

AAA Workshop, GRS-Garching May 10th, 2023

KIT Advanced Multiphysics Schemes for LWRs Applications

L. Mercatali, G. Huaccho, V. U. Sanchez-Espinoza (KIT/INR, Germany)

Institute for Neutron Physics and Reactor Technology (INR)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Table of content

- Introduction
- KIT multiphysics schemes
- Applications (EU Projects)
 - McSAFE
 - McSAFER
 - CAMIVVER

The coupled problem

→ need to simultaneously determine the neutron density field, the flow field and the fuel temperature field

- Assumption: the problem can be linearized over some interval and iterations are performed between the different solvers
- High fidelity solvers: focused on achieving better predictions by reducing the approximations in the equations and having a better description of the problem domain

³ L. Mercatali / AAA Workshop - 10.05.2023

KIT approach: High-Fidelity MC-based multi-physics

- Objectives:
 - Avoid approximation (multi-scale approach) in neutronics
 - Pin-by-pin burnup
 - Transient scenarios (REA-type)
 - Calculate local safety parameters directly
 - Provide reference solutions for low order methods
- Neutronics (Serpent 2)
 - Continuous-energy Monte Carlo neutron transport
 - Pin-by-pin power tallying and burnup calculation
- Thermal-hydraulics (SUBCHANFLOW)
 - Pin-level subchannel TH
 - Coolant and fuel safety parameters
- Fuel performances (TRANSURANUS)
 - Pin-level thermo-mechanic analysis
 - Fuel safety parameters

Software design for multi-physics analysis

- Master-slave internal coupling:
 - SCF and TU (slaves) modularized and embedded in Serpent2 (master)
 - Traditional approach, reference for performance
- Object-oriented coupling:
 - Serpent2, SCF and TU modularized and coupling scheme implemented in a separate supervisor program
 - More innovative approach, potential benefits from the object-oriented design
 - Main features:
 - Inheritance-based APIs
 - Object-oriented supervisor
 - Mesh-based feedback
- Numerical methods:
 - Operator splitting
 - Picard iterations
 - Pin-by-pin feedback

The Serpent2/SCF/TU depletion coupling scheme

- SCF simplified fuel model replaced by the more sophisticated one of TU
- Semi-implicit iterative scheme (code to code feedback is done using the fields at EOS and convergence at EOS achieved iterating each burnup steps)
 - 1. SCF steady state to get cooling conditions for the Serpent power distribution at EOS
 - 2. TU solves a burnup step using SCF solution as BC and Serpent power as heat source
 - **3.** Serpent burnup with TH condition at EOS
- Pin-level feedback
- Burnup in Serpent (full set of Bateman equations) and TU (simplified model suitable for fuel performance analysis)
- Traditional N-TH scheme can also be used w/o TU

M. Garcia et al.; "A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors", ANE **139** (2020)

Fully coupled depletion scheme

Pin-by-pin Serpent2/SCF/TU coupling verification

orted VERA-CS

0.935

Ofference [%]

0.34

0.26

PWR: VERA Benchmark Problem 6

VVER: 30AV5 VVER-1000 FA type (Lötsch benchmark)

L. Mercatali / AAA Workshop - 10.05.2023 7

Pin-by-pin Serpent2/SCF/TU coupling verification (VVER-1000 FA)

M. Garcia et al.; "A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors", ANE **139** (2020)

 ΔT_{fuel} (K)

ΔP (%)

- Negligible impact on neutronics (~100 pcm), peaking factor and outer fuel temperature (~20K)
 - Significant differences for fuelcladding gap and centerline fuel temperature (investigation at higher BU is required)

Collision based domain decomposition

Karlsruher Institut für Technologie

- Full-core pin-by-pin burnup:
 - Hugh calculation times (~10⁹ neutron histories per transport cycle)
 - Massive memory demand (~TB, larger than the in-node memory in HPC)
- Collision-based Domain Decomposition (CDD):
 - Memory scalability in burnup calculations:
 - Burnup materials decomposed in domains (MPI tasks)
 - All other data replicated across domains
 - Tracking scheme:
 - Particle transfers across domains
 - Asynchronous MPI communications
 - Optimized tracking termination control
 - No physical or numerical approximations

M. Garcia et al.; "A Collision-based Domain Decomposition scheme for largescale depletion with the Serpent 2 Monte Carlo code", ANE, 152 (2021)

PWR – Validation (1)

Karlsruher Institut für Technologie

- Full-core pin-by-pin depletion
- Operating history up to 65 EFPD
- Critical boron and flux data

PWR – Validation (2)

- Good agreement between results and experimental measurements.
 - Differences in critical boron concentration within a few ppm
 - Aeroball neutron flux profiles within the statistical range of the results

12 L. Mercatali / AAA Workshop - 10.05.2023

NR

Fuel-clad gap heat transfer coefficient BU=2.35 MWd/kgU

Fuel-clad gap width BU=2.35 MWd/kgU

13 L. Mercatali / AAA Workshop - 10.05.2023

PNR

VVER – Validation

The Serpent2/SCF internal coupling

- Based on a "new philosophy" → maintainability + user friendly
- SCF and TU (slaves) modularized and embedded in Serpent2 (master)
- Open doors functions in Serpent2
- SCF used as shared library
- All mapping with ad-hoc files
- Traditional approach, reference for performance

15 L. Mercatali / AAA Workshop - 10.05.2023

The Serpent2/SCF time-dependent coupling

- MC time-dependent simulations:
 - For a given interaction history the distance and energy of the particles is known
 - Traditionally done as external source
- Different time-scales of prompt and delayed neutron precursors (~10⁻⁴ for PWRs)
- Tracking the precursors population that produces the delayed neutrons
- Two external source simultaneously considered for "*live*" neutrons and for the precursor populations generating the delayed neutrons
- Feedback after each time step (fission power + TH fields)
- A prior criticality calculation need to be performed

Validation of the Serpent2/SCF internal coupling (1)

- SPERT (PWR-type, RIA-kind scenarios with insertion of 0.5\$ 1.5 \$)
- Pin-by-pin models developed and validated for cold and HFP states
- Steady-state and transient calculations for two scenarios (0.46\$ and 0.87\$)
- 100 steps for a 1 sec scope

Overall very good consistency between the two approaches

NR

The McSAFER Project

Goals:

- <u>Advance</u> the safety research for SMR by combining experimental and analytical investigations (numerical simulations)
- <u>Development, improvement of simulation tools for SMRs (safety evaluations)</u>
- <u>Validation</u> of simulation tools with experimental data generated within McSAFER (COSMOS-H, MOTEL, HWAT)
- <u>Application</u> of simulation tools (traditional, advanced low-order and high-fidelity) to four SMR-designs
- <u>Demonstrate</u> advantages of advanced tools compared to legacy methods

The KSMR boron-free core

Based on the SMART concept

REA on the KSMR core (1)

L. Mercatali, G. Huaccho and V.H. Sanchez-Espinoza; "Multiphysics modeling of a reactivity insertion transient at different fidelity levels in support to the safety assessment of a SMART-like Small Modular Reactor", *Frontiers in Nuclear Energy Research* (Accepted, April 2023)

REA on the KSMR core (2)

23 L. Mercatali / AAA Workshop - 10.05.2023

REA on the KSMR core (3)

CAREM-like SMR

Overcooling transient scenario

Solutions: Serpent/SCF (KIT) vs. PARCS/SCF (KIT) vs. PUMA/SCF (CNEA)

25 L. Mercatali / AAA Workshop - 10.05.2023

The EU CAMIVVER Project (1)

en r

<u>Code And Methods Improvements for VVER safety assessment</u>

- Safety Authorities requirements are pushing towards Verification and Validation (V&V) activity -> Rare transient data at full scale system push to a more extensive use of benchmarks, statistical libraries, and sensitivity analysis techniques for consolidating the full system response prediction
- European state-of-the-art computer codes became a priority for preserving EU sovereignty and nuclear independence
- VVER type constitutes a dynamic and growing part (stronger issue since February 2022)
- A first step toward the industrialization of new generation codes

26 L. Mercatali / AAA Workshop - 10.05.2023

The EU CAMIVVER Project (2)

REA on two two theoretical minicore cases

27 L. Mercatali / AAA Workshop - 10.05.2023

PNR

APOLLO3®/THEDI & APOLLO3®/CATHARE3 vs. Sepent2/SCF

The CAMIVVER Project Final Workshop

Thank you!

