KIT | KIT-Bibliothek | Impressum | Datenschutz

Cell Shape and Forces in Elastic and Structured Environments: From Single Cells to Organoids

Link, Rabea; Weißenbruch, Kai 1; Tanaka, Motomu; Bastmeyer, Martin 1; Schwarz, Ulrich S.
1 Zoologisches Institut (ZOO), Karlsruher Institut für Technologie (KIT)

Abstract:

With the advent of mechanobiology, cell shape and forces have emerged as essential elements of cell behavior and fate, in addition to biochemical factors such as growth factors. Cell shape and forces are intrinsically linked to the physical properties of the environment. Extracellular stiffness guides migration of single cells and collectives as well as differentiation and developmental processes. In confined environments, cell division patterns are altered, cell death or extrusion might be initiated, and other modes of cell migration become possible. Tools from materials science such as adhesive micropatterning of soft elastic substrates or direct laser writing of 3D scaffolds have been established to control and quantify cell shape and forces in structured environments. Herein, a review is given on recent experimental and modeling advances in this field, which currently moves from single cells to cell collectives and tissue. A very exciting avenue is the combination of organoids with structured environments, because this will allow one to achieve organotypic function in a controlled setting well suited for long-term and high-throughput culture.


Verlagsausgabe §
DOI: 10.5445/IR/1000159427
Veröffentlicht am 15.06.2023
Originalveröffentlichung
DOI: 10.1002/adfm.202302145
Scopus
Zitationen: 5
Web of Science
Zitationen: 7
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Zoologisches Institut (ZOO)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000159427
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Seiten Art.-Nr.: 2302145
Vorab online veröffentlicht am 26.05.2023
Schlagwörter adhesive micropatterning, cell culture scaffolds, cell mechanics, direct laser writing, microfabrication, tissues, cell adhesion
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page