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Abstract

The effect of solvent on the free energy of reaction intermediates adsorbed
on electrocatalyst surfaces can significantly change the thermochemical
overpotential, but accurate calculations of this are challenging. Here,
we present computational estimates of the solvation energy for reac-
tion intermediates in oxygen reduction reaction (ORR) on a B-doped
graphene (BG) model system where the overpotential is found to reduce
by up to 0.6 V due to solvation. BG is experimentally reported to
be an active ORR catalyst but recent computational estimates using
state-of-the-art hybrid density functionals in the absence of solvation
effects have indicated low activity. To test whether the inclusion of
explicit solvation can bring the calculated activity estimates closer to
the experimental reports, up to 4 layers of water molecules are included
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in the simulations reported here. The calculations are based on classi-
cal molecular dynamics and local minimization of energy using atomic
forces evaluated from electron density functional theory. Data sets are
obtained from regular and coarse-grained dynamics, as well as local
minimization of structures resampled from dynamics simulations. The
results differ greatly depending on the method used and the solvation
energy estimates and are deemed untrustworthy. It is concluded that a
significantly larger number of water molecules is required to obtain con-
verged results for the solvation energy. As the present system includes
up to 139 atoms, it already strains the limits of computational feasibil-
ity, so this points to the need for a hybrid simulation approach where
efficient simulations of much larger number of solvent molecules is car-
ried out using a lower level of theory while retaining the higher level
of theory for the reacting molecules as well as their near neighbors
and the catalyst. The results reported here provide a word of caution
to the computational catalysis community: activity predictions can be
inaccurate if too few solvent molecules are included in the calculations.

Keywords: Solvation, Electrochemistry, Oxygen Reduction Reaction, Doped
Graphene

1 Introduction

The replacement of costly and rare precious metals with cheaper and more

abundant elements in catalysts, for example in the oxygen reduction reac-

tion (ORR) in fuel cells, is an important milestone towards sustainable

energy production. To this end, heteroatom-doped graphenes have been

explored extensively[1–3] following experiments showing high ORR activity

of a nitrogen-doped graphene (NG) electrocatalyst in 2010.[4] Soon after the

reports of high catalytic activity of NGs, boron-doped graphene (BG) emerged

as another promising candidate for efficient ORR electrocatalysis.

Sheng et al.[5] measured favorable alkaline ORR activity for BG with

3.2 % dopant concentration synthesized using Hummer’s method.[6, 7] Their

BG material catalyzed the 4e– ORR pathway and showed good tolerance to

CO poisoning. Note that Hummer’s method has become subject to criticism

as it can deposit significant amounts of transition metal impurities in the
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material[8, 9] which cannot be removed using typical wet-chemical purification

methods.[10] In the same vein, Xu et al.[11] and Jiao et al.[12] synthesized NG

and BG using Hummer’s method. Both groups report that NG and BG are effi-

cient ORR catalysts, showing similarly high ORR activity in their experiments

and corresponding calculations. Further experimental work is summarized in

a 2016 review by Agnoli and Favaro.[3]

Computational predictions of the ORR activity of BG have overall been

promising. The free energy approach using the computational hydrogen

electrode (CHE)[13] is typically used to evaluate the ORR activity of computa-

tional models. Since the estimate of an overpotential obtained by this approach

only reflects thermodynamic free energy of intermediates as well as initial and

final states, it will be referred to as the thermochemical overpotential, ηTCM,

in the following.

Jiao and co-workers predict a ηTCM range of 0.4–0.6 V for both BG and

NG based on calculations using the B3LYP functional and molecular flake

model systems, in good agreement with their experimental measurements.[12]

A similar value, 0.38 V, is reported by Wang et al. for a BG nanoribbon[14]

using the PBE functional and DFT-D3[15, 16] dispersion correction. The most

optimistic prediction is reported by Fazio and co-workers with a ηTCM of 0.29 V

in a B3LYP-based study of a BG flake model system.[17] For reference, the

measured overpotential of a typical Pt/C electrocatalyst is 0.3–0.4 V.[18] The

experimental overpotential, however, depends on many other factors besides

adsorption strength of the ORR intermediates, hence ηTCM values are only a

rough and purely thermodynamic estimate of the actual overpotential.

The exact mechanism of the ORR on BG is a matter of ongoing inves-

tigation. Fazio and co-workers established that the associative 4 e– pathway

should be dominant for BG from a theoretical perspective.[17] They found O2
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adsorption to occur via an open-shell end-on intermediate using a molecular

flake model system and the B3LYP functional. Ferrighi et al. proposed the

formation of stable B−O3 bulk oxides on BG which they hypothesize to be

the first step in the ORR mechanism on BG.[19] They, however, did not detail

further reaction steps. Ferrighi et al. used a molecular flake model and the

B3LYP functional as well as periodic surface models and the PBE functional

in their study. Contrarily, Wang and co-workers recently identified a cluster of

two B dopants in para arrangement to enable the associative 4 e– ORR path-

way, including energetically favorable O2 adsorption.[14] They used a periodic

nanoribbon model and the PBE functional with DFT-D3 dispersion correc-

tion. Using a molecular flake model and the B3LYP functional, the study by

Jiao et al.[12] finds that a top adsorption geometry should be favored for the

critical *O intermediate on BG while other studies[14, 17, 19] typically find a

B-C bridge site to be favored for *O adsorption. It can be summarized that

the active site debate for the ORR mechanism on BG is not settled yet.

Furthermore, the stabilization of the ORR intermediates on BG by water

molecules, which has been found to be critical to correct energetic description

of the ORR on NG,[20–23] has only been considered by one group so far to

the best of the authors’ knowledge. Fazio et al. used a cluster of 6 water

molecules in contact with a molecular flake model representing BG to estimate

the effects of solvation.[17] The group found that while the stability of the *O

intermediate is barely affected by solvation, the *OH and *OOH intermediates

are stabilized by -0.37 eV and -0.46 eV, respectively. The low predicted ηTCM

of 0.29 V vs. SHE in this study results in part from the stabilizing effect of

solvation.

In the study by Jiao et al.[12] solvation effects are estimated using

implicit[24] solvation models. However, implicit solvation models have in some
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cases been shown to fail at reproducing experimental solvation energy mea-

surements or solvation energy results from simulations using many explicit

solvent molecules.[25–28]

We recently presented results for the ORR on NG where it was shown that

high-level DFT calculations based on hybrid functionals yield a ηTCM esti-

mate close to 1.0 V vs. SHE,[29] indicating catalytic inactivity. The choice of

hybrid functional was made as a result of benchmarking against a diffusion

Monte Carlo data set. Generalized gradient approximation functionals were

found to underestimate ηTCM by up to 0.4 eV, thereby indicating much too

high catalytic activity. However, it was noted that solvation effects could con-

siderably improve the catalyst activity predictions. To illustrate this effect, we

applied two sets of solvation stabilization energy, ∆∆Esolv, data for the ORR

intermediates on NG taken from literature sources (Reda et al.[23] and Yu et

al.[21]). and found ηTCM to be reduced by up to 0.5 V. However, the published

∆∆Esolv data set were calculated in different ways and disagreed significantly,

leading to different ηTCM estimates depending on the choice of ∆∆Esolv data

set.

The accurate hybrid DFT approach was also applied to BG with sim-

ilar results: a ηTCM estimate above 1.0 V vs. SHE, indicating catalytic

inactivity.[30] This result is in stark contrast to other more optimistic stud-

ies which, importantly, used functionals such as PBE and B3LYP as well as

molecular flake models which were shown to produce unreliable adsorption free

energy results.[29] However, the high ηTCM prediction for BG did not include

any solvation effects. Informed by the report from Fazio et al. on the significant

impact of ∆∆Esolv on the free energy trends and by our own observations of

the same for NG, the present study was conceived to systematically investigate

the effect of an increasing number of explicit water molecules on the stability of
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the ORR intermediates *O, *OH, and *OOH, as represented by the ∆∆Esolv

descriptor. Simulations were performed with the 32-atom BG model system

used previously[30] in contact with up to 4 layers (32 molecules) of water. Both

local minimization calculations as well as regular and coarse-grained classi-

cal dynamics simulations were performed using atomic forces estimated from

density functional theory (DFT) calculations to obtain statistical estimates

of ∆∆Esolv. Additionally, local optimization calculations were performed on

structures re-sampled from these data sets. In short, none of the data sets

generated in this way yielded converged and trustworthy ∆∆Esolv results.

Technical aspects of the simulations are discussed in detail and the conclusion

is that a much larger number of water molecules needs to be included in the

calculations to provide reliable estimates of the solvation effect. The present

model system includes up to 139 atoms and the dynamics simulations span

up to 100 ps, thereby already straining the computational resources. More-

over, the ∆∆Esolv estimates are highly system dependent and would need to

be reestablished for every new (electro-) catalyst model. Hence, we highlight

the need for hybrid simulation methods that enable simulations of systems

including hundreds or even thousands of water molecules using a lower level of

theory while retaining electronic structure level accuracy in the surface region

where reactions occur.

2 Methodology

2.1 Calculation of the solvation stabilization energy

The solvation stabilization energy ∆∆Esolv is estimated as the difference

between the adsorption energy calculated for models in contact with explicit

solvent (∆Ewith solvent
ads ) and models without inclusion of any solvent molecules
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(∆Ewithout solvent
ads ):

∆∆Esolv = ∆E with solvent
ads −∆E without solvent

ads , (1)

where

∆E with solvent
ads = E BG + adatom with solvent

tot − E BG with solvent
tot

−E adatom reference
tot (2)

and

∆E without solvent
ads = E BG + adatom without solvent

tot − E BG without solvent
tot

−E adatom reference
tot . (3)

Here, Eadatom reference
tot is the total energy of any combination of gas-

phase molecules used to calculate the adsorption energy. For example,

Eadatom reference
tot may be expanded to EH2O

tot − EH2
tot to serve as the reference

energy for an O adatom. Because these values are always gasphase reference

energy values, also in the case of the solvated model systems, they cancel out

in the ∆∆Esolv calculation.

Therefore, equation (1) reduces to:

∆∆Esolv = E BG + adatom with solvent
tot − E BG with solvent

tot

−(E BG + adatom without solvent
tot − E BG without solvent

tot ) (4)
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2.2 Calculation of the confidence interval for average

ensemble properties

The confidence interval (CI) is a useful statistical measure for the error bar of

an average result sampled from a normal distribution of values. It is therefore

also useful to estimate the error bar of ensemble averages sampled through

molecular dynamics integration; see Grossfield et al.[31] for more details. The

CI defines an interval in which the true ensemble average lies with a certain

probability. Here, a 95 % probability threshold is used to define the error bars,

i.e., the 95 % CI.

The two-sided CI < x > of a variable x is defined as

< x >= x̄± U, (5)

where x̄ is the ensemble average and U is the expanded uncertainty. The

expanded uncertainty is defined as

U = k s(x̄), (6)

where k is the coverage factor and s(x̄) is the experimental standard deviation

of the mean. s(x̄) is defined as

s(x̄) =
s(x)√

n
, (7)

where s(x) is the experimental standard deviation

s(x) =

√

∑n

j=1(xj − x̄)2

n− 1
(8)
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with the sample values xj , the arithmetric mean of the ensemble property x̄,

and the number of independent samples n.

The coverage factor k is a measure for the number of independent samples

taken into account during calculation of the standard deviation. For the 95 %

CI used in this work, the coverage factors k are given by Grossfield et al. as

follows:

Table 1 Coverage factors k as a function of the number of independent samples n.
Reproduced from Grossfield et al.[31]

n k

6 2.57

11 2.23

16 2.13

21 2.09

26 2.06

51 2.01

101 1.98

3 Computational Details

3.1 BG sheet model system

The model system used in this study is a 32-atomic graphene sheet with one

B dopant atom, analogous to our previous works on NG and BG.[29, 30] To

study the influence of solvation on the ORR intermediates *O, *OH, and

*OOH, 1-4 layers of water molecules with 8 water molecules per layer are

added to the model. The water configurations built initially were inspired by

the configurations presented by Reda et al. in a study of the solvation of ORR

intermediates on NG.[23] The group showed that the maximum H2O coverage

per layer for NG is ΘH2O = 2
3

monolayers which the present results confirm.

Hence, a maximum of 24 atoms (8 molecules) can be placed per layer before
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lateral crowding destabilizes the water configuration and formation of a new

layer begins. Figure 1 shows a representative illustration of the BG sheet model

with an *O adatom in contact with 4 layers of water molecules; illustrations of

sheet models with *OH and *OOH admolecules as well as models in contact

with 1-3 layers of water are shown in figures S1 and S2, respectively.

Fig. 1 Rendered illustration of the BG sheet model system with an *O adatom in contact
with 32 water molecules (4 layers).

In agreement with studies by Fazio et al., [17] Ferrighi et al.,[19] and Wang

et al.[14] but in disagreement with the study by Jiao et al.,[12] we find adsorp-

tion of the *O intermediate on the C-B bridge position to be energetically most

favorable. The *OH and *OOH adspecies are found to adsorb most favorably

on the B top position, which is in agreement with all previously mentioned

studies.

The 32-atomic BG model system is converged with respect to the adsorp-

tion energy of the ORR intermediates, *O, *OH, and *OOH, see figure S4.
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This model therefore allows for the study of the adsorption energy - and the

influence of solvation thereon - for a dilute system where the electronic effects

of both the dopant atom and the adspecies are isolated and crowding effects

can be ruled out.

3.2 Simulation parameters

The obtained data sets, including input files with simulation param-

eters, are distributed alongside this article and are available under

DOI:10.5281/zenodo.7684918.

3.3 Choice of DFT code and functional

All simulations were performed with the VASP software version 6.2.0.[32–35]

All calculations used the RPBE density functional[36] with DFT-D3 disper-

sion correction.[15, 16] The RPBE-D3 method has been shown to yield water

configurations in good agreement with experiments and higher-level methods

at comparatively low computational cost.[37] Previous work on NG showed

that adsorption energy values for the ORR intermediates can be wrong by

up to 0.4 eV compared to the best estimate provided by the HSE06 hybrid

functional, which was found to give the lowest error of 5 % compared to a dif-

fusion Monte Carlo benchmark calculation.[29] Similar results were obtained

for BG,[30] see table S1, where ηTCM with the HSE06 functional was ca. 1.0 V

vs. SHE and GGA functionals underestimated this best-estimate value by up

to 0.6 V. Figure S3 shows the free energy trends for the ORR on BG obtained

with various density functionals. However, our previous work also showed that

∆∆Esolv does not share the same strong dependency on the functional.[29]

This realization enables the present study since FPMD simulations as long as

required for this work are currently not computationally feasible using hybrid

functionals.
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3.3.1 Static DFT calculations

Static calculations constitute single-point electronic energy calculations as well

as minimization of the total energy with respect to the atomic coordinates.

Wave functions were self-consistently optimized until the energy in subsequent

iterations changed by less than 10−6 eV. The wave function was sampled using

Monkhorst-Pack k point grids.[38] A k point density larger than 2×2×1 was

found to give converged results for ∆∆Esolv, see figure S5. Due to the wide

variety of structures calculated in this work, refer to the data set distributed

alongside this article to see the chosen k point density for each subset of

calculations.

Simulations were carried out using a plane wave basis set with an energy

cutoff of 600 eV to represent valence electrons and the projector-augmented

wave (PAW) method[39, 40] was used to account for the effect of inner elec-

trons. See figure S6 for a convergence study for the PAW energy cutoff.

Gaussian-type finite temperature smearing was used to speed up convergence.

The smearing width is chosen so that the electronic entropy was smaller than

1 meV in all cases. Real-space evaluation of the projection operators was used

to speed up calculations of larger systems, using a precision of 10−3 eV atom−1.

Atomic coordinates were optimized until forces reached below 10−2 eV Å−1.

The L-BFGS limited-memory Broyden optimizer from the VASP Transition

State Tools (VTST) software package was used to minimize the forces with

respect to the atomic coordinates. The periodic images are separated by 14 Å

of vacuum and a dipole correction is applied perpendicular to the slab.

3.3.2 Classical molecular dynamics simulations

Classical molecular dynamics (MD) simulations were carried out in an NVT

ensemble at 300 K using the Langevin dynamics[41] implemented in VASP. The
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simulations used similar parameters to those outlined in section 3.3.1 but used

a lower PAW energy cutoff of 400 eV and a 3×3×1 Monkhorst-Pack k point

grid for computational efficiency. A Langevin friction parameter of γ = 4.91

was used throughout all simulations.

Dynamics were calculated initially until the total energy and temperature

were converged. This equilibration period is not considered in the evalua-

tion and was optimized on a case-by-case basis. After equilibration had been

achieved, the actual sampling was performed over a period of time. In all simu-

lations the geometry of the graphene sheet and the adspecies were constrained

to the geometry obtained from a one-shot geometry optimization of the system

in contact with n = 1− 4 water layers, respectively. Only the water molecules

were allowed to move during simulations. The Etot vs. t and T vs. t trends

for all simulations are shown in the online SI.

Two data sets were generated:

1. First, simulations were performed without any constraints on the water

molecules and with a time step of 0.1 fs. Simulations were continued up

to a total simulation time of 10 ps after thermalization. This set of MD

simulations will be referred to as the flexible MD data set going forward.

2. Second, simulations were repeated after placing a Rattle-type bond length

constraint[42] on the O-H and H-H bonds to keep the geometry of water

molecules rigid throughout simulations, thus enabling a coarse-grained time

step of 1.0 fs. Simulations were continued up to a total simulation time of

100 ps after thermalization. This set of MD simulations set will be referred

to as the constrained MD data set going forward.

To obtain ∆∆Esolv, configurations were sampled every 1 ps, yielding 10

samples for the flexible MD data set and 100 samples for the constrained MD

data set. This choice of sampling frequency is informed by the correlation time
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of water. The correlation time is the time it takes for complete re-orientation of

the water arrangement, thus yielding a new, independent sample configuration

that is statistically significant. It was found to be ca. 1.7 ps for water at room

temperature using nuclear magnetic resonance spectroscopy.[43] The chosen

sampling rate of 1 ps is smaller than this value as a result of the significant

computational effort of performing long dynamics simulations. To minimize

the risk of oversampling, Langevin dynamics was chosen to describe coupling

to a heat bath. Langevin dynamics introduces a stochastic component to the

propagation which can help to diversify configurations more quickly compared

to fully deterministic dynamics.

4 Results

4.1 One-shot minimization of atomic coordinates

The first data set is generated by bringing the BG model system with *O, *OH,

and *OOH adspecies into contact with 4–32 molecules of water and minimizing

the resulting configurations with respect to the atomic forces. This data set

will be referred to as the one-shot minimization data set going forward. The

chosen water configurations are modeled after those used by Reda et al. to

calculate the solvation stabilization energy for the ORR intermediates on NG

sheet model systems.[23] Configurations were created so that water molecules

are only on one side of the BG sheet model or on both sides, denoted with the

† and ‡ symbols, respectively, in table 2 and figure 2.

The ∆∆Esolv results obtained from the one-shot minimization data set

give rise to several trends. First, when water molecules are placed only on one

side of the model, ∆∆Esolv for the *O intermediate does not appear to be

converged within the tested series of models as ∆∆Esolv still increases from
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Table 2 Summary of the calculated ∆∆Esolv results based on the one-shot minimization

data set. † and ‡ indicate values where water molecules are place only on one side or on
both sides of the BG sheet model, respectively.

# of water molecules Arrangement ∆∆Esolv / eV

4 H2O on side with *O 0.19†

8 H2O on side with *O -0.04†

16 H2O on side with *O -0.11†

16 H2O 8 on both sides 0.15‡

24 H2O 16 on side with *O, 8 on the other side -0.07‡

24 H2O on side with *O -0.20†

32 H2O 24 on side with *O, 8 on the other side -0.04‡

32 H2O on side with *O -0.06†

32 H2O 16 on side with *O, 16 on the other side -0.06

4 8 16 24 32
# of wate  molec#les

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ΔΔ
E s

ol
v /

 e
V

H2O only on side of *O†

H2O on both sides‡

Fig. 2 ∆∆Esolv results for the *O intermediate on BG in contact with 4–32 molecules of
water obtained from the one-shot minimization data set. The blue line shows ∆∆Esolv when
water molecules are exclusively placed on the side of the model where the adatom is located.
The orange line shows ∆∆Esolv values from select models where water molecules are placed
on both sides of the model. For the orange line, the x axis indicates the number of water
molecules on the side with the adatom and not the total number of water molecules. The †

and ‡ indicators connect the values in this figure to the corresponding data values in table 2.
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-0.20 eV to -0.06 from 24 to 32 molecules. Values can be deemed converged if

changes are below ca. 0.05 eV or 1 kcal mol−1, i.e., chemical accuracy.

Second, the results for simulations where molecules are placed only on the

side of the sheet model with the adatom (†) are inconsistent with simulations

where molecules are placed on both sides of the model (‡). For example, devi-

ations of < 0.05 eV are found between simulations where 16 molecules are

placed on the side of the adatom and 0, 8, and 16 molecules are placed on

the other side. This result would potentially indicate that water molecules on

the opposite side of where the adspecies is located have negligible influence

and can be omitted. However, the deviation between ∆∆Esolv values where 8

molecules are placed on the side with the adspecies and 0 or 8 molecules are

placed on the other side is 0.19 eV. Similarly, the deviation between ∆∆Esolv

values where 24 molecules are placed on the side with *O and 0 or 8 molecules

are placed on the other side is 0.16 eV.

Results from one-shot minimization data set are therefore inconsistent.

From this data, it is unclear if and when ∆∆Esolv will converge as a function of

the number of added water molecules and it cannot be assessed with confidence

if water molecules do or do not need to be present on the side of the sheet

opposite of the adspecies.

One potential reason for the inconsistent behavior lies in the one-shot

nature of the data set: water molecule arrangements are flexible and form a

complex energy landscape where minimization algorithms can easily become

stuck in local minimum configurations. This limitation can be overcome by

rigorous sampling of the configurational space by MD integration.
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4.2 NVT simulations

In order to probe if insufficient sampling of the configurational space is

responsible for the inconsistent results of the one-shot minimization data set,

∆∆Esolv is subsequently determined as an ensemble average by performing

MD simulations for a total of 10 ps using a time step of 0.1 fs. No constraint was

placed on the O-H and H-H bonds of water molecules. This set of simulations

is referred to as the flexible MD data set. Due to the significant computational

effort of these simulations, only water configurations where water molecules

are placed on the side of the adspecies are considered. Simulations are per-

formed for the clean BG sheet model, for the BG sheet with an *O adatom

in contact with 8–32 molecules, and for the *OH and *OOH adspecies in con-

tact with 8–24 molecules of water. Figure 3a visualizes the ∆∆Esolv results

calculated from this data set.

8 16 24 32
# of water molecules

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

ΔΔ
E s

ol
v /
 e
V

a
*O
*OH
*OOH

8 16 24 32
# of water molecules

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

ΔΔ
E s

ol
v /
 e
V

b
*O
*OH
*OOH

Fig. 3 ∆∆Esolv results for the *O (blue curve), *OH (orange curve), and *OOH (green
curve) adspecies on BG in contact with 8–32 molecules of water obtained as ensemble aver-
ages from a 10 ps of MD using a time step of 0.1 fs where water molecules were flexible and
b 100 ps of MD using a time step of 1.0 fs where water molecules were constrained. The
error bars indicate the two-sided 95 % CI calculated according to equations (5)-(8).

Focusing on the *O intermediate (blue curve), a similar trend of ∆∆Esolv

vs. the number of water molecules emerges as before from the one-shot mini-

mization data set: the values oscillate and there is an increase of ∆∆Esolv from
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-0.3 eV to 0.2 eV from 24 to 32 molecules, indicating significant destabilization

of this adspecies. In general, the differences between subsequent data points

are found to be larger than in the case of the one-shot minimization data set.

It can be summarized that the flexible MD data set did not yield more

consistent ∆∆Esolv results than the one-shot minimization data set. While

a similar overall ∆∆Esolv trend is observed for the *O adspecies, differences

between subsequent data points are larger than in the case of the one-shot

minimization data set.

Another important observation is the significant sizes of the error bars,

which extend from 0.25 eV up to over 0.5 eV in some cases. Note that in the

case of the *O intermediate, the error bar span becomes larger as a function

of the number of water molecules. This effect is much less pronounced, if at

all, for the *OH and *OOH intermediates. However, it is clear from the size

of the error bars that the length of simulation time is too short compared to

the correlation time of water and thus simulations only yielded 10 independent

samples that entered into the evaluation.

In an effort to extend the simulation time, a coarse-graining approach was

chosen where the O-H and H-H bond lengths of water molecules were con-

strained to the average corresponding bond lengths obtained in the flexible MD

data set. This bond length constraint allows for larger simulation time steps

to be taken without the risk of spurious discretization errors from inadequate

sampling of the fast O-H vibrations. A subsequent set of dynamics simulations

of the same model systems thus used a time step of 1.0 fs and was contin-

ued for a total of 100 ps simulation time, yielding 100 independent samples.

∆∆Esolv results from this constrained MD data set are visualized in figure 3b.
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∆∆Esolv trends from the constrained MD data set, while also showing no

signs of converging behavior, differ significantly from the flexible MD and one-

shot optimization data sets. The obtained ∆∆Esolv values for the *O adspecies

do not oscillate as in the case of the other data sets but continuously increase

with increasing number of water molecules. From this data set, the presence

of 24 and 32 water molecules is predicted to significantly destabilize this inter-

mediate. With ca. 0.25 eV, the data point for 32 water molecules from this

data set is similar to the flexible MD data set, however, this data set does not

show the reduction of ∆∆Esolv at 24 molecules that was observed for both the

flexible MD and the one-shot minimization data sets.

The *OH and *OOH adspecies show similar ∆∆Esolv trends that parallel

each other in this data set; however, values oscillate by up to 0.5 eV when the

number of water molecules is increased. Finally, the factor 10 longer simulation

time affects the size of the error bars which is now on the scale of ca. 0.1 eV.

Similar to results from the flexible MD data set, the error bars for ∆∆Esolv

of the *O adspecies are found to increase with increasing number of water

molecules in the simulation while no such trend is observed for the *OH and

*OOH intermediates.

Finally, the local structure of the water molecules around the adspecies

is analyzed using z distribution function, g(z), see figure S7. The g(z) distri-

butions are obtained by calculating distances between the O atoms of water

molecules and an x−y plane within the BG sheet model. The g(z) show distinct

bands for the first and second solvation layer. The bands for 3 and 4 layers are

significantly more broadened, indicating that the surface-adjacent double layer

is more strongly coordinated compared to subsequent layers. Notably, shoul-

ders at the first band are visible in the g(z) from the flexible MD data set which
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are not visible in the constrained MD data set. However, this result is pre-

sented with the caveat that the data is more noisy compared to the smoother

constrained molecule g(z) results due to the 10x smaller sampling statistics.

This result potentially indicates that the bond length constraint affects the

coordination fine structure around the adspecies and thus may help to explain

the differences between the flexible MD and constrained MD data sets. How-

ever, more detailed investigation is required to validate the importance of this

observed difference.

It can be summarized that coarse-grained MD simulations yielded a data

set that is significantly different from the more similar-to-each-other flexible

MD and one-shot minimization data sets but did not yield more consistent

∆∆Esolv results either. Finally, the bond length constraint is found to change

the ∆∆Esolv results compared to the flexible MD data set; however, since there

are currently no converged reference values for ∆∆Esolv, it is impossible to

assess if the changes introduced by the Rattle-type constraint are detrimental

or not.

4.3 Re-sampling and energy minimization

The flexible MD and constrained MD data sets did not yield converged

∆∆Esolv results. There are, however, two technical limitations which may

reduce the significance of these data sets:

1. For these data sets, ∆∆Esolv is calculated by using the average total energy

from an NVT ensemble (T = 300 K) for the energy terms labeled "with

solvent" in equation (4). The energy terms labeled "without solvent" are

obtained from energy minimization calculations of the systems without sol-

vent which are technically at 0 K temperature. While the BG sheet model

and adspecies were kept frozen in the atomic configuration from a 0 K
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energy minimization during the MD and only water molecules were allowed

to move, it cannot be fully excluded that results are biased due to a mis-

match between the averaged finite-temperature MD values on one side and

the locally optimized, 0 K values on the other side of the equation.

2. As outlined in section 3, the MD simulations - as well as the corresponding

reference simulations of the systems "without solvent" needed for equation

(4) - used a reduced PAW energy cutoff value of 400 eV to enable longer

simulation times. This value is technically not converged for adsorption

energy calculations, see figure S5.

In order to address both of these limitations, a fourth data set is produced. To

this end, 20 structures are randomly sampled from each flexible MD trajectory

and subsequently energy-minimized using the settings presented in section 3,

i.e., with a larger PAW energy cutoff of 600 eV. This way, the diversity of the

MD-generated configurations is maintained but all values entering equation (4)

are obtained from energy-minimized atomic configurations using safe accuracy

settings. This data set will be referred to as the resampled data set going

forward. Figure 4 visualizes the ∆∆Esolv results obtained from this data set.

The resampled data set shares similarities with the flexible MD and one-

shot optimization data sets, for example the characteristic dip of ∆∆Esolv

for the *O adatom at 24 water molecules. This result further indicates that

the bond length constraint used to obtain the constrained MD data set is

likely altering the trends in a significant way. The previously discussed trend

regarding error bar spans increasing with increasing number of molecules is

distinctly present both for the *O and the *OH adspecies. Ultimately, this

data set does not provide fundamentally different insights into the ∆∆Esolv

trends compared to the preceding analyses.
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Fig. 4 ∆∆Esolv results for the *O, *OH, and *OOH adspecies on BG in contact with 8–
32 molecules of water obtained as average values over 20 images per data point which were
randomly resampled from the flexible MD data set and subsequently energy-minimized with
respect to the atomic coordinates. The error bars indicate the two-sided 95 % CI calculated
according to equations (5)-(8).

5 Discussion

5.1 Comparison of the results from different data sets

Figure 5 shows a side-by-side comparison of ∆∆Esolv as a function of the

number of water molecules for the *O, *OH, and *OOH adspecies from the

four obtained data sets. The resampled data set is the most significant data

set among those obtained in this work as it combines the broad configurational

diversification of the MD simulations with the methodological consistency of

calculating ∆∆Esolv using strict accuracy parameters and exclusively on the

basis of energy-minimized structures. By comparing the data sets with each

other and with the resampled data set in particular, several important aspects

can be highlighted.
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Fig. 5 Comparison of ∆∆Esolv results for the a *O, b *OH, and c *OOH adspecies from
the one-shot minimization data set, the flexible MD and constrained MD data sets, and the
resampled data set.

First, convergence of ∆∆Esolv, i.e. changes of < 0.05 eV between subse-

quent data points, is not observed in any case. It is impossible at this point to

give a confident estimate of ∆∆Esolv for the tested adspecies on the BG sheet

model. This result indicates that more than 32 molecules (4 layers) of water

are likely necessary to obtain converged results.

Converging the ∆∆Esolv value to changes within chemical accuracy is of

crucial importance. For example, consider the potential-dependent free energy

trends for the ORR on the BG model presented in figure S3. These trends

were obtained according to the free energy approach using the computa-

tional hydrogen electrode.[13] Using the most reliable functional for adsorption

energy calculations on this material class according to benchmarks,[29, 44, 45]

the HSE06 hybrid functional, the potential-determining step is the formation



Springer Nature 2021 LATEX template

24 B-Doped Graphene Solvation

of the *OOH intermediate by a significant margin. The extrapolated ther-

mochemical overpotential, ηTCM, for the ORR on the present BG model is

ca. 1.0V vs. SHE. Stabilization of the *OOH intermediate by roughly -0.4 eV (8

water molecules), -0.6 eV (16 water molecules), or -0.2 eV (24 water molecules)

will therefore proportionally reduce ηTCM to 0.6 V, 0.4 V, and 0.8 V vs. SHE,

respectively. Depending on the number of included water molecules, one can

predict a mostly inactive (ηTCM = 0.8 V, 24 molecules) or moderately active

(ηTCM = 0.4 V, 16 molecules) ORR electrocatalyst. The overpotential of a typ-

ical reference Pt/C electrocatalyst is 0.3–0.4 V.[18] Therefore, ∆∆Esolv must

be converged within the limits of chemical accuracy before any trustworthy

prediction can be made.

Second, there appears to be no obvious systematicity to whether trends

from the different data sets agree with each other or not. For example, values

from different data sets for the *OOH intermediate are in reasonable agreement

and show similar overall trends. In the case of the *O adatom, there is some

correlation between trends from correlated data sets (in particular the flexible

MD data set and the resampled data set which was generated from the former)

and only the constrained MD data set behaves significantly different. In the

case of *OH, however, there appears to be no shared trends between results

from either of the data sets. Further research is needed to analyze why there

is reasonable agreement in some cases and no agreement in other cases.

Third, the error bars in all cases are significantly larger than chemical accu-

racy (± 0.05 eV). Aside from the fluctuation amplitude of the total energy

values, the size of the error bar is governed by the number of independent sam-

ples. Because of the long experimentally measured correlation time of water,

significantly longer statistics may be required to reduce the uncertainty to
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within chemical accuracy. See also section 5.2.1 for a detailed analysis of the

influence of sampling frequency.

Fourth, from the results presented in table 2, it cannot be completely ruled

out that water molecules may have to be added to both sides of the BG sheet

model to obtain correct results. This result stands in contrast to results by

Reda et al. for NG where results for placing water molecules on one side or

both sides of the model were close to identical.[23] This result therefore shows

that ∆∆Esolv values obtained for one material cannot be transferred to others,

even if they are as closely related as NG and BG.

Fifth, analysis of the z distributions, g(z), of oxygen atoms from the water

molecules based on the MD data sets provided some first evidence that the

bond length constraint used to obtain the constrained MD data set may have

affected the coordination fine structure around the adspecies. However, due to

the poor statistics resulting from the small required time step of the flexible

MD data set, it would be necessary to extend these simulations by a factor 5-

10 to obtain enough independent samples to make sure that this observation

is significant.

To the best of our knowledge, there is only one other study in literature

where ∆∆Esolv values from explicit solvation were calculated for the ORR

intermediates on BG. Fazio et al. used a molecular BG flake model in contact

with a cluster of 6 water molecules to obtain ∆∆Esolv.[17] The group used the

B3LYP hybrid functional in combination with DFT-D3 dispersion correction.

From this model, they obtained ∆∆Esolv values of -0.06 eV, -0.37 eV, and -

0.46 eV for the *O, *OH, and *OOH intermediates. The values for *O and

*OOH are in reasonable agreement with the results for 8 water molecules in

the present study, which is the closest point of reference. The value for *OH

is 0.15 to 0.20 eV more positive than in the present work. However, because
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the ∆∆Esolv values in the present work are not converged even when 32 water

molecules are included, an in-depth discussion about potential reasons for the

(dis-)agreement of the present results and the results by Fazio et al. is not

appropriate.

As an intermediary conclusion, the most likely explanation for the non-

conversion of the ∆∆Esolv results in general, as well as for the non-systematic

differences between data sets more specifically, is that significantly more water

molecules need to be included in simulations. It is unclear at this point how

many water molecules would be required to achieve convergence. Sakong et al.

found that 6 layers of water are needed to obtain bulk water behavior and con-

verged work function estimates in the case of FPMD simulations of a Pt(111)

surface in contact with water.[46] However, Pt(111) is a strongly-coordinating

surface compared to the hydrophobic BG sheet model in the present study.

Furthermore, the group tested for convergence of the work function and not

for ∆∆Esolv of reaction intermediates. Hence, it is unlikely that the number

of 6 necessary water layers will also be the correct number of layers to include

for the present system.

For these reasons, it is currently not possible to foresee the ultimately

required number of water molecules required to obtain converged ∆∆Esolv

results for this system. Attempting to find this number systematically by

dynamics simulations with DFT atomic forces quickly becomes computation-

ally unfeasible; simulations for the models in contact with 32 water molecules

in this work already required several weeks of computational time. Even if

these considerable time and energy resources would be spent to identify this

number for the present problem, such a study would have to be repeated for
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every new material under investigation. Even though the influence of solva-

tion has been shown to significantly affect free energy trends, the authors are

therefore convinced that such simulations cannot (yet) be performed routinely.

We have thus come to the decision to publish the present results as-is and

to not continue running simulations with model systems that include more

and more water molecules at ever increasing computational cost. Instead,

we are currently focusing research efforts into development of a 2D periodic

polarizable-embedding QMMM method that will allow for simulations with

thousands of water molecules while retaining electronic structure level accu-

racy for the surface model and the closest few layers of water molecules. This

method will use the Single Center Multipole Expansion (SCME) ansatz to

describe polarization of water molecules which is crucial to accurately describe

interface processes such as charge transfer.[47, 48] Because the boundary plane

between the QM and MM regions has exclusively water molecules on both

sides, and because it is not necessary to describe diffusion to or from the sur-

face to obtain ∆∆Esolv results, an efficient restrictive boundary method can

be used. The SAFIRES method recently developed in our groups was build to

support 2D periodic boundary conditions.[49]

A publication on the technical implementation of the 2D periodic

polarizable-embedding QMMM ansatz for the open-source GPAW and ASE

programs is currently in preparation in our groups. The goal is to use this

method to revisit the BG model system in the present work.

5.2 Analysis of potential error sources

To conclude the discussion of the data sets presented in this work, the following

sections will rule out various potential error sources that readers familiar with

dynamics simulations and the pitfalls of solvation energy calculations may be

concerned about.
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5.2.1 Influence of the sampling frequency on the results

Configurations were sampled from the dynamics simulations at an interval of

1 ps. It is important to ask how the ∆∆Esolv results are affected by changes of

the sampling frequency. Figure S8 compares ∆∆Esolv results from the flexible

MD and constrained MD data sets analyzed every 2 ps, 1 ps, 100 fs, and 10 fs.

The ∆∆Esolv results appear to be robust against the choice of sampling

frequency. The only significant differences are observed when between sampling

the flexible MD data set every 2 ps (5 total samples) or every 1 ps (10 total

samples) and faster. This difference can be attributed to the poor statistics in

the case of the 2 ps sampling frequency.

The size of the error bars is affected significantly by the sampling frequency

because the square root of the number of samples,
√
n, enters the divisor

of equation (7). This test therefore highlights the importance of choosing a

reasonable sampling frequency based on the physical properties of the system

to obtain a meaningful error bar. It is easy to get lured into a false sense of

security by oversampling the results to obtain small error bars.

5.2.2 Spurious dipole and quadrupole corrections

Total energy calculations were performed using dipole and quadrupole cor-

rection perpendicular to the surface to avoid interactions between periodic

repetitions of the simulation box. It is known that first-row semiconduc-

tors with defects, of which BG is an example, can lead to large dipole and

quadrupole moments, thus making the correction necessary. However, our

simulations showed that the correction can sometimes give erroneously large

corrections of several eV for unknown reasons. After re-optimizing the wave

function in a single-point calculation, the correction is then found to be of a

reasonable magnitude again, usually on the order of some meV.
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Because it is impossible to perform this manual correction for all calcula-

tions in this work, the consistency of the results is representatively examined

by analyzing the average dipole and quadrupole correction energy (and uncer-

tainty thereof) of the resampled data set. Figure S9 shows the results of this

analysis. The average correction energy is <= 0.02 eV in all cases, which bet-

ter than chemical accuracy. Error bars are found to be as large as 0.01 eV

in some cases and close to 0.02 eV in one extreme case (BG-OOH in contact

with 24 water molecules), indicating that the dipole and quadrupole energy

correction is indeed volatile (in relation to the absolute values) and dependent

on the exact geometry of the system. However, due to the small overall mag-

nitude of the correction, it can be concluded that this correction should not

significantly influence the calculation results.

5.2.3 Spurious dispersion correction

DFT-D3 dispersion correction values are significantly larger in magnitude

than the dipole and quadrupole correction energy discussed in section 5.2.2.

Figure S10a uses the resampled data set to show the dispersion energy dif-

ference ∆Edisp = E
BG−adspecies
disp − EBG−clean

disp between the BG systems with

the adspecies *O, *OH, and *OOH and the clean system, all of which are in

contact with water. This analysis therefore highlights the contribution of the

dispersion energy to the adsorption energy for the solvated model systems.

Figure 9b reproduces the ∆∆Esolv results as a function of the number of water

molecules shown in figure 4 but with the dispersion energy removed from the

total energy.

This analysis shows that the dispersion contributions increase with the size

of the solute. ∆Edisp is close to zero for the *O adatom but ca. -0.5 eV for

*OOH in contact with 16 water molecules. The values for *OH and *OOH

fluctuate significantly between subsequent data points, raising the question if
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the dispersion correction may be partially responsible for the erratic behavior

of the ∆∆Esolv trends. However, analyzing the ∆∆Esolv trends in figure S10b

shows that the results do not become more consistent when the dispersion

energy contribution is removed. Hence, it can be concluded that any volatility

of the dispersion correction results is also not the cause for but most likely the

result of the erratic nature of the entire data set.

One caveat in this analysis and discussion, however, is that this a poste-

riori removal of the final dispersion correction energy does not remove the

entire influence of dispersion correction on the data set. Both the MD simula-

tions and the local minimization of the structures in the resampled data used

dispersion correction throughout, hence the final structures (re-)analyzed here

are generated on the RPBE-D3 potential surface. Despite this caveat, it is still

unlikely that dispersion is the driving factor behind the erratic results since in

particular the RPBE-D3 functional combination has been shown in the past

to produce water structure that is in good agreement with experiments.[37]

5.2.4 Influence of simulation cell size

Simulation cells varied in size between simulations with different number of

included water molecules. Because a PAW code was used and PAWs always fill

the entire simulation cell, the c cell parameter was minimized on a case-by-case

basis to minimize the computational effort. Increasing or decreasing the box

size also changes the total energy in a small way, hence it is important that

all energy values used to calculate ∆∆Esolv in equation (4) use the same cell

dimensions. Consistency in this regard was ensured by generating the reference

systems without solvent by removing water molecules from the original system;

the reference systems are given alongside the solvated parent models in the

data set available under DOI:10.5281/zenodo.7684918.
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Furthermore, table S2 summarizes the total energy results for various refer-

ence systems without solvent from the MD data sets. The differences between

system are, despite differences in the c cell parameter, < 0.01 eV. Hence,

the contribution from inconsistent cell dimensions, even if left untreated, are

unlikely to distort results enough to account for the erratic results in this work.

5.2.5 Influence of minimizing the reference systems

This concern is related to the discussion about inconsistent cell size in section

5.2.4. As pointed out there, the reference systems were obtained from the

solvated parent systems by removal of the water molecules and subsequent

energy-minimizaion of the resulting atomic configurations. This approach was

chosen to account for the possibility that the most stable atomic arrangement

of the BG-adspecies system may change once water molecules are removed.

However, this approach creates a potential inconsistency: by optimizing the

atomic configuration of the reference systems, the ∆∆Esolv values obtained

from equation (4) do not only contain the interaction of the BG-adspecies

system with the water molecules but also the reorganization energy of the

systems when going from a system in vacuum to a solvated system.

To investigate if energy minimization of the atomic configuration of the

reference systems creates a bias, figure S11 compares ∆∆Esolv results from

the one-shot optimization data set where the reference systems without

solvent were either minimized or where the reference energy contributions

E BG + adatom without solvent
tot and E BG without solvent

tot were obtained from single-

point total energy calculations. Results from this test show that the overall

trends are identical. However, ∆∆Esolv for the adspecies in contact with 16,

24, and 32 water molecules are ca. 0.2 eV more negative when obtained from

single-point energy calculations based on the formerly-solvated atomic con-

figurations. This result is unsurprising because the reference systems without
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water molecules can be assumed to be in a slightly unfavorable configuration

when not allowed to relax under the new environmental conditions.

Overall, however, the differences appear to be systematic across the board

and do not change the trends. Therefore, this factor is also not responsible

for the erratic, non-converging behavior of ∆∆Esolv with increasing number

of water molecules.

5.2.6 Influence of using the lowest-energy structures to

obtain the solvation stabilization energy

∆∆Esolv of the ORR intermediates on NG was calculated by Yu et al. in

2011 by introducing 41 water molecules to a NG model, performing classical

dynamics simulations with DFT fores, and finally minimizing the lowest-energy

solvated structures obtained from the MD simulation with respect to the

atomic coordinates.[21] The group obtained ∆∆Esolv values of -0.53, -0.38,

and -0.49 eV for the *O, *OH, and *OOH intermediates, respectively. While

this approach fails to capture the vast structural diversity accessible to the

system and is therefore less representative of the system under experimental

conditions, it has value from a computational perspective because ∆∆Esolv

according to equation 4 is calculated exclusively from 4 values total, all of which

represent the best possible guess for the global minimum energy configuration

of each system.

Hence, this approach is applied to the present data set. The flexible MD

data set was re-analyzed to find the structure with the lowest total energy for

each combination of adspecies and number of water molecules. The obtained

images were then energy-minimized using the tight accuracy settings outlined

in section 3. Figure S12 shows the results of this approach.
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Figure S12 shows that the ∆∆Esolv results for *OH and *OOH are some-

what comparable to the resampled data set, which is most closely related to this

test, in terms of relative trends but less so in terms of absolute values. However,

the *O intermediate shows significantly more negative ∆∆Esolv results.

It can be concluded that this approach not only did not resolve the erratic

results but can further distort the results because the close-to-ideal local

configurations optimized in this case likely do not represent the average con-

figurations of water molecules around the adspecies in real, finite-temperature

systems.

5.2.7 Influence of constraining the geometry of the BG sheet

100 ps of classical dynamics without bond length constraints on the water

molecules and no geometry constraint on the BG sheet and adspecies were acci-

dentally performed for the BG-OOH system in contact with 1 layer of water.

This mistake, however, can be used to probe the influence of the geometry

constraint on the BG-OOH system.

Figure S13 compares the total energy and temperature trends over the

course of the simulation time for the simulations with and without geometry

constraint on the BG-OOH system. Most notably, the total energy fluctua-

tions are significantly increased in the case of the model without constraint.

The increased amplitude of fluctuations translate to a larger error bar. Hence,

without the geometry constraint on the BG-OOH backbone, more sampling

statistics is required to reduce the uncertainty to an appropriate level. In the

interest of computational feasibility, the geometry constraint therefore turns

out to be an almost necessary prerequisite.

Finally, figure S14 compares the g(z) of the systems where the BG sheet

was constrained against that of the non-constrained system. No significant

differences were observed. This result indicates that constraining the BG sheet
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does not significantly affect the interactions between the surface and the first

water layer from a structural point of view.

5.2.8 Embedded solvation approach

The embedded solvation approach, where a small cluster of explicit solvent

molecules is used in combination with an implicit continuum description of the

solvent bulk, has recently been employed to good effect.[50, 51] In the begin-

ning of this study, the one-shot minimization data set was, in fact, computed

using the embedded approach and similarly erratic results were obtained. The

implicit solvent model was then discarded for the remainder of this study to

reduce the number of potential error sources.

6 Conclusion

Density functional theory-driven minimization calculations and classical

molecular dynamics simulations were used to obtain the solvation stabilization

energy, ∆∆Esolv, for the oxygen reduction reaction intermediates *O, *OH,

and *OOH adsorbed on a Boron-doped graphene sheet in contact with 8, 16,

24, and 32 molecules of water. The goal of this study was to apply the obtained

∆∆Esolv values to accurate hybrid DFT adsorption energy results for the ORR

intermediates to refine potential-dependent free-energy predictions by includ-

ing the influence of solvation. Although 4 different data set were obtained that

sampled ∆∆Esolv from the model systems in different ways using static and

dynamic calculations, no converged ∆∆Esolv result were obtained.

A detailed discussion of the simulation parameters and potential error

sources is provided to rule out that technical errors lead to these erratic results.

We conclude that 32 water molecules, which is the equivalent of 4 layers of

water in this model system, are not sufficient to describe solvation of the
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adspecies within chemical accuracy. Chemical accuracy, i.e. convergence of

∆∆Esolv to changes of < 0.05 eV when adding more and more water molecules,

is essential since any reduction of the free energy of the potential-determining

intermediate will lead to a proportional reduction of the thermochemical

overpotential as well.

These results emphasize that new simulation methods are required to be

able to calculate large enough systems to obtain converged ∆∆Esolv results

since molecular dynamics simulations with DFT forces quickly become com-

putationally unfeasible when adding more and more water molecules. Our

groups are therefore focused on implementing a 2D periodic hybrid method

(often referred to as QM/MM) for the open-source ASE and GPAW software

packages which will enable calculations with thousands of water molecules.

Another promising approach to tackle this problem is the recently devel-

oped on-the-fly machine learning force field training method.[52] This approach

could be used to train a machine learning force field on a small system and

then upscale the system to contain many water molecules while retaining

close-to-DFT accuracy.

Finally, we believe in the importance of presenting these negative results

to the catalysis community as a word of caution. It is easy to underestimate

the number of explicit water molecules required to obtain sufficiently accurate

solvation energy results.

Supplementary information. A Supplementary Information document

is available online. The simulation results and input files are available via

DOI:10.5281/zenodo.7684918. The data analysis procedure for all tables and

figures in the main manuscript and supplementary information file is available

via https://bjk24.gitlab.io/bg-solvation/.
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7 Supplementary Information

7.1 The model system

Figure S1 illustrates the 32-atomic BG sheet model with the *O, *OH, and

*OOH adspecies used throughout this study. Figure S2 illustrates the BG

sheet model with an *O adatom in contact with 1-4 layers of water molecules.

Interactive visualizations of the model systems can be found online at https://

bjk24.gitlab.io/bg-solvation/docs/visualization.html.

a b

c d

Fig. S1 Illustrations of the BG sheet model (a) in contact with *O (b), *OH (c), and
*OOH (d) adspecies.

https://doi.org/10.1021/acs.jpcc.8b10046
https://doi.org/10.1103/PhysRevB.101.060201
https://bjk24.gitlab.io/bg-solvation/docs/visualization.html
https://bjk24.gitlab.io/bg-solvation/docs/visualization.html
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a b

c d

Fig. S2 Illustrations of the BG sheet model with an *O adatom in contact with 1 (a), 2
(b), 3 (c), and 4 layers (d) of water molecules.

7.2 Density functional benchmark and ORR free energy

trends

Adsorption free energy values for the ORR intermediates *O, *OH, and *OOH

and, from these, thermochemical overpotentials ηTCM are calculated for the

32-atomic BG model using various different density functionals using the com-

putational hydrogen electrode free energy method.[13] Potential-dependent

free energy values are calculated the same way as in an earlier work on NG.[29]

Using ηTCM as a descriptor for ORR activity, this test is performed to inves-

tigate how strongly the thermochemical results depend on the chosen density
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functional. In a previous study on NG, the HSE06 functional was found to

reproduce a Diffusion Monte Carlo benchmark value most accurately out of all

tested functionals.[29] Thus, the HSE06 result is used as a reference value in

the following. Figure S3 shows free energy changes of the ORR intermediates

on the BG model at 0 V vs. SHE and at the extrapolated onset potential for

each functional.

Fig. S3 Free energy diagrams for the 32-atomic BG model at 0 V obtained using GGA and
meta-GGA functionals (top) as well as PBE and hybrid functionals (bottom). A hypothetical
ideal ORR catalyst with a free energy change of 1.23 V at each reaction step is shown as a
dotted line.

The potential determining step (PDS) in all cases is the formation of the

*OOH intermediate. Compared to a hypothetical ideal ORR catalyst with a

free energy change of 1.23 V at each reaction step, the *OOH intermediate is

underbound in the case of all functionals, with hybrid functionals underbinding
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*OOH more strongly than meta-GGA and GGA functionals. The *O interme-

diate is significantly overbound in the case of GGA and meta-GGA functionals

which is in agreement with benchmark calculations on undoped graphene and

free energy calculations on NG.[29, 44, 45] The energetic description of the

*OH intermediate is similar for all tested functionals and aligns well with the

hypothetical ideal catalyst. The free energy results highlight a significant issue:

all functionals are in good agreement for the *OH intermediate but differ in

their results for the *OOH and *O adspecies. Therefore, different functionals

are bound to produce different overall trends.

To further illustrate this conclusion, thermochemical overpotentials ηTCM

are calculated from the extrapolated onset potentials Uonset as

ηTCM = 1.23 V − Uonset. (9)

ηTCM results are summarized in Table S1. The hybrid functionals

Table S1 Thermochemical overpotentials ηTCM obtained for the 32-atomic BG model
with various density functionals. ∗ Largest and smallest possible ηTCM obtained using
standard deviations of the adsorption free energy values of the ORR intermediates, based
on Bayesian error estimation using an ensemble of 2000 functionals.

Density Functional ηTCM / V

HSE06 1.06

PBE0 1.02

B3LYP 0.93

PBE 0.68

SCAN 0.61

TPSS 0.52

BEEF-vdW 0.44

(0.26–0.80)∗

HSE06 and PBE0, which constitute the most reliable result according to

benchmarking,[29] perform similarly and give the highest ηTCM out of all
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tested functionals with 1.06 and 1.02 V, respectively. The B3LYP functional

produces a slightly lower ηTCM of 0.93 V. The tested GGA and meta-GGA

functionals give significantly lower ηTCM values of 0.68 V (PBE), 0.61 V

(SCAN), 0.52 V (TPSS), and 0.44 V (BEEF-vdW). These trends are analogous

to previous computational results for NG.[29] Notably, choosing a meta-GGA

functional will not provide significant improvements over GGAs.

Bayesian error estimation is performed based on an ensemble of 2000

functionals generated by BEEF-vdW to obtain standard deviations for the

adsorption free energy values of the ORR intermediates. Based on the error

estimation, the largest- and smallest-possible ηTCM value can be calculated

which should be indicative of the overall uncertainty of GGA functionals

for this application. The ηTCM range obtained this way for BEEF-vdW is

0.26–0.80 V. Notably, this range does not include values obtained by hybrid

functionals. Since the HSE06 and PBE0 hybrid functionals are able to repro-

duce DMC benchmark values for graphene-based materials,[29, 44, 45] this

result indicates that GGA functionals lack some fundamental contribution -

likely exact exchange - that is necessary to accurately describe the electronic

structure of this material class.

7.3 Convergence studies

7.3.1 Supercell size convergence

A supercell size convergence study is performed with the generalized gradient

approximation (GGA) functional by Perdew, Burke, and Ernzerhof (PBE) as

well as with the hybrid functional by Heyd, Scuseria, and Ernzerhof (HSE06)

where the calculation of exact exchange was downsampled:

1. PBE-based optimization (labeled "PBE")
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2. HSE06-based optimization where the k grid was reduced to the Γ point for

the Hartree-Fock portion of the calculation (labeled "HSE06-fast")

The downsampling of the HSE06 functional reduces the k grid to the Γ point

for the calculation of the Hartree-Fock exchange energy, thereby making mini-

mization of the atomic coordinates computationally feasible at the hybrid DFT

level.

The test below calculates energy differences according to

∆E = Eads
tot − Eclean

tot , (10)

where Eads
tot is the total energy of a system with an adspecies (*O, *OH, or

*OOH) and Eclean
tot is the total energy of the BG sheet without any adspecies.

To test for supercell size convergence, it is not necessary to calculate an actual

adsorption energy by taking into account the total energy of the adspecies

calculated from molecules such as O2, H2, and H2O because their total energy

will change only in small ways as the size of the supercell increases. There is

always a slight change because plane waves always fill the entire box, also for

molecules, which makes the total energy dependent on the box size. However,

this effect is insignificant compared to the influence of decreasing dopant and

adatom concentration as a function of the supercell size. Figure S4 shows the

results of this test.

Since these convergence tests were performed at a much earlier date

than the production calculations shown in the Results section of the main

manuscript, slightly different settings were used in this test compared to

the settings summarized in the Computational Details section of the main

manuscript. The following list addresses the differences and their potential

impact on the results:
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Fig. S4 Supercell size convergence study where ∆E is calculated according to equation
(10) for the BG sheet in contact with O, OH, and OOH adspecies using the PBE and a
downsampled HSE06 functional (see text for details).

1. This data set uses a PAW energy cutoff of ENCUT = 500. As can be seen

further below in section 7.3.3, the choice of ENCUT = 600, which was

used in the main article for geometry optimization calculations, is on the

paranoid end of safe and there is no reason to assume that using a cutoff

of 500 eV in this instance had an adverse effect on the results.

2. Note that the k grid was individually optimized for each system.

The k grid optimization runs are not shown for the sake of brevity.

The entire calculated data set is provided in a archive found under

DOI:10.5281/zenodo.7684918; consult the KPOINTS files in the respective

subfolders for the converged k grid settings.

3. We expect that the trends obtained from these functionals (PBE and

HSE06, the latter of which constitutes a PBE functional with 25% exact

exchange and a screening parameter) are fully transferable to the RPBE

functional with DFT-D3 dispersion correction that was used for produc-

tion calculations later on. RPBE and PBE belong to the same family
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of GGA-rung functionals, more specifically RPBE is a re-parameterized

PBE functional optimized towards surface (adsorption) calculations. The

differences between PBE and RPBE are minor, unlike for example the

differences between PBE and functionals like BEEF or SCAN which use

fundamentally different potential terms and would therefore require careful

re-investigation.

4. The influence of DFT-D3 on the ∆E results is negligible because the

adspecies are covalently bound. DFT-D3 is therefore unlikely to affect the

results of this kind of convergence test but will become more important as

layers of non-covalently bound water molecules are added to the model sys-

tems. The influence of DFT-D3 on the results is investigated in more detail

in the Discussion section.

This convergence test shows that the energy differences are well converged

from the beginning. This result is in contrast to what was observed for NG

where the the size 16 and 24 data points did not show converged results yet.[29]

However, to stay consistent with the previous work on NG, we chose to use

the 32 atomic model system going forward.

There is also another reason for using the slightly larger system: there is

the possibility that if the system size is chosen too small, the water atoms

in the individual layers become too crowded and do not have the necessary

space to relax and accommodate the surface and adspecies properly. To inves-

tigate crowding effects in the lateral directions properly, the MD simulations

presented later on in section Results should be repeated for a set of surface

models with increasing size in x and y direction; however, such a test was not

computationally feasible at the time of this study.
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7.3.2 k grid convergence of the solvation stabilization energy

Convergence of ∆∆Esolv with respect to the k grid is tested. Our hypoth-

esis was that the k grid density of ∆Eads and ∆∆Esolv should be different

because the interaction is fundamentally different (covalent interaction of

adatom with periodic surface vs. non-convalent long-range interaction of sol-

vent molecules with - mostly - the adspecies and only very lightly with the

hydrophobic graphene surface). This hypothesis was strengthened by the obser-

vation that ∆Eads and ∆∆Esolv do not share the same dependence on the

density functional.[29]

In this case ∆∆EO∗

solv for the BG system with an *O adatom is calculated as

∆∆E ∗O
solv = E BG+O+solv

tot − E BG+O
tot − E solv

tot , (11)

where E BG+O+solv
tot is the total energy of the BG sheet model with the adatom

and an overlayer of 8 H2O molecules, E BG+O
tot is the total energy of the BG

sheet model with the adatom without any solvent molecules, and E solv
tot is the

total energy of only the 8 H2O molecules. All total energy values are obtained

as single-point results from the same starting geometry; the atomic positions

are not optimized for the different subsystems. Figure S5 shows the results of

this test.

From this test, ∆∆Esolv results are converged using a 2x2x1 k grid.

Arguably, the results can be regarded converged already at a 1x1x1 grid since

the energy difference between the smallest and the next k grid is only ca. 0.012

eV. For the MD simulations, we erred on the side of caution and used a 3x3x1

k grid. Static calculations used various k grids depending on the exact sys-

tems; consult the data set under DOI:10.5281/zenodo.7684918 for exact k grid

settings for each subset of simulations.
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Fig. S5 Convergence study of ∆∆Esolv with respect to the k grid, where ∆∆Esolv is
calculated according to equation (11) for the BG sheet in contact with an O adatom using
the PBE functional.

7.3.3 Convergence of the plane-augmented wave energy cutoff

The same approach as above for the supercell size was used to establish the

relationship between ∆E and the plane-augmented wave energy cutoff. Only

the *O adatom is tested in this case since behavior appears to be similar for all

intermediates (see for example figure S4) and because the *O intermediate in

particular was found to be the most notorious in benchmark calculations with

NG.[29] The 32-atomic BG sheet model was used. Aside from using the PBE

functional and a changing ENCUT parameter, the other simulation parameters

were consistent with those summarized in the Computational Details section

in the main article. Figure S6 shows the results of this test.

Results show that a PAW cutoff energy of 500 eV is sufficient to obtain

converged relative energy results. For geometry optimization calculations, a

cutoff of 600 eV was chosen in an attempt to err on the side of caution. However,

MD simulations were performed with ENCUT = 400 due to the excessive
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Fig. S6 Plane-augmented wave energy cutoff convergence study where ∆E is calculated
according to equation (10) for the BG sheet in contact with an O adatom using the PBE
functional.

computational cost of higher energy cutoff values. See section Discussion in

the main article for an analysis of this disparity.

As above for the supercell size convergence, there is no reason to assume

that this convergence test with the PBE functional would not translate to the

RPBE + DFT-D3 functional combination later on as they are closely related

functionals from the GGA-DFT rung.

7.4 Oxygen z distribution (g(z)) results

Figure S7 shows results for the z distribution of O atoms in the model systems.

The distributions were obtained from the constrained MD and the flexible MD

data sets. The distance pairs were calculated only from pairs that involved

the surface as one of the partners; hence, the surface is located at z = 0 in

the figures below and the distribution can be interpreted as the coordination

of water atoms relative to the surface. The adspecies (*O, *OH, *OOH) are

omitted from the analysis since the surface and adspecies were frozen during
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MD simulations and would show up as a sharp density peak higher than bands

resulting from the water structure which is actually of interest.
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Fig. S7 Distributions of O atoms in z direction, g(z), for the different systems in contact
with 1–4 layers (8–32 molecules) of water: clean BG sheet model without adspecies, BG sheet
with *O adatom, BG sheet with *OH admolecule, and BG sheet with *OOH admolecule.
Results from the constrained MD simulations (100 ps total) are always shown on the left,
results from the flexible MD (10 ps total) are shown on the right. The g(z) is sampled every
100 fs in both cases. Distances are calculated between all water O atoms and the x−y plane
located inside the BG sheet model. Results were normalized so that the maximum g(z) value
in every distribution is 1.0 for better comparability.

Figure S7 shows that results from the constrained MD data set are

smoother due to the factor 10 longer sampling. However, constraining the water

molecules also appears to remove some of the fine structure observed in the

case of the flexible MD data set; this is most apparent for the *OH and *OOH

adspecies in contact with 3 layers of water molecules. This observation may

hint towards the Rattle constraint changing the interaction with the surface

and adspecies but more research is needed to make sure that this observation

is not noise, i.e., the result of poor sampling statistics.

7.5 Influence of the MD sampling frequency on the

solvation stabilization energy results

Figure S8 summarizes ∆∆Esolv results from the flexible MD and constrained

MD data sets analogous to figure 4 in the main manuscript except that different
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intervals of sampling are tested (2 ps, 1.0 ps, 100 fs, and 10 fs represented

by sampling factors 0.5, 1.0, 10.0, and 100.0, respectively). This test probes

the robustness of the results against the sampling frequency and visualizes the

impact that assuming more or less independent samples has on the obtained

confidence intervals.
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Fig. S8 Influence of the MD sampling frequency on the ∆∆Esolv results. The original
sampling frequency shown in the main manuscript is 1 ps, indicated in this figure as sam-
pling factor = 1. Shown here are additional sampling factors of 0.5, 10.0, and 100.0 which
correspond to sampling frequencies of 2 ps, 100 fs, and 10 fs.

Figure S8 shows that the average ∆∆Esolv results are robust against the

sampling frequency. The only significant change is observed going from sam-

pling factor 0.5 (2 ps) to factor 1.0 (1 ps) in the case of the flexible MD data

set. This change constitutes the the difference between 5 and 10 evaluated

images for this data set. It can therefore be concluded that 10 independent

images is the minimum number of images required to obtain a robust average

∆∆Esolv from this data set.

The choice of sampling frequency affects the size of the error bars sig-

nificantly. This result highlights that it is important to chose the sampling

frequency according to physical considerations (here: correlation time of water)

since only checking for convergence of the average results can create a false

sense of security from oversampling the data.
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7.6 Influence of the dipole and quadrupole correction on

the results

This test is performed to check if potentially erratic dipole and quadrupole

correction values, which were empirically observed in this work to sometimes

occur for no apparent reason, are causing the ∆∆Esolv results to be erratic.

Figure S9 visualizes the dipole and quadrupole energy correction results for

the resampled data set.
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Fig. S9 Average dipole and quadrupole energy correction values for the systems in the
resampled data set. While large fluctuations are noted in particular for the *OOH adspecies
in contact with 24 and 16 water molecules and the *O adspecies in contact with 24 water
molecules, the fluctuations remain below the limit of chemical accuracy (< 0.05 eV). The
error bars indicate the two-sided 95 % confidence interval.

Results show that the average correction energy values are below 0.05 eV

and therefore within chemical accuracy. However, the error bars for some sys-

tems are large, in particular for the *OOH adspecies in contact with 16 and
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24 water molecules and the *O adspecies in contact with 24 molecules. This

observation indicates that the correction can be somewhat erratic for cer-

tain systems and arrangements. Ultimately, the low absolute values for this

correction are unlikely to impact results in a significant way.

7.7 Influence of the dispersion correction on the results

Similar to the dipole and quadrupole correction energy, the influence of the

DFT-D3 dispersion correction on the obtained ∆∆Esolv results is tested.

Figure S10a shows the difference of the dispersion contributions of the clean

BG surface and the BG surface with an adspecies (X = O, OH, OOH):

∆Edisp = EBG−X
disp − EBG

disp. (12)

Figure S10b reproduces the ∆∆Esolv results for the resampled data set shown

in Figure 4 in the main manuscript but with the dispersion energy contribution

removed from the total energy values before calculating ∆∆Esolv.
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Fig. S10 Influence of the dispersion correction on the calculated ∆∆Esolv results. a

Absolute dispersion correction energy for each tested system averaged over the data set
of 20 images from the resampled data set as outlined in the main article. Shown here is
∆Edisp = EBG−X

disp
−EBG

disp
, i.e., the difference of the dispersion contributions of the clean BG

surface and the BG surface with an adspecies (X = O, OH, OOH). b ∆∆Esolv trends for
the resampled data set where Edisp has been deducted from the total energy values before
calculating ∆∆Esolv. The error bars indicate the two-sided 95 % confidence interval.
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Results indicate that while the dispersion correction is significant in terms

of absolute values, removing the Edisp does not stabilize the ∆∆Esolv trends

either (figure S10b). There is, however, an important caveat to this test: dis-

persion correction was included during the MD simulations from which the

resampled data set was generated and also during minimization calculations

of the structures in the resampled data set. Hence, this a posteriori removal

of the dispersion contribution can only be a rough indicator of its influence.

The data sets would need to be reproduced completely without dispersion

correction to conclusively rule out this parameter.

7.8 Influence of the simulation box dimensions

Table S2 summarizes the total energy values of the reference systems without

water molecules from the resampled data set used to calculate ∆∆Esolv. The

reference systems were generated from the parent systems that include water

molecules by removing the latter. This step was necessary because the simula-

tion box dimensions are different depending on how many water molecules are

included. This table illustrates the differences introduced into the total energy

by variable cell dimensions. The differences are < 0.01 eV in all cases and,

even if the cell dimension had not been corrected for in this way, are unlikely

to distort the simulation results in a meaningful way.

7.9 Influence of energy-minimizing the non-solvated

reference systems

Another potential source of inconsistency is the way that total energy val-

ues for the non-solvated reference systems are obtained. In the main article,

the configurations of the non-solvated systems were obtained by removing the

water molecules from the solvated systems and minimizing the resulting atomic
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Table S2 Summary of total energy values of the reference systems without water molecules
used to calculate ∆∆Esolv. The reference systems are from the resampled data set.

System # of H2O Etot / eV

BG sheet (clean) 8 -290.425863

16 -290.425863

24 -290.429015

32 -290.426769

BG-O* 8 -295.994912

16 -295.994912

24 -295.998699

32 -295.996450

BG-OH* 8 -300.638397

16 -300.638397

24 -300.638397

BG-OOH* 8 -304.701104

8 -304.701104

8 -304.701104

configurations. However, with this approach, ∆∆Esolv does not only contain

the interaction between the surface-adspecies system with the water molecules

but also the rearrangement energy from the relaxation of the reference sys-

tem. Figure S11 explores for the one-shot minimization data set whether not

minimizing the reference systems, i.e., obtaining the reference energy values

from single-point calculations on the formerly-solvated systems where water

molecules have been removed, makes a difference.

Results show that the differences are minimal at best. The relative trend

does not change at all but absolute values are slightly more negative in the case

of the single-point reference calculations compared to the minimized reference

calculations for 16, 24, and 32 water molecules.
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Fig. S11 Exploring the influence of energy-minimizing the non-solvated reference systems.
Left: non-solvated reference configurations were energy-minimized with respect to the atomic
coordinates (’vacuum’). Right: non-solvated reference systems were not energy-minimized
and energy values were obtained from single-point calculations (’vac-sp’).

7.10 The solvation stabilization energy obtained only

from the lowest-energy MD configurations

An article by Yu et al. from 2011 details yet another way of obtaining

∆∆Esolv.[21] The group performed MD simulations with NG model systems

and the ORR adspecies in contact with explicit water molecules. They then

picked the lowest-energy configuration generated in each MD simulation and

performed an energy minimization calculation with respect to the atomic coor-

dinates. The minimized systems were then used to calculate solvated free

energy values.

Figure S12 applies this strategy to the flexible MD data set.

The closest comparison for this analysis are the results from the resampled

data set, see figure 4 in the main article. While the trends for *OH and *OOH
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Fig. S12 ∆∆Esolv obtained from only the lowest-energy configurations in the flexible MD

data set which were subsequently energy minimized.

in figure S12 loosely resemble the trends for the resampled data set, ∆∆Esolv

for the *O adspecies is significantly more negative than with any other analysis

strategy. It can be concluded that this approach not only did not resolve the

erratic trends but likely further distorted the results because the close-to-

ideal local configurations optimized in this case likely do not represent the

average configurations of water molecules around the adspecies in real, finite-

temperature systems.

7.11 Influence of freezing the BG sheet

The flexible MD simulation of BG-OOH in contact with 8 (flexible) water

molecules was accidentally performed with a non-constrained BG sheet. While

the data shown in the main article was obtained with the correctly constrained

model, this mistake allows to probe the influence of this geometry constraint.

Figure S13 compares the Etot vs. t and T vs. t trends of flexible MD simula-

tions with the unconstrained BG sheet (a) and the properly constrained BG
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sheet (b). Figure S14 compares the surface-O g(z) distributions obtained from

flexible MD simulations with these two models.
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Fig. S13 Comparison of Etot vs. t and T vs. t trends of flexible MD simulations with the
properly constrained BG sheet (a) and the unconstrained BG sheet (b).

Figure S13 shows that the total energy and temperature fluctuations are

significantly increased if the BG sheet with the adspecies is not constrained (b).

This result may indicate that significantly more sampling would be required in

the case of the non-constrained BG sheet to obtain a good estimate of ∆∆Esolv

with a small-enough error bar. Figure S14 does not show any significant dif-

ferences between the two systems, indicating that freezing the BG sheet and

adspecies does not significantly change the interaction with the first layer of

solvent molecules.
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Fig. S14 Comparison surface-O g(z) distributions obtained from flexible MD simulations
using the constrained and non-constrained BG sheet.
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