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Validating neural networks for spectroscopic classification on a
universal synthetic dataset
Jan Schuetzke 1, Nathan J. Szymanski 2,3 and Markus Reischl 1✉

To aid the development of machine learning models for automated spectroscopic data classification, we created a universal
synthetic dataset for the validation of their performance. The dataset mimics the characteristic appearance of experimental
measurements from techniques such as X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy among others. We
applied eight neural network architectures to classify artificial spectra, evaluating their ability to handle common experimental
artifacts. While all models achieved over 98% accuracy on the synthetic dataset, misclassifications occurred when spectra had
overlapping peaks or intensities. We found that non-linear activation functions, specifically ReLU in the fully-connected layers, were
crucial for distinguishing between these classes, while adding more sophisticated components, such as residual blocks or
normalization layers, provided no performance benefit. Based on these findings, we summarize key design principles for neural
networks in spectroscopic data classification and publicly share all scripts used in this study.
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INTRODUCTION
Spectroscopic techniques such as X-ray diffraction (XRD), Nuclear
Magnetic Resonance (NMR), and Raman scattering are funda-
mental tools for the characterization of experimental samples in
chemistry and materials science. XRD has been employed
throughout industry and research laboratories for more than a
century1, and is well suited to characterize crystalline materials as
it captures detailed information on the long-range periodic nature
of crystal structures. NMR and Raman measurements, on the other
hand, are more strongly dependent on localized chemical
interactions and are widely used to characterize the structure of
molecular materials2,3. Although their mechanisms and applica-
tions may differ, each of these characterization techniques
produces similar one-dimensional spectra (sometimes referred to
as patterns) that contain peaks with distinct positions, widths, and
intensities. These features often serve as “fingerprints” for
molecules and crystalline phases, which can be used to match
unknown samples. Identification of unknown specimens can be
accomplished by comparing newly measured spectra with those
of previously reported materials in experimental databases such as
the ICSD or RRUFF4,5. Nonetheless, experimental artifacts, such as
measurement noise and background signals, as well as naturally
occurring minor variations of the patterns, complicate the analysis
process based on similarity. To automate this process, machine
learning has recently emerged as an effective tool that can map
experimental spectra onto known structures, with reported
accuracies exceeding standard similarity-based metrics6,7.
One popular method within the domain of machine learning is

the artificial neural network, which stacks multiple layers of
artificial neurons to resemble the structure and function of the
human brain8. The application of neural networks for the use with
spectroscopic patterns was first demonstrated in the work of Park
et al.9, where a convolutional neural network was trained to
classify XRD patterns by their structural symmetries, distinguishing
between different Bravais lattices and space groups. Later work
extended the use of neural networks to identify particular phases

from XRD patterns10, even dealing with multi-phase mixtures11–13.
For the analysis of NMR and Raman spectra, similar methods have
also been used to assist manual analysis14 and automate the
identification of molecular species15–17. In each of these studies, a
convolutional neural network structure was employed in order to
enable the network to eliminate the experimental artifacts and
facilitate the identification task, but every work developed its own
distinct architecture.
The concept of convolutional neural networks (CNNs) was first

introduced by LeCun et al.18 for the task of classifying handwritten
digits in images. These networks employ convolutional filters to
recognize local patterns in the image, such as edges and textures,
which are then combined to form a more abstract representation
of the digit, independent of minor visual variations or positional
changes in the image. Similarly, the relevant peak information in
spectroscopic signals, another “local pattern", has to be identified
and extracted from measured spectra that contain experimental
artifacts, such as noise or background effects. It was not until the
advent of improved computational capabilities in modern hard-
ware and the introduction of large-scale image classification
benchmarks, such as the ImageNet challenge19, that the full
potential of CNNs was realized. For the task of image classification,
Krizhevsky and colleagues20 demonstrated that a CNN could
surpass the performance of other machine learning algorithms
using manually tailored features, highlighting the general effec-
tiveness of this approach.
Multiple studies have demonstrated the ability of CNNs to

effectively eliminate experimental artifacts and correctly classify
measured patterns, even when the network was trained on
simulated data10,12,13. However, these studies often developed
their own unique convolutional architectures and reported
outstanding performance metrics on their specific datasets
without comparing different architectures or systematically
analyzing the general limitations of the presented networks. For
example, Ho et al.16 presented a CNN that could distinguish
between 30 bacteria isolates from Raman spectra, reaching a
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reported accuracy score of 82.2%. Similar methods have also been
applied to X-ray diffraction, for which Lee et al.11 reported a model
that correctly identified 100% of crystalline phases in multi-phase
samples. Though, it remains unclear whether the substantial
disparity between the accuracies of these two models is due to
their differences in neural network architectures, or due to the
difficulty of the classification task for Raman spectroscopy versus
X-ray diffraction. This question is further complicated by the
introduction of several network architectures that have made use
of more advanced deep learning techniques, such as VGG
networks10, Batch-Normalization15,16, and inception11 or residual
blocks16. While these methods have been shown to be effective
for the identification of complex features in images, their
effectiveness has not yet been proven for the classification of
one-dimensional spectroscopic data. Revealing the benefits of
each neural network component is key to developing a single,
universal deep learning model that can analyze spectra from
various characterization techniques - similar to the introduction of
general and transferable models that have been developed for the
analysis of diverse image datasets.
To better understand the generalizability of neural networks as

applied to spectroscopic analysis, more data is needed. There exist
several large databases that contain experimental spectra
obtained from a variety of materials and molecules. For example,
the RRUFF provides a combination of XRD and Raman spectra for
approximately 5800 minerals5. Similarly, NMRShiftDB provides
NMR spectra for approximately 45,000 organic molecules21. In
general, however, these databases cover only a small portion of
the entire chemical space. The ICSD alone contains >260,000
crystal structures that have been experimentally synthesized4, and
many more hypothetical materials have been proposed22. In
addition to the scarcity of experimentally measured spectroscopic
data, the available spectra for a given compound may not
accurately represent later measurements where sample artifacts
and instrumental aberrations can lead to variations. For example,
XRD patterns often show differences in peak positions and heights
as a result of strain and preferred orientation in the corresponding
sample. Likewise, changing the buffer solution used during NMR
measurements can lead to large differences in the spectra
obtained from identical molecules. To train machine learning
models that are robust against such experimental complexities, all
suspected variations should be taken into account when
collecting the training data, which requires the development of
new data sources that can be tailored to fit the problem at hand.
There are two distinct methods to organize a large and diverse

dataset for evaluating the performance of various neural network
architectures. One may gather experimental measurements on
actual samples; however, obtaining sufficient data to train a robust
neural network using such an approach would require an
exceedingly large number of measurements performed on
samples with varied compositions and artifacts15,16. Alternatively,
one may rely on previously reported experimental entries (known
crystal structures or molecular species) available in public
databases (such as the ICSD) for the simulation of spectra that
can then be augmented in a rapid and systematic fashion to
account for possible artifacts9,23. This approach is particularly well
suited for the generation of XRD patterns, which are readily
calculated by applying a Fourier transform to a given crystal
structure12,13,24. In contrast, the accurate simulation of Raman and
NMR spectra requires more expensive ab initio calculations based
on density functional theory, limiting the rate at which training
data can be generated for machine learning25,26. Even then,
curating a large and diverse dataset of entries that reflects the
difficulties of manual analysis while ensuring that all distinct
classes are theoretically separable remains a cumbersome task.
Most databases contain duplicates or list several minor variations
of nearly identical phases, and measurement errors sometimes
lead to incorrect classifications of composition or structure. This

problem is further complicated by the fact that different
experimental techniques generally produce signals of different
lengths. As such, disparate sets of data cannot be easily combined,
despite their visual and characteristic similarities.
As an alternative, we introduce a universal synthetic dataset

that can be used to train and validate machine learning models for
the automatic classification of spectroscopic data. This simulated
dataset contains features that are shared between distinct
characterization techniques, thereby providing a representation
of spectra obtained from XRD, Raman, or NMR measurements.
Because our simulation algorithm does not rely on physics-based
simulations, we are able to directly manipulate both the
generation of unique spectra and the variances within patterns
of identical classes, and it rapidly generates data with little
computational cost. Our approach enables the examination of
scenarios that may be challenging or infeasible to replicate in real-
world environments or conventional simulation techniques. The
resulting dataset is used to evaluate the performance of eight
different neural network architectures that were previously
developed for the classification of XRD and Raman spectra. Our
tests reveal that, while all models perform relatively well on the
synthetic dataset, they can occasionally fail to correctly classify
spectra with overlapping peak positions or intensities. These
results highlight several key weaknesses of neural networks and
their application to spectroscopic data, and accordingly, we give
several recommendations on how such models can be improved.
All code and data discussed here is made publicly available,
including the simulation algorithms and trained models, and we
invite the community to build upon this repository by contributing
further network structures and results.

RESULTS
Benchmark dataset
In this study, we aim to evaluate the performance of various
machine learning models for classifying spectroscopic data. To
achieve this, we propose a synthetic dataset that comprises 500
distinct classes. Here, each class is designed to represent a unique
crystalline phase (XRD), chemical species (Raman), or molecule
(NMR). As such, each class is characterized by a specific number of
peaks (between 2 and 10), with distinct positions and intensities,
allowing for unambiguous identification in its ideal, non-perturbed
form. The classes are generated stochastically to produce a diverse
range of spectra without inducing any bias in the number and
density of peaks within each sample, minimizing the risk of
obscuring unexpected challenges in the dataset. However, in a
manner similar to that in the measured spectra, each class can
have some variations in the positions and intensities of its peaks.
Additionally, the shape of each peak can vary between each
spectrum, reflecting certain properties of the experimental speci-
men as well as instrumental aberrations. Considering these
possible artifacts, we arrange a dataset of 500 unique classes
and simulate 60 randomly varied training samples per class,
resulting in 30,000 total patterns. These were generated in less
than 15 seconds using a standard desktop computer, demonstrat-
ing the speed at which synthetic data can be collected.
To prevent machine learning algorithms from simply memoriz-

ing the training samples associated with each class in our
synthetic dataset (overfitting), we split the 60 patterns per class
into 50 samples used for training and 10 for validation.
Furthermore, an additional blind test set was also formed to
accurately measure the performance of each model, since
validation samples are used during the model selection process,
possibly leading to information leakage27. Variations in the
training and test data of a single class are illustrated in Fig. 1.
The left panel shows three continuous spectra, including the ideal
representation (blue) of the specified class, as well as two
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randomly selected variations (green and orange). To better
visualize all the variations that take place for this class, the right
panel shows the distribution of discrete peak information (position
and height of each peak maximum) from samples in the training
and test sets. These correspond to variations in the second peak
that is shown in the left panel, as highlighted by the blue-shaded
region. The training samples (blue circles) are randomly distrib-
uted across a broad range of positions and heights, whereas the
test samples (grey triangles) follow a uniform arrangement with
less variation. To ensure that the test data variations lie in regions
that are well represented by our training data, we intentionally
include smaller variations in the test set samples than those
included during training.
Following the generation of our synthetic dataset, we chose

eight different neural networks that have developed in various
domains but have never been compared against each other.
These models have distinct architectures, which can therefore be
used to probe the influence of each network component on the
performance of the resulting model in terms of classification
accuracy. All networks make use of the convolutional neural
network structure, which became popular for the classification of
images. Such networks stack convolutional layers for the
extraction of local features, pooling layers for the identification
of features with distinct sizes, and fully-connected layers for the
recognition of long-range correlations. Here, three basic convolu-
tional neural network architectures were considered following the
work of Lee et al.11 and Szymanski et al.13 (denoted CNN2, CNN3,
and CNN6), which were developed for the analysis of multi-phase
XRD patterns and each contain varying numbers of convolutional-
pooling blocks. Two additional networks from the work of Lee
et al.11, which add a varied number of inception blocks to the
conventional CNN architecture (denoted INC3 and INC6), are also
considered. With a further increase in complexity, we consider the
network of Wang et al.10 (denoted VGG), which stacks multiple
convolutional layers before pooling operations to extract more
complex features and was proposed for the identification of
single-phase XRD patterns. Lastly, to complement the neural
networks that we designed for the analysis of XRD data, we also
include two models that were developed for the analysis of data
from Raman spectroscopy. These are denoted CNN BN15 and
Resnet16, which employ Batch-Normalization and residual blocks,
respectively. These types of architectures were originally proposed
to improve the interpretation of images, but have not yet been
tested in depth for the classification of one-dimensional spectro-
scopic data. In addition to their differences in convolutional and
related layers, the models considered here also differ in terms of

their use of fully-connected layers (FC) and activation functions.
The detailed information associated with the architecture of each
model is presented in Table 1. We note that all models share the
same output layer, which contains 500 neurons that correspond to
the number of classes in our synthetic dataset.
With the exception of CNN6, most networks that have been

developed for the analysis of spectroscopic data do not utilize
non-linear activation functions between their fully connected
layers (see Table 1). While the Resnet model completely omits
fully-connected layers, the networks introduced by Wang et al.10,
Lee et al.11 and Liu et al.15 use multiple fully-connected layers
without any non-linearities. This is somewhat surprising, as
stacking multiple fully-connected layers without using a non-
linear activation function between them provides identical
capabilities as a single fully-connected layer, and therefore the
resulting model is equivalent to a linear classifier. We note that a
linear model operates by learning appropriate weights for all
datapoints and calculating their weighted sum, possibly with an
added bias, which is equivalent to learning a single threshold for
the classification of a given signal. Because spectra typically
contain more than one peak, we expect that a robust classification
model needs to learn multiple thresholds to distinguish phases

Fig. 1 An illustration showing the variations included in our spectra dataset. The left pane shows three varied spectra of the same class,
where the blue graph exhibits the “ideal" representation of the class with a Gaussian peak shape. For the orange and green graph, the
positions and intensities are slightly shifted to account for possible experimental artifacts, and the standard deviations of the Gaussians are
also varied to broaden or narrow the peaks shapes. Second, we show the maximum value of the second peak in detail (as outlined by the
opaque blue rectangle) in the right pane. Here, we show examples for the position and heights of randomly varied training samples (blue), as
well as the uniformly varied test samples used for evaluation purposes.

Table 1. A description of the neural network architectures tested in
this work.

Model
Name

Publication Architecture FC Neurons FC Activation

CNN2 11 (C-MP)x2 2000-500 Linear

CNN3 11 (C-MP)x3 2500-1000 Linear

CNN6 13 (C-MP)x6 3100-1200 ReLU

VGG 10 C-MP-(C-C-MP)
x3

120-84-186 Linear

CNN BN 15 (C-BN-MP)x3 2048 Linear

Resnet 16 C-BN-RESx6 – –

INC3 11 (C-MP)x3-INCx3 3700-740 Linear

INC6 11 (C-MP)x3-INCx6 4000-400 Linear

The following abbreviations are used: C for 1D convolutional layers, MP for
1D Max Pooling operations, FC for fully-connected layers, BN for Batch-
Normalization, and ReLU for the rectified linear unit activation. More
complex structures, such as residual (RES) and inception (INC) blocks, are
also abbreviated here. Full details, such as kernel sizes for convolutions, can
be found in their respective publications, as well as in our repository
jschuetzke/synthetic-spectra-benchmark/model_implementations.
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with similar peak positions and intensities. As shown in Table 1,
CNN6 is the only model with such capability as it uses a rectified
linear unit activation (ReLU) between its fully-connected layers,
and therefore the network can learn different thresholds for every
neuron in each layer.

Benchmark results
Using our synthetic dataset that contains 500 classes, we trained
each of the aforementioned models five times, applied them to
the classification of samples in the test set, and recorded their
accuracies. The convergence of neural networks is known to be
highly dependent on the initialization of their weights, and
therefore we trained multiple models with distinct initializations to
prevent conclusions being drawn from unfavorable starting
conditions. We use identical training conditions for every model
(batch size 128, Adam optimizer with a learning rate of 3*10−4)
and monitor the performance on the validation samples to reduce
the learning rate once the convergence stagnates, plus we
stopped the training process when overfitting started to occur
(early stopping). The final model for each training run was selected
by choosing the one that led to maximal validation accuracy.
In Fig. 2, we present the number of misclassifications made by

each model when applied to the test set. Full details on each

model’s performance are given in Supplementary Table 1. All
models are found to achieve a high accuracy on our synthetic
dataset, as each correctly predicts at least 4450 samples from a
total of 4500 samples in the test set (98.9% accuracy). These
results show that despite being developed for completely
different domains (e.g., XRD versus Raman spectroscopy), the
models perform similarly well when applied to spectra with shared
features from each characterization technique. As shown in
Supplementary Fig. 1, selected pairs of synthetic spectra classes
that exhibit similar patterns were still all correctly classified.
Neither spectra with a high number of peaks, nor spectra, where
some of the peak positions or intensities are identical, cause a
misclassification, as long as further information is present to
accurately separate the spectra pairs. This highlights that spectra
are generally easy to classify, consistent with the high accuracy
scores reported in other publications.
Yet, there still do exist some differences in the accuracies of the

models considered here, warranting further investigation. In
particular, the CNN6 model developed by Szymanski et al.13

achieves the best performance on the test set, producing only
eight misclassifications on average, out of 4500 samples in total.
By contrast, most models misclassify between 10 and 40 samples
depending on their initialization, with the exception of CNN BN,
whose performance ranks worse than all other models and shows
a wide range of performance variation between training runs.
Considering only the convolutional architectures, we find little

correlation between the number of convolutional layers and the
accuracy of the corresponding model. Even though CNN3 performs
better than CNN2 and has one more convolutional layer while the
remaining architecture is similar, the performance enhancement
does not hold for more complex models. For example, the VGG and
Resnet models do not substantially improve performance over
standard CNN models, despite having many more convolutional
layers. Although the CNN BN model has the same number of
convolutional layers as CNN3, the accuracy of the Batch-
Normalization architecture is remarkably worse. Contrary to the
absolute number of convolutional layers, the inclusion of kernels of
different sizes in the inception blocks of INC3 and INC6 yielded
considerably better results than the CNN2 and CNN3 models with
similar implementations. The overall winner of our synthetic
benchmark (CNN6) may differ in its convolutional architecture (six
convolutional layers plus pooling) from all other networks, but is
also unique due to its use of a non-linear activation function in the
fully-connected layers, so the exact contribution of the convolutional
architecture versus the use of non-linearities remains questionable.
While the accuracy and misclassification metrics are important

indicators of the final performance of each model, the training
process also provides insights into the stability and convergence
of the training process. Figure 3 displays the progression of the

Fig. 2 The performance of eight previously published models on
our synthetic dataset is illustrated by the number of classifica-
tions each model makes on the test set (left axis, blue dots) and
training set (right axis, red lines). Each model is trained 5 times
with different starting initializations (random seeds). Accordingly,
the spread of the dots and error bars for the lines show the range of
misclassifications made by each set of models.

Fig. 3 Comparison between the validation loss progression of models CNN2 (blue), CNN BN (orange), and resnet (red) during the
training. While the CNN2 model shows a typical convergence that minimizes the validation loss, the training process of the CNN BN and
Resnet models illustrates unstable behavior. For the Resnet model, the validation loss is considerably higher for some epochs (ranging
between 0 and 50), exceeding our defined limits of the Figure. Still, the Resnet model ultimately achieved a lower validation loss than the
CNN2 model.
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validation loss for different models throughout training (as a
function of the number of epochs). Most models exhibited a stable
convergence process, with a high loss at the initial epoch that is
gradually minimized over time, as demonstrated by the blue
graph of CNN2 in Fig. 3. However, the two models that incorporate
Batch-Normalization layers in their architecture (CNN BN and
ResNet) exhibit markedly different behavior, with their validation
loss fluctuating throughout the training process. In the case of the
Resnet model (red), the validation loss occasionally exceeds the
limits of the displayed range in Fig. 3, but ultimately settled at a
lower value than the CNN2 model, which is further reflected by
the lower misclassification numbers in Fig. 2. Thus, the use of
Batch-Normalization resulted in an unstable convergence process,
but it did not impede the models from achieving fair performance
results, so long as training was halted at a point of low validation
loss.
Further insight into the performance of each model on the test

data can be gained by considering their accuracy with respect to
the training data, which are shown by the red points in Fig. 2.
While most models correctly identified at least 24,900 of the
25,000 training samples, the CNN6 model exhibited substantially
poorer performance on the training set, with between 125 and
185 training samples being misclassified. The disparity between
test and training set performance, however, highlights the
necessity of utilizing regularization methods during the training,
such as dropout or stopping the training once the validation data
performance does not improve anymore. While the Resnet model
achieved the best performance on the training set, it did not
include fully-connected layers following the convolutional stage
and, therefore, also did not incorporate the dropout regularization
method, which was present in every other network. This likely
explains the comparatively poorer performance of the Resnet
model on the test data. A different regularization strategy was
employed by the VGG model, which applied dropout between the
convolutional layers rather than the fully-connected layers.
However, while this form of dropout prevented the VGG model
from overfitting on the training data, it still only achieved an
average classification result on the test set. The greatest disparity
between training and test set performance was observed for the
CNN6 model, which also employed the highest level of
regularization, dropping out 70% of neurons, compared to the
range of 20–50% employed by other models. Further investigation
is required to understand the specific elements of the CNN6
model’s architecture that enable it to generalize well to unseen
samples, despite misclassifying more training set samples than
other networks.

Misclassification causes
To pinpoint the challenges associated with spectroscopic analysis,
we analyze the shared features of spectra that were misclassified
by the machine learning models studied here. Although the
spectra generated in this work have a limited number of peaks per
class (≤10), some classes display a high density of peaks within a
narrow region. Yet, so long as these peaks do not overlap with
those of other classes, the classification models are robust. This
suggests that the neural networks tested here would remain
accurate even on spectra with many more peaks, which are often
obtained from measurements on complex samples (e.g., low-
symmetry phases in XRD). Thus, the presence (or absence) of such
peaks aids in distinguishing similar classes where other peaks may
overlap. As will be discussed in the next three sections, all the
misclassifications observed here can be attributed to one of three
factors: (1) overlooking minor peaks, (2) overlapping peak
positions, and (3) overlapping peak intensities.

Overlooking minor peaks. There are many cases where two
classes differ by only a single peak. However, we find that when

this distinctive peak has a low intensity relative to the others, it is
often overlooked by the neural networks. Such a case is displayed
in Fig. 4, which shows the spectra associated with two different
classes (246 and 382) that have similar peak positions and
intensities for their two largest peaks. Class 246 (blue) can, in
principle, be distinguished from class 382 (red) by a minor third
peak. Nonetheless, all of the models tested here fail to consistently
distinguish these two classes and instead predict a single class
(382) for most samples in the test set.
Upon further investigation of each model’s behavior, we found

that the neural networks tend to overprioritize the position of the
largest peak in a given spectrum when making a classification. In
fact, the spectra associated with class 246 were correctly classified
only when its largest peak was sufficiently shifted away from the
position of the nearby peak in class 382. In addition to this current
pair of classes (246 and 382), we found six additional pairs that
caused misclassifications for the same reason. On the basis of
these results, we suspect that neural networks struggle to learn
sufficiently large weights associated with minor peaks in spectro-
scopic data, limiting their performance when the presence (or
absence) of such peaks is the only means of distinguishing two
classes.

Overlapping peak positions. Misclassifications are also found to
occur on classes that contain an equal number of peaks with
matching intensities and only slightly different positions. An
example of this challenge is shown in Fig. 5, which depicts the
distribution of positions and intensities associated with the
training and test data for two classes (8 and 318). For simplicity,
these properties are visualized for only one peak that should be
sufficient to distinguish the two classes. Although their intensities
are nearly equal, the positions of their peaks are different enough
so that a clear decision boundary can be drawn to separate the
test samples of the classes without any error (dashed line).
Nevertheless, all the machine learning models tested in this

work struggle to correctly classify these two classes. In particular,
those samples close to the decision boundary tend to lead to the
highest number of misclassifications. This limited accuracy holds
true even for the best model reported (CNN6), which incorrectly
classifies three samples in the test set between these two classes.
Most misclassifications occur when the test samples are located
right next to a training sample (position- and intensity-wise) of the
opposite class. In this case, the model rather memorized the
positions of the training data than learning the general classifica-
tion rules that apply to unseen data, which implies overfitting. We

Fig. 4 Simulated spectra are shown for classes 246 & 382. These
two classes share two large peaks that overlap. However, class 246
has an additional minor peak that is highlighted by the shaded
region. All machine learning models overlook this minor peak and
fail to distinguish the two phases.
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suspect that the inability of this model to decouple the nearby
peaks can be traced back to its application of pooling, which
reduces the dimensionality of the input spectrum. The resulting
loss of resolution may cause two peaks with slightly different
positions to appear identical, therefore making it impossible to
distinguish the corresponding classes.

Overlapping peak intensities. There are several cases where peak
intensities, as opposed to positions, are the only features that may
be used to distinguish two similar classes. To visualize such cases,
we present in Fig. 6a the distributions of intensities and positions
of the major peaks associated with classes 164 and 281. While the
positions of these peaks are identical and, therefore, cannot be
used to distinguish the two classes, the intensities are sufficiently
different such that a decision boundary (dashed line) can be

drawn to achieve good accuracy on the test set. We find that the
ability of machine learning to identify an optimal decision
boundary is highly dependent on the architecture of the model.
To visualize this, the decision boundaries for classification made

by three different models (CNN2, CNN6, and INC6) are shown in
Fig. 6b–d. Predictions for class 164 are shown by the green
regions, whereas predictions for class 281 are shown in purple.
These plots reveal that the predictions made by CNN2 appear to
have no correlation with the intensity of the peak. Instead, each
green and purple regions form vertical stripes, which suggests
that the model (unsuccessfully) attempts to distinguish classes 164
and 281 by their peak positions, possibly due to overfitting on the
samples in the training set. On the contrary, CNN6 learns to
distinguish the two classes by their peak intensities as desired,
proposing a decision boundary that appears similar to the optimal

Fig. 5 Position and intensity of decisive peak to separate between classes 8 (blue) and 318 (orange). Top and Right show the distribution
of the training data position and intensities of both classes. The peak intensity distributions of the training samples align almost perfectly and
yield no meaningful information for a robust classification. Similarly, the distribution of the training peak positions overlap but there are areas
that are more probable for either class. In the Center, we visualize in a scatter plot the test samples that align with the training data
distributions. A robust classifier should correctly predict all test patterns, since their positions lie in distinct areas, yet most models tested here
fail to make a correct distinction.

Fig. 6 Comparison of the relevant peak positions and intensities to separate the samples of classes 164 & 281. a Shows the distribution of
training data samples of both classes, together with a proposed, linear split for a robust distinction, which assigns the lower intensity samples
to class 164 (green) and the higher intensity samples to class 281 (purple). Using the linear split, all test samples can be predicted correctly.
b–d Show the classification regions of models CNN2, CNN6 and INC6, respectively.
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boundary shown in Fig. 6a. The last model, INC6, represents an
intermediate case between the two extremes illustrated by CNN2
and CNN6, as it appears to learn some intensity threshold but with
a large degree of overlap between classes 164 and 281. This
overlap prevents the model from achieving high classification
accuracy on the corresponding test samples.
The success of CNN6 in learning an optimal decision boundary

that can separate peaks by their intensities highlights the
importance of including non-linearities between the fully-
connected layers of the neural networks. Since the fully-
connected layers treat every single datapoint independently, the
network has to learn multiple thresholds in order to separate two
classes according to their peak intensities alone. In contrast to the
other models tested here, CNN6 features a ReLU activation
function between its fully-connected layers and therefore is able
to learn non-linear classification rules. This is supported by the
classification map shown in Fig. 6c, where the decision boundary
coincides well with the optimal one.

Challenging test dataset
While the previous synthetic dataset was generated randomly to
investigate the classification limitations of each model on data
generated without any inductive bias, we next created a more
challenging set of spectra to further distinguish the performance
of each model. Here we employed a similar approach as before to
generate training and validation samples, except now the
underlying classes were specifically tailored to exhibit a sub-
stantial degree of peak overlap (both in terms of positions and
intensities). In total, the challenging test dataset contains 27
classes where three groups of 9 were tailored to fall under one
misclassification category (detailed in the previous sections). The
ideal representations of these classes are visualized in Supple-
mentary Fig. 2.
Using our generated dataset, we re-trained all the neural

network architectures in two separate forms: with linear activation
or with ReLU activation applied between their fully connected
layers. This enables us to probe the influence of the activation
function on the performance of each model and confirm its
importance for accurate classification. Figure 7 shows the test set
accuracies for the models trained with linear activation (blue)
versus ReLU (orange). The overall performance of the models
improved considerably when using the ReLU activation function,
which confirms our hypothesis that non-linearities are essential for
the classification of spectra with overlapping peaks. The CNN6

model still achieved the best performance with a test set accuracy
close to 90%, reinforcing our previous findings on the general
benchmark. In contrast, even with the use of a non-linear
activation function, the INC3 and INC6 models both performed
worse than the CNN6 model, calling into question the necessity of
the inception blocks. Notably, the CNN2 model performed better
than the CNN3 model on our more challenging dataset and even
caught up with the performance of the INC3 model, further
supporting our argument that the inception blocks are not
beneficial for the classification of spectra.
In our study, we found that three models were not able to

converge effectively, even when using the ReLU activation
function. The Resnet specifically could not utilize the updated
activation function given that it does not include any fully-
connected layers. While the Resnet achieved average results on
the general benchmark, it completely failed to converge on the
challenging test dataset and as a result produced accuracy metrics
that were equal to those achieved by random prediction. Similarly,
the CNN BN network showed little improvement from the
modified activation function, as the rescaling of patterns
performed by the Batch-Normalization between convolutional
layers may have led to some information loss. Lastly, the VGG
network performed poorly with either activation function since it
applies dropout between the convolutional layers, potentially
altering the appearance of the training spectra by excluding
certain peaks.
In order to systematically evaluate the impact of these methods,

we modified the CNN BN, VGG, and Resnet networks and re-
trained the adapted models on the challenging test dataset. In the
modified networks, we removed the Batch-Normalization or
convolutional dropout layers, but incorporated fully-connected
layers with ReLU activations for the modified Resnet model. We
further investigated the impact of these methods on the
convergence of the training by adding Batch-Normalization
(CNN6 BN) or dropout between the convolutional layers (CNN6
ConvDO) of the CNN6 model. While we adhered to the previously
established training methodology and trained each model using 5
different initializations, we report only the median scores for the
different model implementations in Table 2. The top row of the
results shows the performance metrics for the original imple-
mentations of each model, while the bottom row presents the
accuracy scores for the modified models without the special
methods. However, we found that in all cases, the simpler models
without Batch-Normalization or dropout between the convolu-
tional layers performed best. As previously observed for the
general benchmark, active Batch-Normalization layers resulted in
an unstable validation loss, which is illustrated in Supplementary

Fig. 7 Investigating the activation function impact on the
challenging test dataset. For every model, we trained 5 initializa-
tion using a linear activation function for the fully-connected layers
and compared the predicted accuracies on the test set in
comparison to variants trained with a ReLU activation function.
Blue shows the variation for the linear activation variants, and
orange illustrates the accuracy distribution for models with non-
linearities. The performance improves for all model variants with the
ReLU activation function.

Table 2. Median test set accuracies for select modified network
architectures and their original counterparts on the challenging test
dataset.

Implementation CNN BN Resnet CNN6 BN* VGG CNN6
ConvDO*

Original 52.47% 3.70% 67.90% 68.52% 79.63%

Modified 58.64% 80.74% 85.19% 83.95% 85.19%

The performance improves for the modified versions that omit the Batch-
Normalization layers or move the dropout regularization from the
convolutional stage to the fully-connected layers. The highest attained
metric is emphasized using bold formatting.
*The original implementation of the CNN6 BN and ConvDO refers to the
variant with activate Batch-Normalization or convolutional dropout
methods, while the modified version indicates the previously reported
CNN6 performance without changes to the established CNN6
implementation.

J. Schuetzke et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   100 



Fig. 3. Notably, the best performance was still achieved by the
CNN6 model, which further suggests that neither the VGG-
architecture nor the residual blocks improve the classification of
the synthetic spectra.

DISCUSSION
Many different neural network architectures have been developed
for the analysis of characterization data from techniques such as
XRD, NMR, and Raman spectroscopy. However, the models
presented for different techniques have never been tested across
domains, despite the visual similarities of the spectra. To bench-
mark the different neural network architectures, we have provided
a method to rapidly simulate artificial spectra with user-defined
features and generated a dataset that depicts common artifacts
related to changes in peak positions, widths, and heights. Instead
of relying on manually curated entries from a database, which may
introduce bias in the selection of certain compositions or
structures, our approach is “structure free” in that it generates
spectra from stochastically chosen peak positions and intensities.
This allows us to probe specific situations which would otherwise
be difficult to reproduce in experimental settings.
On this dataset, we trained eight distinct network architectures,

and each model achieved a high classification accuracy (≥98.9%),
while no clear differences were observed between the perfor-
mance of models developed for the analysis of XRD versus Raman
spectroscopy. The high level of accuracy achieved by all the
networks tested here suggest that spectra are generally less
challenging to classify than images, at least when considering only
one phase per spectrum. Indeed, spectral analysis does not
require the encoding of two-dimensional features (such as “eyes”
or “ears”) which would otherwise need to be learned by neural
networks when applied to images. Instead, accurately classifying
distinct spectra only requires that the networks learn appropriate
thresholds that can be used to distinguish various classes by their
peak positions and intensities. Although this task appears to be
successfully accomplished by many different neural network
architectures, we caution that a high accuracy metric does not
necessarily imply generalizability on more challenging cases
involving classes with significant peak overlap. This is shown by
our tests performed on the challenging test dataset, where certain
networks significantly outperform others despite their similar level
of accuracy on the original dataset.
Thus, although all models produced high accuracy on the

synthetic dataset, some architectures performed better than
others on our universal synthetic dataset containing a wide range
of scenarios. In particular, the CNN6 model developed by
Szymanski et al.13 produced the least number of misclassifications
on both our general and complex datasets. We attribute the
improved performance of this model to two key factors. First, the
use of a non-linear activation function (ReLU) between the fully-
connected layers in the neural network ensures that multiple
thresholds can be learned to distinguish similar classes. As shown
in Fig. 6, this enables the identification of a clear decision
boundary to separate spectra by their peak intensities, whereas
models that use only linear activation functions fail to learn such a
boundary. Second, the high rate of dropout regularization
employed throughout the training process ensures that the
model does not overfit the training data. Although most other
models tested here also use dropout between their fully-
connected layers, albeit at a lower rate than CNN6, the
performance gap between training and test samples implies that
overfitting occurs. Alternatively, regularization methods that
restrict the magnitude of weights might be useful to prevent
the networks from memorizing training samples.
Our tests reveal that more sophisticated architectures, such as

VGG, residual, or inception blocks, do not provide improved
accuracy in the classification of spectroscopic data. Upon

evaluating both the original implementations and their modified
variants incorporating ReLU activation units or other measures, it
was observed that the more complex models demonstrated
inferior performance when compared to the simpler CNN6 model.
This result may appear somewhat surprising at first, as such
models have been widely employed to analyze images more
accurately; however, the spectra considered in this work have
different properties than images. The convolutional filters utilized
in the networks are specifically designed to attend to a restricted
portion of the input and are systematically shifted across the
image to identify complex local patterns of interest, regardless of
the absolute position of the input. In contrast, our results suggest
that the identification of local information, such as peaks or
clusters of peaks, requires far fewer convolutional layers than is
necessary for the classification of images. On a related note, the
use of Batch-Normalization, which is a commonly applied method
to achieve robust convergence of image classification networks,
actually caused an unstable training process for all of the models
tested here. Batch-Normalization is typically employed to shift and
rescale the locally extracted features of convolutional layers, so it
possibly alters the relative peak intensities of the spectra,
complicating the classification process. As the relative intensity
for spectra is zero for all ranges without peaks, the mean and
standard deviation of the whole pattern is mostly affected by the
width of peaks or altered peak intensities. Both of these features
vary considerably from sample to sample, so the normalization
process diversifies the intensities relevant for the subsequent
layers.
Despite its overall promising performance, CNN6 still shows

some limitations. For example, this model, as well as the other
neural networks, consistently overprioritize the largest peaks in
each spectrum. While this leads to the correct classification in
most cases, it can occasionally cause misclassifications on spectra
where the largest peaks overlap and only the smaller peaks can be
used to distinguish similar classes. This problem is particularly
difficult to resolve as larger weights must be learned to enable the
smaller peaks to have a significant influence on the final
classification of the neural network. Yet, larger weights are often
associated with overfitting and accordingly are penalized when
using regularization. The type of magnitude of the regularization
technique used should therefore be considered as an additional
factor to be optimized during model selection. Similarly, CNN6
fails when two peaks occupy positions close to each other, as
shown in Fig. 5, since numerous pooling operations are applied
throughout the convolutional stage, which lower the resolution of
the patterns.
To facilitate the development of improved machine learning

models for spectroscopic analysis, we make our code and data
publicly available. This includes not only our existing synthetic
dataset that was used to benchmark the performance of all
models tested here, but also the scripts that were used to
generate the corresponding data. As detailed in the methods,
these scripts allow the user to customize various aspects of the
dataset including the number of classes it contains, the
abundance of peaks in each spectrum, and the range of
variations associated with these peaks. We note that all spectra
are kept relatively simple, with Gaussian peak shapes and no
background signal, as this study is focused on the general ability
of neural networks to distinguish spectra. Using our code and its
associated data, we invite researchers to develop and test new
models that can outperform the existing methods presented in
this work. As the ImageNet challenge sparked innovation for the
analysis of image data with more sophisticated architectures
such as Resnet, we believe that a universal synthetic dataset will
enable more reliable model validation across all domains of
spectroscopic analysis.
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METHODS
Synthetic dataset approach
In order to generate a synthetic benchmark set that can be used
to evaluate machine learning models across different domains, the
spectra have to represent common properties found in patterns
from the various sources. Figure 8 shows three exemplary spectra
obtained from XRD, Raman, and NMR measurements on samples
of Analcime and Ethylbenzene. As shown in the left panel of Fig. 8,
spectra obtained using different techniques appear quite different
at first glance. For example, Raman spectra often contain fewer
and more diffuse peaks than XRD of NMR patterns. However, upon
further inspection, the density of peaks with respect to the
sampling of datapoints remains relatively consistent between
different techniques. The Raman pattern shown in Fig. 8 contains
only 1000 distinct datapoints, whereas the XRD and NMR patterns
contain 8000 and 65,000 datapoints, respectively. If we instead
crop each of the spectra to contain only 1000 datapoints, as
shown in the right panel of Fig. 8, the resulting patterns appear
much more similar. Regardless of which technique is used, the
normalized spectra each contain 2–6 peaks with comparable
widths. Therefore, we conclude that each technique produces
data with similar “information density," justifying our choice to use
a single artificial dataset for testing and validation of machine
learning models.
For all characterization techniques considered here, experi-

mental artifacts and instrumental aberrations can cause spectra to
deviate from their expected fingerprints. For example, peak
intensities from XRD scans often show large changes caused by
a non-random orientation of particles in the specimen. Similarly,
the positions of peaks in NMR spectra can be shifted by the choice
of the buffer solution used during the measurement. To account
for such effects, our synthetic dataset introduces stochastic
variations related to changes in peak positions, intensities, and

widths. However, these variations should be kept minimal to avoid
unwanted overlap between specimen with similar fingerprints.
Experimentally, the reduction of artifacts can be accomplished
through careful sample preparation (e.g., grinding of powder
samples for XRD).
We specify multiple parameters for our synthetic dataset

approach that can be changed to fit the specific use-case. For
example, every spectrum should contain an equal number of
datapoints that span a fixed range (i.e., equal start and end points).
Additionally, there should be a fixed number of possible classes
used to generate distinct spectra, as these classes will be used to
train machine learning models later on. Accordingly, we define a
set of universal parameters for the synthetic dataset as follows:

● The number of datapoints contained in each pattern
● The number unique classes in the dataset (ideal patterns)
● The minimum and maximum number of peaks in each pattern

In contrast to experimental scans, our synthetic spectra do not
have a real measurement range but are instead described by the
number of datapoints contained by each spectrum. To simulate
spectra that are representative of experimental data (i.e., similar
to the spectra shown in Fig. 8), we recommend that parameters
are chosen to produce a comparable “information density”, e.g.,
with 2 to 6 peaks per 1000 datapoints. The parameters can be
manually set by the user to fit the problem at hand in
(dataset_config_generator). Based on the settings, we simulate
classes by randomly sampling different peak positions and
relative intensities. Following the execution of the generator
script, each class is defined by a unique set of discrete peak
positions and intensities. This class information is stored in single
file describing the entire dataset.
We next generate spectra from the ideal class representations

by adding minor alterations that account for possible experi-
mental artifacts. This method was first introduced by the work of

Fig. 8 Three examples of spectral data are shown. XRD and Raman patterns are given for Analcime, a common inorganic mineral5. An NMR
spectrum is presented for Ethlybenzene, a well-known organic compound30. The left panels shows raw data spanning the entire
measurement range. The right panel shows the same spectral data, now standardized to contain 1000 measurement datapoints. The
corresponding ranges are highlighted (orange) in the left panel.
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Oviedo et al.23 for X-ray diffraction and was later extended to the
field of Raman spectroscopy by Rui et al.28. Such methods have
been shown to result in robust classification networks that
perform well on experimentally measured data, even though
they have only been trained on simulated data11–13. Here we
utilize a similar approach to generate simulated variations for
training, validation, and test samples based on stochastically
chosen peak position and intensity shifts, which are fit to Gaussian
curves to produce continuous spectra. Furthermore, our method
does not explicitly account for noisy or diffuse background signals
as previous studies have shown that the models considered here
are robust against such artifacts. In cases where the background
signal is substantial, the main effect is the modification of peak
intensities, for which variations are already included in our dataset.
This process relies on the following parameters:

● The number of augmented patterns generated for each class
● The magnitude of applied variations:

– Maximum peak position shift,
– Maximum peak intensity change,
– Range of Gaussian peak widths.

Here, all variations are applied independently of one another.
This differs from experimental artifacts, where changes are often
coupled. For example, strain-induced changes in the peak
positions of XRD spectra are known to follow a well-defined
relation. Moreover, peak shapes are often more complex than
simple Gaussian bell curves (e.g., Voigt profiles), and the widths of
these peaks can be correlated with one another throughout a
given spectrum. However, our current approach is designed with
simplicity and generalizability in mind. The resulting data should
still be sufficient for the validation of machine learning models,
which can be applied to experimental data later on. A key
advantage of simulations is their ability to rapidly generate
customized synthetic datasets, which can be used to test
classification algorithms with respect to different features and
variations. For example, one can evaluate how many randomly
varied samples are necessary per class to train a robust
classification model given certain parameters (number of data-
points, peak counts, and degree of overlap).
By testing various configurations of our dataset generator, we

identified a set of parameters that include a large number of
classes (500) and only slight overlap between similar spectra when
variations are applied. With these parameters, each pattern is
comprised of 5000 datapoints that contain 2–7 peaks. We also
impose limits on all peak positions such that they maintain a
distance of at least 100 datapoints from the borders of the
spectrum. This ensures that no peaks are lost when their positions
are varied. Based on the parameters used here, a json file is
generated containing the information associated with each class.
This file can be found in our repository: dataset_configs/
benchmark.json.

Neural network architectures
Spectroscopic data can be classified in a number of ways. For
example, several models have been developed to categorize the
space group of crystalline materials from XRD patterns, thereby
grouping completely different patterns into a single class defined
by symmetry relations among peaks9,23,29. In contrast, it is more
common to use spectral data for the identification of distinct
classes by comparing the positions and heights of observed peaks
with known reference data. This is the task that we consider in this
work, which may be framed as a one-to-one mapping between
each “fingerprint" and class.
The first deep learning model developed to classify spectroscopic

data, introduced by Liu et al.15, demonstrated the successful
application of a neural network on various mineralogical datasets of

Raman spectra. Ho et al.16 later refined this network for identifying
Raman spectra by incorporating residual blocks, commonly used in
advanced image classification models. However, the evaluation was
performed using a different dataset, classifying bacteria isotopes
instead of crystalline materials, and no direct comparison of
performance between the networks was presented. In parallel,
Wang et al.10 presented the first neural network for identifying
crystalline phases from XRD patterns, utilizing the VGG architecture,
which also originated from the field of image recognition. Similarly,
Lee et al.11 advanced the analysis of XRD patterns by developing a
network that could not only classify single-phase patterns, but
could also be applied to samples containing multiple phases.
Szymanski et al.13 further improved the performance of deep
learning models for the classification of multi-phase samples by
iterating between the identification and subtraction of single-phase
components. While each of the previously reported methods
appear to be effective on specific domains, a direct comparison of
the various network architectures has not yet been made. To better
understand the advantages and limitations of each model therefore
requires that they be applied to a single, consistent dataset as
introduced here.
Accordingly, we compare and benchmark the eight distinct

network architectures presented by the mentioned works and all
models tested employ a neural network architecture containing
the following components:

1. Convolutional layers trained to extract local features that are
independent of position and orientation.

2. Fully-connected layers that learn classification rules based
on the previously extracted features.

While the models all follow this general architecture, their exact
implementation varies from paper to paper. Here, we test eight
different models with architectures summarized in Table 1. The
first three networks employ a straightforward structure containing
stacked convolutional layers without any extra modifications (e.g.
Batch-Normalization), followed by two fully connected layers. All
three plain CNNs apply Maximum-pooling (maxpool) operations
following the convolutional layers to reduce the dimensionality of
the input scan. We further test more sophisticated networks that
use batch-normalization between convolutional layers and
activation functions (CNN BN), as well as a VGG-like architecture
that stacks even more convolutional layers before the pooling
operation (VGG). An important concept commonly found in neural
networks applied to image data are residual blocks (Resnet) that
use a large amount of convolutional layers to extract complex
features, which is only possible by using “residual connections"
that prevent the vanishing gradient problem in deep neural
networks. Similarly, inception blocks (INC3 & INC6) combine
different kernel sizes in convolutional blocks to account for
different feature sizes.
We benchmark the different model implementations as they are

presented in their respective papers, without any modifications.
Each model is trained using an Adam classifier with default
hyperparameters (β1= 0.9, β2= 0.999) and a learning rate of 3e−4,
with a mini-batch size of 128. Since different model architectures
require more or less time to converge, we set a high number of
training epochs (500) and use the Early-Stopping technique to halt
training once the validation loss levels off. Additionally, we lower
the learning rate by a factor of 0.5 if the validation loss does not
improve for 10 consecutive epochs, while early stopping activates
at 25 epochs without any improvement.

Reproducibility
During our tests, we found that the network performance varied
substantially depending on which random seed was used to
initialize the training of each model. Therefore, we aim to
benchmark not only the accuracy of each model, but also how
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much variance is present between different training iterations. The
variation is further complicated by changes that can be
introduced when training on GPU machines that utilize CUDA
algorithms, which are not deterministic. Accordingly, the following
policies are used to ensure reproducibility.
Training in Docker containers: Since the training of neural

networks in a Python environment requires multiple libraries that
are available in different versions, and we cannot confirm that
every single combination produces identical results, we train our
models in a Docker container. A Docker container is a small
virtual machine that is built according to a recipe (image) and
asserts platform-independent performance (Host machine can
be Windows, MacOS or Linux). The container still has a few
connections to the host machine (e.g. GPU drivers) that may be
subject to change and could cause minor performance
differences, but to our knowledge this is the most consistent
option.
Setting deterministic algorithm flags: As mentioned before,

TensorFlow (and other libraries like pyTorch) relies on
CUDA algorithms that are not fully deterministic by default.
Here, we set tensorflow to only use deterministic operations
which hampers the computation speed but assures consistent
results.
Multiple model initializations: We train each model 5 times to

investigate performance differences between training runs. To
account for random variations, we randomly set the seed at the
start of each run, which determines how the model is initialized.
We also shuffle the order of the training data between epochs.
Using identical parameters such as the mini-batch size and
random seed across models means that each network sees the
exact same training samples per step and convergence only
depends on initialization and the network’s ability to learn
meaningful features for the data.

DATA AVAILABILITY
The data used to train the models, as well as the trained keras model (weights for the
best-performing variant per model) are also available on figshare. The training
process for each model was tracked on the Weights & Biases platform.

CODE AVAILABILITY
All code used here can be found in the Github repository jschuetzke/synthetic-
spectra-benchmark.
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