

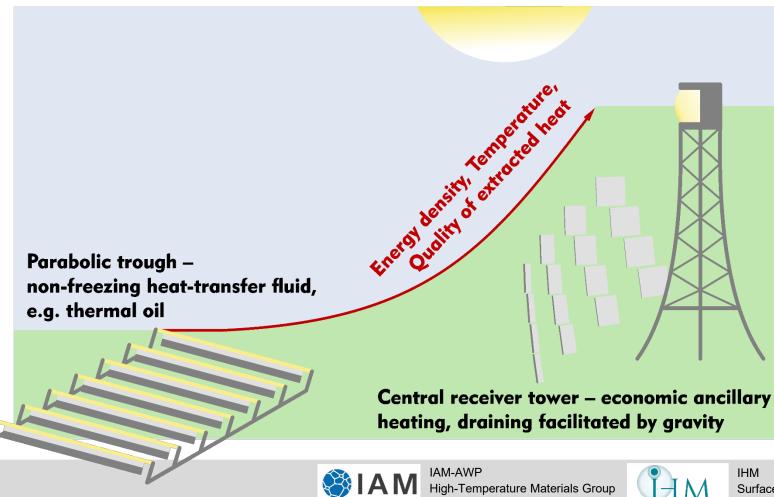
HELMHOLTZ Energy Conference 2023 June 12–13, 2023 Rhein-Mosel-Halle, Koblenz, Germany

Liquid metals in concentrating solar power and requirements on structural materials

C. Schroer¹, M. Yurechko-Hussy¹, F. Martini¹, C. Bonnekoh¹, M. Rieth¹, B. Gorr¹, A. Weisenburger², A. Heinzel², R. Fetzer², G. Müller², J. Fuchs³, A. Onea³, S. Ruck³, R. Stieglitz³

¹ Institute for Applied Materials – Applied Materials Physics (IAM-AWP) ² Institute for Pulsed Power and Microwave Technology (IHM)

³ Institute for Neutron Physics and Reactor Technology (INR)



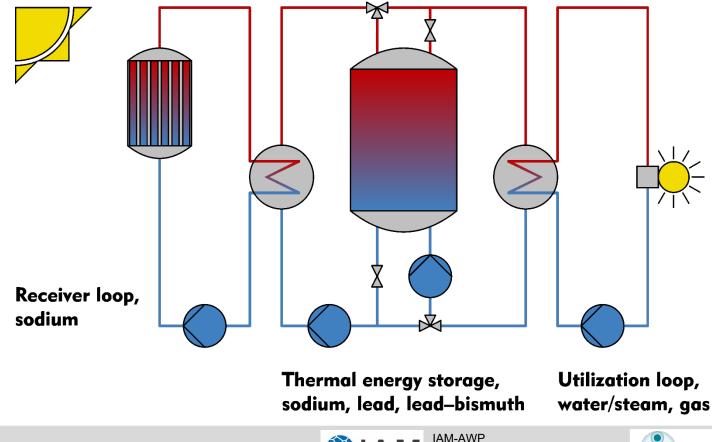
www.kit.edu

Evolution in concentrating solar power (CSP)

From trough to tower

- Driven by increase in value of harvested energy.
- Heat-transfer fluid (HTF) imposes technical limits.
- Liquid metals: High boiling point (Na, Pb), relatively low melting point (Na), besides high thermal conductivity.

Surface Modification Using Pulsed **Electron Beams Group**



INR Facility Design, Systems Dynamics and Safety Group

Liquid-metal based CSP

including liquid-metal based thermal energy storage (TES)

 Presentation by K. Niedermeier et al., poster by F. Müller-Trefzer et al.

- Stability of liquid phase Na: 98–881 °C (1000 °C at 3 bar); LBE: 125–1533 °C; Pb: 327–1744 °C.
 - Gain in heat-transfer efficiency makes up for relatively high cost of the metals (Na)^[1].
- Intermediate TES facilitates avoiding Na and water/steam in one and the same apparatus.

[1] Singer et al., *J. Sol. Energy Eng.* 132 (2010) 41010.

High-Temperature Materials Group Liquid Metal Technology Group

IHM Surface Modification Using Pulsed Electron Beams Group

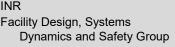
INR Facility Design, Systems Dynamics and Safety Group

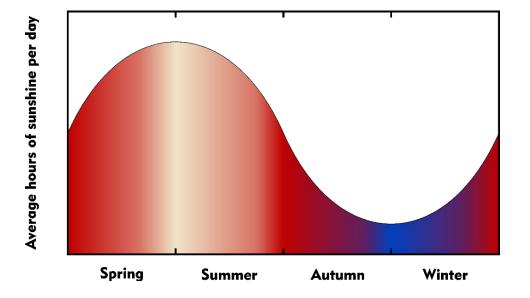
Load profile for the receiver/receiver loop

Rough classification, in detail dependent, e.g., on the site of operation.

Thermo-mechanical

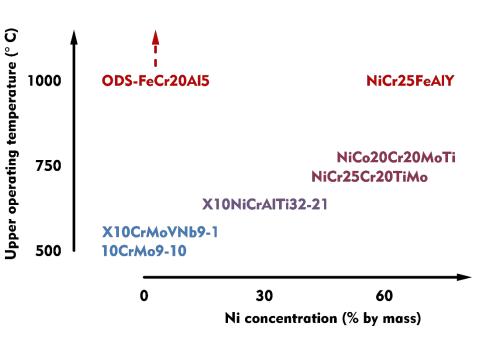
- Dominated by thermal stress compressive on the outer, tensile on the inner surface of tubing heated from outside.
- ~10⁴ day/night cycles during 30 years of operation, to be multiplied by average number of shadowing events per day.


Thermochemical


- High-temperature oxidation (air, Pb or LBE).
- Dissolution resulting in corrosion mass transfer (Na, Pb or LBE).
- Other interaction with the liquid metals that potentially degrade mechanical properties.

Compatibility of structural materials and liquid metals

In the realm of steel or nickel-based alloys – Ni, in general, a harmful element


Na

- Austenitic steels or Ni-based alloys likely to be applicable at up to 750 °C^[1].
- Weak performance of Ni-based alloys at 1000 °C^[2].

Pb, LBE

- Compatibility to be achieved through alumina formation, i.e. Al addition to the steel.
- Requires a minimum of oxygen dissolved in Pb or LBE ^[3,4].

[1] Borgstedt and Frees, Mater. Corros. 38 (1987) 732–737.
[2] Borgstedt et al., Mater. Corros. 40 (1989) 525–531.
[3] Chen et al., Corros. Sci. 189 (2021) 109591.
[4] Tsisar et al., Mater. Sci. Forum 1024 (2021) 79–85.

IHM Surface Modification Using Pulsed Electron Beams Group

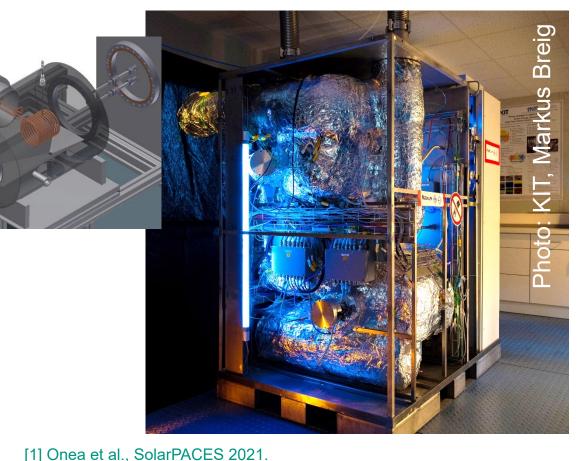
INR Facility Design, Systems Dynamics and Safety Group

Qualification of structural materials for liquid-metal CSP

SOLTEC-2 – <u>SO</u>dium Loop to <u>TE</u>st <u>C</u>orrosion and materials (as well as small components)

Operating parameters^[1]

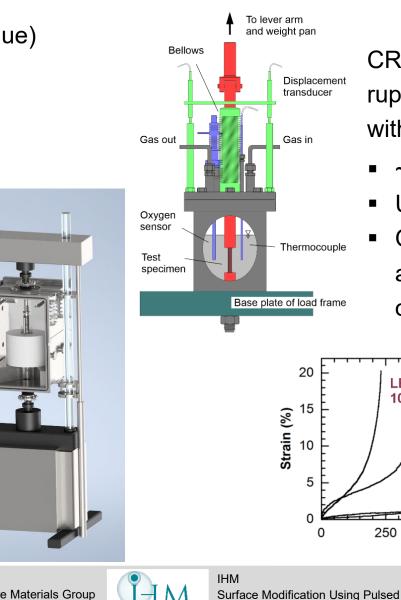
- 12 I (9 kg) Na circulating, out of 14 I in total.
- 450 °C in cold leg, up to 720 °C (2.5 bar) in hot leg.
- Mass flow of ~300 kg h⁻¹.
- Test section adaptable to specific qualification test.
- Facility in operation.
- Successful testing of flow sensors at up to 700 °C.^[2,3]
- Material tests in preparation.
- For these tests, additional inductive heating so as to create thermal cycles of duration in the order of seconds.^[1]


INSTITUTE FOR PULSED POWER

[3] Onea et al., SolarPACES 2022.

IHM Surface Modification Using Pulsed Electron Beams Group

INR Facility Design, Systems Dynamics and Safety Group


[2] Krauter et al., ASME J. of Nuclear Rad. Sci. (2022) doi:10.1115/1.4062239.

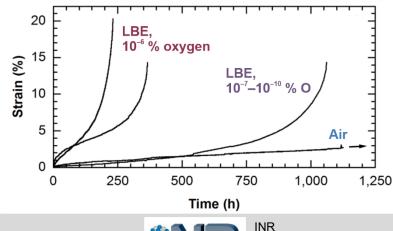
Qualification of structural materials for liquid-metal CSP

CORTINA – Cyclic mechanical tests (creep fatigue) in static Na with reference to air

- ~750 ml (0.6 kg) Na.
- 550 and 750°C in first and second stage, respectively.
- Preconditioned with regard to dissolved oxygen, oxygen monitoring during the tests.
- ~10⁵ load cycles in tensile regime (transients + dwelling), in 1000 h.
- Maximum load adapted to tested class of materials.
- First tests anticipated for end of 2023.



Electron Beams Group


CRISLA – Creep and stress rupture in static Pb or LBE with reference to air

- ~900 ml (9 kg) Pb or LBE.
- Up to 650 °C.
- Oxygen measurement and control via gas/liquid oxygen transfer.

Facility Design, Systems

Dynamics and Safety Group

Qualification of structural materials for liquid-metal CSP

Exposure to static liquid metal without mechanical load

COSTA - Poster by A. Heinzel et al.

- Material sample immersed in 14 ml of liquid metal (Pb/LBE, Na, other), at up to >1000 °C.
- Ceramic crucible serves as a container for the liquid metal.
- Oxygen chemistry influenced by cover gas.
- One of the workhorses of screening materials for liquid-metal applications over

the past decades.

Instrumented test capsule

- Several material samples submerged in up to 900 ml liquid metal (in ceramic crucible).
- Monitoring and control of both temperature and oxygen dissolved in the liquid metal.
- Routinely operated with Pb/LBE at up to 650 °C, currently transferred to Na at up to 890 °C.
 - As for Na,
 - qualification of oxygen sensors, investigation of bubble formation at boiling point, besides material tests.

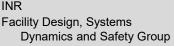
Institute for Applied Mate

IAM-AWP High-Temperature Materials Group Liquid Metal Technology Group

IHM Surface Modification Using Pulsed Electron Beams Group

Materials development

Fe –19Cr –6Al-ODS


- Strengthened by dispersed yttria particles (0.5 % by mass), for operation at 1000 °C and above.
- High-temperature oxidation resistance through Cr and especially Al.
- Minimum concentration of Ni, Mn, Co, ... that have considerable solubility in liquid metals.
- Formed alumina can be stabilised in Pb/LBE, however, may absorb Na.
- Embrittlement in the presence of liquid metals?
- 10 kg in final stage of fabrication (via powder-metallurgical route).

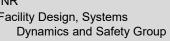
IHM Surface Modification Using Pulsed **Electron Beams Group**

Fo lur & Al,O, Expectation as to solid oxide at 400–600 °C, 10⁻⁶ % oxygen .10 dissolved in liquid Pb^[1]. 95 P5 Fe₂O₄ + Fe(Cr,Al)₂C 100 25 20 30 10 15 Cr [wt.%]

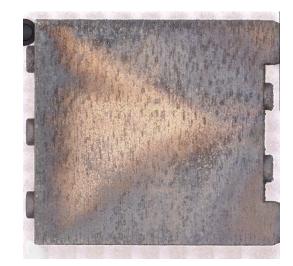
[1] Jianu et al., J. Nucl. Mater. 470 (2016) 68–75.

Innovative receiver design

Monolithic receiver requiring a minimum of welding


- Heat extraction from focus point up to 4 MW/m², at up to 750 °C.
- Minimum thermo-mechanical stress.
- Drainability as appropriate for operation with Na.
- Monolithic structure through additive manufacturing.
- First test structures produced by selective electronbeam melting at IAM-WK^[1].
- Linear and meandering channel, respectively.
- Inconel 718 powder, hot isostatic pressing and further heat treatments after AM.
- In preparation for tests on function.

IHM Surface Modification Using Pulsed Electron Beams Group



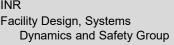
[1] Guth et al., Adv. Eng. Mater. (2023), doi: 10.1002/adem.202300294.

Linear channel after additive manufacturing.

Meander channel after hot isostatic pressing.

10

Summary ... conclusions ... outlook


- As for Na (receiver), availability of compatible materials (classic austenitic steels or Ni-based alloys) no obstacle to current establishment of liquid metals in CSP.
- May change for raise in operating temperature to 750 °C and beyond.
- In contact with Pb/LBE (storage), steels generally need protection: Alumina formation and oxygen control.
- End of the long road of (re-)establishing materials testing in Na at KIT almost reached.
- Fe–Cr–Al–Y₂O₃ identified as a promising material for high-temperature CSP and thermal storage using liquid metals—experimental batch will soon be available.
- Potential of additive manufacturing for liquid-metal CSP is being explored.
- Beyond steels or Ni-based alloys?—refractory metals, high entropy alloys, ceramics.

IHM Surface Modification Using Pulsed Electron Beams Group

