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Free-fall non-universality in quantum theory
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Abstract

We show by embodying the Einstein equivalence principle – local Poincaré invariance – and general

covariance in quantum theory that wave-function spreading rules out the universality of free fall, i.e.

the free-fall trajectory of a quantum (test) particle depends on its internal properties. We provide a

quantitative estimate of the free-fall non-universality in terms of the Eötvös parameter, which turns

out to be measurable in atom interferometry.
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I. INTRODUCTION

According to Newton’s gravitational law, any body having a non-zero gravitational mass is

a source of gravity. It is a consequence of numerous experiments that gravitational massMg of

a macroscopic body is equal with good accuracy to its inertial massMi. So, one might assume

(

Mg/Mi

)

classical
= 1 . (1)

In Newton’s theory, this means that small-enough test bodies fall down equally fast, provided

same initial position and velocity. The general theory of relativity (GR) promotes this result

to the weak equivalence principle which is also known in the literature as the universality of

free fall [1]. This principle is a core argument for modelling gravitational interaction through

space-time geometry [2], where particles’ trajectories correspond to geodesic world lines.

In the framework of quantum theory, however, particles cannot be thought of as point-like

objects which move along single world lines. Indeed, Heisenberg’s uncertainty principle forces

to abandon the idea that position and momentum can be simultaneously defined with perfect

precision for quantum particles [3]. This quantum fuzziness originates from the fact that wave

functions have finite localisation in space, resulting in the probability of finding a particle at a

given space-time point, which is always less than unity. This suggests that quantum particles

might not obey the weak equivalence principle, provided its potential breach does not involve

tidal gravitational forces [1], which do modify free-fall trajectories of extended bodies.

In this article, we explore this conceptual conflict quantitatively. This is achieved, first, by

working in the framework of quantum field theory over curved spacetime, where the latter is

modelled by GR, and, second, by implementing Einstein’s equivalence principle and general

covariance by relating quantum fields to elementary particles.

II. FREE FALL OF CLASSICAL PARTICLES

According to Einstein’s gravitational theory, matter is a source of a non-trivial spacetime

curvature. The spacetime curvature is mathematically described by the Riemann tensor. This

tensor has dimension of inverse length squared. In other words, we can characterise the space-

time curvature by a length scale: The bigger this length scale, the weaker a gravitation field is.

In particular, at the Earth’s surface, it reads

L⊕ ≡ R⊕

(

R⊕/RS,⊕

)
1

2 ≈ 1.71×1011m , (2)

where R⊕ ≈ 6.37×106m denotes the Earth’s radius, whereas RS,⊕ ≈ 8.87×10−3m stands for

its Schwarzschild (S) radius. Thus, the Earth’s curvature plays a little role in the dynamics of

microscopic objects in quantum processes taking place over time intervals much smaller than

L⊕/c ≈ 9.52min, where c ≈ 2.99×108m/s is the speed of light in vacuum. For this reason, we

shall neglect the Earth’s curvature in what follows until Sec. V, which is also needed not to go

beyond the application domain of the weak equivalence principle.
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This approximation means that the metric tensor at the Earth’s surface can be replaced by

the Minkowski metric η ≡ diag(+1, −1, −1, −1) iff one considers local inertial coordinates.

To this end, we wish to introduce normal Riemann coordinates, y, defined at a given point at

the Earth’s surface, which corresponds to ya = 0. In its vicinity, i.e. |y| ≪ L⊕, we have

ds2 = gab(y) dy
adyb ≈ ηab dy

adyb , (3)

where the Latin indices lie in {0, 1, 2, 3}. We have neglected curvature-dependent terms on the

right-hand side of (3), because of the weakness of the Earth’s gravitational field. These terms

can be found in [4]. The very fact that the metric tensor can always be locally brought to the

Minkowski-metric form is a result of Einstein’s equivalence principle – locally and at any non-

singular point of the Universe, the special-relativity physics applies [2].

The general principle of relativity, saying that dynamical laws of nature are the same in all

reference frames, ensures that physics does not depend on coordinates utilised. Nevertheless,

the same physical process can look different in different coordinate frames. In particular, the

local inertial coordinates y and general coordinates x ≡ (ct, x, y, z) are related as follows [4]:

xc ≈ yc −
1

2
Γc
ab y

ayb , (4)

where Γc
ab are Christoffel symbols computed at the Earth’s surface and we have omitted terms

which depend on higher-order derivatives of metric, in accord with the Minkwoski-spacetime

approximation (3). Taking into account that the Earth’s gravitational field is approximately

described by the Schwarzschild geometry, we obtain

Γ0
ab y

ayb ≈ +
2g⊕
c2

y3y0 , (5a)

Γ1
ab y

ayb ≈ −
2g⊕
c2

y3y1 , (5b)

Γ2
ab y

ayb ≈ −
2g⊕
c2

y3y2 , (5c)

Γ3
ab y

ayb ≈ +
g⊕
c2

(

(y0)2 + (y1)2 + (y2)2 − (y3)2
)

, (5d)

where the free-fall acceleration points down in the negative z-direction with the magnitude at

the Earth’s surface reading

g⊕ ≡
c2RS,⊕

2(R⊕)2
≈ 9.81m/s2 . (6)

Now, in the Riemann frame, all geodesics passing through ya = 0 are straight world lines [4].

This is basically the condition which determines normal Riemann coordinates. Considering a

classical (point-like) particle being initially at rest in the Riemann frame, we have

ya(τ) = cτδa0 , (7)
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where τ is the proper time and δ ≡ diag(+1, +1, +1, +1) is the Kronecker delta. It turns into

xa(τ) ≈ cτδa0 −
1

2
g⊕τ

2δa3 (8)

in the non-inertial frame associated with the Earth’s surface, where we have substituted (7)

into (4) and (5) to get (8). This is the well-known result of Newton’s gravitational theory, that

explicitly demonstrates the universality of free fall in classical theory.

III. FREE FALL OF QUANTUM PARTICLES

Quantum field theory (QFT) is a mathematical formalism which enables us to successfully

describe high-energy processes taking place between particles. This formalism is based on the

unification of the underlying principles of quantum mechanics (QM) and the special theory of

relativity (SR). The observable Universe cannot be described by Minkowski spacetime, which

is a basic mathematical structure of SR. Hence, the application of QFT in theoretical particle

physics relies on the Minkowski-spacetime approximation (3).

It is apparent that we need to go beyond this approximation in order to describe quantum

particles in the presence of a gravitational field. We thereby wish to demand that the Einstein

equivalence principle and the general principle of relativity be also implemented in quantum

theory. The former principle implies then that quantum particles must locally be modelled by

wave functions which, in local inertial frames, are given by plane-wave superpositions. In fact,

it ensures that such quantum particles move along straight world lines in local inertial frames.

The latter principle says in turn that wave functions must transform as tensors under general

coordinate transformations. In particular, a spin-zero-particle wave function must correspond

to a rank-zero tensor – scalar. This ensures that the semi-classical Einstein field equation is in

accord with general covariance.

Quantum fields are operator-valued distributions which form a quantum-field algebra [5].

To model a quantum particle in this framework, we need to select the operator â†(ψ) from this

algebra, that gives the state |ψ〉 = â†(ψ)|Ω〉 describing this particle, where |Ω〉 is the quantum

vacuum. In a local Minkowski frame, |ψ〉must reduce to an asymptotically free state entering

the definition of S-matrix elements in particle physics. To guarantee that, we define

â†(ψ) ≡ −i

∫

Σ

dΣa(x)
(

ψ(x)∂aΦ̂
†(x)− Φ̂†(x)∂aψ(x)

)

, (9)

where Σ is a Cauchy surface and Φ̂(x) denotes a scalar field, because then we locally recover

the Lehmann-Symanzik-Zimmermann reduction formula for the scalar field. In general, this

formula relates S-matrix elements with time-ordered products of quantum fields [6, 7], or, in

other words, it relates the mathematical formalism of QFT to physics.

Now, ψ(x) in (9) corresponds to a wave function, at least in the weak-gravity limit, i.e. we

assume that the characteristic linear size of ψ(x) in space, L, is much smaller than L⊕. In the
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Riemann frame, Einstein’s equivalence principle tells us that the wave function of a spin-zero

particle of mass M > 0 is a superposition of (positive-energy) plane waves, namely

ψ(y) =
1

(2π~)3

∫

d3K

2EK

FP(K) exp
(

−
iK·y

~

)

, (10a)

where ~ ≈ 1.05×10−34 J·s is the reduced Planck constant and

K ≡ (EK/c,K) ≡
(
√

(Mc)2 +K2,K
)

, (10b)

K·y ≡ ηabK
ayb . (10c)

The function FP(K) must have a narrow peak atK ∼ P, where P ≡ (EP/c,P) is an initial 4-

momentum of the particle. This is in effect required for ψ(y) to be a localised-in-space packet.

Furthermore, the general principle of relativity forces us to deal with FP(K) = F (K·P ). For

instance, a covariant Gaussian wave function [8, 9] is characterised by

FP(K) ∝ exp
(

−
K·P

2D2

)

, (11)

where D > 0 stands for momentum variance. The covariance principle leads, thereby, to ψ(y)

which is invariant under the (local) Lorentz transformations. This, in particular, ensures that

ψ(y) gains a phase shift in quantum-interference experiments [10–13], which is in agreement

with the observations [14, 15].

According to Born’s statistical interpretation, the wave packet ψ(y) yields the probability

amplitude of measuring the particle at a given place [3]. Thus, the probability to find it some-

where in space must be unity:
∫

d3yψ∗(y)ψ(y) = 1 . (12)

This is a normalisation condition for the wave function ψ(y) in QM. It is evident though that

this normalisation condition is at odds with special covariance, since the integration measure

in (12) is variant under the (local) Lorentz transformations. Therefore, it must be replaced in

QFT by the Klein-Gordon product of ψ(y) with itself, cf. [16]:

i

∫

d3y
(

ψ∗(y) ∂0ψ(y)− ψ(y) ∂0ψ
∗(y)

)

= 1 . (13)

In fact, this equation corresponds to 〈ψ|ψ〉 = 1.This directly follows from the definition of |ψ〉

and the canonical commutation relation of Φ̂(x) and its canonical conjugate. Note that (13) is

independent on (local) inertial frames, provided ψ(y) is a scalar. This physically implies that

quantum particles are reference-frame-independent objects, i.e. their very existence does not

depend on coordinates utilised [14, 15].

We wish to derive a free-fall trajectory of the quantum particle. In real-world experiments,

quantum-particle trajectories are determined with the help of detectors. Any detector has a

finite extent in space (and time). One can describe this by the scalarW (y) which is essentially

5



unity inside a particle detector and tends to zero outside that. This is a window-function-like

scalar which can be understood in QFT as being due to the spontaneous breakdown of spatial

translation symmetry. So,W (y) is an order parameter. The device clicks if the particle passes

through it, omitting details of how those interact with each other for the sake of simplicity. In

this case, the particle position matches the detector location at the time moment of click. The

covariant probability to find the particle in an infinitesimal spatial volume at y follows from

(9) and reads

dP (y) ≡ −idΣa(y)
(

ψ(y)∂aψ
∗(y)− ψ∗(y)∂aψ(y)

)

. (14)

It is non-negative and drops substantially to zero away from the wave-function support. Thus,

PW (Σ) ≡

∫

Σ

dP (y)W (y) (15)

gives the probability to observe the particle by this device. Note,W (y) is to covariantly limit

the integration volume to that which the detector occupies, cf. [17]. If there is an array of such

small-enough detectors, then the particle position can be determined with some accuracy. On

the other hand, we have from probability theory that

〈ya(Σ)〉 ≡

∫

Σ

dP (y) ya (16)

gives the expected value of ya, which, in physics, corresponds to the center-of-mass position of

the wave function ψ(y). In terms of this quantity, the device clicks if the wave-function center

of mass is localised within the support of W (y).

These observations suggest that the quantum-particle position corresponds to

〈ya(τ)〉 ≡ i

∫

τ

d3y ya
(

ψ∗(y) ∂0ψ(y)− ψ(y) ∂0ψ
∗(y)

)

, (17)

which turns into the quantum-mechanics definition of position expectation value in the non-

relativistic limit |P| ≪ Mc [15]. Note that the position expectation value 〈yc(τ)〉 depends on

the proper time τ . This is a physical hypothesis, meaning that quantum particles measure τ .

This, however, can be justified by recalling that a lifetime of cosmic-ray (relativistic) muons is

bigger than that of muons at rest. This discrepancy arises due to the time-dilation effect in SR

[18]: The laboratory lifetime of the cosmic-ray muons is by a Lorentz factor bigger than their

proper lifetime. This experimental result validates our hypothesis.

Consequently, we obtain from (10), (11), (13) and (17) for the spin-zero quantum particle

being initially at rest (|P| = 0) that

〈ya(τ)〉 = cτδa0 (18)

in the Riemann or, in other words, local inertial frame, while, by bearing in mind (4) and (5),

〈xa(τ)〉 ≈ cτδa0 −
1

2
g⊕

((

1 +
D2

(Mc)2

)

τ 2 +
~
2

4(Dc)2

)

δa3 (19)
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in the non-inertial frame associated with the Earth’s surface. The quantum result (19) differs

from the classical one (8) by terms to depend on internal quantum-particle properties. Note,

the deviation from the geodesic depends on the characteristic quantum-particle extent ~/D,

following from Heisenberg’s uncertainty relation, but is not due to tidal gravitational forces.

In fact, the tidal-force impact on free fall diminishes with decreasing extent of a freely falling

body, unlike the time-dependent correction to (8) in (19). Our result (19) means thus that the

weak equivalence principle does not hold in quantum theory [14, 15].

The origin of the free-fall non-universality in quantum theory is wave-function spreading.

Indeed, this universal phenomenon follows from the circumstance that the wave function ψ(y)

obeys the Heisenberg uncertainty principle. This manifests itself through

〈yiyj(τ)〉 ≈

(

~
2

4D2
+ τ 2

D2

M2

)

δij , (20)

where i, j ∈ {1, 2, 3}, meaning that ψ(y) expands in space. The combination of this quantum-

mechanical result with (5d) explains the quantum corrections to (8) in (19).

Our result (19) may be interpreted in Newton’s gravitational theory as (1) cannot hold in

quantum theory, namely we instead have

(

Mg/Mi

)

quantum
≈ 1 +

D2

(Mc)2
, (21)

because, owing to the time-dependent term in (20), it follows from (19) that

d2

dτ 2
〈z(τ)〉 ≈ −g⊕

(

Mg/Mi

)

quantum
. (22)

It is worth pointing out that (21) is a relativistic result, because the quantum correction to (1)

disappears in the quantum-mechanics limit, in accordance with [19]. It originates from going

beyond Newton’s theory by taking into account gravitational-length contraction, as this gives

rise to terms in (5), depending quadratically on yi. We intend next to study whether (19) is at

least approximately consistent with other observables.

IV. FOUR-MOMENTUM OF QUANTUM PARTICLES

The stress-energy-tensor operator for the Klein-Gordon quantum field Φ̂(y) reads

T̂ab(y) = ∂aΦ̂(y)∂bΦ̂(y)−
1

2
ηab

(

∂cΦ̂(y)∂
cΦ̂(y)− (Mc/~)2Φ̂2(y)

)

, (23)

Making use of the canonical commutation relation for Φ̂(y) and its canonical conjugate Π̂(y),

we obtain for the single-particle state |ψ〉 that

〈ψ|T̂ab(y)|ψ〉 = 〈Ω|T̂ab(y)|Ω〉+ T ab(ψ(y)) , (24)

where 〈Ω|T̂ab(y)|Ω〉 stands for the quantum-vacuum stress tensor [20–22] and

Tab(ψ(y)) ≡ 2∂(aψ
∗(y) ∂b)ψ(y)− ηab

(

|∂ψ(y)|2 − (Mc/~)2|ψ(y)|2
)

. (25)
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Apparently, the quantum vacuum |Ω〉 does not carry information about the quantum particle

modelled by |ψ〉. That is a no-particle state by its very definition. This means that we need to

renormalise 〈ψ|T̂ab(y)|ψ〉 by subtracting 〈Ω|T̂ab(y)|Ω〉 from it. This gives rise to 〈ψ|:T̂ab(y):|ψ〉,

where the colons mean the normal ordering, being equal to Tab(ψ(y)).

Taking into account that Tab(ψ(y)) is a tensor, we find in the frame resting on the Earth’s

surface for the particle with the initial momentum |P| = 0 that

〈pa(τ)〉 ≡

∫

τ

dΣc(y)
∂xa

∂yb
T b
c (ψ(y))

≈ Mc

(

1 +
3

2

D2

(Mc)2

)

δa0 −Mg⊕τ

(

1 +
5

2

D2

(Mc)2

)

δa3 . (26)

This result can be immediately obtained fromMi〈ẋ
a(τ)〉 with (19), which, in classical theory,

gives particle’s 4-momentum, where the inertial massMi has been defined via the Lagrangian

mass M at the leading order of the approximation as follows:

Mi ≡ M

(

1 +
3

2

D2

(Mc)2

)

. (27)

These computations give an independent support for the result (22), as we have from (26)

with (27) that

d

dτ

〈pz(τ)〉

Mi

≈ −g⊕
(

Mg/Mi

)

quantum
. (28)

It should be mentioned that this derivation makes no use of Born’s statistical interpretation

we have utilised above to link the quantum-particle trajectory with the wave-function center-

of-mass position.

V. GEODESIC DEVIATION FOR QUANTUM PARTICLES

The free-fall acceleration is a non-inertial-frame effect which is, accordingly, absent in local

inertial frames. In contrast, the spacetime curvature is non-vanishing in all reference frames.

In particular, it shows itself as a relative acceleration between geodesics. This starts to play an

important role in satellite-borne experiments.

Considering a detector at rest at the origin of a Riemann frame parametrised by χ, we find

in terms of the normal Riemann coordinates y that

χc ≈ Xc + yc −
1

3
Rc

adb

(

yaXdyb −XaydXb
)

(29)

where ya = 0 corresponds to Xa in the satellite’s rest frame, and Rc
adb is the Riemann tensor

at that point. Taking into account that 〈yc(τ)〉 gets no contribution linearly depending on the

curvature tensor in vacuum, we find

d2

dτ 2
〈χc(τ)〉 ≈ −

2

3
Rc

adb U
aXdU b

(

1 +
D2

(Mc)2

)

, (30)
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where Ua ≡ P a/M is the initial 4-velocity of the quantum particle.

This result is in accord with the geodesic deviation equation up to the factor depending on

the internal quantum-particle properties. This factor fully agrees with that in (22), suggesting

that the (passive) gravitational mass of the quantum particle is by that factor bigger than its

inertial mass. This is, apparently, in agreement with (21).

VI. QUANTITATIVE ESTIMATE

The result (22) implies quantum particles fall down faster than classical ones. This effect is

negligibly small for macroscopic objects. In particular, one gram of iron has the size of about

6.24×10−3m, which may be equated to ~/D, according to Heisenberg’s uncertainty relation,

givingD/Mc ≈ 5.63×10−38. However, a rubidium atom, 85Rb, has the radius of 220×10−12m

and, thus, we get the estimate D/Mc ≈ 5.63×10−9.

A dimensionless parameter, which quantifies relative free-fall acceleration of a pair of test

bodies of different composition, is known as the Eötvös parameter η. We find from (22) that

η(A,B) ≈
D2

A

(MAc)2
−

D2
B

(MBc)2
. (31)

It approximately reads 3.16×10−17 in case of 85Rb and a heavier atom. This is by five orders of

magnitude smaller than the atom-interferometer sensitivity recently achieved in [23] (see also

[24, 25]) by experimental tests of the universality of free fall, where the heavier atom was the

rubidium isotope 87Rb. Yet, the Eötvös parameter increases by use of lighter atoms:

(D/Mc)2 (L/R⊕)
2

One gram of iron 3.17×10−75 9.59×10−19

Rubidium atom (85Rb) 3.16×10−17 4.77×10−33

Potassium atom (39K) 1.78×10−16 1.02×10−33

Hydrogen atom (H) 1.14×10−11 2.37×10−35

TABLE I. The first column shows that the tinier a quantum particle is, the bigger the effect of wave-

function spreading influences the particle’s free-fall trajectory. In particular, one might expect that

the effect is suppressed for Bose-Einstein condensates in free fall, since these have a relatively slowly

expanding wave function, see [26, 27]. The second column illustrates the effect of tidal gravitational

forces on free-fall trajectories of extended objects, estimated within Newton’s theory (see also [15]).

Satellite-borne experiments have much better sensitivity with respect to the Earth-based

ones by quantum tests of the free-fall universality – at the 10−17 level or better, – where their

main advantage consists in the fact that these tests can potentially be made over infinite free-

fall times [28]. Their sensitivity will thus be sufficient to empirically discover if wave-function

spreading is more fundamental than the weak equivalence principle.
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VII. CONCLUDING REMARKS

Here we have treated the free-fall propagation of spinless quantum particles from different

standpoints. From the perspective of a particle detector being at rest on the Earth’s surface,

e.g. of that installed in the Bremen Drop Tower, a quantum particle falls down faster than its

classical counterpart:

d2

dτ 2
(

〈z(τ)〉 − z(τ)
)

≈ −
g⊕D

2

(Mc)2
. (32)

This effect is due to wave-function spreading and gravitational-length contraction, both well

known in quantum theory and general relativity, respectively. Moreover, from the perspective

of a detector that freely falls down in the vicinity of the Earth’s surface, the quantum particle

approaches this detector in the horizontal direction faster than its classical counterpart, while

moves faster away from it in the vertical one:

d2

dτ 2
(

〈χc(τ)〉 − χc(τ)
)

≈ −
D2

3(L⊕M)2
(

Xδc1 + Y δc2 − 2Zδc3
)

, (33)

as it follows from (30) with X = (0, X, Y, Z) and U = (c, 0, 0, 0). This is a consequence of the

interplay of wave-function spreading and the Earth’s curvature.

It is a result of lots of experiments that QFT over Minkowski space locally makes physical

sense, although the observable Universe is actually curved. This observation implies that both

Einstein’s equivalence principle and general covariance must be built into quantum theory for

that to be in accordance with observations in particle colliders. This line of reasoning leads to

our model of quantum particles in the presence of a gravitational field. It gives the results (32)

and (33), which might be experimentally testable in the near future.

Still, there are two possible outcomes of these tests. If it will be experimentally discovered

that the free-fall trajectory of a quantum (test) particle depends on its internal properties in

accord with our results, then the weak equivalence principle – one of the underlying ideas of

GR – should be re-thought in quantum theory. It is worth pointing out that this circumstance

does not imply any modifications of the coupling of gravity to matter fields, since our results

are based on the gravity theory described by a single space-time geometry. If otherwise, the

wave-function description of quantum particles should be refined in GR. In either case, these

will improve our insight of both quantum theory and gravity.
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