
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Sequencing With Decentralized Control Using
Modular Highest-Density Conveyor Systems

Julia Fleischmann and Kai Furmans , Member, IEEE

Abstract— We present a decentralized sequencing algorithm
applicable to modular high(est)-density conveyor systems that
enables items to enter the system randomly from multiple input
points. They are rearranged within the system to be retrieved
at an assigned output point observing a predefined sequence.
A variety of applications benefits from this, such as storing and
retrieving, order picking, packing and shipping operations as
well as Just-in-Sequence (JiS) applications of production systems.
We prove that our decentralized algorithm – based on the concept
of logical time – is able to prevent deadlocks, livelocks, and
starvation. It guarantees a complexity of order O(n2) at module
level depending on system size n. Using throughput evaluations,
we show how to parameterize the decentralized sequencing
algorithm to optimize its performance. Furthermore, we deduce
that small batch sizes, high conveying speeds, a high number
of output points, or non-perforated network structures increase
system throughput. A simulative demonstration of the developed
algorithm can be found at our institute channel.

Note to Practitioners—The need for flexibility, scalability, and
robustness has led to decentralized control concepts becoming
more and more popular in practice. In the field of material
handling systems, transportation, storage, sortation, and picking
functionality is already being realized based on decentralized con-
trol. In this paper, we present a decentralized control algorithm
which dispatches randomly introduced items to match a specified
sequence at their assigned destination. It applies to systems
including multiple input and output points ((m : n) setting) and
thus allows for parallel order processing and customizable system
configurations of various application scenarios. As sequencing
combines routing, buffering and relocation functionality, addi-
tionally, an overall logic for implementing transport, storage and
retrieval, sortation and picking systems is provided as well.

Index Terms— Material handling, Plug-&Play, logical time,
deadlock-free, decentralization, sequence, complexity analysis.

I. INTRODUCTION

TODAY’S highly complex, dynamic, and uncertain
industrial environments require sophisticated automated

systems to operate efficiently. Firms are looking for solutions
that can be deployed quickly, reconfigured without long down-
times, and are robust to local failures. Furthermore, automation

Manuscript received 31 October 2022; revised 8 March 2023;
accepted 26 April 2023. This article was recommended for publication
by Associate Editor Y. Tong and Editor C. Seatzu upon evaluation of the
reviewers’ comments. This work was supported by the Bundesministerium
für Wirtschaft und Klimaschutz (BMWK) through by the Research Project
“MultiSequencer-Development of a Compact, Flexible m:n Sequencer” under
Grant ZF4251413DB8. (Corresponding author: Julia Fleischmann.)

The authors are with the Department of Mechanical Engineering, Insti-
tute for Material Handling and Logistics, Karlsruhe Institute of Tech-
nology, 76131 Karlsruhe, Germany (e-mail: julia.fleischmann@kit.edu;
kai.furmans@kit.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2023.3272971.

Digital Object Identifier 10.1109/TASE.2023.3272971

is also being challenged to operate in smaller spaces to reduce
costs or to operate closer to the customer. Decentralized
systems offer such flexibility, robustness, scalability, and fault-
tolerance [1] because of their modular design that only requires
localized information and decision-making. This allows, for
example, a company to flexibly extend or modify, maintain
and move their material handling equipment without external
expertise. While decentralized system design provides this
number of benefits, a major challenge is their high risk for
creating deadlocks, livelocks, and starvation [2], as the overall
system state can never be analyzed in its entirety. Additionally,
the necessary decentralized communication effort may affect
system performance.

Production and logistics environments often require prod-
ucts or parts to arrive in a pre-defined sequence for being
handled or processed. In storing and retrieving, order picking,
packing and shipping operations as well as Just-in-Sequence
(JiS) applications, manual work is reduced and overall process
efficiency increases if items arrive at their point of use in
the correct order of consumption. This work thus presents a
decentralized sequencing algorithm, where items – referred to
as transport units (TUs) – randomly arrive at multiple input
points, are rearranged within the system, such that they exit the
system at an assigned output point observing the predefined
sequence required at their point of use. TUs represent physical
unit loads, such as parcels, boxes, small load carriers etc.
or even bulk materials, liquids or gases when combined with
suitable packaging and/or load carriers. These are organized in
batches of a certain size k corresponding to the number of TUs
included in the batch. Each TU of a batch is assigned a rank to
specify the predefined unloading sequence at its output points.
We consistently characterize batches using colors, while the
ranks of TUs within a batch are denoted with numbers.

The system is made up of identical right-angle-transfer
conveyor modules without any supervising element. These
act autonomously based on local data bases and control
units. Connecting several adjacent modules creates the overall
sequencing system. The presented algorithm is capable of
operating in highest-density1 conveyor systems, i.e., it guar-
antees maximum achievable space efficiency. In Figure 1 we
show an example use case, where three input conveyors pro-
vide items from an upstream supplying station for sequenced
delivery to four processing stations of a downstream process.

The paper is structured as follows: Section II reviews the
current state of the art regarding the investigated sequencing

1Highest-density is an extreme case of high-density as defined in [3]. Details
are given in Chapter II.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0001-9186-6739
https://orcid.org/0000-0001-6009-5564

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Sequencing use case, where items are sequenced according to their
number.

problem. In Section III, we present the decentralized sequenc-
ing algorithm by specifying the interactions at module level
as well as the decentralized system design. The absence of
deadlocks, livelocks, and starvation is proven in Section IV.
We investigate the algorithmic complexity in Section V.
Section VI analyzes the system performance using simulation
studies. We summarize the central conclusions of our work in
Section VII.

II. STATE OF THE ART

Decentralized algorithms are already applied to realize
specific material handling operations using modular conveyor
systems (cf. Section II-A). Restrictive approaches for sequenc-
ing systems have been developed as well (cf. Section II-B).

A. Conveyor Systems With Decentralized Control

Existing approaches in the field of decentralized controlled
conveyor systems enable transporting, storing, picking, and
sorting functionalities. These are summarized in Table I. The
system density follows from [3]. In high-density systems,
interfering items prevent accessing desired items. We further
define highest-density systems as those which can operate with
just one empty module. The implemented routing strategy is
classified into offline and online approaches. With the former,
item routes are planned entirely from start to destination
before initiating transportation, whereas with the latter, they
are planned incrementally with stepwise item movements [4].
Systems with online routing are synchronized involving a
higher level coordination element to ensure that all modules
execute the algorithmic phases consistently. Therefore, buffer
times are incorporated within the negotiation cycles, which can
reduce system performance [5]. Furthermore, they necessarily
require rectangular grid layouts [6]. Based on the deadlock
handling strategies according to [7], we investigate whether
and how the presented algorithms ensure system liveliness.

Low-density systems are studied most commonly incorpo-
rating an offline route planning approach. Route planning in
high(est)-density systems requires relocating interfering items.
So far, this is only possible using online approaches, which
suffer from the drawbacks stated above. None of the existing

2Not generally proven and only under certain conditions.

TABLE I
CONVEYOR SYSTEMS WITH DECENTRALIZED CONTROL

TABLE II
APPROACHES FOR SEQUENCING SYSTEMS

approaches provides a decentralized algorithm based on offline
route planning applying to high(est)-density conveyor systems.
Thus, preventing deadlocks or ensuring system liveliness in
general under these conditions remains unresolved as well.
Apart from [11], complexity aspects of the presented decen-
tralized algorithms are not studied.

B. Approaches for Conveyor-Based Sequencing Systems

Several approaches for conveyor-based sequencing systems
have been proposed in scientific research (cf. Table II).
We classify them according to their level of decentraliza-
tion. Processing several batches simultaneously relies on an
(m : n) setting with m > 1 input and n > 1 output points.
We investigate density, routing, and integrated deadlock han-
dling strategies by analogy with Section II-A.

All of the presented approaches of Table II offer a solution
for sequencing in modular conveyor systems. The majority
require centralized system functionality where essential algo-
rithmic parts, such as path finding, data holding, or deadlock
handling, are delegated to a centralized element. Often, single
batch problems are considered. Several of the proposed sys-
tems reserve unoccupied parts for relocations, which reduces
the achievable density. Online routing algorithms are used fre-
quently, such that only synchronized systems with rectangular
network structures can be realized [6]. None of the presented
approaches provides decentralized sequencing from multiple
input to multiple output points in general high(est)-density
conveyor systems while ensuring system liveliness in terms
of deadlock, livelock, and starvation prevention. This paper
aims to comprehensively close this research gap.

3Livelock risk is present.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FLEISCHMANN AND FURMANS: SEQUENCING WITH DECENTRALIZED CONTROL 3

Fig. 2. Splitting the overall route of a TU into active and passive routes.

III. DECENTRALIZED SEQUENCING

We present a decentralized sequencing algorithm starting
with the overall design approach to outline its main ideas
at system level (cf. Section III-A). Based on that, we detail
the concept of decentralized interactions at module level (cf.
Section III-B). For demonstration, we use a showcase system
based on square right-angle-transfer conveyor modules (cf.
Section III-C).

A. Design Approach

The overall route of each TU initially starts at its
assigned input module where it is introduced and ends at
its assigned output module where it is unloaded. To observe
the predefined unloading sequences at the output modules,
buffering is necessary. We split the overall routes of buffered
TUs into sub-routes, where buffer modules are used as
intermediate destinations (cf. Section III-A1). These need to
be allocated to support efficient sequencing (cf. Section III-
A2). Path finding for each (sub-)route considers the resulting
system occupation (cf. Section III-A3).

1) Transport Unit Routing: Processing a TU means specify-
ing its route through the system. We refer to a TU as requested
if its corresponding output module is able to claim this TU,
as all necessary preceding TUs have already been scheduled
there. Thus, only requested TUs may be routed to their output
module.

Within the decentralized sequencing algorithm, we define
two types of routes:

• active routes starting at an input module and/or ending at
an output module and

• passive routes starting and ending at a sequencing module
for buffering.

Active routes are necessary to introduce arriving TUs into the
system and to unload requested TUs at their output modules.
Thus, active routes generally guide the process of sequencing.
Passive routes, instead, depend on active routes. If a buffered
TU interferes with an active route, a passive route is initiated
for relocation. This allows us to represent the overall route of
each buffered TU from the input to the output module as a
combination of one active route at the beginning and end and
an arbitrary number of passive routes in between (cf. Figure 2).
In case a TU is requested when arriving at its input module,
the two active routes are consolidated such that it is routed
directly from the input to the output module.

From the perspective of a TU, sequencing follows the
flowchart given in Figure 3. This is achieved by decentral-
ized interaction of the autonomous conveyor modules (cf.
Section III-B).

Fig. 3. Flow chart for sequencing from the perspective of a TU.

TABLE III
BUFFER MODULE ALLOCATION

2) Buffer Module Allocation: To enable efficient sequenc-
ing, we develop the unloading sequence-based buffer selection
rule for active routes, while for passive routes, the distance-
based buffer selection rule applies (cf. Table III). Both are
designed to meet different requirements of the specific route
type when identifying buffer modules.

3) Path Characteristics: While the path of an active route
generally includes multiple modules, each passive route rep-
resents exactly one relocation step of a TU to an adjacent
module (cf. Table III). Therefore, clearing the path of an active
route due to an interfering buffered TU may require moving
several TUs in a chain – especially when system density is
high. We refer to this chain of relocation steps as a relocation
route, i.e. a relocation route may combine multiple passive
routes in direction to a non-buffering module (cf. Figure 4).

For efficiently processing TUs, paths of active as well as
relocation routes aim to consider:

• the length of the route, as this defines the time for
transferring the TU,

• the number of buffered TUs on the route, as these need
to be relocated to be able to access there, and

• the number of directional changes on a route, as this
implies a certain delay due to acceleration and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 4. Use case of two active routes from buffer to output and from input
to buffer module, respectively, including their induced passive routes.

deceleration as well as switching the conveyor modules
between their rectangular transport directions.

B. Algorithm Concept

The decentralized interactions of the autonomous modules
are designed to process TUs within the system as illustrated
in Figure 3. Active routes are initiated observing the nec-
essary predecessor-successor relations (cf. Section III-B1).
Each active route is planned from start to destination (cf.
Section III-B2) before being executed (cf. Section III-B3).

1) Route Initiation: Route initiation notifies the module
currently assigned to a TU that planning an active route for this
TU can start. Input modules identify arriving TUs and register
them at their output module. Based on the current state of its
unloading sequence, the latter is able to determine whether the
active route for the corresponding TU requires a buffer module
or goes directly to the output module. In case of buffering,
the output module requests potential buffer modules based on
the unloading sequence-based buffer selection rule for active
routes (cf. Section III-A2). The output module then returns the
destination of the active route to the requesting input module.
When scheduling a TU at its output module, previously
buffered ones might become requested. Their assigned output
module requests such buffered TUs directly at their allocated
buffer module to initiate an active route for unloading. Due to
relocations of interfering buffered TUs, the local information
at the output module about allocated buffer modules may be
outdated up to this request. Buffer modules discard outdated
requests if the allocation no longer applies. Additionally, each
reallocated buffer module updates the corresponding output
module, which we will discuss in more detail when presenting
passive route planning in Section III-B2.c. For each active
route, the message received from the output module triggers
route planning at the input and buffer module, respectively.

2) Route Planning: Planning an active route follows
the series of acquiring the planning authorization
(cf. Section III-B2.a), selecting the path of modules forming
the active route (cf. Section III-B2.b), and negotiating
reservations for the active and all of its induced passive routes
for relocation (cf. Section III-B2.c).

a) Authorization procedure: The decentralized autho-
rization procedure (cf. Figure 5) guarantees deadlock-free sys-
tem operation within route planning as all routes are planned
sequentially. Executing these routes occurs independently of
planning procedures (cf. Section III-B3). At any time, there
is exactly one authorized module within the system. Only

Fig. 5. Authorization procedure.

this module is entitled to plan an active route. At system
configuration, it is initialized with the first input module of
the system. Whenever the authorization is passed, all input and
sequencing modules are notified as only these initiate active
routes.

Each time a module intends to start planning an active route,
it first sends a request to the currently authorized module to be
authorized next. As soon as this completed planning its active
route, it passes the authorization to the next module among the
incoming requests. Active routes for unloading are prioritized
over those for buffering, as the former directly contribute to
system throughput. If an authorization request is not granted,
the notification of changed authorization triggers a new request
to the currently authorized module.

b) Path selection: Path selection aims to identify the path
of modules for an active route based on the criteria defined
in Section III-A3. We develop an adapted decentralized A*
algorithm, which starts at the initiating module of the active
route. Every search iteration occurs locally at the currently best
module to be explored. This module is notified to continue the
A* search providing all currently available path information to
it. It updates this path information, while continuing the open
list of known modules by its adjacent modules, and identifies
the best module to be explored next. The tentative path cost
tn for an adjacent module n proceeding from module m is
calculated as follows:

tn
= tm

+ dn
e − d∗

e

+

{
pb if m is buffer module
0 otherwise

+

{
pc if n implies directional change
0 otherwise

(1)

The current tentative value tm represents the sum of penalty
terms, resulting from relocations and directional changes from
the start module to the path predecessor of module m so
far. Added to this is the length of the detour (dn

e − d∗
e)

measured in module lengths when routing via neighbor n. The
penalty term for buffer module relocation pb results from the
current module state, while the penalty term for directional
change pc results from the transmitted path predecessor of
module m (pb, pc > 0). pb and pc can be parameterized to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FLEISCHMANN AND FURMANS: SEQUENCING WITH DECENTRALIZED CONTROL 5

TABLE IV
NOTATION FOR DEFINING RESERVATION CONDITIONS (BASED ON [14])

specifically influence path selection. However, optimality is
guaranteed only if the tentative cost estimation is admissible
according to the A* requirements, i.e. path costs must never
be overestimated (cf. [20]). Adding pc depends on the path
predecessor and may retroactively change the cost estimate of
different paths. To satisfy admissibility, pc cannot be set arbi-
trarily, which we will discuss in more detail in Section VI-B.
Path selection is finished, when the route destination module
is notified. The identified path is fixed by confirming the
corresponding predecessor modules backward up to the start
module of the active route.

c) Route reservation: We apply a time window-based
approach using the concept of logical time. It builds upon
the preliminary work of [21] and [14]. Each conveyor module
is assigned a local logical clock. Transferring a TU requires
reserving a logical time window at all modules of its route.
Therefore, each module of the system locally holds a reser-
vation table in which all of its transfers are scheduled. These
are executed in ascending order of their reserved logical time
windows. When completing a transfer, the involved modules
update their logical clocks accordingly. Thus, clock times refer
to events rather than physical time points.

For route reservation within the developed decentralized
sequencing algorithm, the involved modules negotiate logical
time windows matching their local reservation tables. Sequenc-
ing requires the following reservation conditions (R1) to (R6)
to be satisfied. We use the notation according to [14] (cf.
Table IV).

Tin(Pa, Ri) < Tout (Pa, Ri) (R1)

The outgoing transport of each TU at each module is scheduled
after its incoming transport there.

Tout (Pa, Ri) = Tin
(
Pa, R j

)
(R2)

Each pair of adjacent modules i and j along the transport
route of a TU agrees on the timing regarding their common
event. Combining (R1) and (R2) yields ascending logical time
windows within the event sequence of each process.

Tout (Pa, Ri) < Tin(Pb, Ri) (R3)

Each module can hold only one TU at a time. Thus, the
respective logical time windows according to (R1) for two
routes scheduled at the same module may not overlap.

Ci < Tin(Pa, Ri) (R4)

Fig. 6. Reservation of active routes.

Upcoming events are scheduled in future logical time regard-
ing the reserved module to satisfy the causal event dependen-
cies (cf. [21]).

Tin(Pa, Ro) < Tin(Psa , Ro) (R5)

Each succeeding TU may not enter at the assigned output
module before any of its predecessors. This upholds the
predefined unloading sequences.

Tout (Pa, Ri) = ∞ (R6)

Each buffered TU blocks its allocated buffer module for an
unlimited time period until its predecessor is planned or it is
relocated (cf. Figure 3). Thus, (R6) defines a buffer module.

Establishing a set of feasible logical time windows adher-
ing to reservation conditions (R1) to (R6) is realized via
decentralized negotiations according to Figure 6. Adjacent
modules iteratively suggest time windows based on their
existing reservations until an agreement is found. Due to reser-
vation condition (R6), this requires a passive route planning
subroutine for buffer modules of active routes to relocate their
blocking TUs.

To negotiate a finite logical time window on buffer modules
after the buffered TU enters, the indefinite reservation of
reservation condition (R6) needs to be resolved first, i.e.
it becomes a non-buffering module. According to Table III,
we apply a step-wise relocation approach which moves a
buffered TU from its currently allocated buffer module to
an adjacent one. As we operate in highest-density systems,
this might involve relocating several other buffer modules (cf.
Figure 4).

Figure 7 shows the passive route planning. The assigned
buffer module of the blocking TU first identifies the closest

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 7. Passive route reservation.4

non-buffering module using the distance-based buffer selection
rule for passive routes. Then, relocation requests are succes-
sively sent via the port of a shortest path directing to the iden-
tified module. To end up with feasible logical time windows at
all involved modules according to the defined reservation con-
ditions, the logical time at which a non-buffering module can
take over an indefinite buffer reservation dictates the relocation
negotiations. After receiving the relocation confirmation at the
initially blocked module of the active route, it is now able to
respond to its received reservation request (cf. Figure 6).

3) Transport Execution: After confirming the reservation at
the start module of an active or passive route, TU movement is
initiated. In the decentralized system, transferring a TU occurs
if and only if both involved modules agree on the next logical
time event within their respective reservation tables. This is
coordinated by exchanging transport request and confirmation
messages. Whenever a transport event is executed, the involved
modules forward their logical clocks: The sending module
updates its logical clock to Tout , the receiving one to Tin of
their reserved logical time windows for the corresponding TU.
This guarantees an unambiguous transport execution sequence
for every module in the system providing deadlock-free system
operation during transport execution (cf. Section IV-A).

C. Showcase System

The presented decentralized sequencing algorithm is imple-
mented within a showcase system using right-angle-transfer
conveyor modules, such as the FlexConveyor of [8]. They
can be flexibly combined via Plug-&Play technology, which
allows creating any kind of customized sequencing system.
Each module uses its own control unit for decision making
based on a local database. At each of the four module edges,
there is an interface for communication with the adjacent
modules. Communication with non-adjacent modules within
the network requires a corresponding message transmission
mechanism, which forwards messages via a series of adjacent
modules to the respective recipient. Therefore, any communi-
cation protocol is valid which allows specifying the payload
as well as the sender and recipient of a message, e.g. TCP/IP.

4The legend of Figure 6 also applies to Figure 7.

Fig. 8. Decentralized system design.

As we presented the algorithmic operations assuming faultless
communication and uninterrupted availability of conveyor
modules, suitable error handling is vital within real-world
applications. The decentralized system architecture based on
the local attributes and methods of the conveyor modules to
enable sequencing are summarized in Figure 8.

Each module can handle one TU at a time (cf. [8]).
Transferring a TU between two adjacent modules requires
occupying both of these modules until the TU is entirely
located on the next module along its route. We divide the
set of all installed conveyor modules into input, output and
sequencing modules based on their role within the network.
The input modules link from the upstream process to the
sequencing system to introduce arriving TUs. Output modules
provide them to the downstream process after processing by
the intermediate sequencing modules.

For demonstrating our showcase system, we implemented
an agent-based simulation model using the simulation soft-
ware AnyLogic. Each conveyor module is represented by an
own agent instance. These agents interact by events, such as
sending or receiving messages.

Generally, stable system operation can only be guaranteed
if the inflow of TUs arriving at the system can be physically
processed using the available buffer capacity of the network.
TU movements necessarily require at least one unoccupied
sequencing module in the system. Thus, when introducing
new TUs, the input modules need to ensure that the sum of
TUs within the system does not exceed (c − 1) for a network
comprising c sequencing modules. Within our simulation
model, we generate the input data such that sequencing is
always feasible for the set of arriving TUs by restricting the
maximum processable batch size to (c − 1) as well as the
mixing of batches within the arrival characteristics at the input
modules.

IV. PREVENTING DEADLOCKS, LIVELOCKS AND
STARVATION

Deadlocks, livelocks, and starvation represent a major
risk in decentralized controlled systems, as the states of all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FLEISCHMANN AND FURMANS: SEQUENCING WITH DECENTRALIZED CONTROL 7

processes and resources are only locally available. In the
following, we prove that the presented sequencing algorithm
structurally prevents those due to the specified reservation
conditions and communication procedures. We subdivide our
investigations into the algorithmic operations as well as the
allocation of resources for physically moving TUs, as these
both are processed at decentralized module level.

A. Deadlocks

A deadlock arises within a set of processes if each process
is waiting for an event of another process in this set [7].

1) Algorithm Operations: The algorithmic operations are
deadlock-free if we can guarantee that for each arriving TU
a complete route from its input to its output module is
initiated in finite time, observing the predefined predecessor-
successor dependencies. Assuming that there is always at
least one unoccupied sequencing module within the system
(cf. Section III-C), a feasible solution exists for the set of
all necessary active and passive routes. To ensure that this
is found, all modules need to use consistent information.
Outdated or incomplete local information may create requests
which are mutually exclusive.

Local module information is updated when receiving
confirmations. The decentralized authorization concept (cf.
Section III-B2.a) guarantees that active routes are planned
sequentially based on updated system information. Each
request is confirmed before receiving a new request concerning
another active route. This ensures that each module is in the
correct state to respond to an incoming request at any time.
As passive route planning interrupts route reservation on the
active route, multiple relocation routes are never planned at the
same time. Therefore, one non-buffering sequencing module
is generally sufficient within the network. The algorithmic
operations for sequencing can continuously proceed preventing
the system or parts of it from becoming deadlocked.

2) Resource Allocation: Resource allocation for physically
transferring the corresponding TUs implies coordinating the
utilization of the common system resources. According to [22],
a resource deadlock requires the following four conditions to
coexist:
(D1) Mutual exclusion: Processes claim exclusive control of

their required resources.
(D2) Hold and wait: Processes hold allocated resources while

waiting for further resources.
(D3) No preemption: Allocated resources are used to comple-

tion and released by the process holding them.
(D4) Circular waiting: There is a circular chain of processes,

each of which is requesting a resource held by the next
process in the chain.

To prevent deadlocks, at least one of these four conditions
needs to be excluded [22]. In modular conveyor systems,
conditions (D1) to (D3) are intrinsically satisfied [8]. Thus,
we need to demonstrate that condition (D4) is prevented.

Referring to Table IV, the overall route of each TU through
the system corresponds to a cohesive process starting at an
input module and ending at an output module. To observe
the necessary predecessor-successor dependencies, planning

the overall process of a TU is decomposed by defining active
and passive routes. For each buffered TU, an indefinite buffer
reservation is created at the allocated resource for buffering
according to reservation condition (R6). It is resolved entirely
when initiating the active route from the buffer module to the
output module. Thus, we obtain a finite overall process for
each TU ending up at its output module. It represents a series
of ascending logical time windows according to reservation
conditions (R1) and (R2). This is used to demonstrate deadlock
prevention for resource allocation similar to [14].

The circular wait condition (D4) for a resource deadlock
implies a set of TUs holding a chain of conveyor modules
within a closed loop. Assuming process P1 is currently holding
resource R1, process P2 resource R2 and so on, within a
circle of adjacent resources R1 . . . Rn . Due to reservation
conditions (R1) and (R3), satisfying circular waiting results in
the following reservation dependencies for processes P1 . . . Pn:

Tin(P1, R1) < Tout (P1, R1) < Tin(Pn, R1)

Tin(P2, R2) < Tout (P2, R2) < Tin(P1, R2)

...

Tin(Pn, Rn) < Tout (Pn, Rn) < Tin(Pn−1, Rn) (2)

Based on reservation condition (R2), we obtain for the circular
chain of adjacent resources R1 . . . Rn:

Tout (P1, R1) = Tin(P1, R2)

...

Tout (Pn−1, Rn−1) = Tin(Pn−1, Rn)

Tout (Pn, Rn) = Tin(Pn, R1) (3)

From this, it follows:

Tout (P1, R1) < Tout (Pn, Rn) < Tout (Pn−1, Rn−1)

< . . . < Tout (P2, R2) < Tout (P1, R1) (4)

which is a contradiction. Thus, circular waiting is excluded
by observing the defined reservation conditions such that
deadlocks during resource allocation are prevented.

B. Livelocks

A livelock refers to a process indefinitely repeating the same
execution sequence without progressing [23].

1) Algorithm Operations: Livelocks exist if modules send
and receive messages in an endless loop. Due to sequential
route planning (cf. Section IV-A1), we can consider each active
route individually. The algorithmic operations terminate at its
initiating module if path selection, route reservation, as well
as all induced relocation operations terminate.

In path selection (cf. Section III-B2.b), modules which have
already been explored are never selected for re-exploration
such that messaging loops are generally excluded.
Route reservation requires all involved modules of active
and passive routes to achieve a feasible reservation schedule
according to the defined reservation conditions (R1) to (R6).
At any time, there are no more than two actively negotiating
modules (cf. Figures 6 and 7). All other involved modules

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

either already received a confirmation or are awaiting a
response to their request to continue negotiations. There-
fore, we show that each pair of adjacent modules always
reaches an agreement on the logical time of transferring the
corresponding TU.

Non-buffering modules only hold finite reservations within
their local reservation tables. Thus, reservation requests to
non-buffering modules are feasible at the latest when the
new reservation is scheduled last at both negotiating modules.
Repeating identical reservation requests is impossible as the
next open time window, the requested module suggests, is later
than the requested one. The initiating module of the active
route does not hold any reservation scheduled later than
that of its allocated TU such that postponing reservations
is always possible. Reservation requests to buffer modules
induce passive route planning for relocation before continuing
reservation on the active route. This resolves the indefinite
buffer reservation according to reservation condition (R6) such
that it becomes a non-buffering module.

When negotiating passive routes, the non-buffering module
sets the time at which it confirms the indefinite buffer reserva-
tion. At the requesting module of the passive route, reservation
condition (R6) holds. Therefore, it can postpone the scheduled
outgoing transport of the relocated buffered TU such that the
relocation request is accepted.

2) Resource Allocation: In Section IV-A we showed that
dispatching a TU from its input to its output module represents
a coherent process composed of active and passive routes.
Transport execution follows the set of logical time window
reservations in ascending order and defines the order of
resource utilization. As input and output modules are distinct,
this never creates a closed loop, even if the same resources
may be reused within the overall TU process.

C. Starvation

Starvation occurs if a process – not being deadlocked –
needs to wait indefinitely as its requested resource is never
assigned to it [24]. Thus, it will never terminate.

1) Algorithm Operations: Requesting modules await the
response of the requested module. Assuming faultless commu-
nication, each request returns a valid response in finite time,
so starvation is excluded within the algorithmic operations.
In Section IV-B, we showed that route planning always termi-
nates. Likewise, the authorization is granted to each requesting
input module in finite time. Due to the limited system size
and the predecessor-successor relations, an initiating module
of an active route cannot be disadvantaged indefinitely when
passing the authorization. After a limited number of requests,
there will be no other module awaiting to be authorized.

2) Resource Allocation: Resource allocation for transport
execution follows the total ordering of the reserved logical
time windows. Thus, any process can use the requested
resource in finite time. This excludes starvation within
resource allocation.

V. COMPLEXITY ANALYSIS

The complexity of our presented decentralized sequencing
algorithm is measured by the number of messages N required

to sequence a given set of TUs B using the set of conveyor
modules M . As the specified routing operations apply to every
TU, N linearly depends on |B|. Dispatching a TU from its
input to its output module is organized via active routes.
No more than two active routes are planned for each TU
(cf. Figure 2). Therefore, N = γ · |B| · Na , where Na is the
average number of messages required per active route as well
as the induced passive routes and γ a non-negative constant
(γ ≪ |M |). We derive an upper bound N̂a based on the
given conveyor system indicating the maximum complexity
of the presented sequencing algorithm. N̂a results from the
sum of the upper bounds of messages N̂ X

a required for every
algorithmic sub-part:

• Allocating buffer modules N̂ B
a : Each active route cannot

require more than |M | buffer modules for the planned
and blocking TUs, respectively. For allocating a buffer
module, no more than |M | requests are necessary to
identify an empty module for buffering. This implies

N̂ B
a ≤ γ B

· |M |
2.

• Initiating active routes N̂ I
a : Route initiation is triggered

when the output module notifies the module currently
assigned to a TU. This requires updating the output
module every time the TU is relocated. Each active route
incorporates less than |M | interfering buffered TUs, each
of which is relocated using less than |M | passive routes.
Thus,

N̂ I
a ≤ γ I

· |M |
2.

• Authorization procedure N̂ A
a : Acquiring the authoriza-

tion for planning an active route requires less than |M |

requests to the authorized module. When the authorization
is passed all other relevant modules are notified. This
gives

N̂ A
a ≤ γ A

· |M |
2.

• Path selection N̂ S
a : Messaging for path selection is driven

by the system size, i.e., |M | as each module is notified
no more than once for exploration. Thus,

N̂ S
a ≤ γ S

· |M |.

• Active route reservation N̂ Ra
a : Rejecting suggested logical

time windows within active route reservation increases
with the number of existing reservation entries per mod-
ule. At any time, there cannot be more than |M | TUs
present within the system. Each of these induces less than
|M | relocation reservations per module when planning an
active route. Thus, the number of reservation entries per
module scales with |M |

2. Each active route incorporates
less than |M | negotiating adjacent modules. This results
in

N̂ Ra
a ≤ γ Ra · |M |

3.

• Passive route reservation N̂ Rp
a : Rejecting relocation

requests within passive route reservation is finite as due
to reservation condition (R6), only reservations scheduled
after the last existing outgoing reservation are feasible.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FLEISCHMANN AND FURMANS: SEQUENCING WITH DECENTRALIZED CONTROL 9

As discussed for active route initiation, each active route
causes less than |M |

2 relocation steps to be negotiated.
This implies,

N̂ Rp
a ≤ γ Rp · |M |

2.

• Transport execution N̂ T
a : For each active route, no more

than |M |
2 reservations are scheduled, as its length as well

as the length of its induced relocation routes is limited by
|M |. Agreeing on a TU transfer between adjacent mod-
ules requires a constant number of messages as transport
requests are only sent if the two adjacent modules are
ready to execute the next reserved TU transfer. Therefore,

N̂ T
a ≤ γ T

· |M |
2.

From all that follows the upper bound of the number of
messages required for the given sequencing problem as

N̂ ≤ γ · |M |
3
· |B|. (5)

Due to the decentralized system design, forwarding these
messages is necessary via a series of adjacent modules in
case the message sender and recipient are non-adjacent. This
represents a linear scaling factor and is therefore incorporated
in γ . As we always assume |M | involved modules when
determining N̂ a , this indicates an upper bound at module
level as well. The system offers |M | control units for message
processing – one installed at every module. Therefore, based
on the overall algorithm complexity of O(n3) according to
(5), the complexity at the level of a single module decreases
to O(n2) scaling with system size n in terms of the number
of installed modules |M |.

VI. PERFORMANCE ANALYSIS AND ALGORITHM
PARAMETERIZATION

In simulation studies, we evaluate the performance of our
decentralized sequencing algorithm. We take a 5 × 5 square
arrangement of sequencing modules including five input and
five output points as a reference network (cf. Figure 9(a)).
Batches are randomly assigned to one of the output points with
equal probability. Likewise, arriving TUs of these batches are
randomly assigned to input points. The time for transferring
a TU between two adjacent modules is denoted by tconv ,
while tli f t represents the time for switching a module between
its rectangular transportation modes. We focus on system
throughput as key performance indicator.5

A. Impact of Conveying Speed and Relocation Penalty pb

For isolating the effects of conveying speed, i.e., tconv ,
in relation to varying values of relocation penalty pb, we ini-
tially fix tli f t at 0 s. pc is set to 0 accordingly. The results
indicate that system throughput is directly proportional to the
conveying speed of the modules (cf. Figure 10). If pb is within

5For all evaluations of Chapter VI, we start recording the performance
indicators after a warm-up phase, which is determined using the MSER-5
method of [25]. The stopping criterion is calculated using an admissible
deviation range of 1‰ from the mean system throughput during the total run
time for the last 100s. The number of replications is based on a confidence
interval with confidence level α = 5% and error percentage ϵ = 0.01, with a
minimum of 10 and a maximum of 30 replications per parameter setting.

Fig. 9. Reference networks for performance analysis.

the interval of (0 . . . 2] the throughput of the given setting is
at its maximum. This applies regardless of the batch size k
(cf. Figure 11).

Increasing or decreasing system occupation is possible by
varying the number of input |I | and output points |O| of a
given network. Assuming |I | ≫ |O| creates a bottleneck at
the unloading process such that system occupation increases.
Likewise, when |I | ≪ |O|, system occupation is reduced as
the unloading capacity exceeds the loading capacity of the
input points. Varying the reference network with 15 input or
output points ceteris paribus yields the results shown in the
charts of Figure 12.

This implies that the range of pb which maximizes system
throughput is not affected by varying batch sizes or system
occupation. The minimum at pb = 0 results from setting mod-
ules with interfering buffered TUs equal to empty modules.
The optimal range is within the interval 0 < pb ≤ 2. pb > 2
causes a major reduction in throughput due to overweighting
buffer modules. Within the given grid structure every shortest
detour omitting a single buffer module induces two additional
steps compared to the shortest route from start to destination.
Thus, for pb > 2, this detour is always preferred instead of the
shortest path with an induced relocation. This causes interfer-
ing buffered TUs to be relocated only if there is no alternative
path using detours. Analyzing the average path length of a TU
confirms these statements (cf. Figure 13). Transforming the
reference network according to Figure 9(b) increases detour
lengths within the system. In this case, throughput reduction
is observed at pb > 2 as shown in Figure 14. Higher weights
for buffer modules are necessary until detours are preferred
instead of relocations.

Executing a detour increases solely the transport time of
the TU on the active route, while an interfering TU remains
positioned at its currently assigned buffer module. However,
active and passive routes can be executed simultaneously.
While the TU of the active route is moving towards a buffer
module, the necessary passive routes for relocation are already
processed. To optimize throughput, pb needs to be set greater
than 0 and smaller than the difference in the lengths of the
shortest path and the shortest detour path between all modules
within the network.

B. Interdependencies of Conveying Speed, Lift Time and Path
Selection Parameters pb and pc

Due to the linear correlation of tconv and system throughput
observed within the previous evaluations, we fix tconv at 1 s
for all evaluations of this section. With pb = 1, the effects

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. Impact of pb on throughput for selected values of conveying speed tconv (k = 5).

Fig. 11. Impact of pb on throughput for selected values of batch size k
(tconv = 1s).

Fig. 12. Impact of pb on throughput for different system occupations
(tconv = 1s, k = 5).

Fig. 13. Average TU path length for selected values of pb (k = 5).

of tli f t and pc arise as shown in Figure 15. The effects
on throughput are equal for the given setting independent
of tli f t , so even if tli f t ≫ tconv holds. This results from the
minimum number of directional changes on a particular path
which is predetermined by the given network. With pc > 0,
unnecessary directional changes can be avoided. However, the

Fig. 14. Throughput results of the perforated 5 × 5 network for selected
values of pb (tconv = 1, k = 5).

Fig. 15. Impact of pc on throughput for selected values of lift time tli f t
(tconv = 1s, k = 5).

minimum number of direction changes is incurred regardless
of tli f t .

As indicated in Section III-B2.b, pc must not be set arbitrar-
ily, as this will prevent path cost estimation from guaranteeing
optimality. In this case, the overall optimal path cannot be
derived from combining all optimal sub-paths, which is a
necessary condition for optimality (cf. Bellman’s principle
of optimality). Thus, pc must be chosen sufficiently small
such that for all possible sub-paths p̃ and p∗ no identical
path costs are generated at any explored module, where p̃
is non-optimal and p∗ is optimal. For this, pc < ϵ must hold,
which, however, also includes highly infrequent constellations.
From the results shown in Figure 16, we conclude that pc < pb

represents a reasonable requirement as throughput is increased
if 0 < pc < pb.

C. Overall Results to Maximize System Throughput

From all the preceding numerical investigations, we derive
that improving system throughput is achieved by:

• increasing conveying speed,
• decreasing batch sizes,
• increasing the number of output points,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FLEISCHMANN AND FURMANS: SEQUENCING WITH DECENTRALIZED CONTROL 11

Fig. 16. Impact of pc on throughput for selected values of pb (tconv = 1s,
k = 5).

• creating non-perforated network structures, and
• setting 0 < pc < pb ≤ 2 for the algorithmic parameteri-

zation.
This parameterization is also stable concerning the given batch
size, network structure, or resulting system occupation.

VII. CONCLUSION AND OUTLOOK

In this paper, we introduced a decentralized algorithm for
sequencing transport units from multiple input to multiple out-
put points in highest-density conveyor systems. The developed
system is composed of identical right-angle-transfer conveyor
modules, which are combined via Plug-&Play technology.
Each of these modules decentrally executes the developed
sequencing algorithm and takes decisions locally. The imple-
mentation is based on the concept of logical time. Com-
bined with a decentralized authorization procedure for route
planning, this prevents deadlocks, livelocks, and starvation
as shown. The algorithmic complexity at module level is
of order O(n2) and scales with system size. Within our
simulation studies, we deduce that high conveying speed, small
batch sizes, increasing the number of output points, non-
perforated network structures, and setting 0 < pc < pb ≤ 2 for
the algorithmic parameterization are drivers for high system
throughput.

Future work will be dedicated to investigations of more
variable network configurations as the number of conveyor
modules is crucial for the maximum batch size which can be
sequenced. Analyzing the impact of the number and position
of input and output points reveals profitable system setups
in practical use cases. Furthermore, comparing the perfor-
mance of our decentralized sequencing algorithm to central-
ized approaches allows to investigate the trade-off between
optimality and flexibility, which we aim to address in further
contributions.

REFERENCES

[1] L. Monostori, P. Valckenaers, A. Dolgui, H. Panetto, M. Brdys, and
B. C. Csáji, “Cooperative control in production and logistics,” Annu.
Rev. Control, vol. 39, pp. 12–29, Jan. 2015.

[2] D. Trentesaux, “Distributed control of production systems,” Eng. Appl.
Artif. Intell., vol. 22, no. 7, pp. 971–978, Oct. 2009.

[3] K. R. Gue, “Very high density storage systems,” IIE Trans., vol. 38,
no. 1, pp. 79–90, Jan. 2006.

[4] Z. Shiller, “Off-line and on-line trajectory planning,” in Motion and
Operation Planning of Robotic Systems (Mechanisms and Machine
Science), G. Carbone and F. Gomez-Bravo, Eds. Cham, Switzerland:
Springer, 2015, pp. 29–62.

[5] O. Uludağ, “GridPick: A high density puzzle based order picking system
with decentralized control,” Ph.D. dissertation, Dept. Ind. Syst. Eng.,
Auburn Univ., Auburn, AL, USA, 2014.

[6] G. Hao, “GridHub: A grid-based, high-density material handling sys-
tem,” Ph.D. dissertation, Dept. Ind. Eng., Univ. Louisville, Louisville,
Kentucky, 2020.

[7] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed.
Boston, MA, USA: Pearson, 2015.

[8] S. Mayer and K. Furmans, “Deadlock prevention in a completely
decentralized controlled materials flow systems,” Logistics Res., vol. 2,
nos. 3–4, pp. 147–158, Dec. 2010.

[9] T. Kruhn, M. Radosavac, N. Shchekutin, and L. Overmeyer, “Decentral-
ized and dynamic routing for a cognitive conveyor,” in Proc. IEEE/ASME
Int. Conf. Adv. Intell. Mechatronics, Jul. 2013, pp. 436–441.

[10] M. B. Firvida, H. Thamer, C. Uriarte, and M. Freitag, “Decentralized
omnidirectional route planning and reservation for highly flexible mate-
rial flow systems with small-scaled conveyor modules,” in Proc. IEEE
23rd Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2018,
pp. 685–692.

[11] S. Sohrt and L. Overmeyer, “Decentralized routing algorithm with
physical time windows for modular conveyors,” Logistics Res., vol. 13,
no. 8, pp. 1–16, 2020.

[12] K. R. Gue, K. Furmans, Z. Seibold, and O. Uludag, “GridStore:
A puzzle-based storage system with decentralized control,” IEEE Trans.
Autom. Sci. Eng., vol. 11, no. 2, pp. 429–438, Apr. 2014.

[13] M. S. Ashgzari and K. R. Gue, “A puzzle-based material handling system
for order picking,” Int. Trans. Oper. Res., vol. 28, no. 4, pp. 1821–1846,
Jul. 2021.

[14] Z. Seibold, K. Furmans, and K. R. Gue, “Using logical time to ensure
liveness in material handling systems with decentralized control,” IEEE
Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 545–552, Jan. 2022.

[15] R. Alahmad and K. Ishii, “A puzzle-based sequencing system for
logistics items,” Logistics, vol. 5, no. 4, pp. 1–18, 2021.

[16] K. R. Gue, O. Uludağ, and K. Furmans, “A high-density system for
carton sequencing,” in Proc. Int. Mater. Handling Res. Colloq., 2012,
pp. 1–14.

[17] K. Gue, “A high-density, puzzle-based system for rail-rail container
transfers,” in Proc. 14th IMHRC, vol. 14, 2016, pp. 1–16.

[18] P. Sittivijan, “Modular warehouse control: Simultaneous rectilinear
movement of multiple objects within a limited free space environment,”
Ph.D. dissertation, Dept. Ind. Syst. Eng., North Carolina State Univ.,
Raleigh, NC, USA, 2015.

[19] C. Lieberoth-Leden and J. Fottner, “Deployment of an distributed
strategic material flow control for automated material flow systems
consisting of autonomous modules,” in Proc. 15th IMHRC, Savannah,
GA, USA, 2018.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[21] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[22] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,”
ACM Comput. Surv., vol. 3, no. 2, pp. 67–78, Jun. 1971.

[23] G. J. Holzmann, Design and Validation of Computer Protocols (Prentice
Hall Software Series). Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.

[24] S. V. Ramesh, Principles of Operating Systems, 1st ed. New Delhi, Indi:
Laxmi Publications, 2010.

[25] K. P. White, “An effective truncation heuristic for bias reduction in
simulation output,” Simulation, vol. 69, no. 6, pp. 323–334, Dec. 1997.

Julia Fleischmann is currently a Research Associate with the Institute for
Material Handling and Logistics, Karlsruhe Institute of Technology, Germany.
Her research interests include the algorithms and control of modular and
decentralized material handling systems.

Kai Furmans (Member, IEEE) is currently a Professor of Mechanical
Engineering and the Head of the Institute for Material Handling and Logistics,
Karlsruhe Institute of Technology, Germany. His research interests include
automation and robotics in material handling as well as modeling of such
systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

