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3D-2D Distance Maps Conversion Enhances
Classification of Craniosynostosis
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Abstract— Objective: Diagnosis of craniosynostosis us-
ing photogrammetric 3D surface scans is a promising
radiation-free alternative to traditional computed tomogra-
phy. We propose a 3D surface scan to 2D distance map con-
version enabling the usage of the first convolutional neural
networks (CNNs)-based classification of craniosynostosis.
Benefits of using 2D images include preserving patient
anonymity, enabling data augmentation during training, and
a strong under-sampling of the 3D surface with good clas-
sification performance.

Methods: The proposed distance maps sample 2D images
from 3D surface scans using a coordinate transformation,
ray casting, and distance extraction. We introduce a CNN-
based classification pipeline and compare our classifier to
alternative approaches on a dataset of 496 patients. We in-
vestigate into low-resolution sampling, data augmentation,
and attribution mapping.

Results: Resnet18 outperformed alternative classifiers on
our dataset with an F1-score of 0.964 and an accuracy of
98.4 %. Data augmentation on 2D distance maps increased
performance for all classifiers. Under-sampling allowed
256-fold computation reduction during ray casting while
retaining an F1-score of 0.92. Attribution maps showed high
amplitudes on the frontal head.

Conclusion: We demonstrated a versatile mapping ap-
proach to extract a 2D distance map from the 3D head
geometry increasing classification performance, enabling
data augmentation during training on 2D distance maps,
and the usage of CNNs. We found that low-resolution im-
ages were sufficient for a good classification performance.
Significance: Photogrammetric surface scans are a suit-
able craniosynostosis diagnosis tool for clinical practice.
Domain transfer to computed tomography seems likely
and can further contribute to reducing ionizing radiation
exposure for infants.

Index Terms— Craniosynostosis, photogrammetric sur-
face scans, classification, CNN, convolutional neural net-
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[. INTRODUCTION
A. Craniosynostosis

RANIOSYNOSTOSIS is characterized by the premature

fusion of skull sutures resulting in irregular growth
patterns. It affects infants and its prevalence is estimated to be
three to six cases per 10,000 live births [1], [2]. For isolated
cases craniosynostosis is distinguished into different subtypes,
depending on the prematurely fused suture: sagittal synos-
tosis (scaphocephaly), metopic synostosis (trigonocephaly),
unilateral coronal synostosis (anterior plagiocephaly), lambda
synostosis (posterior plagiocephaly), and bicoronal synostosis
(brachycephaly). Although brachycephaly synostosis includes
the fusion of both coronal sutures, the medical community
counts it among isolated synostosis. As dictated by Virchow’s
law, the premature closure of a suture blocks the expansion
perpendicular to the suture and causes compensatory growth
parallel to it, leading to distinct head deformities for each
type [3]. Craniosynostosis can lead to elevated intracranial
pressure [4] which is linked to reduced brain growth and di-
minished neuropsychological development [5]. To decrease the
intracranial pressure and enable a normal skull development,
surgical remodeling of the skull is the most common therapy.
Complications are rare [6] and in most cases a normalized
head shape can be achieved [7]. For further reading about
craniosynostosis, the reader is referred to [8].

Early diagnosis is crucial and can only be performed in
specialized hospitals. During diagnosis, a combination of vi-
sual examination, palpation, cephalometric measurements, and
medical imaging is performed. Traditional computed tomogra-
phy (CT) imaging is considered the gold standard, but exposes
the infants to ionizing radiation [9]. Black bone magnetic
resonance imaging (MRI) [10] avoids the harmful radiation
but requires sedation or general anesthesia to prevent the
children from moving. Sonographic examinations [11] and
3D photogrammetry are radiation-free alternatives. Especially
photogrammetric 3D scans provide inexpensive and fast means
to objectively quantify head shape suitable for monitoring
head development before and after surgery [12]. A reliable
and fast, machine-aided classification using 3D surface scans
might eliminate the use of ionizing radiation during CT-based
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Fig. 1. 2D distance map classification pipeline. Each dataset sample is preprocessed to remove corruptions. After distance extraction according
to the mapping approach, the image can be assembled, and a CNN-based classification can be performed.

diagnosis and could be performed by pediatricians within
minutes.

B. Classification of Craniosynostosis

Automatic classification approaches of craniosynostosis
have been proposed on CT data, 3D photogrammetric surface
scans, and 2D images from different perspectives. Early CT-
based studies were performed on 2D data [13] to distinguish
between scaphocephaly and a control group. Approaches on
3D data used a combination of crafted features and statis-
tical modeling [14]. Recently, the use of radiation-free 3D
stereophotographs for head shape assessment and classification
of craniosynostosis gained momentum. In our own group we
developed a statistical shape model (SSM)-based classification
approach [15]. Ray-based classification of craniosynostosis
was proposed by [16], who extracted distances from a defined
center point using a feedforward neural network (FNN) with
an accuracy of 99.5%. Image and machine-learning-based
classification approaches for the classification of plagiocephaly
were proposed [17], but were not applied to craniosynostosis.
Multi-image 2D approaches could identify different types
of craniosynostosis with feature-based classifiers and a pre-
trained convolutional neural network (CNN) model [18].

CNNs are popular image-based classifiers and often a good
choice for classification problems due to a flexible model
design, the easy adaption of many pre-trained models facil-
itating transfer learning, and the possibility to perform many
different types of data augmentation during training. However,
for classifying 3D data, a transformation from 3D to 2D is
required, which had not been proposed for classifying head
deformities. Data augmentation on the 3D data as in [16]
was therefore limited to adding noise to the input features.
3D transformations such as left-right patient mirroring and
rotational misalignment have to be applied before training
and cannot be randomized during training as the distance
extraction is computationally expensive.

C. Scope of This Work

The first contribution of this work is a mapping approach
to obtain 2D images from 3D surface scans of the head. We
combined ideas from [19] who proposed asymmetry maps
for plagiocephaly patients and [16] who used ray casting for
distance extraction. Using 2D images instead of the original
3D geometry has some desirable properties when dealing

with 3D patient data: patient anonymity is preserved (back-
conversion would only yield a 3D scatter plot), and typical
2D image-based processing steps using filter kernels (such as
interpolation, up-sampling with an under-sampled resolution,
smoothing, or gradient computation) are enabled. As the 2D
distance maps are subject to a defined coordinate frame,
location-specific image processing can be applied, for example
stronger smoothing in certain regions.

Regarding classification, the encoding of the 3D geom-
etry onto a 2D image enables using CNNs on the image
domain. Sophisticated network structures have been tested
extensively on CNNs and there is a wide range of pre-trained
networks available enabling transfer learning, which is usually
considered helpful when dealing with small datasets. Also,
image-based data augmentation strategies such as horizontal
flipping, or horizontal shifting give more flexibility to the
applicant. Data augmentation can be applied without much
computational cost during training and enables additional
randomization. 2D images can be re-scaled easily and we
show that classification performance can be maintained while
systematically reducing image resolution. The second contri-
bution of this work is the first CNN-based classification of
craniosynostosis using 3D surface scans, which is enabled by
the usage of the 2D distance maps. Introducing this new classi-
fication approach, we take the opportunity to also conduct the
first comparison study of craniosynostosis classifiers on, to the
best of our knowledge, the largest dataset of craniosynostosis
patients to date. We consider two alternative approaches [16],
[15] for the first time tested on the same patients, enabling a
quantitative comparison of different classifiers under the same
conditions. For the benefit of the community, we released the
Python modules for the distance map creation which can also
be used on our previously published SSM [20].

Il. MATERIALS AND METHODS

Figure 1 gives a full overview of the pipeline from the raw
data to the distance map creation and the craniosynostosis
classification.

A. Dataset and preprocessing

We obtained the photogrammetric surface scans from the
Department of Oral and Maxillofacial Surgery of the Hei-
delberg University Hospital, where patients with craniofacial
diseases are routinely recorded for monitoring and documen-
tation purposes. We used a standardized protocol, which had
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been examined and approved by the Ethics Committee Medical
Faculty of the University of Heidelberg (ethics number S-
237/2009). The study was carried out according to the Decla-
ration of Helsinki and written informed consent was obtained
from parents. The 3D surface scans were recorded using a
3D image recording system (Canfield VECTRA-360-nine-pod,
Canfield Science, Fairfield, NJ, USA) and the children wore
tight-fitting hairnet caps to minimize artifacts caused by the
hair. For each recording, we obtained a triangular surface mesh
which was later annotated with 10 cephalometric landmarks
and the medical diagnosis by the surgeon. The available
landmarks are visualized in Fig. 2.
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Fig. 2. Landmarks provided in the dataset. The chosen landmarks for
the coordinate system were sellion, and left and right tragion (underlined
and on top).
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Fig. 3. Head shapes of the four classes in the dataset. Top row: front
view, bottom row: top view.

Out of the scans that were acquired between 2011 and
2021, we extracted only the preoperative scans closest to
the operation date to avoid duplicate scans of the same
patient. We selected craniosynostosis patients with coronal
(brachycephaly and unilateral anterior plagiocephaly), sagittal
(scaphocephaly), or metopic suture fusion (trigonocephaly),
as well as a control group without any suture fusion. Besides
healthy subjects, our control group also contained scans of
children with mild positional posterior plagiocephaly. While

positional plagiocephaly patients were later treated with hel-
met therapy or laying repositioning, all craniosynostosis pa-
tients underwent surgical remodeling of the cranium. The four
classes are displayed in Fig. 3. The final dataset consisted of
496 subjects. A violin plot [21], [22], [23] of the 496 patients’
class and age distribution is displayed in Fig. 4. Regarding
the selection of classes, our approach is comparable to other
classification studies, which distinguished between craniosyn-
ostosis and non-craniosynostosis classes, in particular [14],
[16], [15].
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Fig. 4. Top: The type of head deformities for the four classes. Bottom:
Class and age distribution of the subjects in the dataset. Parenthesis
indicate number of samples per class.

We used the Python module pymeshlab from the open-
source software Meshlab [24] to preprocess the 3D surface
scans. We removed isolated parts, duplicate faces and vertices,
and closed holes in the surface scans in a fully automated
manner, as those types of artifacts could lead to incorrect
data in the distance maps. Additionally, parts at the ears were
often characterized by large edge lengths, so we used isotropic
explicit remeshing [25] with a target length of 1 mm to obtain
regular meshes. The medical staffs’ clothes and hands could
be ignored since they only had body contact at the torso of
the child to position it and did not affect the scan of the head.
After alignment using the landmark-based coordinate system,
everything below the child’s neck can be cut off to speed up
computation during image creation.

B. Distance mapping

We used the patients’ anatomic landmarks for the creation
of a common coordinate system similar to the frontal, sagittal,
and median planes. For a coordinate system we chose left
and right tragion (located on the ears), as well as the sellion
(located on the nose), as they were located on different ends
of the head and because the midpoint between the two ears
is approximately in the center of the head. The location of
the center point is similar to the computed cranial focus point
definition [26] for CT data. We defined the center point p. as
the midpoint of left and right tragion (py; and py;) to serve as
the origin of the new coordinate frame:
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1
Pc = By (P + Por) (D

The axis direction u, was defined as the frontal axis with
the direction from the origin to the sellion located on the nose:

Ux = Ps — Pc 2

u, was defined orthogonal to uy, corresponding to the
median axis from the center to the left tragion

Uy - (Pl — Pe)
|||

uy = (P — Pe) — Ux 3)
u, was constructed to be orthogonal to the two previous
directions, thus corresponding to the sagittal axis:

u, = uy X Uy 4)

The direction vectors [uy,uy,u,]” were each normalized
to an orthonormal basis [ex, ey, e,]".

Two angle directions to sample the head surface for the
2D image were set up. We proposed three different mapping
approaches each requiring a specific coordinate frame to map
the points from the Cartesian space to the image domain:
Spherical, arch-spherical, and cylindrical, visualized in Fig. 5.
The mathematical descriptions of the three mappings are
explained below.

1) Spherical: The spherical mapping used a spherical co-
ordinate transform for the ray creation to obtain the direction
vectors dg
T

®)

d, = [cos @ cos b, sin ¢ cos 0, sin 9]

The start point ps of the ray was defined as the origin:

Ps = Pc (6)

The two angle intervals were 0 < ¢ < 27 and 0 < 0 < 7/2
in the image domain. To retain the up-down relation of the
distance map image, we placed the image origin in the bottom
left corner and defined the direction for € from the lower
left corner to the upper left corner (see Fig. 5, top right panel).

2) Arch-spherical: The arch-spherical transform was de-
signed to retain a frontal-vertical relationship when looking
at the head from the top perspective and to provide a more
regular sampling of the tip of the head with the direction d,

d, = [singocos 0, cos p, sin psin G]T, @)
and the start point again being placed in the origin:
Ps = Pc 3

The corresponding angle intervals for ¢ and € both ranged
from 0 < ¢ < 7, but the direction in which we measured ¢
was defined clockwise (mathematically negative) to retain the
left-right relation.

Cylindrical

Fig. 5. Visualization of the mapping types. Left: Angle definitions and
coordinate frames. Hit points from the rays resulting from a 20x20
sampling are visualized. Right: Distance maps corresponding from the
mapping with angle axes.

3) Cylindrical: For the two spherical-based mappings, a
grayscale gradient could be observed from the larger height
than width of the human head. By using a cylindrical-based
mapping instead of a spherical one, we could reduce the
distance variation for a larger part of the image. One key
feature was that the center point was not constant, but moved
towards the tip of the head for each pixel row. Thus, the
direction d. was defined as

d. = [COS p, sin ¢, O]T , )
and contrary to the previous approaches, the start point for
each ray was defined as

Ps = Pc + h-u,. (10

The ¢ angle ranged from 0 < ¢ < 27 and & from O to
the tip of the head. Regardless of the mapping type, the angle
intervals were sampled equidistantly. As with the spherical
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image, we used the reversed image direction (x-axis from the
bottom left corner to the upper left corner) of A to retain an
up-down relationship.

C. Image creation

Each angle interval was sampled equidistantly in 224 steps,
resulting in one ray direction for each of the 2D image
pixels. We determined the intersection of the 3D mesh surface
with each ray and extracted the distance from the starting
point to the hit point. We used oriented bounding boxes trees
from the vtk Python package [27] to speed up computation.
The extracted distances were arranged in a 2D image grid,
corresponding to the angle directions (e.g., ¢ and 6 in the
spherical mapping approach, see also Fig. 5). If multiple hit
points were encountered (for example at the auricula, the
outermost part of the ear), we chose the minimal distance as
the “correct” distance. If no hit point could be determined
(for example due to corruptions in the scans), we interpolated
missing values on the equally-spaced image grid as the mean
of its four neighbors (which models missing pixels according
to Laplace’s equation) [28]. Small artifacts resulted from
the tip of the head which we left unchanged. However, if
required, they might be minimized on the image domain using
smoothing. We created the actual image by converting the
distances to integer pixel intensity values from O to 255. We
explored two different normalization schemes to transform the
distance range to the required image intensity range: Linear
re-scaling and per-pixel-based re-scaling.

Linear re-scaling uses only one linear transformation for
all images and pixel values. We computed mean distance and
standard deviation across all scans and distances (regardless
of their ray orientation) to obtain one transformation to map
the distances of [—30, 4+30] to the image domain of [0, 255].
This way, short distances between center point and 3D surface
correspond to low image intensities and, consequently, inten-
sity gradients within the same image correspond to distance
changes in the underlying 3D geometry.

The second approach, per-pixel re-scaling, used one lin-
ear transform for each pixel position (corresponding to one
transformation per direction). This way, the intensity range
is better sampled for each pixel, but the mapping is non-
uniform, meaning that intensity gradients within one image
do not correspond to distance changes in the 3D geometry,
but instead correspond to intensity values relative to this pixel
in the other images.

Fig. 6 shows the different scaling approaches for the same
distance map and Fig. 7 the different mapping types. Other
normalization approaches might also be possible, e.g., scaling
with respect to a control group or min-max scaling irrespective
to other subjects. Our Python source code' [29] for the
distance map creation was made publicly available and can
be combined with our synthetic dataset [30].

D. Experimental setup and network training

The last step consisted of training a CNN on distance maps.
Five test scenarios were considered and described in the next

Uhttps://github.com/KIT-IBT/cd-map
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Fig. 6. Linear and per-pixel scaling applied to the different pathologies
using the spherical mapping. For the visualization of the hit points, we
used 20x 20 rays instead of 224 x224. For visualization purposes we
used a blue-yellow colormap instead of grayscale.

paragraphs: The first three evaluated classifier performance,
while the forth and fifth scenarios studied the properties of
our proposed method.

1) Classification comparison: The first test was designed as
a comparison between different CNNs using our proposed
distance maps and alternative approaches from the literature.

We considered a vanilla CNN trained from scratch only on
the image data. To find the optimal number of convolutional
layers, we trained the CNN with an increasing number of
layers starting from 1 until 18. The highest metrics were scored
by the CNN with 5 convolutional layers which is the one we
further considered. For the pre-trained CNNs, this included
Resnet18 [31], AlexNet [32], GoogLeNet [33], and small and
large Mobilenet [34].
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Fig. 7. Mapping methods with different scalings for one subject. For the
visualization of the hit points, we used 20 x 20 rays instead of 224 x 224.
From left to right: Spherical, arch-spherical, and cylindrical. From top to
bottom: Linear scaling and per-pixel scaling. For visualization purposes
we used a blue-yellow colormap instead of grayscale.

As alternative approaches we considered SSM-based clas-
sification using linear discriminant analysis (LDA) [15] and
FNN-based classification [16]. The SSM-based approach was
developed in our own group, so we trained the classifier
on the updated dataset. Regarding the FNN classifier [16],
we re-implemented the FNN as described in the original
paper [16]. After initial testing, we removed the dropout and
batch-norm-layers which improved the performance on our
dataset. The FNN-based approach was tested on an icosphere-
based extraction scheme as originally proposed [16] and on the
distances extracted using our proposed mapping. This way, the
FNN could be tested on both inputs.

2) Mapping comparison: We compared the three mappings
and two scaling approaches using the same network (pre-
trained Resnetl18) to test if the mapping had a substantial
influence on the performance metrics. We show an exemplary
set of images derived with the different mappings in Fig. 7.

3) Data augmentation strategy: We tested image-based data
augmentation on pre-trained Resnetl8, the vanilla CNN, and
the FNN on the linear, spherical mapping. We included four
types of data augmentation: pixel noise, intensity noise, ran-

dom flipping and random horizontal shift. Pixel noise was
applied to each pixel as white Gaussian noise with standard
deviation of o = 1/255. Intensity-noise was applied to the full
image (making the image brighter or darker) as white Gaussian
noise with ¢ = 5/255 and can be interpreted as enlarging
or shrinking the full head. Random flipping in horizontal
direction was applied with a probability of p = 0.5 and
corresponds to a symmetric mirroring of the patients. The
horizontal shift was designed as white Gaussian noise with
standard deviation of o = 20/360 - 27, shifting the image to
one direction and inserting the cut-off part on the other side.
This corresponds to a head rotation during recording, as if the
subjects were looking slightly left or right.

Note that mirroring and shifting of 2D images can be
performed “on the fly” during each training epoch. On 3D data,
mirroring and rotating have to be performed before the training
starts, can not be adjusted during training, and the data loaders
are required to make sure that the mirrored samples stay in the
same training or test set. On 2D images, the created images
are different during each epoch and the randomization can be
adjusted during training, making it overall more flexible.

4) Resolution: This test was designed to reduce computa-
tional cost for the distance map creation. As 224 x 224 is
a standard size for CNN input images, the original approach
used one ray per pixel. We tested to use only n X n rays
with n ranging from 7 to 224 in steps of 7. We interpolated
the smaller images with intermediate points to obtain the CNN
input dimension of 224. We tested three interpolation methods:
nearest-neighbor-mapping, bilinear and bicubic image inter-
polation (Fig. 8). We used again a pre-trained Resnetl8 and
the linearly scaled spherical mapping to ensure comparability
among the experiments.

original nearest bilinear bicubic

N 0200
0.0 0.2 0.4 0.6 0.8 1.0
normalized distance

Fig. 8. True 224 x224 image in comparison with the three different
interpolation methods nearest neighbors, bilinear, and bicubic from a
7x7 image.

5) Attribution maps: We intended to visualize which parts
of the image (and consequently from the 3D surface scans)
contributed to the model’s predictions by using integrated
gradients [35]. Additionally, interpretability approaches might
be able to rule out possible overfitting caused by a focus on
unimportant parts of the head such as the ears (which are
only expected to play a major role for coronal synostosis
or plagiocephaly). We used the captum package [36] for
computing integrated gradients. For visualizing the heatmap
resulting from the integrated gradients on the 3D head surface,
we projected each point of the 3D surface onto the image,
bilinearly interpolated the respective attribution value, and
back-projected the attribution value to each 3D point. We
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used the following three different back-transformations for the
spherical, arch-spherical, and cylindrical transformation:

i /m2+y2+z2
arccos (z/1)
atan2 (y, )

(/22 + 42 + 22

T .
[T’ ¥s 9} arch—spherical = arcsim (y/r)
atan2 (z, x)

(1)

T
[7’7 ¥ 0] spherical =

12)

[atan2 (y, )

z

T
[90’ Ps Z] cylindrical = (13)

6) General training strategy: All classification scenarios
were carried out using stratified 10-fold cross validation. The
same random number generator was used for each experiment
ensuring a consistent split of train and test samples across
all different classifiers for the same fold. All neural networks
were trained with cross entropy loss, Adam optimizer, a batch
size of 32, and weight decay of 0.63. The initial learning
rate for AlexNet was 1 - 10~* and for all other networks
1-1073. Pre-trained networks were trained with 300 epochs
and a step size of 10, while we trained from-scratch networks
with 1000 epochs and a step size of 100. The SSM-based
classifier was trained with the same hyperparameters as in our
previous work [15] on the new dataset. We built our framework
on Pytorch [37] and Scikit-learn [38]. Pytorch’s pre-trained
models were trained on ImageNet [39]. For model evaluation,
we used accuracy, g-mean, and macro Fl-score and computed
mean values and standard deviations across all cross validation
splits.

[1l. RESULTS
A. Classification comparison

As summarized in Table I, all classifiers showed good
performance with mean accuracies above 0.95. CNN-based
classifiers generally performed better than the FNN and the
SSM. The highest accuracies, g-means, and F1-scores were
achieved by GoogLeNet and Resnetl8. Standard deviations
for Fl-score and g-mean computed across the ten folds were
lowest for GoogLeNet and Resnet18 (indicating smaller distur-
bances for different training conditions) and increased for the
other networks. The CNNs scored higher accuracies, g-means,
and F1-scores than the alternative FNNs. In general, accuracy
ranged from 0.954 to 0.984 which corresponds to 15 fewer
misclassified test samples. We provide the confusion matrix
with sensitivities and specificities of the pre-trained Resnet18
classifier in Table II.

We included training times for each cross validation split
measured on a high performance cluster running Red Hat
Enterprise Linux using a Nvidia Tesla V100. GoogLeNet
required the longest training (306s). In comparison, distance
extraction for a 224 x 224 image took on average 102 s using
a single thread on an Intel Xeon Gold 6230 processor. How-
ever, multiple scans can processed in parallel since they are
independent of each other. Training times for each classifier
are included in Table I.

TABLE |
CLASSIFIER COMPARISON ON LINEAR, SPHERICAL MAPPING. FOR
EACH METRIC, WE DISPLAY CROSS VALIDATION MEAN =+ STANDARD
DEVIATION.

Classifier Training Accuracy G-mean Fl-score
time
Alternative methods from the literature
LDA on SSM [15] 5s 0.964+0.027 0.715+0.365 0.89040.100
FNN [16] on 1305 0.954+0.031 0.696£0.355 0.876+0.104
semi-icosphere
Alternative methods from the literature with distance maps
FNN [16] on 180s 0.960+0.033 0.729+0.370 0.89540.110

distance maps

CNN-based methods using distance maps

Mobilenet small 195s 0.964+0.032 0.73740.375 0.90040.110
(pre-trained)
Mobilenet large 225s 0.9641+0.025 0.82440.284 0.92140.081
(pre-trained)
Alexnet 241s 0.9704+0.016 0.82940.287 0.9234-0.076
(pre-trained)
Vanilla CNN 213s 0.9744+0.022 0.86440.291 0.94340.077
GoogLeNet 306s 0.9824+0.014 0.9384+0.078 0.9624-0.042
(pre-trained)
Resnet18 210s 0.9841+0.020 0.9431+0.070 0.9644-0.043
(pre-trained)
TABLE Il

RESNET18 ACCUMULATED CONFUSION MATRIX WITH LINEAR,
SPHERICAL MAPPING. MEAN AND STANDARD DEVIATIONS WERE
COMPUTED ACROSS ALL FOLDS.

True Predicted class Sensitivity Specificity
class

Control Coronal Metopic Sagittal
Control 276 0 1 1 0.9934+0.014 0.977+£0.031
Coronal 4 20 0 0 0.833+£0.211 1.000+£0.000
Metopic 0 0 70 0 1.000+0.000 0.995+0.014
Sagittal 1 0 1 122 0.98440.033 0.997+0.008

B. Mapping comparison

We display classification results for different mapping ap-
proaches using the pre-trained Resnet18 in Table III. All accu-
racies were 0.976 or above. All three metrics were consistently
higher than the classification approaches in Table I except
GoogleNet. For the arch-spherical and cylindrical approach,
the per-pixel mappings performed slightly better than the linear
approach, but were in the range of one standard deviation.

TABLE IlI
MAPPING AND SCALING APPROACHES USING RESNET18. DISPLAYED
IS CROSS VALIDATION MEAN == STANDARD DEVIATION.

Mapping Scaling Accuracy G-mean F1-score
Spherical Linear 0.984+0.020 0.943£0.070 0.96410.043
Per-pixel 0.976+0.012  0.944+£0.035 0.962+0.018
Arch-spherical Linear 0.976£0.018 0.938+0.078 0.959+0.044
Per-pixel 0.986+0.018 0.959+0.069 0.97410.041
Cylindrical ~ Linear 0.976£0.020 0.958+0.038 0.960+0.032
Per-pixel 0.984+0.012 0.971+0.037 0.978+0.020

C. Data augmentation strategy

Table IV shows the classifier performance using “on the fly”
2D image-based data augmentation, compared to the networks
without data augmentation (Table I). All classifiers improved
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g-mean and Fl-score. FNN showed the largest improvements
in all three metrics.

TABLE IV
CLASSIFIER COMPARISON ON LINEAR, SPHERICAL MAPPING USING
IMAGE-BASED DATA AUGMENTATION. DISPLAYED IS CROSS VALIDATION
MEAN £ STANDARD DEVIATION.. THE SECOND LINE FOR EACH
CLASSIFIER SHOWS THE IMPROVEMENTS COMPARED TO TABLE |.

Classifier Accuracy G-mean F1-score
FNN [16] on distance maps 0.96840.024 0.888+0.083 0.928+0.055
(Mean improvement w.rt. Ta-  (+0.008) (+0.159) (+0.033)
ble I)

Vanilla CNN 0.97440.026 0.92640.086 0.949+0.053
(Mean improvement w.rt. Ta-  (+0.000) (+0.062) (+0.006)
ble 1)

0.986£0.016 0.969£0.041 0.97540.029
(+0.002) (+0.026) (+0.011)

Resnet18 (pre-trained)
(Mean improvement w.r.t. Ta-
ble I)

D. Resolution

In Fig. 9, we show the cross validation mean of accuracy,
g-mean, and Fl-score over pixel resolution for the Resnet18
classifier with spherical mapping and linear scaling. Starting
with a pixel resolution of 14 and higher, g-mean was 0.81 or
higher, accuracy 0.96 or higher, and F1 score 0.92 or higher.
Using 14 rays per direction resulted in a 256-fold computation
reduction for the ray tracing while bicubic image interpolation
still yielded a g-mean larger than 0.95. All three interpolation
methods jittered slightly and with similar amplitudes.
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Image size in pixels
Fig. 9. Mean cross validation metrics as functions of the number of

pixels p to create an p X p image. Three different interpolation methods
were used to create an up-scaled image: Nearest neighbors, bilinear,
and bicubic interpolation.

E. Attribution maps

Fig. 10 indicates the mean attribution across all scans for
the different mappings. All three mappings assigned attribution
to the frontal part of the head where typical deformations of
sagittal and metopic craniosynostosis can be observed. The
precise location varied on the mapping and was slightly shifted
to the right for the spherical and cylindrical mappings, and
slightly shifted to the left for the arch-spherical mapping.

1.00
Spherical

0.0 02 04 06 08 0.05 0.1 0.15

00 02 04 06 08 100 0.05 0.1

Arch-spherical

1.00
Cylindrical

00 02 04 06 08 0.05 0.1

Fig. 10.  Mean attribution for all subjects in the image domain with a
transparent overlay of the map (left) and projected onto the 3D surface
for the respective mapping (right). From top to bottom: Spherical, arch-
spherical, and cylindrical mapping. The 2D image shows a transparent
overlay of the grayscaled distance map as a visual guide, while attribu-
tion is colored in blue. A larger value means higher attribution.

IV. DISCUSSION

We proposed a flexible mapping approach to create 2D
distance maps from 3D head geometries, which we used for
the classification of craniosynostosis. We introduced multiple
mapping variants with different coordinate systems and scaling
approaches. We extended the ideas of [16] and structured the
extracted distances in a 2D grid. While CNNs had been used
for camera pictures from above [18], we propose an encoding
strategy which include the 3D data encoded in 2D image
intensity and employed the first CNN for craniosynostosis
on such a type of encoding. This was also used for the first
systematic study to investigate the effects of reducing the 2D
image resolution (and consequently sampling frequency of the
3D head surface) for classifying craniosynostosis. The 2D
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distance maps enable the usage of “on the fly” data augmen-
tation methods typically employed for CNNs and can be used
as an intermediate visualization before a machine learning
classifier is employed, which preserves patient anonymity and
is a suitable option for a cross-domain dataset.

Using pre-trained networks was effective, especially
Resnet18 showed good performance and scored highest in all
three metrics. However, a vanilla CNN trained from scratch
could outperform Mobilenet and Alexnet and showed that
pre-training is beneficial, but not a prerequisite for good
classification performance. The network choice showed a
larger influence on the three metrics than mapping choice
(spherical, arch-spherical, or cylindrical) or scaling choice
(linear or per-pixel scaling). This indicates that there is no
“better” transformation, for the CNN, as long as the geometry
is represented in the image. The mapping type might be more
relevant when considering data augmentation methods, as only
the spherical and cylindrical mapping allow a horizontal shift
for rotation misalignment. Image-based data augmentation
lead to an improvement of g-mean and Fl-score for all
three tested classifiers. The original FNN classifier could be
improved when using 2D image data and even more when
introducing data augmentation during training. Taking into
account the standard deviations, Resnetl8 and GoogleNet
showed the most consistent performances across all ten folds
while other classifiers showed higher standard deviations for
g-mean and F1-score.

Using different image resolutions revealed that a low-
resolution sampling of the head surface with a resolution of
14 rays per direction still showed classification results with
g-mean and accuracy above 0.95 for bicubic up-scaling. This
corresponds to a 256-fold ray-reduction of triangular ray inter-
section. Classification could be performed with substantially
lower resolution than previously performed on 3D surface
scans. Since low-resolution images represent spatial frequen-
cies well and suppress high spatial frequencies, it suggests that
low spatial frequencies are most relevant for the classifiers.
High-resolution artifacts (which may result from the ears or the
often visible tip resulting from the caps) might be weakened.
The reduction of input parameters for machine-learning-based
classifiers might be a promising follow-up study and pave the
way towards an interpretable classifier trained on few, carefully
selected features. Although the resolution study was performed
only on the spherical linear mapping, the results are likely
valid for the other mappings as they showed little influence on
the classification performance overall. The observed accuracy
fluctuation of 1-1.5 % for the different resolutions was likely
caused by different network training conditions, although all
samples among splits were kept consistent. Low-resolution im-
ages might reduce the required precision of scanning devices
or enable domain transfer to CT imaging, even with high slice
thickness.

One reason for the success of the CNNs might be that the
filter kernels on the 2D image ensure that the classifier is
trained on locally confined features. This impedes the simple
correlation of spatially not connected input pixels and might
be beneficial for classification performance. In contrast, FNNs
interpret the image as a large 1D feature vector, thus allowing

the creation of features based on random correlations across
the image. A second reason might be that pre-trained net-
works might cope more easily with the small amount of data
often present in medical classification problems. Especially
Resnet18 and GoogLeNet seemed to be able to effectively fine-
tune the fully connected layers after pre-training. However,
the vanilla CNN proved to be an effective classifier without
using pre-training and even surpassed some of the pre-trained
network architectures.

Attribution maps intend to provide insights of how the clas-
sifier made its decision and suggest that the CNN was indeed
triggered by features specific to the condition. Qualitatively,
parts of the head which would be considered less important by
humans (such as the ears) were assigned only little attribution.
Higher attributions were assigned to the forehead with a
prominent spot on either the left or right side of the head,
corresponding to pathological differences between the classes,
suggesting that the network makes use of geometric relevant
parts of the head. It has to be noted that attribution mapping is
generally not a replacement for explainable classification and
generalizations from attribution mapping need to be interpreted
carefully [40].

There are also limitations to this study. As with many
studies in biomedical engineering, our dataset contains only
some hundred samples, even though it is the largest dataset
of craniosynostosis patients used in a classification study to
date. Optimally, multiple datasets should be used to further
validate the models, which might increase trust in patients and
physicians. However, as craniosynostosis head scans show the
face of the patients, there are currently no publicly available
clinical datasets and data sharing is often complicated due
to patient data regulations. Other groups might make use
of our publicly available SSM [30]. Data augmentation or
data synthesis might be an option to make the classification
models as robust as possible. We showed that image-based
random horizontal flipping and a random horizontal shift
during training improved classification performance for CNNs
and FNNs alike.

The three proposed distance map variants sample the 3D
geometry with equidistant angle intervals which leads to non-
equidistant sampling intervals on the 3D surface, resulting in
more points at the tip of the head (see Fig. 7). However, this
apparently did not hamper classification performance. One
disadvantage of the 2D distance mapping is the reliance on
the three manually annotated landmarks. Future work should
focus on automatic registration of the scans, for example using
random sample consensus.

In general, our mapping approach is not tied to 3D surface
scans and might be used in other domains, for example for CT
scans, head shape analysis or any shape analysis for spherical-
like objects. Distance maps from MRI and CT could be used
for classification purposes or combined with surface scans
to obtain a cross-domain dataset from all three modalities.
Especially the domain transfer to CT scans seems promising:
It seems likely that low-resolution-maps from existing CT or
x-ray imaging can achieve similar results, potentially reducing
ionizing radiation if a radiography is still desired or inevitable.
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V. CONCLUSION

We presented distance mapping approaches to transform 3D
head shape information on 2D intensity-encoded images which
were combined with CNN-based classifiers for craniosynosto-
sis. The conversion to 2D images enables the usage of “on
the fly” data augmentation (horizontal mirroring and shifting),
enables the usage of pre-trained CNNSs, and preserves patient
anonymity. We systematically reduced resolution of the images
and showed that using the 2D image structure, low-resolution
images can be used for classification without a substantial
decrease of classification accuracy. Resnetl8 achieved the
best classification performance, showing that 3D surface scans
are suitable for a reliable classification of the most common
types of craniosynostosis. Although our mapping encoded 3D
photogrammetric surface scans, it is not inherently confined
to this domain and could be used for a combined image-based
classification dataset. To facilitate this process, we publish our
Python source code as free and open source software and
enable other groups to use our code.
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