle size leads to a more cross-linked
CBM network. In conclusion, it has been shown that conductive additives and binder need to
form a highly linked electrical network that can supply electrons at every spot of the active par-
ticle surface [121].
However, the experimental evaluation of the electrical network barely provides mechanistic un-
derstanding. Overall, the electrical conductivity of an electrode can be measured by different
methods, e.g. with a four-point probe firstly established by Smits in 1958 and since then im-
proved and adapted [125, 126]. However, values being estimated by those method represents
only the bulk properties. This allows to estimate if a percolation threshold is exceeded, but a
detailed assessment of the network structure is not possible. In a recent study, the method was
adapted to study the effect of the local microscopic structure on the electronic impedance. It was
shown that strong deviations occur due to structural heterogeneities and it was concluded that
these deviations affect the overall performance and degradation [127]. However, the electrical
network in terms of the structure and the connectivity was not analyzed in detail, but it is to be
expected that the structure of the network has a major effect on the observed phenomena. In
contrast to the measurement of the bulk conductivity, a qualitative description of the microstruc-
ture and the electrical network is possible using micro- and nanotomography-based electrode
reconstruction. Here, focused ion beam - scanning electron microscopy (FIB-SEM) or a coupled
approach of Nano-CT, FIB-SEM, and Micro-CT can be used [128, 129]. These methods can
give insights into the microstructure and visualize the evolving networks [128]. Additionally,
stochastic modeling of electrode microstructure can be used to represent and analyze electrodes
in-depth and extract information concerning networks within the structure [130, 131]. However,
such a qualitative assessment of electrical network structures does currently not allow a quan-
titative evaluation of the electrode concerning its electrochemical properties and is also limited
for a mechanistic understanding. It can be seen that there is a need for a fundamental theoreti-
cal understanding of the impact of the structure of the electrical network on the electrochemical
properties of the cell and a more targeted application of the various diagnostic methods.
Mathematical models can be used to gain mechanistic understanding. Electrochemical models of
lithium-ion batteries are widely applied. They differ in the level of detail and the computational
costs [62]. Models are applied to analyze the influence of different aspects of the microstructure
on electrochemical properties, especially in the context of production processes [27, 93, 132].
The works referred to here, take the CBM into account. However, the electrical charge trans-
port is mostly described based on effective transport properties, representing only the bulk. For
instance, in the work of Hein et al. [132] the effect of conductive additives and binder on the
impedance has been studied. The authors state that the conductive additives and the binder pro-
vide a conductive network. However, detailed network structures have not been modeled, but are
instead described by the effective coefficient for charge transport. Furthermore, Mistry et al. [26]
analyzed network properties of the CBM and examined its influence on the effective electrical
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bulk conductivity and ionic conductivity. However, the electrochemical performance was also
estimated based on effective transport properties. In fact, only very few approaches in the lit-
erature map the transport within the electrode structure by networks. Cocco et al. [133, 134]
presented an analytical transport network model, which can rate the effective material transport
coefficient based on graph theory and the microstructural network’s topology. Besides, they take
the channel geometry into account and extended their basic model to be able to show the ef-
fect of a reactive flow. Further, Lagadec et al. [135] used a network-based analysis of different
separators for lithium-ion batteries to show that microstructural characteristics like porosity and
tortuosity are not sufficient to rate the performance. They stated that pore space connectivity is
important for high quality separators and that it has an effect on the overall performance. How-
ever, to the best of our knowledge, there is no model available that allows to directly assess the
impact of electrical networks properties on electrochemical performance.
Hence, in this work, a hybrid model is established that combines a classical battery model based
on porous electrode theory [65, 66] with a network-based representation of the electrical net-
work [133]. This enables to investigate the influence of different electrical network structures
on the electrochemical performance for the first time. Additionally, the model approach allows
studying the impact of the degradation of the CBM. This is one important aging mechanism for
cathodes in lithium-ion batteries [40]. To model degradation in lithium-ion batteries, several dif-
ferent approaches are available [136, 137], but a detailed study of how the decomposition of the
CBM affects the electrochemical performance does not exist in the literature so far. In this con-
text, a generic simulation study is conducted by generating various artificial electrical networks.
These differ in terms of the general structure and the number of nodes and edges. The latter is
varied to represent different levels of deagglomeration of the CB agglomerates and thus the reso-
lution of the CBM. The different networks are analyzed concerning the overall cell performance,
degradation, and failure, including uncertainties. Here, the degradation of the electrical network
is modeled by edge removal, which represents the mechanical degradation of the CB-binder ma-
trix during battery utilization. This enables to determine relevant network properties that lead to
a high quality in terms of performance and lifetime of a lithium-ion battery.

6.2 Computational methods

In this chapter, the hybrid model and the applied computational methods are introduced. The
hybrid model consists of two sub-models, being a homogeneous electrochemical model and the
electrical network model. The combined model, i.e., the hybrid model, is later applied to study
the impact of different generic network structures on cell performance, degradation, and failure.
The homogeneous electrochemical model implemented in the hybrid model is a p4D model as
already described in Chapter 2.3.2 but it is slightly adapted. The model considers a half-cell
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with a NMC622 cathode as the working electrode. The separator is neglected. Implementing a
half-cell model was already introduced in Chapter 5.3 and is done respectively. For considering
the impact of heterogeneity in the porous electrode, periodic boundaries are applied in y- and
z-direction to enable mass and charge transport. Please note that the structural surrogate models
for the effective kinetic parameters introduced in Chapter 5.3 are not implemented in this chapter.
The classical Bruggeman relations are used, as introduced in Chapter 2.3.2.

6.2.1 Hybrid model

In Figure 6.1, the concept for establishing the hybrid model is visualized. The hybrid model
includes the complex structure of the electrical network. The starting point for the model devel-
opment is the electrode structure and the cell design as illustrated on top of the figure. The cell is
considered in a half cell setup, while the focus is laid on the cathode. The electrode has a porous
structure and consists of three main phases: active material (AM), CBM, and liquid electrolyte
(pores). Note that carbon black and binder are defined as one phase as the agglomerates can not
clearly be separated, and thus the combined phase is affecting the electron transport, which is a
common assumption in the literature [26, 33, 138]. The intercalated lithium can diffuse inside
the AM particles. For most cathodes with low electrical conductivity of the AM and sufficient
CB content, the electron conduction through the CBM is orders of magnitude higher compared
to the AM [27]. In this theoretical study, the contribution of the AM is neglected to focus on the
more relevant effect of the CBM. However, in principle a basic conductivity of the AM could be
added to the model, as showed by the extended p2D model in Chapter 5. Ionic conductivity and
lithium-ion diffusion is ensured by the electrolyte. At points in space where all three phases are
present, i.e., at triple-phase boundaries, electrochemical reactions can occur. Instead of modeling
all phases and related processes with one modeling approach, two different approaches are ap-
plied. The properties of the complex CBM are covered by an electrical network model, while all
the other processes are modeled using frequently applied homogeneous porous electrode mod-
els [65, 66].
Different CBM structures can be represented by systematically varying structural properties in
the electrical network. The electrical potential and current can be calculated within this network.
The charge transfer reaction, diffusion in the AM particles, and ionic diffusion and conductivity
in the electrolyte are described based on the fully homogeneous electrochemical model approach.
Both models are coupled via the current density at the reaction-nodes, i.e., the triple-phase bound-
aries. This hybrid model enables to directly study the impact of the complex electrical network
structure and its degradation on the electrochemical performance of the battery. The combined
hybrid model approach is visualized at the bottom of Figure 6.1.
In this work, a change of the transport in the liquid electrolyte phase due to CBM has not been
considered, because the volume fraction of CBM is not varied and only a minor impact of this
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variation on ion transport is expected. In principle, CBM structure could have an impact on tor-
tuosity and position of the reaction sites. Though, the assessment of this aspect is out of scope
for this work. The impact of change in CBM volume fraction and morphology on transport in
the electrolyte has been studied, for example, by Mistry et al. [26].
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Figure 6.1: The hybrid model is established to represent the complex structure of the CBM in the porous electrode
structure. The model consists of two parts: a homogeneous electrochemical model and a network-based
model for the electrical charge transport.

6.2.2 Electrical network model

Electrons are transported from the current collector to the surface of the AM particles via a matrix
consisting of CB and binder. This matrix forms a network-like structure in the porous electrode.
By representing this matrix as an electrical network, the detailed impact of the related structure
on the performance and degradation can be evaluated.
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As a framework for the mathematical treatment of these networks, graph theory is applied which
goes back to the 18th century and the mathematician Leonhard Euler [139, 140]. First, the defini-
tions, notations, and basic quantities to describe the topology of networks are introduced. Then,
the generation processes of the different network structures and the evaluation methodology of
the electrical properties are briefly introduced.
The electrical network can be represented by a graph. Here, a directed graph G = (N ,E ) is
used. The graph is defined by two sets N and E . The elements of N = {n1,n2, . . . ,nN} are
the nodes of the graph and the elements of E = {e1,e2, . . . ,eE} are the edges. The number of
elements in N and E are defined by N and E, respectively. The two sets are linked, as each
element ei in E is defined by an unordered pair of elements n j and nk of N . Here, j 6= k which
corresponds to a graph without self-loops. Nodes connected by an edge are referred to as adja-
cent. This adjacency between the nodes is represented in an adjacency matrix A . This matrix
is a N×N square matrix whose entries ai, j and a j,i are equal to one when an edge between the
nodes ni and n j exists, and zero otherwise. The graph G = (N ,E ) can be completely described
based on this matrix.
The degree or connectivity ki of the node ni is the number of its adjacent nodes and can be
calculated based on the adjacency matrix A as

ki =
N

∑
j=1

ai, j. (6.1)

A basic topological feature of a graph G is the degree distribution P(k), which is defined as the
fraction of nodes in the graph having the degree k.[141]
The degree distribution is used in this work as the main quantity to describe different topolo-
gies of electrical networks. Three fundamentally different distributions are analyzed in depth,
introduced as homogeneous, scale-free, and random networks. The distribution of a scale-free
network (SF) is described by a power-law defined as

PSF (k) = a · kb, (6.2)

with adjustable coefficients a and b < 0. The degree distribution of a random network (RND) is
defined by a Gaussian distribution as

PRND (k) =
1

σ
√

2π
e
−(k−µ)2

2σ2 , (6.3)
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with µ (k) the mean value and σ2 (k) the variance of the degree. In case of the homogeneous
network (H) a distinct degree kH is applied for all nodes. The related degree distribution can be
described by the following discontinuous function:

PH (k) =

{
1 , k = kH

0 , k 6= kH
. (6.4)

Generation of the different network structures is challenging because the electrically conduc-
tive matrix has to be transferred into a graph, while spatial conditions must be preserved. The
electrical connection between two nodes could be straight or possess some degree of tortuosity.
Further, a connection could have a large or small cross-sectional area, which does impact the
specific resistance. Here, the model is defined on a more abstract level, where detailed geometry
and properties of the connections are lumped by a single homogeneous resistance. We further
emphasize that the network topology is not sufficiently described by solely the degree distribu-
tion if the resistance is not equal for all edges. In this case, the network needs to be described by
the vertex strength distribution. We note that, based on the presented approach, it is not reason-
able to make statements concerning the absolute physical length, shape, and material properties
of the connections themselves. However, this modeling approach enables to study the general
impact of the connection structure without detailed information on the geometry and material
properties.
The network generation process starts by distributing nodes in an electrode volume. Firstly,
an initial number of nodes NRN is distributed in the volume to divide it into equal cubic sub-
volumes. These are the reaction-nodes (RN) and as such these nodes have sink and source terms
describing the charge transfer occurring in this sub-volume. In the hybrid model it is required
that the number of source and sink points must be equal in the homogeneous and electrical net-
work model. While in the network model the source and sinks are discrete points, within the
homogeneous models source and sinks are homogeneously distributed within the corresponding
volume element. With this, the minimum number of nodes in the electrical network model is set.
The volume correlated to each of these reaction-nodes VRN is defined by

VRN =
Vel

NRN
, (6.5)

with Vel being the electrode volume, and NRN the number of reaction-nodes distributed within
the electrode.
Depending on the selected number of reaction-nodes this yields the minimum resolution of the
CBM. Fewer nodes correspond to coarser CBMs, i.e., few large CB agglomerates. In order to
cover the impact of different agglomerate sizes on the electrochemical properties, the resolution
of the electrical network can be varied. This is introduced in the electrical network model and
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referred to as level of deagglomeration or resolution. Deagglomeration means that large CB
particle agglomerates are broken into smaller segments while keeping a constant volume fraction
of CB and binder. As a consequence, more fragmented electron conducting pathways are created.
This effect is modeled by increasing the resolution of the network, i.e., increasing the number
of nodes and edges. Based on the initial number of reaction-nodes NRN, the sub-volumes are
further divided by regular nodes. These nodes do not have sink and sources, but just distribute
the current to the adjacent nodes. The total number of nodes N can be calculated based on a
factor L ∈ N, representing the non-dimensional level of deagglomeration, by

N = NRN (2 ·L−1)3 . (6.6)

The implemented calculation scheme ensures that the electrode is divided into equal elements
while the location of the reaction-nodes stays unaltered. In Figure 6.2, the concept is visualized
in two dimensions. On the left, coarse CBM agglomerates are illustrated (top) and they are rep-
resented by only reaction-nodes in the network (L = 1). On the right, finer CBM agglomerates
are displayed, and in the network the initial sub-volumes are further divided by regular nodes
(L = 2). The number of reaction-nodes and their location is constant and they represent the same
initial volume VRN.

Level of Deagglomeration

Reaction Node
Regular Node

Figure 6.2: Visualization of node distribution. Increasing the level of deagglomeration yields finer CBM agglomerates.
In the network this is represented by adding regular nodes, which increases the resolution of the network.

In the next step, regular nodes are added at the current collector (x = 0) and separator (x = del)
to define the system boundaries. For these nodes, the same resolution in y- and z-direction is
used as for the internal nodes. As such, the set of nodes N is increased by the number of added
boundary-nodes. A subset NRN ⊆N exists with a number of reaction-nodes NRN, which for all
investigated networks corresponds to the initial volume VRN as defined with eq. 6.5.
Edges of the network must be set to correspond to a particular network structure. In case of
the homogeneous network, the nodes are connected to their spatial neighbors in the direction of
the Cartesian coordinates (x,y,z). Additionally, periodic boundaries are applied in the y- and z-
direction, by connecting the first row with the last row of the nodes in the respective dimension.
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In a three-dimensional space this leads to six adjacent nodes for each internal node. Hence, the
distinct degree is kH = 6 (see eq. 6.4) for all internal nodes. However, due to spatial boundaries,
nodes exist with a distinct degree of five, i.e., the boundary-nodes at the current collector (x = 0)
or separator (x = del).
Based on the homogeneous network the scale-free and random networks are generated. This is
done by pruning and rearranging the existing edges. The locations of the nodes however do not
change. The target is to modify the degree distribution to fit power-law distribution and Gaus-
sian distribution for scale-free and random networks, respectively. For scale-free networks, the
total number of edges is reduced by removing edges of highly connected nodes. If an edge is re-
moved there is a chance to set a new edge to another close node to generate few highly connected
nodes. This procedure is repeated until the target degree distribution is reached. For the random
network, a node is picked randomly in the network and the degrees of the neighbor nodes are
checked. Comparing the target distribution and local distribution an edge is removed and added.
In case of the random network, this procedure is repeated until the global degree distribution of
the network is close to the target degree distribution. At this point, it should be noted that the
described procedures are realized in rather simple algorithms. Validity will be discussed in the
results.
In the last step of the network generation, a master-node (MN) is added, which represents the
current collector. The number of nodes N is increased by one, and a subset NMN ⊆N exists
representing this single master-node. Through this node, the electrical current is applied or ex-
tracted. The master-node is connected to all boundary nodes present at x = 0, thereby the current
is distributed into the electrical network.
In this study, the electrical networks are analyzed based on different structural parameters, which
are defined here. The path length λ , in general, is defined as the average of all possible short-
est paths between two sets of nodes, including all possible combinations. This path length is
not a physical length, but defined by the number of edges on the path between two nodes. Two
different path lengths are analyzed: (I) the transit path length λTP between all boundary nodes
at the current collector and separator, and (II) the path length to the reaction sites λRN between
all reaction-nodes and the master-node. Furthermore, the number of transit edges connecting
the current collector with the separator χTP is analyzed. This quantity is set to be the minimum
number of cuts necessary to isolate the separator from the current collector.
In order to describe the conduction of electrons within the network, the resistances of the edges
REdge and the network RNet must be known. Equal resistance is assumed for all edges within
a network. Please note that consideration of individual edge resistances due to difference in
morphology would be possible. However, in this study this would impede to draw general con-
clusions about the impact of the network structure. The resistance of the edges connecting the
boundary nodes with the master-node, however, is assumed to be very low to not affect the cell
potential.
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The edge resistance is adjusted to fit the conductivity of the network κNet according to the effec-
tive electrical bulk conductivity, κs,eff, being a parameter in the homogeneous electrochemical
model. The resistance of the network RNet can be calculated based on the conductivity of the
network, the layer thickness of the electrode del, and the area of the electrode Ael by

RNet =
1

κNet

del

Ael
. (6.7)

Furthermore, the resistance of the network is defined by

RNet =
∆φcc-sep

I
=

φcc−φsep

I
, (6.8)

and is proportional to the edge resistance. Here, ∆φcc-sep is the potential difference between the
current collector (cc) and the separator (sep) and I is the applied electrical current. Solving the
linear equation system evolving from Ohm’s law gives the potential drop in the electrode. For
detailed information about solving this, it is referred to Cocco et al. [133]. In order to estimate
the network resistance, it is assumed that the applied current is I = 1A and φsep = 0V. This
assumption simplifies eq. 6.8 to

RNet =
φcc

1A
. (6.9)

Eq. 6.7-6.9 are solely used to identify edge resistance REdge based on the effective electrical bulk
conductivity κs,eff and thus are not part of the hybrid model.
The electric charge transport in the electrical network is given by

Jtot = K ·φs, (6.10)

with K a N×N matrix being the conductance matrix, which is given as

K = La ·Ω, (6.11)

where Ω is a N ×N diagonal matrix whose entries are the reciprocal of the estimated edge
resistances REdge. The Laplacian matrix La = D −A , with D a N×N diagonal matrix whose
entries are the respective node degrees ki [141]. The solid phase potential φs is given by a 1×N
vector, and Jtot is the resultung 1×N vector, describing the total current generated at the nodes.
In the hybrid model, this matrix-based definition of Ohms’s law, i.e., eq. 6.10, substitutes eq.
2.5 in the homogeneous model. Coupling the two models is done via the reaction-nodes. In the
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network model, the absolute currents are considered. According to that, three different cases
must be distinguished for the absolute total current generation Jtot:

Jtot
i = 0 ∀ i /∈NRN∧NMN (6.12)

Jtot
i = Icell ∀ i ∈NMN (6.13)

Jtot
i =

∫
jtot
i dVRN,i ∀ i ∈NRN. (6.14)

The Eqs. 6.12-6.14 cover the already introduced assumptions of the electrical network:

• Eq. 6.12: Electrical current is distributed by regular nodes, but no source and sink terms
are present

• Eq. 6.13: Electrical current is applied at the master-node, representing the current collector

• Eq. 6.14: The volume rate of total current generation jtot in a given node calculated in the
homogeneous model is integrated over the volume VRN

The last point results in the absolute electrical current entering or leaving the electrical network.
This enables to directly couple the electrical network model with the homogeneous electrochem-
ical model, which allows studying the effect of different electrical network structures on the
overall electrochemical performance. In this work, the performance is rated by the volumetric
energy density Q. The impact of the electrical network on the transport processes in the elec-
trolyte is neglected in this work as discussed previously.
The hybrid model can be applied to evaluate electrical networks with several thousand nodes and
edges. Solving the differential equation system of a heterogeneous network is challenging and
time-consuming. Especially, at low voltages, i.e., in this study below 3.1 V, the time steps need
to be rather short for numerical solution, which yields high computational cost. Small networks
with a low level of deagglomeration can be solved in a few minutes while the run time of large
networks can take up to a few hours. Further, computational cost depends on the structure of
the network. To create a compromise between computational cost and a sufficient number of
simulation for statistical evaluation of the networks, the cut-off voltage was set to 3.1 V for all
conducted electrochemical simulations. The reference measurements and the model parametriza-
tion displayed in Appendix A.3 were done down to a voltage of 3.0 V.

6.3 Results

The hybrid model enables to study how the electrical network affects energy density, degradation,
and failure of a lithium-ion battery. The focus is laid on establishing a mechanistic understand-
ing and to identify structural network parameters that are most relevant for optimization of the
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CBM. For this purpose, homogeneous, random, and scale-free networks are analyzed. The ob-
tained results are structured as follows. First, the generated network structures and the electrical
properties are discussed. In the second part, the performance of the generated networks is rated
in terms of the volumetric energy density, and the effect of a varying network structure on perfor-
mance uncertainties is discussed. Lastly, the degradation of scale-free and random networks is
analyzed by rating the impact of a random-based edge removal. The electrochemical simulations
and graph analysis are implemented in MATLAB vR2018b.

6.3.1 Structural network properties

Generating the artificial electrical networks is challenging since fundamentally different network
structures are aimed at while networks must maintain the spatial allocation. Here, the applied
initial settings and the resulting network structures are discussed since they have an impact on
cell performance and degradation, investigated in the following.
The assessed electrode volume is assumed to be cubic with spatial extensions equal to the cath-
ode layer thickness del. Five reaction-nodes are equally distributed in each of the Cartesian
directions. Following eq. 6.6, the total number of internal nodes in the network can be calcu-
lated. Here, the maximum considered level of deagglomeration is L = 4. Scale-free networks
are generated by targeting the degree distribution as given with eq. 6.2. The coefficients are set
to a = 0.65 and b = −2.5. The value for b is chosen based on the definition of scale-free net-
works given by Boccaletti et al. [141]. Random networks are generated based on the distribution
function as given with eq. 6.3. The mean value and standard deviation are chosen as µ = 5 and
σ = 2, respectively. Since the generation process for scale-free and random networks is based on
a stochastic algorithm, the impact is evaluated by generating multiple networks. For each level
of deagglomeration, 100 networks are created.
In Figure 6.3, the degree distributions of homogeneous, random, and scale-free networks at a
level of deagglomeration of L = 1 are displayed. For random and scale-free networks, values are
averaged and the standard deviation is indicated. The targeted degree distributions based on the
previously initialized equations are indicated by the solid and dashed lines. For each network
an exemplary structure is visualized. It should be noted that the depicted networks display the
structure, but the nodes are not spatially aligned as in the electrode volume. This results in rather
abstract representations of the networks. For all displayed data and structures the master-node
is excluded and periodic boundaries are included. In case of the homogeneous network, the ma-
jority of the nodes have a degree of k = 6. The nodes with a degree of k = 5 are located at the
current collector or separator, i.e., these are the boundary nodes. It can be seen that the homo-
geneous network is characterized by an ordered structure. Based on the generation process it
corresponds to a regular cubic structure. Due to the application of periodic boundaries in y- and
z-direction a tube-like structure evolves. The scale-free networks reach the specified power-law
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degree distribution with good accuracy. The network forms a large number of poorly connected
satellites with a degree equal to one. Simultaneously a few important hubs are created with a
high degree. This structure is characteristic for scale-free networks [141]. The averaged degree
distributions of the random networks show approximately the Gaussian distribution as defined
by the target function. The Gaussian degree distribution leads to a randomized structure with a
variety of differently connected nodes. As can be seen, the structures can be clearly distinguished
from each other.
Increasing the value of L leads to more nodes and edges in the same electrode volume and thus
yields higher resolution and more complex structures. This represents more fragmented electron-
conducting pathways and smaller CBM agglomerates. Generating networks for higher values of
L results in similar distributions. In case of the scale-free and random networks the quality of the
generation process improves. The difference between the average degree distributions and the
targeted distribution decreases and standard deviation also decreases.

Figure 6.3: The degree distributions of the three generated networks structures compared to the targeted degree distribu-
tions initialized by Eqs. 6.2-6.4 for L = 1. The degree distributions of scale-free and random networks are
averaged and standard deviation is indicated. For each distribution a resulting network structure is displayed.

The generation of the scale-free and random networks has an effect on the respective number of
edges, due to the edge pruning. The correlation between the number of nodes and edges for each
network structure is displayed in Table 6.1. All structures contain the same number of nodes for
the same level of deagglomeration. Comparing the number of edges of the three networks reveals
that the homogeneous network has the highest number of edges and the scale-free network the
lowest. The standard deviation with respect to the number of edges is relatively small (0.1–3 %)
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for the random and scale-free networks.

Table 6.1: Correlation between the number of nodes and the number of edges for each network structure at different lev-
els of deagglomeration L. Values for scale-free (SF) and random networks (RND) are averaged, the standard
deviation is provided.

L N EH ERND ESF

1 176 525 447±12 222±7
2 3826 11475 9635±78 4711±28
3 16876 50625 42306±151 20495±52
4 45326 135975 113278±266 54761±98

To sum up, it can be seen that three network structures have been created based on degree dis-
tributions, being clearly qualitatively and quantitatively distinguishable. Further structures with
comparable properties have been reproduced in a stochastic process.

6.3.2 Electrical network properties

The electrical properties of the previously generated networks are evaluated and discussed.
The edge resistances of the networks are estimated to reach an average network conductivity for
the respective set of networks. This average network conductivity is set to be equal to the ef-
fective electrical bulk conductivity introduced in the homogeneous electrochemical model. Each
edge resistance for networks with the same level of deagglomeration and same structure are
defined as equal. However, individual network conductivity can deviate due to stochastic differ-
ences in the network structure as introduced in the previous section.
The electrical network conductivity is strongly dependent on the conductive paths from the cur-
rent collector to the separator [142]. Therefore, it is of interest to evaluate conductivity with
respect to these paths. Here, the focus is set on two structural network properties: (I) the number
of transit edges χTP and (II) the transit path length λTP. These quantities were defined earlier.
In Figure 6.4, the network conductivity is displayed versus the two network properties. In Fig-
ure 6.4a, the conductivity is plotted versus the number of transit edges χTP and in Figure 6.4b
against the transit path length λTP. The conductivity of the homogeneous electrical network is
per definition constant for all number of nodes. Further, the average network conductivity is
also constant for random and scale-free networks, which is the consequence of the definitions
given above. Therefore, the difference between the networks is concerning the deviation of the
conductivity. The scale-free networks in general yield higher deviations for the network conduc-
tivity compared to the random networks. In both network types, the deviation decreases with an
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increasing number of nodes, i.e., increasing the level of deagglomeration, L.

(a) (b)

Figure 6.4: In (a) the network conductivity versus the number of transit edges χTP is shown. In (b) the network con-
ductivity is plotted against the transit path length λTP. The solid black line indicates the average network
conductivity. Single points correspond to one of 500 different network structures for a given L and type.

Comparing scale-free networks to random networks reveals that the number of transit edges χTP

is significantly lower for scale-free networks, as can be seen in Figure 6.4a. In particular at L = 1
scale-free networks have only between one and seven transit edges connecting the current col-
lector and the separator. Networks with an increased number of transit edges result in a steep
increase in electrical network conductivity. Therefore, the deviation of the conductivity is high
for scale-free networks at low level of deagglomeration.
Concerning the transit path length λTP, it can be seen that random networks establish shorter
paths, as can be seen in Figure 6.4b. The satellite nodes formed by scale-free networks yield a
disruption of continuous paths. While in case of the random network, only a few nodes exist,
which act as dead ends for the transit paths. The deviation of the transit path length is higher
for scale-free networks, resulting in increased deviations of the conductivity. The observed cor-
relation between the transit path length and the network structure shows good agreement with
literature results comparing small-worlds, and random networks [143].
Increasing the level of deagglomeration results in an increasing number of transit edges for both
network structures. Nevertheless, the random network always has higher number of transit edges.
The transit path length defined by the number of passed edges also increases. Note that the ge-
ometric distance is constant, but more edges are added for higher level of deagglomerations.
Random networks always have shorter transit paths and the difference between the two network
structures increases. Overall, increasing the resolution of the network, the structures become
more uniform and robust, and thus the deviation of the electrical conductivity decreases.
Hence, for achieving high and consistent electrical conductivity it is important to create network
structures that yield a high number of independent conductive paths routing from the current
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collector to the separator and structures that have preferentially short transit paths. This can be
achieved by overall high connectivity. Furthermore, it can be concluded that smaller agglom-
erates result in an increased resolution of the CBM network. This results in a more consistent
network conductivity, due to more and shorter conductive paths between the current collector
and the separator. Highly dispersed CBM agglomerates are beneficial to achieve more robust
electrical properties because a highly connected electrical network can compensate defects in
the network structure, which is quite intuitive and supported by experimental findings [48, 144].
Moreover, Mistry et al. [26] showed that the structure of the CBM network has an impact on the
electrical conductivity. They identified that fingerlike morphologies have poor electrical conduc-
tivity. This morphology could be related to the scale-free networks analyzed here.
In Table 6.2, the estimated edge resistances for the different levels of deagglomeration and net-
work structures are displayed. The edge resistances for the random networks are slightly lower
but similar to the homogeneous network. Here, the edge resistance must compensate for the fact
that random networks have in general fewer edges to achieve the same average network con-
ductivity (see Table 6.1). To obtain the same average conductivity the edge resistance of the
scale-free network need to be much lower in comparison to the other network structures. How-
ever, this can not be explained solely by fewer edges but is a structural effect of the network.
Scale-free networks tend to form isolated satellites and only a few highly connected hub nodes.
The previously discussed results already showed that this leads to only a few, but very important
conductive edges that establish the network conductivity. In order to reach the target network
conductivity, edges need to have very low resistances.

Table 6.2: Estimated average edge resistances for each network structure, homogeneous (H), random (RND), and scale-
free (SF), at different levels of deagglomeration.

L REdge,H / MΩ REdge,RND / MΩ REdge,SF / MΩ

1 10.47 9.16 1.72
2 31.40 29.59 3.10
3 52.33 50.32 4.66
4 73.26 70.83 6.54

To conclude, several networks have been generated, which have the same average network con-
ductivity but differ concerning the standard deviations. Even more, pronounced different network
structures significantly defer for the required edge resistance as a consequence of aligning the
effective bulk conductivity. The scale-free network are especially interesting in terms of bottle-
necks while the random network do not tend to form these special edges, but are defined by rather
short transit paths. It is emphasized that all networks proposed here would result in electrodes
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with the same mean effective conductivity, which is commonly used as a quality parameter of
electrodes [145].

6.3.3 Influence of percolation on electrical conductivity

In Chapter 5, the electrochemical p2D model was extended by empirical equations for the ef-
fective transport parameters. The correlations were estimated by Laue et al. [15, 27] based on
artificial electrode structures. Especially for the electrical conductivity, it was identified that
changing the volume fraction of the AM and the CBM results in percolation of the CBM. In
detail, increasing the volume fraction of the CBM results in a steep increase in electrical conduc-
tivity as soon as a continuous path along the CBM is established from one side of the electrode
to the other. The electrical current is transported mainly along with the CBM phase, as it has a
significantly higher electrical conductivity.
Analyzing the electrical properties of the different network structures revealed that especially the
number of transit edges and the length of the transit path have an impact on the electrical network
conductivity (see Figure 6.4). Enhancing the number of transit edges results in reproducible and
in general higher network conductivity. Consequently, also for the electrical networks analyzed
in this chapter the percolation is identified as important for improving the transport of the elec-
trical current. However, in this study, the conductivity of the active material is neglected. Thus,
there is no lower limit in the electrical conductivity, which is ensured by the AM. Furthermore,
the resolution of the electrical networks analyzed here is significantly lower compared to the
artificial electrodes. There, several hundred thousand voxels are considered, which lead to sig-
nificantly more complex networks with more edges and paths.
Comparing the results estimated by Laue et al. [27, 33] based on artificial electrode structures
and the systematical analysis of electrical networks done here indicates that combining the two
approaches would be of interest. Generating artificial electrodes with realistic CBM structures
could be reduced to networks. Thus, network properties could be analyzed dependent on the
structural features of the electrode. Especially, the effect of percolation could be studied. Fur-
thermore, it could be possible to distinguish between the network established by the AM and the
CBM and its interaction.

6.3.4 Estimation of uncertainties in the cell performance

The generated network structures are used for the electrochemical simulations with the hybrid
model. The electrical properties estimated in the previous section were applied to these sim-
ulations. The detailed cell structure, materials, and implemented parameters are given in Ta-
ble A.2 and A.5, in the appendix. The delithiation process was simulated at a current density of
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i = 6mAcm−2 (approx. 2.5 C) until a lower cut-off voltage of Vcut = 3.1V is reached. As dis-
cussed previously, the cut-off-voltage has been set to this value to reduce the computational cost.
Additionally, due to high computing times, the electrochemical simulations were performed for
electrical networks up to L≤ 3. However, in general, higher resolutions are possible.
The scale-free and random networks, unlike the homogeneous network, do not have a constant
volumetric energy density. Due to differences in the structure and electrical properties, deviations
occur in the electrochemical performance. The aim is to identify advantages and disadvantages
based on the networks investigated. The levels of deagglomeration of L = 1 and L = 3 are of
special interest as the standard deviation of the electrical network conductivity of the random
network with L = 1 is comparable to the scale-free network with L = 3, as can be seen in Figure
6.4. This denotes that those CBMs would not be distinguishable by bulk conductivity measure-
ments.
In Figure 6.5a, the impact of the network conductivity on the volumetric energy density of scale-
free networks is depicted. Firstly, the focus is on scale-free networks with L = 1. In general,
increasing the electrical network conductivity yields an increasing volumetric energy density
Q of the simulated half-cell batteries. At the same time, more consistent quality can be seen.
This is in good agreement with the literature, as experimental studies have shown that higher
electrical conductivity contributes to more consistent battery cell quality [49]. Below a network
conductivity of 0.09 Sm−1, the volumetric energy density is limited due to overall low network
conductivity. Here, the difference in the network conductivity results solely in the structure of the
network, as the edge resistance is consistent for all networks at L = 1. Previously, the network
conductivity was discussed concerning bottlenecks. Therefore, the number of transit edges χTP

is visualized by coloring the markers in the figure. A small number of transit-edges results in low
network conductivity and thus in low volumetric energy density. Nevertheless, as can be seen, in
particular networks with only one transit edge show strong deviations concerning the volumetric
energy density.
Three networks are analyzed that have a pronounced bottleneck, i.e., only one transit edge, but
differing volumetric energy densities. In Figure 6.5b, a scale-free network is visualized that has
a volumetric energy density of 1236.8 Whl−1. The reaction-nodes in the network are colored
concerning the normalized concentration XLi, which is defined as XLi = cs(RP)/cs,max, with cs(RP)

the lithium concentration at the surface of the AM particles and cs,max as the maximum possible
lithium concentration in the AM. XLi is displayed for the end of delithiation. The AM particles
close to the current collector and in front of the bottleneck have a high normalized concentration.
Behind the bottleneck, XLi is considerably lower. Due to the bottleneck, electrons have high re-
sistance to reach areas close to the separator and this is prohibiting the electrochemical reaction.
Overall, this results in inhomogeneous intercalation and explains the drop of the volumetric en-
ergy density.
The networks are additionally analyzed concerning the location of the bottleneck and the path
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Figure 6.5: In (a) the volumetric energy density Q of scale-free networks with L = 1 and L = 3 are plotted. The colors of
the markers for L = 1 indicate the number of transit edges χTP in the respective network. In (b), (c), and (d)
selected networks are examined in more detail. The reaction-nodes are colored concerning the normalized
concentration XLi at the end of delithiation. The boundary-nodes at the current collector and separator are
the black nodes. The red node is the master-node at the current collector. The red edge is the identified
bottleneck edge. Additionally, the percentage of AM close to the current collector PCC, the transit path
length λTP, and the path length to the reaction sites λRN are provided for the respective networks.

length to the reaction sites. The location was rated by the percentage of AM particles well con-
nected to the current collector and in front of the bottleneck PCC. For the network structure shown
in Figure 6.5b this value is 38.6 % and thus most of the AM is poorly connected. The path length
to the reaction sites λRN is given. The quantity was defined earlier. In Figure 6.5b, λRN is 5.6
and the standard deviation is around 2.7. In Figure 6.5c, a network with a volumetric energy
density of 1375.8 Whl−1 is shown. This is slightly higher than for the network shown in Figure
6.5b. This correlates with a higher percentage of AM in front of the bottleneck (Pcc = 44.9 %).
Nevertheless, a strongly inhomogeneous charge behavior of the cathode is observed due to the
effect of the bottleneck. The path length to the reaction sites is comparable to the network in
Figure 6.5b.
In Figure 6.5d, a network with a volumetric energy density of 1528.8 Whl−1 is plotted. This is
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one of the highest values reached for scale-free networks with only one transit edge. However,
the percentage of AM close to the current collector is with 40.9 % slightly lower than for the
network in Figure 6.5c. In comparison to the previous networks, the normalized concentration
XLi of the different AM particles is nearly uniform and the bottleneck seems to have less of an
effect on the volumetric energy density. Compared to the two previous networks, this network
only has one edge defining the bottleneck. The rest of the network is overall well connected. In
the other networks, several consecutive edges create the bottleneck. Therefore, this is the main
reason for the network to still achieve a reasonable volumetric energy density. The path length
to reaction sites is with 5.1 edges the lowest value of the three networks. This suggests that the
network is comparable well connected and the paths from the nodes where the reactions occur to
the current collector, providing the electrons, are rather beneficial for the quality of the battery
cell.
Increasing the level of deagglomeration, as shown in Figure 6.5a, results in reduced deviations of
the network conductivity and thus in lower deviations of the volumetric energy density. The net-
work structure is more homogeneous and the number of transit edges is relatively high and thus
its effect on the electrochemical properties is reduced. The volumetric energy densities of the ho-
mogeneous networks for both levels of deagglomeration are indicated and the results presented
for the scale-free networks are comparable to the volumetric energy density of the homogeneous
networks.
To sum up, the analysis of the scale-free networks already allows first insights into the behavior
and effects of the electrical network structure on the performance of lithium-ion batteries. Avoid-
ing bottlenecks is crucial for high-quality batteries. Nevertheless, the intensity and location of
the bottleneck have a significant effect. Only one transit edge, like in Figure 6.5d does not have
a devastating effect on the volumetric energy density if the rest of the battery is well connected.
In Figure 6.6a, the volumetric energy density of lithium-ion batteries with random electrical
networks are depicted against their network conductivity. Comparing random networks with
scale-free networks, it can be seen that they have considerably lower deviations. More precisely,
the random networks at L = 1 lead to deviations in the same range as scale-free networks at
L = 3. This was to be expected, as the deviations of the network conductivity are also compara-
ble between those two (see Figure 6.4).
Due to the overall relatively high network conductivity, no significant effect on the volumetric
energy density occurs for random networks. At L = 1, the volumetric energy density slightly in-
creases with an increasing network conductivity. Moreover, a lower boundary of the volumetric
energy density for a given network conductivity can be seen. Note that in contrast to Figure 6.5a,
here the transit path length λTP is indicated by the colored markers for random networks with
L = 1. This quantity was analyzed in Figure 6.4b and the network conductivity is sensitive to this
quantity. The number of transit edges is not considered because no bottlenecks occur in random
networks.
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In Figure 6.6b-d, three selected random networks are analyzed in depth, which have compara-
ble network conductivity, but differing volumetric energy densities. All three networks show a
homogeneous distribution of the normalized concentration XLi, compared to the results of the
scale-free networks shown previously. Areas that cannot be sufficiently supplied with electrons
cannot be identified. For all networks, the transit path length λTP, and the path length to the
reaction sites λRN are provided. Comparing these values it can be concluded, that the transit
path length of the electrode is an indicator for a well-connected network and good conductivity.
However, even more important is the path length to the reaction sites. This is a good indicator for
a good supply of electrons to the reaction sites. Nevertheless, the network structure is complex
and multiple structural properties affect the electrochemical properties, and though it is difficult
to identify a single important quantity.
Increasing the level of deagglomeration for random networks results in lower deviations of the
network conductivity and volumetric energy density. The average energy density of the random
networks is slightly lower than for lithium-ion batteries with homogeneous networks.
To sum up, the discussed results concerning the volumetric energy density, reveal that the struc-
ture of the electrical network within the electrode is crucial. Understanding the effect of the
structural properties can help to design networks with better overall performance. The analyzed
random networks show advantageous performance in comparison to the scale-free networks due
to a reduced deviation of the volumetric energy density. The comparison reveals that bottlenecks
within the electrical network are devastating for the performance of the battery. Therefore, ran-
dom networks show a more consistent quality because the probability of creating such a bottle-
neck is very low. Additionally, the results show that solely comparing the network conductivity is
not sufficient to rate the electrical network. Additionally, it is important that the various reaction-
nodes within the electrode are well and close connected to the current collector. This requires
not only good interconnection from the current collector to the separator, but also good intercon-
nection in between the reaction areas, i.e., reaction-nodes. A similar result has been obtained by
Nakajo et al. [146]. They studied electrochemical materials and showed that the connection of
the triple phase boundary is important to obtain good performances.

6.3.5 Degradation of the electrical network and cell failure

In addition to analyzing the volumetric energy density during the delithiation process, the hybrid
model also enables to study the impact of a degrading electrical network on the electrochemical
properties of a lithium-ion battery. The degradation of the electrical networks is modeled by an
iterative edge removal. Firstly, the volumetric energy density is determined based on the initial
state of the electrical network using the hybrid model. Then in each step, approximately 5 %
of the initial number of edges are removed and the simulation is repeated with the decomposed
electrical network. The edges are picked on a random basis. Edges connecting the boundary
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(b)

(c) (d)

(a)

(b)
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(d)

Figure 6.6: In (a) the volumetric energy density Q of random networks with L = 1 and L = 3 are plotted. The colors
of the markers for L = 1 indicate the transit path length λTP in the respective network. In (b), (c), and (d)
selected networks are examined in more detail. The reaction-nodes are colored concerning the normalized
concentration XLi at the end of delithiation. The boundary-nodes at the current collector and separator are
the black nodes. Additionally, the transit path length λTP, and the path length to the reaction sites λRN are
provided for the respective networks.

nodes and the master-node are excluded. The decomposition of the network is inspired by a
cascade failing procedure for complex networks taken from literature [147]. The simulations are
performed with the same current density and within the same voltage range as introduced in the
previous section. Here, degradation is mainly analyzed for scale-free and random networks with
L = 3. Ten different electrical networks are randomly picked and simulated to map evolving
uncertainties. The relative amount of remaining volumetric energy density q is defined as

q(β ) =
Q(β )

QInitial
·100%, (6.15)

with β being defined as the relative amount of removed edges, Q(β ) being the remaining vol-
umetric energy density after β amount of edges are removed, and QInitial being the initial volu-
metric energy density of the pristine network.
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In Figure 6.7a, the effect of the random edge removal on the volumetric energy density is dis-
played for random and scale-free networks. The two network structures show significantly
different robustness to the edge removal. For scale-free networks, even low relative amount
of removed edges β leads to a noticeable decrease in volumetric energy density. Removing
10–15 % of the edges, already results in only q = 80% remaining volumetric energy density.
Afterwards, the reduction of energy density of scale-free networks is nearly linear. Towards
the end, i.e., after more than 35 % removed edges, the decrease in volumetric energy density
is slowing down. In comparison, the volumetric energy density of a lithium-ion battery with a
random network remains nearly constant over a longer period of time. Until 20 % of the edges
are removed the performance of the battery is almost constant. Moreover, 80 % of the volumetric
energy density can be withdrawn when already 40 % of the edges are removed. However, the
reduction of volumetric energy density is accelerating when more edges are removed, resulting
in a sudden-death-like behavior, which has already been observed for lithium-ion batteries [148].
After removing about 60 % of the edges for both networks, almost no energy can be withdrawn
from the batteries. Please note that in this study it was assumed that the AM does not contribute
to the electrical conduction. If there is a significant contribution of the active material, the energy
densities would not go to zero even for fully degraded CBMs. Instead, a low energy density
would remain.
The colored areas show the range of uncertainty, i.e., highest and lowest volumetric energy
densities. Further, some lines are added for exemplary degradation progressions for particular
networks. It can be seen that the scale-free network also leads to higher deviations in degra-
dation while the random network gives more reproducible results. These results show that the
two networks behave very differently during degradation due to edge removal. In the previously
discussed results it was already shown that the network conductivity has an impact on the vol-
umetric energy density and that the connection of the reaction-nodes is essential. Therefore, in
the following, it will be analyzed how these two aspects change due to edge removal.
The removal of edges in the electrical network decreases the connectivity of the nodes. This can
reduce the number of conductive paths, which yields decreasing network conductivity, as shown
previously in Figure 6.4. Further, single nodes and parts of the network can be detached. This is
in particular important when the separated parts contain reaction-nodes, as thus active material is
isolated and capacity is reduced. Using results shown in Figure 6.7b and c, these aspects are stud-
ied. Additionally, in Figure 6.8, an exemplary degradation of scale-free and random networks
is shown visually for L = 2. Note that no fundamental differences in terms of degradation are
present between L = 2 and L = 3. However, for improved visibility the lower level of deagglom-
eration is plotted. The difference between L = 2 and L = 3 in terms of the degradation is briefly
discussed in Appendix C. In Figure 6.7b and c, the relative amount of isolated reaction-nodes
and the network conductivity are shown in correlation to the relative amount of removed edges β

for L = 3, respectively. As can be seen, with no edges removed, all networks have a comparably
high network conductivity and the relative amount of isolated active material is equal to zero.
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(a)

(b) (c)

Figure 6.7: In (a) the decrease of the volumetric energy density Q with respect to the relative amount of removed edges
β for random and scale-free networks at L = 3 is shown. In (b) the effect of the random-based edge removal
on the network conductivity is displayed and in (c) the effect on the isolation of the active material due to
unconnected reaction nodes is shown by the relative amount of isolated reaction nodes. Areas where the
remaining volumetric energy density q = 80% and q = 50% is reached are provided for both network types.
The colored area represents the deviation of the degradation and always three exemplary degradations are
displayed.

In Figure 6.7b, it can be seen that the electrical conductivity of random networks is significantly
reduced at a remaining volumetric energy density of q = 80%. In contrast, at this state almost no
active material is isolated, as can be seen in Figure 6.7c. This is also confirmed with Figure 6.8.
At q≈ 80% remaining volumetric energy density, i.e., structure shown in the center, only a few
reaction-nodes are isolated from the random network. This denotes that the removal of edges
mainly yields a thinning of connections and therefore a decrease of the efficient electrical con-
ductivity of the network. Further, it can be seen that electrical conductivity declines linearly with
percentage of removed edges. In contrast, the slope of volumetric energy density is not constant,
but becomes steeper, which indicates an increasing sensitivity to electrical conductivity.
The degradation of scale-free networks is fundamentally different compared to random networks.
In Figure 6.7c, it can be seen that a decline of 20 % in volumetric energy density, i.e., q = 80%,
correlates with a loss of almost 20 % of the reaction-nodes. This indicates that for scale-free
networks loss of reaction-nodes is the dominant cause for the reduction of energy density. The
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Scale-Free

Random

q = 100%

β = 0.0

q = 81.96%

β = 0.1

q = 54.77%

β = 0.2

q = 100%

β = 0.0

q = 82.73%

β = 0.40

q = 54.19%

β = 0.5

Figure 6.8: Visual degradation of networks at a level of deagglomeration of L = 2 is displayed. Networks are displayed
in the initial states and at q≈ 80% and q≈ 50% remaining volumetric energy density and the relative amount
of removed edges β is provided for all networks. The red nodes are the reaction-nodes.

disconnection of nodes yields a fast decomposition of the network, which is also confirmed with
the decomposed structures shown in Figure 6.8. The underlying cause for this can be given
based on the degree distribution. The degree distribution of scale-free networks indicates that a
high amount of nodes with only one edge exists. Removing edges within the network results in
an immediate isolation of these nodes. However, also the electrical conductivity is significantly
decreasing due to edge removal as can be seen in Figure 6.7b. The slope is even more significant
compared to random networks. However, at q = 80% remaining volumetric energy density the
electrical conductivity of scale-free networks is higher compared to random networks.
To sum up, it has been demonstrated that the impact of removal of edges, i.e., conductive path-
ways, significantly depends on the electrical network structure. Scale-free structures mainly
degrade due to loss of reaction-nodes, i.e., isolation of active material. Random networks mainly
degrade due to thinning of conductive paths and consequently a decline of electrical conductiv-
ity. The major advantage of well connected random network structures is their robustness against
isolation of active material, which yields significantly improved degradation behaviour. More-
over, the degradation is subject to less deviations. Most importantly, with the presented results
it is demonstrated that neither electrical conductivity and its distribution nor the electrochemical
performance of a fresh cell is a useful indicator for robustness against edge removal, i.e., removal
of conductive paths, and thus degradation of a cell. Here, more complex structural properties of
the electrical network play a major role and need to be considered. Therefore, it is emphasized
that novel methods to characterize electrical network structure are needed.
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6.4 Concluding remarks

In this chapter, the impact of complex electrical networks on cathode delithiation behavior, degra-
dation, and failure is discussed. Different structures have been evaluated in a simulation study
for the first time. For this purpose a novel hybrid model approach have been introduced.
Three fundamentally different network structures are analyzed in detail: homogeneous, random,
and scale-free. The degree distributions of these networks differ, and this results in very different
structures and properties. Comparing scale-free and random networks shows that the scale-free
networks in general yield higher deviations in terms of the electrical properties and the volu-
metric energy density during the delithiation process. This is due to the special structure of the
scale-free networks. They tend to create networks with overall low connectivity and thus the
number of conductive paths going from the current collector to the separator is low. In poorly
connected scale-free networks, bottlenecks can occur, which have a drastic impact on the perfor-
mance. Random networks are shown to be much more robust against deviations of the network
structure due to overall good connectivity, which compensates single defects in the structure.
In this study, the electrical conductivity was represented by electrical networks with lumped
properties of the connections. However, the CBM structure is much more complex and the prop-
erties depend on materials, tortuosity and cross-sectional areas of the connections, all of which
might influence the degradation behavior. Further, the active material can contribute to the con-
ductivity. Therefore, a complete loss of all reaction surfaces might not occur in the battery, since
low conductivity via the active material would remain, even for a fully degraded CBM. Future
work should address the micro-scale structure connection within a CBM in more detail, which
requires advanced experimental characterization and novel data analysis methods.
Most significant differences are observed for degradation of the network structures. Comparing
the degradation due to random edge removal, it can be seen that random networks are favorable
because they are more robust against isolation of active material. The scale-free network starts
to decompose and isolate active material right from the start, while the random network mainly
degrade due to thinning of the network and a consequent reduction of the electrical conductivity.
To conclude, this work analyzes different artificial network structures and evaluates them in
terms of different electrical and electrochemical aspects. The chapter provides mechanistic un-
derstanding and suggestions on how the electrical network should be designed to achieve optimal
performance of a lithium-ion battery. Based on this study, it can be concluded that the electrical
bulk conductivity of the electrode is not solely sufficient to rate the quality of the network. The
results show that a high and consistent conductivity is an indicator for a good network, but the
connectivity of the reaction sites can not be analyzed in depth based on this quantity. Therefore
the authors emphasize that additional structural properties such as connectivity need to be taken
into account to evaluate the quality of the CBM. The presented model enables a knowledge-based
design of the electrical network within the electrode and can be used to identify CBMs that have

114



6.4 Concluding remarks

beneficial structural properties. The results further suggest that robust and high quality structures
can be achieved also with lower levels of deagglomeration or lower content of CB by creating
favorable network structures.
These aspects should be addressed in future studies because the reduced content of inactive ma-
terial would increase the pore space and thus ionic conductivity, which enables enhanced rate
capability of the lithium-ion battery. Future studies should focus on coupling the model ap-
proach with a real 3D reconstructed electrode to gain further insights into the conductive paths
and identification of geometrical aspects and materials. Here, the impact of carbon nanotubes
(CNT) is of interest as they are known to change the percolation. Furthermore, mixing carbon
black and (CNT) might result in hybrid networks combining effects of the random and scale-free
networks due to the tube-like structure of CNT.
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This chapter summarizes the thesis and provides the key results. Subsequently, open questions
and required future work is discussed to provide a perspective.

7.1 Summary

The scope of the dissertation is on studying and quantifying the impact of uncertainties in elec-
trode structure on deviations in electrochemical performance. Based on the generated insights,
robust electrode microstructures are identified. Structural deviations are studied from two differ-
ent perspectives. First, the structural properties vary between the electrodes. The single electrode
sheet is characterized by a single homogeneous set of structural parameters. That is defined as
cell-to-cell deviations. Secondly, the electrode microstructure is not considered homogeneous.
Local structural features, e.g., the porosity, vary within the microstructure. That affects the elec-
trochemical performance and results in uncertainties. In this thesis, modeling approaches are
established and applied to tackle both types of deviations. By describing and evaluating physical
processes, the modeling approaches aim to understand how changing the electrode structure can
contribute to an optimal and robust battery cell.
In the first part of the thesis, the focus was on cell-to-cell deviations caused by the production
process. Therefore, a coupled model approach was introduced consisting of a process chain
model and an electrochemical battery model. The process chain model consists of linked mod-
els representing the individual production steps. That enables considering correlations between
process and structural parameters. In the physicochemical battery model, the performance of
the produced batteries is estimated by considering the impact of the electrode structure on the
physical processes. The coupled model approach enables a holistic consideration of correlations
between process parameters, structural parameters, and electrochemical performance. The dig-
italization platform thus forms the foundation for model-based studying of the propagation of
uncertainties along with the different types of relevant parameters.
Subsequently, the coupled model approach was applied to study the propagation of uncertainties
in the production process. In the process chain model, the coating, drying, and calendering were
considered. The electrode was defined based on structural, material, and process-related input
parameters. The operation of battery cells incorporating these electrodes was represented using
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a p2D battery model. Studying the impact of uncertainties originating from the production steps
was done by inducing deviations to the input parameters of the process models. Four different
scenarios were analyzed, differing mainly in the process where uncertainties are induced. For
the cells studied, it was identified that deviations in the coating process have the highest impact
on the electrochemical performance. Tight tolerances for coating thickness and mass loading
are mandatory to produce batteries with consistent volumetric energy density. Analyzing the
uncertainty propagation in the process chain revealed that deviations in porosity are reduced by
the calendering. To summarize, the case study showed that the coupled model approach allows
investigation of how uncertainties propagate and affect electrochemical performance. Relevant
processes and process parameters are identified, and the structural parameters are studied along
the process chain. That allows using the coupled model approach for further investigation and
identification of optimization.
Consequently, robust optimization was the focus in the last chapter of the first part. It completes
the study of cell-to-cell deviations after establishing the general model approach and applying it
in a case study. Here, the digitalization platform is applied for identifying cathode designs while
considering uncertainties. Thereby, the deviation of the electrochemical performance and the
scrap rate is reduced. Cathodes with varying mass loadings and coating densities were analyzed
at different current densities. The implemented half-cell model was able to identify performance
limitations due to insufficient mass transport in the liquid electrolyte. Based on those initial cal-
culations, optimizations were conducted for identifying cathode structures providing a desired
area-related discharge capacity and high volumetric energy densities at a defined current density.
Therefore, a deterministic optimization was compared to robust optimization. It was shown that
considering the effects of uncertainties in the design process can be beneficial for identifying ro-
bust electrode structures in terms of performance. The electrochemical model enables studying
the impact of the different physical processes (e.g. diffusion, and reaction kinetics) and allows
studying the impact of these on the electrochemical performance. Hence, cathode structures are
identified that are more beneficial due to non-limiting transport processes. The objective func-
tion implemented in the robust design optimization can identify a trade-off between improving
the volumetric energy density and reducing performance deviations and scrap rate. Reducing
performance deviations and scrap rate leads to improved cost-efficiency and sustainability in
lithium-ion battery production.
In the first part of the thesis, the electrode microstructure was considered homogeneous. In the
second part of the thesis, the focus was on the impact of a heterogeneous electrode microstruc-
ture. These intrinsic deviations will result in uncertainty in performance and degradation. That
is shown exemplary with a modeling approach for analyzing the structure of the carbon black-
binder matrix implemented. The inactive component and its impact on the electrical charge
transport is often neglected or only studied by considering the effect on ionic transport in the
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electrolyte. However, the CBM is crucial for providing the desired electrons to the charge trans-
fer reaction. A hybrid model approach was implemented, coupling a homogeneous electrochem-
ical battery model with an electrical network model. The latter one describes electron transport
depending on the topology of a complex electrical network. That is established to represent the
CBM in the electrode microstructure. Three different network structures were analyzed, defined
as homogeneous, random, and scale-free. Analyzing the initial electrical and electrochemical
performance properties revealed that scale-free networks yield high deviations. Those networks
tend to create overall low connectivity, with a reduced number of conductive paths in the elec-
trode. Bottlenecks occur that have a critical impact on the performance. Due to increased con-
nectivity, the random network is much more robust in terms of performance. The results indicate
that solely rating the established electrical network by the electrical conductivity is not suffi-
cient. That is supported by evaluating the degradation of the networks by random edge removal.
Random networks are favorable because they are more robust against the isolation of the active
material. The decomposition of the scale-free networks starts early due to the low connectivity.
Hence, the active material in the electrode is isolated right from the start. In the case of the ran-
dom network, the connectivity is first thinned before the reaction sites start to isolate. Due to the
implemented modeling approach, it is possible to identify beneficial network structures for the
CBM. In the electrode microstructure, electrical networks with features of scale-free networks
should be avoided and random networks should be established.
The estimated results indicate that various uncertainties have to be taken into account during the
battery design process. For this purpose, different modeling approaches were established and im-
plemented, allowing the influence of deviations and uncertainties to be studied. The main focus
of this work is on establishing more robust electrode structures. In the first part, it was shown that
considering deviations occurring in the production process leads to the identification of robust
electrode designs with reduced uncertainties in performance. A detailed understanding of the
interrelationships also leads to adjustments in production to prevent scrap before it occurs. That
avoids trial-and-error and establishes knowledge-driven approaches. In the second part, it was
shown that the inhomogeneous electrode structure results in deviations in performance. These
can be significant and should not be neglected in the production process. The consideration of
microstructures concerning their robustness in performance is important to establish robust struc-
tures. The focus here is not solely on performance but also degradation and aging. In conclusion,
the work shows that it is possible and important to optimize the structure of the electrode while
considering uncertainties. It helps to establish suitable and robust operating points and structures
through targeted model development.
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7.2 Future challenges

The theoretical approach of this work motivates future work mostly related to further model ex-
tensions, improvements, and the experimental validation of the applied approaches.
The introduced and applied coupled model approach can describe correlations between the pro-
cess, structure, and performance in the production of lithium-ion batteries. The digitalization
platform was used to study the propagation of uncertainties. That enabled robust design opti-
mization considering these uncertainties. However, the coupled model approach requires a cer-
tain level of predictability. Achieving that in the process chain model requires detailed process
models describing the correlations between the process parameters and the structural parameters.
These bottom-up approaches were briefly introduced and need to be implemented in the process
chain model and replace the currently used analytical models. Those models are based on physi-
cal processes, and hence improved predictability is provided. That is of interest when the impact
of changing input parameters, e.g., structural, material, or process parameters, is studied. In
addition, the amount of considered structural parameters increases, extending the digitalization
platform. Increasing the complexity of the process chain model would automatically result in
an increasing level of detail for the electrochemical battery cell model. The additional structural
parameters estimated in the process chain model need to be considered in the battery cell model
to map their impact on the electrochemical performance. Hence, increasing the predictability
of the battery cell model is of interest in the future. For example, the particle size distribution
of the electrodes could be implemented in the battery model. That would result in improved
prediction of the kinetic processes particularly at the strongly dynamic operation of the battery.
Additionally, the process models could be replaced by data-driven models. If sufficient data can
be extracted from a real production environment, then data-driven models can be used to repre-
sent correlations that are not yet covered by physical relationships.
The next point to be addressed in the future is the validation of the coupled model approach.
That applies to the process chain model and the battery cell model. In the process chain model,
the single process models must be parametrized and validated. Additionally, the coupled process
chain needs to be validated to ensure reliability in the holistic representation. That is possible
if a stable production environment is accessible and the desired data is provided. Extending the
battery cell model would also result in further parametrization and validation. Consequently, the
currently applied measurement and parametrization routines need to be improved.
In terms of the electrical network model, validation is also the key aspect. The results gained by
the theoretical consideration indicate that it is of interest to study the structure of the CBM in
detail. First of all, it is of interest to analyze and visualize the CBM in conventional electrodes to
analyze the structural features and compare them to the results gained in this work. Additionally,
it would be of interest to adapt and establish different electrical network structures in an electrode
and analyze the impact on uncertainties in performance and degradation behavior.
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ṁ drying rate kgs−1

N number of nodes n in set N −
N set of nodes −
n node −
P(k) degree distribution −
PCC percentage of active material close to current collector −
Q volumetric energy density Wsm−3

Q(β ) volumetric energy density after β amount of edges are removed Wsm−3

QInitial initial volumetric energy density with pristine electrical network Wsm−3

qL line load Nm−1

q rel. volumetric energy density during network decomposition −
R ideal gas constant Jmol−1 K−1

142



List of Symbols and Abbrevations

REdge edge resistance Ω

RNet network resistance Ω

RP particle radius of active material m

r radial coordinate m

Si first order Sobol’ index −
Si j higher order Sobol’ index −
ST

i total Sobol’ index −
T temperature K

t time s

tp transference number −
tEoFS time until end of film shrinkage s

U voltage V

V volume m3

VC volume of the coating without the current collector m3

Vi j partial variance from variance composition −
Var variance function −
w weight fraction −
XLi normalized concentration −
XSolvent,0 liquid-to-solid ration of the coating −
XSolvent,EoFS liquid-to-solid ration at the end of film shrinkage −
x coordinate m

y coordinate m

yα coefficients of PCE −
z coordinate m

Greek letters

α transfer coefficient −
β relative amount of removed edges −
βB Bruggeman coefficient −
γc compaction resistance Nm−1

εe porosity, liquid phase volume fraction −
εs solid phase volume fraction −

143



List of Symbols and Abbrevations

ε∗ effective volume fraction of the respective phase −
εcrit critical volume fraction of the respective phase −
εdry initial porosity of the coating −
εmin minimum porosity −
η overpotential V

Θ intercalation vacancy −
κ bulk conductivity of respective phase Sm−1

λTP transit path length −
λRN path length to reaction sites −
µ mean value −
ξk univariate orthonormal polynomials of PCE −
ρi density of a component i kgm−3

ρc coating density kgm−3

ρdry density of the dry coating kgm−3

ρmax maximum density kgm−3

ρph physical density kgm−3

ρPM density of the particulate matter kgm−3

ρslurry density of the slurry kgm−3

σ standard deviation −
τ tortuosity −
φ potential in respective phase V

χTP number of transit edges −
ψα multivariate polynomials of PCE −
Ω matrix with the edge conductance S

Sub- and superscripts

AM active material

CBM carbon black-binder domain

cc current collector

cell related on battery cell

cut cut-off

e electrolyte phase

144



List of Symbols and Abbrevations

Edge edge

eff effective

el related on electrode

H homogeneous

in input

max maximum

MN master-node

neg negative electrode

Net network

out output

pos positive electrode

RN reaction-node

RND random

s solid phase

sep separator

SF scale-free

Abbrevations

AM active material

ANOVA ANalysis Of VAriance

ASSB all solid-state battery

CB carbon black

CBM carbon black-binder matrix

CEI cathode electrolyte interface

CFD computational fluid dynamics

CT computed tomography

DEM discrete element method

EC ethylene carbonate

EOL end-of-line

ESA electrode-separator assemble

FEM finite element method

FIB focused ion beam

145



List of Symbols and Abbrevations

KIT Karlsruhe Institute of Technology

kMC kinetic Monte-Carlo

LCO lithium cobalt oxide

LFP lithium iron phosphate

LIB lithium-ion battery

LMO lithium metal oxide

MC Monte-Carlo

NCA nickel-cobalt-aluminium

NMC nickel-manganese-cobalt

NMP N-Methyl-2-Pyrrolidone

p2D pseudo 2-dimensional

p4D pseudo 4-dimensional

PCE polynomial chaos expansion

PDE partial differential equation

PDF probability density function

PVDF polyvinylidene fluoride

SA sensitivity analaysis

SBR styrene-butadiene rubber

SEI solid electrolyte interface

SEM scanning electron microscopy

UQ uncertainty quantification

146



A Parameter and Model Validation

A.1 Data for Chapter 4

In Chapter 4, the electrochemical model was validated based on measurements conducted with
an EL-CELL PAT-Cell. Graphite and NMC622 were used for the anode and cathode produced
by the ZSW in Ulm, Germany. Details regarding the cell setup and structural parameters are
provided in Chapter 4.3.2. Additionally, in Table A.1, the estimated Redlich-Kister coefficients
for graphite (anode) and NMC622 (cathode) are listed for representing the single OCP curves of
the materials. These coefficients are used in the electrochemical model.

0 5 10 15 20 25 30 35
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Figure A.1: Comparison of the discharge measurements and the respective simulation results generated with the electro-
chemical model in Chapter 4.

In Figure A.1, the measured discharge curves for three current densities are displayed by the
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markers. The results of the parametrized battery model for these current densities are shown
with the solid lines. A good agreement between the measured and simulated curves can be
observed.

Table A.1: Redlich-Kister coefficients for the graphite and NMC622 OCP, implemented in the electrochemical model in
Chapter 4.

Coefficient Grpahite anode NMC622 cathode
Jkmol−1 Jkmol−1 Jkmol−1

µ0
LiI

-13623.95 -400702.35

A0 -3573.16 -68925.68
A1 5627.51 23521.86
A2 -4017.09 11647.96
A3 4545.96 -5984.28
A4 -4118.16 -7485.09
A5 4140.82 5098.95
A6 -4145.24 N/A
A7 4046.99 N/A
A8 -4152.91 N/A
A9 4033.88 N/A
A10 -4166.47 N/A
A11 4070.92 N/A
A12 -4166.68 N/A
A13 4062.00 N/A
A14 -4150.00 N/A
A15 4102.28 N/A
A16 -4166.73 N/A
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A.2 Data for Chapter 5

A.2 Data for Chapter 5

In Chapter 5, the electrochemical model was validated based on a coin cell assembled in a half-
cell setup with NMC622 as the working electrode and a lithium-metal anode as the counter
electrode. The electrolyte was a 1.0 M LiPF6 in EC:EMC (3:7 in weight) with 2wt% VC. Fur-
ther information regarding the measurements is provided in Chapter 5.2.
The relevant structural data of the cathode are provided in Table A.2. The cathode was manufac-
tured by the ZSW in Ulm, Germany. Structural features of the electrode were measured by the
ZSW.

Table A.2: Structural data and battery model parameters used in the extended p2D model in Chapter 5. The diffusion
coefficient in the electrolyte, and ionic conductivity are dependent on electrolyte concentration, and are taken
from literature.

Parameter Symbol Unit Cathode

Layer thicknessm del m 48.5×10−6

Porositym ε - 0.3150
Solid volume fraction εs - 0.68
Particle sizem RP m 6.0×10−6

Tortuositya τ - 5.95
Maximum capacity solida cMax molm−3 43223
Initial capacity solida c0 molm−3 15468
Initial capacity electrolytea ce molm−3 1000
Diffusion coefficient solida Ds m2 s−1 9.32×10−15

Diffusion coefficient electrolytec De m2 s−1 f (c) [36]
Electric bulk conductivitya κs Sm−1 0.0313
Ionic conductivityc κe Sm−1 f (c) [36]
Transference numbera tp - 0.42
Charge transfer coefficients α - 0.5
Reaction rate constanta k - 7.7529×10−10

Double layer capacitys CDL Fm−2 0.2

m measured by ZSW (Department of Production Research)
a adjusted
s set, from ref. [67]
c concentration dependence, see eq. in [36]

The parametrization of the electrochemical battery model was conducted as described in Chap-
ter 4.3.2. Additionally, the empiric surrogate models implemented in the extended p2D model
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need to be considered in the parametrization. The fitting parameters of the empiric surrogate
model were taken from Laue et al. [27] and are provided in Table A.3.

Table A.3: Fitting parameters for the empiric surrogate models implemented in Chapter 5. The values are taken from
Laue et al. [27].

Parameter Value

εcrit,e 0.127
β1 1.77
ν1 0.680

εcrit,s 0.1
β3 0.023
β4 2.0
ν1 0.2
ν2 1.5

ν4 0.904
ν5 1.127
ν6 4.912

The structural, material, and kinetic parameters implemented in the extended p2D model are pro-
vided in Table A.2. Those were provided by measurements and specifications of the assembled
NMC622 cathode or estimated by parametrization of the battery model. That is highlighted in the
table. The open-cell potential curve is represented by the Redlich-Kister approach as described
in Section 4.3. The estimated Redlich-Kister coefficients for the NMC622 cathode are provided
in Table A.4.
In Figure A.2, the comparison between the electrochemical measurements and the simulations
with the extended p2D battery model is provided. A good agreement between the measured and
simulation cells is reached. The parametrization could be improved by assembling the NMC622
cathode in a three-electrode setup to solely measure the potential of the cathode.
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Table A.4: Redlich-Kister coefficients for the NMC622 OCP used in Chapter 5.

Coefficient NMC622 cathode
Jkmol−1 Jkmol−1

µ0
LiI

-402007.4
A0 -73714.6
A1 28842.2
A2 6695.0
A3 -2759.7
A4 -22251.7
A5 -11542.9
A6 35612.7
A7 3164.7
A8 -29519.0
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Figure A.2: Comparison of the measurements conducted with the NMC622 vs. lithium foil coin cell and the simulation
results gained by the extended electrochemical model.
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A.3 Data for Chapter 6

In Chapter 6, the model is based on the same half-cell and electrochemical measurements as
described in Chapter 5, and the cell data provided in Appendix A.2.
In comparison to Chapter 5, the relevant kinetic parameters in Chapter 6 are estimated based on
a fully homogeneous p2D battery model without the extension of the empiric surrogate models.
This model is equal to the hybrid model with a homogeneous network at L = 1 implemented in
Chapter 6. The detailed procedure for the estimation of the parameters can be taken from Chap-
ter 4.
In Chapter 6, the classical Bruggeman relations are used for the transport processes and the
reaction kinetics, and not the empiric surrogate equations (see Chapter 5). Consequently, the
estimated parameters differ comparing Chapters 5 and 6. Only the differing parameters are listed
in Table A.5. The other model parameters and structural parameters are provided in Table A.2.

Table A.5: Model parameters used for the classical homogeneous p2D model in Chapter 6. Additional parameters are
listed in Table A.2 and A.4. The same NMC622 cathode was used as in Chapter 5.

Parameter Symbol Unit Cathode

Tortuositya τ - 3.16
Maximum capacity solida cMax molm−3 45859.20
Initial capacity solida c0 molm−3 16432.40
Diffusion coefficient solida Ds m2 s−1 1.13×10−14

Electric bulk conductivitya κs Sm−1 0.0153
Transference numbera tp - 0.51
Reaction rate constanta k - 6.576×10−6

m measured by ZSW (Department of Production Research)
a adjusted
s set, from ref. [67]
c concentration dependence, see eq. in [36]

The parameterized model can reproduce the conducted measurements (see Figure A.3). Dis-
crepancies between the simulation and the measurements may result from the homogenization
of the electrode microstructure and thus neglecting local effects. However, the model is rated
accurately to represent the assembled battery.
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Figure A.3: Discharge curve of the parametrized electrochemical hybrid model with a homogeneous electrical network
(solid lines) and the measurements of the NMC 622 vs. lithium reference anode (dotted).
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B Estimation of Structural Data of
Electrodes

In the production of lithium-ion batteries, the electrodes are often described and rated based on
their mass loading and the coating density. The mass loading describes the weight of the coating
applied on a defined area of the current collector. The coating density provides information re-
garding the compaction of the electrode coating, as the coating weight is related to its volume.
In Chapter 5, electrodes with varying mass loading and coating density are analyzed with the
electrochemical model. However, the input parameters for the model are the thickness and poros-
ity of the cathode coating. Therefore, these quantities must be calculated. The calculation is
based on simple geometric and mass fraction correlations. In the following the main equations
are briefly introduced.
The coating density is defined as

ρC =
mC

VC
, (B.1)

with mC as the mass of the coating and VC the volume of the coating. The mass loading mL is
defined as

Msolid =
mC

Ael
, (B.2)

where Ael is the area of the electrode. The mass of a single component mi can be calculated based
on the mass of the coating mC and the weight fraction wi of the component i(i.e., active material
(AM), binder (B), carbon black (CB), conductive carbon (CC)) with

mi = mC ·wi. (B.3)

Considering the density of the component ρi, the volume of the single component Vi in the
electrode can be calculated with

Vi =
mi

ρi
. (B.4)

The volume fraction of a component εi is the volume of a single component related on the volume
of the electrode coating VC

εi =
Vi

VC
. (B.5)
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Finally, the electrode thickness del can be calculated with the total mass of the electrode coating
and the coating density

del =
mC

Ael ·ρC
. (B.6)

The porosity of the electrode is defined as one minus the sum of the single volume fractions of
the solid components

ε = 1−
n

∑
i=1

εi. (B.7)

Considering the mass loading, the weight fraction of the active material, and the specific gravi-
metric capacity of the active material, the specific areal capacity C of the electrode can be esti-
mated by

C = mL ·wAM ·CAM. (B.8)

Calculating the thickness, porosity and specific areal capacities for the cathodes in Chapter 5 was
done by considering the structural and material parameters provided in Table B.1 and A.2. The
parameters are based on an experimental cathode produced and analyzed by the ZSW in Ulm,
Germany.

Table B.1: Structural and material parameters of the experimental NMC622 cathode composition. The carbon black and
conductive carbon are summed up to solely represent the conductive additives by a single value. The cathode
and the respective parameters were provided by the ZSW in Ulm, Germany.

Parameter Symbol Unit Value

weight fraction of active material wAM - 0.955
weight fraction of carbon black wCB - 0.0225
weight fraction of conductive carbon wCC - 0.0075
weight fraction of binder wB - 0.015
density of active material ρAM g/cm3 4.7
density of carbon black ρCB g/cm3 2
density of conductive carbon ρCC g/cm3 2.26
density of binder ρB g/cm3 1.78
specific capacity of NMC622 CNMC622 mAh/g 176
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C Comparison of Degradation of
Electrical Networks

In Chapter 6, the degradation of networks with a level of deagglomeration L = 2 was discussed.
In Figure C.1, the impact of the level of deagglomeration is displayed for scale-free and random
networks. It can be observed that changing from L = 2 to L = 3 has a minor impact on the
degradation. The decrease in volumetric energy density shifts slightly to a smaller amount of
removed edges. However, the difference is not significant, and due to faster calculation times
and better visibility mainly L = 2 is discussed in Chapter 6.

Figure C.1: Difference between degradation of scale-free and random networks with level of deagglomerations of L = 2
and L = 3.
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