KIT | KIT-Bibliothek | Impressum | Datenschutz

Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification

Hochstuhl, Sylvia Marlene ORCID iD icon 1,2; Pfeffer, Niklas 1,2; Thiele, Antje 1,2; Hinz, Stefan 1; Amao-Oliva, Joel 3; Scheiber, Rolf 3; Reigber, Andreas 3; Dirks, Holger
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)
2 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)
3 Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Abstract (englisch):

The strong scientific interest and the accompanying rapid development of machine learning, in particular deep learning, has led to a significant improvement in automatic image interpretation in recent years. Research generally focuses on classification or segmentation of optical images, but there are already several successful approaches that apply deep learning techniques to the analysis of PolSAR or Pol-InSAR images. While the success of learning-based methods for the analysis of optical images has been strongly driven by public benchmark datasets such as ImageNet and Cityscapes, which contain a large number of annotated training and test data, comparable datasets for the PolSAR and especially the Pol-InSAR domain are almost non-existent. This conclusion and the demand for large and representative expert-annotated benchmark datasets for the SAR community is also reached by Zhu et al. (2021) in their analysis of the current state of deep learning-based SAR image analysis. To fill this gap, this work presents a new multi-frequency Pol-InSAR benchmark dataset for training and testing learning-based methods. This dataset is intended to improve the development of new approaches or the adaptation and improvement of existing ones. ... mehr


Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Forschungsdaten
Publikationsdatum 20.06.2023
Erstellungsdatum 14.06.2023
Identifikator DOI: 10.5445/IR/1000159469
KITopen-ID: 1000159469
Lizenz Creative Commons Namensnennung – Nicht kommerziell – Weitergabe unter gleichen Bedingungen 4.0 International
Schlagwörter Pol-InSAR, PolSAR, Land cover classification, Benchmark, Coastal area, Wadden Sea
Liesmich

Pol-InSAR-Island dataset:

This folder contains multi-frequency Pol-InSAR data acquired by the F-SAR system of the German Aerospace Center (DLR) over Baltrum and corresponding land cover labels.

Data structure:

  • data
    • FP1 # Flight path 1
    • L # Frequency band
      • T6 # Pol-InSAR data
      • pauli.bmp # Pauli-RGB image of the master scene
    • S
      • ...
    • FP2 # Flight path 2
    • ...
  • label
    • FP1
    • label_train.bin
    • ...
    • FP2
    • ...

Data format:
The data is provided as flat-binary raster files (.bin) with an accompanying ASCII header file (*.hdr) in ENVI-format.
For Pol-InSAR data the real and imaginary components of the diagonal elments and upper triangle elements of the 6 x 6 coherency matrix are stored in seperated files (T11.bin, T12_real.bin, T12_imag.bin,...)

Land cover labels contained in label_train.bin and label_test.bin are encoded as integers using the following mapping:

0 - Unassigned<br>
1 - Tidal flat<br>
2 - Water<br>
3 - Coastal shrub<br>
4 - Dense, high vegetation<br>
5 - White dune<br>
6 - Peat bog<br>
7 - Grey dune<br>
8 - Couch grass<br>
9 - Upper saltmarsh<br>
10 - Lower saltmarsh<br>
11 - Sand<br>
12 - Settlement

Art der Forschungsdaten Dataset
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page