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In this work, a physically based dislocation theory of
plasticity is derived within an extended continuum
mechanical context. An orientation-dependent grain
boundary flow rule is introduced for the modelling
of dislocation pile-up at grain boundaries and
dislocation transmission through grain boundaries.
With the conventional grain boundary modelling
approach according to Gurtin (Gurtin. 2008 J. Mech.
Phys. Solids 56, 640–662. (doi:10.1016/j.jmps.2007.05.
002)) the single-crystal consistency check for the limit
case of adjacent grains that hold no misorientation
is not satisfied. In order to overcome this modelling
shortcoming, a slip system coupling based on a
geometric measure of slip system compatibility is
introduced. In order to investigate the grain boundary
modelling approaches, the analytical solution of a
three-phase periodic laminate is used to study the
interactions of dislocations and grain boundaries
within the gradient crystal plasticity framework. With
the developed grain boundary model two grain
boundary states, i.e. microhard and microcontrolled,
are observed for misaligned grains. This allows the
modelling of slip activation at grain boundaries based
on the dislocation pile-up stress.

1. Introduction
In early work on gradient plasticity, grain boundaries
act as insurmountable barriers to plastic slip [1]. In such
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a microhard state, no plastic deformation occurs within the grain boundaries. In contrast to this
assumption, the microfree grain boundary condition implies that the grain boundaries allow
free dislocation transmission. In Gurtin & Needleman [2], microhard and microfree boundary
conditions are discussed in the context of gradient crystal plasticity. In order to model grain
boundary behaviour between these limit cases, slip transmission criteria must be introduced.

Experimentally, the grain boundary slip transmission can be investigated, e.g. by
nanoindentation. Hereby, the mechanical response to nanoindentation is recorded as a function
of distance to the grain boundary, cf. e.g. [3,4]. In Soer et al. [5], a displacement jump is
observed during the indentation of a nano-indenter close to a grain boundary. In Wang &
Ngan [6], it is shown that this so-called grain boundary pop-in effect is closely related to the
misorientation between slip systems at the grain boundary. The orientation-dependent tendency
of this behaviour is confirmed by Wo & Ngan [7]. The characterization is severely limited by the
instrumented indentation and recording resolution. Recent works address these issues and obtain
advances by automation of measurement and data analysis [8]. In addition to nanoindentation,
in situ electron microscope measurements and diffraction contrast electron tomography can be
used to investigate work hardening effects of dislocations [9], or dislocation-grain boundary
interactions [10]. With multiple dislocation systems being active simultaneously, however, the
investigation of dislocation-grain boundary interactions is complex. Models and simulations of
grain boundary slip transmission are needed to better understand the dislocation-grain boundary
interactions in polycrystalline materials.

Modelling approaches of grain boundaries can be categorized into continuum defect models,
diffuse interface models and sharp interface models, cf. the review article of Clayton [11]. In
the early work of Read & Shockley [12], a continuum dislocation model of low-angle grain
boundaries is constructed. The resulting grain boundary energy strongly depends on the relative
rotation of adjacent grains. In order to account for larger misorientation angles of high-angle
grain boundaries, Wolf [13] generalizes the Read–Shockley expression of the grain boundary
energy. Diffuse interface models treat grain boundaries as regions of finite width, defined through
the evolution of so-called phase fields. This allows the description of moving grain boundaries
kinetics, cf. e.g. the phase field—crystal plasticity coupling of Abrivard et al. [14]. In this work,
sharp interface models are considered, in which properties of crystals in the immediate vicinity of
the boundary are identical to those far from the interface. With the sharp interface representation,
the discontinuity and the transition of field variables, e.g. slip, across interfaces can be considered.
For an overview of slip transmission criteria within the simulations of polycrystalline materials
based on sharp interface models, the reader is referred to the review article of Bayerschen et al.
[15]. Some examples include dislocation density-based formulae for crystalline plasticity [16], a
modification of the classical crystal plasticity model in which slip transmission is allowed only
for small-angle boundaries [17], or atomistic simulations [18]. The geometric criteria for slip
transmission have in common that the transmission of dislocations occurs predominantly at low-
angle grain boundaries. In Liu et al. [19], it is shown that dislocation source activation occurs at
high-angle grain boundaries. This effect, however, is not considered in this work.

This work investigates the extrinsic grain boundary dislocation energy of Gurtin [20], which
depends on Nye’s dislocation density tensor [21]. The extrinsic grain boundary dislocation energy
accounts for the misorientation of slip systems between adjacent grains. The modelling of the
intra-grain and inter-grain dislocation interactions on different slip systems provides a physically
meaningful basis for polycrystalline structures. The pile-up of dislocations at the grain boundaries
and the transmission across the grain boundaries depends only on the corresponding extrinsic
grain boundary dislocation energy. This energy is formulated as a function of the left-hand limits
and right-hand limits of plastic slips at the grain boundaries. The common approach for the
grain boundary modelling is based on the assumption of independent plastic slip rates at the
grain boundaries. As shown in this work, this assumption leads to artefacts of slip distributions
across grain boundaries for the limit case of two adjacent grains that hold no misorientation.
For this limit case of equally orientated grains, and under the assumption of identical material
properties, the grain boundary should not be observable. The slip distribution that results
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from the assumption of independent plastic slip rates, however, is discontinuous across the
non-existing boundary. In order to overcome this modelling shortcoming, a new approach of
coupled slip systems at grain boundaries is introduced. Peng et al. [22] couple the plastic slips
for the incoming slip systems with the outgoing slip systems using kinematic relations under
the assumption of continuous plastic slip distributions across grain boundaries. In this work,
the general case of a discontinuous plastic slip distribution is considered. An additional grain
boundary flow rule is introduced based on the discontinuity of the plastic slip gradient. The
coupling of slip systems at the grain boundaries is formulated based on the geometric condition
of Werner & Prantl [23], thereby accounting for the dislocation transmission dependent on the
misorientation of slip systems. In Hamid et al. [24], a coupled grain boundary model is constructed
in a continuum dislocation dynamics framework. For each pair of slip systems, a slip transmission
coefficient, as introduced in Werner & Prantl [23], is calculated based on the angle between slip
planes and the angle between slip directions. The grain boundary strength is assumed as a linear
function of the slip transmission coefficient. Alipour et al. [25] formulate a grain boundary model
based on the geometric condition of Werner & Prantl [23] in a gradient-extended framework.
Hereby, an overall slip transmission coefficient is constructed based on all combinations of slip
systems. In contrast to Hamid et al. [24], the assumed dependency of the grain boundary yield
strength is able to predict the limiting case of a microhard grain boundary. Additionally to the
limiting case of a microhard grain boundary for strongly misaligned grains, the grain boundary
modelling approach presented in this work passes the single-crystal consistency check for the
limit case of equally orientated slip systems at grain boundaries.

In addition to the single-crystal consistency check the influence of a varying grain
misorientation is investigated. With the presented grain boundary modelling approach
misaligned grains at first behave microhard, i.e. no slip transmission across the grain boundary
occurs, until a critical state is reached. This is consistent with the experimental observations of Sun
et al. [26], where the distribution of dislocations within an aluminium bicrystal is investigated. At
lower strains, a pile-up of dislocations near the grain boundary is observed, which is flattened
at a higher strain. Whereas the common approach for grain boundary modelling is not able to
predict this behaviour, the presented approach accounts for the activation of grain boundary slip
by introducing a critical pileup stress, which depends on the misorientation angle between slip
systems of adjacent grains. Consequently, the presented model is able to predict an orientation-
dependent grain boundary behaviour, while accounting for the limits of a microfree grain
boundary behaviour for equally orientated grains and a microhard grain boundary behaviour
for strongly misaligned grains.

In this work, in order to investigate grain boundary slip transmission by an analytical solution,
a gradient crystal plasticity framework is applied to the shearing of a three-phase periodic
laminate structure for the special case of a single slip. A similar problem, i.e. the shearing of a
two-phase laminate structure consisting of an elasto-plastic phase and an elastic phase, has been
studied in Sedláček & Forest [27]. Forest & Sedláček [28] consider the boundary value problem
in order to compare dislocation-based, Cosserat and strain-gradient models of crystal plasticity.
In Forest [29], the extension to a cyclic deformation is made to investigate kinematic hardening.
Further applications to two-phase laminate have been made in Cordero et al. [30] and Aslan et al.
[31] to study size effects, as well as in Forest & Guéninchault [32] and Wulfinghoff et al. [33] to
study free energy potentials in gradient crystal plasticity. Erdle & Böhlke [34] consider a two-
phase laminate consisting of two elasto-plastic phases to study grain boundary effects within
gradient crystal plasticity. Prahs & Böhlke [35] consider a three-phase laminate structure to study
the influence of material parameters of the grain boundary modelling approach of Gurtin [20].
Hereby, however, the special case of coherent slip systems orthogonal to the grain boundaries is
considered, whereas in this work the influence of the orientation of slip systems and orientation
of grain boundaries on the transmission of slip is studied.

Notation: Vectors are denoted by lowercase letters in boldface, e.g. a, whereas tensors are
denoted by uppercase letters in boldface, e.g. A. The dot product between two vectors is defined
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by a · b = |a||b| cos (� (a, b)) and for tensors A · B = tr(A TB). The outer product is defined by
(u ⊗ v)a = (v · a)u. The cross product is defined by a × b = aibjεijkek, where ε = εijk ei ⊗ ej ⊗ ek with
i, j, k ∈ {1, 2, 3} denotes the permutation tensor and {e1, e2, e3} is an orthonormal basis. Moreover,
t = σn denotes the linear mapping n �→ t obtained by the multiplication between the second-order
tensor σ with a first-order tensor n. Similarly, σ = C[εe] denotes the linear mapping εe �→ σ , where
C is a fourth-order tensor and εe a second-order tensor. The jump -[a]- = a+ − a− and mean value
〈a〉 = (a+ + a−)/2 of an arbitrary vector field a are defined at a singular surface, where a+ and a−
denote the right-hand limit and left-hand limit of a at the singular surface, respectively.

2. Gradient crystal plasticity framework

(a) Kinematics and basic assumptions
Under the assumption of small deformations, i.e. ||grad(u)|| 	 1, the infinitesimal strain ε =
sym(grad(u)) is assumed to be additively decomposed into an elastic part εel and a plastic part εp,
i.e. ε = εel + εp. The general linear elastic anisotropic material law σ = C[εe] connects the Cauchy
stress tensor σ and elastic strains εel by a linear relationship. The plastic strain rate tensor

ε̇p =
N∑
α=1

γ̇αMs
α , (2.1)

is modelled by classical crystal plasticity superimposing slip rates γ̇α on the individual slip
systems, where α ∈ {1, . . . , N} denotes the slip indices and N is the number of slip systems. For
simplicity, following the work of Gurtin [20], it is assumed that the number of slip systems is
constant within the material. Each slip system is characterized by the corresponding symmetric
part of the Schmid tensor Ms

α = sym(dα ⊗ nα), with the slip plane normal vector nα and the slip
direction dα . For each slip system, the accumulated plastic slip

γαc =
∫

|γ̇α | dt, (2.2)

is introduced as an internal hardening variable. Note that the accumulated plastic slip is not a
directly observable quantity. Based on a phenomenological approach, evolution equations for
the dislocation densities can be constructed, e.g. by the Kocks–Mecking relation [36,37]. This
allows the calibration of a limited set of parameters by experiments and a computationally more
efficient modelling. For a model approach, which is based on densities of dislocations, the reader
is referred to the thermodynamic dislocation theory of Le [38] and the accompanying work on
dislocation-grain boundary interactions of Piao & Le [39].

(b) Principle of virtual power
In the following, local field equations are obtained for each slip system based on the principle
of virtual power. The microscopic and macroscopic force systems of the polycrystalline body are
introduced in Cermelli & Gurtin [40]. For the bulk material, additionally to the Cauchy stress
tensor σ that expends power over the elastic strain rate ε̇e, Cermelli & Gurtin [40] define for
each slip system α a scalar-valued microscopic stress πα that expends power over the slip rates
γ̇α and a vector-valued microscopic stress ξα that expends power over the slip rate gradients
grad(γ̇α) are introduced. For the grain boundaries, the microtractionsΠ+

α andΠ−
α are introduced,

which expend power over the right-hand limit and left-hand limit of the slip rates γ̇+
α and

γ̇−
α , respectively. Motivated by the framework of Gurtin & Needleman [2], the grain boundary

contributions are introduced in a form -[Παγ̇α]-. Please note that, due to the nature of the slip
systems and the corresponding slips γα , no continuity condition can be defined for the slips γ+

α ,
γ−
α on a grain boundary. In this work, cavitation at the grain boundaries and grain boundary slip

are not taken into account, i.e. -[u]- = 0. Based on the individual contributions the internal power
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is given as

Pint =
∫
V

(
σ · ε̇e +

N∑
α=1

(παγ̇α + ξα · grad(γ̇α))

)
dv +

∫
S

N∑
α=1

-[Παγ̇α]- da. (2.3)

The contributions to the power of external forces are chosen based on the work of Gurtin [1]. The
macroscopic system is defined by a body force density �b and a surface traction t̄, both associated
with u̇. Additionally, for each slip system α, a microscopic surface traction Π̄α is defined, which
is associated with the plastic slip rate γ̇α . Consequently, the power of external forces is given as

Pext =
∫
V
�b · u̇ dv +

∫
∂Vt

t̄ · u̇ da +
∫
∂VΠ

N∑
α=1

Π̄αγ̇α da, (2.4)

where ∂Vt denotes the Neumann boundary corresponding to t̄ and ∂VΠ denotes the Neumann
boundary corresponding to Π̄ .

The principle of virtual power states that for all generalized virtual velocities the internal and
external virtual powers are balanced, i.e.

δPint = δPext. (2.5)

With equations (2.3) and (2.4), the generalized virtual velocity is defined as the list δv = {δu̇, δγ̇α},
where δu̇ and δγ̇α denote the virtual counterparts of u̇ and γ̇α , cf. [41], p. 594. The generalization
of the principle of virtual power is given in Maugin [42] as theorem of energy, which states that
the rate of kinetic energy results from the difference of power of external forces and power of
internal forces. For the principle of virtual power, consequently, a vanishing rate of kinetic energy
is assumed. Please note that the theorem of energy is not valid for bodies which contain singular
surfaces. For a procedure consistent to Cermelli & Gurtin [40], however, the postulated principle
of virtual power is used.

At first, a generalized virtual velocity without slip is considered, so that δγ̇α = 0, cf. [40]. The
application of the divergence theorem and using the balance of angular momentum, i.e. σ = σ T,
results in the principle of virtual power

−
∫
V

(�b + div(σ )) · δu̇ dv +
∫
∂Vt

(σn − t̄)δu̇ da = 0. (2.6)

This equation has to be satisfied for all δu̇ and all subbodies. In a next step, a generalized virtual
velocity with δu̇ = 0 is considered. This results in

∫
V

N∑
α=1

(πα − div(ξα) − σ · Ms
α)δγ̇α dv

+
∫
∂VΠ

N∑
α=1

(ξα · n − Π̄α)δγ̇α da −
∫
S

N∑
α=1

(-[ξαδγ̇α]- · nS − -[Παδγ̇α]-) da = 0, (2.7)

where nS denotes the normal vector of the grain boundary. Equation (2.7) has to be satisfied for
all subbodies, i.e. for bulk material as well as for grain boundaries, separately. It follows

∫
V

N∑
α=1

(πα − div(ξα) − σ · Ms
α)δγ̇α dv +

∫
∂VΠ

N∑
α=1

(ξα · n − Π̄α)δγ̇α da = 0, (2.8)

and
∫
S

N∑
α=1

(ξ+
α · nS −Π+

α )δγ̇+
α da −

∫
S

N∑
α=1

(ξ−
α · nS −Π−

α )δγ̇−
α da = 0, (2.9)

for the bulk material and the grain boundaries, respectively. Since the virtual slip rates can be
varied independently, cf. (Gurtin [41], ch. 105), equations (2.8) and (2.9) has to be satisfied for
all δγ̇α , α= 1, . . . , N. With equations (2.6), (2.8) and (2.9) the following local field equations,
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Neumann boundary conditions and grain boundary conditions are obtained

πα − div(ξα) − τα = 0, ∀α ∈ {1, . . . , N}, ∀x ∈ V , (2.10)

�b + div(σ ) = 0, ∀x ∈ V , (2.11)

ξ±
α · nS −Π±

α = 0, ∀α ∈ {1, . . . , N}, ∀x ∈ S, (2.12)

ξα · n − Π̄α = 0, ∀α ∈ {1, . . . , N}, ∀x ∈ ∂VΠ , (2.13)

σn − t̄ = 0, ∀x ∈ ∂Vt. (2.14)

Here, for each slip system α, the resolved shear stress τα := σ · Ms
α is introduced. On the Dirichlet

boundary parts ∂Vu and ∂Vγ , where u and γ̇α are given, the virtual rates δu̇ and δγ̇α are assumed
to vanish.

(c) Dissipation inequality
The dissipation inequality is derived based on the work of Gurtin [20], where a purely mechanical
framework is considered. For isothermal processes, it is shown in Truesdell & Toupin [43], p. 639
that for any subregion of the body R, the temporal increase in free energy is less than or equal to
the power expended on it ∫

R
�ψ̇ dv ≤Pext(R), (2.15)

where ψ denotes the free energy per unit volume and Pext(R) denotes the power expended on
the subregion. The localization of equation (2.15) to an arbitrary regular point within the bulk
material results with equation (2.5) in

σ · ε̇e +
N∑
α=1

(παγ̇α + ξα · grad(γ̇α)) − �ψ̇V ≥ 0, (2.16)

where ψV denotes the free energy per unit volume of the bulk material. Additionally, with a
shrinkage of R to an arbitrary subsurface of the grain boundaries, equation (2.15) results in

N∑
α=1

-[Παγ̇α]- − �S ψ̇S ≥ 0, (2.17)

where ψS denotes the free energy per unit area of the grain boundaries.

(i) Bulk material

In the following, the free energy of the bulk material is assumed to depend on the elastic strain
εe and, for each slip system α, the internal hardening variable γαc and the slip gradient grad(γα),
i.e. ψV =ψV (εe, γαc, grad(γα)). Inserting in equation (2.16) and using the local field equation of
equation (2.10) results in the bulk material dissipation inequality

D =
(

σ − ∂�ψV
∂εe

)
· ε̇ +

N∑
α=1

(
ξα − ∂�ψV

∂grad(γα)

)
· grad(γ̇α)

+
N∑
α=1

(
∂�ψV
∂εe

· Ms
α + div(ξα) − ∂�ψV

∂γαc
sgn(γ̇α)

)
γ̇α ≥ 0,

∀ ε, ε̇, γα , γ̇α , grad(γα), grad(γ̇α).

(2.18)

For simplicity, it is assumed that the Cauchy stress σ and the vector-valued microscopic stresses
ξα are purely energetic stresses, cf. e.g. Bayerschen & Böhlke [44]. This results in the potential
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relations

σ = ∂�ψV
∂εe

(2.19)

and

ξα = ∂�ψV
∂grad(γα)

, ∀α ∈ {1, . . . , N}. (2.20)

Consequently, from equation (2.18), the reduced dissipation equation of the bulk material

Dred =
N∑
α=1

(
τα + div

(
∂�ψV

∂grad(γα)

)
− ∂�ψV

∂γαc
sgn(γ̇α)

)
γ̇α ≥ 0, (2.21)

is obtained. For a modelling approach of polycrystals that includes dissipative microscopic
stresses ξdis

α , cf., e.g. Bargmann & Reddy [45].
It is shown in Prahs & Böhlke [46] that the bulk material is dissipation free within a purely

mechanical framework, i.e. Dred = 0. This is equivalent to the assumption that the entire plastic
work is stored inside the material. The assumptions of the purely mechanical theory in Prahs &
Böhlke [46] are that the specific free energy can be additively decomposed into a mechanical and
a thermal contribution, that the temperature is constant in space and time and that heat supplies
are not present. With the assumption of a vanishing dissipation, a yield criterion function ϕα ≤ 0
is defined for each slip system in order to characterize plastic flow. For details on yield criterion
functions the reader is referred to Simo & Hughes [47]. In this work, the rate-independent yield
criterion of slip system α is specified by

ϕα :=
∣∣∣∣τα + div

(
∂�ψV

∂grad(γα)

)∣∣∣∣− ∂�ψV
∂γαc

. (2.22)

The loading and unloading conditions can be formulated in Kuhn–Tucker form with

ϕαγ̇αc = 0, ϕα ≤ 0, γ̇αc ≥ 0, ∀α ∈ {1, . . . , N}. (2.23)

(ii) Grain boundaries

Following the work of Gurtin [20], the free energy of the grain boundaries is assumed to depend
on the grain boundary Burgers tensor GS in a quadratic form

�SψS = 1
2
κ|| GS ||2, (2.24)

where the grain boundary strength κ is introduced as a material parameter. For the bulk material,
G measures the local Burgers vector, which represents the closure deficit of circuits deformed from
a perfect lattice, per unit area in the microstructural configuration within a finite deformation
setting. A gradient theory with a bulk material defect energy dependent on G is presented in
Gurtin [1], where G =∑

α ρ


α dα ⊗ dα + ρ�

α (nα × dα) ⊗ dα is expressed in terms of pure screw
dislocations ρ


α and pure edge dislocations ρ�
α . Additionally, for a small deformation theory,

G = curl(Hp) is given. Based on this, Gurtin [20] defines the grain boundary Burgers tensor
GS = -[Hp]-(nS×), which reads in index notation (GS )il = -[(Hp)ij]-εjkl(nS )k. A grain boundary is
referred to as defect-free if GS = 0. The Burgers vector production within the grain boundary
is given as ||ĠS ||. With Hp =∑

α γαdα ⊗ nα and equation (2.24) it follows that the free energy
of the grain boundaries depends on the right-hand limit and the left-hand limit of the plastic
slips as well as on the orientation of slip systems and the orientation of the grain boundaries, i.e.
ψS =ψS (γ+

α , γ−
α , d+

α , n+
α , d−

α , n−
α , nS ). With equation (2.17), the dissipation of the grain boundaries
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reads

DS =
N∑
α=1

(
-[Παγ̇α]- − ∂�SψS

∂γ+
α

γ̇+
α − ∂�SψS

∂γ−
α

γ̇−
α

)
≥ 0. (2.25)

With equation (2.12) this results in

DS =
N∑
α=1

(
−ξ+

α · n+
S − ∂�SψS

∂γ+
α

)
γ̇+
α +

N∑
β=1

(
−ξ−

β · n−
S − ∂�SψS

∂γ−
β

)
γ̇−
β ≥ 0, (2.26)

where nS = n−
S = −n+

S holds true, cf. e.g. [48]. In the following, based on the work of Prahs &
Böhlke [46], dissipation free grain boundaries are considered for the purely mechanical
framework which means again that the inelastic work is stored as defect energy in the grain
boundaries. Consequently, the presented framework considers only energetic dislocation grain-
boundary interactions, while neglecting the dissipative mechanisms, e.g. dislocation absorption
within grain boundaries. An approach to the modelling of dislocation absorption that could be
integrated into the presented framework is developed in Peng et al. [49]. The coupling of two
mechanisms, slip transmission and dislocation absorption, respectively, is presented in Peng et al.
[22]. Two approaches are presented in order to solve equation (2.26) for the unknown 2N grain
boundary slip values arising from a discontinuous slip distribution across grain boundaries.

Approach I (independent plastic slips): A conventional approach developed by Gurtin [20], here
called approach I, is the assumption of independent slip rates at the grain boundaries. For each
slip system on both sides of the grain boundary, i.e. for a total of 2N slip systems, a yield function
is formulated such that equation (2.26) is satisfied. With the assumption of dissipation free grain
boundaries and equation (2.12) the loading conditions of the grain boundaries can be formulated
in Kuhn–Tucker form

ϕ+
Sαγ̇

+
α = 0, ϕ+

Sα ≤ 0, γ̇+
α ≥ 0, ∀α ∈ {1, . . . , N},

ϕ−
Sβ γ̇

−
α = 0, ϕ−

Sβ ≤ 0, γ̇−
β ≥ 0, ∀β ∈ {1, . . . , N},

(2.27)

with the yield functions

ϕ+
Sα := ξ+

α · n+
S + �S

∂ψS
∂γ+
α

(2.28)

and ϕ−
Sβ := ξ−

β · n−
S + �S

∂ψS
∂γ−
β

. (2.29)

This approach is used, e.g. in the numerical simulations of Özdemir & Yalçinkaya [50] for the
two-dimensional case, or Gottschalk et al. [51] and McBride et al. [52] in three dimensions.

As later shown, the assumption of independent plastic slips at grain boundaries results in
artefacts of slip distributions across grain boundaries for the limit case of two adjacent grains that
hold no misorientation. For this limit case of vanishing misorientation, and under the assumption
of identical material properties, the adjacent grains should behave as if they were one grain, i.e.
displacement, slips and stresses should be continuous across the non-existing boundary with zero
interface energy. With ψS = 0, equations (2.28) and (2.29) directly results in ξ+

α · n+
S = 0, ∀α ∈

{1, . . . , N} and ξ−
β · n−

S = 0, ∀β ∈ {1, . . . , N}. With equation (2.20) and the common approach of
a quadratic dependency of the bulk material energy on the gradients of plastic slips, cf. e.g.
[53], this results in grad(γ+

α ) · n+
S = 0 and grad(γ−

β ) · n−
S = 0. While this result may be valid for

symmetric grain structures, it leads to artefacts of slip distributions for more general structures, as
later shown. In order to overcome this modelling shortcoming, a new grain boundary modelling
approach of coupled slip systems at grain boundaries is introduced.

Approach II (coupled slips): Without the assumption of independent plastic slip rates at the grain
boundaries, equation (2.26) reads for the special case of dissipation free grain boundaries

N∑
α=1

(
ξ+
α · n+

S + �S
∂ψS
∂γ+
α

)
γ̇+
α +

N∑
β=1

(
ξ−
β · n−

S + �S
∂ψS
∂γ−
β

)
γ̇−
β = 0. (2.30)
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In this dissipation free case, the dissipation equation is called pseudo dissipation equation or
non-dissipation condition. In contrary to approach I, additional equations which describe the
compatibility of adjacent slip systems are required. In order to derive the constitutive equations
for slip system coupling again the limit case of two adjacent grains with identical material
properties that hold no misorientation is considered. For this limit case, each slip system α has a
neighbouring slip system with which the distribution of slips should be continuous. For the limit
case, the numbering of slip systems is chosen such that γ+

α = γ−
α , ∀α= 1 . . .N. With ψS = 0 for the

limit case of vanishing misorientation, equation (2.30) results in

N∑
α=1

(ξ+
α − ξ−

α ) · nS = 0. (2.31)

In order to fulfil this limit case, while accounting for a compatibility based on the amount of
misorientation between adjacent slip systems, a geometric measure of slip system compatibility
λαβ is introduced for a slip system pair {α,β}. The dependency of λαβ based on the amount of
misorientation is introduced based on the work of Werner & Prantl [23] as

λαβ = cos
(
π

2δc
arccos (l+α · l−β )

)
cos

(
π

2κc
arccos (d+

α · d−
β )
)

, (2.32)

where δc and κc are the critical angles above which no dislocation transmission occurs and
l±α = (n±

α × nS )/||n±
α × nS || denotes the intersection lines that each plane makes with the interface.

The compatibility λαβ varies in between the limits λαβ = 0 for microhard slip system coupling
and λαβ = 1 for microfree slip system coupling. Whereas in Werner & Prantl [23], an overall slip
transmission coefficient is constructed based on all combinations of slip systems, in this work
geometrically efficient pathways for slip transmission across grain boundaries are constructed.
For each slip system α on the right-hand side of the grain boundary, the adjacent slip system
β on the left-hand side of the grain boundary with highest compatibility is searched, i.e.
maxβ (λαβ ). Consequently, the pairing of slip systems {α,β} results in a minimum hindrance for
slip transmission. Please note that, for simplicity, it is assumed that no transmission of slip from
one incoming slip system into multiple slip systems occurs and that the number of slip systems on
each side of the grain boundary is identical. Equation (2.31) motivates the constitutive equations
for slip system coupling across grain boundaries for each slip system pair {α,β}

(ξ+
α − ξ−

β ) · nS − ξ0
1 − λαβ

λαβ
= 0, ∀α ∈ {1, . . . , N}, maxβ (λαβ ), (2.33)

where ξ0 is introduced as the grain boundary misorientation parameter. Equation (2.33) accounts
for two aspects, which according to Beyerlein et al. [54] are important for slip transmission.
First the geometric aspect that the slip systems α and β have to be well aligned, quantified
by λαβ . Second the activation barrier for slip transmission, quantified by the grain boundary
misorientation parameter ξ0. The ability of an interface to transmit dislocations may change with
strain [54]. A grain boundary hardening could be introduced by a dependence of ξ0 on the mean
value of slip at the boundary, cf. e.g. Bayerschen et al. [55]. In this work, however, ξ0 is chosen
as a constant material parameter, resulting in a constant activation barrier. Equation (2.33) gives
N equations for the coupling of slip systems at grain boundaries, consequently, equation (2.30)
has to be formulated in such a way as to obtain one additional equation for each of the N slip
system pairs {α,β}. The sorting of equation (2.33) to account for the slip systems pairs {α,β} with
maxβ (λαβ ) results in

N∑
α=1

((
ξ+
α · n+

S + �S
∂ψS
∂γ+
α

)
γ̇+
α +

(
ξ−
β · n−

S + �S
∂ψS
∂γ−
β

)
γ̇−
β

)
= 0, maxβ (λαβ ). (2.34)

It is assumed that each summand is zero, i.e.(
ξ+
α · n+

S + �S
∂ψS
∂γ+
α

)
γ̇+
α +

(
ξ−
β · n−

S + �S
∂ψS
∂γ−
β

)
γ̇−
β = 0, ∀α ∈ {1, . . . , N}, maxβ (λαβ ). (2.35)
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Consequently, in combination with equation (2.33), a system of equations is obtained which
can be solved for the unknown 2N grain boundary slip values. The proposed grain boundary
modelling approach with coupled plastic slip rates at the grain boundaries does not result in the
artefacts which can be observed in approach I. For the limit case of vanishing misorientation, i.e.
λαβ = 1 ∀α ∈ {1, . . . , N}, maxβ (λαβ ) and ψS = 0 it directly follows from equations (2.33) and (2.35)
that the slips γα and microscopic stresses ξα are continuous across the non-existing boundary. In
order to compare the grain boundary model approaches for various slip system configurations an
analytical solution of a laminate microstructure is constructed.

To summarize: in a first step, based on the maximization of a measure of slip system
compatibility, a total of N slip system pairs are constructed for the 2N slip systems at a grain
boundary. For each of these pairs of slip systems, a constitutive coupling equation is introduced
by the set of equations given by equation (2.33). In a second step, the scalar pseudo grain
boundary dissipation equation, given in equation (2.30), is split into N partial dissipation
equations, one for each slip system pair, cf. equation (2.35). Note that the partitioning of the
pseudo dissipation equation results in equations that are sufficient to ensure the non-dissipation
condition. Consequently, N coupling equations and N partial grain boundary dissipation
equations are given, which is sufficient to solve equation (2.30) for the unknown 2N grain
boundary slip values.

The presented slip system coupling approach requires an equal number of slip systems on
both sides of the grain boundaries. Throughout the manuscript, following the work Gurtin [20],
it has been assumed that the number of slip systems is constant within the material. However,
it would be possible to introduce individual groups of interacting slip systems instead of unique
pairs. The equations for slip system coupling and pseudo grain boundary dissipation would have
to be reformulated accordingly.

3. Comparison of grain boundary models with an analytical solution

(a) Simulation set-up and constitutive assumptions
The gradient crystal plasticity framework is applied to an elasto-plastic laminate microstructure
in order to discuss the differences between the two grain boundary flow rules. The analytical
solution of the periodic laminate structure is given in appendix A. For the sake of simplicity, the
exact solution of the model problem is discussed under the assumption of single-slip with slip γ
and monotonic loading.

As shown in the schematic illustration of figure 1 the laminate, which is exposed to plane
strain, consists of three periodic layers. Two elasto-plastic layers A and B, coloured in light grey,
are separated by a grain boundary S with plane normal nS . The elastic layer E, coloured in dark
grey, results in microhard boundary conditions. The origin of the global coordinate system {e1, e2}
is located at the grain boundary of the adjacent elasto-plastic grains A and B. The widths of the
layers A, B and E are denoted by hA, hB and hE, respectively. Each elasto-plastic grain contains a
single slip system, characterized by slip direction vectors dA and dB and slip plane normal vectors
nA and nB. The misorientation between the slip system {dA, nA} and {dB, nB} is varied by the angle
ϑA. In Duda & Šilhavý [56], a kinematic analysis of dislocation walls between regions with only
one active slip system in each is performed. It is shown that the existence of a dislocation wall
requires one of three cases for the slip system configuration. The slip system configuration used
in this work satisfies Case B, i.e. nA · dA = nB · dB = 0, therefore a dislocation wall in between
grains A and B can exist.

The free energy in the bulk material within the small deformation framework is assumed to be
additively decomposed into three terms

ψV (εe, γ , grad(γ )) =ψe(εe) + ψg(grad(γ )) + ψh(γ ), (3.1)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 J

un
e 

20
23

 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220737

..........................................................

e1

e2

K̄

hA
hB hE

nA

dA

nB

dB

1

0

n

A

Figure 1. Undeformedperiodic laminatematerial anddeformedunit cell. Themisorientationbetween the slip system{dA,nA}
and {dB,nB} is described by the angleϑA.

i.e. an elastic energy contribution ψe, a defect energy contribution ψg and an isotropic hardening
energy contribution ψh. The elastic energy contribution is given by

�ψe = 1
2
εe · C[εe] = 1

2
(ε − εp) · C[ε − εp]. (3.2)

For the sake of simplicity, elastic isotropic material behaviour is considered. Consequently, the
stiffness matrix reads C = λI ⊗ I + 2μI

S, where λ and μ are so-called Lamé parameters. Hooke’s
Law for linear elastic isotropic solid bodies reads σ = λtr(εe)I + 2μεe. For the defect energy
density the phenomenological, quadratic approach

�ψg = 1
2

Kg||grad(γ )||2, (3.3)

is chosen, where Kg is a constant material parameter. Isotropic hardening is characterized by the
isotropic hardening energy

�ψh = 1
2

K0γ
2 + τ0γ , (3.4)

where K0 and τ0 are introduced as material parameters.
Additionally to the free energy of the bulk material, an extrinsic grain boundary dislocation

energy is introduced according to equation (2.24). For the special case of single slip the magnitude
of the grain boundary Burgers tensor reads

|| GS ||2 = CAAγ
2
SA + CBBγ

2
SB − 2CABγSAγSB, (3.5)

cf. [20], with right-hand limit of plastic slip γ+ = γSB and left-hand limit of plastic slip γ− = γSA.
The slip-interaction moduli depend on the orientation of the slip systems within the two grains
and the grain boundary normal vector nS

CAA = (nA × nS ) · (nA × nS ), (3.6)

CBB = (nB × nS ) · (nB × nS ) (3.7)

and CAB = (dA · dB)(nA × nS ) · (nB × nS ). (3.8)

CAA and CBB account for interactions between slip systems within the respective grain, whereas
CAB accounts for the interactions of slip systems between the two grains.
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The material parameters of the aluminium-type bulk material are chosen according to
Bayerschen et al. [55]. Isotropic elastic material behaviour is homogeneous within the laminate
material with μ= 27 GPa. The plastic behaviour in both elasto-plastic layers is also chosen to be
homogeneous with τ0 = 10 MPa, K0 = 1075 MPa and Kg = 84 µN. The grain boundary strength
is chosen according to Özdemir & Yalçinkaya [50] as κ = 2100 N m−1. The remaining material
parameters of grain boundary model approach II are chosen according to Alipour et al. [25] and
Beyerlein et al. [54] as δc = 15◦, κc = 45◦ and ξ0 = 10 N m−1.

(b) Comparison of grain boundary modelling approaches
(i) Limit case of coinciding slip systems

At first the limit case of coinciding slip systems is investigated. For this study, the width of the
elasto-plastic grain A is chosen to be hA = 0.5 µm, while the width of the elasto-plastic grain B
is varied between hB = hA and hB = hA/8. The width of the elastic layer is set to hE = 0.5 µm,
however, with the plastic slip being zero, the elastic layer is not depicted in the solutions.

For a macroscopic shear of K̄ = 0.005, figure 2a shows the exact solution of the plastic
slip distribution γ (x1) over the laminate for the grain boundary model approach I. The grain
boundary, which should not be observable for the limit case of coinciding slip systems, is located
at x1 = 0 µm. For the limit case of vanishing misorientation, the grain boundary model approach
I, given in equations (2.28) and (2.29), reads

ξB · nS + κ(γSA − γSB) = 0 (3.9)

and
ξA · nS + κ(γSA − γSB) = 0. (3.10)

A solution is obtained for ξA · nS = ξB · nS , i.e. the slip gradients in normal direction have to
coincide at the grain boundary. This can be observed in figure 2a for all hB ≤ hA. In the case of a
symmetric grain structure, i.e. hA = hB, the distribution of the plastic slip is continuous across the
grain boundary, with ξA · nS = ξB · nS = 0. For hB < hA, however, the plastic slip is discontinuous
with γSA > γSB. It can be seen that with decreasing grain width hB, the discontinuity of the plastic
slip at the grain boundary increases. The single-crystal consistency check is failed.

Figure 2b shows the exact solutions of the plastic slip distribution γ (x1) over the laminate using
grain boundary model approach II. In contrast to approach I, the distribution of the plastic slip in
solution II not only is continuous across the grain boundary for the case of hA = hB, but also for
all hB ≤ hA. Approach II for the grain boundary model, given in equations (2.33) and (2.35), reads
for the limit case of vanishing misorientation

ξB · nS − ξA · nS = 0, (3.11)

− (ξB · nS + κ(γSA − γSB))γ̇SB + (ξA · nS + κ(γSA − γSB))γ̇SA = 0. (3.12)

Equation (3.11) relates the discontinuity of the slip gradient at the grain boundary to the geometric
measure of slip system compatibility, which is zero for the limit case of vanishing misorientation.
As a result the slip gradients in normal direction of both sides of the grain boundary coincide and
equation (3.12) results in

(ξA · nS + κ(γSA − γSB))(γ̇SA − γ̇SB) = 0. (3.13)

Consequently, for the limit case of coinciding slip systems, a possible solution obtained with the
grain boundary model approach II is a continuous and continuous differentiable distribution of
the plastic slip across the grain boundary. The single-crystal consistency check is passed.

(ii) Variation of slip systemmisorientation

Additionally to the limit case of coinciding slip systems, the influence of a varying grain
misorientation with misorientation angles ϑA = {0◦, 10◦, 20◦, 30◦} is investigated. For simplicity,
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Figure 2. Comparison of grain boundary model approach I (a) and approach II (b) for the limit case of coinciding slip systems
with a macroscopic shear of K̄ = 0.005. The exact solutions for the plastic slip γ (x1) are shown for a varying grain width hB.

the three layers of the laminate are equally sized with hA = hB = hE = 0.5 µm. The laminate is
exposed to a macroscopic shear strain of K̄ = 0.005.

Figure 3 shows the exact solutions of the plastic slip distributions over the laminate structure
with the use of grain boundary model approach I and grain boundary model approach II,
respectively. For ϑA = 0◦, i.e. limit case of coinciding slip systems at the grain boundary, the single-
crystal solution is obtained. For approach I, depicted in figure 3a, all solutions which include a
misorientation between adjacent slip systems result in a discontinuous distribution of the plastic
slip at the grain boundary. It can be seen that with increasing grain misorientation angle, the
discontinuity of the plastic slip at the grain boundary slightly increases. For approach II, shown
in figure 3b, however, a more distinct discontinuity is observed at the grain boundary. Whereas
for approach I, the discontinuity of slip is almost constant for a varying misorientation angle,
for approach II, the discontinuity of slip increases strongly with lower slip system compatibility.
Additionally, based on the amount of the misorientation, the gradient of plastic slip increases.
This can be related to the amount of dislocations, which are piled-up at the grain boundary.

In order to investigate the differences of the solutions obtained by grain boundary model
approach I and approach II, the laminate is exposed to an increasing macroscopic shear strain
of K̄ ∈ {0, . . . , 0.005}. This allows the investigation of the grain boundary states during loading.
In figure 4, the effective stress–strain curves are shown with the use of grain boundary model
approach I and grain boundary model approach II, respectively. While for approach I, shown in
figure 4a, only two sectors of the stress–strain curve are observable, three grain boundary states
can be identified for approach II, which is shown in figure 4b:

— Elastic: No yield condition is satisfied. The plastic slip is zero.
— Microhard: The yield condition is satisfied only in the bulk material but not in the grain

boundary. Dislocations pile-up at the grain boundary.
— Microcontrolled: The yield condition is satisfied in the bulk material as well as in the

grain boundary. Grain boundary plasticity occurs.

The resistance of the grain boundary against dislocation transmission strongly depends on
the geometric measure of slip system compatibility. This results in an orientation-dependent
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Figure 3. Comparison of grain boundary model approach I (a) and approach II (b) for a varying misorientation angleϑA with
a macroscopic shear of K̄ = 0.005. The exact solutions for the plastic slip γ̃ (x̃1) are shown in the local coordinate systems.
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Figure 4. Comparison of effective stress obtained with grain boundarymodel approach I (a) and approach II (b) for misaligned
grains with a varying misorientation angleϑA.

transition point of the microcontrolled grain boundary state. For ϑA = 0◦, i.e. limit case of
coinciding slip systems, dislocations can cross the grain boundary without hindrance. The
amount of dislocations piled-up at the grain boundary before the critical stress for grain boundary
transmission is reached is higher for lower slip system compatibility, i.e. a higher misorientation
angle. For ϑA = 10◦, the effective stress which results from the different grain boundary model
approaches is similar, the transition from a microhard to a microcontrolled grain boundary state
occurs immediately. For ϑA = 20◦ and ϑA = 30◦, however, a distinct microhard grain boundary
state is observable in the solution obtained by grain boundary model approach II. The coupling
of the slip system results in higher effective stresses for slip system configurations with low slip
system compatibility.
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Figure 5. Exact solutions for the evolution of the plastic slip γ̃ (x̃1) in the local coordinate systems for grain boundary model
approach I (a) and approach II (b) with grain misorientationϑA = 20◦.

To illustrate the different grain boundary states that occur during the loading process, the
distribution of the plastic slip over the laminate structure is shown for ϑA = 20◦ in figure 5
for the four loading states labelled in figure 4. For approach I shown in figure 5a, plastic slip
evolves at the grain boundary as soon as the initial critical resolved shear stress occurs. The grain
boundary always behaves microfree. For approach II, shown in figure 5b, the grain boundary
at first is microhard. After a sufficient amount of dislocations piled-up at the grain boundary,
the grain boundary flow condition is fulfilled and grain boundary slip is permitted. For this
microcontrolled grain boundary state, the discontinuity of the plastic slip evolves. The two stages
of grain boundary behaviour which are observed in Sun et al. [26], i.e. build-up of dislocations
near the grain boundary and a vanishing peak at higher strain levels, can be modelled.

4. Summary and conclusion
A gradient crystal plasticity framework was applied to a three-phase periodic laminate
microstructure in order to investigate dislocation transmission through grain boundaries with an
analytical solution. An extrinsic grain boundary dislocation energy according to Gurtin [20] based
on the geometric dislocation tensor was used in order to account for a grain boundary resistance
against dislocation transmission based on the misorientation angle of adjacent slip systems.

It was shown that with the conventional grain boundary modelling approach based on the
assumption of independent plastic slips at the grain boundary the single-crystal consistency
check for the limit case of two adjacent grains that hold no misorientation is failed. A continuous
distribution of the plastic slip across the non-existing grain boundary is expected, however, a
discontinuous distribution is observed. In order to overcome this modelling shortcoming, a new
grain boundary modelling approach including a coupling of slip systems was introduced. Hereby,
the discontinuity of the plastic slip gradient at the grain boundary is correlated to a geometric
measure of slip system compatibility. The presented grain boundary modelling approach is able
to predict the two limit cases of a microfree grain boundary behaviour for equally orientated
grains and a microhard grain boundary behaviour for strongly misaligned grains.

Various misorientation angles between adjacent slip systems were investigated in order
to evaluate the influence of the slip system compatibility on the mechanical response of the
crystalline structure. Under the assumption of independent slip rates at the grain boundary
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the boundary always behaves microfree. With the introduction of slip system coupling at first
a microhard grain boundary state was observed. This results in a pile-up of dislocations at
the grain boundary until a critical state is reached. The critical pile-up stress for dislocation
transmission depends on the misorientation angle between the slip systems of adjacent grains.
Consequently, the introduction of slip system coupling allows the modelling of dislocation
transition across grain boundaries based on the compatibility of adjacent slip systems. The
presented grain boundary modelling approach provides a promising framework for the
modelling of polycrystalline materials within a finite-element implementation, where various
misorientation angles and grain sizes are involved.
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Appendix A. Analytical solution of the periodic laminate structure

(a) Displacement field, strain and stress
In order to account for a misorientation between the two adjacent elasto-plastic grains, a local
coordinate system {ẽ1, ẽ2} is introduced within each grain. The transformation from the global
into the local coordinate system is performed by a rotation about the e3 -axis by the angles ϑA
and ϑB for grains A and B, respectively. For simple shear, the displacement field is assumed in the
form

ũ = ũ1(x̃2)ẽ1 + ũ2(x̃1)ẽ2. (A 1)

An elastic isotropic and homogeneous material is assumed. The infinitesimal strain tensor in the
local coordinate system is defined by

ε̃ = sym(grad(ũ)) = 1
2

(
dũ1

dx̃2
+ dũ2

dx̃1

)
(ẽ1 ⊗ ẽ2 + ẽ2 ⊗ ẽ1). (A 2)

With the assumption of a monotonous evolution of the plastic slip, the plastic strain tensor results
from equation (2.1) as

ε̃p = γ̃ M̃s = 1
2
γ̃ (ẽ1 ⊗ ẽ2 + ẽ2 ⊗ ẽ1). (A 3)

With the local Cauchy stress tensor

σ̃ = C̃[ε̃ − ε̃p] =μ

(
dũ1

dx̃2
+ dũ2

dx̃1
− γ̃

)
(ẽ1 ⊗ ẽ2 + ẽ2 ⊗ ẽ1), (A 4)

the resolved shear stress results in

τ̃ = σ̃ · M̃s =μ

(
dũ1

dx̃2
+ dũ2

dx̃1
− γ̃

)
. (A 5)
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(b) Analytical solution for plastic slip
With the introduced free energy of the bulk material, cf. equations (3.2)–(3.4), and the potential
relation, given in equation (2.20), it follows:

∂�ψV
∂γ

= K0γ + τ0, ξ = ∂�ψV
∂grad(γ )

= Kg grad(γ ). (A 6)

With equation (2.22), the inhomogeneous second-order linear ordinary differential equation in the
local coordinate system is obtained

Kg
d2γ̃

dx̃2
1

− K0γ̃ = −μ
(

dũ1

dx̃2
+ dũ2

dx̃1
− γ̃

)
+ τ0. (A 7)

With the assumption of equation (A 1) for simple shear, equation (2.11) results in

0 =μ
d2ũ1

dx̃2
2

and 0 =μ

(
d2ũ2

dx̃2
1

− dγ̃
dx̃1

)
. (A 8)

Integration results in the displacement fields

ũ1A = kuAx̃2 + duA, ũ1B = kuBx̃2 + duB, u1E = kuEx2 + duE (A 9)

and

ũ2A =
∫
γ̃A dx̃1 + kvAx̃1 + dvA, ũ2B =

∫
γ̃B dx̃1 + kvBx̃1 + dvB, u2E = kvEx1 + dvE, (A 10)

where kuA, kuB, kuE, duA, duB, duE and kvA, kvB, kvE, dvA, dvB, dvE are 12 unknown integration
constants. With these relations the plastic slip distribution within grain A

γ̃A(x̃1) = c1A exp

(√
K0

Kg
x̃1

)
+ c2A exp

(
−
√

K0

Kg
x̃1

)
+ G(kuA + kvA) − τ0

K0
, (A 11)

and the plastic slip distribution within grain B

γ̃B(x̃1) = c1B exp

(√
K0

Kg
x̃1

)
+ c2B exp

(
−
√

K0

Kg
x̃1

)
+ G(kuB + kvB) − τ0

K0
, (A 12)

result from equation (A 7), with constants c1A, c2A, c1B, c2B. In the following, the boundary
conditions are introduced to determine the 16 constants.
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(c) Boundary conditions
(i) Boundary conditions for plastic slip

At the grain boundaries between an elasto-plastic grain and the elastic grain no plastic
deformation occurs. Consequently, the grain boundaries are microhard, i.e.

γ̃A

(
x̃1 = − hA

cos (ϑA)

)
= 0 and γ̃B

(
x̃1 = hB

cos (ϑB)

)
= 0. (A 13)

At the grain boundary between the two elasto-plastic grains, in general, a discontinuous
distribution of the plastic slip is assumed. With the right-hand limit γSB and a left-hand limit
γSA, the boundary conditions read

γ̃A(x̃1 = 0) = γSA and γ̃B(x̃1 = 0) = γSB. (A 14)

With equations (A 13)–(A 14) four boundary conditions are obtained, which are sufficient to solve
for the four constants c1A, c2A, c1B and c2B.

(ii) Boundary conditions for the displacement field

The laminate is exposed to a simple shear deformation. For this case four loading conditions can
be determined. At x2 = 0, no displacement occurs, i.e.

u1A(x1, x2 = 0) = u1B(x1, x2 = 0) = u1E(x1, x2 = 0) = 0. (A 15)

At x2 = 1, the constant macroscopic shear strain K̄ is applied, i.e.

u1A(x1, x2 = 1) = u1B(x1, x2 = 1) = u1E(x1, x2 = 1) = K̄. (A 16)

Additionally to the loading conditions, the continuity of the displacement field

u2A(x1 = 0, x2) = u2B(x1 = 0, x2) (A 17)

and
u2B(x1 = hB, x2) = u2E(x1 = hB, x2) (A 18)

and the continuity of the stress vector

-
[
σnS

]
- = 0, nS = e1, (A 19)

is taken into account. Finally, u2 is assumed to be a periodic fluctuation field. With the continuity
of u2 at the grain boundaries, the periodicity condition reads∫ 0

−hA

∂u2A

∂x1
dx1 +

∫ hB

0

∂u2B

∂x1
dx1 +

∫ hB+hE

hB

∂u2E

∂x1
dx1 = 0. (A 20)

The definition of u2 as fluctuation requires∫ 0

−hA

u2A dx1 +
∫ hB

0
u2B dx1 +

∫ hB+hE

hB

u2E dx1 = 0. (A 21)

With equations (A 15)–(A 21), 12 boundary conditions are obtained, which are sufficient to solve
for the 12 integration constants of the displacement fields uA, uB and uE.
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28. Forest S, Sedláček R. 2003 Plastic slip distribution in two-phase laminate microstructures:
dislocation-based versus generalized-continuum approaches. Phil. Mag. 83, 245–276.
(doi:10.1080/0141861021000022255)

29. Forest S. 2008 Some links between Cosserat, strain gradient crystal plasticity and the statistical
theory of dislocations. Phil. Mag. 88, 3549–3563. (doi:10.1080/14786430802154815)

30. Cordero NM, Gaubert A, Forest S, Busso EP, Gallerneau F, Kruch S. 2010 Size effects in
generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58,
1963–1994. (doi:10.1016/j.jmps.2010.06.012)

31. Aslan O, Cordero NM, Gaubert A, Forest S. 2011 Micromorphic approach to single crystal
plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325. (doi:10.1016/j.ijengsci.2011.03.008)

32. Forest S, Guéninchault N. 2013 Inspection of free energy functions in gradient crystal
plasticity. Acta Mech. Sin. 29, 763–772. (doi:10.1007/s10409-013-0088-0)

33. Wulfinghoff S, Forest S, Böhlke T. 2015 Strain gradient plasticity modeling of the
cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20. (doi:10.1016/
j.jmps.2015.02.008)

34. Erdle H, Böhlke T. 2017 A gradient crystal plasticity theory for large deformations
with a discontinuous accumulated plastic slip. Comput. Mech. 60, 923–942. (doi:10.1007/
s00466-017-1447-7)

35. Prahs A, Böhlke T. 2020 On interface conditions on a material singular surface. Contin. Mech.
Thermodyn. 32, 1417–1434. (doi:10.1007/s00161-019-00856-1)

36. Mecking H, Lücke K. 1970 A new aspect of the theory of flow stress of metals. Scr. Metall. 4,
427–432. (doi:10.1016/0036-9748(70)90078-5)

37. Kocks F, Mecking H. 2003 Physics and phenomenology of strain hardening: The FCC case.
Prog. Mater Sci. 48, 171–273. (doi:10.1016/S0079-6425(02)00003-8)

38. Le KC. 2018 Thermodynamic dislocation theory for non-uniform plastic deformations.
J. Mech. Phys. Solids 111, 157–169. (doi:10.1016/j.jmps.2017.10.022)

39. Piao Y, Le KC. 2022 Thermodynamic theory of dislocation/grain boundary interaction.
Contin. Mech. Thermodyn. 34, 763–780. (doi:10.1007/s00161-022-01088-6)

40. Cermelli P, Gurtin ME. 2002 Geometrically necessary dislocations in viscoplastic single
crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39, 6281–6309.
(doi:10.1016/S0020-7683(02)00491-2)

41. Gurtin ME, Fried E, Anand L. 2010 The mechanics and thermodynamics of continua. Cambridge,
UK: Cambridge University Press.

42. Maugin GA. 1993 Material inhomogeneities in elasticity, 1st edn. London, UK: Chapman and
Hall.

43. Truesdell C, Toupin R. 1960 In The Classical Field Theories (ed. S Flügge), pp. 226–858. Berlin,
Heidelberg: Springer.

44. Bayerschen E, Böhlke T. 2016 Power-law defect energy in a single-crystal gradient plasticity
framework: a computational study. Comput. Mech. 58, 13–27. (doi:10.1007/s00466-016-1279-x)

45. Bargmann S, Reddy BD. 2011 Modeling of polycrystals using a gradient crystal plasticity
theory that includes dissipative micro-stresses. Eur. J. Mech. A. Solids 30, 719–730.
(doi:10.1016/j.euromechsol.2011.04.006)

46. Prahs A, Böhlke T. 2022 The role of dissipation regarding the concept of purely
mechanical theories in plasticity. Mech. Res. Commun. 119, 103832. (doi:10.1016/
j.mechrescom.2021.103832)

47. Simo JC, Hughes TJR. 1998 Computational inelasticity. Interdisciplinary Applied Mathematics,
7. New York, NY: Springer.

48. Müller I. 1985 Thermodynamics. Interaction of Mechanics and Mathematics Series. Boston, MA:
Pitman.

49. Peng XL, Husser E, Huang GY, Bargmann S. 2018 Modeling of surface effects in crystalline
materials within the framework of gradient crystal plasticity. J. Mech. Phys. Solids 112, 508–522.
(doi:10.1016/j.jmps.2018.01.007)
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