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1 Introduction

High rates and clean signatures of top quark production processes at the LHC have ushered
the era of high-precision exploration of top quark properties. Such studies can be performed
in processes where top quarks and anti-top quarks are produced in pairs via strong inter-
actions, and also in processes where single top quarks are produced by flavor-changing
electroweak charged currents.

Among many interesting quantities that one can study in such processes, the top
quark mass plays a particularly important role. Experimentally, the top quark mass is
already measured with very high precision and further improvements are expected at the
high-luminosity LHC.1 Theoretically, there is a debate about non-perturbative effects that
affect all existing top quark measurements and require better understanding.

1For a recent review of top quark physics, including the mass measurements and the discussion of future
prospects, see ref. [1].
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In the past, many of these discussions were framed as a dispute about the type of
mass that is best extracted from a particular measurement.2 It was sometimes argued that
short-distance mass renormalisation schemes, for example the MS scheme, are preferable
over the pole-mass scheme because the pole mass is affected by infrared renormalons [3, 4].
Studies of the apparent convergence of the perturbative expansion in different mass schemes
have also been performed to support these arguments [5–7].

However, it is far from obvious that the top quark mass renormalon is the only renor-
malon that affects top quark production, in spite of being the one that has attracted most
attention. Moreover, since no first-principles understanding of the non-perturbative ef-
fects in hadron collider processes currently exists, ultra-precise determinations of many
fundamental parameters at the LHC, including the top quark mass, remain obscure.

A possible step towards a better understanding of the non-perturbative contributions
to relevant LHC processes, including heavy quark production, is to study power corrections
using renormalon calculus.3 This technique works under the assumption that the renor-
malon contributions are dominated by the large value of b0, the coefficient of the leading
term of the QCD β-function. More specifically, one starts with a model theory with a
large negative value of massless quark species nf , and considers only the dominant terms
in the perturbative expansion, proportional to powers of αsnf . In this limit the coefficient
of the leading term of the beta function equals b0,nf = −4TFnf/(12π); it is positive for
negative nf , so that the model theory is asymptotically free. At the end of the calculation
one replaces b0,nf with b0-value in QCD, b0 = (11CA − 4TFnf )/(12π).

It turns out that the results in the large-b0 approximation can be easily obtained from
calculations in QCD where the gluon carries a small mass λ. It can be shown that, if an
observable is linearly sensitive to λ, there is a renormalon in the perturbative expansion of
this observable associated with a power correction of order ΛQCD. This procedure is well
known, and it has been reviewed in ref. [10], where many applications are also discussed. A
complete account of how these calculations are carried out, also including the contribution
of non-inclusive real corrections, is given in appendix B of ref. [9].

Unfortunately, the application of the renormalon calculus is currently limited to pro-
cesses where no gluons appear in the Feynman diagrams that contribute at the lead-
ing order. This feature prevents us from applying the renormalon analysis to studying
non-perturbative effects in the top quark pair production process. However, the non-
perturbative contributions to the t-channel single top production process can be analysed
using the renormalon calculus, since at the leading order this process is a flavor-changing
quark-quark scattering mediated by the exchange of a W -boson.

We will show that such non-perturbative contributions can be determined for a class of
processes pp→ t+X+q, where X is an arbitrary collection of colourless particles, using the
so-called Low-Burnett-Kroll (LBK) theorem [11, 12],4 which allows one to obtain the first
sub-leading contribution to the expansion of the scattering amplitude for soft radiation.

2An account of the different point of views with the associated references is given in section 6.5.1 of
ref. [2].

3For recent applications see refs. [8, 9].
4For recent literature on the LBK theorem see ref. [13] and references therein.
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Following the logic of the LBK theorem, we will also be able to compute the renormalon
structure of the virtual corrections to the same generic process.5

The rest of the paper is organised as follows. In the next section we discuss the real
emission contribution to the process pp→ t+q+g+X and explain how the O(λ) corrections
to the fully-differential partonic cross section can be computed using the Low-Burnett-Kroll
theorem. In section 3 we generalise this result to the computation of the virtual corrections.
In section 4 we combine the virtual corrections with various renormalisation contributions.
In section 5 we explain how to compute the change in the cross section due to a top quark
mass redefinition. In section 6 we combine the various contributions and show that the
linear O(ΛQCD) power corrections cancel in the total cross section provided that a short-
distance top-quark mass scheme is used. In section 7 we illustrate an alternative way to
compute the effect of the self-energy insertions in the external top line, that allows one to
perform the calculation directly in any short-distance mass scheme. In section 8 we describe
the computation of the O(ΛQCD) corrections to observables that depend on the top quark
momentum; at variance with the total cross section, we find that there are linear power
corrections to such observables. We present our conclusions in section 9. In appendix A
we provide results for real and virtual integrals that we have used in the calculation, while
in appendix B we show how to reproduce the well-known result [3, 16] on the absence of
the O(ΛQCD) corrections to semileptonic decays of a heavy quark using our technique.

2 Real emission contribution to single top production and the
Low-Burnett-Kroll theorem

We consider the process of t-channel single top production in association with a colourless
system X

u(pu) + b(pb)→ d(pd) + t(pt) +X(pX), (2.1)

and write the kinematics for the real correction to this process due to the emission of a
massive gluon as follows

u(pu) + b(pb)→ d(qd) + t(qt) +X(pX) + g(k). (2.2)

We note that we have used different notations for the four-momenta of the top quark and
the down quark in the two cases. This is done for future convenience since, as we will see,
these momenta will absorb the recoil due to the emitted soft gluon.

The gluon can be emitted from the “light” quark line (i.e. the fermion line going from
the up to the down quark) or from the “heavy” quark line (i.e. the one from the bottom
quark to the top quark). However, since the process is mediated by an exchange of a
colourless W -boson, the two contributions do not interfere because of colour conservation.
As explained in ref. [8], emissions off the light-quark line cannot produce linear power cor-
rections; for this reason we do not discuss them further and focus instead on the emissions
off the heavy quark line.

5We note that the connection between linear power corrections, soft radiation and the LBK theorem
was pointed out a long time ago in refs. [14, 15].

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
3

u d

b

X

t

u d

b

X

t

k

u d

b

X

t

k

u d

b

X

t

k

Figure 1. Leading order and the relevant real emission contributions to a single top production
process. The blob in the center represents the function N. We emphasise that there is no colour
transfer from the light quark line to the heavy quark line, see text for details.

It is also explained in ref. [8] that one can only obtain O(λ) contributions to the cross
section of the process eq. (2.2) if the gluon g(k) is soft. However, since the leading term in
the soft expansion corresponds to O(λ0), the first sub-leading term in the soft expansion
is required. Such term can be obtained in a process-independent way using the LBK
theorem [11, 12], as we now explain.

We write the amplitude extracting the strong coupling constant, the colour factor and
the gluon polarisation vector. It reads

Areal = gsT
a
ijεµMµ, (2.3)

where a, i, j are the gluon, top-quark and b-quark colour indices and ε is the gluon polari-
sation vector. The reduced amplitudeMµ reads

Mµ = ū(qt)γµ
/qt + /k +mt

dt
N(qt + k, pb, qd, . . .)u(pb)

+ ū(qt)N(qt, pb − k, qd, . . .)
/pb − /k
db

γµu(pb) +Mµ
reg(qt, pb, qd, . . . |k),

(2.4)

where dt = (qt + k)2 − m2
t = 2qtk + λ2 and db = (pb − k)2 = −2pbk + λ2. The three

terms on the right-hand side of eq. (2.4) describe contributions where a gluon is emitted
off an external top-quark line, an external b-quark line and, finally, off any internal part of
the “heavy” line of the process, respectively. They are illustrated in figure 1. In the soft
k ∼ λ→ 0 limit, the first two terms in eq. (2.4) scale as 1/λ whereas the third term scales
as λ0. Hence, to compute the amplitude through sub-leading terms in the soft expansion,
Mµ

reg(qt, pb, qd, . . . |k) is required.
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The matrix function N, which can be understood as a Green’s function of a Born-like
process eq. (2.1) with amputated t and b lines, can be used to write the amplitude for the
elastic no-emission process u(pu) + b(pb)→ d(pd) + t(pt) +X(pX)

A0 = δij ū(pt)N(pt, pb, pd, . . .)u(pb). (2.5)

We note that we always assume that the energy-momentum conservation condition has
been used to express the function N in eqs. (2.4), (2.5) through a unique set of momenta.

In general, diagrams where gluons are only emitted from the external t and b legs
are not gauge invariant on their own; this fact can be used to determine the amplitude
Mµ

reg(qt, pb, qd, . . . |k) [11, 12]. To this end, we compute the scalar product ofMµ with kµ
and demand that the result vanishes, as required by current conservation. We then find

0 = ūtN(qt + k, pb, qd, . . .)ub − ūtN(qt, pb − k, qd, . . .)ub + kµMµ
reg(qt, pb, qd, . . . |k), (2.6)

where, for ease of notation, we do not display the arguments of the external spinors, i.e.
ūt(qt)⇒ ūt and ub(pb)⇒ ub. We will employ this notation through the end of this section.

We solve eq. (2.6) to zeroth order in the gluon momentum k by expanding the function
N and the functionMµ

reg in Taylor series in k. Neglecting terms of order k2, we find

0 = kµūt

[
∂N(qt, pb, qd, . . .)

∂qµt
+ ∂N(qt, pb, qd, . . .)

∂pµb

]
ub + kµMµ

ext(qt, pb, qd, . . . |k = 0). (2.7)

This equation should hold for any k; therefore

Mµ
ext(qt, pb, qd, . . . |k = 0) = −ūt

[
∂N(qt, pb, qd, . . .)

∂qt,µ
+ ∂N(qt, pb, qd, . . .)

∂pb,µ

]
ub. (2.8)

To proceed further, we simplify the expressions for diagrams where the gluon is emitted
off the external lines. We write

ūtγ
µ /qt + /k +mt

dt
= ūt

2qµt + kµ + σµνkν
dt

= ūt [Jµt + Sµt ] , (2.9)

where σµν = 1
2 [γµ, γν ] and we introduced spin-independent and spin-dependent currents

Jµt = 2qt + kµ

dt
, Sµt = σµνkν

dt
, (2.10)

which describe the gluon emission off the top quark. Similarly,

/pb − /k
db

γµub = 2pµb − kµ + σµνkν
db

ub =
[
Jµb + Sµb

]
ub, (2.11)

where

Jµb = 2pµb − kµ

db
, Sµb = σµνkν

db
. (2.12)
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We can use these results to write the amplitude for a single gluon emission through
the first sub-leading terms in the soft expansion. We find

Mµ = Jµt ūtN(qt + k, pb, qd, . . .)ub + Jµb ūtN(qt, pb − k, qd, . . .)ub
+ ūt

[
Sµt N(qt, pb, qd, . . .) + N(qt, pb, qd, . . .)Sµb

]
ub

− ūt

[
∂N(qt, pb, qd, . . .)

∂qt, µ
+ ∂N(qt, pb, qd, . . .)

∂pb, µ

]
ub.

(2.13)

We can further simplify this expression by expanding the first two terms to first sub-
leading order in k and combining them with the last two terms in the above formula.
We find

Mµ = JµūtN(qt, pb, qd, . . .)ub + ūt(LµN(qt, pb, qd, . . .))ub
+ ūt

[
Sµt N(qt, pb, qd, . . .) + N(qt, pb, qd, . . .)Sµb

]
ub.

(2.14)

In writing eq. (2.14) we introduced the notation

Jµ = Jµt + Jµb , Lµ = Lµt − L
µ
b , (2.15)

with
Lµt = Jµt k

ν ∂

∂qνt
− ∂

∂qt,µ
(2.16)

and
Lµb = Jµb k

ν ∂

∂pνb
+ ∂

∂pb,µ
. (2.17)

Eq. (2.14) gives the desired result as it expresses the amplitude that describes the
emission of a single soft gluon through an elastic amplitude and its derivatives. Further
simplifications occur if we square the amplitude and sum over the polarisations of the
external particles. To see this, we write the conjugate amplitude

Mµ,+ = JµūbN̄ut + ūb(LµN̄)ut − ūb
[
N̄Sµt + Sµb N̄

]
ut, (2.18)

(where for ease of notation we have dropped the arguments of N), and use it to compute
the squared amplitude summed over polarisations of the external particles through the first
sub-leading term in the soft expansion. We obtain

|M|2 = −gµνMµMν,+ =− JµJµFLO(qt, pb, qd, . . .)

− JµTr
[
(/qt +mt)N/pbL

µN̄
]
− JµTr

[
(/qt +mt)(LµN)/pbN̄

]
+ JµTr

[
[Sµt , /qt]N/pbN̄

]
+ JµTr

[
(/qt +mt)N[/pb,S

µ
b ]N̄

]
, (2.19)

where
FLO(qt, pb, qd, . . .) = Tr

[
(/qt +mt)N/pbN̄

]
. (2.20)

Since
[Sµt , /qt] = −Lµt /qt = −Lµ/qt, [/pb,S

µ
b ] = Lµb /pb = −Lµ/pb, (2.21)
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we find

|M|2 =− JµJµFLO(qt, pb, qd, . . .)

− JµTr
[
(/qt +mt)N/pbL

µN̄
]
− JµTr

[
(/qt +mt)(LµN)/pbN̄

]
(2.22)

− JµTr
[
(Lµ(/qt +mt))N/pbN̄

]
− JµTr

[
(/qt +mt)N(Lµ/pb)N̄

]
.

Making use of the fact that Lµ is a linear differential operator, we combine the last
four terms to obtain a derivative of the leading order function FLO. The final result reads

|M|2 = −JµJµFLO(qt, pb, qd, . . .)− JµLµFLO(qt, pb, qd, . . .). (2.23)

In order to obtain the O(λ) contribution to the cross section of a generic single top
production process due to the real gluon emission, we need to integrate eq. (2.23) over the
phase space of the final state particles. It was pointed out in ref. [8] that the relevant inte-
gration can be performed in a process-independent manner provided that an approximate
momentum mapping, that factorises integration over the gluon momentum, is performed.

To construct such a mapping, we redefine the momenta of the top quark and of the
outgoing massless quark as follows

qt = pt − k + ptk

ptpd
pd,

qd = pd −
ptk

ptpd
pd.

(2.24)

We note that through O(k2), q2
t = p2

t = m2
t and q2

d = p2
d = 0. Furthermore, when written

in terms of pt and pd, the final state four-momentum loses its dependence on the gluon
momentum k

qt + qd + k + pX = pt + pd + pX . (2.25)

The Jacobians of the respective transformations read

det
∣∣∣∣∣∂q

µ
t

∂pνt

∣∣∣∣∣ = 1 + kpd
ptpd

+O(k2),

det
∣∣∣∣∣∂q

µ
d

∂pνd

∣∣∣∣∣ = 1− 3 kpt
ptpd

+O(k2).
(2.26)

Also, we find
δ(q2

d) = δ(p2
d)
(

1 + 2 ptk
ptpd

+O(k2)
)
. (2.27)

The above formulae can be used to re-write the partonic phase space as follows

dLips(pu, pb; qd, qt, pX , k)

= dLips(pu, pb; pd, pt, pX) d4k

(2π)3 δ+(k2 − λ2)×
[
1 + kpd

ptpd
− ptk

ptpd

]
+O(k2).

(2.28)

We note that the above expression should also include an upper bound on the integration
over the momentum k which depends on the other momenta. However, such a bound
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plays no role for the extraction of O(λ) contributions which arise exclusively from the low
integration boundary for the momentum k.

The rest of the calculation is straightforward. We use eq. (2.28) for the phase space
together with the expression for the matrix element squared given in eq. (2.23). We then
use the momenta mapping of eq. (2.24) in eq. (2.23), expand the matrix element squared
through the first sub-leading terms in k and integrate over k to extract the O(λ) terms.

Although the above procedure is straightforward, we point out that care is required
when expanding the inverse top propagator dt = 2qtk+λ2 since it also has to be expressed
through pt, expanded in k ∼ λ and then integrated. For dt we obtain

dt = 2qtk + k2 = 2ptk − k2 + 2(ptk)(pdk)
ptpd

, (2.29)

and
1
dt

= 1
2ptk

(
1 + k2

2ptk
− pdk

ptpd
+O(k2)

)
. (2.30)

On the contrary, the expansion of 1/db is simple since the momentum pb is not subject to
momentum mapping.

Upon combining the approximate expressions for the matrix element squared and the
phase space, the dependence on the gluon momentum becomes explicit through the required
order in the soft expansion. The corresponding integrals over k are given in appendix A.
Finally, putting everything together, we find the following result for the O(λ) correction
to the real-emission contribution to the differential cross section6

Tλ [σR] = αsCF
2π

πλ

mt

∫
dLips(pu, pb; pd, pt, pX)

[(
3
2 −

m2
t

pdpt
− m2

t

ptpb

)

− m2
t

pdpt
pµd

(
∂

∂pµd
− ∂

∂pµt

)
− m2

t

ptpb
pµb

(
∂

∂pµb
+ ∂

∂pµt

)]
FLO.

(2.31)

As we will see later, we do not need to compute the derivatives of the leading order ampli-
tude squared explicitly because, as it turns out, all such terms get cancelled once the virtual
corrections and the renormalisation terms are added to the real emission contribution.

3 Virtual corrections

Similar to the case of the real emission corrections discussed in the previous section, the
O(λ) contributions to the virtual corrections can only arise from the region of soft k ∼ λ

loop momenta. Our goal, therefore, is to construct the soft expansion of the one-loop virtual
corrections to the generic single top production processes u(pu)+b(pb)→ d(pd)+ t(pt)+X.
We focus on the corrections to the “heavy” quark line and we remind the reader that, thanks
to colour conservation, one-loop diagrams where gluons are exchanged between “light” and
“heavy” quark lines do not contribute to the cross section at this perturbative order.

6The operator Tλ which appears in eq. (2.31) extracts the O(λ) contribution from a quantity it acts
upon.
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Figure 2. Loop contributions to single top production that need to be considered. We emphasise
that there is no colour transfer from the light quark line to the heavy quark line, see text for details.

We write
Avirt = g2

sCF δijMvirt, (3.1)

where i, j are the colour indices of the top quark and the bottom quark. We note that the
one-loop corrections to the “heavy” line can be written as the sum of four contributions
(see figure 2)

Mvirt =
∑

i∈{a,b,c,d}
M(i)

virt, (3.2)

where

M(a)
virt =

∫ d4k

(2π)4
−i

k2 − λ2

[
ūtγ

α
(/pt + /k +mt)

dt
N(pt + k, pb + k, . . .)

(/pb + /k)
db

γαub

]
,

M(b)
virt =

∫ d4k

(2π)4
−i

k2 − λ2

[
ūtγα

(/pt + /k +mt)
dt

Nα
1g(pt + k, pb, . . . , | − k)ub

]
,

M(c)
virt =

∫ d4k

(2π)4
−i

k2 − λ2

[
ūtNα

1g(pt, pb + k, . . . , |k)
(/pb + /k)
db

γαub

]
,

M(d)
virt =

∫ d4k

(2π)4
−igαβ
k2 − λ2

[
ūtNαβ

2g (pt, pb, . . . |k,−k)ub
]
.

(3.3)

By a slight abuse of notation, we use db = (pb+k)2 in this section, and we continue to denote
the external spinors as ūt = ūt(pt) and ub = ub(pb). The quantities N(pt + k, pb + k, . . .),
Nα

1g(pt + k, pb, . . . , | − k) and Nα
2g(pt + k, pb, . . . , |k,−k) are functions that contribute to

processes where the corresponding number of gluons7 (from zero to two) are emitted. We
7Of course, these “gluons” are no different from photons since no non-Abelian interactions need to be

considered.
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note that these functions do not include contributions where gluons are emitted from the
external (t and b) legs; for this reason all of them have smooth k → 0 limits. To compute
the O(λ) contribution to the differential cross section only the k ∼ λ integration region is
relevant; as a result, all these functions can be expanded in Taylor series at small k.

A simple power counting suggests that M(d)
virt cannot provide an O(λ) contribution

and therefore can be neglected, the function N1g is needed at k = 0 and the function N is
needed through linear terms in k. Hence, we can write

N(pt + k, pb + k, . . .) = N(pt, pb, . . .) + kµD
µ
pN(pt, pb, . . .) +O(k2), (3.4)

where
Dµ
p = ∂

∂pt,µ
+ ∂

∂pb,µ
. (3.5)

The function N1g needs to be known at k = 0. Following the discussion of the real
emission contribution (cf. eq. (2.8)), we find

ūtNα
1g(pt, pb, . . . |k = 0)ub = −ūtDα

pNub. (3.6)

Eqs. (3.4), (3.6) are sufficient to write an approximate expression for the virtual cor-
rections. The manipulations are nearly identical to what has been discussed in the context
of the real emission contribution in the previous section. We obtain

ūtγ
α

(/pt + /k +mt)
dt

= ūt (Jαt + Sαt ) , (3.7)

and
(/pb + /k)
db

γαub = (Jαb − Sαb )ub, (3.8)

where

Jαt = 2pαt + kα

dt
, Sαt = σαβkβ

dt
, (3.9)

and

Jαb = 2pαb + kα

db
, Sαb = σαβkβ

db
. (3.10)

Using these expressions and keeping only those terms that can provide linear power
corrections, we find

Mvirt =
∫ d4k

(2π)4
−i

k2 − λ2

[
Jαt Jb,α ūt (N(pt, pb, . . .) + kµDp,µN(pt, pb, . . .))ub

− Jαt ūtN(pt, pb, . . .)Sb,αub + Jαb ūtSt,αN(pt, pb, . . .)ub − (Jαt + Jαb )ūtDp,αNub

]
.

(3.11)

Similar to the case of the real emission corrections, the dependence on the loop momen-
tum has been made explicit so that the integration over k becomes possible. However, it
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is beneficial to compute the correction to the matrix element squared before integrating
over k. We find

δvirt[MM+] =
∫ d4k

(2π)4
−i

k2 − λ2

[
2Jαt Jb,αFLO

+ Jαt Jb,αk
µ Tr

[
(/pt +mt)(Dp,µN)/pbN̄ + (/pt +mt)N/pb(Dp,µ)N̄

]
− (Jαt + Jαb )Tr

[
(/pt +mt)(Dp,αN)/pbN̄ + (/pt +mt)N/pb(Dp,αN̄)

]
+ Jαb Tr

[
[/pt,St,α]N/pbN̄

]
− Jαt Tr

[
(/pt +mt)N[Sb,α, /pb]N̄

] ]
,

(3.12)

where M = M0 +Mvirt. We can further simplify this expression following the steps
already discussed in the context of the real emission contribution. Indeed, using

[/pt,S
α
t ] =

(
Jαt k

ν ∂

∂pνt
− ∂

∂pt,α

)
/pt = Lαt /pt,

[/pb,S
α
b ] =

(
Jαb k

ν ∂

∂pνb
− ∂

∂pb,α

)
/pb = Lαb /pb,

(3.13)

we arrive at

δ[MM+]virt =
∫ d4k

(2π)4
−i

k2 − λ2

[
2Jαt Jb,αFLO

+ Jαt Jb,αk
µ Tr

[
(/pt +mt)(Dp,µN)/pbN̄ + (/pt +mt)N/pb(Dp,µN̄)

]
− (Jαt + Jαb )Tr

[
(/pt +mt)(Dp,αN)/pbN̄ + (/pt +mt)N/pb(Dp,αN̄)

]
+ Jαb Tr

[
(Lt,α/pt)N/pbN̄

]
+ Jαt Tr

[
(/pt +mt)N(Lb,α/pb)N̄

] ]
.

(3.14)

To simplify this expression further, we take the terms Jα(t,b)k
µ∂/∂pµt,b from Lαt,b and combine

them with the similar terms in the second line of eq. (3.14). We finally obtain

δ[MM+]virt =
∫ d4k

(2π)4
−i

k2 − λ2

[
2Jαt Jb,αFLO

+ Jαt Jb,αk
µ Dp,µFLO − (Jαt + Jαb )Dp,αFLO

+ Jαt Tr
[
(Dp,α/pt)N/pbN̄

]
+ Jαb Tr

[
(/pt +mt)N(Dp,α/pb)N̄

] ]
.

(3.15)

The loop momentum k in the above expression is contained in the currents Jµt,b and
also appears explicitly in a few terms. Hence, it becomes possible to integrate over k. The
needed integrals are given in appendix A. Finally, putting everything together, we obtain

Tλ [σV ] =− αsCF
2π

πλ

mt

∫
dLipsLO

[
Tr
[
/ptN/pbN̄

]

+
(

2ptpb −m2
t

ptpb
− m2

t

ptpb
pµbDp,µ

)
FLO

]
,

(3.16)

where we have introduced the notation dLipsLO = dLips(pu, pb; pd, pt, pX).
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4 Renormalisation contributions

The above result for the virtual corrections has to be supplemented with the renormalisation
contributions. Two of them (the wave function renormalisation of the external top quark
and the top quark mass counter-term in the pole-mass scheme) provide O(λ) corrections
to the cross section.

The two renormalisation constants can be computed using standard methods and read

Zm = 1 + CF g
2
sm
−2ε
t Γ(1 + ε)

(4π)d/2

[
−3
ε
− 4 + 2πλ

mt
+O

(
λ2

m2
t

)]
,

Z2 = 1 + CF g
2
sm
−2ε
t Γ(1 + ε)

(4π)d/2

[
−1
ε
− 4 + 4 ln mt

λ
+ 3λπ

mt
+O

(
λ2

m2
t

)]
.

(4.1)

For the purpose of our discussion only the O(λ) contributions to Z2 and Zm are relevant.
It is straightforward to add the wave function renormalisation contribution to the

virtual corrections. The mass counter-term, on the other hand, is only relevant for the
internal top quark lines. Since the relation between the bare mass m0 and the pole mass
mt is given by m0 = Zmmt, we find

1
/pt −m0

= 1
/pt −mt − (Zm − 1)mt

≈ 1
/pt −mt

+ (Zm − 1)mt
∂

∂mt

1
/pt −mt

(4.2)

where
Tλ [(Zm − 1)]mt = CFαs

2π πλ. (4.3)

Putting everything together, we find the following result for the renormalisation con-
tributions to the cross section

Tλ [σren] = αsCF
2π

πλ

mt

∫
dLipsLO

[
3
2FLO +mtTr

[
(/pt +mt)

∂N
∂mt

/pbN̄
]

+mtTr
[
(/pt +mt)N/pb

∂N̄
∂mt

] ]
.

(4.4)

5 Redefining the mass

It is well known that the use of the pole quark mass in physical predictions is one of the
sources of linear power corrections. Such corrections are artificial and can be removed by
employing one of the many short-distance mass schemes [17–21] instead; we will refer to
masses in such schemes as m̃t. Hence, we need to derive a formula that provides a change
in the cross section due to the change of the top quark mass.

To do this, it is important to recognise that such a dependence arises for two distinct
reasons: 1) the implicit dependence of the energies of the final state particles on mt and
2) the explicit dependence of the matrix element squared on this parameter.
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The explicit dependence is computed by writing mt = m̃t + δmt in the function FLO.
The corresponding change in the leading order cross section reads

δσexpl
mass = δmt

∫
dLipsLO

∂FLO
∂mt

= δmt

∫
dLipsLO

(
Tr
[
1N/pbN̄

]
+ Tr

[
(/pt +mt)

(
∂N
∂mt

/pbN̄ + N/pb
∂N̄
∂mt

)])
.

(5.1)

To compute the change in the cross section caused by the implicit dependence of the
energies of the final state particles on mt, we redefine the momenta of the top quark and
another final state particle that we take to be the outgoing down quark, and write

pd = (1 + κ)p̃d, pt = p̃t − κp̃d. (5.2)

It follows that
p2
t = m2

t = p̃2
t − 2κp̃tp̃d. (5.3)

Hence, if we choose

κ = − δm2
t

2p̃tp̃d
, (5.4)

the mass-shell condition for p̃t becomes

p̃2
t = m̃2

t = m2
t − δm2

t . (5.5)

Following the discussion of the momenta mapping of the real emission contribution in
section 2 and adjusting it where necessary, we find

dLips
(
pu, pb, pd, pt, pX ;m2

t

)
= dLips

(
pu, pb, p̃d, p̃t, pX ; m̃2

t

)
(1 + κ) . (5.6)

Finally, expanding the leading order amplitude squared we obtain the change of the cross
section due to the implicit mass change

δσimpl
mass =

∫
dLips (pu, pb, p̃d, p̃t, pX)

[
κ+ κp̃µd

(
∂

∂p̃µd
− ∂

∂p̃µt

)]
FLO(p̃t, p̃d, . . .)

= −
∫

dLips (pu, pb, pd, pt, pX) δm2
t

2pdpt

[
1 + pµd

(
∂

∂pµd
− ∂

∂pµt

)]
FLO(pt, pd, . . .),

(5.7)

where in the last step we have re-labelled the momenta p̃t ⇒ pt and p̃d ⇒ pd. Although
short-distance masses can be defined in many different ways [17–21], they should not con-
tain a linear O(λ) term. Hence, for our purposes, it suffices to write

mt = m̃t

(
1− CFαs

2π
πλ

mt

)
. (5.8)

It follows that
δmt = −mt

CFαs
2π

πλ

mt
, δm2

t = −2m2
t

CFαs
2π

πλ

mt
. (5.9)
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Putting everything together, we finally find the change of the cross section due to the
mass shift

σLO(mt)− σLO(m̃t) = δσexpl
mass + δσimpl

mass = CFαs
2π

πλ

mt

∫
dLipsLO×[

m2
t

pdpt

[
1 + pµd

(
∂

∂pµd
− ∂

∂pµt

)]
FLO −mtTr

[
1N/pbN̄

]

−mtTr
[
(/pt +mt)

(
∂N
∂mt

/pbN̄ + N/pb
∂N̄
∂mt

)]]
.

(5.10)

6 The final result for the cross section

We now collect all the relevant formulae. We begin with the NLO cross section expressed
through the pole mass and write it in terms of the short-distance mass

σ = σLO(mt) + σR + σV + σren = σLO(m̃t) + δσNLO, (6.1)

where
δσNLO = σR + σV + σren + δσexpl

mass + δσimpl
mass. (6.2)

The individual contributions read

Tλ
[
δσexpl

mass + δσimpl
mass

]
= CFαs

2π
πλ

mt

∫
dLipsLO×[

m2
t

pdpt

[
1 + pµd

(
∂

∂pµd
− ∂

∂pµt

)]
FLO −mtTr

[
1N/pbN̄

]

−mtTr
[
(/pt +mt)

(
∂N
∂mt

/pbN̄ + N/pb
∂N̄
∂mt

)]]
,

Tλ [σR] = αsCF
2π

πλ

mt

∫
dLipsLO

[(
3
2 −

m2
t

pdpt
− m2

t

ptpb

)

− m2
t

pdpt
pµd

(
∂

∂pµd
− ∂

∂pµt

)
− m2

t

ptpb
pµbDp,µ

]
FLO,

Tλ [σV ] = −αsCF2π
πλ

mt

∫
dLipsLO

[
Tr
[
/ptN/pbN̄

]

+
(

(2ptpb −m2
t )

ptpb
− m2

t

ptpb
pµbDp,µ

)
FLO

]
,

Tλ [σren] = αsCF
2π

πλ

mt

∫
dLipsLO

[
3
2FLO

+mtTr
[
(/pt +mt)

∂N
∂mt

/pbN̄
]

+mtTr
[
(/pt +mt)N/pb

∂N̄
∂mt

] ]
.

(6.3)

Using the above results for the individual contributions, we obtain

Tλ [δσNLO] = αsCF
2π

πλ

mt

∫
dLipsLO

(
FLO − Tr

[
/ptN/pbN̄

]
−mtTr

[
1N/pbN̄

])
= 0. (6.4)
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This result implies that O(ΛQCD) corrections to processes where single top quarks are
produced by virtue of weak flavor-changing interactions vanish provided that the cross
section is expressed in terms of the short-distance top quark mass. In appendix B we
explain how our method can be used to re-derive the known result that there are no
O(ΛQCD) corrections to semileptonic decays of a heavy quark [3, 16].

7 Alternative treatment of the self-energy corrections

The previous computation was first carried out in the pole-mass scheme, and then a scheme
change was performed to get the result in an arbitrary short distance scheme. Alternatively,
it is possible to perform the calculation directly in a short distance scheme. In order to
do that, we consider the squared amplitude directly and recall that the external top quark
line is represented by

2π(/pt +mt)δ(p2
t −m2

t ) = Disc
[

1
/pt −mt

]
≡
[

i

/pt −mt + iε
− i

/pt −mt − iε

]
, (7.1)

One then deals with this external line in the same way as one deals with internal lines in
Feynman diagrams, namely one inserts the self-energy correction and the mass counter-
term into the argument of the Disc function, but the wave function renormalisation does
not need to be included. If the mass is renormalised in any short-distance scheme, we do
not need to include the mass counter-term either, since it does not contain terms linear in
λ. For the same reason, mass counter-terms in the internal top quark lines are not needed.
Thus, we can simply compute the self-energy insertion without including any counter-term.
The self-energy correction is given by

i

/pt −mt
iΣ i

/pt −mt
, (7.2)

where
iΣ = CF g

2
s

∫ d4k

(2π)4
−i

k2 − λ2 + iε
(−iγµ) i

/pt − /k −mt + iε
(−iγµ). (7.3)

We need to evaluate Σ up to terms that are suppressed by more than one power of /pt−mt,
since higher powers do not contribute to the discontinuity. Making use of the virtual
integrals given in appendix A, a straightforward calculation yields

Tλ [Σ] = CF g
2
s

[ 1
8mt

(p2
t −m2

t ) +
2mt − /pt

2

] 1
(2π)2

λπ√
p2
t

= αsCF
2π

λπ

mt

[
− 1

4mt
(p2
t −m2

t ) + 2mt − /pt

]
.

(7.4)

The full correction can be written as

Tλ

Disc

( i

/pt −mt

)2

Σ

 = αsCF
2π

λπ

mt

[
3
2(/pt +mt) 2π δ(p2

t −m2
t )

−mt2π δ(p2
t −m2

t ) + 2m2
t (mt + /pt)δ

′(p2
t −m2

t )
]
,

(7.5)
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where δ′(p2
t −m2

t ) is the derivative of the δ-function with respect to p2
t . In order to handle

this derivative, we rewrite it as

δ′(p2
t −m2

t ) = pµd
2pdpt

∂

∂pµt
δ(p2

t −m2
t ) = −δ(p2

t −m2
t )

∂

∂pµt

pµd
2pdpt

= δ(p2
t −m2

t )
[

4
2pdpt

+ pµd
2(pdpt)2 [−pt,µ + pb,µ]− pµd

2pdpt
∂

∂pµt

]

= δ(p2
t −m2

t )
[

3
2pdpt

−
pµd

2pdpt
∂

∂pµt

]
,

(7.6)

where we have integrated by parts, and we have assumed that in the phase space pd is
taken as the dependent momentum, i.e. pd = pu + pb − pX − pt. The remaining derivative
with respect to pt can be applied to the amplitude or to the delta-function δ(p2

d) in the
phase space. In the second case we get

−
pµd

2pdpt
∂

∂pµt
δ(p2

d) = 1
pdpt

p2
dδ
′(p2

d) = − 1
2pdpt

δ(p2
d). (7.7)

Thus, in eq. (7.5) we can replace

δ′(p2
t −m2

t )⇒ δ(p2
t −m2

t )
[

1
2pdpt

−
pµd

2pdpt
∂

∂pµt

]
, (7.8)

with an understanding that the derivative acts only on the amplitude squared. Inserting
eq. (7.5) in the spinor trace, and including the phase space we get

δσself = αsCF
2π

λπ

mt

∫
dLipsLO

[
3
2FLO −mtTr[1N/pbN̄]− m2

t

pdpt

(
pµd
∂FLO
∂pµt

− FLO

)]
. (7.9)

In case pd is treated as an independent variable we must replace

∂

∂pµt
→ ∂

∂pµt
− ∂

∂pµd
, (7.10)

and eq. (7.9) becomes equivalent to the sum of the renormalisation contributions of eq. (4.4)
and the mass shift of eq. (5.10).

8 Kinematic distributions

We will now study kinematic distributions in the single top production processes. We
consider an observable X that depends on the momentum of the top quark

OX =
∫

dσ X(qt). (8.1)

To compute the O(λ) contribution to OX , we follow the same route that was discussed
in the previous sections. The difference with respect to the case of the inclusive cross
section is the appearance of the observable X in the integrand in eq. (8.1). Remapping the
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momenta, and expanding X in the gluon momentum k, which appears in the argument of
X as the result of such remapping, we obtain

X(qt) = X(pt) + ∂X(pt)
∂pµt

(
ptk

ptpd
pµd − k

µ
)
. (8.2)

To compute the O(λ) contributions to OX it is convenient to combine the three terms
in eq. (8.2) as follows

Tλ[OX ] = Tλ[O(1)
X ] + Tλ[O(2)

X ], (8.3)

where

Tλ[O(1)
X ] = Tλ

[∫
dσ

(
X(pt) + ∂X(pt)

∂pµt

ptk

ptpd
pµd

)]
,

Tλ[O(2)
X ] = −Tλ

[∫
dσ ∂X(pt)

∂pµt
kµ
]
.

(8.4)

To compute Tλ[O(1)
X ], we note that the observable X(pt) that appears there already

depends on the re-mapped momentum pt and, for this reason, it does not affect the cal-
culations reported in the previous sections and the cancellation of O(λ) terms. The only
subtlety is that the mass redefinition in eq. (5.7) produces an additional term because in
the current case the derivative there must also act on X. However, it is easy to see that this
new term is exactly compensated by the integral of the k-dependent term in the integrand
of Tλ[O(1)

X ]. We conclude that
Tλ[O(1)

X ] = 0. (8.5)

It remains to compute Tλ[O(2)
X ]. Since the integrand is already proportional to k, we

need the matrix element squared and the phase space in the leading soft approximation.
We therefore find

Tλ[O(2)
X ] = Tλ

[
CF g

2
s

∫
dσLO

∂X(pt)
∂pµt

∫ d4k

(2π)3 δ+(k2 − λ2) JνJν kµ
]
, (8.6)

where the eikonal current Jν reads

Jν ≈ pνt
ptk
− pνb
pbk

. (8.7)

Using earlier discussions and the integrals presented in appendix A, it is straightforward
to integrate this expression over k. We obtain

Tλ [OX ] = Tλ
[
O

(2)
X

]
= αsCF

2π
πλ

mt

∫
dσLO lµ

∂X(pt)
∂pµt

, (8.8)

where
lµ = pµt −

2m2
t

pbpt
pµb . (8.9)

Using the alternative procedure for the inclusion of the self-energy corrections in sec-
tion 7 we immediately reach the same conclusion, except that the cancellation of the second
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term of eq. (8.2) arises from the derivative term in eq. (7.9) by replacing FLO with X FLO,
so that the derivative that hits FLO there can now also act on X(pt).

The result of eq. (8.8) can be interpreted as a non-perturbative shift in the argument
of the observable X(pt). Indeed, we can write

OX =
∫

dσLO

[
X(pt) + αsCF

2π
πλ

mt
lµ
∂X(pt)
∂pµt

]
=
∫

dσLO X

(
pt + αsCF

2π δpt

)
,

(8.10)

where
δpt = πλ

mt
l. (8.11)

As an example, suppose that X is a function of the transverse momentum distribution
of the top quark, such as, for example, a cut on the transverse momentum, or a product
of theta functions singling out a particular histogram bin. In this case

pt⊥ =
√
|pµt g⊥,µνpνt |, (8.12)

where
gµν⊥ = gµν −

pµb p
ν
u + pµup

ν
b

pupb
. (8.13)

Since pµb g⊥,µν = 0, we find
δNP [ pt⊥]

pt⊥
= αsCF

2π
πλ

mt
. (8.14)

It is interesting to point out that the relative non-perturbative shift in pt⊥ and the
relative non-perturbative shift in the top quark mass coincide

δNP [ pt⊥]
pt⊥

= δNP[mt]
mt

. (8.15)

Since the non-perturbative uncertainty in the top quark mass is estimated as
100–200MeV [1, 22, 23], we conclude that the non-perturbative shift in the top quark
transverse momentum reads

δNP [ pt⊥] ≈ (0.1− 0.2) pt⊥
mt

GeV. (8.16)

The transverse momentum distribution of the t-channel single top production is peaked
around 50 GeV; for such momenta, the non-perturbative shift is very small, O(30−60)MeV.

Another observable to consider is the top quark rapidity distribution. In the partonic
center of mass frame, it reads

yt = 1
2 ln pbpt

pupt
. (8.17)

An easy computation gives

δNP [yt] = αsCF
2π

πλ

mt
lµ

1
2

(
pµb
pbpt

− pµu
pupt

)

= αsCF
2π

πλ

mt

(pupb)m2
t

(pupt)(pbpt)
= αsCF

2π
πλ

mt

8m2
t s ch2(yt)

(s+m2
t )2 .

(8.18)
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9 Conclusions

In this paper we discussed the non-perturbative O(ΛQCD) corrections to electroweak pro-
duction of a single top quark in hadronic collisions in the context of renormalon calculus.
Processes of the type pp→ q + t+X, where X is an arbitrary collection of colour-neutral
particles, can be studied in the framework of renormalon calculus because such processes
do not contain gluons in leading order diagrams.

We have shown how to use Low-Burnett-Kroll theorem, which allows one to express
sub-leading contributions in the soft expansion in a process-independent way, to analyse
O(ΛQCD) corrections to arbitrary processes of a single top production type. Our findings
are remarkably simple. Indeed, we observe that total cross sections for such processes have
no linear power corrections provided that a short-distance mass scheme is used to compute
them. Therefore, if a total cross section is employed to determine the top quark mass,8 it is
more natural to use a short-distance mass scheme since, by doing so, we avoid the presence
of linear renormalons. Since renormalons are associated with the factorial growth of the
coefficients in perturbative series, the absence of linear renormalons should lead to a better
convergence of the perturbative expansion in a short-distance mass scheme. Although these
conclusions appear to be quite natural given what is known about semileptonic decays of
heavy quarks,9 our calculation provides a strong indication of the absence of O(ΛQCD) cor-
rections to one of the main top quark production processes at a hadron collider. Although
these results are obtained in the context of the renormalon calculus, we hope that they
remain valid also in full QCD.

We have also discussed how to generalise these results to compute linear power correc-
tions to kinematic distributions that involve the top quark momentum. In this case, using
a short-distance mass scheme and making use of the pattern of cancellations of various
O(λ) contributions which becomes apparent from the discussion of the total cross section,
very simple formulae for O(ΛQCD) non-perturbative shifts in the transverse momentum
and rapidity distributions of the top quark can be derived.

An important shortcoming of the approach to non-perturbative effects in single top pro-
duction developed in this paper is that it applies to stable top quarks. Since all O(ΛQCD)
corrections computed in this paper come from kinematic regions where top quarks are
nearly on shell, the instability of the top quark should have a major effect on these results,
suppressing linear power corrections in realistic kinematic distributions. In a related con-
text, an interplay between the instability of the top quark and O(ΛQCD) corrections were
studied numerically in ref. [9]. In the future, it would be interesting to investigate this
interplay in more detail and establish the degree of suppression of linear power corrections
that otherwise appear in various kinematic distributions.

8For top quark pair production, this was recently done in several experimental analyses and, at least in
principle, this can also be done for the single top production.

9Admittedly, this analogy cannot be complete since collider processes are not amenable to the operator
product expansion.

– 19 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
3

Acknowledgments

We thank Adrian Signer for useful communications. The research of K.M. was supported by
the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under grant
396021762-TRR 257. P. N. acknowledges the support of the Humboldt foundation.

A Loop and real-emission integrals required for computing linear power
corrections

In this appendix we present the results for the various integrals that arise in the course of
the calculations reported in this paper. To write the results for these integrals in a compact
way, we introduce a variable

δ = 1
(2π)2

λπ

mt
. (A.1)

A.1 Real emission integrals

The computation of the real emission integrals can be performed in the top quark rest
frame, with an arbitrary upper cutoff on the energy of the emitted gluon. The result does
not depend upon the chosen frame, since the only frame dependence can arise from the
upper cutoff, and the soft region is not affected by it. Thus one replaces

∫ d4k

(2π)3 δ+(k2 − λ2)⇒
∫ wmax

λ

βωdω
2(2π)4

∫
dϕ

∫
d cos θ, (A.2)

where ω is the top quark energy, the polar axis is chosen along the direction of a b quark
and β =

√
1− λ2/ω2, all in the top quark rest frame. All integrals are elementary; in the

worst case one encounters integrals of the form∫ wmax

λ

dω
ωk

log 1 + β

1− β (A.3)

that are easily done by parts, since

d
dω log 1 + β

1− β = 2√
ω2 − λ2

. (A.4)

The integrals required for computing the real emission contribution to single top pro-
duction read10

I1 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) λ2

(2ptk)3

]
= 1

32m2
t

δ, (A.5)

I2 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) kµ

(2ptk)2

]
= − pµt

8m2
t

δ, (A.6)

10We only display O(λ) contributions to these integrals.
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I3 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) 1
(2ptk)2

]
= 0, (A.7)

I4 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) λ2

(2ptk)2(−2pbk)

]
= − 1

16(ptpb)
δ, (A.8)

I5 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) λ2

(2ptk)(−2pbk)2

]
= − m2

t

16(ptpb)2 δ, (A.9)

I6 = Tλ

[∫ d4k

(2π)3 δ+(k2 − λ2) kµ

(2ptk)(−2pbk)

]
= 1

8(ptpb)

(
pµt −

m2
t

ptpb
pµb

)
δ. (A.10)

A.2 Loop integrals

The required loop integrals read

Tλ

[
−i
∫ d4k

(2π)4(k2 − λ2)J
µ
t Jb,µ

]
= 1

(4π)2
m2
t − 2ptpb
ptpb

πλ

mt
, (A.11)

Tλ

[
−i
∫ d4k

(2π)4(k2 − λ2)J
α
t Jb,αk

µ

]
= − 2

(4π)2
πλ

mt

(
pµt −

m2
t

ptpb
pµb

)
, (A.12)

Tλ

[
−i
∫ d4k

(2π)4(k2 − λ2)J
µ
t

]
= − 2

(4π)2
πλ

mt
pµt , (A.13)

Tλ

[
−i
∫ d4k

(2π)4(k2 − λ2)J
µ
b

]
= 0. (A.14)

To compute them, we integrate over k0 and map them onto real emission integrals.
More precisely, we first perform the replacement k → −k and then perform the k0 integra-
tion in the pt rest frame. The poles of the k2 − λ2, db and dt denominators are given by

ω = ±
√
~k2 + λ2 ∓ iε, (A.15)

ω = p0
b ±

√
(p0
b)2 + (2~k~pb + ~k2)∓ iε, (A.16)

ω = m±
√
m2 + ~k2 ∓ iε, (A.17)

where ω = k0. We see that if we close the contour in the lower complex plane we pick the
residues of the poles with the upper signs in eqs. (A.15)–(A.17), i.e. the poles with negative
imaginary part, but only the pole in eq. (A.15) leads to a small value of ω, and thus leads
to a term sensitive to λ. Thus we can replace

i

∫ d4k

(2π)4(k2 − λ2) ⇒
∫ d4k

(2π)3 θ(k
0)δ(k2 − λ2) , (A.18)

and then use the already known results for the real emission integrals.

B Semileptonic decays of a heavy quark

In this section we consider the semileptonic decay of a top quark into a massless bottom
quark and an arbitrary collection of colour-neutral particles, t→ b+X. We will re-derive
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a well-known result [3, 16] that there are no O(λ) contributions to the total decay width
Γ(t→ b+X) provided that the width is expressed in terms of a short-distance mass of the
top quark.

We note that all major steps of the calculation that we discussed in the context of
the single top production remain valid also for the semileptonic decay. In particular, the
calculation of the contribution of the virtual corrections is identical.11 The renormalisation
procedure also remains the same. As a result, we find

Tλ [mt ΓV+ren] =− αsCF
2π

πλ

mt

∫
dLips(pt|pb, . . .)

[
Tr
[
/pbN/ptN̄

]

−mtTr
[
/pb
∂N
∂mt

(/pt +mt)N̄
]
−mtTr

[
/pbN(/pt +mt)

∂N̄
∂mt

]

+
(
−3

2 + (2ptpb −m2
t )

ptpb
− m2

t

ptpb
pµbDp,µ

)
F

(d)
LO

]
,

(B.1)

where F (d)
LO = Tr

[
/pbN(/pt +mt)N̄

]
is the leading order invariant amplitude squared. We

also note that the above result is written for the product of the top quark mass mt and
the decay width, that is proportional to the squared amplitude up to a numeric factor that
is irrelevant for the present purposes. We will see that it is Γ, rather than the invariant
amplitude, that is free of linear renormalons if expressed in terms of a short-distance mass.

The calculation of the real-emission contributions proceeds similarly to the case of the
single top production. In particular, an application of Low-Burnett-Kroll theorem leads
again to eq. (2.23) where for the decay

Jµ = Jµt + Jµb ,

Jµt = 2pµt − kµ

dt
, Jµb = 2pµb + kµ

db
,

(B.2)

with dt = (pt − k)2 −m2
t and db = (p2 + k)2.

In order to factorise the integration over the gluon momentum from the rest of the
phase space, a momentum mapping is needed. This mapping differs from the one employed
in the discussion of the single top production. We map the momentum of one of the colour-
neutral, massless final-state particles (with momentum p3) and the b-quark as follows

pb = p̃b − k + p̃bk

p̃3p̃b
p̃3, p3 =

(
1− p̃bk

p̃3p̃b

)
p̃3. (B.3)

Upon this transformation, the phase space changes as follows

dLips(pt|pb, p3, k, . . .) = dLips(pt|p̃b, p̃3, . . .)
d4k

(2π)4 δ(k
2 − λ2)

(
1 + kp̃3

p̃bp̃3
− kp̃b
p̃bp̃3

)
. (B.4)

11Obviously, we need to account for the fact that in the decay process the top quark appears in the initial
and the bottom quark in the final state.
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Integrating over the gluon momentum k using the integrals in appendix A, we obtain the
real emission contribution

Tλ [mt ΓR] = αsCF
2π

πλ

mt

∫
dLips(pt, p̃b, p̃3, pX)

[(
1
2 −

p̃3pt
p̃3p̃b

+ p̃bpt
p̃3p̃b

− m2
t

p̃bpt

)

− p̃bpt
p̃3p̃b

p̃µ3

(
∂

∂p̃µb
− ∂

∂p̃µ3

)
− m2

t

p̃bpt
p̃µbDµ + pµtDµ

]
FLO,

(B.5)

The most important difference in comparison with the single top production compu-
tation comes from the change in the cross section due to the mass redefinition since in the
current case the top quark is in the initial state. Nevertheless, it is possible to change the
quark mass redefining momenta. We write

pµb = p̃µb − κp̃t + κ
p̃bp̃t
p̃bp̃3

p̃µ3 , pµ3 = p̃µ3

(
1− κ p̃bp̃t

p̃bp̃3

)
, pµt = p̃µt (1− κ). (B.6)

The phase space becomes

dLips(pt|pb, p3, . . .) = dLips(p̃t|p̃b, p̃3, . . .)
(

1 + κ
p̃tp̃3
p̃bp̃3

− κ p̃bp̃t
p̃bp̃3

,

)
. (B.7)

Choosing κ = CFαs/(2π)πλ/mt, we find that p̃2
t corresponds to the short-distance mass

m̃t defined in eq. (5.8).
Similar to the case of single top production, we need to consider the changes in leading

order width due to explicit and implicit mass redefinitions. We write

mtΓLO(mt)− m̃tΓLO(m̃t) = δ[mtΓ]impl + δ[mtΓ]expl. (B.8)

The implicit change is caused by changing the top quark mass in phase space; we account
for this using momenta redefinitions described above. We find

δ [mtΓ]impl = CFαs
2π

πλ

mt

∫
dLips(p̃t|p̃b, p̃3, . . .)

[
p̃tp̃3
p̃bp̃3

− p̃bp̃t
p̃bp̃3

− p̃µtDµ

+ p̃bp̃t
p̃bp̃3

p̃µ3

(
∂

∂p̃µb
− ∂

∂p̃µ3

)]
FLO.

(B.9)

In addition, there is an explicit change in leading order width related to a replacement of
the mass mt in the amplitude. We find

δ [mtΓ]expl =− CFαs
2π

πλ

mt
mt

∫
dLips(p̃t|p̃b, p̃3, . . .)

[
Tr
[
/pbN1N̄

]

+ Tr
[
/pb

∂

∂mt
N(/pt +mt)N̄ + /pbN(/pt +mt)

∂

∂mt
N̄
] ]
.

(B.10)

We define the correction to the width ΓNLO through the following formula

ΓLO(mt) + ΓV+ren + ΓR = ΓLO(m̃t) + ΓNLO. (B.11)
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Writing

Tλ [ΓNLO] = 1
mt

[
δ[mtΓ]impl + δ[mtΓ]expl + (m̃t −mt)ΓLO

+ Tλ [mtΓV+ren] + Tλ [mtΓR]
]
,

(B.12)

and using explicit expressions for the various contributions on the right hand side of the
above equation, we obtain the well-known result

Tλ [ΓNLO] = 0. (B.13)
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