KIT | KIT-Bibliothek | Impressum | Datenschutz

Cross-domain Transfer of Defect Features in Technical Domains Based on Partial Target Data

Schlagenhauf, Tobias 1; Scheurenbrand, Tim 2
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

A common challenge in real-world classification scenarios with sequentially appending target domain data is insufficient training datasets during the training phase. Therefore, conventional deep learning and transfer learning classifiers are not applicable especially when individual classes are not represented or are severely underrepresented at the outset. Domain Generalization approaches reach their limits when domain shifts become too large, making them occasionally unsuitable as well. In many (technical) domains, however, it is only the defect/ worn/ reject classes that are insufficiently represented, while the non-defect class is often available from the beginning. The proposed classification approach addresses such conditions. Following a contrastive learning approach, a CNN encoder is trained with a modified triplet loss function using two datasets: Besides the non-defective target domain class (= 1$^{st}$ dataset), a state-of-the-art labeled source domain dataset that contains highly related classes (e.g., a related manufacturing error or wear defect) but originates from a (highly) different domain (e.g., different product, material, or appearance) (= 2$^{nd}$ dataset) is utilized. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159415
Veröffentlicht am 16.06.2023
Originalveröffentlichung
DOI: 10.36001/ijphm.2023.v14i1.3426
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2153-2648
KITopen-ID: 1000159415
Erschienen in International Journal of Prognostics and Health Management
Verlag The Prognostics and Health Management Society (PHMSociety)
Band 14
Heft 1
Seiten 1-13
Vorab online veröffentlicht am 08.05.2023
Schlagwörter Domain Transfer, Domain Generalization
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page