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Abstract
The effect of solvation on the free energy of reaction intermediates adsorbed on electrocatalyst surfaces can significantly 
change the thermochemical overpotential, but accurate calculations of this are challenging. Here, we present computational 
estimates of the solvation energy for reaction intermediates in oxygen reduction reaction (ORR) on a B-doped graphene (BG) 
model system where the overpotential is found to reduce by up to 0.6 V due to solvation. BG is experimentally reported to 
be an active ORR catalyst but recent computational estimates using state-of-the-art hybrid density functionals in the absence 
of solvation effects have indicated low activity. To test whether the inclusion of explicit solvation can bring the calculated 
activity estimates closer to the experimental reports, up to 4 layers of water molecules are included in the simulations 
reported here. The calculations are based on classical molecular dynamics and local minimization of energy using atomic 
forces evaluated from electron density functional theory. Data sets are obtained from regular and coarse-grained dynamics, 
as well as local minimization of structures resampled from dynamics simulations. The results differ greatly depending on the 
method used and the solvation energy estimates are deemed untrustworthy. It is concluded that a significantly larger number 
of water molecules is required to obtain converged results for the solvation energy. As the present system includes up to 139 
atoms, it already strains the limits of computational feasibility, so this points to the need for a hybrid simulation approach 
where efficient simulations of much larger number of solvent molecules is carried out using a lower level of theory while 
retaining the higher level of theory for the reacting molecules as well as their near neighbors and the catalyst. The results 
reported here provide a word of caution to the computational catalysis community: activity predictions can be inaccurate if 
too few solvent molecules are included in the calculations.
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1  Introduction

The replacement of costly and rare precious metals with 
cheaper and more abundant elements in catalysts, for exam-
ple in the oxygen reduction reaction (ORR) in fuel cells, 
is an important milestone towards sustainable energy 

production. To this end, heteroatom-doped graphenes have 
been explored extensively [1–3] following experiments 
showing high ORR activity of a nitrogen-doped graphene 
(NG) electrocatalyst in 2010 [4]. Soon after the reports of 
high catalytic activity of NG, boron-doped graphene (BG) 
emerged as another promising candidate for efficient ORR 
electrocatalysis.

Sheng et al. [5] measured favorable alkaline ORR activ-
ity for BG with 3.2% dopant concentration synthesized 
using Hummer’s method [6, 7]. Their BG material cata-
lyzed the 4 e− ORR pathway and showed good tolerance to 
CO poisoning. Note that Hummer’s method has become 
subject to criticism as it can deposit significant amounts 
of transition metal impurities in the material [8, 9] which 
cannot be removed using typical wet-chemical purifica-
tion methods [10]. In the same vein, Xu et al. [11] and 
Jiao et al. [12] synthesized NG and BG using Hummer’s 
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method. Both groups report that NG and BG are efficient 
ORR catalysts, showing similarly high ORR activity in 
their experiments and corresponding calculations. Further 
experimental work is summarized in a 2016 review by 
Agnoli and Favaro [3].

Computational predictions of the ORR activity of BG 
have overall been promising. The free energy approach 
using the computational hydrogen electrode (CHE) [13] is 
often used to evaluate the ORR activity of computational 
models. Since the estimate of an overpotential obtained by 
this approach only reflects thermodynamic free energy of 
intermediates as well as initial and final states, it will be 
referred to as the thermochemical overpotential, �TCM , in 
the following.

Jiao and co-workers predict a �TCM range of 0.4−0.6 V 
for both BG and NG based on calculations using the B3LYP 
functional and molecular flake model systems, in good 
agreement with their experimental measurements [12]. A 
similar value, 0.38 V, is reported by Wang et al. [14] for a 
BG nanoribbon model using the PBE functional and DFT-
D3 [15, 16] dispersion correction. The most optimistic pre-
diction is reported by Fazio and co-workers with a �TCM of 
0.29 V in a B3LYP-based study of a BG flake model system 
[17]. For reference, the measured overpotential of a typi-
cal Pt/C electrocatalyst is 0.3−0.4 V [18]. The experimen-
tal overpotential, however, depends on many other factors 
besides adsorption strength of the ORR intermediates, hence 
�TCM values are only a rough and purely thermodynamic 
approximation of the actual overpotential.

The exact mechanism of the ORR on BG is a matter of 
ongoing investigation. Fazio and co-workers established that 
the associative 4 e− pathway should be dominant for BG from 
a theoretical perspective [17]. They found O2 adsorption to 
occur via an open-shell end-on intermediate on a molecular 
flake model system in calculations using the B3LYP func-
tional. Ferrighi et al. proposed the formation of stable B–O3 
bulk oxides on BG which they hypothesize to be the first step 
in the ORR mechanism on BG [19]. They, however, did not 
detail further reaction steps. Ferrighi et al. used a molecular 
flake model and the B3LYP functional as well as periodic 
surface models and the PBE functional in their study. Con-
trarily, Wang and co-workers recently identified a cluster of 
two B dopants in para arrangement to enable the associa-
tive 4 e− ORR pathway, including energetically favorable O2 
adsorption [14]. They used a periodic nanoribbon model 
and the PBE functional with DFT-D3 dispersion correction. 
Using a molecular flake model and the B3LYP functional, 
the study by Jiao et al. [12] finds that a top adsorption geom-
etry should be favored for the critical *O intermediate on BG 
while other studies [14, 17, 19] typically find a B–C bridge 
site to be favored for *O adsorption. It can be summarized 
that the active site debate for the ORR mechanism on BG 
is not settled yet.

Furthermore, the stabilization of the ORR intermediates 
on BG by water molecules, which has been found to be a 
significant contribution to the free energy description of the 
ORR on NG, [20–23] has only been considered by one group 
so far to the best of the authors’ knowledge. Fazio et al. used 
a cluster of 6 water molecules in contact with a molecular 
flake model representing BG to estimate the effects of solva-
tion [17]. The group found that while the stability of the *O 
intermediate is barely affected by solvation, the *OH and 
*OOH intermediates are stabilized by − 0.37 eV and − 0.46 
eV, respectively. The low predicted �TCM of 0.29 V versus 
SHE in this study results in part from the stabilizing effect 
of solvation.

In the study by Jiao et al. [12] solvation effects are esti-
mated using implicit [24] solvation models. However, 
implicit solvation models have in some cases been shown to 
fail at reproducing experimental solvation energy measure-
ments or solvation energy results from simulations using 
many explicit solvent molecules [25–28].

We recently presented results for the ORR on NG where it 
was shown that high-level DFT calculations based on hybrid 
functionals yield a �TCM estimate close to 1.0 V versus SHE 
[29], which indicates catalytic inactivity. The choice of 
hybrid functional was made after benchmarking various 
functionals against a reference data set from diffusion Monte 
Carlo simulations [30].

However, it was noted that solvation effects could con-
siderably improve the catalyst activity predictions. To illus-
trate this effect, we applied two sets of solvation stabiliza-
tion energy, ΔΔEsolv , data for the ORR intermediates on NG 
taken from literature sources (Reda et al. [23] and Yu et al. 
[21]) to the hybrid DFT free energy results. Solvation was 
found to reduce �TCM by up to 0.5 V. However, the pub-
lished ΔΔEsolv data set were calculated in different ways and 
disagreed significantly, leading to different �TCM estimates 
depending on the choice of ΔΔEsolv data set.

The accurate hybrid DFT approach was also applied to 
BG with similar results: a �TCM estimate above 1.0 V versus 
SHE, indicating catalytic inactivity [31]. This result is in 
stark contrast to other more optimistic studies which, impor-
tantly, used functionals such as PBE and B3LYP as well 
as molecular flake models which were shown to produce 
unreliable adsorption free energy results [29]. However, the 
high �TCM prediction for BG did not include any solvation 
effects. Informed by the report from Fazio et al. on the sig-
nificant impact of ΔΔEsolv on the free energy trends and 
by our own observations of the same for NG, the present 
study was conceived to systematically investigate the effect 
of an increasing number of explicit water molecules on the 
stability of the ORR intermediates *O, *OH, and *OOH, as 
represented by the ΔΔEsolv descriptor. Simulations were per-
formed with the 32-atom BG model system used previously 
[31] in contact with up to 4 layers (32 molecules) of water. 
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Both local minimization calculations as well as regular and 
coarse-grained classical molecular dynamics (MD) simu-
lations were performed using atomic forces derived from 
density functional theory (DFT) calculations to obtain statis-
tical estimates of ΔΔEsolv . Additionally, local minimization 
calculations were performed on structures re-sampled from 
the MD data sets. In short, none of the data sets generated in 
this way yielded converged and trustworthy ΔΔEsolv results. 
Technical aspects of the simulations are discussed in detail 
and the conclusion is that a much larger number of water 
molecules needs to be included in the calculations to provide 
reliable estimates of the solvation effect.

The present model system includes up to 139 atoms 
and the dynamics simulations span up to 100 ps, thereby 
already straining the computational resources. Moreover, the 
ΔΔEsolv estimates are highly system dependent and would 
need to be reestablished for every new (electro-) catalyst 
model. Hence, we highlight the need for hybrid simulation 
methods that enable simulations of systems including hun-
dreds or even thousands of water molecules using a lower 
level of theory while retaining electronic structure level 
accuracy in the surface region where reactions occur.

2 � Methodology

2.1 � Calculation of the Solvation Stabilization 
Energy

The solvation stabilization energy ΔΔEsolv is estimated as 
the difference between the adsorption energy calculated 
for models in contact with explicit solvent ( ΔEwith solvent

ads
 ) 

and models without inclusion of any solvent molecules 
( ΔEwithout solvent

ads
):

where

and

Here, Eadatom reference
tot

 is the total energy of any combination of 
gasphase molecules used to calculate the adsorption energy. 
For example, Eadatom reference

tot
 may be expanded to EH2O

tot
− EH2

tot
 

to serve as the reference energy for an O adatom. Because 
these values are always gasphase reference energy values, 

(1)ΔΔEsolv = ΔEwith solvent
ads

− ΔEwithout solvent
ads

,

(2)
ΔEwith solvent

ads
= EBG + adatom with solvent

tot
− EBG with solvent

tot

− Eadatom reference
tot

(3)

ΔEwithout solvent
ads

= EBG+adatom without solvent
tot

− EBG without solvent
tot

− Eadatom reference
tot

.

also in the case of the solvated model systems, they cancel 
out in the calculation of ΔΔEsolv.

Therefore, Eq. (1) reduces to:

2.2 � Calculation of the Confidence Interval 
for Average Ensemble Properties

The confidence interval (CI) is a useful statistical meas-
ure for the error bar of an average result sampled from a 
normal distribution of values. It is therefore also useful 
to estimate the error bar of ensemble averages sampled 
through molecular dynamics integration; see Grossfield 
et al. [32] for more details. The CI defines an interval in 
which the true ensemble average lies with a certain prob-
ability. Here, a 95% probability threshold is used to define 
the error bars, i.e., the 95% CI.

The two-sided CI <x> of a variable x is defined as

where x̄ is the ensemble average and U is the expanded 
uncertainty. The expanded uncertainty is defined as

where k is the coverage factor and s(x̄) is the experimental 
standard deviation of the mean. s(x̄) is defined as

where s(x) is the experimental standard deviation

with the sample values xj , the arithmetric mean of the 
ensemble property x̄ , and the number of independent sam-
ples n (Table 1).

The coverage factor k is a measure for the number of 
independent samples taken into account during calcula-
tion of the standard deviation. For the 95% CI used in this 
work, the coverage factors k are given by Grossfield et al. 
as follows:

(4)

ΔΔEsolv = EBG+adatom with solvent
tot

− EBG with solvent
tot

−
(

EBG+adatom without solvent
tot

− EBG without solvent
tot

)

(5)<x> = x̄ ± U,

(6)U = k s(x̄),

(7)s(x̄) =
s(x)
√

n
,

(8)s(x) =

�

∑n

j=1
(xj − x̄)2

n − 1
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3 � Computational Details

3.1 � BG Sheet Model System

The model system used in this study is a 32-atomic gra-
phene sheet with one B dopant atom, analogous to our 
previous works on NG and BG [29, 31]. To study the 
influence of solvation on the ORR intermediates *O, 
*OH, and *OOH, 1–4 layers of water molecules with 8 
water molecules per layer are added to the model. The 
water configurations built initially were inspired by the 
configurations presented by Reda et al. in a study of the 
solvation of ORR intermediates on NG [23]. The group 
showed that the maximum H 2 O coverage per layer for NG 
is ΘH2O

=
2

3
 monolayers which the present results confirm. 

Hence, a maximum of 24 atoms (8 molecules) can be 
placed per layer before lateral crowding destabilizes the 
water configuration and formation of a new layer begins. 
Figure 1 shows a representative illustration of the BG 
sheet model with an *O adatom in contact with 4 lay-
ers of water molecules; illustrations of sheet models with 
*OH and *OOH admolecules as well as models in contact 
with 1–3 layers of water are shown in Figs. S1 and S2, 
respectively.

In agreement with studies by Fazio et al. [17] Ferrighi 
et al. [19] and Wang et al. [14] but in disagreement with 
the study by Jiao et al. [12] we find adsorption of the *O 
intermediate on the C–B bridge position to be energeti-
cally most favorable. The *OH and *OOH adspecies are 
found to adsorb most favorably on the B top position, 
which is in agreement with all previously mentioned 
studies.

The 32-atomic BG model system is converged with 
respect to the adsorption energy of the ORR interme-
diates, see Fig. S4. This model therefore allows for the 
study of the adsorption energy—and the influence of 
solvation thereon—for a low-coverage system where the 
electronic effects of both the dopant atom and the adspe-
cies are isolated.

3.2 � Simulation Parameters

The obtained data sets, including input files with simula-
tion parameters, are distributed alongside this article and 
are available from https://​doi.​org/​10.​5281/​zenodo.​76849​18.

3.3 � Choice of DFT Code and Functional

All simulations were performed with the VASP software 
version 6.2.0 [33–36]. The RPBE density functional [37] 
with DFT-D3 dispersion correction [15, 16] was used. The 
RPBE-D3 method has been shown to yield water configura-
tions in agreement with experiments and higher-level meth-
ods at comparatively low computational cost [38].

Previous work on NG showed that adsorption energy 
values for the ORR intermediates can be wrong by up to 
0.4 eV compared to the best estimate provided by the HSE06 
hybrid functional, which was found to give the lowest error 
of 5% compared to a diffusion Monte Carlo benchmark cal-
culation [29]. Similar results were obtained for BG [31], 
see Table S1, where �TCM with the HSE06 functional was 
ca. 1.0 V versus SHE. (Meta-) GGA functionals underes-
timated this best-estimate value by up to 0.6 V. Figure S3 
shows the free energy trends for the ORR on BG obtained 
with various density functionals. However, our previous 
work also showed that ΔΔEsolv does not share the same 
strong dependency on the functional [29]. This realization 
enables the present study since FPMD simulations as long 
as required for this work are currently not computationally 
feasible using hybrid functionals.

Table 1   Coverage factors k as 
a function of the number of 
independent samples n 

Reproduced from Grossfield 
et al. [32]

n k

6 2.57
11 2.23
16 2.13
21 2.09
26 2.06
51 2.01
101 1.98

Fig. 1   Rendered illustration of the BG sheet model system with an 
*O adatom in contact with 32 water molecules (4 layers)

https://doi.org/10.5281/zenodo.7684918
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3.3.1 � Static DFT Calculations

Static calculations constitute single-point electronic energy 
calculations as well as minimization calculations of the 
total energy with respect to the atomic coordinates. Wave 
functions were self-consistently optimized until the energy 
in subsequent iterations changed by less than 10−6 eV. The 
wave function was sampled using Monkhorst–Pack k point 
grids [39]. A k point density larger than 2 × 2 × 1 was found 
to give converged results for ΔΔEsolv , see Fig. S5. Due to the 
wide variety of structures calculated in this work, refer to the 
data set distributed alongside this article to see the chosen k 
point density for each subset of calculations.

Simulations were carried out using a plane wave basis set 
with an energy cutoff of 600 eV to represent valence elec-
trons. The projector-augmented wave (PAW) method [40, 
41] was used to account for the effect of inner electrons. 
See Fig. S6 for a convergence study for the PAW energy cut-
off. Gaussian-type finite temperature smearing was used to 
speed up convergence. The smearing width is chosen so that 
the electronic entropy was smaller than 1 meV in all cases. 
Real-space evaluation of the projection operators was used 
to speed up calculations of larger systems, using a precision 
of 10−3 eV atom−1 . The periodic images are separated by 
14 Å of vacuum and a dipole correction is applied perpen-
dicular to the slab.

Atomic coordinates were optimized until the norms of 
all forces reached below 10−2 eV Å −1 . The L-BFGS limited-
memory Broyden optimizer from the VASP Transition State 
Tools (VTST) software package was used to minimize the 
forces with respect to the atomic coordinates.

3.3.2 � Classical Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations were car-
ried out in an NVT ensemble at 300 K using the Langevin 
dynamics [42] implemented in the VASP software. The 
simulations used similar parameters to those outlined in 
Sect. 3.3.1 but used a lower PAW energy cutoff of 400 eV 
and a 3 × 3 × 1 Monkhorst–Pack k point grid to enable total 
simulation times of up to 100 ps. A Langevin friction param-
eter of � = 4.91 was used throughout all simulations.

Dynamics were calculated initially until the total energy 
and temperature were converged. This equilibration period 
is not considered in the evaluation and was optimized on a 
case-by-case basis. After equilibration had been achieved, 
the actual sampling was performed over a period of time. In 
all simulations the geometry of the graphene sheet and the 
adspecies were constrained to the geometry obtained from 
a one-shot geometry optimization of the system in contact 
with n = 1−4 water layers, respectively. Only the water mol-
ecules were allowed to move during simulations. The E

tot
 

versus t and T versus t trends for all simulations are shown 
in the online SI.

Two data sets were generated: 

1.	 First, simulations were performed without any con-
straints on the water molecules and with a time step of 
0.1 fs. Simulations were continued up to a total simula-
tion time of 10 ps after thermalization. This set of MD 
simulations will be referred to as the flexible MD data 
set going forward.

2.	 Second, simulations were repeated after placing a Rattle-
type bond length constraint [43] on the O–H and H–H 
bonds to keep the geometry of water molecules rigid 
throughout simulations, thus enabling a coarse-grained 
time step of 1.0 fs. Simulations were continued up to 
a total simulation time of 100 ps after thermalization. 
This set of MD simulations set will be referred to as the 
constrained MD data set going forward.

To obtain ΔΔEsolv , configurations were sampled every 1 ps, 
yielding 10 samples for the flexible MD data set and 100 
samples for the constrained MD data set. This choice of 
sampling frequency is informed by the correlation time of 
water. The correlation time is the time it takes for complete 
re-orientation of the water arrangement, thus yielding a 
new, independent sample configuration that is statistically 
significant. It was found to be ca. 1.7 ps for water at room 
temperature using nuclear magnetic resonance spectroscopy 
[44]. The chosen sampling rate of 1 ps is smaller than this 
value as a result of the significant computational effort of 
performing long dynamics simulations. To minimize the risk 
of oversampling, Langevin dynamics was chosen to describe 
coupling to a heat bath. Langevin dynamics introduces a 
stochastic component to the propagation which can help 
to diversify configurations more quickly compared to fully 
deterministic dynamics.

4 � Results

4.1 � One‑Shot Minimization of Atomic Coordinates

The first data set is generated by bringing the BG model 
system with *O, *OH, and *OOH adspecies into contact 
with 4–32 molecules of water and minimizing the resulting 
configurations with respect to the atomic forces. This data 
set will be referred to as the one-shot minimization data 
set going forward. The water configurations are modeled 
after those used by Reda et al. to calculate the solvation 
stabilization energy for the ORR intermediates on NG 
sheet model systems [23]. Configurations were created so 
that water molecules are only on one side of the BG sheet 
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model or on both sides, denoted with the † and ‡ symbols, 
respectively, in Table 2 and Fig. 2.

The ΔΔEsolv results in the one-shot minimization data 
set give rise to several trends. First, when water molecules 
are placed only on one side of the model, ΔΔEsolv for the 
*O intermediate does not appear to be converged within 
the tested series of models as ΔΔEsolv still increases from 
− 0.20 eV to − 0.06 from 24 to 32 molecules. Values can 
be deemed converged if changes are below ca. 0.05 eV or 
1 kcal mol−1 , i.e., chemical accuracy.

Second, the results for simulations where molecules are 
placed only on the side of the sheet model with the adatom 
( † ) are inconsistent with simulations where molecules are 
placed on both sides of the model ( ‡ ). For example, devia-
tions of < 0.05 eV are found between simulations where 16 
molecules are placed on the side of the adatom and 0, 8, and 
16 molecules are placed on the other side. This result would 
potentially indicate that water molecules on the opposite side 
of where the adspecies is located have negligible influence 
and can be omitted. However, the deviation between ΔΔEsolv 
values where 8 molecules are placed on the side with the 
adspecies and 0 or 8 molecules are placed on the other side 
is 0.19 eV. Similarly, the deviation between ΔΔEsolv values 
where 24 molecules are placed on the side with *O and 0 or 
8 molecules are placed on the other side is 0.16 eV.

Results from the one-shot minimization data set are there-
fore inconsistent. From this data, it is unclear if and when 
ΔΔEsolv will converge as a function of the number of added 
water molecules and it cannot be assessed with confidence if 
water molecules do or do not need to be present on the side 
of the sheet opposite of the adspecies.

One potential reason for the inconsistent behavior lies in 
the one-shot nature of the data set: water molecule arrange-
ments are flexible and form a complex energy landscape 
where minimization algorithms can easily become stuck in 
local minimum configurations. This limitation can be over-
come by rigorous sampling of the configurational space 
using MD integration.

4.2 � NVT Simulations

In order to probe if insufficient sampling of the configu-
rational space is responsible for the inconsistent results in 
the one-shot minimization data set, ΔΔEsolv is subsequently 
determined as an ensemble average by performing MD 
simulations for a total of 10 ps using a time step of 0.1 fs. 
No constraint was placed on the O–H and H–H bonds of 
water molecules. This set of simulations is referred to as the 
flexible MD data set. Due to the significant computational 
effort of these simulations, only model systems where water 
molecules are placed on the same side with the adspecies 
are considered. Simulations are performed for the clean BG 
sheet model, for the BG sheet with an *O adatom in contact 
with 8–32 molecules, and for the *OH and *OOH adspecies 
in contact with 8–24 molecules of water. Figure 3a visual-
izes the ΔΔEsolv results calculated in this data set.

Focusing on the *O intermediate (blue curve), a simi-
lar trend of ΔΔEsolv versus the number of water molecules 
emerges as before from the one-shot minimization data set: 
the values oscillate and there is an increase of ΔΔEsolv from 
− 0.3 eV to 0.2 eV from 24 to 32 molecules, indicating sig-
nificant destabilization of this adspecies with increasing 
number of water molecules.

Table 2   Summary of the calculated ΔΔE
solv

 results from the one-shot 
minimization data set

†  and ‡ indicate if water molecules are placed only on one side or on 
both sides of the BG sheet model, respectively

# of water 
molecules

Arrangement ΔΔE
solv

/eV

4 H
2
O On side with *O 0.19†

8 H
2
O On side with *O − 0.04†

16 H
2
O On side with *O − 0.11†

16 H
2
O 8 on both sides 0.15‡

24 H
2
O 16 on side with *O, 8 on the other side − 0.07‡

24 H
2
O On side with *O − 0.20†

32 H
2
O 24 on side with *O, 8 on the other side − 0.04‡

32 H
2
O On side with *O − 0.06†

32 H
2
O 16 on side with *O, 16 on the other side − 0.06

Fig. 2   ΔΔE
solv

 results for the *O intermediate on BG in contact with 
4–32 molecules of water from the one-shot minimization data set. The 
blue line shows ΔΔE

solv
 for models where water molecules are exclu-

sively placed on the side of the model where the adatom is located. 
The orange line shows ΔΔE

solv
 values for select models where water 

molecules are placed on both sides of the model. For the orange line, 
the x axis indicates the number of water molecules on the side with 
the adatom and not the total number of water molecules. The † and ‡ 
indicators connect the values in this figure to the corresponding data 
values in Table 2
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It can be summarized that the flexible MD data set did 
not yield more consistent ΔΔEsolv results than the one-shot 
minimization data set. While a similar overall ΔΔEsolv trend 
is observed for the *O adspecies, differences between sub-
sequent data points are even larger than in the case of the 
one-shot minimization data set.

Another important observation is the size of the error 
bars, which extend from 0.25 eV up to over 0.5 eV in some 
cases. Note that in the case of the *O intermediate, the error 
bar span becomes larger as a function of the number of water 
molecules. This effect is much less pronounced, if at all 
observable, for the *OH and *OOH intermediates. However, 
it is clear from the size of the error bars that the length of 
simulation time is too short compared to the correlation time 
of water and thus simulations only yielded 10 independent 
samples that entered into the evaluation.

In an effort to extend the simulation time, a coarse-grain-
ing approach was chosen where the O–H and H–H bond 
lengths of water molecules were constrained to the average 
corresponding bond lengths obtained in the flexible MD data 
set. This bond length constraint allows for larger simulation 
time steps to be taken without the risk of spurious discre-
tization errors from inadequate sampling of the fast O–H 
vibrations. A subsequent set of dynamics simulations of the 
same model systems thus used a time step of 1.0 fs and was 
continued for a total of 100 ps simulation time, yielding 100 
independent samples. ΔΔEsolv results from this constrained 
MD data set are visualized in Fig. 3b.

ΔΔEsolv trends from the constrained MD data set, while 
also showing no signs of converging behavior, differ sig-
nificantly from the flexible MD and one-shot optimization 
data sets. The obtained ΔΔEsolv values for the *O adspe-
cies do not oscillate as in the case of the other data sets 
but continuously increase with increasing number of water 
molecules. From this data set, the presence of 24 and 32 
water molecules is predicted to significantly destabilize 

this intermediate. With ca. 0.25 eV, the data point for 32 
water molecules from this data set is similar to the flex-
ible MD data set, however, this data set does not show the 
reduction of ΔΔEsolv at 24 molecules that was observed 
for both the flexible MD and the one-shot minimization 
data sets.

The *OH and *OOH adspecies show similar ΔΔEsolv 
trends that parallel each other in this data set; however, val-
ues oscillate by up to 0.5 eV when the number of water mol-
ecules is increased. Finally, the factor 10 longer simulation 
time affects the size of the error bars which is now on the 
scale of ca. 0.1 eV. Similar to results from the flexible MD 
data set, the error bars for ΔΔEsolv of the *O adspecies are 
found to increase with increasing number of water molecules 
in the simulation while no such trend is observed for the 
*OH and *OOH intermediates.

Finally, the local structure of the water molecules around 
the adspecies is analyzed using z distribution functions, 
g(z), shown in Fig. S7. The g(z) distributions are obtained 
by calculating the distances between the O atoms of water 
molecules and an x − y plane located at the average z coor-
dinate of the atoms in the BG sheet model. The g(z) show 
distinct bands for the first and second solvation layer. The 
bands for the third and fourth layers are significantly more 
broadened, indicating that the surface-adjacent water double 
layer is more strongly coordinated compared to subsequent 
layers. Notably, shoulders at the first band are visible in the 
g(z) generated from the flexible MD data set which are not 
visible in those generated from constrained MD data set. 
However, this result is presented with the caveat that the data 
is more noisy compared to the smoother constrained MD 
g(z) results due to the 10× smaller sampling statistics. This 
result potentially indicates that the bond length constraint 
affects the coordination fine structure around the adspecies 
and thus may help to explain the differences between the 
flexible MD and constrained MD data sets. However, more 

Fig. 3   ΔΔE
solv

 results for the *O (blue curve), *OH (orange curve), 
and *OOH (green curve) adspecies on BG in contact with 8–32 mol-
ecules of water obtained as ensemble averages from a 10 ps of MD 
using a time step of 0.1 fs where water molecules were flexible and b 

100 ps of MD using a time step of 1.0 fs where water molecules were 
constrained. The error bars indicate the two-sided 95% CI calculated 
according to Eqs. (5)–(8)
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detailed investigation is required to validate the importance 
of this observed difference.

It can be summarized that coarse-grained MD simulations 
yielded a data set that is significantly different from the more 
similar-to-each-other flexible MD and one-shot minimization 
data sets but did not yield more consistent ΔΔEsolv results 
overall. Finally, the bond length constraint is found to change 
the ΔΔEsolv results compared to the flexible MD data set; 
however, since there are currently no converged reference 
values for ΔΔEsolv , it is impossible to assess if the changes 
introduced by the Rattle-type constraint are detrimental to 
the results or not.

4.3 � Re‑sampling and Energy Minimization

The flexible MD and constrained MD data sets did not yield 
converged ΔΔEsolv results. There are, however, two techni-
cal limitations which may reduce the significance of these 
data sets: 

1.	 For these data sets, ΔΔEsolv is calculated by using the 
average total energy from an NVT ensemble ( T = 300 K) 
for the energy terms labeled “with solvent” in equation 
(4). The energy terms labeled “without solvent” are 
obtained from static energy minimization calculations of 
the systems without solvent which are technically at 0 K 
temperature. While the BG sheet model and adspecies 
were kept frozen in the atomic configuration from a 0 K 
energy minimization during the MD and only water mol-
ecules were allowed to move, it cannot be fully excluded 
that results are biased due to a mismatch between the 
averaged finite-temperature MD values on one side and 
the locally optimized, 0 K values on the other side of the 
equation.

2.	 As outlined in Sect. 3, the MD simulations—as well as 
the corresponding reference simulations of the systems 
“without solvent” needed for Eq. (4)—used a reduced 
PAW energy cutoff value of 400 eV to enable longer 
simulation times. This value is technically not converged 
for adsorption energy calculations, see Fig. S5.

In order to address both of these limitations, a fourth data set 
is produced. To this end, 20 structures are randomly sampled 
from each flexible MD trajectory and subsequently energy-
minimized using the settings presented in Sect. 3, i.e., with a 
larger PAW energy cutoff of 600 eV. This way, the diversity 
of the MD-generated configurations is maintained but all 
values entering Eq. (4) are obtained from energy-minimized 
atomic configurations using safer accuracy settings. This 
data set will be referred to as the resampled data set going 
forward. Figure 4 visualizes the ΔΔEsolv results from this 
data set.

The resampled data set shares similarities with the flex-
ible MD and one-shot optimization data sets, for example 
the characteristic dip of ΔΔEsolv for the *O adatom at 24 
water molecules. This result further indicates that the bond 
length constraint used to obtain the constrained MD data set 
is likely altering the trends in a significant way. The previ-
ously discussed trend regarding error bar spans increasing 
with increasing number of molecules is distinctly present 
both for the *O and the *OH adspecies. Ultimately, this data 
set does not provide fundamentally different insights into the 
ΔΔEsolv trends compared to the preceding analyses.

5 � Discussion

5.1 � Comparison of the Results from Different Data 
Sets

Figure 5 shows a side-by-side comparison of ΔΔEsolv as a 
function of the number of water molecules for the *O, *OH, 
and *OOH adspecies from the four obtained data sets.

The resampled data set is the most significant data set 
among those obtained in this work as it combines the broad 
configurational diversification of the MD simulations with 
the methodological consistency of calculating ΔΔEsolv using 
strict accuracy parameters and exclusively on the basis of 
energy-minimized structures. By comparing the data sets 
with each other and with the resampled data set in particular, 
several important aspects can be highlighted.

First, convergence of ΔΔEsolv , i.e. changes of < 0.05 eV 
between subsequent data points, is not observed in any case. 

Fig. 4   ΔΔE
solv

 results for the *O, *OH, and *OOH adspecies on BG 
in contact with 8–32 molecules of water obtained as average values 
over 20 images per data point which were randomly resampled from 
the flexible MD data set and subsequently energy-minimized with 
respect to the atomic coordinates. The error bars indicate the two-
sided 95% CI calculated according to Eqs. (5)–(8)
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It is impossible at this point to give a confident estimate of 
ΔΔEsolv for the tested adspecies on the BG sheet model. This 
result indicates that more than 32 molecules (4 layers) of 
water are necessary to obtain converged results.

Converging the ΔΔEsolv value to changes within chemical 
accuracy is of crucial importance. For example, consider the 
potential-dependent free energy trends for the ORR on the 
BG model presented in Fig. S3. These trends were obtained 
according to the free energy approach using the compu-
tational hydrogen electrode [13]. Using the most reliable 
functional for adsorption energy calculations on this mate-
rial class according to benchmarks [29, 30, 45], the HSE06 
hybrid functional, the potential-determining step is the for-
mation of the *OOH intermediate by a significant margin. 
The extrapolated thermochemical overpotential, �TCM , for 
the ORR on the present BG model is ca. 1.0 V versus SHE. 
Stabilization of the *OOH intermediate by roughly − 0.4 eV 
(8 water molecules), − 0.6 eV (16 water molecules), or − 0.2 
eV (24 water molecules) will therefore proportionally reduce 

�TCM to 0.6 V, 0.4 V, and 0.8 V versus SHE, respectively. 
Therefore, depending on the number of included water mol-
ecules, one can predict a mostly inactive ( �TCM = 0.8V , 24 
molecules) or moderately active ( �TCM = 0.4V , 16 mol-
ecules) ORR electrocatalyst. The overpotential of a typical 
reference Pt/C electrocatalyst is 0.3−0.4 V [18]. Therefore, 
ΔΔEsolv must be converged within the limits of chemical 
accuracy before any trustworthy prediction can be made.

Second, there appears to be no obvious systematicity to 
whether trends from the different data sets agree with each 
other or not. For example, values from different data sets 
for the *OOH intermediate are in reasonable agreement and 
show similar overall trends. In the case of the *O adatom, 
there is some correlation between trends from correlated 
data sets (in particular the flexible MD data set and the resa-
mpled data set which was generated from the former) and 
only the constrained MD data set behaves significantly dif-
ferent. In the case of *OH, however, there appears to be no 
shared trends between results from either of the data sets. 

Fig. 5   Comparison of ΔΔE
solv

 results for the a *O, b *OH, and c *OOH adspecies from the one-shot minimization data set, the flexible MD and 
constrained MD data sets, and the resampled data set
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Further research is needed to analyze why there is reason-
able agreement in some cases and no agreement in other 
cases.

Third, the error bars in all cases are significantly larger 
than chemical accuracy (± 0.05 eV). Aside from the fluc-
tuation amplitude of the total energy values, the size of the 
error bar is governed by the number of independent samples. 
Because of the long experimentally measured correlation 
time of water, significantly longer statistics may be required 
to reduce the uncertainty to within chemical accuracy. See 
also Sect. 5.3.1 for a detailed analysis of the influence of 
sampling frequency.

Fourth, from the results presented in Table 2, it cannot be 
completely ruled out that water molecules may have to be 
added to both sides of the BG sheet model to obtain correct 
results. This result stands in contrast to results by Reda et al. 
for NG where results for placing water molecules on one 
side or both sides of the model were close to identical [23]. 
This result therefore shows that ΔΔEsolv values obtained for 
one material cannot be transferred to others, even if they are 
as closely related as NG and BG.

Fifth, analysis of the z distributions, g(z), of oxygen 
atoms from the water molecules based on the MD data 
sets provided some first evidence that the bond length con-
straint used to obtain the constrained MD data set may have 
affected the coordination fine structure around the adspecies. 
However, due to the poor statistics resulting from the small 
required time step used to generate the flexible MD data set, 
it would be necessary to extend these simulations by a factor 
5–10 to obtain enough independent samples to make sure 
that this observation is significant.

As an intermediary conclusion, the most likely explana-
tion for the non-convergence of the ΔΔEsolv results in gen-
eral, as well as for the non-systematic differences between 
data sets more specifically, is that significantly more water 
molecules need to be included in simulations. It is unclear 
at this point how many water molecules would be required 
to achieve convergence. Sakong et al. found that 6 lay-
ers of water are needed to obtain bulk water behavior and 
converged work function estimates in the case of FPMD 
simulations of a Pt(111) surface in contact with water [46]. 
However, Pt(111) is a strongly-coordinating surface com-
pared to the hydrophobic BG sheet model in the present 
study. Furthermore, the group tested for convergence of the 
work function and not for ΔΔEsolv of reaction intermediates. 
Hence, it is unlikely that the number of 6 necessary water 
layers will also be the correct number of layers to include 
for the present system.

For these reasons, it is currently not possible to foresee the 
ultimately required number of water molecules required to 
obtain converged ΔΔEsolv results for this system. Attempting 
to find this number systematically by dynamics simulations 
with DFT atomic forces quickly becomes computationally 

unfeasible; simulations for the models in contact with 32 
water molecules in this work already required several weeks 
of computational time. Even if these considerable time and 
energy resources would be spent to identify the required 
number of water molecules for the present problem, such 
a study would have to be repeated for every new material 
under investigation. Even though the influence of solvation 
has been shown to significantly affect free energy trends, the 
authors are therefore convinced that such simulations cannot 
yet be performed routinely.

We have thus come to the decision to publish the present 
results as-is and to not continue simulations with model sys-
tems that include more and more water molecules at ever 
increasing computational cost. Instead, we are currently 
focusing research efforts into development of a 2D-periodic 
polarizable-embedding QMMM method that will allow for 
simulations with thousands of water molecules while retain-
ing electronic structure level accuracy for the surface model 
and the closest few layers of water molecules. This method 
will use the Single Center Multipole Expansion (SCME) 
ansatz to describe polarization of water molecules which 
is crucial to accurately describe interface processes such 
as charge transfer [47, 48]. Because the boundary plane 
between the QM and MM regions has exclusively water 
molecules on both sides, and because it is not necessary to 
describe diffusion to or from the surface to obtain ΔΔEsolv 
results, an efficient restrictive boundary method can be used. 
The SAFIRES method recently developed in our groups was 
built to support 2D periodic boundary conditions [49].

A publication on the technical implementation of the 
2D periodic polarizable-embedding QMMM ansatz for the 
open-source GPAW and ASE programs is currently in prepa-
ration in our groups. The goal is to use this method to revisit 
the BG model system in the present work.

5.2 � Comparison to Literature Results

To the best of our knowledge, there is only one other study 
in literature where ΔΔEsolv values from explicit solvation 
were calculated for the ORR intermediates on BG. Fazio 
et al. used a molecular BG flake model in contact with a 
cluster of 6 water molecules to obtain ΔΔEsolv[17]. The 
group used the B3LYP hybrid functional in combination 
with DFT-D3 dispersion correction. From this model, 
they obtained ΔΔEsolv values of − 0.06 eV, − 0.37 eV, and 
− 0.46 eV for the *O, *OH, and *OOH intermediates. The 
values for *O and *OOH are in reasonable agreement 
with the results for 8 water molecules in the present study, 
which is the closest point of reference. The value for *OH 
is 0.15 to 0.20 eV more positive than in the present work. 
Because the ΔΔEsolv values in the present work are not 
converged even when 32 water molecules are included, an 
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in-depth discussion about potential reasons for the (dis-)
agreement of the present results and the results by Fazio 
et al. is not appropriate.

However, results for ΔΔEsolv for the ORR intermediates 
on NG obtained with periodic model systems and a larger 
number of water molecules are available. We will therefore 
attempt to compare as best as possible with the results of the 
closely related NG system.

The one-shot minmization data set was calculated in a 
similar way as free energy results presented by Reda et al. 
for the ORR intermediates on NG [23]. In the case of Reda 
et al., the solvation energy results were found to be con-
verged when one layer of water molecules was included, and 
including water molecules on both sides of the surface was 
not found to strongly impact results. It is currently not clear 
why the present results for BG show such different trends.

One potential cause for this disparity could be the slightly 
different binding geometry of the ORR intermediates on NG 
and BG. The *O intermediate is bridge-bound for BG and 
bound on a C-top position for NG and the *OH and *OOH 
intermediates are bound on the B-top position on BG and 
on a C-top position on NG. However, it is unclear if these 
arguably subtle differences are responsible for the differ-
ence in convergence trends for ΔΔEsolv . Another potential 
cause for the disparity may be the simultion approach chosen 
by Reda et al. who used a global minimization algorithm 
to find the optimal H2O arrangements. Finally, Reda et al. 
used the BEEF-vdW functional while RPBE-D3 was used 
in the present work. Detailed benchmarks would be required 
to establish if the different density functional or dispersion 
method cause the diverging behavior.

Another comparison can be made with FPMD results for 
the ORR on NG presented by Yu et al. [21]. The group esti-
mated ΔΔEsolv by introducing 41 water molecules to a NG 
model, performing classical dynamics simulations with DFT 
forces, and finally minimizing the lowest-energy solvated 
structures obtained from the MD simulation with respect to 
the atomic coordinates. The group obtained ΔΔEsolv values 
of − 0.53, − 0.38, and − 0.49 eV for the *O, *OH, and *OOH 
intermediates, respectively.

While this approach fails to capture the vast structural 
diversity of the configurational space and is therefore less 
representative of the system under experimental condi-
tions, it has value from a computational perspective because 
ΔΔEsolv according to Eq. 4 is calculated exclusively from 4 
values total, all of which represent the best possible guess 
for the global minimum energy configuration of each system.

Hence, we also apply this approach to the present data set 
to check if ΔΔEsolv trends become less erratic by this way of 
analysis. The flexible MD data set was re-analyzed to find the 
structure with the lowest total energy for each combination 
of adspecies and number of water molecules. The obtained 
images are then energy-minimized using the safe accuracy 

settings outlined in Sect. 3. Figure S8 shows the results of 
this approach.

Figure S8 shows that the ΔΔEsolv results for *OH and 
*OOH are comparable to the resampled data set in terms of 
relative trends but less so in terms of absolute values. How-
ever, the *O intermediate shows significantly more negative 
ΔΔEsolv results.

It can therefore be concluded that this approach not only 
did not resolve the erratic results but can further distort the 
results because the close-to-ideal local configurations opti-
mized in this case likely do not represent the average con-
figurations of water molecules around the adspecies in real, 
finite-temperature systems.

5.3 � Analysis of Potential Error Sources

To conclude the discussion of the data sets presented in this 
work, the following sections will rule out various potential 
error sources that readers familiar with dynamics simula-
tions and the pitfalls of solvation energy calculations may be 
concerned about. The obtained simulation data sets and data 
evaluation workflow have also been made available online, 
see section Supplementary Information.

5.3.1 � Influence of the Sampling Frequency on the Results

Configurations were sampled from the dynamics simulations 
at an interval of 1 ps. It is important to ask how the ΔΔEsolv 
results are affected by changes of the sampling frequency. 
Figure S9 compares ΔΔEsolv results from the flexible MD 
and constrained MD data sets analyzed every 2 ps, 1 ps, 
100 fs, and 10 fs.

The ΔΔEsolv results appear to be robust against the choice 
of sampling frequency. The only significant differences are 
observed between the flexible MD data set sampled every 2 
ps (5 total samples) and sampled every 1 ps (10 total sam-
ples) and faster. This difference can be attributed to the poor 
statistics in the case of the 2 ps sampling frequency.

The size of the error bars is affected significantly by the 
sampling frequency because the square root of the number of 
samples, 

√

n , enters the divisor of Eq. (7). This test therefore 
highlights the importance of choosing a reasonable sampling 
frequency based on the physical properties of the system to 
obtain a meaningful error bar. It is easy to get lured into a 
false sense of security by oversampling the results to obtain 
small error bars.

5.3.2 � Spurious Dipole and Quadrupole Corrections

Total energy calculations were performed using dipole and 
quadrupole correction perpendicular to the surface to avoid 
interactions between periodic repetitions of the simulation 
box. It is known that first-row semiconductors with defects, 
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of which BG is an example, can lead to large dipole and 
quadrupole moments, thus making the correction necessary. 
However, our simulations showed that the correction can 
sometimes give erroneously large corrections of several eV 
for unknown reasons. After re-optimizing the wave function 
in a single-point calculation, the correction is then found to 
be of a reasonable magnitude again, usually on the order of 
some meV.

Because it is impossible to perform this manual correc-
tion for all calculations in this work, the consistency of the 
results is representatively examined by analyzing the average 
dipole and quadrupole correction energy (and uncertainty 
thereof) of the resampled data set. Figure S10 shows the 
results of this analysis. The average correction energy is 
≤ 0.02 eV in all cases, which is within the limits of chemi-
cal accuracy. Error bars are found to be as large as 0.01 eV 
in some cases and close to 0.02 eV in one extreme case 
(BG-OOH in contact with 24 water molecules), indicating 
that the dipole and quadrupole energy correction is indeed 
volatile (in relation to the absolute values) and dependent on 
the exact geometry of the system. However, due to the small 
overall magnitude of the correction, it can be concluded that 
this correction should not significantly influence the calcula-
tion results.

5.3.3 � Spurious Dispersion Correction

DFT-D3 dispersion correction values are significantly larger 
in magnitude than the dipole and quadrupole correction 
energy discussed in Sect. 5.3.2. Figure S11a uses the resa-
mpled data set to show the dispersion energy difference 
ΔEdisp = E

BG-adspecies

disp
− EBG-clean

disp
 between the BG systems 

with the adspecies *O, *OH, and *OOH and the clean sys-
tem, all of which are in contact with water. This analysis 
therefore highlights the contribution of the dispersion energy 
to the adsorption energy for the solvated model systems. 
Figure S11b reproduces the ΔΔEsolv results as a function of 
the number of water molecules shown in Fig. 4 but with the 
dispersion energy removed from the total energy.

This analysis shows that the dispersion contributions 
increase with the size of the solute. ΔEdisp is close to zero 
for the *O adatom but ca. − 0.5 eV for *OOH in contact 
with 16 water molecules. The values for *OH and *OOH 
fluctuate significantly between subsequent data points, rais-
ing the question if the dispersion correction may be partially 
responsible for the erratic behavior of the ΔΔEsolv trends. 
However, analyzing the ΔΔEsolv trends in Fig. S11b shows 
that the results do not become more consistent when the 
dispersion energy contribution is removed. Hence, it can 
be concluded that any volatility of the dispersion correction 
results is also not the cause for but most likely the result of 
the erratic nature of the entire data set.

One caveat in this analysis and discussion, however, is 
that this a posteriori removal of the final dispersion correc-
tion energy does not remove the entire influence of disper-
sion correction on the data set. Both the MD simulations 
and the local minimization of the structures in the resampled 
data used dispersion correction throughout, hence the final 
structures (re-)analyzed here are generated on the RPBE-
D3 potential surface. Despite this caveat, it is still unlikely 
that dispersion is the driving factor behind the erratic results 
since in particular the RPBE-D3 functional combination has 
been shown in the past to produce water structure that is in 
good agreement with experiments [38].

5.3.4 � Influence of Simulation Cell Size

Simulation cells varied in size between simulations with dif-
ferent number of included water molecules. Because a PAW-
based DFT approach was used and PAWs always fill the 
entire simulation cell, the c cell parameter was minimized on 
a case-by-case basis to minimize the computational effort. 
Increasing or decreasing the box size also changes the total 
energy in a small way, hence it is important that all energy 
values used to calculate ΔΔEsolv in Eq. (4) use the same 
cell dimensions. Consistency in this regard was ensured by 
generating the reference systems without solvent by remov-
ing water molecules from the original system; the reference 
systems are given alongside the solvated parent models in 
the data set available from https://​doi.​org/​10.​5281/​zenodo.​
76849​18.

Furthermore, Table  S2 summarizes the total energy 
results for various reference systems without solvent from 
the MD data sets. The differences between system are, 
despite differences in the c cell parameter, < 0.01 eV. Hence, 
the total energy contributions from inconsistent cell dimen-
sions, even if they had been left untreated, are unlikely to 
distort results enough to account for the erratic results in 
this work.

5.3.5 � Influence of Minimizing the Reference Systems

This concern is related to the discussion about inconsistent 
cell size in Sect. 5.3.4. As pointed out there, the reference 
systems were obtained from the solvated parent systems 
by removal of the water molecules and subsequent energy-
minimization of the resulting atomic configurations. This 
approach was chosen to account for the possibility that the 
most stable atomic arrangement of the BG-adspecies system 
may change once water molecules are removed.

However, this approach creates a potential inconsistency: 
by optimizing the atomic configuration of the reference sys-
tems, the ΔΔEsolv values obtained from Eq. (4) do not only 
contain the interaction of the BG-adspecies system with the 
water molecules but also the reorganization energy of the 

https://doi.org/10.5281/zenodo.7684918
https://doi.org/10.5281/zenodo.7684918
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systems when going from a system in vacuum to a solvated 
system.

To investigate if energy minimization of the atomic con-
figuration of the reference systems creates a bias, Fig. S12 
compares ΔΔEsolvresults from the one-shot optimization data 
set where the reference systems without solvent were either 
minimized or where the reference energy contributions 
EBG+adatom without solvent
tot  and EBG without solvent

tot
 were obtained 

from single-point total energy calculations.
Results from this test show that the overall trends are 

identical. However, ΔΔEsolv for the adspecies in contact with 
16, 24, and 32 water molecules are ca. 0.2 eV more negative 
when obtained from single-point energy calculations based 
on the formerly-solvated atomic configurations. This result 
is unsurprising because the reference systems without water 
molecules can be assumed to be in a slightly unfavorable 
configuration when not allowed to relax under the new envi-
ronmental conditions.

Overall, the differences appear to be systematic across the 
board and do not change the trends. Therefore, this factor is 
also not responsible for the erratic, non-converging behavior 
of ΔΔEsolvwith increasing number of water molecules.

5.3.6 � Influence of Constraining the Geometry of the BG 
Sheet

100 ps of classical dynamics without bond length constraints 
on the water molecules and no geometry constraint on the 
BG sheet and adspecies were accidentally performed for 
the BG-OOH system in contact with 1 layer of water. This 
mistake, however, can be used to probe the influence of the 
geometry constraint on the BG-OOH system.

Figure S13 compares the total energy and temperature 
trends over the course of the simulation time for the simula-
tions with and without geometry constraint on the BG-OOH 
system. Most notably, the total energy fluctuations are sig-
nificantly increased in the case of the model without con-
straint. The increased amplitude of fluctuations translate into 
a larger error bar. Hence, without the geometry constraint on 
the BG-OOH backbone, more sampling statistics is required 
to reduce the uncertainty to an appropriate level. In the inter-
est of computational feasibility, the geometry constraint is 
therefore critical.

Finally, Fig. S14 compares the g(z) of the systems where 
the BG sheet was constrained against that of the non-con-
strained system. No significant differences were observed. 
This result indicates that constraining the BG sheet does not 
significantly affect the interactions between the surface and 
the first water layer from a structural point of view.

5.3.7 � Embedded Solvation Approach

The embedded solvation approach, where a small cluster 
of explicit solvent molecules is used in combination with 
an implicit continuum description of the solvent bulk, has 
recently been employed to good effect [50, 51]. In the begin-
ning of this study, the one-shot minimization data set was, in 
fact, computed using the embedded approach and similarly 
erratic results were obtained. The implicit solvent model was 
then discarded for the remainder of this study to reduce the 
number of potential error sources.

The key issue with the embedded approach, as high-
lighted recently by Basdogan et al. [52] is that the number 
of included explicit water molecules cannot be chosen arbi-
trarily but must be optimized, for which the group suggests 
a machine-learned model [53]. In fact, including too many 
explicit molecules can lead to diverging errors [53]. In the 
case of graphene models, one would also necessarily have 
to include water molecules on both sides of the model to 
avoid inconsistencies. Otherwise, the non-solvated side of 
the system will give rise to a graphene implicit-bulk-water 
interaction energy while the solvated side gives the desired 
water implicit-bulk-water interaction. This increases com-
putational effort again.

While it is certainly conceivable that the approach could 
be optimized for this system—although there are only few 
reports [52] so far of this approach being used for periodic 
surface models—it bears the inherent frustration that the 
approach will need to be optimized over again for every new 
model system, which limits the comparability of different 
models. With a fully explicit approach, on the other hand, 
one could identify the largest number of water molecules 
needed for any system in a portfolio and perform all simula-
tions consistently using the same settings.

6 � Conclusion

Density functional theory-driven minimization calcula-
tions and classical molecular dynamics simulations were 
used to obtain the solvation stabilization energy, ΔΔEsolv , 
for the oxygen reduction reaction intermediates *O, *OH, 
and *OOH adsorbed on a Boron-doped graphene sheet in 
contact with 8, 16, 24, and 32 molecules of water. The goal 
of this study was to apply the obtained ΔΔEsolv values to 
accurate hybrid DFT adsorption energy results for the ORR 
intermediates to refine potential-dependent free-energy pre-
dictions. Although 4 different data set were obtained that 
sampled ΔΔEsolv from the model systems in different ways 
using static and dynamic calculations, no converged ΔΔEsolv 
result were obtained.

A detailed discussion of the simulation parameters and 
potential error sources is provided to rule out that technical 
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errors lead to these erratic results. We conclude that 32 water 
molecules, which is the equivalent of 4 layers of water in 
this model system, are not sufficient to describe solvation of 
the adspecies within chemical accuracy. Achieving chem-
ical accuracy, i.e. convergence of ΔΔEsolv to changes of  
≤ 0.05  eV when adding more and more water molecules, is 
essential since any reduction of the free energy of the poten-
tial-determining intermediate will lead to a proportional 
reduction of the predicted thermochemical overpotential.

These results emphasize that new simulation methods 
are required to be able to calculate large enough systems to 
obtain converged ΔΔEsolv results since molecular dynam-
ics simulations with DFT forces quickly become compu-
tationally unfeasible when adding more and more water 
molecules. Our groups are therefore focused on implement-
ing a 2D-periodic hybrid method (often referred to as QM/
MM) for the open-source ASE and GPAW software pack-
ages which will enable calculations with thousands of water 
molecules.

Another promising approach to tackle this problem is the 
recently developed on-the-fly machine learning force field 
training method [54]. This approach could be used to train 
a machine learning force field on a small system and then 
upscale the system to contain many water molecules while 
retaining close-to-DFT accuracy.

Finally, we believe in the importance of presenting these 
negative results to the catalysis community as a word of cau-
tion. It is easy to underestimate the number of explicit water 
molecules required to obtain sufficiently accurate solvation 
energy results.
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