Search for heavy resonances and quantum black holes in $e\mu$, $e\tau$, and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: A search is reported for heavy resonances and quantum black holes decaying into $e\mu$, $e\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The $e\mu$, $e\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant sneutrino production in R parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant sneutrinos are excluded for masses up to 4.2 TeV in the $e\mu$ channel, 3.7 TeV in the $e\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the $e\mu$ channel, up to 4.3 TeV in the $e\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the $e\mu$ channel, 5.2 TeV in the $e\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.

KEYWORDS: Beyond Standard Model, Hadron-Hadron Scattering

ArXiv ePrint: 2205.06709
1 Introduction

Extensions of the standard model (SM) can accommodate heavy particles that undergo lepton flavor violating (LFV) decays, motivating thereby searches for deviations from the SM in the $e\mu$, $e\tau$, and $\mu\tau$ final states. This paper reports a search for such phenomena in these final states in proton-proton (pp) collisions at the CERN LHC, and is designed to be as model-independent as possible. Additionally, the results are interpreted in terms of the characteristics of the following possible states: a sneutrino ($\tilde{\nu}$), which can be the lightest SUSY particle (LSP) [1, 2] in R parity violating (RPV) supersymmetric (SUSY) models [3], a heavy Z' gauge boson in LFV models [4], and quantum black holes (QBHs) [5–8]. This is the first analysis searching for high-mass lepton flavor violating signals using the full Run 2 data set, recorded at $\sqrt{s} = 13$ TeV.

In RPV SUSY models, lepton flavor and lepton number are violated at lowest (Born) level in interactions between fermions and their superpartners. For resonant $\tilde{\nu}$ signals, the trilinear RPV part of the superpotential can be expressed as

$$W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k,$$

where i, j, and k are generation indices, L and Q are the SU(2)$_L$ doublet superfields of the leptons and quarks, and \overline{E} and \overline{D} are the respective SU(2)$_L$ singlet superfields of the
charged leptons and down-like quarks. For simplicity, we assume that all RPV couplings vanish, except for those that are connected to the production and decay of the \(\tilde{\nu}_\tau \), and we consider a SUSY mass hierarchy with \(\tilde{\chi} \) as the LSP. In this model, the \(\tilde{\nu}_\chi \) can be produced resonantly in pp collisions via the \(\lambda' \) coupling, and can decay either into dilepton final states via the \(\lambda \) couplings, or into quarks via \(\lambda' \) couplings. We consider only the final states with two charged leptons. Also, this analysis considers \(\tilde{\nu}_\chi \) that decay promptly and are not long-lived [9], which we define as having a transverse displacement less than 1 mm from the production vertex. As long as the \(\lambda \) coupling is larger than \(10^{-7} \), a \(\tilde{\nu}_\chi \) of mass 1 TeV will not be considered to be long-lived [3].

An extension of the SM through the addition of an extra U(1) gauge symmetry provides a massive \(Z' \) vector boson [4]. In our search, we assume that the \(Z' \) boson has identical couplings to SM particles as the SM \(Z \) boson, but that the \(Z' \) boson can also decay to the LFV \(e\mu, e\tau, \) and \(\mu\tau \) final states, each with an assumed branching fraction of 10%. This value is defined in a benchmark scenario commonly used in these searches [10, 11].

Theories that invoke extra spatial dimensions can lower the fundamental Planck scale to the TeV region. Such theories also provide the possibility of producing microscopic QBHs [5, 6] at the LHC. In contrast to semiclassical thermal black holes that can decay to high-multiplicity final states, QBHs are nonthermal objects, expected to decay predominantly to pairs of particles. We consider the production of spin-0, colorless, neutral QBHs in a model with LFV [12], in which the cross section for QBH production depends on the threshold mass \(m_{\text{th}} \) in \(n \) additional spatial dimensions. The \(n = 1 \) possibility corresponds to the Randall–Sundrum (RS) brane-world model [13], and \(n > 1 \) corresponds to the Arkani-Hamed–Dimopoulos–Dvali (ADD) model [14]. While the resonant \(\tilde{\nu}_\tau \) and \(Z' \) signals are expected to generate narrow peaks in the invariant mass spectrum of the lepton pair, the distribution of the QBH signal is characterized by a sharp edge at the threshold of QBH production, followed by a monotonic decrease at larger masses. Feynman diagrams for all these three models are shown in figure 1.

Similar searches in LFV dilepton mass spectra have been carried out by the CDF [15] and D0 [16] experiments at the Fermilab Tevatron in proton-antiproton collisions at \(\sqrt{s} = 1.96 \) TeV and by the ATLAS and CMS experiments at the LHC in pp collisions at \(\sqrt{s} = 8 \) TeV [17, 18] and 13 TeV [10, 11, 19].

This paper is structured as follows. The CMS detector is briefly described in section 2. A description of the collision data and the simulated event samples used in the analysis is given in section 3. The event reconstruction and selection are described in section 4 and the estimation of SM backgrounds is discussed in section 5. Systematic uncertainties are described in section 6, followed by the results and their statistical interpretation in section 7. The paper is summarized in section 8.

Tabulated results are provided in the HEPData record for this analysis [20].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
Figure 1. Leading order Feynman diagrams considered in our search. Left: Resonant production of a \(\tau \) sneutrino in an RPV SUSY model that includes the subsequent decay into two leptons of different flavors. The \(\tilde{\nu}_\tau \) is produced from the annihilation of two down quarks via the \(\lambda'_{311} \) coupling, and then decays via the \(\lambda \) couplings. Middle: Resonant production of a \(Z' \) boson with subsequent decay into two leptons of different flavors. Right: Production of quantum black holes in a model with extra dimensions that involves subsequent decay into two leptons of different flavors.

and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (\(\eta \)) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. Muons are measured in the pseudorapidity range \(|\eta| < 2.4 \), with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Isolated particles of transverse momentum (\(p_T \)) of 100 GeV emitted within the pseudorapidity range \(|\eta| < 1.4 \) have track resolutions of 2.8\% in \(p_T \) and 10 (30) \(\mu \)m in the transverse (longitudinal) impact parameter [21].

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4\(\mu \)s [22]. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage [23].

The single-muon trigger efficiency exceeds 90\% over the full \(\eta \) acceptance, and the efficiency to reconstruct and identify muons is greater than 96\%. Matching muons to tracks measured in the silicon tracker results in a relative \(p_T \) resolution, for muons with \(p_T \) up to 100 GeV, of 1\% in the barrel and 3\% in the endcaps. The \(p_T \) resolution in the barrel is better than 7\% for muons with \(p_T \) up to 1 TeV [24].

The single isolated electron trigger efficiency exceeds 80\% over the full \(\eta \) acceptance of \(|\eta| < 2.5 \), and the efficiency to reconstruct electrons is greater than 95\% for electrons with transverse momentum larger than 20 GeV [25]. The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The momentum resolution for electrons with \(p_T \approx 45 \) GeV from \(Z \rightarrow ee \) decays ranges from 1.7 to 4.5\%. It is generally better in the barrel region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the electron as it traverses the material in front of the ECAL [26].

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [27].
3 Collision data and simulated events

The data sample used for this analysis was collected during 2016–2018 pp operation at a center-of-mass energy of 13 TeV. After applying data quality requirements, such as requiring minimum fractions of active detector channels, the total integrated luminosity is 138 fb$^{-1}$.

Simulated samples of signal and background events are produced with several event generators. The RPV SUSY $\tilde{\nu}_\tau$, Z', and QBH signal events are generated at leading order (LO) precision, using the CalcHEP 3.6 [28], PYTHIA 8.203 [29], and QBH 3.0 [12] Monte Carlo (MC) generators, respectively. The width of the Z' signal is taken as 3% of its mass, similar to that of the Z boson. The RPV $\tilde{\nu}_\tau$ and QBH signals are generated using the CTEQ6L [30] parton distribution functions (PDF), while the Z' boson signals are simulated using the NNPDF 3.0 PDF set in 2016 and the 3.1 PDF set [31] in 2017–2018, respectively. The LO RPV SUSY $\tilde{\nu}_\tau$ signal event yield is normalized to a next-to-leading order (NLO) calculation of the production cross section [32]; in this calculation the factorization and renormalization scales are set to the mass of the $\tilde{\nu}_\tau$. The POWHEG v2.0 event generator [33–36] is used to simulate both top quark pair ($t\bar{t}$) production, the dominant background over most of the dilepton mass region, and single top quark production. Diboson production, a significant background in the high mass region, is simulated at LO using the PYTHIA generator.

The MADGRAPH5_aMC@NLO v2.2.2 generator [37] is used to simulate Drell–Yan+jets production simulated at NLO with the FxFx jet matching and merging [38]. The cross sections used to normalize the contribution of these backgrounds are calculated at next-to-next-to-leading order for WW, ZZ, single top quark, and $t\bar{t}$ processes, and at NLO precision for WZ and Drell–Yan events. The POWHEG and MADGRAPH5_aMC@NLO generators are interfaced with PYTHIA for parton showering, fragmentation, and decays. The PYTHIA parameters for the underlying event description are set to the CUETP8M1 (CP5) tune [39] in 2016 (2017–2018) simulated samples.

The generated events are processed through a full simulation of the CMS detector, based on GEANT4 [40–42]. The simulated events incorporate additional pp interactions within the same or nearby bunch crossings, termed pileup, that are weighted to match the measured distribution of the number of interactions per bunch crossing in data. The simulated event samples are normalized to the integrated luminosity of the data. The products of the total acceptance and efficiency for the three signal models in this analysis are determined through MC simulation. The trigger and object reconstruction efficiencies are corrected to the values measured in data.

4 Event reconstruction and selection

The global event reconstruction is performed using a particle-flow algorithm [43], which aims to reconstruct and identify each individual particle with an optimized combination of all subdetector information. In this process, the identification of the particle type (photon,
electron, muon, and charged or neutral hadron) plays an important role in the determination of the particle’s direction and energy.

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the event, evaluated using tracking information alone, as described in section 9.4.1 of ref. [44].

To reconstruct an electron candidate, energy deposits in the ECAL are first combined into clusters, assuming that each cluster represents a single particle. The clusters are then combined in a way consistent with bremsstrahlung emission, to produce a single “supercluster”, which represents an electron or photon. These superclusters are used to seed tracking algorithms, and if a resulting track is found, it is assigned to the supercluster to form an electron candidate.

To reconstruct a muon candidate, hits are first fitted separately to trajectories in the inner tracker detector and in the outer-muon system. The two trajectories are then combined in a global-muon track hypothesis.

Hadronic τ lepton decays (τ_h) are reconstructed from jets, using the hadrons-plus-strips algorithm [45], which combines 1 or 3 tracks with energy deposits in the calorimeters, to identify the τ lepton decay modes. Neutral pions are reconstructed as strips with dynamic size in η-ϕ, where ϕ is the azimuthal angle in radians, primarily from reconstructed photons, but also from reconstructed electrons which originate due to conversion of photons. The strip size varies as a function of the p_T of the electron or photon candidate.

To distinguish genuine τ_h decays from jets originating from the hadronization of quarks or gluons, and from electrons or muons, the DEEP Tau algorithm is used [46]. Information from all individual reconstructed particles near the τ_h axis is combined with properties of the τ_h candidate in the event to yield separate discriminants for jet, electron, and muon backgrounds. The probability that a jet is misidentified as τ_h by the DEEP Tau algorithm depends on the p_T and quark flavor of the jet. In simulated events of W boson production in association with jets, this probability has been estimated to be 0.43% for a τ_h identification efficiency of 70%. The probability that an electron (muon) is misidentified as a τ is 2.60 (0.03)% for a τ_h identification efficiency of 80 (>99)%.

4.1 Selection of events for the $e\mu$ final state

For the $e\mu$ selection, at least one prompt, isolated electron and at least one prompt, isolated muon are required in the event. This minimal selection facilitates a reinterpretation of the results in terms of models with more complex signal topologies than a single $e\mu$ pair.

Events that satisfy single electromagnetic-cluster or single-muon triggers, with respective p_T thresholds of 175 and 50 GeV for photons and muons, are selected. In 2018, the p_T threshold of the photon trigger was raised to 200 GeV. Electromagnetic energy deposited by an electron in the calorimeter activates the photon trigger, and the photon trigger is therefore as efficient as the corresponding electron trigger, while its weaker isolation requirements yield an event sample that can also be used in sideband analyses to estimate the background to the signal. Moreover, using only the muon trigger yields about 90% signal efficiency in masses above 1 TeV. Using the photon trigger together with the muon trigger ensures that the signal efficiency is very close to 100% in the high mass region.
The electron candidate must pass the dedicated selection criteria developed for high-energy electrons [25], which require the energy deposition in the ECAL to be consistent with that of an electron. The electron candidates are required to have $p_T > 35 \text{ GeV}$ and $|\eta| < 2.5$. The energy sum in the HCAL within a cone defined by $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.15$ centered around the electron candidate must be <5% of its energy after it is corrected for jet activity unrelated to the primary interaction. The electron candidate must have a prompt track in the η-ϕ plane that has at most one missing hit in the pixel tracker and that is well-matched between the tracker and ECAL. The high-energy electron selection also requires electrons to be isolated. The scalar-p_T sum of tracks within a cone of radius $\Delta R = 0.3$ around the candidate’s direction, excluding the candidate track, is required to be <5 GeV. Moreover, the p_T sum of energy depositions in the calorimeters within the same cone, excluding the ECAL supercluster, is required to be <3% of the p_T of the candidate [25]. The efficiency of the electron identification requirements, measured in data, is approximately 90% for the highly energetic electrons that are relevant for this search.

Muon candidates are required to have $p_T > 53 \text{ GeV}$ and $|\eta| < 2.4$. The muon candidate must pass the high-p_T muon identification criteria, which require that the transverse and longitudinal impact parameters of muon candidates relative to the primary vertex must be <0.2 and <0.5 cm, respectively. The track of the muon candidate must have at least one hit in the pixel detector and hits in at least six silicon-strip layers, and must contain matched segments in at least two muon detector planes. To suppress backgrounds arising from muons within jets, the scalar-p_T sum of all other tracks in the tracker within a cone of $\Delta R = 0.3$ around the muon candidate track is required to be <10% of the p_T of the muon candidate. The relative uncertainty in the p_T of the muon track is required to be <30%. The efficiency of the muon identification and isolation requirements, measured in data, is about 90% for muons with $p_T > 50 \text{ GeV}$.

To prevent a loss in signal efficiency resulting from the misidentification of the sign of the electron or muon charge at large p_T, the electron and muon are not required to have opposite charges. Since highly energetic muons can produce bremsstrahlung in the ECAL along the direction of the inner-muon trajectory, such muons can be misidentified as electrons. An electron candidate is therefore rejected if there is a muon candidate track with $p_T > 5 \text{ GeV}$ within $\Delta R < 0.1$ of the electron candidate track. Only one $e\mu$ pair is considered per event. When there is more than one $e\mu$ candidate, the pair with the highest invariant mass is selected for the analysis. The statistical interpretation is conducted by comparing the shape of the observed invariant $e\mu$ mass distribution with those expected for the signal and background.

4.2 Selection of events for the $e\tau$ and $\mu\tau$ final states

Events are required to have at least one prompt, isolated light lepton (electron or muon) and at least one prompt, isolated τ_h.

Events that satisfy single-electron triggers with thresholds of 27, 35, and 32 GeV in 2016, 2017, and 2018, respectively, are selected for the $e\tau$ channel. To recover efficiency in the high mass region, events that satisfy single electromagnetic cluster triggers are also
selected for this channel. The electron candidate must pass the same high-energy electron selection used for the $e\mu$ channel, but with an increased p_T threshold of 50 GeV.

The single-muon triggers used in the $e\mu$ channel are also used to collect the data samples in the $\mu\tau$ channel. The muon candidate must pass the same high-p_T muon identification criteria used for the $e\mu$ channel.

The τ_h candidate having the largest transverse momentum must have $p_T > 50$ GeV and $|\eta| < 2.3$. To reduce the rate of jets, electrons, and muons misidentified as τ_h, the τ_h candidate is required to satisfy the tight, loose, and tight working points of the respective DeepTau discriminator [46].

The low transverse mass (m_T) region is dominated by misidentified τ_h events, which have no genuine neutrinos, so the missing transverse momentum is small. Thus, a requirement of $m_T > 120$ GeV is applied which helps to reject misidentified τ_h background, where m_T is defined as:

$$m_T = \sqrt{2p_T^{\ell}\not{p_T}[1 - \cos(\Delta\phi(p_T^{\ell}, \not{p_T^{\mu}})]},$$

where ℓ denotes the light lepton, i.e., the electron in the $e\tau$ final state or the muon in the $\mu\tau$ final state, $\not{p_T^{\mu}}$ is the missing transverse momentum vector in the event, and $\Delta\phi$ is the difference in the azimuthal angle between p_T^{ℓ} and $\not{p_T^{\mu}}$.

A muon veto is applied in the $\mu\tau$ final state to remove overlap with the $e\tau$ and $e\mu$ final states. This veto rejects events if they contain any isolated muon with $p_T > 35$ GeV, $|\eta| < 2.4$, passing the high-p_T muon identification criteria and having tracker-based isolation <0.15. Events with a well-separated electron pair are also rejected. A well-separated electron pair is defined as two electrons with $\Delta R(e,e) > 0.5$, each of which has $p_T > 10$ GeV, $|\eta| < 2.5$, and passes a very loose working point (>95% efficiency) of the electron identification criteria.

In the $\mu\tau$ channel, in order to avoid overlap with the $e\tau$ and $e\mu$ channels, events are vetoed if they contain an electron with $p_T > 35$ GeV that passes the high-energy electron selection criteria. Events with a well-separated muon pair are also rejected. A well-separated muon pair is defined as two muons passing the high-p_T identification criteria, with $p_T > 10$ GeV, $|\eta| < 2.4$, tracker-based isolation <0.15, and with $\Delta R(\mu, \mu) > 0.2$.

If there is more than one $e\tau$ or $\mu\tau$ pair in an event, then the pair with highest invariant mass is chosen. The leptons forming the pair are not required to have opposite electric charges. The statistical interpretations are conducted by comparing the shapes of the observed collinear mass distributions with those expected for the signals and backgrounds. For an $e\tau$ pair or a $\mu\tau$ pair, we use the collinear mass, which provides an estimate of the mass of the new resonance or QBH based on their observed decay products. It is justified by the observation that, since the mass scale of the signal is orders of magnitude higher than that of the τ lepton, the τ lepton decay products are highly Lorentz boosted in the direction of the τ candidate. The neutrino momentum can be approximated to have the same direction as the other, visible decay products of the τ lepton, so the component of $\not{p_T^{\mu}}$ in the direction of the visible τ lepton decay products is used to estimate the neutrino p_T. The variable x_T^{vis}, which is the fraction of energy carried by the visible decay products of the τ, is defined as $x_T^{\text{vis}} = p_T^{\text{vis}} / (p_T^{\text{vis}} + p_T^{\text{miss}})$, where p_T^{miss} is the part of the p_T^{miss} that
is collinear with the τ_h p_T. The collinear mass m_{coll} can then be derived from the visible mass m_{vis} of the $e\tau$ or $\mu\tau$ system to be $m_{\text{coll}} = m_{\text{vis}}/\sqrt{x_{\tau}}$, where m_{vis} is the invariant mass of the visible τ decay products.

5 Background estimation

The SM background in the LFV dilepton search includes several processes that produce a final state with two different-flavor charged leptons. For all channels, the dominant background contributions originate from $t\bar{t}$ production. Other less significant backgrounds originate from diboson (WW, WZ, and ZZ), $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu, \tau$), $W\gamma$, and single top quark production processes. All these backgrounds are estimated from MC simulation. For the $Z \rightarrow \tau\tau$ process, all decay modes of τ lepton have been considered. Multijet and W+jets processes also contribute due to the misidentification of jets as leptons. These backgrounds are estimated from data.

For the $e\mu$ channel, to determine the contributions from W+jets and multijet processes to the $m_{e\mu}$ distribution, a control sample in data is defined using jet-to-electron misidentification rate (F_e). This rate is obtained from data, by selecting electron candidates with relaxed selection requirements, using events collected with a single electromagnetic-cluster trigger. Data sidebands obtained by inverting the selection requirements on either the electron isolation or shower shape variables are used to evaluate the contribution of jets passing the full electron selection in the control sample [47]. The jet-to-electron misidentification rate is then defined as the number of jets passing the full electron selection divided by the number of jet candidates in the sample. The rate is quantified in bins of misidentified electron p_T and pseudorapidity. The measured jet-to-electron rate is then used to estimate the W+jets and multijet contributions to $e\mu$ using data containing muons that pass the single-muon trigger and the full muon selection, and electron candidates satisfying relaxed selection requirements, but failing the full electron selection. Each event is weighted by the factor $F_e/(1 - F_e)$ to determine the overall contribution from the jet backgrounds. A correction is applied to account for the fraction of events in the control sample that have genuine leptons, estimated from simulation. The background originating from jets misidentified as electrons is about 10% of the total background.

Background from jets mimicking muons is estimated in a similar way, where identification criteria are loosened for muons in order to create a control sample enriched with jet candidates that are misidentified as muons. Then the jet-to-muon misidentification rate F_{μ} is defined as the number of jets passing the full muon selection divided by the number of jet candidates in the sample. The rate is quantified in bins of misidentified muon p_T and η as well. Events in data that have one well-identified electron and one candidate satisfying loose requirements of muon identification are selected, with the weight factor $F_{\mu}/(1 - F_{\mu})$ applied to estimate the jet-to-muon misidentification contribution in the signal region. The background originating from jets misidentified as muons is about 2% of the total background. Events with both electron and muon misidentified from jets are not considered since their contribution is expected to be small.
In the \(\mu\tau\) and \(e\tau\) channels, the most significant background after the \(t\bar{t}\) and WW processes comes from W+jets and multijet processes, where jets are misidentified as \(\tau_h\) candidates. This background is estimated using collision data, in a control sample with the same selection as the signal region, except that the \(m_T\) requirement is inverted to \(m_T < 120\) GeV. From this low-\(m_T\) control sample, two subsamples are constructed to compute the probability for an accompanying jet to be misidentified as a \(\tau_h\):

- Subsample A requires \(\tau_h\) candidates to fail the tight antijet discriminator working point but pass the loose working point.
- Subsample B requires \(\tau_h\) to pass the tight working point.

A factor \(F\) is calculated from these samples, defined as the ratio of the number of events in subsamples B and A. This factor is calculated as a function of the \(p_T\) of the \(\tau_h\) candidate, the ratio of the \(p_T\) of the \(\tau_h\) candidate to the \(p_T\) of its parent jet, and the pseudorapidity of the \(\tau_h\). The number of events expected from misidentified \(\tau_h\) in the signal region is estimated from a control sample fulfilling the same criteria as events in the signal region, except that the \(\tau_h\) candidates pass the looser working point but fail the tight working point of the antijet discriminator. Each event is weighted by the factor \(F\) to determine its effective contribution. A correction is applied to account for the fraction of events in the control sample that have genuine \(\tau_h\) candidates, estimated from simulation.

6 Systematic uncertainties

Various effects impact the shape and the normalization of the invariant or collinear mass distributions and lead to systematic uncertainties in the signal and background estimates. The uncertainty in the modeling of the invariant or collinear mass distributions reflects three types of systematic effects.

The first type includes those that affect both the shape and normalization of the mass distributions. For all channels, the dominant uncertainties arise from the leading \(t\bar{t}\) and subleading WW backgrounds. They result in a 30–50% uncertainty in the number of \(t\bar{t}\) and WW events at a dilepton mass scale of 2 TeV. The uncertainty in the WW background is estimated from the envelope of the resummed next-to-next-to-leading logarithmic calculation of the soft-gluon contributions to the cross section at NLO, as presented in ref. [48], using changes in the renormalization and factorization scales by factors of 2 and 0.5. Similarly, the uncertainty in the \(t\bar{t}\) background is estimated by considering the variations in PDF and factorization scales, as discussed in ref. [49]. Other contributions include the uncertainty in the muon momentum scale, which is approximately 1–2% for 1 TeV muons and depends on their \(\eta\) and \(\phi\) [50, 51]. The uncertainty in the muon efficiency (0.5% for 1 TeV muons) is considered in the \(e\mu\) and \(\mu\tau\) channels [51], and the uncertainty in the electron efficiency (varies between 1–5%, depending on \(p_T\) and \(\eta\) of the electrons) is considered in the \(e\mu\) and \(e\tau\) channels [25]. In the \(\tau\) channels, the uncertainties in the \(\tau_h\) identification (5% for 1 TeV \(\tau\) leptons) and \(\tau_h\) energy scale (1.5–4.0% for \(p_T(\tau_h) > 100\) GeV, depending on the decay mode) are considered [45]. Uncertainties in the electron \(p_T\) scale and resolution, the muon \(p_T\) scale and resolution, and the pileup rate are also taken into account, but
they have negligible impact on the total background. The uncertainties in the determination of the trigger efficiencies have a very small impact on the expected event yields. The uncertainty associated with the choice of the PDF in the simulation is evaluated according to the PDF4LHC prescription [52].

The jet energy scale is determined with an uncertainty amounting to a few percent, depending on the jet p_T and η, using the p_T-balance method. This correction is applied to $Z/\gamma^* \rightarrow ee$, $Z/\gamma^* \rightarrow \mu\mu$, γ+jets, dijet, and multijet events [53]. The resulting effect on signal and background expectations is evaluated by varying the energies of jets in simulated events within their uncertainties, recalculating all kinematic observables, such as \vec{p}_T^{miss}, and reapplying the event selection criteria. The effects of uncertainties in the energy scale of the unclustered particles and jet energy resolution are evaluated in a similar way. These systematic uncertainties affect the shapes as well as the normalizations of the collinear mass distributions.

Uncertainties of the second type directly influence only the normalization of the mass distribution. A systematic uncertainty of 1.6% in the integrated luminosity [54–56] is taken for the backgrounds and signals. Among the uncertainties in the cross sections used for the normalization of various simulated backgrounds, the 5% uncertainty in the $t\bar{t}$ background is the most important. A systematic uncertainty of 50% is applied to the estimate of the misidentified jet background derived from data in all three channels. For τ_h final states, this uncertainty is obtained by using the misidentification probability F_τ derived from an independent control sample of $Z \rightarrow \mu\mu$+jets events for the estimation of misidentified jet background. It is found, especially at high masses (≥ 1.5 TeV), that the collinear mass distributions obtained in the signal region using the F_τ calculated from the two independent control samples agree within 50% and are consistent within the statistical uncertainties. Therefore, an overall 50% systematic uncertainty is assigned to the estimation of this background.

Uncertainties of the third type are associated with limited sizes of event samples in the MC simulation of background processes [57]. In contrast to other uncertainties, they are not correlated between bins of the invariant mass distribution.

Taking all systematic uncertainties into account, the resulting relative uncertainty in the background increases with mass. This relative increase does not significantly affect the sensitivity at large mass values, where the expected number of events from SM processes becomes negligible. All the relevant uncertainties are also taken into account in the extraction of various signals.

All uncertainties are considered to be correlated across the different data-taking years, with the exception of the τ_h object-related uncertainties and the uncertainty in the unclustered energy, which are derived from statistically independent sources. No correlation between the different final states is considered, and the analysis results are presented independently for each of the final states.

7 Results and their interpretations

The mass distributions in the $e\mu$, $e\tau$, and $\mu\tau$ channels, shown in figure 2, do not exhibit significant deviations from the expected SM background. The last bins with data events
Figure 2. Invariant mass distributions for the $e\mu$ channel (upper), and collinear mass distributions for the $e\tau$ (lower left) and $\mu\tau$ (lower right) channels. In addition to the observed data (black points) and the SM prediction (filled histograms), the expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and τ sneutrino mass of 1.6 TeV, LFV Z' ($B = 0.1$) boson with a mass of 1.6 TeV, and the QBH signal expectation for $n = 4$ and a threshold mass of 1.6 TeV. The bottom panel of each plot shows the ratio of data and SM prediction. The bin width gradually increases with mass.

show minor statistical fluctuations in the $e\tau$ and $\mu\tau$ channels, which are consistent with the SM expectations within 2 standard deviations, as shown later in the limit plots. The expected mass distributions of signal and backgrounds are taken from simulation, with the exception of backgrounds with jets misidentified as leptons, which are estimated using collision data, as discussed in previous sections. Upper limits on the products of the production cross section σ and branching fraction B are determined using a Bayesian binned-likelihood method [58, 59] with a uniform positive prior probability density for the signal cross section. The nuisance parameters associated with the systematic uncertainties are modeled via log-normal distributions for uncertainties in the normalization. Uncertainties in the shape of the distributions are modeled via “template morphing” techniques [60]. A Markov Chain
Table 1. The observed and expected (in parentheses) 95% CL lower mass limits on the RPV SUSY, Z', and QBH signals for the $e\mu$, $e\tau$, and $\mu\tau$ channels.

<table>
<thead>
<tr>
<th>Channel</th>
<th>RPV SUSY $\tilde{\nu}_\tau$ (TeV)</th>
<th>LFV Z' (TeV)</th>
<th>QBH m_{th} (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\mu$</td>
<td>$\lambda = \lambda' = 0.01$</td>
<td>$\lambda = \lambda' = 0.1$</td>
<td>$B = 0.1$</td>
</tr>
<tr>
<td>$e\tau$</td>
<td>1.6 (1.6)</td>
<td>3.7 (3.7)</td>
<td></td>
</tr>
<tr>
<td>$\mu\tau$</td>
<td>1.6 (1.6)</td>
<td>3.6 (3.7)</td>
<td></td>
</tr>
</tbody>
</table>

In the narrow-width approximation, the value of σB scales with the RPV couplings, in all three channels. For example, in the $e\mu$ channel, the following approximation holds:

$$\sigma B \approx (\lambda'_{311})^2 [(\lambda_{132})^2 + (\lambda_{231})^2] / \{ 3(\lambda'_{311})^2 + [(\lambda_{132})^2 + (\lambda_{231})^2] \}, \quad (7.1)$$

Using the narrow-width approximation formula for the RPV signal cross section, the cross section limit is translated into exclusion bounds in the plane of mass and coupling of the parameter space of the RPV SUSY model for fixed values of the λ couplings responsible for the decay of the $\tilde{\nu}_\tau$. Limit contours in the plane of mass and coupling for several fixed values of the coupling are shown in figure 6.
channels). However, alternative new physics processes yielding the LFV final states could cause an excess of a different shape. A model-independent cross section limit is determined using a single bin with a lower threshold on invariant (collinear) mass, and no upper threshold. No assumptions on the shape of the signal distribution are made other than that of a flat product of acceptance times efficiency, $A\varepsilon$, as a function of the mass. The excluded cross section model-independent limit is shown in figure 7. In order to determine the limit for a specific model from the model-independent limit described here, the model-dependent part of the efficiency and acceptance needs to be applied. The experimental efficiencies for the signal are already taken into account.

A factor f_m that reflects the effect of the threshold mass m^{min} on the signal is determined by counting the events with masses $m > m^{\text{min}}$ and dividing the result by the number of MC-generated events. The reconstruction efficiency is nearly constant over the entire mass range probed here, therefore f_m can be evaluated at the generator level. A
Figure 4. Expected (black dashed line) and observed (black solid line) 95% CL upper limits on the product of the cross section and the branching fraction for a Z' boson with LFV decays, in the $e\mu$ (upper), $e\tau$ (lower left), and $\mu\tau$ (lower right) channels. The shaded bands represent 68% and 95% uncertainties in the expected limits. The red solid lines show the predicted product of the cross section and the branching fraction as a function of the Z' mass assuming $B = 0.1$.

A limit on the product of the cross section and branching fraction $(\sigma B A \varepsilon)_{\text{excl}}$ can be obtained by dividing the excluded cross section of the model-independent limit $(\sigma B A \varepsilon)_{\text{MI}}$ given in figure 7 by the calculated fraction $f_m(m_{\text{min}})$:

$$\frac{(\sigma B A \varepsilon)_{\text{excl}}(\text{total})}{(\sigma B A \varepsilon)_{\text{excl}}(\text{MI})} = f_m(m_{\text{min}}).$$

(7.2)

Here, B is the branching fraction of the new particle decaying to the relevant LFV final state. Models with a theoretical cross section $(\sigma B A \varepsilon)_{\text{theo}}$ larger than $(\sigma B A \varepsilon)_{\text{excl}}$ can be excluded. The fraction of events $f_m(m_{\text{min}})$ must be determined for the particular model under consideration.
Figure 5. Expected (black dashed line) and observed (black solid line) 95% CL upper limits on the product of the cross section and the branching fraction for quantum black hole production in an ADD model with $n = 4$ extra dimensions, in the $e\mu$ (upper), $e\tau$ (lower left), and $\mu\tau$ (lower right) channels. The shaded bands represent 68% and 95% uncertainties in the expected limits. The red solid lines show the predicted product of the cross section and the branching fraction as a function of the QBH threshold mass.
Figure 6. Exclusion limits at 95% CL on the RPV SUSY model in the plane of τ sneutrino mass and λ′ coupling, for four values of λ couplings. The regions to the left of and above the curves are excluded. The upper plot corresponds to the eμ channel, while the lower left and right plots show the eτ and μτ channels, respectively. The lack of a smooth behavior of the exclusion limits for high λ′ values and at high masses where there are no events is an artifact caused by the limited number of discrete mass values of the generated signal samples, in this region.
Figure 7. Model-independent upper limits at 95% CL on the product of the cross section, the branching fraction, acceptance, and efficiency are shown. Observed (expected) limits are shown in black solid (dashed) lines for the $e\mu$ (upper), $e\tau$ (lower left), and $\mu\tau$ (lower right) channels. The shaded bands represent 68% and 95% uncertainties in the expected limits.
8 Summary

A search has been conducted for heavy particles that undergo lepton flavor violating decays into $\ell\mu$, $\ell\tau$, and $\mu\tau$ final states. The search is based on proton-proton collision data at $\sqrt{s} = 13$ TeV recorded during 2016–2018 in the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with expectations from the standard model. Lower limits at 95% confidence level are set on the mass of supersymmetric τ sneutrinos at 4.2 TeV in $\ell\mu$, 3.7 TeV in $\ell\tau$, and 3.6 TeV in $\mu\tau$ channels. A Z' vector boson with lepton flavor violating couplings is excluded for masses below 5.0, 4.3, and 4.1 TeV in the $\ell\mu$, $\ell\tau$, and $\mu\tau$ channels, respectively, assuming a branching fraction of 10%. In the context of the Arkani-Hamed–Dimopoulos–Dvali model with four extra dimensions, values of the threshold mass for quantum black hole production less than 5.6, 5.2, and 5.0 TeV are excluded in the $\ell\mu$, $\ell\tau$, and $\mu\tau$ channels, respectively. In addition, model-independent limits are provided allowing the results to be interpreted in other models with the same final states and similar kinematic distributions. Limits in the $\ell\tau$ and $\mu\tau$ final states, as well as model-independent limits, are reported for the first time in the context of a high-mass lepton flavor violation search. These are the first results of a high-mass lepton flavor violation search using the full Run 2 data set, and they are currently the most stringent limits from any collider experiment.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306, and under project number 400140256 — GRK2497; the Hungarian Academy of Sciences, the New National Excellence Program — ÚNKP; the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP³ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[45] CMS collaboration, Performance of reconstruction and identification of τ leptons decaying to hadrons and ν_τ in pp collisions at $\sqrt{s} = 13$ TeV, 2018 *JINST* 13 P10005 [arXiv:1809.02816] [insPIRE].

[51] CMS collaboration, Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $\sqrt{s} = 13$ TeV, 2020 *JINST* 15 P02027 [arXiv:1912.03516] [insPIRE].

[53] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 *JINST* 12 P02014 [arXiv:1607.03663] [insPIRE].

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Elgammal, A. Ellithi Kamel

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, D. Fasanello, F. Fienga, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvári

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Nainmuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar, G.B. Mohanty

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guhain, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rastogi, S. Sharma
INFN Sezione di Napolia, Università di Napoli 'Federico II'b, Napoli, Italy; Università della Basilicatac, Potenza, Italy; Università G. Marconid, Roma, Italy
S. Buontempoa, F. Carnevalia,b, N. Cavalloa,c, A. De Iorioa,b, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa,b,47, S. Meolaa,d,21, P. Paoluccia,21, B. Rossia, C. Sciaccaa,b

INFN Sezione di Padovaa, Università di Padovab, Padova, Italy; Università di Trentoc, Trento, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, P. Bortignona, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dosellia, F. Gasparinia,b, U. Gasparinia,b, G. Grossoa, S.Y. Hoa,b, L. Layera,48, E. Lusiania, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, G. Stronga, M. Tosia,b, H. Yarara,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b

INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy
C. Aimèa,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy
P. Asenova,49, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, M. Magherinia,b, G. Mantovania,b, V. Mariania,b, M. Menichellia, F. Moscatellia,49, A. Piccinellia,b, M. Presillaa,b, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, T. Tedeschia,b

INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy; Università di Sienad, Siena, Italy
P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, E. Bossinia,b, R. Castaldia, M.A. Cioccia,b, V. D’Amantea,d, R. Dell’Orsoa, M.R. Di Domenicoa,d, S. Donatoa, A. Giassia, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, D. Matos Figueiredoa, A. Messineoa,b, F. Pallaa, S. Parollia,b, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scribanoa, N. Shafieia,b, P. Spagnoloa, R. Tencinia, G. Tonellia,b, N. Turinia,d, A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Sapienza Università di Romab, Roma, Italy
P. Barriaa, M. Campanaa,b, F. Cavallaria, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia, R. Tramontanoa,b

INFN Sezione di Torinoa, Università di Torinob, Torino, Italy; Università del Piemonte Orientalec, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, J. Berenguer Antequeraa,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, F. Leggera,

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy

S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, G. Sorrentino, F. Vazzoler

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon

Hanyang University, Seoul, Korea

B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea

S. Cho, S. Choi, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Korea

J. Goh, A. Gurtu

Sejong University, Seoul, Korea

H. S. Kim, Y. Kim

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Yonsei University, Department of Physics, Seoul, Korea

S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea

M. Choi, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait

T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia

K. Dreimanis, V. Veckalns
Vilnius University, Vilnius, Lithuania
M. Ambrozas®, A. Carvalho Antunes De Oliveira®, A. Juodagalvis®, A. Rinkevicius®, G. Tamulaitis®

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen®, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez®, A. Castaneda Hernandez®, M. León Coello®, J.A. Murillo Quijada®, A. Sehrawat®, L. Valencia Palomo®

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera®, F. Vazquez Valencia®

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza®, H.A. Salazar Ibarguen®, C. Uribe Estrada®

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic51, N. Raicevic®

University of Auckland, Auckland, New Zealand
D. Krofcheck®

University of Canterbury, Christchurch, New Zealand
P.H. Butler®

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka®, M. Malawski®

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska®, M. Bluj®, B. Boimska®, M. Górski®, M. Kazana®, M. Szleper®, P. Zalewski®

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski®, K. Doroba®, A. Kalinowski®, M. Konecki®, J. Krolikowski®

– 33 –
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
P. Adzic, M. Đorđević, P. Milenović, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

University of Colombo, Colombo, Sri Lanka

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas
Authors affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN

† Deceased
1 Also at Yerevan State University, Yerevan, Armenia
2 Also at TU Wien, Vienna, Austria
3 Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
4 Also at Université Libre de Bruxelles, Bruxelles, Belgium
5 Also at Punjab Agricultural University, Ludhiana, India
6 Also at Universidade Estadual de Campinas, Campinas, Brazil
7 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
8 Also at The University of the State of Amazonas, Manaus, Brazil
9 Also at University of Chinese Academy of Sciences, Beijing, China
10 Also at UFMS, Nova Andradina, Brazil
11 Also at Nanjing Normal University Department of Physics, Nanjing, China
12 Now at The University of Iowa, Iowa City, Iowa, USA
13 Also at University of Chinese Academy of Sciences, Beijing, China
14 Also at an institute or an international laboratory covered by a cooperation agreement with CERN
15 Now at British University in Egypt, Cairo, Egypt
16 Now at Cairo University, Cairo, Egypt
17 Also at Purdue University, West Lafayette, Indiana, USA
18 Also at Université de Haute Alsace, Mulhouse, France
19 Also at Ilia State University, Tbilisi, Georgia
Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
Also at RWTH Aachen University, II Physikalisches Institut A, Aachen, Germany
Also at University of Hamburg, Hamburg, Germany
Also at Isfahan University of Technology, Isfahan, Iran
Also at Brandenburg University of Technology, Cottbus, Germany
Also at Forschungszentrum Jülich, Juelich, Germany
Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
Also at Wigner Research Centre for Physics, Budapest, Hungary
Also at Shoolini University, Solan, India
Also at University of Hyderabad, Hyderabad, India
Also at University of Visva-Bharati, Santiniketan, India
Also at Indian Institute of Science (IISc), Bangalore, India
Also at Indian Institute of Technology (IIT), Mumbai, India
Also at IIT Bhubaneswar, Bhubaneswar, India
Also at Institute of Physics, Bhubaneswar, India
Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
Also at Sharif University of Technology, Tehran, Iran
Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
Also at Helwan University, Cairo, Egypt
Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
Also at Scuola Superiore Meridionale, Università di Napoli 'Federico II', Napoli, Italy
Also at Università di Napoli 'Federico II', Napoli, Italy
Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
Also at National and Kapodistrian University of Athens, Athens, Greece
Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
Also at Universität Zürich, Zurich, Switzerland
Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
Also at Şırnak University, Şırnak, Turkey
Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey
Also at Konya Technical University, Konya, Turkey
Also at Izmir Bakircay University, Izmir, Turkey
Also at Adiyaman University, Adiyaman, Turkey
Also at Necmettin Erbakan University, Konya, Turkey
Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey
Also at Marmara University, Istanbul, Turkey
Also at Milli Savunma University, Istanbul, Turkey
Also at Kaflkas University, Kars, Turkey
Also at Istanbul Bilgi University, Istanbul, Turkey
Also at Hacettepe University, Ankara, Turkey
Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
Also at Ozyegin University, Istanbul, Turkey
Also at Vrije Universiteit Brussel, Brussel, Belgium
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Also at IPPP Durham University, Durham, United Kingdom
Also at Monash University, Faculty of Science, Clayton, Australia
Also at Università di Torino, Torino, Italy
Also at Bethel University, St. Paul, Minnesota, USA
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
Also at California Institute of Technology, Pasadena, California, USA
Also at United States Naval Academy, Annapolis, Maryland, USA
Also at Ain Shams University, Cairo, Egypt
Also at Bingol University, Bingol, Turkey
Also at Georgian Technical University, Tbilisi, Georgia
Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan

Now at Istanbul University, Istanbul, Turkey
Also at Yerevan Physics Institute, Yerevan, Armenia
Now at University of Florida, Gainesville, Florida, USA
Also at Imperial College, London, United Kingdom
Now at University of Rochester, Rochester, New York, USA
Now at Baylor University, Waco, Texas, USA
Now at INFN Sezione di Torino, Università di Torino, Torino, Italy; Università del Piemonte Orientale, Novara, Italy
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan