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Free-Fall Non-Universality in Quantum Theory

Viacheslav A. Emelyanov

The author show by embodying the Einstein equivalence principle—local
Poincaré invariance—and general covariance in quantum theory that
wave-function spreading rules out the universality of free fall, that is, the
free-fall trajectory of a quantum (test) particle depends on its internal
properties. The author provide a quantitative estimate of the free-fall
non-universality in terms of the Eötvös parameter, which turns out to be
measurable in atom interferometry.

1. Introduction

According to Newton’s gravitational law, any body having a non-
zero gravitational mass is a source of gravity. It is a consequence
of numerous experiments that the gravitational mass Mg of a
macroscopic body is equal with good accuracy to its inertial mass
Mi. So, one might assume(
Mg∕Mi

)
classical

= 1 (1)

In Newton’s theory, this means that small-enough test bodies fall
down equally fast, provided the same initial position and veloc-
ity. The general theory of relativity (GR) promotes this result to
the weak equivalence principle which is also known in the litera-
ture as the universality of free fall.[1] This principle is a core argu-
ment for modeling gravitational interaction through space-time
geometry,[2] where particles’ trajectories correspond to geodesic
world lines.
In the framework of quantum theory, however, particles can-

not be thought of as point-like objects which move along single
world lines. Indeed, Heisenberg’s uncertainty principle forces us
to abandon the idea that position and momentum can be simul-
taneously defined with perfect precision for quantum particles.[3]

This quantum fuzziness originates from the fact that wave func-
tions have finite localization in space, resulting in the probability
of finding a particle at a given space-time point, which is always
less than unity. This suggests that quantum particles might not
obey theweak equivalence principle, provided its potential breach
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does not involve tidal gravitational
forces,[1] which do modify free-fall
trajectories of extended bodies.
In this article, we explore this conceptual
conflict quantitatively. This is achieved,
first, by working in the framework of
quantum field theory over curved space-
time, where the latter is modeled by GR,
and, second, by implementing Einstein’s
equivalence principle and general covari-
ance by relating quantum fields to ele-
mentary particles.

2. Free Fall of Classical Particles

According to Einstein’s gravitational theory, matter is the source
of a non-trivial spacetime curvature. The spacetime curvature is
mathematically described by the Riemann tensor. This tensor has
the dimension of inverse length squared. In other words, we can
characterize the space–time curvature by a length scale: The big-
ger this length scale, the weaker a gravitation field is. In particu-
lar, at the Earth’s surface, it reads

L⊕ ≡ R⊕

(
R⊕∕RS,⊕

) 1
2 ≈ 1.71 × 1011 m (2)

where R⊕ ≈ 6.37 × 106 m denotes the Earth’s radius, whereas
RS,⊕ ≈ 8.87 × 10−3 m stands for its Schwarzschild (S) radius.
Thus, the Earth’s curvature plays a little role in the dynamics
of microscopic objects in quantum processes taking place over
time intervals much smaller than L⊕∕c ≈ 9.52min, where c ≈
2.99×108 m s−1 is the speed of light in vacuum. For this reason,
we shall neglect the Earth’s curvature in what follows until Sec-
tion 5, which is also needed not to go beyond the application do-
main of the weak equivalence principle.
This approximation means that the metric tensor at the

Earth’s surface can be replaced by the Minkowski metric 𝜂 ≡
diag(+1, −1, −1, −1) if and only if one considers local inertial co-
ordinates. To this end, we wish to introduce normal Riemann co-
ordinates, y, defined at a given point at the Earth’s surface, which
corresponds to ya = 0. In its vicinity, that is, |y| ≪ L⊕, we have

ds2 = gab(y) dy
adyb ≈ 𝜂ab dy

adyb (3)

where the Latin indices lie in {0, 1, 2, 3}. We have neglected
curvature-dependent terms on the right-hand side of Equa-
tion (3), because of the weakness of the Earth’s gravitational field.
These terms can be found in ref. [4]. The very fact that the met-
ric tensor can always be locally brought to the Minkowski-metric
form is a result of Einstein’s equivalence principle—locally and
at any non-singular point of the Universe, the special-relativity
physics applies.[2]
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The general principle of relativity, saying that dynamical laws
of nature are the same in all reference frames, ensures that
physics does not depend on the coordinates utilized. Neverthe-
less, the same physical process can look different in different co-
ordinate frames. In particular, the local inertial coordinates y and
general coordinates x ≡ (ct, x, y, z) are related as follows[4]

xc ≈ yc − 1
2
Γc
ab y

ayb (4)

where Γc
ab are Christoffel symbols computed at the Earth’s sur-

face and we have omitted terms which depend on higher-
order derivatives of metric, in accord with the Minkwoski-
spacetime approximation (Equation (3)). Taking into account that
the Earth’s gravitational field is approximately described by the
Schwarzschild geometry, we obtain

Γ0ab y
ayb ≈ +

2g⊕
c2

y3y0 (5a)

Γ1ab y
ayb ≈ −

2g⊕
c2

y3y1 (5b)

Γ2ab y
ayb ≈ −

2g⊕
c2

y3y2 (5c)

Γ3ab y
ayb ≈ +

g⊕
c2

(
(y0)2 + (y1)2 + (y2)2 − (y3)2

)
(5d)

where the free-fall acceleration points down in the negative z-
direction with the magnitude at the Earth’s surface reading

g⊕ ≡ c2RS,⊕

2(R⊕)2
≈ 9.81m s−2 (6)

Now, in the Riemann frame, all geodesics passing through ya = 0
are straight world lines.[4] This is basically the condition that de-
termines normal Riemann coordinates. Considering a classical
(point-like) particle being initially at rest in the Riemann frame,
we have

ya(𝜏) = c𝜏𝛿a0 (7)

where 𝜏 is the proper time and 𝛿 ≡ diag(+1, +1, +1, +1) is the
Kronecker delta. It turns into

xa(𝜏) ≈ c𝜏𝛿a0 −
1
2
g⊕𝜏

2𝛿a3 (8)

in the non-inertial frame associated with the Earth’s surface,
where we have substituted Equation (7) into Equation (4)
and Equation (5) to get Equation (8). This is the well-known re-
sult of Newton’s gravitational theory, that explicitly demonstrates
the universality of free fall in classical theory.

3. Free Fall of Quantum Particles

Quantum field theory (QFT) is a mathematical formalism which
enables us to successfully describe high-energy processes taking
place between particles. This formalism is based on the unifica-
tion of the underlying principles of quantum mechanics (QM)

and the special theory of relativity (SR). The observable Universe
cannot be described by Minkowski spacetime, which is a basic
mathematical structure of SR. Hence, the application of QFT in
theoretical particle physics relies on the Minkowski-spacetime
approximation (Equation (3)).
It is apparent that we need to go beyond this approximation in

order to describe quantum particles in the presence of a gravita-
tional field. We thereby wish to demand that the Einstein equiv-
alence principle and the general principle of relativity be also
implemented in quantum theory. The former principle implies
then that quantum particles must locally be modeled by wave
functions which, in local inertial frames, are given by plane-wave
superpositions. In fact, it ensures that such quantum particles
move along straight world lines in local inertial frames. The latter
principle says in turn that wave functions must transform as ten-
sors under general coordinate transformations. In particular, a
spin-zero-particle wave function must correspond to a rank-zero
tensor—scalar. This ensures that the semi-classical Einstein field
equation is in accord with general covariance.
Quantum fields are operator-valued distributions which form

a quantum-field algebra.[5] To model a quantum particle in this
framework, we need to select the operator â†(𝜓) from this alge-
bra, which gives the state |𝜓⟩ = â†(𝜓)|Ω⟩ describing this parti-
cle, where |Ω⟩ is the quantum vacuum. In a local Minkowski
frame, |𝜓⟩ must reduce to an asymptotically free state entering
the definition of S-matrix elements in particle physics. To guar-
antee that, we define

â†(𝜓) ≡ −i∫Σ
dΣa(x)

(
𝜓(x)𝜕aΦ̂†(x) − Φ̂†(x)𝜕a𝜓(x)

)
(9)

where Σ is a Cauchy surface and Φ̂(x) denotes a scalar
field, because then we locally recover the Lehmann–Symanzik–
Zimmermann reduction formula for the scalar field. In general,
this formula relates S-matrix elements with time-ordered prod-
ucts of quantum fields,[6,7] or, in other words, it relates the math-
ematical formalism of QFT to physics.
Now, 𝜓(x) in Equation (9) corresponds to a wave function, at

least in the weak-gravity limit, that is, we assume that the char-
acteristic linear extent of 𝜓(x) in space is much smaller than L⊕.
In the Riemann frame, Einstein’s equivalence principle tells us
that the wave function of a spin-zero particle of massM > 0 is a
superposition of (positive-energy) plane waves, namely

𝜓(y) = 1
(2𝜋ℏ)3 ∫

d3K
2EK

FP(K) exp
(
−
iK ⋅ y
ℏ

)
(10a)

where ℏ ≈ 1.05 × 10−34 Js is the reduced Planck constant and

K ≡ (EK∕c,K) ≡
(√

(Mc)2 + K2,K
)

(10b)

K ⋅ y ≡ 𝜂abK
ayb (10c)

The function FP(K) must have a narrow peak at K ≈ P, where
P ≡ (EP∕c,P) is an initial four-momentum of the particle. This
is in effect required for 𝜓(y) to be a localized-in-space packet.
Furthermore, the general principle of relativity forces us to deal
with FP(K) = F(K⋅P). For instance, a covariant Gaussian wave
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function[8,9] is characterized by

FP(K) ∝ exp
(
−K ⋅ P
2D2

)
(11)

where D > 0 stands for momentum variance. The covari-
ance principle leads, thereby, to 𝜓(y) which is invariant
under the (local) Lorentz transformations. This, in partic-
ular, ensures that 𝜓(y) gains a phase shift in quantum-
interference experiments,[10–13] which is in agreement with the
observations.[14,15]

According to Born’s statistical interpretation, the wave packet
𝜓(y) yields the probability amplitude of measuring the particle
at a given place.[3] Thus, the probability to find it somewhere in
space must be unity:

∫ d3y𝜓∗(y)𝜓(y) = 1 (12)

This is a normalization condition for the wave function 𝜓(y) in
QM. It is evident though that this normalization condition is
at odds with special covariance, since the integration measure
in Equation (12) is variant under the (local) Lorentz transforma-
tions. Therefore, it must be replaced inQFT by the Klein–Gordon
product of 𝜓(y) with itself, compare with ref. [16]:

i∫ d3y
(
𝜓∗(y) 𝜕0𝜓(y) − 𝜓(y) 𝜕0𝜓

∗(y)
)
= 1 (13)

In fact, this equation corresponds to ⟨𝜓|𝜓⟩ = 1. This directly
follows from the definition of |𝜓⟩ and the canonical commuta-
tion relation of Φ̂(x) and its canonical conjugate. Note that Equa-
tion (13) is independent of (local) inertial frames, provided 𝜓(y)
is a scalar. This physically implies that quantum particles are
reference-frame-independent objects, that is their very existence
does not depend on the coordinates utilized.[14,15]

We wish to derive a free-fall trajectory of the quantum particle.
In real-world experiments, quantum-particle trajectories are de-
termined with the help of detectors. Any detector has a finite ex-
tent in space (and time). One can describe this by the scalarW(y)
which is essentially unity inside a particle detector and tends to
zero outside that. This is a window-function-like scalar which can
be understood in QFT as being due to the spontaneous break-
down of spatial translation symmetry. So, W(y) is an order pa-
rameter. The device clicks if the particle passes through it, omit-
ting details of how those interact with each other for the sake of
simplicity. In this case, the particle position matches the detector
location at the time moment of click. The covariant probability
to find the particle in an infinitesimal spatial volume at y follows
from Equation (9) and reads

dP(y) ≡ −idΣa(y)
(
𝜓(y)𝜕a𝜓

∗(y) − 𝜓∗(y)𝜕a𝜓(y)
)

(14)

It is non-negative and drops substantially to zero away from the
wave-function support. Thus,

PW (Σ) ≡ ∫Σ
dP(y)W(y) (15)

gives the probability to observe the particle by this device.
Note, W(y) is to covariantly limit the integration volume to that

which the detector occupies, compare with ref. [17]. If there is an
array of such small-enough detectors, then the particle position
can be determined with some accuracy. On the other hand, we
have from probability theory that

⟨ya(Σ)⟩ ≡ ∫Σ
dP(y) ya (16)

gives the expected value of ya, which, in physics, corresponds to
the center-of-mass position of the wave function 𝜓(y). In terms
of this quantity, the device clicks if the wave-function center of
mass is localized within the support ofW(y).
These observations suggest that the quantum-particle position

corresponds to

⟨ya(𝜏)⟩ ≡ i∫𝜏

d3y ya
(
𝜓∗(y) 𝜕0𝜓(y) − 𝜓(y) 𝜕0𝜓

∗(y)
)

(17)

which turns into the quantum-mechanics definition of position
expectation value in the non-relativistic limit |P| ≪ Mc.[15] Note
that the position expectation value ⟨yc(𝜏)⟩ depends on the proper
time 𝜏. This is a physical hypothesis, meaning that quantum par-
ticles measure 𝜏. This, however, can be justified by recalling that
a lifetime of cosmic-ray (relativistic) muons is bigger than that of
muons at rest. This discrepancy arises due to the time-dilation
effect in SR:[18] The laboratory lifetime of the cosmic-ray muons
is by a Lorentz factor bigger than their proper lifetime. This ex-
perimental result validates our hypothesis.
Consequently, we obtain from Equations (10), (11), (13), and

(17) for the spin-zero quantum particle being initially at rest
(|P| = 0) that

⟨ya(𝜏)⟩ = c𝜏𝛿a0 (18)

in the Riemann or, in other words, local inertial frame, while, by
bearing in mind Equations (4) and (5),

⟨xa(𝜏)⟩ ≈ c𝜏𝛿a0 −
1
2
g⊕

((
1 + D2

(Mc)2

)
𝜏2 + ℏ2

4(Dc)2

)
𝛿a3 (19)

in the non-inertial frame associated with the Earth’s surface.
This quantum result (Equation (19)) differs from the classical
one (Equation (8)) by terms to depend on internal quantum-
particle properties. Note, the deviation from the geodesic de-
pends on the characteristic quantum-particle extent ℏ∕D, follow-
ing fromHeisenberg’s uncertainty relation, but is not due to tidal
gravitational forces. In fact, the tidal-force impact on free fall di-
minishes with decreasing extent of a freely falling body, unlike
the time-dependent correction to Equation (8) in Equation (19).
Our result (Equation (19)) means thus that the weak equivalence
principle does not hold in quantum theory.[14,15]

The origin of the free-fall non-universality in quantum theory
is wave-function spreading. Indeed, this universal phenomenon
follows from the circumstance that the wave function 𝜓(y)
obeys the Heisenberg uncertainty principle. This manifests itself
through

⟨yiyj(𝜏)⟩ ≈ (
ℏ2

4D2
+ 𝜏2

D2

M2

)
𝛿ij (20)
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where i, j ∈ {1, 2, 3}, meaning that 𝜓(y) expands in space. The
combination of this quantum-mechanical result with Equa-
tion (5d) explains the quantum corrections to Equation (8)
in Equation (19).
Our result (Equation (19)) may be interpreted in Newton’s

gravitational theory as Equation (1) cannot hold in quantum the-
ory, namely, we instead have

(
Mg∕Mi

)
quantum

≈ 1 + D2

(Mc)2
(21)

because, owing to the time-dependent term in Equation (20), it
follows from Equation (19) that

d2

d𝜏2
⟨z(𝜏)⟩ ≈ −g⊕

(
Mg∕Mi

)
quantum

(22)

It is worth pointing out that Equation (21) is a relativistic re-
sult, because the quantum correction to Equation (1) disappears
in the quantum-mechanics limit, in accordance with ref. [19]. It
originates from going beyond Newton’s theory by taking into ac-
count gravitational-length contraction, as this gives rise to terms
in Equation (5), depending quadratically on yi. We intend next to
study whether Equation (19) is at least approximately consistent
with other observables.

4. Four-Momentum of Quantum Particles

The stress-energy-tensor operator for the Klein–Gordon quan-
tum field Φ̂(y) reads

T̂ab(y) = 𝜕aΦ̂(y)𝜕bΦ̂(y) −
1
2
𝜂ab

(
𝜕cΦ̂(y)𝜕cΦ̂(y) − (Mc∕ℏ)2Φ̂2(y)

)
(23)

Making use of the canonical commutation relation for Φ̂(y) and
its canonical conjugate Π̂(y), we obtain for the single-particle state|𝜓⟩ that
⟨𝜓|T̂ab(y)|𝜓⟩ = ⟨Ω|T̂ab(y)|Ω⟩ + Tab(𝜓(y)) (24)

where ⟨Ω|T̂ab(y)|Ω⟩ stands for the quantum-vacuum stress
tensor[20–22] and

Tab(𝜓(y)) ≡ 2𝜕(a𝜓
∗(y) 𝜕b)𝜓(y) − 𝜂ab

(|𝜕𝜓(y)|2 − (Mc∕ℏ)2|𝜓(y)|2)
(25)

Apparently, the quantum vacuum |Ω⟩ does not carry information
about the quantum particle modeled by |𝜓⟩. That is a no-particle
state by its very definition. This means that we need to renormal-
ize ⟨𝜓|T̂ab(y)|𝜓⟩ by subtracting ⟨Ω|T̂ab(y)|Ω⟩ from it. This gives
rise to ⟨𝜓|:T̂ab(y):|𝜓⟩, where the colons mean the normal order-
ing, being equal to Tab(𝜓(y)).
Taking into account that Tab(𝜓(y)) is a tensor, we find in the

frame resting on the Earth’s surface for the particle with the ini-
tial momentum |P| = 0 that

⟨pa(𝜏)⟩ ≡ ∫
𝜏
dΣc(y) 𝜕xa

𝜕yb
Tb
c (𝜓(y))

≈ Mc
(
1 + 3

2
D2

(Mc)2

)
𝛿a0 −Mg⊕𝜏

(
1 + 5

2
D2

(Mc)2

)
𝛿a3

(26)

This result can be immediately obtained from Mi⟨ẋa(𝜏)⟩
with Equation (19), which, in classical theory, gives particle’s four-
momentum, where the inertial massMi has been defined via the
Lagrangian massM at the leading order of the approximation as
follows:

Mi ≡ M
(
1 + 3

2
D2

(Mc)2

)
(27)

These computations give an independent support for the re-
sult given in Equation (22), as we have from Equation (26)
with Equation (27) that

d
d𝜏

⟨pz(𝜏)⟩
Mi

≈ −g⊕
(
Mg∕Mi

)
quantum

(28)

It should be mentioned that this derivation makes no use of
Born’s statistical interpretation we have utilized above to link
the quantum-particle trajectory with the wave-function center-of-
mass position.

5. Geodesic Deviation for Quantum Particles

The free-fall acceleration is a non-inertial-frame effect that is, ac-
cordingly, absent in local inertial frames. In contrast, the space-
time curvature is non-vanishing in all reference frames. In partic-
ular, it shows itself as a relative acceleration between geodesics.
This starts to play an important role in satellite-borne experi-
ments.
Considering a detector at rest at the origin of a Riemann frame

parametrized by 𝜒 , we find in terms of the normal Riemann co-
ordinates y that

𝜒 c ≈ Xc + yc − 1
3
Rc
adb

(
yaXdyb − XaydXb

)
(29)

where ya = 0 corresponds to Xa in the satellite’s rest frame, and
Rc

adb is the Riemann tensor at that point. Taking into account that⟨yc(𝜏)⟩ gets no contribution linearly depending on the curvature
tensor in a vacuum, we find

d2

d𝜏2
⟨𝜒 c(𝜏)⟩ ≈ −2

3
Rc
adb U

aXdUb

(
1 + D2

(Mc)2

)
(30)

whereUa ≡ Pa∕M is the initial 4-velocity of the quantumparticle.
This result is in accord with the geodesic deviation equation up

to the factor depending on the internal quantum-particle proper-
ties. This factor fully agrees with that in Equation (22), suggest-
ing that the (passive) gravitational mass of the quantum particle
is by that factor bigger than its inertial mass. This is, apparently,
in agreement with Equation (21).

6. Quantitative Estimate

The result in Equation (22) implies quantum particles fall down
faster than classical ones. This effect is negligibly small for
macroscopic objects. In particular, one gram of iron has the size
of about 6.24 × 10−3 m, which may be equated to ℏ∕D, according
to Heisenberg’s uncertainty relation, givingD∕Mc ≈ 5.63×10−38.
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Table 1. The first column shows that the tinier a quantum particle is, the
bigger the effect of wave-function spreading influences the particle’s free-
fall trajectory. In particular, one might expect that the effect is suppressed
for Bose–Einstein condensates in free fall, since these have a relatively
slowly expanding wave function, see refs. [26, 27]. The second column il-
lustrates the effect of tidal gravitational forces on free-fall trajectories of
extended objects, estimated within Newton’s theory (see also ref. [15]).

(D∕Mc)2 (L∕R⊕)
2

1 g of iron 3.17 × 10−75 9.59 × 10−19

Rubidium atom (85Rb) 3.16 × 10−17 4.77 × 10−33

Potassium atom (39K) 1.78 × 10−16 1.02 × 10−33

Hydrogen atom (H) 1.14 × 10−11 2.37 × 10−35

However, a rubidium atom, 85Rb, has a radius of 220 × 10−12 m
and, thus, we get the estimate D∕Mc ≈ 5.63 × 10−9.
A dimensionless parameter, which quantifies the relative free-

fall acceleration of a pair of test bodies of different composition,
is known as the Eötvös parameter 𝜂. We find from Equation (22)
that

𝜂(A, B) ≈
D2

A

(MAc)2
−

D2
B

(MBc)2
(31)

It approximately reads 3.16 × 10−17 in the case of 85Rb and a heav-
ier atom. This is by five orders of magnitude smaller than the
atom-interferometer sensitivity recently achieved in ref. [23] (see
also refs. [24, 25]) by experimental tests of the universality of free
fall, where the heavier atom was the rubidium isotope 87Rb. Yet,
the Eötvös parameter increases by use of lighter atoms, see Ta-
ble 1.
Satellite-borne experiments have much better sensitivity with

respect to the Earth-based ones by quantum tests of the free-fall
universality—at the 10−17 level or better—where their main ad-
vantage consists in the fact that these tests can potentially be
made over infinite free-fall times.[28] Their sensitivity will thus
be sufficient to empirically discover if wave-function spreading
is more fundamental than the weak equivalence principle.

7. Concluding Remarks

Here we have treated the free-fall propagation of spinless quan-
tum particles from different standpoints. From the perspective
of a particle detector being at rest on the Earth’s surface, for ex-
ample, of that installed in the Bremen Drop Tower, a quantum
particle falls down faster than its classical counterpart:

d2

d𝜏2
(⟨z(𝜏)⟩ − z(𝜏)

)
≈ −

g⊕D
2

(Mc)2
(32)

This effect is due to wave-function spreading and gravitational-
length contraction, both well known in quantum theory and gen-
eral relativity, respectively. Moreover, from the perspective of a de-
tector that freely falls down in the vicinity of the Earth’s surface,
the quantum particle approaches this detector in the horizontal

direction faster than its classical counterpart, whilemoving faster
away from it in the vertical one:

d2

d𝜏2
(⟨𝜒 c(𝜏)⟩ − 𝜒 c(𝜏)

)
≈ − D2

3(L⊕M)2
(
X𝛿c1 + Y𝛿c2 − 2Z𝛿c3

)
(33)

as it follows from Equation (30) with X = (0, X, Y, Z) and U =
(c, 0, 0, 0). This is a consequence of the interplay of wave-function
spreading and the Earth’s curvature.
It is a result of lots of experiments that QFT over Minkowski

space locally makes physical sense, although the observable Uni-
verse is actually curved. This observation implies that both Ein-
stein’s equivalence principle and general covariance must be
built into quantum theory for that to be in accordance with ob-
servations in particle colliders. This line of reasoning leads to
our model of quantum particles in the presence of a gravitational
field. It gives the results given in Equations (32) and (33), which
might be experimentally testable in the near future.
Still, there are two possible outcomes of these tests. If it will be

experimentally discovered that the free-fall trajectory of a quan-
tum (test) particle depends on its internal properties in accor-
dance with our results, then the weak equivalence principle—one
of the underlying ideas of GR—should be rethought in quantum
theory. It is worth pointing out that this circumstance does not
imply anymodifications of the coupling of gravity tomatter fields
since our results are based on the gravity theory described by a
single space-time geometry. If otherwise, the wave-function de-
scription of quantum particles should be refined in GR. In either
case, these will improve our insight into both quantum theory
and gravity.
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