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Abstract

The application fields of lab-on-chip (LOC) devices range from chemical and microbiolog-
ical research topics, like genomics, via environmental monitoring to clinical diagnostics.
Current efforts in LOC development are addressing miniaturization, multiplexing, and
interface optimization. An LOC design promising to serve these trends is presented in
this work. The active-surface programmable LOC features a channel-free design, easing
fabrication at small length scales and outclassing classical systems with regard to flexi-
bility. This study investigates the feasibility of the presented design by addressing two of
the most critical aspects, sample control and fluid transport performance.
Crucial for both of these aspects is the understanding of complex electrokinetic phenom-
ena. Wall electrodes inside the device enable fluid pumping and flow control. Electrode
distances are of similar magnitude as the size of the respective charge clouds, determined
by the Debye length. Simplifying assumptions, like the thin-Debye-layer limit, do not
hold. Samples and reactants are in fluid form and dispersed in the surrounding phase of
the carrier fluid. The control of such fluid droplets inside the LOC system relies heav-
ily on the predictability of their behavior in the presence of electric fields. Traditional
models, such as the Taylor-Melcher model, do not capture electromigration observed in
experimental studies.
In this study, electromigration of immiscible droplet samples in strong electrolytes is in-
vestigated by an asymptotic approach resolving the nonlinear Debye-layer electrokinetics.
Quantitative predictions on migration speed and deformation of the drop are made. In
accordance with experimental results, the occurrence of electromigration is confirmed.
Remarkably, this holds even for droplets with zero net charge. The influence of elec-
trolyte strength in such systems is found to be small while other modeling parameters,
e.g. approximation of the geometry, are of major impact.
In the second part of this investigation, a feasibility analysis of the pumping mechanism is
performed by numerical simulation. Specifically for this purpose, a non-interpolating spec-
tral solver was constructed. We confirm sufficiently high transport speeds and the desired
homogeneous flow field. Heat dissipation, which acts as a limiting factor for miniaturiza-
tion, is estimated from the Ohmic charge fluxes within the carrier fluid. Further technical
limitations, such as prototyping cost, clock frequency, and producible electrode distance,
are discussed and an optimization algorithm is presented. Together with a systematic
description of the design architecture, the basis for successive further developments and
their numerical verification is established.
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Zusammenfassung

Lab-on-Chip(LOC)-Systeme werden in vielen Bereichen, wie Chemie und Mikrobiologie,
insbesondere Genomik, über Umweltmonitoring bis hin zur klinischen Diagnostik einge-
setzt. Die Weiterentwicklung bestehender Systeme fokussiert sich auf Miniaturisierung,
Multiplexing und der Optimierung von Schnittstellen. In dieser Arbeit wird ein LOC-
Design vorgestellt, das verspricht, diesen Trends gerecht zu werden. Durch seine Pro-
grammierbarkeit und aktive Elektrodenoberfläche ohne Kanalstruktur ist es klassischen
Systemen in der Anwendungsflexibilität und der Möglichkeit zur Miniaturisierung überle-
gen. Die vorliegende Studie untersucht die Machbarkeit des vorgestellten Systems in zwei
seiner kritischsten Aspekte, die Kontrollierbarkeit chemischer Proben und Leistungsfähig-
keit des Pumpmechanismus.
Beide genannten Aspekte sind komplexe elektrokinetische Phänomene. Wandelektroden
in der Oberfläche des Chips ermöglichen das kontrollierte Pumpen von Flüssigkeiten.
Dabei sind die Elektrodenabstände von gleicher Größenordnung wie die entstehenden
Ionenwolken, deren geometrische Größe durch die Debye-Länge charakterisiert ist. Die
häufig verwendete vereinfachende Annahme einer dünnen Debye-Schicht gilt in diesem
Zusammenhang nicht. Darüber hinaus liegen Proben und Reagenzien in flüssiger Form
vor und sind von einer Trägerflüssigkeit umgeben. Diese Flüssigkeitstropfen sollen auf
der Chipoberfläche kontrolliert bewegt werden. Entscheidend dafür ist ein grundlegen-
des Verständnis über das Verhalten der Tropfen unter dem Einfluss elektrischer Felder.
Traditionelle Modelle, wie das Taylor-Melcher-Modell, scheitern hier, da sie Elektromi-
grationseffekte nicht erklären können, die in Experimenten beobachtet wurden.
Die vorliegende Studie untersucht im ersten Teil Elektromigration nicht mischbarer trop-
fenförmiger Proben in starken elektrolytischen Lösungen mithilfe eines asymptotischen
Ansatzes. Nichtlineare elektrokinetische Effekte in der Debye-Schicht werden betrachtet
und quantitative Vorhersagen über Migrationsgeschwindigkeit und Deformation des Trop-
fens getroffen. Experimentell beobachtete Elektromigrationseffekte können so bestätigt
werden. Überraschenderweise können auch bei elektrisch neutralen Tropfen Migrationsef-
fekte auftreten. Der Einfluss der Stärke des Elektrolyts auf die genannten Ergebnisse ist
vergleichsweise klein. Im Gegensatz dazu haben andere Annahmen, die beispielsweise die
Modellierung der Tropfengeometrie betreffen, erheblichen Einfluss.
Im zweiten Teil wird eine Machbarkeitsstudie des Pumpmechanismus mittels numerischer
Simulation vorgestellt. Ein auf spektralen Methoden basierender Lösungsalgorithmus wur-
de speziell für diesen Zweck entwickelt. Ausreichend hohe Transportgeschwindigkeiten und
das gewünschte homogene Strömungsfeld können damit bestätigt werden. Ebenfalls wird
die Wärmeproduktion durch Ohm’sche Ströme in der Trägerflüssigkeit berechnet. Sie gilt
als limitierender Faktor für die Miniaturisierung des Systems. Weitere Limitierungen sind
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durch Produktionskosten des Prototypen, Schaltfrequenz und kleinstmöglicher Elektro-
denabstand gegeben. Ein Optimierungsalgorithmus für verschiedene Parameter wird im
Rahmen dieser Arbeit vorgestellt. Dieser bildet zusammen mit einer systematischen Be-
schreibung der Systemarchitektur die Grundlage für schrittweise Weiterentwicklungen und
deren numerische Verifizierung.
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"It’s as if we collectively intuited, long before science gave us
the language, that the universe bends toward entropy, and
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face of that evolving disorder."
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CHAPTER 1

Introduction

1.1 Definition of the topic

Lab-on-chip devices Microfluidic systems are an intensively used tool in DNA re-
search, molecular and evolutionary biology, cytology, and drug testing, just to mention
the most important fields of application. Scientific progress in these fields and the tech-
nical innovations enabling it go hand in hand.

This work focuses on a proposed microfluidic system whose most significant feature
is its chip surface without channels. We will refer to this programmable active-surface
lab-on-chip (LOC) device as "our chip/design". The design details are described in the
publications of the patent application Marthaler and Class (2022a, 2022b). In the chip
surface, individually addressable n-tuples of electrodes are embedded. It is subsequently
denoted as active surface.

LOC devices are microfluidic systems that can perform laboratory processes (tradi-
tionally carried out in a macroscopic lab) on a small device with integrated circuits.
Typically measuring several millimeters to centimeters in size, these devices are popular
for their ease of use, automation opportunities, fast response times, low cost, low energy
consumption, and small sample volumes. As an effect, LOC devices are efficient, reli-
able and reduce human error, which is especially important for point-of-care diagnostics
(Haji Mohammadi et al., 2021; Staicu et al., 2021; Vidic et al., 2019) and environmental
monitoring (Dhar & Lee, 2018). The low cost of some LOC systems can also have an im-
pact on the democratization of health care. One particularly important trend contributing
to this democratization is the integration of microfluidic systems in smartphones (Chen
et al., 2021; Hernández-Neuta et al., 2019; Wilson, Steele, & Adeli, 2022; Wood et al.,
2019; Zhu et al., 2013).

The controlled handling of small-scale research objects, like cells or bacteria, is an
essential advantage of such systems. Figure 1.1 illustrates the relationship between the
length scales of technical systems and typically investigated biological and chemical ob-
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at
om

s

sm
al
l
m
ol
ec
ul
es

D
N
A
ba
se
s

pr
ot
ei
n

vi
ru
s

ba
ct
er
ia

ge
ne
s

cr
ys
ta
lli
ne

la
tt
ic
es

H
em

og
lo
bi
ne

(6
nm

)

H
I
V
ir
us

(9
0
nm

)

ca
rb
on

na
no
tu
b
es

qu
an
tu
m

do
ts

tr
an
is
to
r
ga
te
s

an
im
al
ce
ll

pl
an
t
ce
ll

D
N
A
m
ic
ro
ar
ra
ys

di
am

et
er

of
a
ha
ir
(5
0
µ
m
)

E
sc
he
ri
ia
co
li
(2
µ
m
)

re
d
bl
oo
d
ce
ll
(5
µ
m
)

B
uc
km

in
st
er

fu
lle
re
ne

C
6
0
(1

nm
)

Figure 1.1: Scales of some important biological (teal), chemical (olive) and technical
(purple) objects between 1 Å and 1 mm.

jects. Exploiting similar length scales, LOC systems are used in a number of important
fields, such as DNA/RNA amplification and detection (Dhar & Lee, 2018; Keeble, Moser,
Rodriguez-Manzano, & Georgiou, 2020), proteomics (Albala, 2001; Lazar, Gulakowski, &
Lazar, 2020; Mouradian, 2002), cell biology (Fatanat Didar & Tabrizian, 2010; Gupta et
al., 2010; Kovarik et al., 2012), and chemical research (Dittrich & Manz, 2006; Elvira,
i Solvas, Wootton, & de Mello, 2013; Suryawanshi, Gumfekar, Bhanvase, Sonawane, &
Pimplapure, 2018). The application field of single-cell-analysis is outstanding as the pre-
requisite for studying the mutation of cells and the development of cancer at cell level.

While most microfluidic systems rely on channel designs, the system central for this
work exhibits a flat surface with embedded electrodes, which is covered by a carrier fluid.
In small areas of the chip surface, a predefined flow field can be induced enabling trans-
port, mixing, or separation of fluid probes inside the carrier fluid. This design has the
potential to outclass classical channel-design systems with its flexibility, non-destructive
sample handling, as well as its miniaturization and multiplexing opportunities. Multi-
plexing in this context means the parallel execution of multiple (analytical) processes.
Miniaturization acts as an important step towards the handling of smaller objects than
cells, such as complex molecules or proteins. Beneath other functions, proteins act as
the means of communication between cells in biological organisms. The related field of
research, proteomics, is dedicated to their understanding, the identification of biomarkers,
and the development of new drugs.

Electrokinetics The benefits of the active-surface LOC system come with a number of
technical challenges, which are particularly related to electric effects near the fluid-chip
interface. The interplay between electrostatic and hydrodynamic effects is called electroki-
netics. The complexity of the related phenomena originates from their multi-physical and
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multi-scale nature. At microscale, the surface-to-volume ratio of the relevant control
volumes becomes high. Thus, electric effects, often appearing as surface effects, are sig-
nificantly more important than in macroscale problems. The majority of problems allows
for the simplified treatment of these effects as boundary conditions, such as the Smolu-
chowski slip condition. In contrast, this work covers problems with a stronger coupling
between electrostatic and hydrodynamic forces in the fluid volume. The dimensionless
Debye length δ acts as a measure for how thin the area is where electrokinetic effects oc-
cur. For δ ≪ 1, electric effects are limited to a thin layer. In contrast, the electrokinetic
problems discussed in this work have a dimensionless Debye length of order unity

δ ∼ O(1), (1.1)

in common. For that reason, stronger nonlinearities occur, giving rise to phenomena that
are not observed in the small-Debye-layer limit.

Figure 1.2 gives an overview on the most important electrokinetic phenomena in our
LOC system. The actual chip (Fig. 1.2b), which we also refer to as Fluid Processing Unit
(FPU), is the core element of the whole lab (Fig. 1.2a). Inside the chip, different phenom-
ena occur that are crucial to sample transport and control. Three exmaples are presented
in figures 1.2c-e. On the chip surface, carrier fluid is transported by electrokinetic forces
(Fig. 1.2c). In the vicinity of the fluid-fluid interface between carrier fluid and sample,
electrokinetic effects also occur (Fig. 1.2d) and are observed in form of shape changes,
translational or rotational movement of the sample, i.e. electrodeformation, electromi-
gration, and electrorotation. A third example is the additional drag of transported solid
particles carrying a surface charge (Fig. 1.2e).

The electrokinetic transport of the carrier fluid (Fig. 1.2c) is induced by electrode
arrays that are embedded in the wall. Although the largest electric effects occur near the
electrodes, electric forces act in almost the whole volume of the fluid film. This can be
explained by similar length scales of the electrode distance and the electric double layer
which forms near the wall. As a result, the dimensionless Debye length δ is of O(1). An
understanding of the nonlinear physics is crucial for the optimization of the chip geometry,
the electric excitation, and the choice of the carrier fluid. Additionally, heat dissipation
by strong electric fluxes inside the fluid is critical for the chip and cooling design.

Within the carrier fluid, immiscible fluid probes can be transported (Fig. 1.2d). At the
interface between the two fluid electrolyte phases, electric double layers form that affect
electromigration and -deformation of the sample phase. Although these layers are small,
i.e. δ ≪ 1, the mentioned phenomena cannot be explained without a detailed analysis of
the Debye-layer electrokinetics.

Solid particles often carry a surface charge. As an effect, they do not follow the flow,
but show an additional drag. The flow field around the particle is responsible for charge
fluxes near the particle surface. Consequently, the charge distribution in the Debye layer is
different from the equilibrium state. The composite electric field near the particle surface
gives rise to an additional electric drag. Similarly to the two-phase problem, those drag
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(d) Electrodeformation
and electromigration
of immiscible fluid samples

(e) Electric drag of
solid particles
by streaming potentials

Figure 1.2: Overview of electrokinetic phenomena in a lab-on-chip system that are dis-
cussed in this work.
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effects can only be explained by a detailed analysis of the Debye layer as discussed in
Marthaler and Class (2021a, 2021b, 2022c).

1.2 Historical background in life sciences and techni-
cal microsystems and their application in clinical
diagnostics

1.2.1 Life sciences and technical microsystems

Milestones Life sciences are microscale. Milestones in this field since the 17th century
include the discovery of the cell by Hooke, Allestry, and Martyn (1665), the synthesis of
urea by Wöhler (1828) constituting the field of organic chemistry, and the breeding exper-
iments by Mendel (1865) which were later connected to chromosomes as the hereditary
material. In the first half of the 20th century important steps were made towards the
understanding of the metabolism of living organisms (Krebs & Johnson, 1937; Lipmann,
1941) and the structure of DNA (Watson & Crick, 1953). Later, Sanger, Nicklen, and
Coulson (1977) developed a gene sequencing technique and presented the first sequencing
of an entire genome. In 1986, Mullis et al. developed the polymerase chain reaction tech-
nique for the amplification of DNA. Milestones in the 21st century include the publication
of the complete human genome (Venter et al., 2001) and the first gene editing technique
CRISPR (Jinek et al., 2012).

Connection to microfluidics As a result, many important branches developed, such
as enzymology, virology, genetics, bacteriology, cytology, structural biology, synthetic
biology, bioengineering, biomonitoring, genomics, pharmacology, and proteomics. The re-
search objects of these fields range in their length scale between 10µm for cells to 1nm for
proteins or DNA bases. Some important examples are displayed in Figure 1.1. Cells, bac-
teria, viruses, enzymes, and proteins, i.e. the subjects of the fields mentioned, can usually
be found in a fluid environment. Microfluidic problems are different from macroscale fluid
dynamics in crucial aspects, such as flow reversibility, surface tension, or the influence of
electric forces. Mainly during the last century, a range of technical systems specifically
adapted to these characteristics were developed.

Milestones in LOC systems The invention of the microscope made the early inves-
tigations of cells possible. Nevertheless, microscale science picked up in speed in the
20th century. The development of photo-lithography paved the way for the fabrication
of electrical microsystems. Especially, integrated circuits and chips are produced with
this method. The first LOC device was a miniaturized gas chromatograph designed by
Terry, Jerman, and Angell (1979). The first microfluidic LOC was a high pressure liquid
chromatograph developed by Manz, Graber, and Widmer (1990). Both of these devices
were used for chemical analysis. The latter uses electroosmosis to transport the sample
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Figure 1.3: Publication statistics from Web of Science (webofscience.com) for different
search terms. The term microfluidics is abbreviated with "mf".

inside the chip, capillary electrophoresis for separation and fluorescence detection. Appli-
cations for modern LOC devices analysing blood samples are the determination of gasses,
electrolytes, and lactate. The detection of proteins or biomarkers is performed with im-
munoassays Hermsen, Roszek, van Drongelen, and Geertsma (2013).

Scientific relevance In a word, scientific progress in life sciences and innovation in
technical microsystems go hand in hand. Without technical devices, the investigation of
bio-chemical objects would not have been possible. At the same time, findings in life
sciences drive technological progress. Figure 1.3 illustrates in two graphics the number
of scientific publications for a selection of the fields mentioned. While a saturation point
seems to be reached in some fields like cytology or LOC systems, combinations of these
topics still show a growing research popularity. This is clearly not a formal proof of the
importance of the field. Yet, is can act as an indicator for synergy effects between the
technology and its application.

1.2.2 Application of LOC systems in diagnostic medicine

Market segmentation The medical sector is the main market for LOC systems (Hermsen
et al., 2013). Point-of-care (POC) testing has several advantages to conventional labora-
tory testing, such as simplicity (the user does not need to be trained), low cost, speed
(short turnaround time), and fabrication in large unit numbers (Sachdeva, Davis, & Saha,
2021). The market is segmented with respect to region, product type, or user type. The
term user type defines the person performing the test and the circumstances under which
the testing is done. POC testing can be performed by health-care professionals in labora-
tories, hospitals or the outpatient sector. However, equally important is POC testing by
untrained individuals, either community-based or for at home testing. Important product
types include glucose monitoring, cardiac markers, or testing for infectious diseases. Other
examples are pregnancy tests or blood-gas testing (Sachdeva et al., 2021). Besides the ap-
plication for POC testing, LOC systems can also be applied in agriculture, for food testing,

webofscience.com
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fertility, single cell analysis, or sequencing (Sachdeva et al., 2021). "Roche Diagnostics
and Siemens Healthcare are tier I competitors that generate more than $5 Billion [in vitro
diagnostics] revenues whereas companies such as Abbott, Danaher, Alere, Thermo Fisher,
BioMérieux, Bio-Rad, Sysmex, Becton Dickinson, Bayer Healthcare, Werfen Group, Gen
Probe generate $1–5 Billion revenues" (Sachdeva et al., 2021).

SARS-CoV-2 as a current example A prominent example illustrating the relevance
of POC testing is the ongoing SARS-CoV-2 pandemic. As of August 2022, the SARS-
CoV-2 was responsible for about 12 billion diagnosed cases of COVID-19 and 6.5 million
total deaths (Center for Systems Science and Engineering (CSSE) at Johns Hopkins Uni-
versity (JHU), 2022). Large-scale testing is an essential part of monitoring and controlling
the spread of the virus disease. Biomarkers are used to identify if the virus contained in
a sample. In the case of SARS-CoV-2, genetic material in the form of DNA, RNA, or
proteins, serves as biomarkers. These proteins can be found e.g. on the viral envelope.
Another option are antibodies that are produced by the human body against the virus.
The gold standard in clinical diagnostics are polymerase chain reaction (PCR) techniques
using immunoassays. The process includes three main steps (Tymm, Zhou, Tadimety,
Burklund, & Zhang, 2020):

• purification of the nucleic acids from the sample (by centrifugation or magnetic bead
separation),

• amplification of relevant RNA sequences, and

• detection of the amplified RNA.

This time-expensive test needs to be performed by trained laboratory technicians using
expensive equipment. Under these circumstances, LOC devices have several advantages.
Automation of the clinical processes increase sensitivity, reproducibility and ease of use,
while decreasing the necessary sample amount, the total-analytical time, and cost Tymm
et al. (2020).

A programmable LOC device, as the one discussed in this work, can serve as bridging
technology between manually performed testing, as described above, and the POC quick
tests that everybody has been using for at-home testing during the last few years. Quick
tests target antibodies making them less sensitive than the PCR testing described. With
the presented design, automated PCR testing could be performed delivering a good trade-
off between sensitivity, reproducibility and cost on one hand, and time-to-result on the
other.

1.2.3 Trends in LOC development

The most important trends in the development of new LOC devices considers aspects
like miniaturization, interfaces, and multiplexing (Hermsen et al., 2013). Miniaturization
allows the reduction of sample volumes and can speed up the analytical processes, mak-
ing the analysis more cost-effective. Another aspect of miniaturization is the targeting
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of smaller objects, like cells. Single-cell analysis investigates metabolism and interac-
tions of single cells expecting insights in e.g. cancer growth, drug development, or aging
(Zenobi, 2013). We should note at this point that smaller length scales make traditional
mechanical liquid pumping extremely inefficient as the resistance becomes large. Thus,
flow excitation by electrokinetic methods is very popular in microfluidic devices. Elec-
troosmotic pumping can be applied directly inside the device and makes liquid transport
more controllable and effective.

Multiplexing allows for the simultaneous performance of different analytical processes
on one single device. Traditionally, microfluidic systems are designed as single-purpose
devices. Designs that are more flexible can reduce fabrication and development cost in
research as well as investments in clinical or point-of-care situations. Even more crucial
is that complex analytical processes are not possible without a design that can handle
different samples and processes at the same time.

Interfaces between the microfluidic system and the outside world often are the source
of contamination and thus of measurement errors. Optimization of the interface system
to reduce technical issues is a large part of future LOC developments. Yet, the focus of
this work and the presented design lies clearly on the multiplexing and miniaturization
opportunities.

1.3 State of the art and aims of this study

1.3.1 Competitive systems and our design

Classification of electrokinetic actuators The core element of our design is the ac-
tuator as depicted in Figure 1.2c. Electrokinetic actuators working with arrangements
of electrodes in a wall tangential to the desired flow direction have been discussed for
the last few decades. Figure 1.4 gives an overview on a number of competitive actuator
designs. These designs have in common that AC voltages are applied via a number of
wall electrodes in order to produce a controlled flow. However, differences between these
systems include their function (e.g. translational transport, rotational transport, mixing),
the length scale, voltage, frequency, wall/channel geometry, and the materials used. We
analyzed the data from six research articles and 13 patents that are summarized in the
table, which belongs to Figure 1.4. In Figure 1.4, the actuators from these publications
are arranged depending on their minimal length scale/electrode distance and their min-
imum voltage. The given length scale is used as a measure for how small the system
can be built. Equivalently, the voltage defines what type of samples can be handled on
the chip. The reason for that is that biological probes, especially cell membranes, can
be damaged or destroyed by large electric fields. We note that some of these actuators
(indicated in yellow) can only produce a flow in one direction (one-dimensional actuators)
(Palmieri & Brianza, 2005; Schlautmann, Gardeniers, & Van den Berg, 2003; Tsuyoshi,
Tsuyoshi, & Suguyama, 2009). As a result, it is not possible to simply integrate them
into a two-dimensional chip surface.
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When assessing actuator designs, we consider high pumping velocities and a homoge-
neous flow field as desirable. At the same time, the actuator architecture should be as
simple as possible, featuring straightforward geometries and a small variety of materials.
As an effect, downscaling possibilities are given. Eddies in the produced flow field are
unwanted as they reduce the pumping velocity and can affect sample deformation.

Milestones in actuator design Three different design principles of electrokinetic ac-
tuators are compared in Figure 1.5. The first actuators that were intensively studied are
designed with electrodes integrated into a flat wall (Loucaides et al., 2007; Ramos et al.,
1999, 2005) (Figure 1.5a). The working principle is AC electroosmosis (ACEO), which
includes but is not limited to traveling-wave electroosmosis (TWEO). AC voltages are
applied via the wall electrodes attracting charges inside the fluid electrolyte. An electric
double layer (EDL) is formed in direct vicinity to the wall. Superposition of those charge
clouds with the electric field between the electrodes generates a Coulomb force acting on
the fluid volume. We note that the EDL is sufficiently slim that the small-Debye-layer
assumption holds. Numerical and experimental studies (e.g. Ramos et al. (2005)) showed
that AC potentials in form of traveling waves are optimal for fluid pumping. Traveling
waves provide a continuous reciprocal excitation with one preferential direction. One par-
ticularly important drawback, however, is the formation of eddies near the wall.

A variation of this idea was presented by Barz and Class (2007). Here an asymmetry is
created by a multi-material surface (example in Figure 1.5a). Thus, a simpler AC voltage
pattern can be applied to the electrodes. Those are arranged between dielectric substrate
sections with different ζ-potentials. The combination of time-constant wall voltages at
this dielectrics and time-varying voltages at the electrodes delivers an asymmetric electric
excitation featuring one preferred direction. Obviously, sharp edges and a great number of
surfaces with an angle to the intended flow direction produce a very inhomogeneous flow
field. This class of actuators can only be used for the pumping of homogeneous liquids.
Diffuse samples would be spread out and dissected, sensitive objects are possibly damaged.

In 2010, M. Z. Bazant et al. patented a similar actuator which mainly differed from the
Ramos et al.-design by the geometry of the surface (Figure 1.5b). While in the Ramos-
design all electrodes were at a leveled height, the more recent patent by M. Z. Bazant et al.
(2010) showed stepped electrodes. As a result, between the electrodes, zones of controlled
re-circulation are formed. Thus, the eddies affecting the main flow in the Ramos-design
are confined in these zones where they are desired. Thus, the main flow stays nearly
uniform. This setup however is more complex to manufacture, limiting miniaturization.
Variations are depicted in the examples in Figure 1.5b.

A different class of actuators (not depicted in 1.5) exploits ACEO in combination with
asymmetric geometries, as discussed by M. Z. Bazant and Squires (2004). The flow chan-
nels exhibit wall electrodes, just like in the designs discussed before. In this case however,
the electrode surface and the wall form an angle. Thus one flow direction is preferred,
even if only AC voltages are applied. Variations include rods with a triangular profile in
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publication comments
1 Faigle (2020)
2 Farzanehnia & Taheri (2019)
3 Loucaides et al. (2007)
4 Palmieri & Brianza (2005) designed as 1D actuator
5 Tsuyoshi et al. )(2009) designed as 1D actuator (not in diagram)
6 Schlautmann et al. (2003) designed as 1D actuator (not in diagram)
7 Desai et al. (2001) structured surface
8 Ledeboer (2009)
9 Medoro et al. (2014)
10 Sohn (2006)
11 Huang et al. (2014) stepped electrodes
12 Noh et al. (2012)
13 Ramos et al. (1999)
14 Ramos et al. (2005)
15 Bazant et al. (2010) stepped electrodes
16 Bazant & Prakash (2013)
17 Barz & Class (2007) multi-material surface
18 Marthaler & Class (2022a)
19 Marthaler & Class (2022b)

Figure 1.4: Product environment. 19 publications on similar actuators have been analyzed
and arranged by the minimal voltage and electrode distance.



1.3. STATE OF THE ART AND AIMS OF THIS STUDY 11

(b1) Stepped electrodes(a1) Flat electrodes, thin EDL (c) Flat electrodes, thick EDL

(b2) Example
Variations with different geometries

of stepped electrodes

(a2) Example
Variation using different materials

between electriodes.

streamlines

EDL

electrodes with AC potential electrodes with opposite potential

Figure 1.5: Comparison of actuator designs with examples. (a1) Design with flat elec-
trodes and thin EDL as used by Ramos et al. (1999). (a2) An example with different
substrate materials as suggested by Barz and Class (2007). (b1) Stepped electrode design
also featuring thin EDLs. Recirculation zones are caged in the gaps between the elec-
trodes. (b2) Design variations suggested by M. Z. Bazant and Squires (2004). (c) Design
discussed in this study with thick EDLs.

the middle of a channel with flat walls. Although these systems are capable of pumping
liquids, the formation of eddies cannot be avoided (Squires & Bazant, 2006).

Other publications discuss variations of the main designs discussed above and apply
them e.g. to mixing (K.-R. Huang et al., 2014) or rotating flows (Ledeboer, 2009).

1.3.2 Our design

The thin-Debye-layer assumption vs. full electrokinetics Common to all the
designs presented in section 1.3.1 is the thin-Debye-layer assumption δ ≪ 1. For a typ-
ical aqueous solution with millimolar charge concentrations the Debye layer thickness is
l∗D ∼ 10 nm and it becomes thicker for smaller concentrations. Predictions on the be-
havior of the competing actuators can only be made as long as the electrode distance is
significantly larger than the Debye layer thickness. In these cases, the electric problem
only influences the flow via a slip boundary condition. The flow field can be described as
Stokes flow, which is simpler than full-electrokinetic flow.

In contrast, our actuator (1.5c) is designed to work in the full-electrokinetics regime
δ ∼ O(1) featuring the simple Ramos-architecture together with the homogeneous flow
field of the Bazant-design. An important step towards this setup is the code presented
in chapter 5. Using that code, predictions of the nonlinear full-electrokinetic behavior of
electrolytic systems are possible. This new actuator design was published in the patent
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(b1) Digital microfluidics(a1) Channel networks (c1) Active-surface microfluidics

channel sample

transport direction
of carrier fluid and sample

carrier droplet with sample

trap electrodes

droplet path electrode
array

film of
carrier fluid

streamchannel of carrier fluid
adapting to sample position
over time

sample path

(a2) Example (b2) Example (c2) Example

Figure 1.6: Comparison of two-dimensional array designs. Grey surface: substrate. Blue:
carrier fluid / channels. Purple: Samples/sample paths. Green: electrodes.
(a1) Channel design, schematic representation. (a2) Example : iStock/luschen. (b1)
Digital microfluidics, schematic representation. (b2) Example: Zhai et al. (2020), licensed
for reuse and adaption (CC-BY https://creativecommons.org/licenses/by/4.0/).
(c1) Active-surface microfluidics, schematic representation. (c2) Chip design discussed in
this study, cp. Figure 1.7.

applications Marthaler and Class (2022a, 2022b) (publications 18 and 19 in Figure 1.4).
Thus, the length scales can be of the order of the small layer thickness and electrode
distances of several nanometers become possible. At the same time, lower voltages can
be used, avoiding the destruction of biological samples by strong electric fields.

Remarks on two-dimensional arrays While the actuators discussed above enable
one-directional fluid pumping, the functionality of LOC systems necessitates two-directional
transport on the surface. Different design approaches are compared in Figure 1.6. Channel
networks (Figure 1.6a) have predefined channel branches, junctions, and valves. Samples
are transported in a carrier fluid along those channels. Pumping is performed with sy-
ringes or electrokinetic actuators. These systems are manufactured and optimized for a
specific application with very limited variation options.

Two-dimensional arrays with caging electrodes are part of several designs published in

https://creativecommons.org/licenses/by/4.0/
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the last few decades. Designs featuring pulsed droplet transport between electrode cells
are summarized using the term digital microfluidics (Figure 1.6b). Examples include the
array for particle transportation and filtering by Desai et al. (2001) or the array design by
Medoro et al. (2014) which consists of squared cage electrodes. In the latter array, fluid
droplets are exchanged between the cages by pulsed transport. Although dielectrophoretic
transport is possible, the applied working principle is electrowetting. It is not clear if in
any of these two designs that a continuous sample transport is possible, which would be
important to perform chromatographic analyses. Noh et al. (2012) published an active-
matrix arrangement of thin-film transistors which works analogously to a TFT display.
With that system, the number of control lines could be reduced, which is an important
step towards system integration and minimization. A newer study exploring long-time
drug testing via single-cell analysis with a digital-microfluids array was presented by Zhai
et al. (2020).

A third class of two-dimensional arrangements can be seen as a combination of the
two mentioned above (Figure 1.6c). The electrode array is completely covered by a film
of carrier fluid. The carrier fluid is pumped in loops, i.e. closed flow paths to sustain
continuity and avoid eddies. Samples can be transported by continuously adapting the
respective carrier fluid loop as depicted in Figure 1.6c. Here, the blue line depicts the
moving carrier fluid while the purple line illustrates the respective sample path. The
patent by Barz and Class (2007) suggests a chess-board arrangement consisting of fields
of different materials separated by electrodes and the fluid transport in the aforementioned
loops. Our design (discussed in the next paragraph) and this setup can be summarized
with the term active-surface microfluidics.

In our design, multiple actuators are connected to form a flat chip surface as illustrated
in the 3D model 1.7. For that purpose, a set of synchronized actuators as the one in Figure
D.3 form a pixel. All actuators inside one pixel are specified by the same flow direction.
Several pixels are controlled by one adjacent control unit. The design with pixels and
control units is displayed in the patent sketch D.6 and the CAD model 1.7. We denote
the combination of the chip surface with the carrier fluid channel, data-connection, and
fluid memory elements (FRAM) as a fluid processing unit (FPU). The FRAM is a set of
small storage units for probes and reagents that can be accessed quickly. The TFT-matrix
as presented by Noh et al. (2012) is applied in our design to connect the single control
units.

With this section, we intend to put the chip design into the context of product design.
While a feasibilty analysis for the actuator, discussed in section 1.3.2, is performed in this
study, the three-dimensional flow is not verified and postponed to later investigations.

Aim of this study This study seeks to verify the presented actuator design by direct
numerical simulation. When developing the product, it was unclear if high enough flow
velocities could be reached and if the heat dissipation was low enough to be transported
away by fan cooling. After verifying the functional principal, optimization of the actuator
within the current technological limits is performed. Those limits include the minimum
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data/power in

sample/reagant in-/out

circular channel for carrier fluid

L-channels for sample and

carrier fluid in-/out

carrier fluid in

FRAM elements

pixel surface (detail above)

carrier fluid out

Figure 1.7: 3D model of the fluid processing unit (FPU) and detail view of the pixel
surface. The second pixel surface which is arranged on top of the system is hidden. Thus,
the lower surface, L-channels and FRAM are visible. Note that the black elements on the
pixel surface are the control units as specified in Figure D.6.

electrode distance, maximum clock frequency, and price.

1.3.3 Landscape of two-phase EHD models

In addition to the feasibility study of the pumping mechanism, this work focuses on a
second phenomenon – the behavior of an immiscible fluid drop under the influence of an
electric field. Both phenomena are clearly coupled. For the sake of simplicity, we isolate
them. Relevant terms for this toipic are electrolyte strength, electrodeformation, and
electromigration. The strength of an electrolytic solution is determined by the percentage
of salt that is dissociated. Sodium chloride dissociates nearly completely into its ions,
such that its aqueous solution acts as a strong electrolyte. In contrast to that, water itself
shows autodissociation into hydronium and hydroxyd ions. However, the ratio of this
ion concentration with respect to the amount of water is very low, which is typical for
a weak electrolyte. The term electrodeformation covers shape changes of fluid droplets
under the influence of an electric field. A drop elongating in the field direction is called
prolate. Contrarily, drops elongating in a field-normal direction are specified as oblate.
Lastly, electromigration is defined as the movement of particles caused by an outer applied
electric field.

Experiments The related experimental setup consists of a fluid particle suspended in
a surrounding fluid, both exposed to an outer electric field. In experiments, electromigra-
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tion was first discovered by Taylor (1966) and later also by Vizika and Saville (1992), but
could not be explained by the models at that time. Electrodeformation could already be
obeserved and explained by Taylor (1966). He derived a mathematical formulation that
was able to predict if a spherical particle would take a prolate (long axis aligned with the
electric field) or oblate (long axis perpendicular to the electric field) shape. However, in
later experiments by Russel, Russel, Saville, and Schowalter (1991) a deformation behav-
ior deviating from this condition was observed.

Models The current landscape of two EHD models addressing these phenomena is
spanned by the publications of Mori and Young (2018); Schnitzer and Yariv (2015) and
Ma, Booty, and Siegel (2022). These works have a detailed analysis of the Debye layer
in common. In contrast to that, earlier approaches by Melcher and Taylor (1969) and
Saville (1997) neglected the electrokinetics in the Debye layer near the interface. While
the early publication by Melcher and Taylor (1969) defined the topic of electrohydrody-
namics, Saville (1997) performed a dimensional analysis considering the dissociation and
association of ions. In the last decade, the scientific discussion shifted towards the inter-
face properties. It is still unclear if the electric properties of the fluid-fluid interface are
correctly described by adsorption (Schnitzer & Yariv, 2015) or partition coefficients (Ma
et al., 2022; Mori & Young, 2018), if there is charge permeability (Mori & Young, 2018;
Schnitzer & Yariv, 2015), or transport of charges adhesive to the interface (Schnitzer &
Yariv, 2015). Yet, Schnitzer and Yariv (2015) and Mori and Young (2018) predicted elec-
tromigration, and Ma et al. (2022) the deformation deviating from Taylor’s condition.

Research gap and aim of this study It should be stressed that the mentioned mod-
eling approaches are derived either for weak or strong electrolytes. Although these are
two fundamentally different prerequisites, the underlying hypothesis is that a good model
is valid beyond its assumptions. Yet, there has not been formal proof for that in electro-
hydrodynamic research. This work addresses the question of what influence electrolyte
strength has on the model’s predictions. To achieve this goal, the publication by Mori
and Young (2018) is used as the main reference. They presented a weak-electrolyte model
that was able to explain electromigration. In contrast, our study focuses on understanding
electromigration in strong electrolytes. Although Schnitzer and Yariv (2015) predicted
electromigration in a strong-electrolyte setting, their result is solely qualitative, lacking
predictions on e.g. the migration velocity. By choosing a similar setup to both of the above
studies, the purpose of this work is to outline under which conditions electromigration
can be observed.

1.3.4 Aim and Hypothesis

In the section above, we have defined two individual aims for each, the actuator and the
two-phase problem. Yet, the overarching goal of this work is to build a deeper under-
standing of the electrokinetic transport phenomena happening inside the LOC system. In
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the next step, we want to extract the underlying principals of electrokinetic transport in
order to achieve a more general understanding of this class of problems.

1.4 Methodology: Asymptotics and spectral simula-
tions

The two research goals are tackled with suitable methods. The two-phase problem is
examined by an asymptotic approach while the actuator is investigated by a numerical
non-interpolating spectral method. This section delivers a short review on both method-
ologies with the used literature. A detailed discussion follows in the respective chapters
4 and 5.

1.4.1 Asymptotic analysis of the Debye layer

For investigations of the Debye-layer electrokinetics, an asymptotic approach is predes-
tined. Here, we follow the foundational works by Hinch (1991) and Bender and Orszag
(1999). The thin-Debye-layer limit in particular was investigated by a range of authors,
such as Cox (1997); Dukhin, Derjaguin, and Matijevič (1974); Saville (1977); Schnitzer,
Frankel, and Yariv (2012); Schnitzer and Yariv (2015, 2016); Yariv, Schnitzer, and Frankel
(2011).

In accordance with these works, we rescale the interface-normal coordinate with the
thickness of the small layer. As a result, the full resolution of the Debye-layer physics
becomes possible. The inner Debye-layer problem and the outer bulk problem are solved
independently and combined via asymptotic matching using Van Dyke’s matching rule
(Van Dyke, 1964).

As our problem consists of two phases, a Debye layer on each side of the fluid-fluid inter-
face exists. They are coupled via interface boundary conditions. Each of the Debye-layer
solutions is matched with the bulk of the suspending and drop phase respectively. Finally,
we derive effective boundary conditions inheriting the complex Debye-layer physics. To-
gether with the set of bulk equations, a macroscopic problem can be solved. The solution
to the Stokes equation for the flow and the Laplace equation for the electric field is well-
known (Leal, 2007; Taylor, 1966). The general solution can be adapted to the effective
boundary conditions derived earlier to find the resulting flow field, surface deformation,
and the migration velocity of the drop.

1.4.2 The non-interpolating spectral method for the actuator sim-
ulation

This study is a first approach to understand the discussed setup and to act as a benchmark
for later approaches. The choice for a spectral method to simulate the electrohydrody-
namic flow in the actuator was made for that reason. Near the electrode wall, strong
gradients in the flow and electric field, as well as small eddies, are observed. In order
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to capture these effects, a high-accuracy simulation is necessary. The smooth laminar
flow results suggest that a simpler code could be used to speed up the simulation in later
studies. As a by-product, a high-accuracy spectral module was developed. It is capa-
ble of solving a variety of simulation problems. One current example is the simulation of
stratification phenomena in a lead-cooled fast reactor (Liu, Marthaler, Class, & Gu, 2023).

The spectral module uses a non-interpolating collocation method (Boyd, 2000) and
was constructed based on the descriptions by Canuto (1988). Using that module, the dif-
ferential equations are solved in spectral space and only transformed back to their physical
equivalent when needed. In our two-dimensional experimental setting, Fourier modes were
used for the periodic direction, and Chebyshev modes for the wall-normal direction. Es-
sential references in this context are the books by Boyd (2000) and Peyret (2002). Canuto
(2006, 2007) include important updates and corrections to Canuto’s earlier book. The
investigations by Srinivas and Fletcher (1992) and Thirumalai and Seshadri (2019) vali-
date the accuracy of spectral collocation methods in the context of electrohydrodynamic
problems. However, those are examples of the very limited amount of publications on the
combination of spectral methods and EHD flow.

One crucial step during the solution of the differential equations in spectral space is
the application of boundary conditions with the Lanczos method (Lanczos, 1964). The
nonlinear no-flux boundary conditions at the wall were taken into account using an influ-
ence matrix method (Peyret, 2002). The iterative scheme to solve the electric problem for
charge transport and electric potential, was adapted from semiconductor simulations. It is
named Gummel’s scheme or Gummel’s iteration (Gummel, 1964). For the time-integration
of the fourth-order differential equation governing the streamfunction, a composite back-
wards differentiation formula of second order (C-BDF2) was used. This approach has
been developed for the investigation cardiac dynamics by Ying (2005) and Ying, Rose,
and Henriquez (2008).

Those numerical schemes are combined to a spectral code capable of predicting the
electrokinetic flow in the actuator and the produced heat dissipation. Together with an
evolutionary algorithm, the actuator is optimized. The "differential_evolution" routine
in the scipy library serves this purpose.

1.5 Outline of the thesis

In order to reach the aim specified in section 1.3 we first discuss terminology and the
basic phenomena in chapter 2. An overview on EHD modeling approaches is given in
chapter 3. Chapter 4 follows, where electromigration of a drop is investigated using a
strong-electrolyte fluid-fluid model. In chapter 5, the second problem of electrokinetic
transport, the electrokinetic actuator, is addressed. The results are used in chapter 6 to
discuss product development, design limitations, and optimization of the actuator. The
final chapter, 7, summarizes the conclusions on electrokinetic transport drawn before, and
adds some generalizing remarks. Further steps in the chip development are outlined.





CHAPTER 2

Electric effects in fluid mechanics

Microscale fluid mechanics differs from macroscale physics by a range of effects, such as
Stokesian motion, electrohydrodynamic, and capillary phenomena. The research in this
field has evolved from understanding the fluid motion of low-Reynolds-number flow in the
18th century, to the investigation of the non-linear, multi-scale, and multi-physical behav-
ior of electrolytic solutions in arbitrary geometries. The present chapter gives an overview
on the terminology and the fundamental phenomena, with some historical remarks.

2.1 Terminology

It is indispensable to clarify some of the terms that will be used throughout this manuscript.
In some cases they are not used consistently in the literature, especially since different
research branches used different terms to describe similar phenomena. Table 2.1 summa-
rizes the most important terminology. Here, we follow the definitions by Lyklema (1991).

The term electrohydrodynamics is used to describe hydrodynamics with additional
electric force effects in electrolytes. Although the term includes ’hydro’, the materials
in this research field are general fluid electrolytes, i.e. fluids which contain dissolved
charged particles/ions. Those include a large number of electrolytes, ranging from auto-
dissociating liquids (e.g. water) containing very small amounts of ions, to liquid solutions
of salt that can dissociate nearly completely (e.g sodium chloride). We describe the elec-
trolytes depending on the percentage of dissociated ions relative to the original substance
either as ’weak’ or ’strong’ electrolytes. The term ’leaky dielectrics’, which is frequently
used in the literature, is less tangible and refers to liquids that feature dielectric properties
and contain dissolved ions.

In the following chapters, we will notice the existence of a large number of cases in
which the coupling between electric and hydrodynamic effects can be assumed to be one-
directional, i.e. electric effects influence the fluid behavior while the fluid flow has no effect
on the electric field. This is referred to as electroosmosis. In contrast, electric potentials
and currents originating from fluid motion are called streaming currents or streaming

19
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field
electrohydrodynamics (EHD) hydrodynamics with electrical force effects
electrokinetics (EK) EHD with strong bidirectional coupling of flow

and electric field

phenomena
electromigration/-phoresis particle motion caused by an electric field
electroosmosis liquid motion caused by an electric field
streaming current electric current caused by fluid flow near charged walls
streaming potential potential difference caused by fluid flow

near charged walls
sedimentation potential streaming potential due to sedimentation

of a charged particle
diffusiophoresis particle motion caused by a concentration gradient
diffusioosmosis liquid motion caused by concentration gradient

Table 2.1: Terminology used throughout this manuscript for electrohydrodynamic phe-
nomena (adapted from Lyklema (1991)).

potentials.

The transport of charged particles that are dissolved in the fluid can lead to local
polarization of the fluid, and thus also affect the electric field. To emphasize the strong
bidirectional coupling in some problems we will call them ’electrokinetic’ or even ’full
electrokinetic’.

2.2 Important electrohydrodynamic effects

This section briefly summarizes important basic electrokinetic problems. Examples are
the definition of electromobility and conductivity, or creeping flow. After that, more
advanced effects are discussed. They typically originate from combinations of the basic
phenomena. One example is the formation of an electric double layer as a result of diffusive
and electric forces.

2.2.1 Fick’s law of diffusion

Particle motion is often driven by electric effects. Yet, concentration gradients also affect
particles to move, independent of their charge. This can in general be described by a
relation that was named after the German physician Adolf Fick (1829–1901). Fick’s 1st
law in a one-dimensional frame of reference,

j∗diff = −D∗ ∂c
∗

∂x∗
, (2.1)
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relates the diffusive flux j∗diff of a particle species with the local concentration c∗ to the
spatial concentration gradient multiplied by the diffusion coefficient D∗. The unit of the
ion concentration is [c∗] = m−3 and it can be transformed to the molar ion concentration
n∗ by multiplication with the Avogadro number n∗ = c∗N∗

A. Throughout this manuscript,
parameters with units are denoted with an asterisk superscript while all symbols without
that superscript are dimensionless.

2.2.2 Stokes flow

Electrokinetic effects become important at small length scales. The related flow fields
are ususally characterized by small Reynolds numbers. Sir George Gabriel Stokes (1819–
1903) first discussed the behavior of viscous fluids in his publication On the effect of the
internal friction of fluids on the motion of pendulums (Stokes, 1850). The simplest form
of the Stokes equation reads

0 = −∇∗p∗ + η∗∇∗2 v⃗∗. (2.2)

In this equation, p∗ is the sum of static and osmotic pressures, η∗ the dynamic viscosity
and v⃗∗ the hydrodynamic velocity. We note that in the absence of electrochemical effects
the pressure in the momentum equation only includes the static part. Following Stokes
we can introduce the Reynolds number as relation between inertia and viscous forces
Re =

ρ∗v∗ref l
∗
ref

η∗
with the fluid density ρ∗, the reference velocity v∗ref , reference length l∗ref , and

reference time t∗ref =
l∗ref
v∗ref

. Thus, the momentum equation for incompressible Newtonian
fluids in the absence of volume forces is

Re

(
∂v⃗

∂t
+ v⃗ · ∇v⃗

)
= −∇p+∇2v⃗. (2.3)

The material derivative on the left hand side can be neglected when the Reynolds number
becomes small, which is the case for experimental settings where velocities or length
scales are small, or the kinematic viscosity is large. Microfluidics is certainly the most
important field of application in which low-Reynolds-number flow (alternatively "Stokes
flow", "viscous flow" or "creeping flow") appears. Yet, the fabrication of highly viscous
substances like certain polymers or silicon oils also relies on creeping flow.

2.2.3 The relation of diffusion, mobility, and conductivity in fluid
electrolytes

In their works on Brownian motion, Albert Einstein (1879–1955) and Marian Smolu-
chowski (1872–1917) discussed the drag on translating particles that are subject to ex-
ternal forces. They defined the friction coefficient as the ratio of the applied force f ∗

applied

and the drift velocity v∗drift of the particle

η∗fric =
f ∗
applied

v∗drift
. (2.4)
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The resulting flux of concentration c∗ is j∗applied = c∗v∗drift. In steady state, this flux is
balanced by diffusion delivering the ordinary differential equation (ODE)

0 = −D∗ ∂c
∗

∂x∗
+ c∗

f ∗
applied

η∗fric
. (2.5)

The solution to the boundary value problem (BVP) with c∗(x = 0) = c∗0 is

c∗ = c∗0 exp

(
− w∗

η∗fricD
∗

)
(2.6)

with the reversible work w∗(x) = −
∫
f ∗
applied(x)dx of the external force. Following Boltz-

mann’s law, this relation has to be equal to c∗0 exp
(
− w∗

k∗BT
∗
a

)
. Thus, we get the diffusion

coefficient
D∗ =

k∗BT
∗
a

η∗fric
= η∗mobk

∗
BT

∗
a . (2.7)

Note that the mobility coefficient η∗mob is introduced as the inverse of the friction coef-
ficient. The parameters k∗B and T ∗

a are the Boltzmann constant and the ambient tem-
perature respectively. There are three special cases of this law that we are particularly
interested in, the electric mobility of ions, the drag of an uncharged spherical particle,
and the conductivity of an electrolytic solution, respectively.

By choosing the external force in the above one-dimensional example as the Coulomb
force, we find the respective mobility coefficient called electric mobility µ∗. It is defined
by the so-called Einstein-Smoluchowski relation

µ∗ =
D∗Ze∗0
k∗BT

∗
a

=
D∗

ϕ∗
th

(2.8)

of an electrically charged particle with the valence Z. Here, e∗0 describes the charge of a
proton and we introduce the thermal potential as

ϕ∗
th =

k∗BT
∗
a

Ze∗0
=

R∗T ∗
a

ZFa∗
. (2.9)

The alternative definition of the thermal potential includes the gas constant, which is
defined as product of the Avogadro number and the Boltzmann constant R∗ = N∗

Ak
∗
B

and the Faraday constant, which is the product of Avogadro number and the elementary
charge Fa∗ = N∗

Ae
∗
0.

Stokes’ work includes the analysis of the drag exerted on a translating spherical particle
with radius l∗ref in a fluid with dynamic viscosity η∗. For low Reynolds numbers, the friction
coefficient is η∗fric = 6πη∗l∗ref . Using relation 2.7, one can find the diffusion coefficient of a
spherical particle

D∗ =
k∗BT

∗
a

6πη∗l∗ref
. (2.10)
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This equation is known as the Stokes-Einstein relation.

An important property of a fluid electrolyte is its conductivity. In EHD problems, the
mobility of ions and varying concentrations lead to conductivities that change in space and
time. In order to find the conductivity of an electrolytic solution we need the equivalent
conductivities of each ion

ς∗i = e∗0Zic
∗
iµ

∗
i (2.11)

which has the unit [ς∗] = S m−1 = (Ω m)−1. In this work, we use the local electrolytic
conductivity ς∗ which results as the sum of the conductivities of the single ions

ς∗ =
∑
i

ς∗i = e∗0
∑
i

Zic
∗
iµ

∗
i . (2.12)

An important example in this context is a dilute electrolyte problem characterized by the
dissociation equilibrium

S −−⇀↽−− C+ + C−. (2.13)

The equivalent local conductivity resulting from the concentration of the dissociated ions
C+ and C− is

ς∗ = e∗0
(
Z+c

∗
+µ

∗
+ + Z−c

∗
−µ

∗
−
)
. (2.14)

where Z± = 1. Using the definition of the ion mobility in eq. 2.8, we find

ς∗ =
e∗0

2

k∗BT
∗
a

(
Z2

+c
∗
+D

∗
+ + Z2

−c
∗
−D

∗
−
)
. (2.15)

In cases where the molar conductivity is of interest this can be found by multiplication
with the Avogadro number

ς∗mol =
e∗0

2N∗
A

k∗BT
∗
a

(
Z2

+c
∗
+D

∗
+ + Z2

−c
∗
−D

∗
−
)
=

Fa∗2

R∗T ∗
a

(
Z2

+c
∗
+D

∗
+ + Z2

−c
∗
−D

∗
−
)
. (2.16)

This relation was derived by Albert Einstein and Walther Nernst (1864–1941) and is thus
called the Nernst-Einstein relation.

2.2.4 Structure of the electric double layer: The Gouy-Chapman
solution and the Debye-Hückel approximation

The emergence of an electric double layer near a solid charged wall has been described
independently by Gouy (1911) and Chapman (1913). We follow their investigation by
considering a one-dimensional problem. The semi-infinite fluid domain is on one boundary
limited by a solid wall with given ζ-potential ζ∗ > 0. The electric double layer results from
an equilibrium between the electrophoretic and diffusive forces acting on the dissolved
electric charges. The problem is fully described by the balance relation for the two ion
species c∗± of a binary electrolyte

0 = ∂∗x
(
−D∗∂∗xc

∗
± ∓ µ∗c∗±∂

∗
xϕ

∗) (2.17)
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and the Poisson equation for the electric potential ϕ∗

ϵϵ∗0∂
∗
xxϕ

∗ = −e∗0Z
(
c∗+ − c∗−

)
. (2.18)

Here, ϵ and ϵ∗0 denote the relative and vacuum permittivity respectively. Without loss
of generality, we assume the ion diffusivities D∗, ion mobilities µ∗ and valences Z to be
equal for both ion species. The respective boundary conditions at the wall read

0 = −D∗∂∗xc
∗
± ∓ µ∗c∗±∂

∗
xϕ

∗
∣∣∣
x∗=0

,

ζ∗ + ϕ∗
∞ = ϕ∗

∣∣∣
x∗=0

.
(2.19)

The first is a no-flux condition representing the impermeability of the wall for ions. The
potential at the wall is the ζ-potential of the wall superimposed with an outer applied
far-field potential ϕ∗

∞. Far away from the wall another set of three relations holds

lim
x∗→∞

c∗± = c∗∞,

lim
x∗→∞

ϕ∗ = ϕ∗
∞.

(2.20)

Using the no-flux condition, we can integrate relation 2.17 with respect to x∗ to find

0 = −D∗∂∗xc
∗
± ∓ µ∗c∗±∂

∗
xϕ

∗. (2.21)

This equation can be solved together with the far-field conditions. We obtain for the
charge distributions

c∗± = c∗∞ exp

(
∓ µ∗

D∗ψ
∗
)
, (2.22)

with the excess potential ψ∗ that we define as

ψ∗ := ϕ∗ − ϕ∗
∞. (2.23)

Plugging this into the Poisson equation delivers

ϵϵ∗0
2e∗0Z

∂∗xxψ
∗ = c∗∞ sinh

(
µ∗

D∗ψ
∗
)
. (2.24)

Multiplication with ψ∗′ = ∂∗xψ
∗ gives

ϵϵ∗0
2e∗0Zc∗∞

(
1

2
ψ∗′2

)′

= ψ∗′ sinh

(
µ∗

D∗ψ
∗
)

ϵϵ∗0
2e∗0Zc∗∞

∫ (
1

2
ψ∗′2

)′

dx∗ =

∫
sinh

(
µ∗

D∗ψ
∗
)

dψ∗

ϵϵ∗0µ
∗

2e∗0Zc∗∞D∗
1

2
ψ∗′2 = cosh

(
µ∗

D∗ψ
∗
)
+ k.

(2.25)
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Far away from the wall, for large x∗, both ψ∗ and ψ∗′ vanish. We thus find k = −1 and√
ϵϵ∗0µ

∗

4e∗0Zc∗∞D∗ψ
∗′ = ±

√
cosh

(
µ∗

D∗ψ
∗
)
− 1 = ±

√
2

√
1

2

(
cosh

(
µ∗

D∗ψ
∗
)
− 1

)
= ±

√
2 sinh

(
µ∗

D∗
ψ∗

2

)
.

(2.26)

As we assumed the potential ζ∗ > 0, the potential in the elecrtolyte decays, i.e. ψ∗′ < 0.
Multiplying both sides with

√
2, we find√
ϵϵ∗0µ

∗

2e∗0Zc∗∞D∗ψ
∗′ = −2 sinh

(
µ∗

D∗
ψ∗

2

)
. (2.27)

Another separation step delivers∫ (
−2 sinh

(
µ∗

D∗
ψ∗

2

))−1

dψ∗ =

(
ϵϵ∗0µ

∗

2e∗0Zc∗∞D∗

)− 1
2
∫

dx∗,

−D
∗

µ∗ ln tanh

(
µ∗

D∗
ψ∗

4

)
=

(
ϵϵ∗0µ

∗

2e∗0Zc∗∞D∗

)− 1
2

x∗ + k

tanh

(
µ∗

D∗
ψ∗

4

)
= k̃ exp

(
−
(

ϵϵ∗0D
∗

2e∗0Zc∗∞µ∗

)− 1
2

x∗

)
.

(2.28)

At the wall, for x∗ = 0 the excess potential takes the value ψ∗ = ζ∗ which defines the
integration constant.

tanh

(
µ∗

D∗
ψ∗

4

)
= tanh

(
µ∗

D∗
ζ∗

4

)
exp

(
−
(

ϵϵ∗0D
∗

2e∗0Zc∗∞µ∗

)− 1
2

x∗

)
. (2.29)

We can solve this for the excess potential and find

ψ∗ = 2ϕ∗
th ln

1 + tanh
(

1
4

ζ∗

ϕ∗
th

)
exp −x∗

l∗D

1− tanh
(

1
4

ζ∗

ϕ∗
th

)
exp −x∗

l∗D

, (2.30)

where we have used the thermal potential as introduced in equation 2.8. We further define
the Debye length as

l∗D =

√
ϵϵ∗0D

∗

2e∗0Zc∗∞µ∗ =

√
ϵϵ∗0ϕ

∗
th

2e∗0Zc∗∞
(2.31)

which acts as a scale for the thickness of the electric double layer that emerges near the
wall. Yet, there is no sharp edge of this layer. Indeed, the length l∗D is the length measured
from the wall by which the potential has decayed by the factor of the Euler number e. This
can be illustrated by expanding the so-called Gouy-Chapman solution 2.30 in a Taylor
series for small ζ-potentials. The first coefficient of this series reads

ψ∗ = ζ∗e
−x∗

l∗
D +O(ζ∗3). (2.32)

This last formulation is the so-called Debye-Hückel approximation for ζ∗ ≪ 1.
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2.2.5 Electrokinetics as boundary effects: The Smoluchowski slip
condition

The Smoluchowski slip condition is a simplification often used in EHD problems. It re-
places the complex electrokinetics inside the three-dimensional double layer by a boundary
condition. A surface charge with a superimposed electric field give rise to strong shear
stresses inside the double layer. Thus, it seems like the boundary is moving with a speed
known as the Smoluchowski slip. The associated boundary condition is called Smolu-
chowski slip condition.

We derive this condition for a minimal two-dimensional example. For that purpose,
we assume a fluid domain that is on one side at x = 0 limited by a stationary wall
with a surface charge that is equivalent to a ζ-potential denoted by ζ∗. We assume the
domain semi-infinite in x-direction so that all gradients disappear for x→ ∞. We further
assume that a constant external electric field E⃗∗ is applied in the y-direction tangential
to the wall. The fluid flow is assumed to be uniform in y-direction so that the tangential
velocity vy(x) does not depend on the coordinate y. The fluid flow and the electric field
are governed by the momentum equation in tangential direction and the Poisson equation
respectively

0 = −∂∗yp∗ + η∗
(
∂∗xx + ∂∗yy

)
v∗y − q∗∂∗yϕ

∗,

0 = ϵ∗0ϵ
(
∂∗xx + ∂∗yy

)
ϕ∗ + q∗.

(2.33)

Here, q∗ denotes the charge density which is for the a binary electrolyte defined as q∗ =
c∗+ − c∗−. As mentioned, our assumptions include the flow field to be constant in y-
direction, i.e. ∂∗yv∗y = ∂∗yp

∗ = 0. As the electric field is constant in this direction, the 2nd
derivative of the potential also vanishes ∂∗yyϕ∗ = 0 and we call the constant first derivative
∂∗yϕ

∗ := −E∗
y . The two equations simplify to

0 = η∗∂∗xxv
∗
y + q∗E∗

y ,

0 = ϵ∗0ϵ∂
∗
xxϕ

∗ + q∗.
(2.34)

Combining the two delivers an equation for the velocity field

0 = η∗∂∗xxv
∗
y − ϵ∗0ϵ∂

∗
xxϕ

∗E∗
y . (2.35)

Using the Gouy-Chapman solution of the double layer with the definition of the excess
potential ψ∗, we find

v∗y =
ϵ∗0ϵ

η∗
ψ∗E∗

y + Ax∗ +B. (2.36)

With the boundary conditions

lim
x→0

v∗y = 0, lim
x→0

ψ∗ = ζ,

lim
x→∞

∂∗xv
∗
y = 0, lim

x→∞
ψ∗ = 0,

(2.37)

we find the integration constants

A = 0, B = −ϵ
∗
0ϵ

η∗
ζ∗E∗

y (2.38)
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so that the solution for the tangential velocity is

v∗y =
ϵ∗0ϵ

η∗
(ψ∗ − ζ∗)E∗

y , (2.39)

when sufficiently far from the wall it takes the constant value

v∗y,slip = lim
x→∞

v∗y = −ϵ
∗
0ϵ

η∗
ζ∗E∗

y . (2.40)

2.2.6 Linear transient electrokinetics: The Debye-Falkenhagen
approximation

Another analytical approach to the electrodiffusive problem (in the absence of convec-
tion) can be found using the so-called Debye-Falkenhagen approximation (M. Z. Bazant,
Thornton, & Ajdari, 2004; Checa, Millan-Solsona, & Gomila, 2019; Debye & Falkenhagen,
1928). In contrast to the solutions discussed in the section before, we now consider the
transient one-dimensional problem

0 = ∂∗t c
∗
± + ∂∗x

(
−D∗∂∗xc

∗
± ∓ µ∗c∗±∂

∗
xϕ

∗) ,
0 = ϵϵ∗0∂

∗
xxϕ

∗ + e∗0Z
(
c∗+ − c∗−

)
,

(2.41)

with the boundary conditions at the wall and far away from it

−D∗∂∗xc
∗
± ∓ µ∗c∗±∂

∗
xϕ

∗
∣∣∣
x∗=0

= 0,

ϕ∗
∣∣∣
x∗=0

= ζ∗,

lim
x∗→∞

c∗± = c∗∞,

lim
x∗→∞

ϕ∗ = 0.

(2.42)

We use the notation for charge density q∗ = c∗+ − c∗− and concentration c∗ = c∗+ + c∗−, and
rewrite the above set of equations as

0 = ∂∗t q
∗ −D∗q∗′′ − µ∗c∗′ϕ∗′ − µ∗c∗ϕ∗′′,

0 = ∂∗t c
∗ −D∗c∗′′ − µ∗q∗′ϕ∗′ − µ∗q∗ϕ∗′′,

0 =
ϵϵ∗0
e∗0Z

ϕ∗′′ + q∗.

(2.43)

In the two charge transport equations, we can rewrite the last term using the Poisson
equation for the potential. The set then reads

0 = ∂∗t q
∗ −D∗q∗′′ − µ∗c∗′ϕ∗′ +

µ∗e∗0Z
ϵϵ∗0

c∗q∗,

0 = ∂∗t c
∗ −D∗c∗′′ − µ∗q∗′ϕ∗′ +

µ∗e∗0Z
ϵϵ∗0

q∗2,

0 =
ϵϵ∗0
e∗0Z

ϕ∗′′ + q∗.

(2.44)
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We can linearize this problem assuming the potential at the wall to be small ζ∗ ∼ O(ε)
with ε ≪ 1. We find from the boundary conditions and the Poisson equation that ϕ∗ ∼
O(ε) and q∗ ∼ O(ε), i.e. q∗(0) = 0 . The equation for the concentration delivers c∗(0) = c∗∞
and c∗(1) = 0. Thus, the set of leading order equations reads

0 = ∂∗t q
∗
(1) −D∗q∗(1)

′′ +
µ∗e∗0Zc∗∞

ϵϵ∗0
q∗(1),

0 = ∂∗t c
∗
(2) −D∗c∗(2)

′′ − µ∗q∗(1)
′ϕ∗

(1)
′ +

µ∗e∗0Z
ϵϵ∗0

q∗(1)
2,

0 =
ϵϵ∗0
e∗0Z

ϕ∗
(1)

′′ + q∗(1).

(2.45)

We can rewrite the first equation using the Debye length

1

D∗∂
∗
t q

∗
(1) = q∗(1)

′′ − l∗D
−2q∗(1),

l∗D =

√
ϵϵ∗0D

∗

e∗0Zc∗∞µ∗ =

√
ϵϵ∗0ϕ

∗
th

e∗0Zc∗∞
.

(2.46)

Note that in this case the Debye length differs by the factor
√
2 from the definition 2.31.

Both definitions can be used equivalently. However, if the definition in 2.31 is used, the
charge density and concentration are usually also defined with the factor 1

2
.

The set of linear equations is complemented by the boundary conditions

−D∗∂∗xq
∗
(1) − µ∗c∗∞∂

∗
xϕ

∗
(1)

∣∣∣
x∗=0

= 0,

−D∗∂∗xc
∗
(2) − µ∗∂∗xq

∗
(1)∂

∗
xϕ

∗
(1)

∣∣∣
x∗=0

= 0,

ϕ∗
(1)

∣∣∣
x∗=0

= ζ∗(1),

lim
x∗→∞

q∗(1) = 0,

lim
x∗→∞

c∗(2) = 0,

lim
x∗→∞

ϕ∗
(1) = 0.

(2.47)

The equations for ϕ∗
(1) and q∗(1) are only coupled via the linear no-flux boundary condi-

tion and need to be solved together. After that, c∗(2) can be computed. Long-term and
relaxation behavior of this problem was discussed by M. Z. Bazant et al. (2004). The ap-
proximation was first derived by Debye and Falkenhagen (1928). For the stationary case,
the linearized problem will deliver the Debye-Hückel solution that was already discussed
in the section before.



2.2. IMPORTANT ELECTROHYDRODYNAMIC EFFECTS 29

2.2.7 Influence of a streaming potential:
The electric Reynolds number

The electric Reynolds number was originally introduced by Stuetzer (1962) together with
the magnetic Reynolds number. In his scaling analysis, the Buckinham-Π theorem delivers
four dimensionless parameters. These are the Mach- and Reynolds numbers as well as
two numbers that characterize the EHD problem. The ratio of the EHD velocity vEHD =
ϵϵ∗0E

∗2 and a characteristic flow velocity is important for streaming-potential phenomena.
The electric effects in these problems occur as a result of an outer flow field that produces
charge inbalances, e.g. in the electric double layer. In most EHD problems however, the
EHD velocity can be used as characteristic velocity resulting in the parameter defined by
Stuetzer (1962) to be unity. The second characteristic number he identified is the electric
Reynolds number

Reel =
ϵϵ∗0v

∗
ref

e∗0Zc∗equµl∗ref
, (2.48)

which we can rewrite in terms of the Debye screening length

Reel =
l∗D

2v∗ref
D∗l∗ref

= δ2Pe. (2.49)

We have here rewritten the electric Reynolds number in terms of two dimensionless num-
bers that are more commonly used today, the Péclet number and the dimensionless Debye
length, defined as

Pe =
v∗ref l

∗
ref

D∗ and δ =
l∗D
l∗ref

. (2.50)

The Péclet number is the ratio of diffuse and convective time scales, t∗D and t∗v, respectively.
The term δ2 is the ratio of charge relaxation and diffusive time scales and thus the electric
Reynolds number the ratio of charge relaxation and convective time scales, t∗C and t∗v,
respectively. In summary, these relations read

Pe =
t∗D
t∗v
, δ2 =

t∗C
t∗D
, Reel =

t∗C
t∗v
,

with t∗D =
l∗ref

2

D∗ , t∗v =
l∗ref
v∗ref

, t∗C =
ϵϵ∗0
ς∗
.

(2.51)

In the absence of a given flow field, electric forces drive the flow. In that case, the
convective time scale is defined with the EHD velocity

t∗v =
l∗ref

2η∗

ϵϵ∗0ϕ
∗
th

2 . (2.52)

As this is the case in most problems, we mainly use the dimensionless Debye length and
the Péclet number and compare with older results, e.g. by Melcher and Taylor (1969) by
using the relations presented in this section.
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2.2.8 Association and dissociation of salt

A large variety of dissociation mechanisms can appear in fluid materials. In general,
these can be described as a neutrally charged molecule breaking up into a number of
smaller molecules whose charges sum up to zero. Throughout this manuscript, we refer to
the neutral species as "salt" and the respective charged species as "ions". The contrary
reaction mechanism reconstituting the salt species from its ions is called association. The
most simple example (e.g. sodium chloride) is described by the equilibrium

S −−⇀↽−− C+ + C−, (2.53)

where we denote the salt with S and the respective ions with C±.

In electrohydrodynamic problems, the redistribution of charges by convection or elec-
tromigration can for instance lead to a local decrease in the ion concentration. Effectively,
by dissociation more ions are produced from the salt in that specific region. The accu-
mulation of ions or redistribution of salt have similar effects. In order to describe these
phenomena, we call the concentrations c∗+,equ, c∗−,equ, and s∗equ when the reaction is in
equilibrium. In equilibrium state, the relation

k∗d,equs
∗
equ − k∗a,equc

∗
+,equc

∗
−,equ = 0 (2.54)

holds, where k∗d,equ and k∗a,equ are the rate constants at equilibrium. The rate constants
depend on the ions, salt and the respective solvent. The latter relation can be rewritten
using the equilibrium constant K∗

equ =
k∗d,equ
k∗a,equ

and reads

K∗
equs

∗
equ − c∗+,equc

∗
−,equ = 0. (2.55)

Thus, the equilibrium constant is given by

K∗
equ =

c∗+,equc
∗
−,equ

s∗equ
. (2.56)

In the above reaction 2.53, equal amounts of ions are produced by dissociation. We
assume that all diluted ions have been produced from a salt added to the fluid (or alter-
natively by auto-dissociation of the fluid). Thus, the equlibrium concentrations are equal
c∗+,equ = c∗−,equ := c∗equ and we can rewrite the above equation as

K∗
equs

∗
equ − c∗equ

2 = 0 or K∗
equ =

c∗equ
2

s∗equ
. (2.57)

In the case of large equlibrium constant K∗
equ ≫ 1, the amount of ions relative to salt

is high (strong electrolyte), contrarily if K∗
equ ≪ 1, we have a weak electrolyte. It is

important to note that we will later introduce the dimensionless electrolyte strength

α :=
c∗equ
s∗equ

. (2.58)
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which is not identical with the equilibrium constant. However, it is obvious that for
K∗

equ ≫ 1 also α ≫ 1 holds vice versa. We note that the units of both rate constants are
not equal. Consider eq. 2.54 and that

[
s∗equ

]
=
[
c∗±equ

]
= m−3. For

[
k∗d,equ

]
= s−1 the unit

of the association rate constant is
[
k∗a,equ

]
= m3s−1. As mentioned, we will only consider

electrolytic solutions following the reaction 2.53. In general, reactions with more than
two molecules on the product side are possible. Similarly, we conclude from eq. 2.57 the
unit of the equilibrium constant

[
K∗

equ

]
= m−3. Then, the unit of the rate constants and

the equilibrium constant have to be adjusted accordingly.

After discussing the equilibrium state, we now focus on the processes when the reaction
is not in equilibrium. For that purpose, the general ion and salt concentrations c∗±, s∗± are
used. Analogously, we denote the rate constants with k∗d and k∗a when the reaction is not
necessarily in equilibrium. The production of ions is described by the reaction term

R∗
c = k∗ds

∗ − k∗ac
∗
+c

∗
−. (2.59)

We find the production of salt equivalently

R∗
s = −

(
k∗ds

∗ − k∗ac
∗
+c

∗
−
)
, (2.60)

noting that for dissociation R∗
c > 0 and R∗

s < 0, while for association R∗
c < 0 and R∗

s > 0.
The rate constants k∗d and k∗a do not only depend on ions, salt, and fluid as the respective
equilibrium rate constants, but also on the concentrations. The stronger the mismatch
between c∗± and c∗equ, the faster the rate of change stabilizing the equilibrium state.





CHAPTER 3

An overview of fluid-fluid interface
electrokinetic models

The phenomena discussed in chapter 2 are fundamental not only for the understanding
of the interaction between charged solids and fluid electrolytes. They are also crucial for
problems featuring two phases of fluid electrolytes. Such problems include drops, cells, or
vesicles. In this work, the focus lies on problems with fluid droplets suspended in a second
liquid phase. However, the findings can also be used for investigating biomechanical struc-
tures by adding the respective interface effects. Examples for such interface properties
are electrical capacities, porosity, or inextensibility.

This chapter recaptures the development of fluid-fluid interface models mainly refer-
ring to the two Annual Reviews in Fluid Dynamics by Melcher and Taylor (1969), Saville
(1997), and the JFM articles by Schnitzer and Yariv (2015) and Mori and Young (2018),
as summarized in table 3.1. The work of Melcher and Taylor (1969) defined the field of
electrohydrodynamics by setting up a closed set of equations. It is capable of explaining
a large number of experimental problems from which some were assumed to be irrepro-
ducible effects or systematic errors until then. Saville (1997) later delivered a derivation of
the Taylor-Melcher model from basic principles allowing for dissociation terms and mul-
tiple ion species. As the Saville model is derived for leaky dielectrics, delimiting it from
strong electrolyte models, it is also referred to as the ’leaky dielectric model’. However,
both their works lack a detailed analysis of the thin region near the interface in which
electric charge can accumulate. Recent approaches by Schnitzer and Yariv (2015) and
Ma et al. (2022) for strong electrolytes and Mori and Young (2018) for weak electrolytes
address these effects. They can explain effects like particle migration, surface convection
/ conduction, and the resulting deformations. They build the framework for the model
derived in chapter 4 which is used to investigate electromigration and the influence of
electrolyte strength.

33
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year authors abbr. materials electrokinetics
1969 Melcher and Taylor (1969) TM general fluids no
1997 Saville (1997) SA ’leaky dielectrics’ no
2015 Schnitzer and Yariv (2015) SY strong electrolytes yes
2018 Mori and Young (2018) MY weak electrolytes yes

Table 3.1: Overview of modeling approaches discussed in this chapter. The right column
refers to if electrokinetic effects at the interface are modeled.

3.1 The Taylor Melcher model for droplet electrohy-
drodynamics

The field of electrohydrodynamics was defined by Melcher and Taylor (1969) in 1969.
They suggested a closed set of equations for a problem with two immiscible liquid phases.
Both liquids in the TM model are considered homogeneous, incompressible, and have
constant conductivity and permittivity. Yet, conductivity, permittivity, and viscosity are
not assumed to be identical in both liquids.

Melcher and Taylor (1969) do not deliver a definition for the charge density q∗. We
note that later models account for the existence of different ion species whose charges
sum up to a net charge q∗. Yet, in the TM model only this net charge is defined. The
associated electric current is defined as the superposition of convective and electrophoretic
charge transport

j⃗∗q = j⃗∗q,conv + j⃗∗q,elph = v⃗∗q∗ + ς∗E⃗∗, (3.1)

neglecting diffusive fluxes without discussion. Mori and Young (2018) were later able to
clarify the legitimacy of this latent assumption. The relation j⃗∗q,elph = ς∗E⃗∗ is also referred
to as Ohm’s law, relating conductivity ς∗ and electric field E⃗∗ to the ion flux. The surface
charge q∗Γ, which is the charge attached to the interface Γ is defined in analogy to the
charge density, as well as the regarding surface flux j⃗∗q,Γ.

We further note that Melcher and Taylor (1969) derived their model using the electrical
displacement field

D⃗∗ = ϵ∗0ϵE⃗
∗ + P⃗ ∗ (3.2)

which is a function of the electric field E⃗∗ and the polarization density P⃗ ∗ which accounts
for electric dipole moments in the electric material. It can be a material property of the
dielectric or a response to an externally applied electric field.

The forces affecting fluid motion in this model are gravitation ρ∗g⃗∗ with the gravita-
tional acceleration g⃗, as well as viscous and electric forces, expressed by the divergence of
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Newton stress and Maxwell stress that are defined as

ξ∗ = −p∗I + η∗
(
∇⃗∗v⃗∗ +

(
∇⃗∗v⃗∗

)⊤)
θ∗ = ϵ∗0ϵ

(
−1

2

(
E⃗∗ · E⃗∗

)
I + E⃗∗ ⊗ E⃗∗

) (3.3)

respectively using the unity matrix I and the tensor product ⊗ over two vector spaces.

The TM model is given by the governing equations

∇⃗∗ × E⃗∗ = 0 irrotational electric field,

∇⃗∗ · D⃗∗ = q∗ Poisson eq. for the potential,

∂∗t q
∗ + ∇⃗∗ · j⃗∗q = 0 conservation of charge density,

ρ∗D∗
t v⃗

∗ = ρ∗g⃗∗ + ∇⃗∗ · (ξ∗ + θ∗) conservation of momentum,

∇⃗∗ · v⃗∗ = 0 incompressibility condition

(3.4)

together with the interface conditions that can be found by integration of the governing
equations over the thin surface

n⃗× JE⃗∗K = 0 continuity of the tangential el. field,

n⃗ · JD⃗∗K = q∗Γ surface charge,

n⃗ · J⃗j∗q K + ∇⃗∗
∥ · j⃗∗q,Γ = u∗⊥Jq∗K − ∂∗t q

∗
Γ surface current,

n⃗ · Jξ∗ + θ∗K = 0 absence of surface tension,
n⃗× Jv⃗∗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗∗K = 0 continuity of the normal velocity field.

(3.5)

We denote the interface velocities with u⃗ in contrast to the fluid velocity v⃗. The surface
current condition above depends on the normal interface velocity u⊥. We refer to tables
I and II as given by Melcher and Taylor (1969).

Melcher and Taylor (1969) make a number of simplifying assumptions that we discuss
in detail and summarize the governing equations thereafter. Polarization effects are ne-
glected. As mentioned at the beginning of this section, the permittivity is assumed to be
piece wise constant for each electrolyte. Due to

D⃗∗ = ϵ∗0ϵE⃗
∗ and ∇⃗∗D⃗∗ = ϵ∗0ϵ∇⃗∗E⃗∗ (3.6)

the use of the electric field is sufficient for further description of the problem. We note
that eq. 3.4 states that the electric field is irrotational and therefore conservative. It is
uniquely defined by the scalar electric potential ϕ∗ with E⃗∗ = −∇⃗∗ϕ∗.

An analysis of the charge density distribution reveals further simplifications that can
be applied to the electrical problem. The conservation law for the charge density q∗ in
eq. 3.4 can be combined with Gauss’ law for constant permittivity

ϵ∗0ϵ∇⃗∗ · E⃗∗ = q∗ (3.7)
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to yield (
∂∗t + v⃗∗ · ∇⃗∗

)
q∗ +

ς∗

ϵ∗0ϵ
q∗ = 0. (3.8)

From this relation, two conclusions can be drawn. The characteristic time scale for charge
relaxation is t∗C =

ϵ∗0ϵ

ς∗
. Along streamlines, perturbations of charge decay on this time scale.

For open streamlines, i.e. originating at infinity with no outer source of charge, in a single
fluid this relation delivers q∗ = 0. However, in a two-phase setting, the interface Γ can
act as a source of charge.

After examining the electrical problem we focus on how these simplifications affect the
flow. For constant permittivity, the divergence of the Maxwell stress can be simplified to
the Coulomb force

∇⃗∗ · θ∗ = ϵ∗0ϵ
(
∇⃗∗ · E⃗∗

)
E⃗∗ = q∗E⃗∗. (3.9)

In the frequently used case of q∗ = 0 this force vanishes. Then, the only way electric
effects influence the flow is through the boundaries.

In summary, the above simplifications lead to the set of governing equations

∇⃗∗ · E⃗∗ = 0 solenoidal electric field,

ρ∗D∗
t v⃗

∗ = ∇⃗∗ · (ξ∗ + θ∗) conservation of momentum,

∇⃗∗ · v⃗∗ = 0 incompressibility condition

(3.10)

together with the boundary conditions

n⃗× JE⃗∗K = 0 continuity of the tangential el. field,

n⃗ · JϵE⃗∗K = q∗Γ surface charge,

n⃗ · J⃗j∗q K + ∇⃗∗
∥ · j⃗∗q,Γ = −∂∗t q∗Γ surface current,

Jξ∗ + θ∗K · n⃗ = 0 absence of surface tension,
n⃗× Jv⃗∗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗∗K = 0 continuity of the normal velocity field.

(3.11)

This model (Melcher & Taylor, 1969) is capable of explaining convection phenomena
induced by an outer electric field. Different settings are used, such as experiments in
a rectangular apparatus, or spherical droplets. The discontinuity in the outer applied
electric field at the interface between the two phases (cp. eq. 3.11) leads to a discontinuity
of the Maxwell stress and thus hydrodynamic shear stresses. The prediction of convection
cells, as well as droplet deformations and flow instabilities, are possible with this model.

The electric Reynolds number was introduced as an estimate of the influence of fluid
convection relative to the charge relaxation in the bulk

Reel =
ϵ∗0ϵv

∗
ref

ς∗l∗ref
. (3.12)
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For small electric Reynolds numbers Ree ≪ 1, convection can be neglected, while it
becomes particularly important for Ree ∼ O(1). Problems which are dominated by con-
vection (Ree ≫ 1) are not discussed in this context because electric effects play a minor
role. The list of applications for this model is completed by stability problems in which ex-
citating electric forces and damping vscous force are counterparts. A second dimensionless
number, relating these two forces is the electric Hartmann number

Hael = E∗
ref

√
ϵ∗0

2ϵ2

η∗ς∗
. (3.13)

Despite its large range of capabilities, the model lacks a rigorous scaling analysis and
thus an overview on the experimental parameters that limit the model validity. The
two dimensionless numbers mentioned above have been derived for certain experimental
settings. However, a scaling analysis of the whole model can predict what experimental
settings lead to which phenomena a priori. For that reason, we will follow the derivation
of a very similar model by Saville in the next section.

3.2 The Saville model

In his Annual Review from 1997, Saville considered the foundations of the TM model,
delivering some insights into its limits. He confined his research area to poorly conducting
liquids ’leaky dielectrics’ under the influence of strong fields. Due to Saville, electroki-
netics in contrast deals with the better conducting ’electrolytes’ and relatively small field
strengths. We note that these statements do not exactly agree with our definition ter-
minology in sec. 2.2. Saville claims that the boundary between electrokinetics and leaky
dielectric EHD is defined by conductivity and electric field strength. Yet, from today’s
point of view both of the fluid materials that he called ’leaky dielectrics’ and ’electrolytes’
are electrolytic solutions. The poor conductivity of ’leaky dielectrics’ originates from
the small amount of dissolved charges in the liquid, while ’electrolytes’ contain a large
amount of such charged particles. Therefore, throughout this manuscript we will refer
to such materials as weak and strong electrolytes. As a result, electrolyte strength does
not turn out to be a defining property of the respective field of research. In addition, the
electric field strength is a more vague argument. It is not obvious at which field strength
a line between the different fields can be drawn. In fact, the resulting physics significantly
depends on more parameters beyond the field strength, e.g. dielectric constants, viscosi-
ties, or ion diffusivities. Therefore, we define the respective research fields depending on
the existence of different physical effects. In particular, electrokinetics feature a two-way
coupling between electric and flow problem.

Saville derives his model starting from a fully coupled system of equations. Unlike
Melcher and Taylor, he starts from the dissociation equilibrium between a salt and the
respective ions. Consequently, the charge density is a parameter uniquely defined by

q∗ =
∑
i

Z+,ic
∗
+,i −

∑
j

Z−,jc
∗
−,j. (3.14)



38 CHAPTER 3. ELECTROKINETIC MODELS

Without loss of generality, a binary symmetric electrolyte can be assumed, reducing the
above relation to

q∗ = c∗+ − c∗−. (3.15)

The respective ion fluxes take convection, electromigration, and diffusion into account

j⃗∗± = j⃗∗±,conv + j⃗∗±,elph + j⃗∗±,diff = v⃗∗c∗± ± µ∗
±c

∗
±E⃗

∗ −D∗
±∇⃗∗c∗±. (3.16)

The salt flux j⃗∗s is composed similarly, yet it does not contain electromigration due to the
electroneutrality, and reads

j⃗∗s = j⃗∗s,conv + j⃗∗s,diff = v⃗∗s∗ −D∗
±∇⃗∗s∗. (3.17)

The divergence of those fluxes is balanced by the reaction terms R± and Rs which are
defined as introduced in sec. 2.2.8

R∗
c = k∗ds

∗ − k∗ac
∗
+c

∗
−,

R∗
s = −

(
k∗ds

∗ − k∗ac
∗
+c

∗
−
)
.

(3.18)

Now, a closed model can be set up with the governing equations

∇⃗∗ × E⃗∗ = 0⃗ irrotational electric field,

∇⃗∗ ·
(
ϵ∗0ϵE⃗

∗
)
= q∗ Poisson eq. for the potential,

∂∗t c
∗
± + ∇⃗∗ · j⃗∗± = R∗

c conservation of each ion species,

∂∗t s
∗ + ∇⃗∗ · j⃗∗s = R∗

s conservation of salt,

ρ∗∂∗t v⃗
∗ + v⃗∗ · ∇⃗∗v⃗∗ = ∇⃗∗ · (ξ∗ + θ∗) conservation of momentum,

∇⃗∗ · v⃗∗ = 0 incompressibility condition

(3.19)

with the boundary conditions

n⃗× JE⃗∗K = 0⃗ continuity of the tangential el. field,

n⃗ · Jϵ∗0ϵE⃗∗K = q∗Γ surface charge,

n⃗ · J⃗j∗q K + ∇⃗∗
∥ · j⃗∗q,Γ = u∗⊥Jq∗K − ∂∗t q

∗
Γ surface current,

Jξ∗ + θ∗K · n⃗ = 0 absence of surface tension,
n⃗× Jv⃗∗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗∗K = 0 continuity of the normal velocity field.

(3.20)

In order to follow the dimensional analysis by Saville, we start with the reference values
used to nondimensionalize the equations and the resulting dimensionless parameters as
summarized in table 3.2. In dimensionless form, the momentum equation reads

t∗η
t∗ref

∂tv⃗ +Re v⃗ · ∇⃗v⃗ = ∇⃗ · (ξ + θ) . (3.21)
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reference parameter symbol unit definition estimate comments
length scale l∗ref m – 10−3

time scale t∗ref s – –
velocity scale v∗ref m s−1 ϵ∗0ϵl

∗
refE

∗
∞

2

µ
0.35 · 10−3 EHD velocity

surface velocity scale v∗Γ m s−1 – –
pressure scale p∗ref Pa ϵ∗0ϵE

∗
∞

2 0.35
viscosity η∗ Pa s – 1 e.g. oil, glycerine
relative permittivity ϵ – – 4 e.g. some oils
reference salt concentration s∗ref m−3 – 1024 10−3 mol l−1

reference ion concentration c∗ref m−3
√
K∗

equs
∗
ref 1020 10−7 mol l−1

applied electric field E∗
∞ V m−1 – 105

parameter symbol unit definition

viscous relaxation time t∗η s
ρ∗l∗ref

2

η∗
1 · 10−3

electrical relaxation time t∗C s
ϵ∗0ϵ

ς∗
35 · 10−3

characteristic diffusion time t∗D s
l∗ref

2

D∗ 106

characteristic convection time t∗v s
l∗ref
v∗ref

2.82 for v∗ref = v∗EHD

characteristic surface time t∗Γ s
l∗ref
v∗Γ

–

thermal potential ϕ∗
th V

k∗BT
∗
a

Ze∗0
25 · 10−3

dimensionless parameter symbol unit definition

Reynolds number Re – t∗η
t∗v

10−4 for v∗ref = v∗EHD

Peclet number Pe – t∗D
t∗v

105 for v∗ref = v∗EHD

Damköhler number Da – k∗d,equt
∗
D 105

electrolyte strength α – c∗ref
s∗ref

10−4

dimensionless field strength β – E∗
∞l∗ref
ϕ∗
th

103

dimensionless length ΛSA – ϵ∗0ϵE
∗
∞

l∗refe
∗
0c

∗
ref

10−4

Table 3.2: Reference parameters, scales, and dimensionless numbers of the Saville model.
The values were estimated for a material with ϵ = 4, ς∗ = 10−9 S m−1, µ∗ = 1 Pa s
and an applied electric field with strength E∗

∞ = 105 V m−1. The dissociation is set to
K∗ = 1017 m−3, k∗a = 10−18 m3 s−1, and k∗a = 10−1 s−1 and the reference concentration
c∗ref = 107m−3. The estimated values give an overview on the relative size of the parameters
in the Saville model. Yet, they can vary significantly with different materials and field
strengths. (Saville, 1997)
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With the assumption Re ≪ 1, the convective term is neglected. Similarly, the charge
transport equations are non-dimensionalized, and we get

t∗D
t∗ref

∂tc± + ∇⃗ ·
(
Pe v⃗c± ∓ β c±E⃗ − ∇⃗c±

)
= Da α−1 (kds− kac+c−) ,

t∗D
t∗ref

∂ts+ ∇⃗ ·
(
Pe v⃗s− ∇⃗s

)
= −Da (kds− kac+c−) .

(3.22)

Here, the rate constants were made dimensionless using the respective equilibrium values.
Saville (1997) suggests considering the resultant equation for the charge density

t∗D
t∗ref

∂tq + ∇⃗ ·
(
Pe v⃗q + β cE⃗ − ∇⃗q

)
= 0, (3.23)

with the dimensionless conductivity c = c+ + c−. Due to Saville (1997), the respective
condition for the conductivity is given by Da ≫ 1 and eq. 3.22 and reads

kds− kac+c− = 0. (3.24)

The electrical system is closed by the Poisson for the electric potential

ΛSA∇⃗ · E⃗ = q (3.25)

which yields for ΛSA ≪ 1 charge neutrality q = 0. Together with eq. 3.23, we find a
relation for the electric potential

∇⃗ ·
(
cE⃗
)
= 0. (3.26)

In most application cases Saville (1997) assumes ς to be a constant without formal proof.
We will later discuss under which conditions this assumption is valid. In problems with
surface conduction or close to charged walls, regions with charge amounts that are larger
or smaller than the equilibrium value emerge. Thus, the conductivity in those regions is
not equal to the conductivity in equilibrium.

In contrast to the bulk, the surface charge density is scaled as q∗Γ = ϵ∗0ϵE
∗
∞qΓ and the

surface velocity is scaled as v⃗∗ = v∗Γv⃗, where v∗Γ is a velocity inherent to the interface, e.g.
the tangential surface speed. The dimensionless form of the surface current relation reads

n⃗ · J⃗jqK + ∇⃗∥ · j⃗q,Γ =
t∗C
t∗Γ
u⊥JqK − t∗C

t∗ref
∂tqΓ,

j⃗q =
t∗C
t∗Γ
v⃗q + cE⃗ − 1

β
D±∇⃗q,

j⃗q,Γ =
t∗C
t∗Γ
v⃗qΓ.

(3.27)

We note here that surface fluxes due to electromigration and diffusion are neglected in
this model. The diffusive flux from the bulk into the surface (or from surface to bulk),
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can be neglected for strong applied fields β ≫ 1.

We can summarize the Saville model with the discussed assumptions. The equations
in dimensionless form read

∇⃗ × E⃗ = 0⃗ irrotational electric field,

∇⃗ ·
(
cE⃗
)
= 0 electric field,

t∗η
t∗ref

∂tv⃗ +Re v⃗ · ∇⃗v⃗ = ∇⃗ · (ξ + θ) conservation of momentum,

∇⃗ · v⃗ = 0 incompressibility condition

(3.28)

with the boundary conditions

n⃗× JE⃗K = 0⃗ continuity of the tangential el. field,

n⃗ · JϵE⃗K = qΓ surface charge,

n⃗ · Jt
∗
C

t∗Γ
v⃗q − cE⃗K + ∇⃗∥ ·

(
t∗C
t∗Γ
v⃗qΓ

)
=
t∗C
t∗Γ
u⊥JqK − t∗C

t∗ref
∂tqΓ surface current,

Jξ + θK · n⃗ = 0 absence of surface tension,
n⃗× Jv⃗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗K = 0 continuity of the normal velocity field.

(3.29)

Despite the simplifications made, the leaky dielectric model supports many experimen-
tal studies. The most important examples are the deformation and motion of drops, and
their stability under external electric fields. Yet, its applications range beyond spherical
geometries, e.g. in the breakup of jets.

In most applications, the above leaky dielectric model is used with the assumptions
Re ≪ 1 and constant c, which we already discussed. Yet, formal proof for the latter
condition is still necessary. It is also questionable under which experimental conditions a
different scaling for the charge density in the surface and bulk equations make sense. A
similar ambiguity occurs for the velocity scale.

In some cases, the limit for ΛSA → 0 can be singular which is equivalent to the exis-
tence of a thin electric layer. An analysis of this limit might help to better understand the
charge transport close to or through the interface. In particular, the transverse electric
currents that are neglected by both, Saville (1997) and Mori and Young (2018), can be
investigated.
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3.3 Strong electrolytes by Schnitzer and Yariv

In contrast to the previous works by Mori and Young (2018) and Saville (1997), Schnitzer
and Yariv (2015) derived a liquid-liquid electrohydrodynamic model for a stationary prob-
lem and strong electrolytic solutions from an intensive analysis of the interfacial electric
layers. The Reynolds number is assumed to be a priori small. A list of other important
scales is presented in tabel 3.3. The initial set of equations in dimensionless form reads

δ2ϵ∇2ϕ+ q = 0 Poisson eq. for the potential,

∇⃗ · j⃗± = 0 conservation of each ion species,

∇⃗ · (ξ + θ) = 0 conservation of momentum,

∇⃗ · v⃗ = 0 incompressibility condition.

(3.30)

The corresponding boundary conditions at the interface are

n⃗ · JϵE⃗K = qΓ surface charge,
κ±c± = cΓ,± ion adsorption (on each side),

n⃗ · J⃗j±K + ∇⃗∥ · (2δPev⃗qΓ) = 0 surface current,
JξK · n⃗ = θΓ absence of surface tension,
n⃗× Jv⃗K = 0 continuity of the tangential velocity field,

n⃗ · v⃗ = 0 impermeability.

(3.31)

In the above equations, the charge current is defined similarly to Saville, as

j⃗± = j⃗±,conv + j⃗±,elph + j⃗±,diff = Pe v⃗c± ∓ c±∇⃗ϕ− ∇⃗c± (3.32)

and the parameter θΓ denotes the surface tension due to the surface charge qΓ = c+,Γ−c−,Γ.
It consists of two terms for the electric shear stress and the Marangoni effect respectively.
We refer to Schnitzer and Yariv (2015) and Baygents and Saville (1990) for a more detailed
discussion of these effects. The concentration of adsorped charges is linearly dependent
on the adsorption coefficients κ± which are not necessarily equal on both sides of the
interface. In addition to the boundary conditions at the interface 3.31, when sufficiently
far from the interface the condition for the electric field holds

lim
|x⃗|→∞

−∇⃗ϕ = βx⃗E, (3.33)

where the vector x⃗E denotes the direction of the outer electric field and β the dimension-
less field strength.

At this point, it is important to emphasize that there is no uniform definition of the
Péclet number in the literature. The reader might notice the difference in the definitions
by Schnitzer and Yariv (2015) and Saville (1997). Schnitzer and Yariv (2015) call the
dimensionless number "drag coefficient" or intrinsic Péclet number. The reason for that



3.3. THE SCHNITZER-YARIV MODEL 43

reference parameter symbol unit definition estimate comments
length scale l∗ref m – 10−3

velocity scale v∗ref m s−1 ϵ∗0ϵϕ
∗
th

2

l∗refµ
0.5 · 10−6 EHD velocity

time scale t∗ref s
l∗ref
v∗ref

2 · 103

pressure scale p∗ref Pa
ϵ∗0ϵϕ

∗
th

2

l∗ref
2 0.5 · 10−6

reference ion concentration c∗ref m−3 – 1024 10−3 mol l−1

parameter symbol unit definition

thermal potential ϕ∗
th V

k∗BT
∗
a

Ze∗0
25 · 10−3

applied electric field E∗
∞ V m−1 – 103

diffusion coefficients D∗
± m2 s−1 – 10−9

Debye length l∗D m
√

ϵ∗0ϵϕ
∗
th

Ze∗0c
∗
equ

14 · 10−9

dimensionless parameter symbol unit definition

Reynolds number Re – ρ∗v∗ref l
∗
ref

η∗
10−4 for v∗ref = v∗EHD

Peclet number Pe – v∗ref l
∗
ref

D∗
±

0.5 for v∗ref = v∗EHD

electrolyte strength α – – ≫ 1

dimensionless field strength β – E∗
∞l∗ref
ϕ∗
th

4 · 103

dimensionless Debye length δ – l∗D
l∗ref

10−5

Table 3.3: Reference parameters, scales, and dimensionless numbers of the SY model. The
estimated values give an overview of the relative size of the parameters in the SY model.
Yet, they can vary significantly with different materials and field strengths. Schnitzer and
Yariv (2015)
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is the definition using the EHD velocity based on the thermal potential. Alternatively, the
outer electric field could be used to define a similar EHD velocity as Saville (1997) does.
Thus, in some contexts, the latter is denoted as Péclet number while the dimensionless
number based on the thermal potential is also called drag coefficient.

We note that the interface conditions 3.31 do not allow the particle to migrate or to
deform. The study is yet important for a number of reasons. In contrast to the models
discussed before, it comprises a detailed analysis of the diffuse charge layers near the
interface. For that purpose, an asymptotic approach for strong electric fields and thin
Debye layers is applied

1 ≪ β ≪ 1

δ
. (3.34)

In the bulk, the electric potential is assumed to be of O(β), leading to an O(β2) electric
stress which is balanced by an equal hydrodynamic stress. Thus, velocities and pressure
are assumed to be of O(β2). The mean charge is postulated to be of O(1) while the charge
density is of O(δ2β) due to Poisson’s equation.

For the analysis of the Debye layer, the coordinate normal to the surface x1 is rescaled
as

n⃗ · x⃗ = δX (3.35)

where X is the stretched coordinate. As the analysis is based on two small parameters δ
and β−1, the following expansions are introduced

C± = C±(0,0) + δβC±(1,−1) + . . .

Φ = βΦ±(0,−1) + Φ±(0,0) + δβΦ±(1,−1) + . . .

V ∥ = β2V
∥
±(0,−2) + βV

∥
±(0,−1) + δβV

∥
±(1,−1) + . . .

(3.36)

Using the continuity condition together with the impermeability condition of the inter-
face, the normal velocity is found to be V ⊥ ∼ O(δβ2). Here, we used capital letters for
the Debye-layer parameters while the bulk parameters are still denoted with small letters.
The orders of a parameter are denoted with the index in brackets, with the first number
referring to the Debye-layer thickness and the second one to the electric field.

Although we omit the details of the analysis, it must be noted that Schnitzer and
Yariv (2015) were, in contrast to Baygents and Saville (1990), able to match inner and
outer regions and derive a closed model. Therefore, this work is discussed here. Now, we
jump directly to the discussion of the resulting model

ϵ∇2ϕ = 0 Laplacian of the potential,

∇⃗ · ξ = 0 Stokes flow,

∇⃗ · v⃗ = 0 incompressibility condition.

(3.37)
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Together with the resulting jump conditions

n⃗ · Jϵ∇⃗ϕKγ = qγ surface charge,
JϕKγ = 0 continuity of the el. potential,

n⃗× Jv⃗Kγ = 0 continuity of the tangential velocity field,
n⃗ · v⃗ = 0 impermeability,

Jξ⊥⊥Kγ = J1
2
ϵ
(
(∂⊥ϕ)

2 −
(
∂∥ϕ
)2)Kγ normal stress jump,

Jξ⊥∥Kγ = qγ∇⃗∥ϕ shear stress jump.
(3.38)

In contrast to the physical surface Γ, we introduce here the apparent surface γ which
includes the detailed physics of the thin layers on both sides of the surface. To stress the
difference between the two jump conditions, the effective boundary conditions are denoted
by J. . .Kγ The apparent surface charge

qγ = Jϵ∇⃗ϕKγ (3.39)

results from the jump in the displacement field. Note that the relations 3.31 and 3.39 are
not the same despite their similar structure. Both surface charges are related by

qγ = qΓ +

∫ ∞

−∞
Q dX, (3.40)

where the latter term is the effective surface charge of the two Debye layers.

Another important but controversial result of the model is the conductivity ratio

ςin
ςex

=
ηin
ηex

√κ+,exκ−,ex

κ+,inκ−,in

(3.41)

of both phases that are denoted with (..)in for the internal drop phase and (..)ex for the ex-
ternal suspending phase. Alternatively, we can use the parameter ratios (the permittivity
ratio is mentioned for completeness)

R :=
ςin
ςex
, S :=

ϵin
ϵex
, M :=

ηin
ηex

, (3.42)

to get

R =M

√κ+,exκ−,ex

κ+,inκ−,in

. (3.43)

As already mentioned, the latter result is controversial as the bulk conductivities of
both phases would depend on the interface properties. However, one would assume the
conductivities to be independent material properties of the electrolytes, and thus also
their ratio. This contradiction cannot be resolved by Schnitzer and Yariv (2015). An-
other point of criticism is the absence of Debye layer charge transport due to convection or
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electromigration in the model, which appears in the model of Melcher and Taylor (1969)
(cp. eq. 3.11) and Saville (1997) (cp. eq. 3.29). Despite this critique, Schnitzer and Yariv
(2015) derive a closed model with a detailed analysis of the diffuse layers. It is capable
of predicting droplet deformation, as e.g. calculated by Torza, Cox, Mason, and Taylor
(1971). They also claim that their model includes droplet migration at higher orders
without providing a detailed analysis.

In summary, the SY model is built from an asymptotic analysis, while the earlier
models discussed in this manuscript (Melcher & Taylor, 1969; Saville, 1997) were built
from an empirical point of view. The discrepancies regarding conductivity, droplet migra-
tion, surface convection and surface conduction are addressed by Mori and Young (2018),
whose study is discussed in the following.

3.4 The connection between full electrokinetics and the
EHD regime by Mori & Young

One recent study addressing fluid-fluid interface phenomena was performed by Mori and
Young (2018). It addresses a number of research questions, the most important of which
are:

• For weak electrolytic solutions, can a model be derived considering the thin-Debye-
layer limit?

• Is the conductivity ratio really a surface property as concluded by Schnitzer and
Yariv (2015)?

• Under which conditions can surface convection and surface conduction be observed?

• Under which conditions can particle migration be observed?

The model is set up in a similar way to Saville (1997). The governing equations are

δ2∇2ϕ+ q = 0 Poisson’s equation,

∂tc± + ∇⃗ · j⃗± = Da α−1Rc conservation of each ion species,

∂ts+ ∇⃗ · j⃗s = −DaRc conservation of salt,

∇⃗ · (ξ + θ) = 0 conservation of momentum,

∇⃗ · v⃗ = 0 incompressibility condition.

(3.44)
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The corresponding boundary conditions at the interface are

n⃗ · Jϵ∇⃗ϕK = 0 absence of surface charge,
·JϕK = 0 potential continuity,
c±,in = l±c±,ex ion partition coefficients,
sin = lssex salt partition coefficient,

n⃗ · J⃗j±K = 0 continuity of surface current,
Jξ + θK · n⃗ = −δ−2σΓκn⃗ surface tension,
n⃗× Jv⃗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗K = 0 impermeability.

(3.45)

Here, the dimensionless reaction term, in analogy to relation, reads 3.22 defined as

Rc = kds− kac+c−. (3.46)

In contrast to the studies discussed above, this model contains the scalar surface-tension
term σΓ. At the interface, the charge distributions are in general not continuous. This
incontinuity is accounted for by the partition coefficients l±. There are two important
aspects to these parameters. The first one is their derivation from the electrochemical
potential equilibria at the interface Γ

w∗
+,in +R∗T ∗

a ln c
∗
+in + Fa∗ϕ∗

in = w∗
+,ex +R∗T ∗

a ln c
∗
+ex + Fa∗ϕ∗

ex

w∗
−,in +R∗T ∗

a ln c
∗
−in − Fa∗ϕ∗

in = w∗
−,ex +R∗T ∗

a ln c
∗
−ex − Fa∗ϕ∗

ex

(3.47)

where the energies w∗
±,in and w∗

±,ex reflect inner solvation energies of each species. Using
the potential continuity condition 3.44, we find

c∗±in = l±c
∗
±ex,

l± = exp

(
w∗

±,ex − w∗
±,in

R∗T ∗
a

)
.

(3.48)

The second aspect is the connection between the dissociation equilibrium and the partition
coefficients. Due to relation 3.48, the partition coefficients depend on the solvation energy.
One of our basic assumptions is that the electrolytes contain only completely dissolved
ions. For details of the energy analysis we refer to Mori and Young (2018) (Appendix A).
The result of this examination is

l+l−
ls

=
K∗

equ,in

K∗
equ,ex

. (3.49)

Although not having discussed the analysis yet, we can note already that the ion distribu-
tions at the interface are not independent of the dissociation reaction. This is in contrast
to the model by Schnitzer and Yariv (2015), who conclude the conductivity ratio to be a
function on interface properties. The MY model can resolve this contradiction by deriving
the partition coefficients from bulk properties, i.e. the equilibrium constants.
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reference parameter symbol unit definition estimate comments
length scale l∗ref m – 10−3

velocity scale v∗ref m s−1 ϵ∗0ϵϕ
∗
th

2

l∗refµ
2 · 10−11 in. EHD velocity

time scale t∗ref s
l∗ref
v∗ref

2 · 103

pressure scale p∗ref Pa
ϵ∗0ϵϕ

∗
th

2

l∗ref
2 0.5 · 10−6

relative permittivity ϵ – – 4 e.g. some oils
conductivity ς∗ S m−1 – 10−9 down to 10−12

viscosity η∗ Pa s – 1 e.g. oil, glycerine
reference ion concentration c∗ref m−3 – 1020 10−7 mol l−1

surface tension σ∗
Γ Nm−1 – 10−3

parameter symbol unit definition

thermal potential ϕ∗
th V

k∗BT
∗
a

Ze∗0
25 · 10−3

applied electric field E∗
∞ V m−1 – 103

diffusion coefficients D∗
± m2 s−1 – 10−12

Debye length l∗D m
√

ϵ∗0ϵϕ
∗
th

Ze∗0c
∗
ref

1.8 · 10−7

reference surface tension σ∗
Γ,ref Nm−1 c∗refR

∗T ∗
a l

∗
ref 0.7 · 10−3

dimensionless parameter symbol unit definition
Reynolds number Re – – ≪ 1

Peclet number Pe – v∗ref l
∗
ref

D∗
±

2.7 · 10−2 for v∗ref = v∗EHD

electrolyte strength α – – 10−4

dimensionless field strength β – E∗
∞l∗ref
ϕ∗
th

O(1)

dimensionless Debye length δ – l∗D
l∗ref

1.8 · 10−4

Table 3.4: Reference parameters, scales and dimensionless numbers of the MY model.
The estimated values give an overview of the relative size of the parameters in the MY
model. Yet, they can vary significantly with different materials and field strengths. Mori
and Young (2018)
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An overview on the important parameters is given in table 3.4. These parameters are
similar to the ones used by Saville (1997) (cp. table 3.2). However, the definition of the
velocity scale is different. Saville used the outer electric field to define an extrinsic EHD
velocity, while Mori and Young (2018) use the intrinsic EHD velocity with a comparably
small thermal potential. Although this definition is identical to the one by Schnitzer and
Yariv (2015), the choice of a more viscous fluid with η∗ = 1 Pa s leads to very small val-
ues for the reference velocity and the diffusion coefficients. This basic set of parameters
is valid for a viscous fluid, such as oil or glycerin, with a comparably small amount of
charges. It is varied by Mori and Young (2018) for a number of experimental settings in
order to investigate the effects of surface conduction / convection and particle migration.

3.4.1 The weak electrolyte limit

The assumption of a weak electrolytic solution with α ≪ 1 is valid throughout all vari-
ations of the model. For α → 0, one can find from the ion conservation in 3.44 that
the reaction term Rc = 0. This leads to the convection-diffusion equation for the salt
distribution

∂ts+ ∇⃗ · j⃗s = 0. (3.50)

For a setting with open streamlines far from the interface, the salt distribution is constant
along the streamlines and thus takes the equilibrium value

s =

{
sref,ex = 1, Ωex

sref,in = ls, Ωin

. (3.51)

By taking the difference of both ion transport equations, we find the transport of charge
density

∂tq + ∇⃗ · j⃗q = 0,

j⃗q = Pe v⃗q − c∇⃗ϕ− ∇⃗q.
(3.52)

The condition Rc = 0 delivers together with 3.46 an algebraic expression relating the
concentrations of both charge species

c+c− =
kd
ka
s. (3.53)

Here, similarly to Saville (1997), it is assumed that the deviation of the rate constants
from the corresponding equilibrium rate constants can be neglected,

k∗d = k∗d,equ,

k∗a = k∗a,equ.
(3.54)

Together with eq. 3.49 we obtain

K :=
kd
ka

=

{
1 =: Kex, Ωex

kd,equ,in
ka,equ,in

=
K∗

equ,in

K∗
equ,ex

= l+l−
ls

=: Kin, Ωin

. (3.55)
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The assumption that the reaction rate constants are constant in each region was also
made earlier by Saville (1997). However, the derived model is not affected by this as-
sumption as it does not comprise a Debye-layer analysis. The MY model however can
only be derived with the strong assumption of constant reaction rates, as we will show now.

The discussed simplifications lead to a new set of three equations for the ion species
and the salt concentration consisting of relations 3.51, 3.52, and 3.53. The relations 3.51
and 3.53 deliver

c+ =
q

2
+
c

2

c− = −q
2
+
c

2

c =
√
q2 + 4Ks

q =
√
c2 − 4Ks

Ks =

{
1, Ωex,

l+l−, Ωin

.

(3.56)

Thus, if the charge density q can be computed from the transport eq. 3.52 with c =
√
q2 + 4Ks,

then all concentrations are known from the relations 3.56. Using this simplified model for
α ≪ 1, three different experimental settings are discussed that we briefly summarize in
the following.

3.4.2 Re-constitution of the TM model for large-Pe flow

The diffuse-layer analysis is performed in the small-Debye limit δ → 0. As the weak
electrolyte limit α → 0 was applied before, the relation

α ≪ δ ≪ 1 (3.57)

must hold. It is further assumed that the Péclet number and the dimensionless surface
tension have the sizes

Pe ∼ O
(
δ−2
)
, σΓ ∼ O

(
δ2
)
, and β ∼ O(1). (3.58)

and that the partition coefficients are equal l+ = l−. For the analysis of the Debye layer,
a stretched coordinate X = δ−1x⃗ · n⃗ is introduced. The physical parameters are extended
in orders of δ. The innner (Debye) region, and outer (bulk) region parameters follow the
same expansion as the charge density

q = q(0) + δq(1) + . . . . (3.59)

The asymptotic analysis delivers the set of bulk equations

∇2ϕ = 0 irrotational electric field,
c = const. bulk conductivity,

∇⃗ · ξ = 0 conservation of momentum,

∇⃗ · v⃗ = 0 incompressibility condition,

(3.60)
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and the boundary conditions, inheriting the detailed physics of the diffuse layers

JϕK = 0 continuity of the el. potential,

n⃗ · JϵE⃗K = qΓ surface charge,

∂tqΓ + κv⊥qΓ + ∇⃗∥ ·
(
v⃗∥qΓ

)
= Jc∇⊥ϕK surface current,

Jξ + θK · n⃗ = −n⃗κσΓ surface tension,
n⃗× Jv⃗K = 0 continuity of the tangential velocity field,
n⃗ · Jv⃗K = 0 continuity of the normal velocity field.

(3.61)

This result is very close to the model originally suggested by Melcher and Taylor (1969).
However, it was derived from a detailed diffuse-layer analysis and additionally considers
surface tension. The aim of investigating the diffuse layers is e.g. the understanding of
surface conduction effects. As mentioned above, the absence of charge separation due to
l+ = l−, leads to a continuous charge distribution near the interface. We will refer to this
composition as electric mono-layer (EML).

3.4.3 Charge transport in the surface: Surface convection and
conduction

The surface current equation in the set of boundary conditions 3.61 describes the charge
transport inside the diffuse layer. Although this equation cannot be solved analytically,
an analysis of stagnation points can give more insight into the structure of the boundary
layer. Mori and Young (2018) derived the condition

−∇⃗∗
∥ · v⃗∗∥ < t∗C (3.62)

under which such a layer exists. Here tc =
ϵ∗0ϵ

ς∗
is the charge relaxation time or Maxwell-

Wagner time scale.

For the investigation of surface conduction under stronger electric fields Mori and
Young (2018) suggest a re-scaling of Péclet number, Debye length, and Damköhler number
with the dimensionless el. field strength

δE =
√
βδ, PeE = βPe, DaE = β−1Da. (3.63)

This results in a a re-scaled version of the equations already obtained for surface convection
and leads to a similar condition for the existence of surface conduction.

3.4.4 Particle migration

The assumption of strong convection (large Péclet number) and absence of charge sepa-
ration (equal partition coefficients) leads to the model discussed in section 3.4.2 which is
similar to the one proposed by Melcher and Taylor (1969). However, the effect of parti-
cles migrating under an applied outer electric field cannot be explained by that model.
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A different experimental setup is necessary to observe this phenomenon. Therefore, Mori
and Young (2018) consider

Pe ∼ O (1) , σΓ ∼ O (δ) , l+ ̸= l−, and β ∼ O(1). (3.64)

They observe particle migration in their model which results from the existence of a
Galvani potential

ϕG = JϕK = 1

2
ln
l+
l−

(3.65)

and predict a migration velocity depending on the mismatches between conductivities,
viscosities, and permittivities between the two phases.

We include a correction of the migration velocity derived by Mori and Young (2018).
The shear stress jump given in equation (5.95) with a sign mistake corrected reads (note
that the notation of the original paper is used in this equation)[

µ

(
∂vi0
∂ξ

+ gij
∂u0
∂ηj

)]
=

(
κ0
(
ϵinϕ

∆
in + ϵexϕ

∆
ex

)
+

(
ϵin
σin

− ϵex
σex

)
J0

)
gij
∂ϕ0

∂ηj

−2

(
ϵin
σin

ϕ∆
in +

ϵex
σex

ϕ∆
ex − IJ

)
gij
∂J0
∂ηj

(3.66)

The correction of the sign mistake leads to the additional term marked in blue. It trans-
lates to the notation used in the following chapter as

Jξ⊥∥K = −
(
κ0
(
ζ − Sζ̄

)
+ (S −R) j(0)

)
gij
∂ϕ0

∂ηj
+2

(
ζ − S

R
ζ̄ − IJ

)
gij
∂j(0)
∂ηj

(3.67)

As a result, the migration velocity of the droplet now reads

Vmgr =
−2E∞

(2 + 3M)(2 +R)

(
R(3− 4M)ζ̄ + (2 +M − 2R)ζ

)
+ f(IJ). (3.68)

A strong-electrolyte model is presented in chapter 4 featuring similar assumptions and
results. Thus, the corrected migration velocity is discussed in section 4.3. The critics
discussed in chapter 4 of this work led to the corrigendum (Marthaler, Class, Mori, &
Young, 2023) to the original paper by Mori and Young (2018).

3.5 Other important studies

We have discussed four seminal studies on fluid-fluid interface models in this section in
order to give an overview on the most important developments in the field. However, this
overview cannot claim completeness. Some of the important publications that have only
been mentioned as a side note or not been mentioned at all are by Baygents and Saville
(1990), Pascall and Squires (2011), and Ma et al. (2022). Especially the aforementioned
publication derives a strong-electrolyte model with a detailed analysis of the inner layer.
Other important aspects are the higher Péclet number (due to choosing a different time
scale) and the impermeability of the interface to ions. Small deformations different from
the ones proposed by Taylor (1966) could be observed possibly explaining some experi-
mental observations.
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3.6 Comparison of the models and a generalizing for-
mulation

In the previous section, a variety of modeling approaches is discussed. Their differences
are not limited to the assumptions, but also include notation and terminology. This
section suggests a formulation that is general and can be reduced to the models discussed
earlier. For that reason, we introduce a formulation of the governing equations for EHD
problems in dimensionless form. The respective boundary conditions are not discussed
here, as they are more specific to each problem. Without loss of generality, we assume
a symmetric binary electrolyte solution. Thus, we find a transport equation for the
salt concentration and the concentrations of the two ion species that are related by the
dissociation equilibrium

S −−⇀↽−− C+ + C−. (3.69)

The equations governing the charge transport and the electric potential read

∂∗t s
∗ + ∇⃗∗ ·

(
v⃗∗s∗ −D∗

s∇⃗∗s∗
)
= −

(
k∗ds

∗ − k∗ac
∗
+c

∗
−
)
,

∂∗t c
∗
± + ∇⃗∗ ·

(
v⃗∗c∗± −D∗

±∇⃗∗c∗± ∓ µ∗c∗±∇⃗∗ϕ∗
)
= k∗ds

∗ − k∗ac
∗
+c

∗
−,

ϵϵ∗0∇∗2ϕ∗ = −e∗0Zq∗.

(3.70)

The flow is governed by the conservation equations of momentum and mass

0 = ρ∗∂∗t v⃗
∗ + ∇⃗∗ · (ξ∗conv + ξ∗ + θ∗) ,

0 = ∇⃗∗ · v⃗∗.
(3.71)

In the momentum equation, the stress tensors ξ∗conv, ξ∗, and θ∗ (covective, viscous, electric
stress) are rank-2 tensors representing flow convection, viscous stress, and electric stress.
The two latter stress tensors are important for this work and read

ξ∗ = −p∗ + η∗(∇⃗∗v⃗∗) + (∇⃗∗v⃗∗)⊤,

θ∗ = ϵ∗0ϵ

(
−1

2
∇⃗∗ϕ∗ · ∇⃗∗ϕ∗ + ∇⃗∗ϕ∗ ⊗ ∇⃗∗ϕ∗

)
.

(3.72)

We use a number of general reference parameters l∗ref , v∗ref , c∗equ, ϕref , k∗d/a,equ, for length,
time, velocity, concentration, and potential, and the reaction rates. The time is scaled as
t∗ref = l∗refv

∗
ref

−1, the pressure as p∗ref = η∗v∗ref l
∗
ref

−1 and the convective stress with ρ∗v∗ref
2.

The dimensionless momentum equation reads

Re ∂∗t v⃗ + ∇⃗ ·
(
Re ξconv + ξ +Haβ2 θ

)
= 0, Re =

ρ∗v∗ref l
∗
ref

η∗
. (3.73)

In the problems discussed in this work, the Reynolds number is small, usually because of
the small length scale l∗ref . Thus, the transient and convective term is neglected and the
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set of governing equations reduces to

Pes∂ts+ ∇⃗ ·
(
Pe± v⃗s− ∇⃗s

)
= −Da

α
(kds− kac+c−) ,

Pe±∂tc± + ∇⃗ ·
(
Pe± v⃗c± − ∇⃗c± ∓ βc±∇⃗ϕ

)
=

Da

α
(kds− kac+c−) ,

δ2β ∇2ϕ = −q,
∇⃗ ·
(
ξ +Haβ2 θ

)
= 0,

∇⃗ · v⃗ = 0.

(3.74)

The dimensionless parameters are

Péclet numbers: Pe± =
v∗ref l

∗
ref

D∗
±

, Pes =
v∗ref l

∗
ref

D∗
s

,

Damköhler number: Da =
k∗d,equv

∗
ref

l∗ref
,

Hartmann number: Ha =
v∗EHD

v∗ref
, v∗EHD =

ϵ∗0ϵϕ
∗2
th

l∗refη
∗ ,

Electrolyte strength: α =
c∗equ
s∗equ

,

Dimensionless Field strength: β =
ϕ∗
ref

ϕ∗
th

, ϕ∗
th =

k∗BT
∗
a

Ze∗0
,

Dimensionless Debye length: δ =
l∗D
l∗ref

, l∗D =

√
ϵϵ∗0ϕ

∗
th

e∗0Zc∗∞
.

(3.75)

The number of six free parameters can in most cases be reduced by assuming either a
strong or weak electrolytic solution, i.e. α → 0 or α → ∞. As a result, the electrolyte
strength α, the Damköhler number Da, and the Péclet number for the salt species Pes
vanish from the system. In the following step a matched asymptotic solution can be de-
rived assuming the dimensionless Debye thickness to be small δ ≪ 1. Further common
assumptions are the choice of v∗ref = v∗EHD and ϕ∗

ref = ϕ∗
th leading to Ha = 1 and β = 1

respectively. The remaining free parameters are the Péclet numbers for the two ion species
Pe±. Assuming equal diffusion coefficients for both species, both Péclet numbers take the
same value Pe± = Pe.

A comparison between the models reviewed in this chapter is summarized in table 3.5.
We note that electromigration phenomena could only be observed with the recent models
capturing the Debye-layer electrokinetics. However, while Mori and Young (2018) derived
quantitative predictions for weak electrolytes, Schnitzer and Yariv (2015) concluded the
particle to migrate without quantitative results. This leads to two main questions:

• Can particle migration also be observed for strong electrolytes under moderate elec-
tric fields?

• If yes, what are the quantitative differences in the migration velocity for weak and
strong electrolytic solutions?
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authors important assumptions observed phenomena
Melcher and Taylor (1969) weak electrolytes, (cellular) convection,

no charge diffusion, particle rotation,
no Debye-layer effects shear-induced instabilities

Saville (1997) weak electrolytes, drop stability,
moderate el. fields, electrodeformation
no Debye-layer effects

Schnitzer and Yariv (2015) strong electrolytes, electromigration (qual.)
strong el. fields,
Debye-layer effects

Mori and Young (2018) weak electrolytes electromigration (quant.)
moderate el. fields, electrodeformation
Debye-layer effects

Mori and Young (2018) weak electrolytes surface conduction
strong el. fields,
Debye-layer effects

Table 3.5: Overview of modeling approaches discussed in this chapter. The right column
refers to if electrokinetic effects at the interface are modeled.

These questions are addressed in the following chapter by deriving the missing model. Be-
yond the phenomenon of electromigration, general conclusions on the effect of electrolyte
strength and electrokinetic transport are made.





CHAPTER 4

A strong-electrolyte fluid-fluid interface model

This chapter presents a two-phase model connecting Debye-layer electrokinetics to the
macroscopic electrohydrodynamics. The main objective is to understand the influence
of electrolyte strength on electromigration. An asymptotic analysis of the Debye layer
delivers effective boundary conditions for the apparent interface. We note that those con-
ditions depend not only on the outer applied electric field, but also on outer concentration
gradients. Comparison to the weak-electrolyte model by Mori and Young (2018) reveals
partly analogous results, but also differences due to distinct geometrical modeling of the
surface.

4.1 Model

4.1.1 Set-up

The dilute electrolyte problem shall be characterized by the dissociation equilibrium

S −−⇀↽−− C+ + C− (4.1)

between the neutral salt and two charged ion species with equal valences Z. We assume
that this reaction is valid in both the domain of the suspending fluid Ω and the interior
drop domain Ω̄ as depicted in Figure 4.1. In general, the diffusion coefficients of the ion
species D∗

+ and D∗
− are not equal1. Without loss of generality, we assume the diffusivities

of both positive species to be equal, as well as the diffusivities of both negative species.
The reaction equilibrium is described by the equilibrium constants K∗ and K̄∗ respec-
tively. Both fluids with the electric permittivities ϵ, ϵ̄ and dynamic viscosities η∗, η̄∗ are
assumed to have equal densities ρ∗. The thermal voltage of the problem is defined by
ϕ∗
th =

k∗BT
∗
a

Ze∗
where k∗B is the Boltzmann constant and T ∗

a the ambient temperature. The
parameters mentioned in this paragraph are all assumed to be uniform in space and time.

1We will use the superscript (..)∗ for all parameters with dimensions while all parameters without an
asterix are dimensionless.
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Γ

γ

γ̄

Ω̄

Ω

parameters for
both domains:

ρ∗, T ∗
a , c∗equ

x1∗

P
g3

x2∗
g2

g1

l

l2(‖ g2)

l1(‖ g1)

Ω̄: drop domain
(ε̄, µ̄∗, D̄∗

±)

Ω: suspending fluid domain (ε, µ∗, D∗
±)

diffuse layers

genuine interface

Figure 4.1: Schematic overview of physical parameters and geometry.

The conservation of the charge concentration c∗±, the salt concentration s∗ and dis-
placement field ϵ∗0ϵ∇∗ϕ∗ are governed by the Nernst-Planck equations and the Poisson
equation

∂∗t c
∗
± +

(
∇⃗∗ · v⃗∗

)
c∗± + ∇⃗∗ · j⃗± = R∗,

∂∗t s
∗ +

(
∇⃗∗ · v⃗∗

)
s∗ = −R∗,

−∇⃗∗ ·
(
ϵ∗0ϵ ∇⃗∗ϕ∗

)
= q∗.

(4.2)

The reaction terms R∗ = k∗ds
∗ − k∗ac

∗
+c

∗
− on the right hand side of the charge and salt

equations contain the rates of dissociation k∗d and association k∗a. We further define the
charge fluxes as

j⃗∗± = D∗
±

(
−∇⃗∗c∗± ∓ c∗±∇⃗∗ϕ∗

)
. (4.3)

An equivalent description of the charges can be made by defining the two parameters

q∗ =
1

2

(
c∗+ − c∗−

)
,

c∗ =
1

2

(
c∗+ + c∗−

)
.

(4.4)

Here, the charge density q∗ accounts for the local net charge while the mean charge
concentration c∗ represents a measure for the local conductivity of the electrolyte. We
will later refer to the the sum and difference of both charge fluxes (divided by two) that



4.1. MODEL 59

we define as
j⃗∗q = −∇⃗∗ (D∗

+c
∗
+ −D∗

−c
∗
−
)
−
(
D∗

+c
∗
+ +D∗

−c
∗
−
)
∇⃗∗ϕ∗,

j⃗∗c = −∇⃗∗ (D∗
+c

∗
+ +D∗

−c
∗
−
)
−
(
D∗

+c
∗
+ −D∗

−c
∗
−
)
∇⃗∗ϕ∗.

(4.5)

The system is complemented by the Stokes equations for viscous flow

∇⃗∗ · σ∗ = 0,

∇⃗∗ · v⃗∗ = 0.
(4.6)

The total stress σ∗ = ξ∗ + θ∗ is composed of hydrodynamic (Newton) and electric
(Maxwell) stresses

ξ∗ = −p∗ + η∗(∇⃗∗v⃗∗) + (∇⃗∗v⃗∗)⊤,

θ∗ = ϵ∗0ϵ

(
−1

2
∇⃗∗ϕ∗ · ∇⃗∗ϕ∗ + ∇⃗∗ϕ∗ ⊗ ∇⃗∗ϕ∗

)
,

(4.7)

with the hydrostatic pressure p∗, the velocity field v⃗∗, and the electric potential ϕ∗. The
equations for the drop domain Ω̄ are written in the analogous form.

4.1.2 Dimensionless form

When the chemical reaction 4.1 is at equilibrium, i.e. R∗ = 0, the amounts of positive and
negative ions are equal c∗+,equ := c∗+,equ = c∗−,equ. Together with the equilibrium constant
K∗ =

k∗d,equ
k∗a,equ

we find

0 = k∗d,equs
∗
equ − k∗a,equc

∗2
equ,

0 = K∗s∗equ − c∗
2

equ.
(4.8)

We define the concentrations and reaction rates at equilibrium as references. As reference
length, we use an intrinsic length of the drop, e.g. its radius. Together with the thermal
voltage and a reference scale as scale for the electric potential, we can introduce the EHD
velocity as reference velocity

v∗EHD =
ϵ∗0ϵϕ

∗2
th

l∗refη
∗ . (4.9)

An overview of all reference scales is displayed in table 4.1. The governing equations in
non-dimensional form are

Pe
(
∂tc± +

(
∇⃗ · v⃗

)
c±

)
+ ∇⃗ · j⃗± =

Da

α
(kds− kac+c−) ,

Pe
(
∂ts+

(
∇⃗ · v⃗

)
s
)
= −Da (kds− kac+c−) ,

−δ2∇2ϕ = q.

∇⃗ · σ = 0⃗,

∇⃗ · v⃗ = 0.

(4.10)
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ϕ∗ = ϕ∗
thϕ =

k∗BT
∗
a

Ze∗
ϕ c∗± = c∗equc± k∗d,a = k∗d,a,equkd,a

D∗
± = 1

2

(
D∗

+ +D∗
−
)
D± = D∗D± v⃗∗ = v∗EHDv⃗ref =

ϵ∗0ϵϕ
∗2
th

l∗refη
∗ v⃗ t∗ =

l∗ref
v∗EHD

t = t∗EHDt

p∗ =
η∗v∗EHD

l∗ref
p l∗2D =

ϵ∗0ϵϕ
∗
th

2Ze∗0c
∗
equ

Table 4.1: Parameter scaling

Pe =
l∗refv

∗
EHD

D∗ =
ϵ∗0ϵϕ

∗2
th

D∗η∗
δ =

l∗D
l∗ref

Da = t∗EHDk
∗
D,equ

α =
c∗equ
s∗equ

S = ϵ̄
ϵ

M = η̄∗

η∗

Table 4.2: Dimensionless numbers

The charge equations may be written in the alternative form for q and c

Pe
(
∂tq +

(
∇⃗ · v⃗

)
q
)
+ ∇⃗ · j⃗q = 0,

Pe
(
∂tc+

(
∇⃗ · v⃗

)
c
)
+ ∇⃗ · j⃗c =

Da

α
(kds− kac+c−) .

(4.11)

The charge fluxes used in the above equations for the two ion species, as well as charge
density and mean charge concentration are

j⃗± = D±

(
−∇⃗c± ∓ c±∇⃗ϕ

)
,

j⃗q = −∇⃗ (D+c+ −D−c−)− (D+c+ +D−c−) ∇⃗ϕ,
j⃗c = −∇⃗ (D+c+ +D−c−)− (D+c+ −D−c−) ∇⃗ϕ.

(4.12)

So far all of the equations in non-dimensionalized form can be used for both regions Ω
and Ω̄ respectively. However, the Newton and Maxwell stresses

ξ = −p+ (∇⃗v⃗) + (∇⃗v⃗)⊤,

θ = −1

2
∇⃗ϕ · ∇⃗ϕ+ ∇⃗ϕ⊗ ∇⃗ϕ,

ξ̄ =M
(
−p̄+ (∇⃗⃗̄v) + (∇⃗⃗̄v)⊤

)
,

θ̄ = S

(
−1

2
∇⃗ϕ̄ · ∇⃗ϕ̄+ ∇⃗ϕ̄⊗ ∇⃗ϕ̄

) (4.13)

differ by their viscosity and permittivity ratios M = η̄∗

η∗
and S = ϵ̄∗

ϵ∗

4.1.3 Properties of the liquid-liquid interface

The interface separating the two electrolytes exhibits both, hydromechanical and electrical
properties. The ratio of charge concentrations on each side of the interface is defined by
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the partition coefficients l+, l−, and lS which result in the boundary condition

c̄±,Γ = l±c±,Γ,

s̄Γ = lSsΓ.
(4.14)

In accordance with Mori and Young (2018), we define the partition coefficients using the
equilibrium constants of the respective electrolyte solutions

l+l−
lS

=
K

K̄
. (4.15)

Thus, the conductivities in both domains do not depend on interface properties, but on
the dissociation equilibrium of each electrolyte. We further assume the interface to be
permeable for ion fluxes and find the continuity of fluxes, potential and displacement field(⃗

j±,Γ − ⃗̄j±,Γ

)
· n⃗ = 0,

ϕΓ − ϕ̄Γ = 0,

∂1(ϕΓ)− ∂1(Sϕ̄Γ) = 0.

(4.16)

A controversial discussion is ongoing addressing the question if the interface is permeable
to ions and if so, under which conditions (Gschwend, Olaya, Peljo, & Girault, 2020;
Mareček & Samec, 2017). For simplicity, we assume a permeable interface, noting that
other studies, e.g. Ma et al. (2022), do not allow ions to pass through. The hydrodynamic
properties consist of continuity of velocities and a stress jump which is

vjΓ − v̄jΓ = 0,

σ11
Γ − σ̄11

Γ = tΓ κ,

σ1α
Γ − σ̄1α

Γ = 0

(4.17)

where κ is the curvature and tΓ is the surface tension coefficient of the interface, which is
assumed to be sufficiently large that the interface stays stable.

4.1.4 Remarks on parameter dimensions

A common approach in experimental settings is to use aqueous solutions with a millimolar
concentration of sodium chloride. Under such conditions, the thermal voltage is ∼ 25 mV
and the diffuse layers at the interface typically have a thickness of about 10 nm. With
particle sizes of at least 1 µm, rather 10 - 100 µm, the assumption of δ ≪ 1 holds.
We further assume that the mean diffusion coefficient of both ion species is of the order
10−9m2

s
which corresponds via the Stokes-Einstein Relation to an ion radius of 0.2 nm.

In his derivation of the leaky dielectric model, Saville (1997) estimated the ion radius to
be between 0.14 nm and 0.25 nm. The resulting time and velocity scales are 2 ms and
0.5mm

s
.
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4.1.5 Strong electrolyte limit

This work focuses on strong electrolytes. We assume for the electrolyte strength that
α−1 ≪ δ ≪ 1. Applying α ≫ 1 to the equations 4.10 and 4.11, we find

Pe
(
∂tc± +

(
∇⃗ · v⃗

)
c±

)
+ ∇⃗ · j⃗± = 0,

Pe
(
∂ts+

(
∇⃗ · v⃗

)
s
)
= −Da (kds− kac+c−) .

(4.18)

Here, the salt conservation is decoupled from the ion equations. The electroneutral salt
does not have any influence on the fluiddynamic behavior and will not be further con-
sidered in our analysis. However, with knowledge of the ion concentrations, the salt
concentration can always be re-established from the last relation.

4.1.6 Thin-Debye-layer limit

The Debye layer is assumed to be thin, i.e. δ ≪ 1. It can be used as a small parameter,
such that the expansion holds

f ∼ f(0) + δf(1) + . . . . (4.19)

At leading order, the set of equations for the bulk reads

∇⃗ · j⃗q = 0,

q(0) = 0.

Pe
(
∂tc(0) + v⃗(0) · ∇⃗c(0)

)
−∇2c(0) = 0,

∇⃗ · σ(0) = 0⃗,

∇⃗ · v⃗(0) = 0.

(4.20)

The first of the above equations reads in detail

0 = −D∆∇2c(0) − ∇⃗ ·
(
c(0)∇⃗ϕ

)
(4.21)

with the two combined diffusion coefficients

D = D+ +D− =
D∗

+ +D∗
−

D∗
+ +D∗

−
= 1,

D∆ := D+ −D− =
D∗

+ −D∗
−

D∗
+ +D∗

−

(4.22)

and for the Ω̄ domain
0 = −D̄∆∇2c(0) − D̄∇⃗ ·

(
c(0)∇⃗ϕ

)
(4.23)

with the two combined diffusion coefficients

D̄ = D̄+ + D̄− =
D̄∗

+ + D̄∗
−

D̄∗
+ + D̄∗

−
,

D̄∆ := D̄+ − D̄− =
D̄∗

+ − D̄∗
−

D̄∗
+ + D̄∗

−
.

(4.24)
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The vanishing divergence of the flux j⃗q(0) allows for gradients in the ion concentration.
This holds either locally or as a result of inhomogeneous boundary conditions, e.g. if the
domain is located between two reservoirs of constant concentration, but in the absence
of ion exchange (when a membrane separates the domains). The bulk equations for the
strong electrolyte reduce to those of the weak electrolyte for uniform ion concentrations
c(0) = 1 or for equal diffusion coefficients, i.e D∆ = 0. For the weak electrolyte limit,
compare Mori and Young (2018) or appendix B.

4.1.7 Geometry in tensor notation

The present discussion of the conservation equations in the vicinity of an interface follows
Aris (1989), which we refer to for more details in the tensorial notation. We assume that
at each point P of the interface the contravariant coordinate x1 is perpendicular to the
surface (cp. 4.1). Thus, the base vector g1 is at all positions normal to the tangential base
vectors gα 2. The resulting contravariant metric gij has the special properties g11 = 1 and
g1α = 0. We further define the volume element √

g =
√
det gij =

√
det gij

−1
. We use

Ricci’s lemma3 to find
0 = g11,j = ∂jg

11 + 2Γ1
jlg

1l = 2Γ1
1j ⇒ Γ1

1j = 0,

0 = g1α,1 = ∂1g
1α + Γ1

1lg
αl + Γα

1lg
1l = Γα

11 ⇒ Γα
11 = 0.

(4.25)

Here, Γi
jk represents the Christoffel symbols of the second kind. We also define the

curvature of a surface defined by constant x1 as

κ :=
1√
g
∂1
√
g. (4.26)

Taking the volume element into account, the equations for strong electrolytes read in
contravariant form

Pe
(
∂t (

√
gc±) + ∂j

(√
gvjc±

))
+ ∂j

(√
gjj±
)
= 0,

δ2∂j (
√
g∂iϕ) = −√

gq.

σij
,j = 0,

∂j
(√

gvj
)
= 0

(4.27)

and for the Ω̄-domain
Pe
(
∂t (

√
gc̄±) + ∂j

(√
gv̄j c̄±

))
+ ∂j

(√
gj̄j±
)
= 0,

S δ2∂j
(√

ggij∂iϕ̄
)
= −√

gq̄.

σ̄ij
,j = 0,

∂j
(√

gv̄j
)
= 0.

(4.28)

Details on the derivation of the momentum equation in curvilinear coordinates are shifted
to appendix A.

2We refer to the tangential directions with Greek indices, e.g., α ∈ {2, 3} and use latin indices to
include all directions i ∈ {1, 2, 3}.

3Ricci’s lemma says that the covariant and contravariant metrics are both constant with respect to
covariant differentiation. Here, we use the contravariant metric to derive simplifications for the Christoffel
symbols.
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4.1.8 Geometrical expansions

We expand the geometrical parameters into a power series of the small parameter δ.
Alternatively to a power series, we can use a Taylor series expansion which is convergent
in close vicinity to the surface of interest for x1 = 0. The following expansions hold

gij = gij(0) (x
α) + δXgij(1) (x

α) +O(δ2),

gij = gij(0) (x
α) + δXgij(1) (x

α) +O(δ2),
√
g =

√
g(0) (x

α) + δX
√
g(1) (x

α) +O(δ2),

κ = κ(0) (x
α) + δXκ(1) (x

α) +O(δ2),

Γi
jk = Γi

jk(0) (x
α) + δXΓi

jk(1) (x
α) +O(δ2).

(4.29)

We note that the surface metrics gαβ(0) and gαβ(1) are the first and second fundamental
forms of the surface. The leading-order curvature term κ(0) is the sum of the principal
curvatures of the surface, i.e. two times the mean curvature and can be expressed using
the expansion of the volume element or the fundamental forms of the surface

κ(0) =

√
g
(1)√
g
(0)

= gαβ(1)g
αβ
(0). (4.30)

The first-order curvature

κ(1) = 2

√
g
(2)√
g
(0)

− κ2(0) (4.31)

can also be expressed using the volume element. This term vanishes for problems with
only weakly non-orthogonal coordinates, e.g. spherical coordinates.

4.2 Debye cloud analysis

We derived the outer solution of our problem in section 4.1.6. Thus, we focus in this
chapter on the inner regions of the diffuse layers. The normal coordinate is stretched by
the layer thickness, resulting in the stretched coordinate X which is given by

x1 = δX. (4.32)

We expand the inner parameters (denoted in capital letters) in powers of δ

Φ = Φ(0) + δΦ(1) + . . .

C± = C±(0) + δC±(1) + . . .

Q = Q(0) + δQ(1) + . . .

C = C(0) + δC(1) + . . .

V 1 = δV 1
(1) + . . .

V α = V α
(0) + . . .

P = δ−2P(−2) + δ−1P(−1) + P(0) + . . .

(4.33)
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Momentum normal O(δ−1)
⇒ Σ11

(0)

Jϕ(0)K

Jc(0)K

Jj1±(0)K

Jv1(0)K

Jvα(0)K

Jσ11
(0)K

Jσ1α
(0)KMomentum tangential O(δ−1)

⇒ Σ11
(0)
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⇒ Φ(0), C±(0),Θ

ij
(−2)

Figure 4.2: Solution scheme of the Debye-layer problem leading to the effective boundary
conditions for the macroscopic problem.

As a result, the stresses and charge fluxes are expanded in the orders

Σ11 = δ−2Σ11
(−2) + δ−1Σ11

(−1) + Σ11
(0) + . . . ,

Σ1α = δ−1Σ1α
(−1) + Σ1α

(0) + . . . ,

Σαβ = δ−2Σαβ
(−2) + δ−1Σαβ

(−1) + Σαβ
(0) + . . . ,

J1
± = δ−1J1

±(−1) + J1
±(0) + . . . ,

Jα
± = Jα

±(0) + . . . .

(4.34)

We also assume the surface tension tΓ to be of O (δ−1) so that the following expansion
holds

tΓ = δ−1tΓ(−1) + tΓ(0) + . . . . (4.35)

We will later see that a large surface tension is necessary to balance the electric stresses
at the interface and to avoid the particle from collapsing.

The asymptotic solution procedure is displayed in Figure 4.2. We start with the elec-
tric Poisson-Nernst Planck problem which decouples and can be solved independently of
the hydrodynamic problem. The leading order of the continuity equation can also be
solved independently. The momentum equation is split up in its normal and tangential
directions. Their derivation can be found in appendix A. Three orders of the normal
momentum equation and two orders of the tangential momentum equation are solved to
deliver the effective boundary conditions for the flow field. Note, that we use the two
notations □γ − □̄γ = J□K for the effective jump conditions.

The apparent boundary γ appears as a jump condition for the macroscopic problem
at lim

x1→0
and as the far-field boundary for the Debye-cloud analysis. Thus, we denote

the integration constants with the subscript □γ. In reality, the transition between both
domains is smooth which is accounted for by the asymptotic scheme.
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4.2.1 Electric problem at order δ−2

The leading-order electric problem can be described as a two-phase Gouy-Chapman prob-
lem (cp. section 2.2.4). The solution for two-phase problem presented here has been
discussed by other authors before, i.e. by Ma et al. (2022). Although starting from differ-
ent equations, the solution for the weak-electrolyte problem derived by Mori and Young
(2018) is identical.

As the leading order electric fluxes are of size O (δ−1), we need to solve two orders of
the electric problem. The charge conservation 4.27 of O (δ−2) reads

0 = ∂XJ
1
±(−1). (4.36)

From our assumption 4.19 we know that the respective fluxes ji±(−1) in the outer domain
vanish. Thus, the far-field condition

lim
X→∞

J1
±(−1) = 0 (4.37)

holds and we can integrate equation 4.36 with respect to X and obtain

0 = J1
±(−1) = −C ′

±(0) − C±(0)Φ
′
(0). (4.38)

In order to solve this equation, we need a far-field boundary condition for the inner electric
potential which reads

lim
X→∞

Φ(0)(X, x
α) = lim

x1→0
ϕ(0)(x

1, xα) = ϕγ(x
α). (4.39)

It is a common approach to define the excess potential Ψ as the electric potential that is
observed in the Debye layer in addition to the outer potential as

Ψ(X, xα) := Φ(0) − ϕγ(x
α). (4.40)

We can now integrate equation 4.38 and obtain for the charge distributions

C±(0) = cγe
∓Ψ,

Q(0) = −cγ sinhΨ,
C(0) = cγ coshΨ.

(4.41)

The integration constants read

lim
X→∞

C±(0)(X, x
α) = lim

x1→0
c±(0)(x

1, xα) = cγ(x
α). (4.42)

At leading order, the Poisson equation in 4.27 reads

Ψ′′ +Q(0) = 0. (4.43)

Plugging in the result for the charge density 4.41 yields

Ψ′′ − cγ sinhΨ = 0. (4.44)
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From relations 4.39 and 4.40 we obtain that lim
X→∞

Ψ = 0 and thus lim
X→∞

Ψ′ = 0. We can
integrate equation 4.44 to find

Ψ′ = −2
√
cγ sinh

Ψ

2
. (4.45)

The above result is adapted to the aforementioned boundary condition lim
X→∞

Ψ′ = 0. A
second integration with respect to X delivers the solution for the excess potential

Ψ = 2 ln
1 + tanh ζ

4
e−

√
cγX

1− tanh ζ
4
e−

√
cγX

. (4.46)

Here, we define the value of the excess potential at the interface according to Ψ(X =
0) =: ζ. The ζ-potential is yet to be defined. Analogously, we find for the Ω̄-domain the
results

C̄±(0) = c̄γe
∓Ψ̄,

Ψ̄′ = 2
√
cγ/S sinh

Ψ̄

2
,

Ψ̄ = 2 ln
1 + tanh ζ̄

4
e
√

c̄γ/SX

1− tanh ζ̄
4
e
√

c̄γ/SX
.

(4.47)

To emphasize the similarities between the solutions for both domains we introduce the
following abbreviations

Ψ′ = 2B sinh
Ψ

2
=

4ABeBX

1− A2e2BX
, Ψ̄′ = 2B̄ sinh

Ψ̄

2
=

4ĀB̄eB̄X

1− Ā2e2B̄X
,

Ψ = 2 ln
1 + AeBX

1− AeBX
, Ψ̄ = 2 ln

1 + ĀeB̄X

1− ĀeB̄X
,

A := tanh
ζ

4
Ā := tanh

ζ̄

4
,

B := −√
cγ B̄ :=

√
c̄γ/S.

(4.48)

Using the ratios of charges at the interface 4.14 and the results in equations 4.41 and 4.47,
we find the jump condition for the charges

c̄γ =
√
l+l−cγ ⇒ R :=

√
l+l−. (4.49)

At this point, we also find the relation for the conductivity ratio R. We will later need
the tangential derivatives of the charge

∂αc̄γ =
√
l+l−∂αcγ (4.50)

and especially the derivative of ln cγ which is constant throughtout the inner regions, i.e.
in the vicinity of the apparent interface

∂α ln c̄γ = ∂α ln cγ. (4.51)



68 CHAPTER 4. STRONG-ELECTROLYTE FLUID-FLUID MODEL

We note that in the weak electrolyte model cγ is independent of xα, and thus Ψ only
depends on the normal coordinate X. We further find from the potential continuity in
4.16 a relation between the jump of ζ-potentials and the potentials at γ and γ̄

ζ − ϕγ − ζ̄ + ϕ̄γ = 0,

−
(
ϕγ − ϕ̄γ

)
= ζ − ζ̄ .

(4.52)

Here, the integration constant4 ϕ̄γ is defined as

lim
X→∞

Φ̄(0)(X, x
α) = lim

x1→0
ϕ̄(0)(x

1, xα) = ϕ̄γ(x
α). (4.53)

The boundary condition for the displacement field in 4.16 finally delivers the ζ-potentials

ζ = ln
1 +

√
Sl+

1 +
√
Sl−

and ζ̄ = ln
1 + (

√
Sl+)

−1

1 + (
√
Sl−)−1

(4.54)

which yields the potential jump

ϕG := ϕγ − ϕ̄γ =
1

2
ln
l−
l+

and ζ − ζ̄ = −1

2
ln
l−
l+
. (4.55)

In accordance with other authors (Ma et al., 2022; Mori & Young, 2018), We refer to the
jump condition for the electric potential also as the Galvani potential ϕG.

4.2.2 Electric problem at order δ−1

The δ−1-order electric problem consists of two equations for the charges and one for the
electric potential

0 = ∂XJ
1
±(0) + κ(0)J

1
±(−1),

0 = Φ′′
(1) + κ Φ′

(0) +Q(1).
(4.56)

We know from equation 4.38 that the O (δ−1) flux vanishes and obtain

0 = ∂XJ
1
±(0),

0 = Φ′′
(1) + κ Φ′

(0) +Q(1).
(4.57)

We use the boundary condition for the charge fluxes

lim
X→∞

J1
±(0) = j1±γ(0) = ∓cγϕ′

γ (4.58)

to integrate the first equation of 4.57 and obtain

j1±γ(0) = J1
±(0) = −C ′

±(1) ∓ C±(1)Φ
′
(0) ∓ C±(0)Φ

′
(1). (4.59)

4Note that we will from now on introduce integration constants of the forms □γ and □̄γ without
explicitly introducing their definition with the limits lim

X→∞
and lim

x1→∞
.
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Together with the flux continuity condition 4.16, we find an effective boundary condition
for the flux continuity between the two bulk domains

j1±γ(0) = j̄1±γ(0). (4.60)

The homogeneous solution to the differential equation 4.59 is

C(1)h = ∓k±e∓Ψ. (4.61)

Variation of constants delivers for the particular solution with k = k(X)

j1±γ(0) = ±k′±e∓Ψ −�����k±Ψ
′e∓Ψ +�����k±Ψ

′e∓Ψ ∓ cγΦ
′
(1)e

∓Ψ,

k′± = Φ′
(1) ± j1±γ(0)e

±Ψ = cγ
(
Φ′

(1) − ϕ′
γe

±Ψ
)
.

(4.62)

Introducing the parameters

E± :=

∫
e±ΨdX = X + 4B−1

(
1∓ AeBX

)−1 − 4B−1 (1∓ A)−1 ,

Ē± :=

∫
e±

¯̄ΨdX = X + 4B̄−1
(
1∓ ĀeB̄X

)−1

− 4B̄−1
(
1∓ Ā

)−1
.

(4.63)

Thus, the solutions for both phases read

C(1) = ∓cγk±e∓Ψ, k± = Φ(1) ±
j1±γ(0)

cγ
E± +K±,

C̄(1) = ∓c̄γ k̄±e∓
¯̄Ψ, k̄± = Φ̄(1) ±

j̄1±γ(0)

c̄γ
Ē± + K̄±.

(4.64)

The interface condition 4.14 delivers

C̄±(1) = l±C±(1) ⇒ K̄± = K±. (4.65)

Without loss of generality, we assume that the O(δ) potential and charges vanish in the
bulk regions, i.e.

lim
X→±∞

C±(1), C̄±(1) = 0, and lim
X→±∞

Φ(1), Φ̄(1) = 0. (4.66)

We find the solution for the charge distributions (analogously for the drop phase Ω̄)

C±(1) = ∓cγ
(
Φ(1) ±

j1±γ(0)

cγ
E±

)
e∓Ψ,

Q(1) = −cγΦ(1) coshΨ +
1

2

(
j1−γE−e

Ψ + j1+γE+e
−Ψ
)
.

(4.67)

Thus, the equations for the potential read

Φ′′
(1) − cγΦ(1) coshΨ = −κΨ′ − 1

2

(
j1−γE−e

Ψ + j1+γE+e
−Ψ
)
,

Φ̄′′
(1) −

c̄γ
S
Φ̄(1) cosh Ψ̄ = −κ Ψ̄′ − 1

2S

(
j̄1−γĒ−e

Ψ̄ + j̄1+γĒ+e
−Ψ̄
)
.

(4.68)
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The equations for the δ1-potential are complemented by interface conditions which result
from 4.16

Φ(1),Γ − Φ̄(1),Γ = 0,

Φ′
(1),Γ − SΦ̄′

(1),Γ = 0.
(4.69)

At this point, we cannot solve equations 4.68 and 4.69 analytically. However, a solution
for the problem with absent outer electrochemical gradients is discussed in section 4.2.10.

4.2.3 Pressure at order δ−2

The leading order momentum equation A.25 that we derived in the appendix A reads

0 = Σ11
(−2)

′
= Ξ11

(−2)
′
+Θ11

(−2)
′
. (4.70)

We use Ξ11
(−2) = −P(−2) and Θ11

(−2) =
1
2
Φ′

(0)
2 from table A.1 to find an expression for the

pressure that we can solve together with the boundary condition

lim
X→∞

P(−2) = 0,

lim
X→−∞

P̄(−2) = p̄γ(−2),
(4.71)

to find (we proceed in the Ω̄ domain analogously)

P(−2) =
1

2
Φ′

(0)
2
=

1

2
(Ψ′)

2
,

P̄(−2) =
1

2

S

M

(
Ψ̄′)2 + p̄γ(−2).

(4.72)

As a result, the total stresses Σ11
(−2) and Σ̄11

(−2) vanish at leading order. In order to compute
the outer stress jump we use the interface condition

Σ11
(−2)(X = 0)− Σ̄11

(−2)(X = 0) = 0, (4.73)

which delivers p̄γ(−2) = 0 and

P̄(−2) =
1

2

S

M

(
Ψ̄′)2 . (4.74)

4.2.4 Pressure at order δ−1

The O (δ−2)-momentum equation A.25 that we derived in appendix A reads

0 = Σ11
(−1)

′
+ κ(0)

(
Σ11

(−2) − Σ•
(−2)

)
. (4.75)

From the previous section 4.2.3 we know that the total stress Σ11
(−2) = 0 throughout the

inner layers. Thus, this relation simplifies to

0 = Σ11
(−1)

′ − κ(0) Σ
•
(−2). (4.76)
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We find from table A.1 that

Ξ11
(−1) = −P(−1),

Θ11
(−1) = Φ′

(0)Φ
′
(1) = Ψ′Φ′

(1),

Ξ•
(−2) = −P(−2) = −1

2
(Ψ′)

2
,

Θ•
(−2) = −1

2
Φ′

(0)
2
= −1

2
(Ψ′)

2
,

Σ•
(−2) = Ξ•

(−2) +Θ•
(−2) = − (Ψ′)

2
.

(4.77)

We substitute the above stresses into equation 4.76 to get an expression for the δ−1-
pressure

0 =
(
−P(−1) +Ψ′Φ′

(1)

)′
+ κ(0) (Ψ

′)
2
. (4.78)

We assume that the pressure in the suspending-fluid bulk domain at O (δ−1) to vanish
with the respective pressure in the drop domain p̄γ(−1) to be determined

lim
X→∞

P(−1) = 0,

lim
X→−∞

P(−1) = p̄γ(−1).
(4.79)

Integrating equation 4.78 together with the matching condition 4.79 delivers

P(−1) = Ψ′Φ′
(1) + κ(0) (−IΨ) ,

−IΨ :=

∫ X

∞
(Ψ′)

2
d X̃.

(4.80)

We have here defined the integral IΨ such that it is always positive. The resulting solution
for the pressure is

P(−1) = Ψ′Φ′
(1) − κ(0)IΨ,

IΨ :=

∫ ∞

X

(Ψ′)
2
d X̃.

(4.81)

Equivalently, the Ω̄ problem delivers

P̄(−1) =
S

M

(
Φ̄′

(0)Φ̄
′
(1) + κ(0)ĪΨ

)
+ p̄γ(−1),

−ĪΨ :=

∫ X

−∞

(
Ψ̄′)2 dX̃.

(4.82)

We can plug the results for the pressure back into the total stress and find

Σ11
(−1) = −P(−1) +Ψ′Φ′

(1) = κ(0)IΨ,

Σ̄11
(−1) = −P̄(−1) + Ψ̄′Φ̄′

(1) = − S

M
κ(0)ĪΨ − pγ(−1).

(4.83)

Substituting this into the condition for the stress condition 4.17 at the interface Γ to find

κ(0)tΓ(−1) = Σ11
(−1)(X = 0)− Σ̄11

(−1)(X = 0)

κ(0)tΓ(−1) = κ(0)

[
IΨ +

S

M
ĪΨ

]
X=0

+ p̄γ(−1).
(4.84)
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We define the electric and effective surface tension coefficients as

tΓ,el(−1) =

[
IΨ +

S

M
ĪΨ

]
X=0

,

tΓ,eff(−1) = tΓ(−1) − tΓ,el(−1).

(4.85)

We note that the surface tension of the interface needs to be larger than the electric
surface tension for the drop not to collapse. With vanishing effective surface tension the
pressure in the drop region also vanishes p̄γ(−1) = 0.

4.2.5 Normal velocity at O(1)

The normal velocity can be found from the continuity equation which at O (δ−1) simply
reads

V 1
(0)

′
= 0. (4.86)

Integration with respect to X delivers

V 1
(0) = v1γ(0) and V̄ 1

(0) = v̄1γ(0), (4.87)

where
v1γ(0) = lim

X→∞
V 1
(0) and v̄1γ(0) = lim

X→−∞
V 1
(0). (4.88)

The velocity continuity condition 4.17 delivers

v1γ(0) − v̄1γ(0) = 0, (4.89)

an effective condition for the normal velocity.

4.2.6 Transverse Velocity at O(1)

We start with the shear tangential momentum equation at order δ−2 in equation A.26

0 = Σ1α
(−1)

′
+ gαβ(0)∂βΣ

•
(−2). (4.90)

With the stresses
Ξ1α
(−1) = V α

(0)
′

Θ1α
(−1) = gαβΨ′∂βΦ(0)

Ξ•
(−2) = −P(−2) = −1

2

(
Ψ̄′)2 ,

Θ•
(−2) = −1

2
Φ′

(0)
2
= −1

2

(
Ψ̄′)2 ,

(4.91)

we get
0 = V α

(0)
′′ + gαβΨ′′∂βΦ(0) + gαβΨ′∂βΨ

′ − gαβ∂β
(
Ψ̄′)2 ,

0 = V α
(0)

′′ + gαβΨ′′∂βΦ(0) − gαβΨ′∂βΨ
′,

V α
(0)

′′ = gαβ (Ψ′∂βΨ
′ −Ψ′′∂βΨ−Ψ′′∂βϕγ) .

(4.92)
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We integrate the expression using the matching condition

lim
X→∞

V α
(0)

′ = 0 (4.93)

and obtain using integration by parts in the next step

V α
(0)

′ = gαβ
(∫

Ψ′∂βΨ
′dX −

∫
Ψ′′∂βΨdX −

∫
Ψ′′∂βϕγdX

)
,

V α
(0)

′ = gαβ
(
2

∫
Ψ′∂βΨ

′dX −Ψ′∂βΨ−Ψ′∂βϕγ

)
.

(4.94)

We use the result for the excess potential

Ψ = 2 ln
1 + AeBX

1− AeBX
(4.95)

with the two parameters that we have defined earlier

A = tanh
ζ

4
and B = −√

cγ (4.96)

to solve the first integral

Iβv1 := 2

∫
Ψ′∂βΨ

′dX = 8
∂B

∂cγ
(∂αcγ)

(
−1 +

1− A2e2BX + 2BXA2e2BX

1− A2e2BX

)
= 8

∂B

∂cγ
(∂αcγ)

(
−1 +

1− a+ 2BXa

1− A2e2BX

) (4.97)

with
a = A2e2BX . (4.98)

We integrate this result a second time together with the velocity matching

lim
X→∞

V α
(0) = vαγ (4.99)

and find
V α
(0) = gαβ

(
Iβv2 + Iβv3 −Ψ∂αϕγ

)
+ vγ. (4.100)

The two integrals are

Iβv2 :=

∫
Iβv1dX =

2BaX

1− a
∂β ln cγ

Iβv3 :=

∫
Ψ′∂βΨdX =

(
2 ln (1− a)− 4BX

(
1− (1− a)−1

))
∂β ln cγ.

(4.101)

As we find an analogous result for the Ω̄ domain we can use the velocity continuity at the
interface to obtain the velocity jump

vγ − v̄γ = gαβ(0)

(
ζ − S

M
ζ̄

)
∂βϕγ + gαβ(0)

(
2 ln

(
1− A2

)
− 2

S

M
ln
(
1− Ā2

))
∂β ln cγ.

(4.102)
Here, the gradient operator gαβ(0)∂β takes the surface metric gαβ(0) into account.
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4.2.7 Normal stress at O(1)

The momentum equation of O (δ−1) delivers the O(1) normal stress. The respective
equation (derived in appendix A) reads (cp. A.25)

0 = Σ11
(0)

′
+ κ(0)

(
Σ11

(−1) − Σ•
(−1)

)
+

1√
g
(0)

∂α

(√
g(0)Σ

1α
(−1)

)
. (4.103)

According to table A.1 the relevant stresses are

Ξ11
(−1) = −P(−1) = Ξ•

(−1),

Θ11
(−1) = Φ′

(0)Φ
′
(1) = −Θ•

(−1),

Ξ1α
(−1) = V α

(0)
′,

Θ1α
(−1) = gαβ(0)Φ

′
(0)∂βΦ(0).

(4.104)

We find that Ξ11
(−1) − Ξ•

(−1) = 0 and Θ11
(−1) −Θ•

(−1) = 2Θ11
(−1) so that equation 4.103 reads

0 = Σ11
(0)

′
+ 2κ(0)Θ

11
(−1) +

1√
g
(0)

∂α

(√
g(0)Σ

1α
(−1)

)
. (4.105)

From equation 4.90 we know that

Σ1α
(−1)

′
= −gαβ(0)∂βΣ•

(−2). (4.106)

We find from table A.1 or equations 4.92 that Σ•
(−2) = −Ψ′2. Thus, we can integrate

equation 4.106 and obtain
Σ1α

(−1) = −gαβ(0)∂βIΨ. (4.107)

Note that the integration limits are chosen such that IΨ > 0, as discussed in section 4.2.4
(cp. equations 4.81 and 4.82). We can now rewrite equation 4.105 to find

0 = Σ11
(0)

′
+ 2κ(0)Ψ

′Φ′
(1) −

1√
g
(0)

∂α

(√
g(0)g

αβ
(0)∂βIΨ

)
. (4.108)

We introduce the Laplacian ∇2
∥ for the tangential plane as

∇2
∥ (..) :=

1√
g
(0)

∂α

(√
g(0)g

αβ
(0)∂β (..)

)
, (4.109)

i.e. ∇2 = ∇2
∥ +

∂2

(∂x1)2
. That notation allows us to rewrite equation 4.108 as

Σ11
(0)

′
= −2κ(0)Ψ

′Φ′
(1) +∇2

∥IΨ. (4.110)

Integration with respect to the normal coordinate delivers

Σ11
(0) = −2κ(0) (−IΦ) +∇2

∥ (−IΨΨ) + σ11
γ(0),

−IΨΨ :=

∫ X

∞
IΨ dX̃,

−IΦ :=

∫ X

∞
Ψ′Φ′

(1) dX̃.

(4.111)
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We can again exchange the integration limits to obtain

Σ11
(0) = 2κ(0)IΦ −∇2

∥IΨΨ + σ11
γ(0),

IΨΨ :=

∫ ∞

X

IΨ dX̃,

IΦ :=

∫ ∞

X

Ψ′Φ′
(1) dX̃.

(4.112)

For the Ω̄ domain, we find equivalently

Σ̄11
(0) = −2κ(0)IΦ̄ +∇2

∥ĪΨΨ + σ̄11
γ(0),

ĪΨΨ = S

∫ X

−∞
ĪΨ dX̃,

ĪΦ = S

∫ X

−∞
Ψ̄′Φ̄′

(1) dX̃.

(4.113)

Finally, we adapt this solution to the surface stress condition 4.17 which reads at O(1)

κ(0)tΓ(0) = Σ11
(0)(X = 0)− Σ̄11

(0)(X = 0),

κ(0)tΓ(0) = 2κ(0)
[
IΦ + ĪΦ

]
X=0

−∇2
∥
[
IΨΨ + ĪΨΨ

]
X=0

+ σ11
γ(0) − σ̄11

γ(0).
(4.114)

Note that for the chosen metric κ(1) = 0. As a result, we obtain the normal stress jump

σ11
γ(0) − σ̄11

γ(0) = κ(0)teff(0) +∇2
∥
[
IΨΨ + ĪΨΨ

]
X=0

,

tel(0)) = 2 [IΦ + IΦ̄]X=0 ,

teff(0)) = tΓ(0) − tel(0).

(4.115)

where we named tel(0)) and teff(0)) the electric and effective surface stresses respectively.

4.2.8 Shear stress at O(1)

We consider the shear tangential momentum equation of order δ−1 in equation A.26

0 = Σ1α
(0)

′
+ gαα(0)∂αΣ

•
(−1) +Xgαβ(1)∂βΣ

•
(−2) +

(
κ(0) + kαα(0)

)
Σ1α

(−1). (4.116)

The Newton and Maxwell stresses from table A.1 together with the solutions for the two
leading orders of the pressure 4.72 and 4.80, are

Ξ•
(−2) = −P(−2) = −1

2
Ψ′2,

Θ•
(−2) = −1

2
Ψ′2,

Ξ•
(−1) = −P(−1) = −Ψ′Φ′

(1) + κ(0)IΨ,

Θ•
(−1) = −Ψ′Φ′

(0).

(4.117)
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We thus find the normal stresses

Σ•
(−2) = −Ψ′2,

Σ•
(−1) = −2Ψ′Φ′

(1) + κ(0)IΨ.
(4.118)

Additionally, we need the shear stress as defined by relation 4.107. We can now rewrite
equation 4.116 and obtain

0 = Σ1α
(0)

′
+ gαα(0)∂α

(
−2Ψ′Φ′

(1) +����κ(0)IΨ
)
−Xgαβ(1)∂βΨ

′2 −
(
���κ(0) + kαα(0)

)
gαα(0)∂αIΨ,

0 = Σ1α
(0)

′ − gαα(0)∂α
(
2Ψ′Φ′

(1) + kαα(0)IΨ
)
−Xgαβ(1)∂βΨ

′2,
(4.119)

which we can solve for the shear stress

Σ1α
(0)

′
= gαα(0)∂α

(
2Ψ′Φ′

(1) + kαα(0)IΨ
)
+Xgαβ(1)∂βΨ

′2. (4.120)

Integration with respect to the normal coordinate delivers

Σ1α
(0) = gαα(0)∂α

(
2 (−IΦ) + kαα(0) (−IΨΨ)

)
+ gαβ(1)∂β (−IXΨ) + σ1α

γ(0),

−IΨΨ :=

∫ X

∞
IΨ dX̃,

−IΦ :=

∫ X

∞
Ψ′Φ′

(1) dX̃,

−IXΨ :=

∫ X

∞
XΨ′2 dX̃,

(4.121)

with the integrals defined in such a way that they are positive. Inverting the direction of
integration yields

Σ1α
(0) = −gαα(0)∂α

(
2IΦ + kαα(0)IΨΨ

)
− gαβ(1)∂βIXΨ + σ1α

γ(0),

IΨΨ :=

∫ ∞

X

IΨ dX̃,

IΦ :=

∫ ∞

X

Ψ′Φ′
(1) dX̃,

IXΨ :=

∫ ∞

X

XΨ′2 dX̃.

(4.122)

For the Ω̄ domain the equivalent equation to 4.119 reads

0 = Σ̄1α′

(0) + Sgαα(0)∂α

(
−2Ψ̄′Φ̄′

(1) −����κ(0)ĪΨ

)
− SXgαβ(1)∂βΨ̄

′2 − S
(
�
��κ(0) + kαα(0)

)
gαα(0)∂αĪΨ,

0 = Σ̄1α′

(0) − Sgαα(0)∂α
(
2Ψ̄′Φ̄′

(1) + kαα(0)ĪΨ
)
− SXgαβ(1)∂βΨ̄

′2.

(4.123)
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Integration delivers

Σ̄1α′

(0) = gαα(0)∂α
(
2ĪΦ + kαα(0)ĪΨΨ

)
+ gαβ(1)∂β ĪXΨ + σ̄1α

γ(0),

ĪΨΨ := S

∫ X

−∞
IΨ dX̃,

ĪΦ := S

∫ X

−∞
Ψ′Φ′

(1) dX̃,

ĪXΨ := S

∫ X

−∞
XΨ′2 dX̃.

(4.124)

We use the shear stress continuity 4.17 at O(1) to identify

0 = Σ1α
(0)(X = 0)− Σ̄1α

(0)(X = 0),

σ1α
γ(0) − σ̄1α

γ(0) = gαα(0)∂α
(
2
[
IΦ + ĪΦ

]
X=0

+ kαα(0)
[
IΨΨ + ĪΨΨ

]
X=0

)
+ gαβ(1)∂β

[
IXΨ + ĪXΨ

]
X=0

,

(4.125)
which is the effective jump in the shear stress.

4.2.9 Model summary

The analysis of the Debye layer allows us to write an EHD model with effective boundary
conditions. The bulk equations for the suspending fluid have been derived in equations
4.20 through 4.24 and read

0 = Pe
(
∂tc(0) + v⃗(0) · ∇⃗c(0)

)
−∇2c(0),

0 = ∇⃗ · j⃗q(0)
= −D∆∇2c(0) − ∇⃗ ·

(
c(0)∇⃗ϕ(0)

)
,

0⃗ = ∇⃗ · σ(0),
0 = ∇⃗ · v⃗(0).

(4.126)

Equivalently, the drop-domain equations read

0 = Pe
(
∂tc̄(0) + v⃗(0) · ∇⃗c̄(0)

)
−∇2c̄(0),

0 = ∇⃗ · ⃗̄jq(0)
= −D̄∆∇2c̄(0) − ∇⃗ ·

(
c̄(0)∇⃗ϕ̄(0)

)
,

0⃗ = ∇⃗ · σ̄(0),
0 = ∇⃗ · ⃗̄v(0).

(4.127)

Note that the charge density in both domains vanishes q(0) = q̄(0) = 0. The coupling
between the domains is established by the conditions derived in the Debye cloud analysis.
In summary, equations 4.49, 4.55, 4.60, 4.89, 4.102, 4.115, and 4.125 read
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c̄γ(0) =
√
l+l−cγ(0),

ϕγ(0) − ϕ̄γ(0) =
1

2
ln
l−
l+
,

j1±γ(0) − j̄1±γ(0) = 0,

v1γ(0) − v̄1γ(0) = 0,

vαγ(0) − v̄αγ(0) =

(
ζ − S

M
ζ̄

)
∂βϕγ(0) +

(
2 ln

(
1− A2

)
− 2

S

M
ln
(
1− Ā2

))
∂β ln cγ(0),

σ11
γ(0) − σ̄11

γ(0) = κ(0)teff(0) +∇2
∥
[
IΨΨ + ĪΨΨ

]
X=0

,

σ1α
γ(0) − σ̄1α

γ(0) = gαα(0)∂α
(
2
[
IΦ + ĪΦ

]
X=0

+ kαα(0)
[
IΨΨ + ĪΨΨ

]
X=0

)
+ gαβ(1)∂β

[
IXΨ + ĪXΨ

]
X=0

.

(4.128)

4.2.10 Absence of outer electrochemical gradients

In a number of experimental settings, the flux-diffusion equation 0 = ∇⃗· j⃗q(0) simply deliv-
ers a condition for constant mean charge/conductivity ∇⃗c(0) = 0. In particular, this is the
case if the diffusion coefficients of both ion species are equal D+ = D−, and thus D∆ = 0.
We also find constant c(0) = 0 in the case of a homogeneous far-field boundary condition
for c(0) = 0 (no outer charge gradient applied) and the absence of a Debye-layer charging
mechanism. Debye-layer charging is discussed e.g. by Ma et al. (2022) but absent in our
model due to the flux-continuity condition 4.16.

If either D+ = D−, or lim
x1→∞

∇⃗c(0) = 0 holds, the bulk conductivity is constant. In
that case we can assume that the value of c(0) approaches the equilibrium concentration
far away from the interface lim

x1→∞
c(0) = 1 and effectively in the whole suspending fluid

c(0) = cγ(0) = 1 (besides the Debye layer). In the drop fluid, we find from the jump
condition at the interface γ that c̄(0) = c̄γ(0) =

√
l+l−. The governing equations for the

suspending fluid bulk simplify to
0 = ∇2ϕ(0)

0⃗ = ∇⃗ · ξ(0),
0 = ∇⃗ · v⃗(0).

(4.129)

The bulk physics in the drop domain is governed by an equivalent set of equations

0 = ∇2ϕ̄(0)

0⃗ = ∇⃗ · ξ̄(0),
0 = ∇⃗ · ⃗̄v(0).

(4.130)
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The effective jump conditions 4.128 now read

ϕγ(0) − ϕ̄γ(0) =
1

2
ln
l−
l+
,

j1±γ(0) − j̄1±γ(0) = 0,

v1γ(0) − v̄1γ(0) = 0,

vαγ(0) − v̄αγ(0) =

(
ζ − S

M
ζ̄

)
∂βϕγ(0),

σ11
γ(0) − σ̄11

γ(0) = κ(0)teff(0),

σ1α
γ(0) − σ̄1α

γ(0) = 2gαα(0)∂α
[
IΦ + ĪΦ

]
X=0

.

(4.131)

Tangential variations of the excess potential are only due to variations of the conductivity

Ψ(X, xα) = Ψ
(
X, cγ(0) (x

α)
)
. (4.132)

With cγ(0) = const., the derivatives ∂αΨ as well as the tangential derivatives of the
integrals IΨ, IΨΨ, IXΨ vanish. The equations 4.68 for the potential correction Φ(1) now
read

Φ′′
(1) −B2Φ(1) coshΨ = −κ(0) Ψ′ +

1

2
j1γ(0)

(
E−e

Ψ + E+e
−Ψ
)
,

Φ̄′′
(1) − B̄2Φ̄(1) cosh Ψ̄ = −κ(0) Ψ̄′ +

1

2S
j1γ(0)

(
Ē−e

Ψ̄ + Ē+e
−Ψ̄
)
.

(4.133)

The charge fluxes at the interface γ have equal absolute values and opposite directions

j1γ(0) := j1+γ(0) = −j1−γ(0) = −cγ(0)∂1ϕ(0),

j̄1γ(0) := j̄1+γ(0) = −j̄1−γ(0) = −c̄γ(0)∂1ϕ̄(0).
(4.134)

We note that the solution of the first equation in 4.133 takes the form

Φ(1) = −κ(0)Φ(1)κ − j1γ(0)Φ(1)j, (4.135)

where the particular solutions Φ(1)κ and Φ(1)j are defined by (analogously for the drop
domain Ω̄)

Φ′′
(1)κ −B2Φ(1)κ coshΨ = Ψ′,

Φ̄′′
(1)κ − B̄2Φ̄(1)κ cosh Ψ̄ = Ψ̄′,

Φ′′
(1)j −B2Φ(1)j coshΨ = −1

2

(
E−e

Ψ + E+e
−Ψ
)
,

Φ̄′′
(1)j − B̄2Φ̄(1)j cosh Ψ̄ = − 1

2S

(
Ē−e

Ψ̄ + Ē+e
−Ψ̄
)
.

(4.136)

The boundary conditions 4.69 hold for both parameters

Φ(1)χ,Γ − Φ̄(1)χ,Γ = 0,

Φ′
(1)χ,Γ − SΦ̄′

(1)χ,Γ = 0, χ ∈ {κ, j} . (4.137)
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The homogeneous solution to both problems reads

Φ(1)h = K1
eBX

1− A2e2BX
+K2

1− A4e4BX + 4A2BXe2BX

2eBX (A2e2BX − 1)
,

Φ̄(1)h = K̄1
eB̄X

1− Ā2e2B̄X
+ K̄2

1− Ā4e4B̄X + 4Ā2B̄Xe2B̄X

2eB̄X
(
Ā2e2B̄X − 1

) .

(4.138)

The second term in both solutions grows exponentially for large X. Thus, we find that
the constants K2 = K̄2 = 0. A finite particular solution to the κ-equation is

Φ(1)κ,p =
A

B
eBX 1− 2BX + A2e2BX

B2 (−1 + A2e2BX)
, Φ̄(1)κ,p =

Ā

B̄
eB̄X 1− 2B̄X + Ā2e2B̄X

B̄2
(
−1 + Ā2e2B̄X

) . (4.139)

A particular solution to the j-equation reads

Φ(1)j,p =
−4A2 + (1− A2)BX − A2 (4 + 8BX) eBX + (4A2 + A4BX − A2BX) e2BX

B3 (1− A2) (1− A2e2BX)
,

Φ̄(1)j,p =
−4Ā2 + (1− Ā2)B̄X − Ā2

(
4 + 8B̄X

)
eB̄X +

(
4Ā2 + Ā4B̄X − Ā2B̄X

)
e2B̄X

SB̄3
(
1− Ā2

) (
1− Ā2e2B̄X

) .

(4.140)
We define the solution

Φ(1)j = Φ(1)j,p +K1
eBX

1− A2e2BX
,

Φ̄(1)j = Φ̄(1)j,p + K̄1
eB̄X

1− Ā2e2B̄X

(4.141)

where the constants K1 and K2 are found by adaption to the interface conditions

Φ(1)j,Γ − Φ̄(1)j,Γ = 0,

Φ′
(1)j,Γ − SΦ̄′

(1)j,Γ = 0.
(4.142)

The behavior of these solutions away from the interface Γ is

lim
X→∞

Φ′
(1)j =

1

B2
= c−1

γ ,

lim
X→∞

Φ̄′
(1)j =

1

SB̄2
= c̄−1

γ .
(4.143)

The only parameter which depends on the tangential coordinates xα in this solution is
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j1γ(0). Using j1γ(0) = j̄1γ(0) and cγ = 1, c̄γ = R we can now formulate the integral[
IΦ + ĪΦ

]
X=0

= S

∫ 0

−∞
Ψ̄′ (−κ(0)Φ̄′

(1)κ − j1γ(0)Φ̄
′
(1)j

)
dX +

∫ ∞

0

Ψ′ (−κ(0)Φ′
(1)κ − j1γ(0)Φ

′
(1)j

)
dX,

= S

∫ 0

−∞
Ψ̄′ (−κ(0)Φ̄′

(1)κ − j1γ(0)
(
Φ̄′

(1)j −R +R
))

dX

+

∫ ∞

0

Ψ′ (−κ(0)Φ′
(1)κ − j1γ(0)

(
Φ′

(1)j − 1 + 1
))

dX,

= j1γ(0)

(
ζ − S

R
ζ̄

)
− κ(0)

(
Iκ + SĪκ

)
− j1γ(0)

(
Ij +

S

R
Īj

)
,

(4.144)
where we have denoted the two integrals (which depend solely on the normal coordinate)
as

Iκ(X) =

∫ ∞

0

Ψ′Φ′
(1)κdX, Īκ(X) =

∫ 0

−∞
Ψ̄′Φ̄′

(1)κdX,

Ij(X) =

∫ ∞

0

Ψ′ (Φ′
(1)j − 1

)
dX, Īj(X) =

∫ 0

−∞
Ψ̄′ (Φ̄′

(1)j − 1
)
dX.

(4.145)

The tangential derivative of the integral 4.144 reads

∂α
[
IΦ + ĪΦ

]
X=0

=
(
∂αj

1
γ(0)

)(
ζ − S

R
ζ̄ − Ij

)
,

Ij := Ij +
S

R
Īj

(4.146)

As a result, we expect particle migration due to the jump in shear stresses which is
proportional to ∂1αϕ(0) (compare equations 4.134 and 4.146). The details are discussed in
section 4.3. The set of effective jump conditions 4.131 now reads

ϕγ(0) − ϕ̄γ(0) =
1

2
ln
l−
l+
,

j1γ(0) − j̄1γ(0) = 0,

v1γ(0) − v̄1γ(0) = 0,

vαγ(0) − v̄αγ(0) =

(
ζ − S

M
ζ̄

)
∂βϕγ(0),

σ11
γ(0) − σ̄11

γ(0) = κ(0)tΓ(0) − 2κ(0)

(
ζ − S

R
ζ̄ − Ij

)
j1γ(0) + 2κ2(0)

(
Iκ + SĪκ

)
,

σ1α
γ(0) − σ̄1α

γ(0) = 2gαα(0)
(
∂αj

1
γ(0)

)(
ζ − S

R
ζ̄ − Ij

)
.

(4.147)
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We here note that the conditions j1±γ(0) − j̄1±γ(0) = 0 reduce to only one condition due to
cγ(0) = const. (cp. equation 4.134).

4.2.11 The Taylor-Melcher model in the absence of a Galvani
potential

In the case of equal partition coefficients l+ = l−, the Galvani potential vanishes. As a
result, the apparent boundary conditions 4.147 reduce to

ϕγ(0) − ϕ̄γ(0) = 0,

j1±γ(0) − j̄1±γ(0) = 0,

v1γ(0) − v̄1γ(0) = 0,

vαγ(0) − v̄αγ(0) = 0,

σ11
γ(0) − σ̄11

γ(0) = κ(0)tΓ(0),

σ1α
γ(0) − σ̄1α

γ(0) = 0.

(4.148)

Using the second condition, we find that

Rϕ̄′
γ = ϕ′

γ. (4.149)

The apparent surface charge can then be calculated from the Gauss interface condition

qγ = Sϕ̄′
γ − ϕ′

γ =

(
S

R
− 1

)
ϕ′
γ. (4.150)

Thus, we re-establish the TM model for small Péclet numbers as discussed by Melcher
and Taylor (1969) and Mori and Young (2018)5. In the special case discussed here, surface
convection is absent due to the choice of Pe ≪ 1. In the cited publications, the Péclet
number is of O(δ−2) giving rise to charge transport inside the Debye layer region.

4.3 Electromigration of a spherical drop

We now investigate the macroscale problem of a spherical droplet under the influence of
an electric field. The droplet radius is assumed to be l∗ref = 1. The outer electric field of
non-dimensional magnitude E∞ is aligned with the z-coordinate of the Cartesian reference
frame. The latter consists of a set of base vectors {e⃗x, e⃗y, e⃗z}. A second base {g⃗r, g⃗ϑ, g⃗φ}
belongs to the spherical coordinates r (radial), ϑ (polar angle) and φ (azimuthal angle).
The solution to the Laplace equation governing the electric potential

∇2ϕ = 0, ∇2ϕ̄ = 0, JϕK = ϕγ − ϕ̄γ = ϕG (4.151)

5Note that this work is based on the original publication by Mori and Young (2018) and that critics
discussed in this work led to the corrigendum (Marthaler et al., 2023).
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where according to Taylor (1966)

ϕ = −E∞ cosϑ

(
r + r−21−R

2 +R

)
; r ≥ 1,

ϕ̄ = −E∞ cosϑ
3

2 +R
r + ϕG; r < 1.

(4.152)

Here, we use the abbreviation for the Galvani potential as defined in relation 4.55

ϕG =
1

2
ln
l−
l+
. (4.153)

Due to the axisymmetry, the flow problem can be expressed in terms of the streamfunction
ψ6 that we define as (for the drop domain respectively)

vr =
1

r2 sinϑ
∂ϑψ, vϑ =

−1

r sinϑ
∂rψ. (4.154)

The solution to the resulting biharmonic equation

∇4ψ = 0, ∇4ψ̄ = 0 (4.155)

is according to Leal (2007)

ψ =
2∑

n=1

(
Cnr2−n +Dnr

−n
)
Qn (cosϑ) ,

ψ̄ =
2∑

n=1

(
Anr

n+3 + Bnr
n+1
)
Qn (cosϑ) ,

Q1(cosϑ) = 1− cos2 ϑ,

Q2(cosϑ) = cosϑ
(
1− cos2 ϑ

)
,

(4.156)

with the eight constants An, Bn, Cn, Dn still to be identified. The pressure can be found
via the momentum equation

∂rp = ∂r

(
1

r2
∂r
(
r2vr

))
+

1

r2 sinϑ
∂ϑ (sinϑ∂θ vr)−

2

r2 sinϑ
∂ϑ (sinϑ vϑ) ,

M−1 ∂rp̄ = ∂r

(
1

r2
∂r
(
r2v̄r

))
+

1

r2 sinϑ
∂ϑ (sinϑ∂θ v̄r)−

2

r2 sinϑ
∂ϑ (sinϑ v̄ϑ) ,

(4.157)

and reads
p = C2r−3 + 2C1r−2 cosϑ+ 3C2r−3 cos 2ϑ,

p̄ =M

(
7

2
A2r

2 + 20A1 cosϑ+
21

2
A2r

2 cos 2ϑ

)
,

(4.158)

6Note, that there are multiple uses for the letter ψ in this manuscript. In chapter 3 it is used for the
excess potential, while in chpaters 4 and 5 it represents the streamfunction. The capital letter Ψ is used
for the Debye-layer excess potential in this chapter and for the spectral modes of the streamfunction in
chapter 5.
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The Newton stresses can then be computed as

σrr = −p+ 2∂rvr,

σ̄rr = −p̄+ 2M∂rv̄r,

σrϑ = r∂r

(
1

r
vϑ

)
+

1

r
∂ϑvr,

σ̄rϑ =M

(
r∂r

(
1

r
v̄ϑ

)
+

1

r
∂ϑv̄r

)
.

(4.159)

The electric stresses read

θrr =
1

2

(
(∂rϕ)

2 − 1

r2
(∂ϑϕ)

2

)
,

θ̄rr =
S

2

((
∂rϕ̄
)2 − 1

r2
(
∂ϑϕ̄
)2)

,

θrϑ =
1

r2
(∂ϑϕ) (∂rϕ) ,

θ̄rϑ =
S

r2
(
∂ϑϕ̄
) (
∂rϕ̄
)
.

(4.160)

We compute the jumps by plugging in the solution for the potential and streamfunction
from equations 4.152 and 4.156. We find for the normal velocity

vr(r = 1) =2 (C1 +D1) cosϑ+
1

2
(C2 +D2) (1 + 3 cos 2ϑ) ,

v̄r(r = 1) =2 (A1 + B1) cosϑ+
1

2
(A2 + B2) (1 + 3 cos 2ϑ) ,

0 = JvrK =− 2 (A1 + B1 − C1 −D1) cosϑ

− 1

2
(A2 + B2 − C2 −D2) (1 + 3 cos 2ϑ) .

(4.161)

We assume that the droplet migrates in z-direction with the velocity vmgr, thus vr(r =
1) = v̄r(r = 1) = vmgr cosϑ. We conclude that

vmgr = 2 (A1 + B1) = 2 (C1 +D1) ,

0 = A2 + B2 = C2 +D2.
(4.162)

For the tangential velocity, we find

vϑ(r = 1) = (−C1 +D1) sinϑ+ 2D2 sinϑ cosϑ,

v̄ϑ(r = 1) = (−4A1 − 2B1) sinϑ+ (−5A2 − 3B2) sinϑ cosϑ,

JvϑK =(−C1 +D1 + 4A1 + 2B1) sinϑ

+ (2D2 + 5A2 + 3B2) sinϑ cosϑ.

(4.163)

We know that JvϑK is proportional to sinϑ and thus conclude

1

sinϑ
JvϑK =− C1 +D1 + 4A1 + 2B1,

0 =2D2 + 5A2 + 3B2.
(4.164)
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The jump in the tangential velocity reads in spherical coordinates (cp. equations 4.131)

JvϑK =
(
ζ − S

M
ζ̄

)
∂ϑϕγ(0) =

(
ζ − S

M
ζ̄

)
3E∞

2 +R
sinϑ. (4.165)

We find for the normal stress that

ξrr(r = 1) = (−6C1 − 12D1) cosϑ+ (−3C2 − 4D2) (1 + 3 cos 2ϑ) ,

ξ̄rr(r = 1) =M

(
(−12A1) cosϑ+

(
−1

2
MA2 +MB2

)
(1 + 3 cos 2ϑ)

)
JξrrK =(−6C1 − 12D1 + 12MA1) cosϑ

+

(
−3C2 − 4D2 +

1

2
MA2 −MB2

)
(1 + 3 cos 2ϑ) .

(4.166)

We can use the trigonometric relation 1 + 3 cos 2ϑ = 2 (3 cos2 ϑ− 1) to rewrite the last
line of the above jump condition

JξrrK =(−6C1 − 12D1 + 12MA1) cosϑ

+

(
−3C2 − 4D2 +

1

2
MA2 −MB2

)
2
(
3 cos2 ϑ− 1

)
=(−6C1 − 12D1 + 12MA1) cosϑ

+(−18C2 − 24D2 + 3MA2 − 6MB2) cos
2 ϑ

+(6C2 + 8D2 −MA2 + 2MB2) .

(4.167)

We note that JξrrK = JσrrK − JθrrK. We know JσrrK from the effective conditions 4.131.
The electric stress jump is

JθrrK =
1

2

(
3E∞

2 +R

)2 (
R2 cos2 ϑ− sin2 ϑ− S cos 2ϑ

)
=

1

2

(
3E∞

2 +R

)2 (
R2 cos2 ϑ−

(
1− cos2 ϑ

)
− S

(
2 cos2 ϑ− 1

))
=

1

2

(
3E∞

2 +R

)2 (
cos2 ϑ

(
R2 + 1− 2S

)
+ S − 1

)
.

(4.168)

The total stress jump from 4.147 produces

JσrrK = κ(0)tΓ(0) − 2κ(0)

(
ζ − S

R
ζ̄ − Ij

)
j1γ(0) + 2κ2(0)

(
Iκ + SĪκ

)
. (4.169)

The flux j1γ(0) in the above expression is proportional to cosϑ. Thus, we can split the
expression up into two parts

JσrrK =: JσrrK1 + JσrrK2 cosϑ,
JσrrK1 = κ(0)tΓ(0) + 2κ2(0)

(
Iκ + SĪκ

)
,

JσrrK2 = −2κ(0)
j1γ(0)
cosϑ

(
ζ − S

R
ζ̄ − Ij

)
.

(4.170)
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We can now identify three equations

−6C1 − 12D1 + 12MA1 = JσrrK2 = −2κ(0)
j1γ(0)
cosϑ

(
ζ − S

R
ζ̄ − Ij

)
,

−18C2 − 24D2 + 3MA2 − 6MB2 = −1

2

(
3E∞

2 +R

)2 (
R2 + 1− 2S

)
,

6C2 + 8D2 −MA2 + 2MB2 = JσrrK1 −
1

2

(
3E∞

2 +R

)2

(S − 1) .

(4.171)

The last equation determines the pressure difference between the inner and outer phases.
It cannot be used to solve the flow problem as we have not specified the magnitude of
the surface tension tΓ(0). However, it must be sufficiently large to avoid the drop from
collapsing. The shear stresses and their jump at the interface are

ξrϑ(r = 1) = −6D1 sinϑ+ (−6C2 − 16D2) sinϑ cosϑ,

ξ̄rϑ(r = 1) = −6MA1 sinϑ+ (−16MA2 − 6MB2) sinϑ cosϑ,

JξrϑK = (−6D1 + 6MA1) sinϑ+ (−6C2 − 16D2 + 16MA2 + 6MB2) sinϑ cosϑ.
(4.172)

The total stress from the effective jump conditions reads in spherical coordinates

JσrϑK = 2∂ϑ
[
IΦ + ĪΦ

]
X=0

= 2
(
∂ϑj

1
γ(0)

)(
ζ − S

R
ζ̄ − Ij

)
, (4.173)

which is proportional to sinϑ. The electric stress at the interface reads

θrϑ(r = 1) = −R
(

3E∞

2 +R

)2

sinϑ cosϑ,

θ̄rϑ(r = 1) = −S
(

3E∞

2 +R

)2

sinϑ cosϑ,

JθrϑK = (S −R)

(
3E∞

2 +R

)2

sinϑ cosϑ.

(4.174)

Plugging the above expressions into the jump condition for the total stress JξrϑK = JσrϑK−
JθrϑK delivers two equations for the constants

−6D1 + 6MA1 = 2
∂ϑj

1
γ(0)

sinϑ

(
ζ − S

R
ζ̄ − Ij

)
,

−6C2 − 16D2 + 16MA2 + 6MB2 = − (S −R)

(
3E∞

2 +R

)2

.

(4.175)

We know that the flux through the interface and its derivatives are

j1γ(0) = −∂rϕ = −R ∂rϕ̄ =
3RE∞

2 +R
cosϑ,

∂rj
1
γ(0) =

2(R− 1)

R

3E∞

2 +R
cosϑ,

∂ϑj
1
γ(0) = −3RE∞

2 +R
sinϑ.

(4.176)
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We introduce the abbreviation Ij := Ij+SĪj to find the following system of eight equations
from the above relations 4.162, 4.164, 4.171, and 4.176. The equations for the constants
with index 1 read

A1 + B1 − C1 −D1 = 0,

−C1 +D1 + 4A1 + 2B1 =

(
ζ − S

M
ζ̄

)
3E∞

2 +R
,

−6C1 − 12D1 + 12MA1 = −2κ(0)
3RE∞

2 +R

(
ζ − S

R
ζ̄ − Ij

)
,

−6D1 + 6MA1 = −2
3RE∞

2 +R

(
ζ − S

R
ζ̄ − Ij

)
.

(4.177)

The equations for the four remaining constants with index 2 are the same as defined by
Taylor (1966) and read

A2 + B2 = C2 +D2 = 0,

2D2 + 5A2 + 3B2 = 0,

−18C2 − 24D2 + 3MA2 − 6MB2 = −1

2

(
3E∞

2 +R

)2 (
R2 + 1− 2S

)
,

−6C2 − 16D2 + 16MA2 + 6MB2 = − (S −R)

(
3E∞

2 +R

)2

.

(4.178)

We note that these are five equations from which one is used to identify the drop defor-
mation and the remaining four to obtain the four unknown constants. We use the first
three equations to find

A2 = −B2 = C2 = −D2. (4.179)

Plugging this into the last equation (shear stress balance) of the set 4.178, we find

A2 =

(
3E∞

2 +R

)2
R− S

10(1 +M)
, (4.180)

and thus find the same constants (..)2 as Taylor (1966). The set of equations 4.177 delivers
solutions for the constants with index "1". The resulting flow field is depicted in figures
4.3 and 4.4. We note that the qualitative flow field is very similar to the experiments
shown by Taylor (1966).

Choosing the curvature κ(0) = 2, we find a formulation for the migration velocity of
the drop

vmgr = 2 (A1 + B1) =
2E∞

(2 + 3M)(2 +R)

(
(2R + 3M) ζ − 5Sζ̄ − 2RIj

)
. (4.181)

We note, that for small Galvani potentials the integral term in the above formulation is of
size Ij ∼ O(ϕ2

G). The ζ-potentials in equation 4.54 can be rewritten using the definition
of the Galvani potential 4.54. We replace the partition coefficient l+ by ϕG and expand
the ζ-potentials in orders of ϕG. Thus, we obtain

ζ = −
√
Sl−

1 +
√
Sl−

ϕG +O(ϕ2
G), ζ̄ =

1

1 +
√
Sl−

ϕG +O(ϕ2
G). (4.182)
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Figure 4.3: Flow field past a migrating drop with l+ = 1.01, l− = l−1
+ . The direction

of flow is depicted by arrows and the value of the streamfunction by the coloring. Left
column: inertial reference frame. Right column: reference frame moving with the drop.
Upper row: S = 2. Lower row: S = 0.5.



4.3. ELECTROMIGRATION OF A SPHERICAL DROP 89

-2 -1 0 1 2
-2

-1

0

1

2

x

z

-2 -1 0 1 2
-2

-1

0

1

2

x
z

Figure 4.4: Flow field past a migrating drop with l+ = 1.01, l− = l−1
+ , and S = 1. The

direction of flow is depicted by arrows and the value of the streamfunction by the coloring.
Left: inertial reference frame. Right: reference frame moving with the drop.

The migration velocity then reads

vmgr = −2E∞ϕG

(2R + 3M)
√
Sl− + 5S

(2 + 3M)(2 +R)(1 +
√
Sl−)

+O(ϕ2
G). (4.183)

The migration velocity depends on the material parameters S, M, l± as illustrated by
Figure 4.5. We note that the strongest influence originates from the partition coefficients
and the resulting Galvani potential. The sign of the Galvani potential defines the migra-
tion direction of the drop with respect to the electric field. The mismatch of viscosities
and dielectric constants only influences the absolute value of the migration velocity, but
not its direction.

Figure 4.5 is only valid under the simplifying assumption Ij ≪ 1. We assume this to
be valid for small ϕG, i.e. l−

l+
∼ 1. The exact solution of vmgr was computed by numerically

solving the integral Ij with Mathematica, as depicted by the circles in Figure 4.6.

As Mori and Young (2018)7 derived a migration velocity for the weak-electrolyte limit
we can compare the two results. We here refer to the original migration velocity from the
cited paper and the velocity given in equation 3.68 of this work where a sign mistake is
corrected. Figure 4.7 illustrates the difference between the two models.

The difference between the corrected result and our result for strong electrolytes origi-
nates from assumptions on the geometry of the Debye layer. The κ0-term in relation 3.68

7Note that this work is based on the original publication by Mori and Young (2018) and that critics
discussed in this work led to the corrigendum (Marthaler et al., 2023).
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Figure 4.5: Migration velocity of the drop (blue). Left: Variation of S ∈
{0.1, 0.6, 1.1, 1.6, 2.1} from light to dark blue values. Right: Variation of M ∈
{0.1, 0.6, 1.1, 1.6, 2.1} from light to dark blue values. The value if the integral Ij is as-
sumed to be small. The Galvani potential is depicted by the dashed curve.
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Figure 4.7: Comparison between the migration velocity evaluated for the presented model
(blue curve) and the model by Mori and Young (2018) (gray curves, dashed: original
publication, straight line: sign mistake corrected). The parameters are chosen asM = 2.1,
E∞ = 1, S = 2.1, l+ = 1, and l− varies.

does not appear in our model. The influence of this term is non-negligible as illustrated
by the difference between the two models (solid gray and blue curves). The origin of this
term can be explained by the different geometrical approaches used in both models to
derive the curvilinear conservation equations for the Debye-layer problem. When trans-
forming these equations to the respective equations for the inner layer, Mori and Young
(2018)8 fixed the coordinate system to the one on the surface. In contrast, we performed
a series expansion of the metric allowing for higher-order terms to appear (cp. appendix
A). These extra terms result distinguish between both models.

Apart from this modeling difference of the geometry, the difference between the strong
and weak electrolyte model lies in the parameter Ij. The model by Mori and Young (2018)
includes a similar term. It is important to emphasize that these terms are not identical
as they result from different sets of equations for the O(δ−1) electric problem. However,
these differences are of the order O(ϕ2

G) and have a significantly smaller impact on the
result than the geometrical modeling discussed before.

4.4 Conclusion

We have derived a strong-electrolyte model for droplet migration. Therefore, a large
Péclet number Pe ∼ O(δ−2) and large dimensionless surface tension tΓ ∼ O(δ−1) were
considered. The electrokinetics of the thin Debye layer were calculated and effective
boundary conditions derived. The partition coefficients are in general distinct, resulting
in a Galvani potential. The genuine interface was assumed to be permeable to ions, and
so is the apparent interface.

Figure 4.8 illustrates how the presented study compares to existing electrokinetic ap-

8Note that this work is based on the original publication by Mori and Young (2018) and that critics
discussed in this work led to the corrigendum (Marthaler et al., 2023).
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proaches by Mori and Young (2018)9 and Schnitzer and Yariv (2015). The set of equations
with reaction terms that we started our analysis with was called Modified Saville model
by Mori and Young (2018). All approaches claim to capture droplet electromigration and
can that they can be reduced to the TM model. However, Schnitzer and Yariv (2015)
can also reduce the results to the TM model in the absence of diffuse layers. A coex-
istence of diffuse Debye clouds near the interface and the TM model – which can not
be excluded in general – is not possible in their model approach. Additionally, they fail
to make quantitative predictions on the migration velocity. They also could not explain
the relation between conductivity ration and adsorption coefficients resulting from their
model. Mori and Young (2018) deliver an explanation how interface properties and con-
ductivities relate and derive a weak-electrolyte model that can be reduced to the TM
model sustaining Debye clouds. The predictions on the migration velocity however are
inaccurate. In contrast, the presented study derives a strong-electrolyte model and ex-
plains how its connection to the weak-electrolyte model. Better predictions on droplet
electromigration can be drawn. Additionally, flow phenomena driven by electrochemical
gradients can be explained with this model. We note that this phenomenon only occurs
in systems with D+ ̸= D− and lim

x1→∞
c(0) as discussed in section 4.2.10.

The resulting model depends on gradients of an outer electric field, as well as charge
gradients. The latter play a role in diffusio-osmotic problems with charge sources (e.g.
the interface or with reservoirs far from the interface). However, the discussion of such
problems is shifted to another work. Neglecting diffusio-osmotic effects, we investigated
the influence of an outer electric field, observing both, electrodeformation and electromi-
gration.

The electrodeformation agrees with the findings by Taylor (1966) and Mori and Young
(2018). Deviating results for the electrodeformation can be found for larger Péclet num-
bers. This was discussed e.g. by Ma et al. (2022) who also performed a detailed Debye-
layer analysis.

Electromigration could not be observed with earlier models (Melcher & Taylor, 1969;
Saville, 1997) lacking an analysis of the Debye layer. However, in the weak electrolyte
limit, with equivalent assumptions on δ, Pe, and tΓ, Mori and Young (2018) also investi-
gated the electromigration of a drop with non-equal partition coefficients. The qualitative
results seem identical. Schnitzer and Yariv (2015) also predicted particle migration for
the strong electrolyte limit, yet lacking a quantitative prediction, e.g. on the migration
velocity.

Quantitatively, a comparison with Mori and Young (2018) helps to understand dif-
ferences between the weak and strong electrolyte regimes. For small Galvani potentials,
the predicted migration velocities agree. However, for larger Galvani potentials resulting
from a stronger mismatch between the two partition coefficients, the predicted migration
velocities are different. We note that many equations of the inner layer are identical in

9Note that this work is based on the original publication by Mori and Young (2018) and that critics
discussed in this work led to the corrigendum (Marthaler et al., 2023).
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both models, yet the electrical problem at O(δ−1) is not, resulting in the differences. This
is discussed in more detail in appendix B. As a result of this work the original publication
by Mori and Young (2018) was corrected (Marthaler et al., 2023).

For equal partition coefficients l+ = l−, both the weak electrolyte model and the strong
electrolyte model presented in this work, reduce to the TM model. Surface convection
does only appear at higher Péclet numbers that allow for the redistribution of charges
inside the Debye region.

We here discussed particle transport under the influence of an outer electric field. Elec-
tromigration does only appear due to a mismatch between the two partition coefficients.
From 4.131, we can conclude that

0 = ϕ′
γ(0) −Rϕ̄′

γ(0) (4.184)

while the surface charge is defined as

qγ = Sϕ̄′
γ(0) − ϕ′

γ(0) = ϕ′
γ(0)

(
S

R
− 1

)
. (4.185)

In the absence of net surface charge, for R = S, the particle does still migrate in both
regimes. The exchange of charges between inner and outer phase leads to a positive charge
density on one side and a negative charge density on the other side of the interface. In the
case of zero net charge, both ion clouds sum up to zero. However, the described charge
dislocation effect together with the curved interface is sufficient for electromigration to
arise.



CHAPTER 5

A feasibility study of the electrokinetic actuator
by DNS with a Fourier-Chebyshev spectral code

In a wide range of electrohydrodynamic problems full-electrokinetic effects only appear
within thin diffuse layers (as discussed in chapters 3 and 4). When exploiting asymptotic
methods, those can be investigated analytically. Yet, when the underlying assumption
δ ≪ 1 breaks down, an analytical treatment is not feasible.

This chapter focuses on experimental settings that are characterized by full-electrokinetic
effects in the bulk and not only in a thin layer near the interface or solid surface. For that
reason, we assume the Debye length to be of the order of the reference length

δ =
l∗D
l∗ref

∼ O(1). (5.1)

Although the Debye length l∗D usually is relatively small, e.g. for a millimolar aqueous
solution of sodium chloride l∗D ≈ 10 nm, there still exist a range of problems in which
the above assumption is valid. The Debye length is proportional to c∗equ

−1/2 and becomes
large for relatively small ion concentrations. At the same time, the reference length of
many experimental settings is beyond the milli- or micrometer scale of the droplet/cell
problems discussed before. There are a range of biological objects like DNA, viruses, and
proteins that are on the sub-micrometer length scale. The latest fabrication methods also
allow manufacturing structures on similar length scales. In accordance with Moore’s law,
today transistor gate lengths can be fabricated that are in the order of 50 nm in size.

The focus of this chapter lies on the understanding of a microscale flow actuator whose
operating point is in the full-electrokinetic regime, i.e. δ ∼ O(1). The main function of
this technical element is the controlled excitation of fluid flow in a small channel by elec-
trohydrodynamic effects.

Although there exist many previous studies which treat similar applications operat-
ing in the small-Debye-length regime, the understanding of full-electrokinetic behavior
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is still limited. A direct numerical simulation can help to understand electrokinetic flow
excitation. In order to reach this goal, a spectral code is developed. For a rectangular
two-dimensional domain, Fourier-collocation and Chebyshev-tau methods are combined.
Pumping velocity and heat generation are computed.

5.1 Problem setup

5.1.1 Geometry

We assume the two-dimensional problem as depicted in Figure 5.1 with a fluid film be-
tween two substrate plates. Inside the substrate, electrodes are arranged in a regular
pattern so that a traveling wave potential can be imposed on the boundaries. The elec-
trode arrangement in the top and bottom plates is symmetrical to the central plane of
the fluid layer. The computational domain only covers the lower half of the fluid film
with symmetry conditions imposed on the central plane, i.e. the upper boundary. The
rectangular domain has the height h∗ and a single spatial period has the length l∗per. The
electrodes are arranged in an equidistant pattern and the electrode distance is used as ref-
erence length l∗ref . We introduce the cartesian coordinates x∗ for the longitudinal direction
and y∗ for the normal direction with respect to the lower wall. The respective orthonor-
mal base {ex, ey, ez} is located in the origin O in the lower left corner of the domain.
Although a three-phase/three-electrode actuator is depicted in Figure 5.1, any number of
electrodes larger than three is possible. While a smoother signal can be produced with
more electrodes, an actuator with a smaller number of electrodes is easier to design and
takes less space. As the electrode distance is the limiting parameter in micro-fabrication,
three-phase actuators can take smaller sizes than the respective elements with four or
more electrodes. As actuators are supposed to be lined up in series, periodicity in the
x∗-direction is assumed.

5.1.2 Material properties

We further assume that the fluid is an aqueous, binary, and symmetric electrolyte. Thus,
the kinematic viscosity η∗, density ρ∗, permittivity ϵ, and heat capacity c∗p of water is
used. The electrolyte is assumed to be strong with α ≫ 1. We refer to the equilibrium
concentration c∗equ of a millimolar solution of sodium chloride with valence Z and diffusion
coefficients D∗

±. The equilibrium conductivity is computed from the given diffusion coeffi-
cients, viscosity, and the equilibrium concentration. Yet, the conductivity is not uniform
in the whole domain as ions are supposed to accumulate at the walls, thus resulting in a
locally higher conductivity. The basic set of parameters is given in table 5.1.



5.1. PROBLEM SETUP 97

substrate

electrode I (0°) electrode II (120°) electrode III (240°)

electrode I (0°)

symmetry line

computational domain

electrode II (120°) electrode III (240°)

y∗

ez
O

x∗ex

ey

2h∗

l∗ref

l∗per

Figure 5.1: Schematic overview on the two-dimensional microfluidic actuator consisting
of a fluid film between two plates of substrate. Individually controllable electrodes are
arranged inside the substrate in a regular repeating pattern. Exemplatory, a three-phase
actuator is depicted here. Higher numbers n of electrodes with a phase shift of 360◦

n
are

possible.
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fluid property symbol unit definition value comments
density ρ∗ kg m−3 – 103

dynamic viscosity η∗ Pa s – 10−3

relative permittivity ϵ – – 80
heat capacity c∗p J kg−1 K−1 – 4.2 · 103
reference ion concentration c∗equ m−3 – 1022 10−5 mol l−1

diffusion coefficients D∗ m2 s−1 – 10−9

valences Z – – 1

reference parameter symbol unit definition value comments
length scale/electrode dist. l∗ref m – 150 · 10−9

time scale t∗ref s ν∗−1 0.5 · 10−3 ν∗ = 2 kHz
velocity scale v∗ref m s−1 l∗refν

∗ 0.075 · 10−3

pressure scale p∗ref Pa η∗ν∗ 0.5

intrinsic el. frequency ν∗el Hz
c∗equk

∗
BT

∗
a

η∗
0.4 · 106

Debye length l∗D m
√

ϵ∗0ϵϕ
∗
th

Ze∗0c
∗
equ

88 · 10−9

dimensionless parameter symbol unit definition value comments
Schmidt number Sc – η∗

ρ∗D∗ 103

Reynolds number Re – ρ∗l∗ref
2ν∗

η∗
10−5

Peclet number Pe – l∗ref
2ν∗

D∗ 0.05

Hartmann number Ha – ν∗el
ν∗ref

31

dimensionless Debye length δ – l∗D
l∗ref

0.6 ∼ O(1)

Table 5.1: Material properties, reference parameters, and dimensionless numbers of the
problem.
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5.1.3 Excitation

On the lower boundary we assume the electric potential to be given a traveling wave as
ζ-potential

ζ∗ = ζ∗amp sin

(
2π

(
x∗

l∗per
− ν∗t∗

))
(5.2)

where ζ∗amp is the amplitude and ν∗ the frequency. The phase shift is assumed to be
zero. Note, there are cases where the excitation on the lower and upper electrodes are not
synchronized, either unintentionally or intentionally, e.g. for driving a mixing mechanism.

5.1.4 Governing equations

The PDEs governing this problem are very similar to those discussed in chapters 3 and
4, i.e. the Poisson-Nernst-Planck (PNP) system coupled with the Stokes equations for
low-Reynolds-number flow. However, there are two essential differences to the systems
discussed so far, the geometry and the boundary conditions.

As discussed in section 5.1.1, the geometry of the actuator problem is rectangular.
Thus, a number of simplifications apply to the equations. In particular, the stress-
divergence form of the electric term in the Maxwell equation can be replaced by the
Coulomb force as product of charge density and electric field

∇⃗∗ · θ∗ = −q∗∇⃗∗ϕ∗. (5.3)

Additionally, all curvature terms vanish in the rectangular geometry, i.e. κ = 0. We can
thus write the governing equations as

ρ∗∂∗t v⃗
∗ = −∇⃗∗p∗ + η∗∇∗2v⃗∗ − q∗∇⃗∗ϕ∗

0 = ∇⃗∗ · v⃗∗

∂∗t c
∗
± = −∇⃗∗ ·

(
v⃗∗c∗± −D∗∇⃗∗c∗± ∓ µ∗c∗±∇⃗∗ϕ∗

)
0 = ∇∗2ϕ∗ + q∗

(5.4)

assuming equal diffusivities D∗ and mobilities µ∗ for the ions. Due to the low Reynolds
number, flow convection is neglected. Yet, we keep the transient term in order to track
effects that may become relevant at high excitation frequencies. At the lower boundary
for y∗ = 0, we assume that the electric potential is equal to the ζ-potential given by
relation 5.2. The wall is further assumed to be impermeable to the fluid and electrical
currents, and friction is sufficiently high that the no-slip condition holds

v⃗∗ = 0⃗,

ϕ∗ = ζ∗,

−D∗∂∗yc
∗
± ∓ µ∗c∗±∂

∗
yϕ

∗ = 0.

(5.5)
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At the upper boundary for y∗ = h∗, we assume the symmetry conditions

∂∗yv
∗
x = 0,

v∗y = 0,

∂∗yϕ
∗ = 0,

∂∗yc
∗
± = 0.

(5.6)

5.1.5 Dimensionless form

Employing the scaling presented in table 5.1, the set of equations 5.4 can be converted to
a dimensionless form, and then reads

Re ∂tv⃗ = −∇⃗p+∇2v⃗ − Ha q∇⃗ϕ,
0 = ∇⃗ · v⃗,

Pe ∂tc
∗
± = −∇⃗ ·

(
Pe v⃗c± − ∇⃗c± ∓ c±∇⃗ϕ

)
,

0 = δ2∇2ϕ+ q.

(5.7)

Analogously, we find from equations 5.5 the dimensionless boundary conditions at the
wall y = 0

v⃗ = 0⃗,

ϕ = ζ,

∂yc± ∓ c±∂yϕ = 0,

(5.8)

and from equations 5.6 at the mid-channel position y = h = h∗

l∗ref

∂yvx = 0,

vy = 0,

∂yϕ = 0,

∂yc± = 0.

(5.9)

The excitation function 5.2 which is used as wall-boundary condition for the potential
reads in dimensionless form

ζ = ζamp sin
(
2π
(x
3
− t
))

. (5.10)

We note that the electrode distance is used as reference length l∗ref . Thus, for a three-phase
actuator, the actuator length in x-direction is lper =

l∗per
l∗ref

= 3. The excitation amplitude

ζamp =
ζ∗amp

ϕ∗
th

is scaled with the thermal potential.

5.1.6 Streamfunction formulation

Incompressible fluid flow is solenoidal, i.e. divergence-free (compare relation 5.7). Ac-
cording to the Poincaré lemma (Lee, 2018), on the whole domain a vector potential of v⃗
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exists that is continuous and differentiable. As the problem is two-dimensional, this vector
potential is a scalar. We introduce the streamfunction ψ in accordance with Batchelor
(2010) and Lamb (1975), defined as

∇⃗ × ψ⃗ = ∇⃗ ×

0
0
ψ

 =

 ∂yψ
−∂xψ
0

 =

vxvy
0

 = v⃗. (5.11)

We note some important properties of the streamfunction

∇⃗ ·
(
∇⃗ × ψ⃗

)
= ∇⃗ · v⃗ = 0

∇⃗ × v⃗ = −∇2ψ.
(5.12)

Applying the rotation to the momentum equation in 5.7 and using the properties 5.12 we
find

Re ∂t∇2ψ = ∇4ψ +Ha ∇⃗ ×
(
q∇⃗ϕ

)
. (5.13)

The pressure term vanishes from the equation due to the fact that the rotation of the gra-
dient of a scalar is zero. However, the rotation of the Coulomb force term ∇⃗×

(
q∇⃗ϕ

)
does

not vanish in general, while the same term without the charge density does ∇⃗×
(
∇⃗ϕ
)
= 0⃗.

The volume flow rate between two streamlines is constant. Additionally, there is no
flow across a streamline. The volume flow rate between two streamlines ψ1 and ψ2 can
be computed as ψ2 − ψ1. For that reason, the wall represents the zero-streamline where
ψ = 0. Choosing a different value for this streamline changes the values of all other
streamlines by a constant value. Volume flow and velocities stay unchanged.

Introducing the streamfunction, the set of equations 5.7 reads

Re ∂t∇2ψ = ∇4ψ +Ha ∇⃗ ×
(
q∇⃗ϕ

)
Pe ∂tc± = −∇⃗ ·

(
Pe v⃗c± − ∇⃗c± ∓ c±∇⃗ϕ

)
,

0 = δ2∇2ϕ+ q.

(5.14)

The biharmonic operator is a differential operator of fourth order and for the two-
dimensional case defined as ∇4 = ∇2∇2 = ∂xxxx + ∂yyyy +2 ∂xxyy. The mass conservation
equation is used in the definition of the streamfunction and is thus not necessary in order
to solve the problem. The wall boundary conditions now read

ψ = 0,

∂yψ = 0,

ϕ = ζ,

∂yc± ∓ c±∂yϕ = 0.

(5.15)
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Analogously, the mid-channel boundary conditions are adapted to the streamfunction
formulation and read

ψ = ψtfr,

∂yyψ = 0,

∂yϕ = 0,

∂yc± = 0,

(5.16)

with the total flow rate ψtfr = ψ(y = h) − ψ(y = 0) not yet defined. In some cases the
flow rate is given, e.g. when a pump with a known flow rate is mounted to the channel.
However, in our case the flow rate is a parameter of interest and thus has to be computed.
To reach this goal, one equation of the form

Re ∂tv⃗ = −∇⃗p+∇2v⃗ − Ha q∇⃗ϕ (5.17)

has to be solved. As this solution is to be computed in spectral space, only one mode (a
one-dimensional equation) needs to be computed using a given mean pressure gradient.
This will be discussed in detail in section 5.3.6.

5.1.7 Initial conditions

When turning on the actuator / the actuator electrodes, dilute charges in the electrolyte
travel towards the wall forming charge clouds. The Gouy-Chapman solution discussed in
section 2.2.4 describes the resulting static charge distribution. Thus, we use the Gouy-
Chapman solution as initial condition. The simulation time starts when the traveling
wave starts moving.

5.2 The Fourier-Chebyshev spectral method

5.2.1 Collocation methods as a special form of weighted residual
methods

The numerical approximation methods used in this chapter are a special form of colloca-
tion methods which are a special form of the weighted residual methods. Initial boundary
value problems (IBVPs) often cannot be solved analytically. If this is the case, numerical
methods like the weighted residual methods (WRM) or the Ritz method can be used to
find an approximate solution.

Here, we apply on the weighted residual methods. For a general boundary value
problem

A(u) = b in the domain Ω,

B(u) = uΓ at the boundary Γ
(5.18)

where u(x) is the parameter of interest, the spatial variable x ∈ Ω and A is a general
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differential operator. The WRM utilizes the so-called trial solution

un = U0(x) +
N∑
i=1

Unφn(x),

with B(U0) = uΓ, B(φn) = 0 at the boundary,

(5.19)

where U0, Un are the unknown coefficients and φ(x) is a set of known functions, usually
referred to as trial functions. The residual error is obtained as

A(un)− b. (5.20)

We remarked above that the WRM is used in cases where an analytical solution cannot
be found. Thus, we cannot demand the residual 5.20 to globally vanish. However, in some
cases an approximate solution can be found demanding the weighted residual to vanish∫

Ω

w(x) (A(un)− b) dx. (5.21)

Different types of WRM utilize different weight functions, particularly sets of linearly
independent functions {λi(x)}i=1,...,N . One example of a WRM is the Galerkin method
which uses the trial functions λi = φi.

Particularly important for this work are collocation methods demanding the resid-
ual at selected points xi to vanish. Thus, the Dirac delta distribution for each of these
collocation points λi = δ(x − xi) are used as weights. In contrast to finite difference
or finite volume methods which are more common in fluid mechanics, collocation meth-
ods stand out with their high accuracy. Already with a small number of grid points,
e.g. which we also refer to as collocation points ∼ 32, the numerical error can be in the
order of machine precision. This is illustrated by a validation example in the next section.

Typical trial functions for collocation methods are orthogonal systems of polynomials.
Fourier and Chebyshev polynomials are most commonly used on periodic or bounded
domains respectively. Other examples for orthogonal systems of polynomials include
Legendre polynomials, which are also used on bounded domains, as well as Laguerre
polynomials for semi-infinite domains (Canuto, 1988). In this work, a combined spectral
approach of a Fourier method for the periodic direction of the problem and a Chebyshev
method for the bounded direction is utilized.

5.2.2 The non-interpolating spectral approach

The structure of the computational domain depicted in Figure 5.1 suggests the use of
periodic Fourier modes in combination with Chebyshev modes for the finite direction.
In the context of spectral methods, we will follow the terminology of Boyd (2000). With
spectral methods, the solution of an equation can be computed in the spectral space, using
the simpler spectral differentiation operators. At the same time, transformations between
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physical parameters and their spectral modes are necessary. This is the approach used in
this work which we will refer to as "non-interpolating" in accordance with Boyd (2000).
Alternatively, "pseudospectral" or "interpolating" methods work without the necessity
of such transformations, calculating derivatives in the physical space. For most applica-
tions, the simplicity and higher efficiency of pseudospectral methods outweigh the just
slightly higher accuracy of the non-interpolating class of methods. However, the Gibb’s
phenomenon usually appears when using pseudospectral methods that necessitates the
use of filters. In order to maintain the high accuracy of spectral methods, the actuator
problem described above was solved with a non-interpolating method.

We introduce the rules of transformation, differentiation, and convolution for the com-
bined Fourier-Chebyshev method following the descriptions in Peyret (2002). Thereafter,
we apply those tools to the set of governing equations to find their spectral equivalent
form. The equations are solved in spectral space and not transformed back, except for
two cases. Those are, convolutions which can be computed faster in physical than spectral
space, and additionally at time instances when we are interested in the physical values.
Reducing this number, for example to only one point in time at which the result became
stationary, can drastically speed up the respective computation.

This section delivers a detailed description of the algorithm. The crucial elements
are the time integration method for the 4th-order flow problem, the coupling of charge
transport and potential equations with Gummel’s iteration, and the handling of the non-
linear charge boundary condition with the influence matrix method. Prior to discussing
these techniques, we focus on the grid, the spectral equivalent form of the set of governing
equations, and the Lanczos method (Lanczos, 1964) for the boundary conditions.

5.2.3 Transformations and grid

The solutions for each parameter a ∈ {ψ, c±, ϕ} are sought in the form of a truncated
Fourier series

ai =

Nx
2

−1∑
k=Nx

2

Ak exp (i¯
kxi) = T −1

F {ai} (5.22)

in the periodic x-direction, and in the form of a Chebyshev series

aj =

Ny−1∑
l=0

AlTl(yj) = T −1
C {aj} (5.23)

in the y-direction. The shown 1D-transformations between physical space (small pa-
rameters) and spectral space (capital parameters) are denoted by TF and TC, their 2D-
combination is

Akl = T {aij} = TF {TC {aij}} = TC {TF {aij}} , (5.24)

with aij = a(xi, yj). In the code, both transformations are performed based on the FFT
to reach acceptable performance. The application of the FFT for Chebyshev polynomials
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requires minor pre- and post-processing which is implemented following Canuto (1988).
The mesh in the periodic direction is aequidistant with Nx grid points, while in the wall-
normal direction, we use the mesh

yj =
h

2
(yGL,j + 1) (5.25)

which is adapted from the Gauss-Lobatto points

yGL,j = cos
πj

Ny − 1
(5.26)

by stretching. Thus, the wall-normal grid with Ny grid points covers the interval [0, h],
while the interval of the x-direction is [0, 3].

5.2.4 Spectral operators

Differentiation In order to solve the equations in spectral space, we need differential
and convolution operators. While the differentiation of Fourier modes is the multiplication
with i

¯
k, the regarding operator for Chebyshev modes is more derived from the recursion

formula as discussed e.g. by Canuto (1988) and Peyret (2002). We denote the operators for
differentiation of Fourier modes and Chebyshev modes with DF and DC. Their definitions
can be found, e.g. in Canuto (1988). The differentiation of Fourier modes is performed
by multiplication of each mode with the imaginary unit and the respective wavenumber

DF,km =

{
i
¯
m, k = m,

0, k ̸= m
. (5.27)

The Chebyshev differentiation operator is defined by the recursion formula that can be
given on p.68 in Canuto (1988). For the second order derivative, an analogous formula is
given on p.69. The resulting differentiation matrix is a band matrix whose lower half is
zero, as well as the main diagonal and every second of the upper diagonals. For Ny = 5,
the derivation matrix is given by

DC =


0 1 0 3 0
0 0 4 0 8
0 0 0 6 0
0 0 0 0 8
0 0 0 0 0

 . (5.28)

Higher derivative operators can be obtained as a matrix product of these basic operators,
e.g. for the Fourier operator (and analogously for the Chebyshev operator)

Dn
F = DFDF . . .DF︸ ︷︷ ︸

n times

. (5.29)

They can be combined to the spectral gradient operator in dimensionless form ⃗ P defined
as

⃗ PAkl =
(
DFAkl, AklD⊤

C

)⊤ (5.30)
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and the spectral Laplacian P 2 which is defined as

P 2Akl = D2
FAkl + AklD2⊤

C . (5.31)

The Fourier differential operators are applied as left-hand-side multiplications and the
Chebyshev operators as right-handed multiplications. The reason for that is the struc-
ture of the arrays where the information for the x-direction is stored in the columns and
the information for the y-direction in the rows. The operators include the matrix products
D2

F = DFDF and D2⊤
C = (DCDC)

⊤.

Spectral convolution The nonlinear terms in the PDEs include products of param-
eters. In spectral space, these terms are calculated as convolutions. The convolution,
denoted by ∗, is performed using three FFT-based transformations

Akl ∗Bkl = T
{
T −1 {Akl} ⊙ T −1 {Bkl}

}
, (5.32)

which is remarkably faster than the convolution procedure in spectral space1 (logarithmic
complexity versus quadratic complexity). Additionally, the back-transformation followed
by a multiplication is very intuitive and does not necessitate the Cauchy product of two
series. The Hadamard operator ⊙ in relation 5.32 denotes the element-wise multiplication
of two matrices with a matrix of same shape as result.

5.2.5 The Lanczos method for the implementation of boundary
conditions

We transform the governing equations to spectral space and bring them in the form of
the Helmholtz equation

P 2Akl − λAkl = Bkl. (5.33)

where λ denotes a scalar operator. Alternatively, the Helmholtz operator H is used in the
short form of the above equation

H Akl = Bkl,

H = P 2 − λI. (5.34)

The right-hand-side Bij includes all constant and nonlinear terms of the equations. As
equation 5.33 is a second order differential equation, we need two boundary conditions
in wall-normal direction to solve the problem. For that reason, the last two rows of the
Helmholtz operator H and the right-hand-side Bij are replaced by the boundary condi-
tions in accordance to the Lanzcos scheme (Lanczos, 1964).

1The convolution algorithm in spectral space can be found in Canuto (1988), Canuto (2006), and
Peyret (2002)
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Linear boundary conditions The Robin boundary condition at the lower boundary
y = −1 and the upper boundary y = 1 of a one-dimensional problem on the domain
[−1, 1]

m0,−1 a(−1) +m1,−1 a
′(−1) = d−1

m0,+1 a(1) +m1,+1 a
′(1) = d+1

(5.35)

with the scalar prefactors m0,±1 and m1,±1 can be transferred to the spectral space

Ny−1∑
l=0

(−1)l
(
m0,−1 −m1,−1 l

2
)
Al = d−1

Ny−1∑
l=0

(
m0,+1 +m1,+1 l

2
)
Al = d+1.

(5.36)

For a one-dimensional problem discretized with 5 grid points, equation 5.34 reads
H00 H01 H02 H03 H04

H10 H11 H12 H13 H14

H20 H21 H22 H23 H24

0 0 0 −λ 0
0 0 0 0 −λ



A0

A1

A2

A3

A4

 =


B0

B1

B2

B3

B4

 . (5.37)

For instance, one Dirichlet boundary condition and one Neumann boundary condition,
i.e. m1,−1,m0,+1 = 0 and m0,−1,m1,+1 = 1 can be applied following relation 5.36, so that
we find 

H00 H01 H02 H03 H04

H10 H11 H12 H13 H14

H20 H21 H22 H23 H24

1 1 1 1 1
0 −1 4 −9 16



A0

A1

A2

A3

A4

 =


B0

B1

B2

d−1

d+1

 . (5.38)

We denote the matrix operators which are adapted to the boundary conditions with a
bar, so that we find for a two-dimensional problem

H̄ Akl = B̄kl. (5.39)

This problem can be solved by computing the inverse of the matrix H̄ to find

Akl = H̄−1B̄kl. (5.40)

In many cases, the matrix H̄ and thus also H̄−1 stays constant for all time steps. It is
then efficient to compute the inverse as a pre-processing step and to only compute the
matrix product H̄−1B̄kl at each time step.

We will use the operators

bc− {Akl} = D−,k and bc+ {Akl} = D+,k (5.41)

to describe that the spectral expression Akl is to be evaluated at the lower and higher
boundary respectively. If Akl does not take the form 5.35, a more sophisticated solution
procedure needs to be applied, as discussed in section 5.3.4.
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5.3 Construction of a solver in Python

5.3.1 General comments

The solution of the system 5.14, 5.15, and 5.16 with the Fourier-Chebyshev spectral
method introduced in section 5.2 is challenging for a number of reasons. The electric
problem does not converge with traditional iteration methods, like Jacobi, Gauss-Seidel,
relaxation or gradient methods. From the field of computational semiconductor research,
an iteration method designed by Gummel (1964) was adapted to solve this problem. In
solids, double layers are observed that can be described in a very similar way to the electric
double layers in fluid electrolytes. The nonlinear boundary conditions (5.15) at the wall
are accounted for with the influence matrix method, as discussed by Peyret (2002). Time-
integration of the fourth-order PDE in 5.14 is not possible with the traditional methods
suggested in the seminal summaries on spectral methods by Boyd (2000); Canuto (1988);
Peyret (2002). Yet, a solution technique originally suggested by Ying (2005) and Ying
et al. (2008) for the modeling of cardiac dynamics was successfully used to solve this
equation. This method is called two-stage composite backward differentiation formula of
second order and is abbreviated with C-BDF2.

The combined solution algorithm is illustrated in Figure 5.2. A detailed discussion of
its important parts is delivered in the following sections. In order to give more insight into
the implementation, a UML diagram is attached in the appendix. The time is discretized
as

tn = n∆t with n = 0, 1, 2, . . . Nt − 1. (5.42)

For the discretization of the physical space, a combination of equidistant points xi and
Gauss-Lobatto points yj is used. As discussed in section 5.2.3, the respective spectral
modes are denoted by k and l. At time tn we have for a general parameter

anij = T −1 {An
kl} physical parameter,

An
kl = T

{
anij
}

spectral parameter.
(5.43)

In case of an iterative scheme like Gummel’s iteration, one more superscript can appear,
indicating the iteration step m.

5.3.2 Spectral module containing the basic operations

The basic operations of the Fourier-Chebyshev spectral method are implemented in a
self-designed spectral module which is illustrated by the UML diagram 5.3. These are
mainly the operations discussed in section 5.2.

The basic Fourier- and Chebyshev spectral methods work best on their "natural"
grids, the equidistant grid on x ∈ [0, 2π] and the Gauss-Lobatto points on y ∈ [−1, 1].
Besides the meshing operations, all differentiation and transformation operations need a
pre-processing step for domains that are different from those natural grid sizes, which is
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Pre-processing

Post-processing

Time integration at t = n∆t

start with: ψn−1, ϕn−1, cn−1
±

status: ψn−1, ϕn, cn±

status: ψn, ϕn, cn±

definitions:

- scaling

- excitation (b.c. for ϕ)

- initial conditions

initialization:

- time, space, spectral space (modes)

- physical parameters (ψ, ϕ, , c±)

solutions:

- compute inverse of matrices

- solve: homogeneous influence

matrix problem

plots

performance analysis

Gummel’s iteration (iteration k):

1. solve Poisson equation: ψn−1, ϕk, ck−1
±

2. influence matrix method: ψn−1, ϕk, ck±

3. check convergence

if not convergent:

start a new iteration (k → k − 1)

if convergent:

proceed with C-BDF2 scheme (k → n)

time integration of ψ (C-BDF2 scheme)

compute characteristic values:

- maximum velocity vmax

- mechanical and electrical dissipation εtot
- efficiency

create status plot at pre-defined time steps

stop time integration in one of

the following cases:

(0) predefined maximum time step

(1) stationary result

(2) negative flow rate (wrong flow direction)

(3) overheating (dissipation too high)

(4) Gummel’s iteration failed

Figure 5.2: Python solver for the EHD-flow actuator. The time integration is split into
the solution of the electric problem (using Gummel’s iteration and the influence matrix
method) and the flow problem using the C-BDF2 scheme. All other steps of the algorithm
are pre- and post-processing
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implemented in the module.

The transformations between spectral and physical space are the most expensive parts
of a spectral solver. In order to reduce the runtime complexity, a fast Fourier transforma-
tion (FFT) is used instead of the discrete Fourier transformation (DFT). These methods
have a runtime complexity of ODFT (n

2) and OFFT (n log n). For the simulations, typi-
cally a grid size of Nx = 32 and Ny = 40 points was used. In that case, the FFT-based
algorithm is by 2 orders faster that the DFT. For more collocation points, the advantage
of the FFT becomes even larger.

The transformation of Chebyshev modes can also be performed using the FFT. There-
fore, the necessary pre- and post-processing routines as described by Canuto (1988) were
used. The additional cost of these extra-computations is outweighed by the faster FFT.

5.3.3 Discretization of the PNP system

As illustrated in the algorithm overview 5.2, the Poisson-Nernst-Planck (PNP) system is
solved separately from the flow equation. For that reason we focus on the charge transport
and Poisson equation 5.14. We introduce the spatial discretization at the collocation
points as discussed in section 5.2.3. In the Helmholtz form (cp. relations 5.33, 5.34), the
PNP system reads

Pe ∂tc±,ij −∇2c±,ij = nl±,ij,

δ2∇2ϕij + qij = 0,
(5.44)

where we have summarized the nonlinear terms (the convective and electrophoretic fluxes)
as

nl± = −∇⃗ ·
(
Pe v⃗ij ⊙ c±,ij ∓ c±,ij ⊙ ∇⃗ϕij

)
= −Pe v⃗ij · ∇⃗c±,ij ± ∇⃗ ·

(
c±,ij ⊙ ∇⃗ϕij

)
.

(5.45)

The ⊙-operator denotes element-wise products (compare the convolution procedure 5.32).
In the case of a multiplication between a scalar and a vector, the element-wise multipli-
cation is applied between the scalar and each vector-element. By applying the transfor-
mation 5.43, we obtain the equivalent equations in spectral space

Pe ∂tC±,kl − P 2C±,kl = NLkl,

δ2 P 2Φkl +Qkl = 0.
(5.46)

The product operators transform to convolutions in spectral space and we get

NL± = ⃗ P ·
(
−Pe V⃗kl ∗ C±,kl ± C±,kl ∗

(
⃗ PΦkl

))
. (5.47)

Introducing the time discretization 5.42 the system 5.46 reads(
Pe

∆t
− P 2

)
∆Cn

±,kl = P 2Cn−1
±,kl +NLn

±,kl,

δ2 P 2Φn
kl +Qn

kl = 0.

(5.48)
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SPEC_MODULE.BOUNDS

bounds1D(N, yspan=2.0):  
bounds2D(Nx, Ny, bound):  
bounds2Dx(Nx, Ny, bound):  
bounds3D(Nx, Ny, Nz, bound):

SPEC_MODULE.CFUN

Chebfun1D(x, n, k=0):  
Chebfun2D(X, n, k=0):  
Chebfun3D(X, n, k=0):

SPEC_MODULE.CONVO

CONVO.D1:  
CONVO.D2:  
CONVO.D3:

SPEC_MODULE.DIFF

DIFF.D1:  
DIFF.D2:  
DIFF.D3:

SPEC_MODULE.FFUN

Cosine(X, n, k=0):  
Sine(X, n, k=0):  
dft(y):

SPEC_MODULE.FILT

FILT.D1:  
FILT.D2:  
FILT.D3:

SPEC_MODULE.GRIDS

GRIDS.D1:  
GRIDS.D2:  
GRIDS.D3:

SPEC_MODULE.TRANS

TRANS.D1: 
TRANS.D2: 
TRANS.D3:

object

__class__(self: _T):  
__class__(self, __type: Type[object]): 
__init__(self):  
__new__(cls: Type[_T]):  
__setattr__(self, name: str, value: Any):  
__eq__(self, o: object):  
__ne__(self, o: object):  
__str__(self):  
__repr__(self):  
__hash__(self):  
__format__(self, format_spec: str):  
__getattribute__(self, name: str):  
__delattr__(self, name: str):  
__sizeof__(self):  
__reduce__(self):  
__reduce_ex__(self, protocol: SupportsInd
__reduce_ex__(self, protocol: int):  
__dir__(self):  
__init_subclass__(cls):

typing.Hashable

__hash__(self):

Figure 5.3: UML diagram of the spectral module, containing classes for meshing (grids),
transformations between physical and spectral space, differentiation in spectral space,
convolutions, boundary conditions, and filters. Additionally, classes delivering the Fourier
and Chebyshev functions can be found in this module. The sub-classes named "D1",
"D2", "D3" conatin the respective methods for one- two- and three-dimensional problems.
Different combinations of Fourier("F")- and Chebyshev("C")-methods are possible. In
1D: F,C; in 2D: FF, FC, CC; in 3D: FFF, FFC, FCC, CCC.
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We have here applied an Euler-backwards scheme with a constant time step using the
formulation

Cn
±,kl = Cn−1

±,kl +∆Cn
±,kl with Cn

± = C±,kl (n∆t) . (5.49)

As the system 5.48 is fully coupled, its solution necessitates an iterative procedure. This
approach is discussed in section 5.3.5 after introducing the influence matrix method for
the handling of the nonlinear boundary conditions. For each iteration step m, the system
5.48 can be written as

HC∆C
n,m
±,kl = P 2Cn−1

±,kl +NLn,m−1
±,kl ,

δ2 P 2Φn,m
kl +Qn,m

kl = 0,
(5.50)

where we have introduced the Helmholtz matrix HC = Pe
∆t

− P 2. We note that the charge
transport equations are solved first and their solution is utilized for the computation of
the electric potential.

5.3.4 The no-flux boundary conditions and influence matrix method

The system 5.50 cannot be solved without the boundary conditions 5.15 and 5.16. The
latter two wall conditions of 5.15 for c± and ϕ read in spectral form

TF {ζi} = bc− {Φkl} ,
0 = bc−

{
−C±,klD⊤

C ∓ C±,kl ∗
(
ΦklD⊤

C

)}
,

(5.51)

where we have used the boundary condition operator defined in 5.41. The symmetry
conditions at the upper boundary are

0 = bc+
{
ΦklD⊤

C

}
,

0 = bc+
{
C±,klD⊤

C

}
.

(5.52)

We note that the no-flux condition in 5.51 does not have the linear form of the Robin
boundary condition 5.35, but is nonlinear. For that reason, the Lanczos technique pre-
sented in section 5.2.5 fails. The solution of the system 5.50 together with the boundary
conditions 5.51, 5.52 is found using the influence matrix method as suggested by Peyret
(2002).

The influence matrix method is based on the assumption that the solution of the
problem can be composed as linear superposition. For that purpose, Nx time-independent
solutions of the homogeneous problem are computed before the time integration and one
time-dependent solution with homogeneous boundary conditions is computed at each
time-step. The Nx + 1 solutions are superposed to fulfill the nonlinear condition.

Homogeneous problem with inhomogeneous b.c. The respective homogeneous
problem which belongs to 5.50 reads

HC∆C±,kl = N , (5.53)
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where N ∈ CNx×Ny denotes the zero matrix. This equation is not dependent on the time
tn and can thus be solved in the pre-processing step before starting the time integration.
For a nonlinear boundary with Nx boundary points, the problem 5.53 is solved Nx times.
In each of the solutions denoted by ∆C̊r

±,kl all values at the boundary vanish besides at
the r-th boundary point. The systems to solve are

HC∆C̊
r
±,kl = N , with r = 0, 1, . . . , Nx − 1,

bc−

{
∆C̊r

±,kl

}
= TF {δri } , with δri =

{
0, r ̸= i,

1, r = i,

bc+

{
∆C̊r

±,klD⊤
C

}
= 0.

(5.54)

Here, the operators HC and N include the linear boundary conditions specified in 5.54
following the Lanczos method presented in section 5.2.5. As an alternative to setting one
boundary value to unity, one mode per solution can also be set to unity. The respective
condition is

bc−

{
∆C̊r

±,kl

}
= δrk. (5.55)

As long as the resulting solutions are linearly independent, any set of boundary values
can be used. In some cases, using 5.55 instead of 5.54 is cheaper due to the Fourier trans-
formation used in the latter.

Inhomogeneous problem with homogeneous b.c. In order to take the nonlinear
terms of 5.50 into account, the nonlinear problem with homogeneous boundary conditions

HC∆C̃
n,m
±,kl = ∇2C̃n−1

±,kl − ÑL
n,m−1

±,kl

bc−

{
∆C̊r

±,kl

}
= 0

bc+

{
∆C̊r

±,klD⊤
C

}
= 0

(5.56)

is solved at each time step n and each iteration step m. We denote the solution to this
problem with ∆C̃n,m

±,kl. Again, the overline represents the implementation of the linear
boundary conditions stated in 5.56 with the Lanczos method.

Superposition Finally, we assume that the solution to the nonlinear problem can be
represented as linear superposition of the form

Cn,m
±,kl = Cn−1

±,kl +∆Cn,m
±,kl

∆Cn,m
±,kl = ∆C̃n,m

±,kl + λn,m,r
± ∆C̊r

±
(5.57)

with the unknown parameters λn,m,r
± . We drop the index m as the computation has to be

performed at each iteration step. Also, we drop k and l to obtain the values at each time
step

Cn
± = Cn−1

± +∆Cn
±

= Cn−1
± +∆C̃n

± + λn,r± ∆C̊r
±.

(5.58)
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We can now plug this result into the no-flux condition 5.51 to obtain

0 = bc−

{
−
(
Cn−1

± +∆C̃n
± + λn,r± ∆C̊r

±

)
D⊤

C ∓
(
Cn−1

± +∆C̃n
± + λn,r± ∆C̊r

±

)
∗
(
ΦnD⊤

C

)}
.

(5.59)
The only unknown in this equation is λn,r± ∈ CNx which can be computed from the matrix
equation

An
(
∆C̊r

±,Φ
n
)
λn,r± = Bn

(
Cn−1

± ,∆C̃n
±,Φ

n
)
, (5.60)

where An ∈ CNx×Nx is a regular matrix and Bn ∈ CNx a vector. As An not only depends
on the time-independent ∆C̊r

±, but also on ϕn, it has to be set up and inverted at each
time step.

Concluding remarks The influence matrix method is based on the assumption that a
linear decomposition of the solution is possible. Thus, it is expected to fail for strongly
nonlinear problems. Although this reduces the range of possible conditions under which
the Python code is applicable, practical use has proven that the code successfully delivers
results for most of the relevant experimental settings.

5.3.5 Equation coupling with Gummel’s iteration

As mentioned in section 5.3.3, the equations 5.50 are coupled and strongly nonlinear.
The developed code takes this into account by using an iterative procedure. The pro-
cedure is adapted from a technique first published by Gummel (1964). However, it was
developed for the numerical computation of electric double layers in semiconductors. For
known charge concentrations, fluid double layers are mainly characterized by their thick-
ness and the outer applied potential. Double layers in semiconductors additionally depend
on quasi-Fermi potentials of holes and electrons, as well as ionized impurity scattering.
Thus, their fluid equivalent appears to be more simple, assuming that convective charge
transport does not have too strong an influence on the system.

Algorithm Although we have already derived the Poisson equation in spectral form, it
is helpful to start with the physical formulation at time step n and iteration step m

0 = δ2∇2ϕn,m + qn,m. (5.61)

We use the decomposition introduced in section 5.3.4,

ϕn,m
ij = ϕn,m−1

ij +∆mϕn,m
ij ,

cn,m±,ij = cn,m−1
±,ij +∆mcn,m±,ij,

(5.62)

with the operator ∆m denoting the difference to the previous iteration step, in contrast
to ∆ = ∆n, which is used to denote the difference to the previous time step n − 1. We
further assume the validity of the Gouy-Chapman solution (cp. section 2.2.4)

cn,m±,ij = exp
(
∓ϕn,m

ij

)
. (5.63)
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Plugging this into the Poisson equation 5.61, we obtain

0 = δ2∇2
(
ϕn,m−1
ij +∆mϕn,m

ij

)
+ exp

(
−ϕn,m−1

ij −∆mϕn,m
ij

)
− exp

(
ϕn,m−1
ij +∆mϕn,m

ij

)
.

(5.64)
Assuming that the change of the electric potential per iteration step ∆mϕn,m

ij is small, the
series representation of the Euler function can be used to obtain

0 = δ2∇2
(
ϕn,m−1
ij +∆mϕn,m

ij

)
+ exp

(
−ϕn,m−1

ij

) (
1−∆mϕn,m

ij

)
− exp

(
ϕn,m−1
ij

) (
1 + ∆mϕn,m

ij

)
(5.65)

which can also be written in terms of the charge density qn,m−1
ij and dimensionless con-

ductivity cn,m−1
ij at the previous iteration step

0 = δ2∇2
(
ϕn,m−1
ij +∆mϕn,m

ij

)
+ qn,m−1

ij −
(
∆mϕn,m

ij

)
cn,m−1
ij , (5.66)

which can be rewritten as(
∆mϕn,m

ij

)
cn,m−1
ij − l∗D

2∇2
(
∆mϕn,m

ij

)
= qn,m−1

ij + δ2∇2
(
ϕn,m−1
ij

)
. (5.67)

Finally, we transform this equation to spectral space. The system to solve then reads

HΦ∆
mΦn,m

kl = Qn,m−1
kl + δ2 P 2

(
Φn,m−1

kl

)
,

bc− {Φn
kl} = TF {ζi}

bc+
{
Φn

klD⊤
F

}
= 0

(5.68)

with the system matrix HΦ = Cn,m−1
kl − δ2 P 2 and the linear boundary conditions.

Integration into the code When computing the solution at the time step n, the
Poisson equation is solved first, delivering the potential for the first iteration step Φn,m

kl .
Afterwards, the charge transport equations are solved using the influence matrix method
presented in section 5.3.4. The loop is interrupted if the change variables ∆mΦn,m

kl and
∆mCn,m

±,kl are smaller than a certain threshold value, which we denote with ϖGummel. In
the practical use of the code, values ϖGummel ∈ [10−8, 10−5] are an acceptable trade-off
between speed and accuracy.

5.3.6 Solution of the streamfunction equation

The solution to the flow problem is obtained after having solved the PNP problem. Both
problems are coupled via the Coulomb-force term in the streamfunction equation and the
convective term in the charge-transport equations. The set of equations for the stream-
function 5.14, 5.15, 5.16 reads in spectral form

Re ∂t P 2Ψkl = ∇4Ψ− ⃗ P × F⃗kl,

bc− {Ψkl} = 0,

bc−
{
ΨklD⊤

C

}
= 0,

bc+ {Ψkl} = TF {ψtfr} ,
bc+

{
ΨklD(2)

C

⊤}
= 0,

(5.69)
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where the spectral Coulomb force is abbreviated as F⃗kl = −HaQkl ∗ ⃗ PΦkl. As the upper
boundary is assumed impermeable, the total flow rate ψtfr is not a function of xi, but
a constant. Thus, the transformed vector TF {ψtfr}, only has one entry, the constant
mode. In order to determine this mode, the solution of one more equation is necessary, as
specified in the next paragraph. After that, we discuss the time-integration scheme that
is used to solve the spectral PDE in 5.69.

Determination of the non-zero flow rate The actuator in Figure 5.1 is not a closed
system. For that reason, the rate of flow entering the system can vary over time. As the
problem is periodic, the amount of in- and outflow are identical. In fact, one of the goals
of this study is to determine how much flow can be transported by the actuator. The
total flow rate ψtfr is used to describe the amount of flow and has the unit [ψ∗

tfr] =
m2

s
. In

order to obtain the volume flow, multiplication with the constant channel depth l∗z,ref is
necessary.

The parameter ψtfr can be determined from the zeroth mode of the x-velocity only, as
suggested by Peyret (2002). Thus, we consider the x-direction of equation 5.17 in spectral
form

Re ∂tVx,kl = −DFPkl + P 2Vx,kl + Fx,kl. (5.70)

All modes k ̸= 0 are periodic in x-direction and do thus not contribute to the flow rate.
For that reason we can focus on the equation for k = 0

Re ∂tVx,0l = P 2Vx,0l + Fx,0l, (5.71)

where we have plugged in the assumption DFP0l = 0, i.e. that no outer pressure gradient
is applied. By introducing the time discretization with the Euler implicit scheme, the
Helmholtz-type equation(

Re

∆t
− P 2

)
∆V n

x,0l = P 2V n−1
x,0l + F n

x,0l, (5.72)

is obtained. The respective linear boundary conditions are the no-slip condition at the
lower boundary and the symmetry condition at the upper boundary

bc−
{
V n
x,0l

}
= 0,

bc+
{
DCV

n
x,0l

}
= 0.

(5.73)

Finally, we compute the total flow rate in accordance with Peyret (2002) as

ψtfr =
h

2

∫ 1

−1

V n
x,0l dy = −h

2

Ny−1∑
l=0
l even

2

l2 − 1
V n
x,0l. (5.74)

As a result, the system 5.69 and the time integration can be performed.
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Figure 5.4: Stability region of the C-BDF2 scheme (orange; used for the streamfunction
eq.) in comparison to the stability region of the Euler implicit scheme (blue; used for the
charge transport equations). For Re(z) ≤ 0, both methods are stable.

The C-BDF2 scheme The streamfunction equation 5.72 is of fourth order and does
not take the Helmholtz form 5.33 due to the the temporal-spatial operator ∂t P 2 and the
biharmonic operator.

The stability of explicit time-integration schemes is limited by the smallest distance
between two grid points. Due to the Gauss-Lobatto distribution, very small distances
can appear near the boundaries of the discretized domain. As an example, we choose
the domain height h = 1 and the amount of grid points Ny = 32 into the grid-point
distribution 5.25. Then the distance between the boundary point and the first inner point
is ∆xmin,32 = 2.5 · 10−3. For 64 grid points, this distance reduces to ∆xmin,64 = 6 · 10−4.
In explicit schemes, the maximum size of the time step ∆tmax is limited by the relation
(LeVeque, 2007)

∆tmax ≤
∆x2min

2
, (5.75)

delivering ∆tmax,32 = 3.3 · 10−6 and ∆tmax,64 = 1.9 · 10−7 respectively. Thus, explicit
schemes are very expensive. However, Canuto (1988) and Peyret (2002) suggest, in some
cases, the application of Adams-Bashforth methods. Yet, these methods are unstable in
our case.

For that reason, an implicit method which is both stable and easy to implement
is necessary. For the modeling of cardiac dynamics, a second-order one-step two-stage
composite backward differentiation formula (C-BDF2) has been developed (Ying, 2005;
Ying et al., 2008):
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C-BDF2 scheme (Ying, 2005)
The differential equation for a general parameter a(t) and a general right
hand side b(a)

∂ta(t) = b (a(t)) (5.76)

We assume that the approximation of a at the discretized time tn−1 is known
and denoted by an−1. The method is aiming for the computation of an using
the auxiliary variable ân. The two-stage scheme is given by

ân − ϱ∆t b(ân) = an−1,

an − ϱ∆t b(an) =
1− ϱ

ϱ
ân +

2ϱ− 1

ϱ
an−1.

(5.77)

The stability function of the method

S(z) = 1 + (1− 2ϱ) z

(1− ϱz)2
, forz ∈ C, (5.78)

is bounded to the left-half complex plane when choosing the characteristic
constant ϱ = 1−

√
2
2

(compare Figure 5.4). In that case, the scheme is A- and
L-stable.

This method was successfully used for the solution of the problem 5.72. The scheme
5.77 is adapted to the streamfunction equation and delivers

HΨ∆Ψ̂n
kl = P 4Ψn−1

kl − ⃗ P × F⃗ n
kl,

Ψ̂n = Ψn−1
kl +∆Ψ̂n

kl,

ˆ̂
Ψn

kl =
1− ϱ

ϱ
Ψ̂n +

2ϱ− 1

ϱ
Ψn−1

kl ,

HΨ∆
ˆ̂
Ψn

kl = P 4 ˆ̂Ψkl − ⃗ P × F⃗ n
kl,

Ψn =
ˆ̂
Ψn

kl +∆
ˆ̂
Ψn

kl.

(5.79)

We note that the matrix
HΨ =

Re

ϱ∆t

P 2 − P 4 (5.80)

is independent of the time as long as the time step size is constant (which is used in this
code). Therefore, the matrix can be inverted in the pre-processing step before starting
the time integration. Thus, only matrix products have to be evaluated during the time
integration.

Concluding remarks The streamfunction is computed after solving the electric prob-
lem. Thus, both numerical solutions are loosely coupled. Yet, a more expensive approach
with a stronger coupling using an iteration loop within a time step, did not show signif-
icantly better convergence or accuracy characteristics. The velocity field can directly be
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obtained from the streamfunction by differentiation in the post-processing step, which is
discussed in the next section.

5.3.7 Validation

A part of the methods in the spectral module presented in this work was validated by
simulating Rayleigh-Bérnard convection (Liu et al., 2023) showing maximum relative er-
rors of the size 10−10. Validation of the flow field was performed with an example flow
excited by a given volume force giving errors of similar size.

5.4 Post-processing

After performing the time-integration, a post-processing routine is performed. In this
section of the code, the velocity field, local conductivity, and dissipation values are com-
puted. While the velocity can simply be obtained by differentiation of the streamfunction,
the computation of the dissipation is more complex. With the flow field and dissipation,
an estimate for the efficiency of the system is derived. We finally discuss the termination
conditions for the time loop.

5.4.1 Dissipation

Viscous dissipation The heat generated by internal friction due to shear stresses in
the fluid depends on the velocity field and the viscosity. At the position defined by xi and
yj the local dissipation rate is given by

εn,∗η,ij = η∗
(
∂∗xv

n,∗
x,ij + ∂∗xv

n,∗
y,ij + ∂∗yv

n,∗
x,ij + ∂∗yv

n,∗
y,ij

)
,[

εn,∗η,ij

]
= 1Wm−3.

(5.81)

However, cooling systems for semiconductors are characterized by their relative cooling
power per area. For that reason, we also compute a global relative dissipation rate by
integration over the domain

ε̄n,∗η =
1

l∗per

Nx−1∑
i=0

Ny−1∑
j=0

εn,∗η,ij(∆x)
∗
i (∆y)

∗
j ,[

ε̄n,∗η

]
= 1Wm−2.

(5.82)

Electrical dissipation In EHD sytems, electrical dissipation is observed in addition
to viscous dissipation. It originates from electric ion fluxes relative to the resistive fluid
environment. We define the electro-diffusive flux as a combination of diffusive and elec-
trophoretic flux

j⃗∗±eldi = j⃗∗±diff + j⃗∗±elph

= −D∗∇⃗∗c∗± ∓ µ∗c∗±∇⃗∗ϕ∗.
(5.83)

The convective flux is assumed to not contribute to the dissipation. It originates from the
transport of the ions together with the fluid. Thus, there is no relative motion between
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fluid and ions causing dissipation. Analogously to the viscous dissipation, a local electric
dissipation rate is defined by

εn,∗ς,ij =
(
ςn,∗ij

)−1
(∥∥∥⃗jn,∗±eldi

∥∥∥
2

)2
[
εn,∗ς,ij

]
= 1Wm−3,

(5.84)

where ∥. . . ∥2 denotes the L2-norm. We find the relative dissipation rate with regard to
the area as

ε̄n,∗ς =
1

l∗per

Nx−1∑
i=0

Ny−1∑
j=0

εn,∗ς,ij(∆x)
∗
i (∆y)

∗
j ,[

ε̄n,∗ς

]
= 1Wm−2.

(5.85)

Note that the local conductivity ς∗ij is not a constant but a function of the charge distri-
butions cn,∗±,ij as defined by relation 2.15.

5.4.2 Total dissipation and actuator efficiency

The actuator will deliver different flow profiles depending on its geometry, excitation,
and the amount of dissolved charges. In section 6.3, the optimization will be discussed
in detail. In order to assess the quality of a particular actuator setup, we compute an
estimate for its efficiency

en,∗ =
v̂n,∗x,h

ε̄n,∗tot

with [en,∗] = 1
m s−1

Wm−2
(5.86)

using the maximum x-velocity in the middle of the channel

v̂∗x,h = max
(
v∗x,i0

)
. (5.87)

Note that the definition of the Gauss-Lobatto points 5.26 assigns the largest value of the
normal direction to the index 0, such that y0 = h. The total dissipation rate is defined as
the sum of electrical and viscous dissipation at the time step n

ε̄n,∗tot = ε̄n,∗η + ε̄n,∗ς . (5.88)

Further parameters can be introduced, e.g. assessing the velocity profile. For the
transport of charges or diffuse probes within the system, a box profile is optimal to avoid
"blurring" of the sample. Similarly, a box profile for the potential is also desirable. Thus,
in the middle region of the channel no strong electric fields normal to the walls appear,
causing a secondary flow field. We will denote the deviation of the real parameter shapes
to the optimal box profiles with en,∗v and en,∗ϕ .

5.4.3 Termination conditions for the time loop

The time integration is performed until one of the following break conditions is fulfilled.
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• Stationarity: The maximum x-velocity in the middle of the channel and the
total dissipation rate are monitored throughout the calculation. If they change
less than a defined value ϖstat, the calculation is aborted.

• Negative flow rate: If the mid-channel velocity v̂x,h becomes negative the calcu-
lation is aborted, too.

• High dissipation: There is a maximum of dissipated heat that can be transported
away from the actuator by the cooling system ε̄∗cooling. The calculation is aborted
at the time step n if ε̄n,∗tot > ε̄∗cooling.

• Gummel’s iteration fails: In some cases the iteration method which is used to
solve the PNP problem fails. In case convergence is not reached after a defined
maximum number of iteration steps, the computation is aborted.

5.5 Startup behavior and frequency dependence

The actuator behavior features some effects. Figure 5.5 presents the startup behavior.
At t = 0, the electrodes are turned on, and the respective charge clouds are formed. For
t > 0, the sinus-shaped ζ-potential starts traveling along the wall. Charge and potential
directly at the wall, at y = 0, follow simultaneously. However, after some time, the charge
clouds develop to fading stripes enclosing an angle with the wall. After stationarity is
reached, this angle stays constant in time. We note that the angle is dependent of the
Péclet number. The accumulation of charge near the wall results in a higher conductivity
represented by the parameter c. Heat dissipation is linearly dependent on the Ohmic
fluxes, as well as the fluid resistivity which is the reciprocal to the conductivity. We
expect high fluxes near the wall, yet mainly between the charge clouds, in regions with
lower conductivity.

A Coulomb force proportional to both, the electric field and the charge density, acts on
the fluid, resulting in the depicted flow field. Strong gradients in charge and potential act
near the wall. Effectively, vortices can be observed. These vortices are the determining
elements of the early flow field. Later on, when a laminar flow has developed, they are
of minor importance, yet still distinguishable. Carrier fluid transport shows the desired
uniform behavior with vortices of acceptable size near the wall.

The transport velocity and dissipated heat depend on the excitation frequency, as
illustrated by Figure 5.6. For an excitation potential ζ∗amp = 25 mV, different actuator
geometries were investigated. The depicted frequency spectra were identified by several
numerical experiments. For smaller electrode distances, higher frequencies are needed to
observe the desired flow pattern.

The investigations reveal that, contingent on the geometry of choice, an optimal fre-
quency exists where the transport velocity reaches its maximum. For higher frequencies,
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Figure 5.5: Start-up behavior for ν∗ref = 10 kHz, ζ∗amp = ϕ∗
th = 25 mV, l∗ref = 300 nm,

h∗ = 900nm, c∗equ = 0.01mmoll−1. The corresponding reference velocity is v∗ref = 3mms−1.
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Figure 5.6: Frequency dependence of the velocity at the symmetry plane and dissipated
energy. Parameters:
(Top) l∗ref = 300 nm, h∗ = 900 nm, ζ∗amp = ϕ∗

th = 25 mV.
(Mid) l∗ref = 150 nm, h∗ = 400 nm, ζ∗amp = ϕ∗

th = 25 mV.
(Bottom) l∗ref = 30 nm, h∗ = 75 nm, ζ∗amp = ϕ∗

th = 25 mV.
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the velocity decreases and eventually becomes negative (transport in negative x-direction).
In the second and third diagram, this effect is shown as a second peak in the velocity curve.
Note that the diagrams show the absolute value of the velocity. For a quantitative inter-
pretation, the second peak needs to be handled with care. The curves were determined
by a quasi-stationary increase of the frequency during one simulation. The limited width
of the peak combined with strong gradients and a lower scanning frequency result in the
nonphysical behavior shown. Yet, the first peak is of higher relevance in the application
due to its higher transport velocity and lower frequency sensitivity.

Heat dissipation increases when more electrical energy is supplied in form of higher
frequencies, as illustrated by Figure 5.6. Compared to dissipation by Ohmic fluxes, me-
chanical dissipation is nearly negligible. With increasing frequency, the amount of energy
transformed to heat within the fluid reaches a saturation level. In this region however,
the actuator is inefficient, transforming the input energy mainly to heat, and not into
carrier fluid transport. However, in the case of flow reversal, dissipation shows a similar
peak as the transport velocity.

Finally, four frequency regions are identified:

I High efficiency: Low dissipated energy prevails. However, transport ve-
locities are also low.

II High transport: Desired frequency range of operation.

III Bad efficiency: Decreasing transport velocity and high dissipation. En-
ergy supply is mainly transformed to heat.

IV Flow reversal: Opposite transport direction, transport speed is lower
and control more sensitive.

Even more significant is the influence of the actuator geometry on transport speed and
losses. The electrode distance is decreased from top to bottom in Figure 5.6. Transport
speeds increase accordingly. However, higher losses are observed in smaller geometries.
Especially the increase of dissipation from l∗ref = 150 nm to l∗ref = 30 nm is astonishingly
large.

5.6 Conclusion

The results presented in the section above help to understand the working principle of
the actuator. Clearly, an optimal frequency range for different geometrical settings can
be identified (II: high transport). The influence of electrode distances on the amount of
losses is relatively strong compared to the influence on transport speed.

We note that, by choosing a design with electrode distances similar to the size of the
double layer, wall-adjacent vortices are relatively small. Thus, a controllable, uniform
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flow field is built up. With respect to the landscape of actuation mechanisms, our design
features a simple and thus relatively cheap geometry, together with an easy to control
homogeneous carrier fluid transport.

Miniaturization, however, is limited by the dissipated heat. Sufficient cooling must be
provided to avoid overheating of the machine elements and damage of probes. A number
of design limitations are discussed in the next chapter, together with an detailed expla-
nation of the system’s architecture and functional structure.

We note, that obtaining the presented results was relatively expensive. It serves the
purpose of verifying the actuator’s working principle. Surprisingly, no complex flow struc-
tures were observed that justify the use of a highly-accurate spectral simulation. For fur-
ther investigations, a faster code is to be constructed. Finite-difference or finite-volume
approaches in velocity-pressure formulation can be extended to the third spatial dimen-
sion with much less effort than is the case for the presented code. Also, optimization
procedures would be much less expensive.

We could build up an understanding, not only of the driving mechanism, but also
of full-electrokinetic transport in general. To the authors knowledge, there are no other
publications investigating Ohmic dissipation in microchannels. As mentioned in the in-
troduction, miniaturization is an important trend in LOC development. One important
finding of our study is the strong nonlinear increase of heat losses in smaller channels.
This is critical to structures and samples, and is recommended to be considered in further
studies.





CHAPTER 6

Product design of an active-surface lab-on-chip

This chapter gives an overview of the functional structure of the LOC system with the
microfluidic actuator of chapter 5 as a key component. Methods of model-based systems
engineering are utilized to illustrate architecture and functions. Limitations of the product
design are discussed. Within these limitations, actuator optimization is performed and
recommendations for different use cases are made.

6.1 System architecture

In order to understand the design limitations of the system, a detailed discussion of its
functional structure is necessary. We start by introducing some important explanation
models in product design, i.e. Product Generation Development and Model-Based Sys-
tems Engineering. These models provide the framework and vocubulary which is needed
for a systematic discussion of our design.

6.1.1 Explanation models

Product generation development (PGE) as a description method Over the past
centuries, a range of approaches have been developed in order to describe product devel-
opment and innovation processes. Important examples focus on the products’ success on
the market (Schumpeter, 1913), development by "abstraction and subsequent concretiza-
tion" (Ehrlenspiel, 2009), categories of construction projects (Feldhusen, 2013), categories
of innovation (Henderson & Clark, 1990), or user requirements in form of the Kano model
(Kano, Seraku, Takahashi, & Tsuji, 1984).

For the structured discussion of our product, we use an explanation model called Prod-
uct Generation Development (PGD) by Albers et al. (2018). Its key argument is that the
development of a new product (generation) is "both specific carryover as well as significant
new development of partial systems" (Albers et al., 2018). The carryover is performed
from so-called reference products. Reference products, as well as the new generation, can
be defined as systems with a system boundary and several levels of subsystems (Albers et
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al., 2019). We will refer to these system parts and their structural interrelations as sys-
tem architecture. Each subsystem is not only characterized by its structural properties,
but also by its behavior. We denote the behavior of a (sub-)system, which can be either
desired or accepted, as function (Albers et al., 2011; Albers & Wintergerst, 2014).

Model-based systems engineering (MBSE) In addition to this general explanation
approach, model-based systems engineering represents a powerful tool for understanding
the system architecture and functionality of complex products (Albers & Zingel, 2013;
Dori, 2016). In this work, we use the open-source MBSE-software Capella (Eclipse Foun-
dation, n.d.). Figure 6.2 depicts the architecture of the lab station and Figure 6.3 its
functional structure. The architecture breaks down the physical components into two lev-
els of subsystems. The functional structure illustrates the exchange of matter (reagents,
carrier fluid), energy (in our system in the form of electrical energy), and information.

6.1.2 Structure and functional behavior of the lab and the fluid
processing unit

System structure The system structure of the lab is illustrated by the CAD model 6.1
in combination with the Capella model 6.2. The reader is also referred to the publication
Marthaler and Class (2022b) and the patent sketch D.8. All parts that contain fluids
are located on the top, such as fluid in- and outlets, reservoirs, add-on elements, and the
FPU. Electric elements are integrated in the printed circuit board (PCB) on the bottom
of the structure. Black cables (Figure 6.1) connect the electric elements with the pumps,
FPU and add-on elements. The air cooling system for the FPU is not displayed. The user
interacts with the lab by inputting sample, reagents, and carrier fluid and controlling the
processes with software. Analysis results are also directly sent to the connected computer.

Functional behavior The main function of the lab system is the transformation of
chemical information into digital information. Here, the term "chemical information"
aggregates a wide range of structural knowledge about the sample, e.g., the qualitative
or quantitative composition of samples, or DNA information. In Figure 6.3, this main
function is illustrated by one path: Sample input by the technician, transport in the
fluid circuit into the FPU, performance of the identification algorithm (mixing, transport
to add-on elements), reactions with reagents, detection, e.g. with charge spectrometer,
data transmission via electric circuit to the software, and analysis of the results by the
technician. The performance of the identification algorithm is the key part and strongly
dependent on the type of sample and information to be extracted. We note that the
FPU does allow for a wider range of such algorithms than most other LOC systems with
predefined channels. We will discuss its technical properties in the next subsection 6.1.2.

The main function, as discussed above, can only be performed with the support of
auxiliary or side functions. These are reagant transport, carrier fluid transport, cleansing
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Figure 6.1: 3D model of the lab system with the FPU as central element. The carrier
fluid is depicted in blue while the sample and reagant fluids are depicted in purple. The
electric circuit is integrated in the PCB bottom plate, while the fluid circuit is in the
transparent PDMS block on the top. The black cables connect the fluid control elements
(FPU, pumps, add-on systems) with the electric circuit on the bottom.
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Figure 6.2: Overview of the system architecture illustrating two levels of subsystems and
actors. The diagram was created using the open-source MBSE software Capella.
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of fluid channels, provide electrical power to the components, cooling of the FPU, and
sample/reagant heating by chemical reactions. Similarly, these functions can be broken
down into energy/mass/information exchange between the lab components as illustrated
by Figure 6.3.

The fluid processing unit (FPU) The fluid processing unit is the core part of the lab.
The smallest unit is the actuator, typically consisting of three electrodes that provide a
three-phase voltage pattern. In order to allow for two- or three-way transport on an active
surface, different actuator types have been developed, compare figures D.2,D.3,D.4. These
are clustered to pixels, i.e small surface elements on which flow direction and velocity is
synchronized. The clustering is illustrated Figure D.5. Multiple pixels (typically eight)
are controlled by single adjacent control units, compare Figure D.6. Many of these control
units with the respective pixels form the chip/pixel surface (compare figures 1.7,D.7). On
this surface, probes can be transported on programmed paths. In fact, two of these chip
surfaces are arranged on top and at the bottom of the fluid layer (sandwich arrangement).

The transported probes are diffuse and embedded into a carrier fluid as patented by
M. Bazant and Prakash (2013). Continuous sample transport on the surface is possible
(no pulsing). This allows performance of charge spectrometry on the chip surface and
makes shorter transport or mixing times possible. Mixing can be performed by controlled
desynchronizing of the top and bottom electrodes. The main function however is the
quick transport of probes between in- and outlets, storage elements that we denote as
fluid random access memory (compare Figure 6.1), and the addon elements. In order to
do that, fluid flow is not only enforced at the loction of the sample. Instead, at each
point of time a closed path of fluid is enforced to flow with the same velocity. Thus,
mass continuity is always sustained and eddies avoided. At the boundaries of the chip,
L-channels (compare figures 6.1, D.8) are used to separate sample and carrier fluid. Both
substances can then exit or enter the chip area into two different channels. The carrier
fluid is always transported from or into the carrier fluid channel which is arranged around
the pixel area. At the same time, probes are transported into the desired channels to e.g.
memory elements or add-ons. This procedure is illustrated by the sketch D.9.

6.2 Technical limitations

Miniaturization A possibility to overcome the architectural limitations of many LOC
systems that we discussed in the introduction to this chapter is miniaturization. Smaller
geometrical units that can be independently controlled have several advantages. The
controllable length scales can be chosen to be of the size of DNA, viruses, or protein.
Thus, these investigation objects can be handled individually, and the necessary amount
of sample volume is reduced. The smaller length scales also make faster sample transport
possible by high fluid transport speeds and short transport lengths. Chemical algorithms
that require actions at high frequencies, e.g., quick interruption of the reaction, become
possible.
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Figure 6.3: Overview of the functional structure of the lab system. The diagram was
created using the open-source MBSE software Capella.
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Figure 6.4: Historical overview of industry node labeling. The purple markers represent
data from the Wikipedia article "Microprocessor chronology" (Wikipedia, 2022). Addi-
tionally, data from the 2013 ITRS report (Cogez et al., 2013) and the 2021 IRDS report
(Balestra et al., 2021) is used.

The main problem of miniaturization are the manufacturing possibilities and their
related cost. As a reference value for the smallest distance between two individually con-
trollable electrodes, we use the node labeling as used in the semiconductor industry. We
note that these names are in general marketing-driven and thus do not necessarily repre-
sent the real electrode distances on a chip. Although these absolute values should be used
with care, their relative magnitude is correct. In Figure 6.4, a historical overview on node
labeling is given together with projections by the International Technology Roadmap for
Semiconductors (ITRS) (Cogez et al., 2013) and after 2013 by the International Roadmap
for Devices and Systems (IRDS) (Balestra et al., 2021). The projections show that Moore’s
law is expected to be valid through to the year 2030. We note that just in the last few
years, device fabrication with electrode distances at nanoscale have become an option in
product design.

Prototyping cost Yet, in addition to manufacturing feasibility, an equally important
aspect is the prototyping cost. The dependency between prototyping cost per area of a
manufactured chip and node labeling is illustrated by Figure 6.5. We here refer to data
published by Europractice, a consortium of five European research organizations that
offer prototyping services for application-specific integrated circuits (ASIC) to academia
and industry (Europractice, 2020, 2022). Four of the companies that offer ASIC man-
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Figure 6.5: Cost per area of the chip as demanded by the ASIC service providers in
the Europractice consortium (Europractice, 2020, 2022) over industry node labeling. On
average, a double-logarithmic relation is observed.

ufacturing via Europractice are compared in Figure 6.5. We note that there exists a
double-logarithmic relationship between cost and node distance. For instance, choosing a
55 nm technology instead of the state-of-the-art 12 nm nodes can save about 83 % of the
expected cost.

Electric voltages Organic substances can change their properties under strong elec-
tric fields. Particularly, the membrane of cells breaks open permanently (cell lysis) or
reversibly (electroporation) under strong voltage differences between the outer and inner
phase. In some cases, this behavior is desired (release of DNA/RNA). However, this pro-
cess is to be performed with care. Controlled membrane disruption needs to be performed
without damaging other parts, e.g. organelles (Ledeboer, 2009). It is also important to
clearly separate this function from the sample transport and thus to avoid unwanted
sample damage. For that reason, the transport should be possible using relatively small
voltages.

Excitation frequency During the last century, the excitation frequency in the semi-
conductor industry seemed to have a reached a natural boundary. A historical overview on
clock frequencies in the processor industry is displayed in Figure 6.6. The latest IRDS re-
port (Balestra et al., 2021) predicts an increase in the clock frequency in the next decades.
Yet, for microfluidic actuators, higher frequencies might not be necessary as a heuristic
reflection can illustrate. Relatively high flow velocities in such systems are of the order
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Figure 6.6: Historical overview of clock frequencies in the chip industry. The purple mark-
ers represent data from the Wikipedia article "Microprocessor chronology" (Wikipedia,
2022). Additionally, data from the 2013 ITRS report (Cogez et al., 2013) and the 2021
IRDS report (Balestra et al., 2021) is used.

of v∗ = 10 mms−1. For (quite small) electrode distances of l∗ref = 10 nm, the respective
frequency is ν∗ = v∗

l∗ref
= 1MHz. These are frequencies that have been reached in the 1970s

already.

Heat dissipation One large challenge of miniaturization is the increasing heat pro-
duction of conducting elements. This is true for semiconductors, as well as electrolytic
systems. One important limitation is the air cooling limit, i.e. the amount of dissipated
heat that can still be transported away from the heat source with a fan and is given by

ε̄n,∗tot ≤ ε̄∗aircooling = 1.5W m−2, (6.1)

where ε̄n,∗tot is the relative heat dissipation rate as defined in section 5.4.2. The index "tot"
(for total) indicates that this dissipation rate is the sum of mechanical and electric dissi-
pation.

However, under normal operating conditions, only a small part of the surface area of
the chip is active. We can compute the maximum dissipation that is possible locally, by
using the active area and a safety factor with the formula

ε̄n,∗tot,local ≤ ε̄∗aircooling
Atotal

Aactive

1

safety
. (6.2)
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Figure 6.7: Maximum local dissipation rate over active chip surface and safety factor.
The black marker represents the example calculation which is discussed in the text.

This relation is illustrated by Figure 6.7, giving an overview of the maximum allowed
local dissipation with respect to the active chip area and the used safety factor. As an
example, with a safety factor of 3 and an active area of Aactive = 5%, the maximum local
dissipation rate is ε̄n,∗tot,local = 10Wm−2.

6.3 Optimization

Within the limitations discussed above, the actuator can be optimized. For that pur-
pose, we assume that one actuator setting is defined by five independent variables. These
include the electrical parameters, i.e. excitation frequency ν∗ and amplitude ζ∗amp, the
geometrical parameters, i.e. electrode distance l∗ref and channel height h∗, and the equi-
librium ion concentration of the carrier fluid c∗equ. Large velocities v̂∗x,h are desirable in
the center of the channel with small dissipation rates and thus, high efficiencies. Table
6.1 gives an overview on some dependencies that could be identified by a limited number
of numerical experiments. These trends are to be handled with care as they are possibly
not globally valid.

The actuator settings can be strategically optimized utilizing a differential algorithm,
such as the "differential_evolution" routine in the scipy library. Giving an initial variable
setting as candidate solution and variable constraints, the algorithm improves the candi-
date iteratively within the limitations. In our setting, an optimization with four variables
takes about a week of computation time on a 8-core, 2.4 GHz machine. An example sim-
ulation is presented in table 6.2. In that case, the efficiency was optimized as function of
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optimization parameter ν∗ ↑ ζ∗amp ↑ l∗ref ↑ h∗ ↑ c∗equ ↑
mid-channel velocity v̂∗x,h opt. ↑ opt. → opt.
dissipation rate ε̄n,∗tot,local ↑ ↑ ↑ → opt.
efficiency en,∗ ↓ ↓ ↓ → opt.

Table 6.1: Relationship between actuator

optimization parameter ν∗ ζ∗amp ↑ l∗ref h∗ c∗equ
lower constraint 10 kHz 25 mV 100 nm 50 nm 0.01 mmol
upper constraint 100 kHz 25 mV 350 nm 500 nm 0.5 mmol
optimization 10 kHz 25 mV 95 nm 285 nm 0.12 mmol
mid-channel velocity v̂∗x,h 0.1 mm s−2

dissipation rate ε̄n,∗tot,local 0.04 Wmm−2

efficiency en,∗ 2.48 mm3 W−1 s−1

Table 6.2: Result of a differential evolution simulation with constraints.

four parameters en,∗
(
ν∗, l∗ref , h

∗, c∗equ
)
. In that case, optimum values for l∗ref , h∗, c∗equ were

identified while the frequency variable hit the constraint. It is probable that the result
could be improved using higher frequencies.

6.4 Final remarks

It must be clear, that different use cases require individual actuator setups. This work
lays the foundation to build a prototype using the presented code, together with an
optimization algorithm. A suggestion for a first design is made in the previous section.
The optimization algorithm, in combination with the structural description of the system,
sets the basis for further developments and their numerical verification. However there
are a number of questions, one has to answer before beginning with the optimization:

• What chip size is needed?

• What is the budget for the prototype?

• Are biological samples to be handled?

• What is the maximum electric field, the samples can be exposed to?

• What is the maximum temperature, the samples can be exposed to?

• Which safety factor is appropriate?

• What is more important: high efficiency or high flow velocities?
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This list is certainly not complete. The limitations discussed in this chapter before are
not included and assumed to be preconditions.

For the product and prototyping design of the actuator, fabrication and operating
limitations are to be considered, together with the constraints of the individual use case.
Knowing the sample and budget, optimization can be significant and with the given code.

Speeding up the actuator simulation would allow for more setups to be explored and
evaluated. Further work is required to identify a more adequate formulation of the effi-
ciency. The parameter as defined above, tends to low dissipation rather than high veloc-
ities. Weight factors accounting for this imbalance can make the result more meaningful.



CHAPTER 7

Conclusion

7.1 Generalizing remarks on the electrokinetic trans-
port phenomena in an LOC system

Two nonlinear electrokinetic transport phenomena, electromigration of a drop and wall-
induced traveling-wave electrokinetic flow, were investigated in this study. Droplets, not
necessarily carrying an effective surface charge, show electromigration. We note that
this phenomenon is independent of the strength of the respective electrolytes. In fact,
differences in the migration velocity for small Galvani potentials reduce to lower order.
Modeling differences, such as the modeling of the surface geometry in an asymptotic set-
ting, have a major impact on the outcome.

The carrier fluid in the actuator can be pumped by traveling wave electroosmosis.
Charge clouds accumulate near the electrode wall and travel simultaneously with the ex-
citation potential. The resulting net charge is negligibly small.

Both studies can provide evidence for a principle presented by Purcell (1977). He in-
vestigated the swimming motion of micro-organisms and defined the underlying principal.

"One special kind of swimming motion is what I call a reciprocal
motion. That is to say, I change my body into a certain shape
and then I go back to the original shape by going through the
sequence in reverse. At low Reynolds number, everything reverses
just fine. Time, in fact, makes no difference – only configuration.
[. . . ] So, if the animal tries to swim by reciprocal motion, it can’t
go anywhere."
Purcell (1977)

His conclusion is that reciprocal motion alone is not sufficient for the swimmer to move
at low Reynolds number. Yet, a second degree of freedom enabling asymmetric reciprocal
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motion does allow micro-swimmer motility.

The same is true for electrokinetic transport. Earlier EHD models by Melcher and
Taylor (1969); Saville (1997) for drops or vesicles did not include a Debye-layer analysis
and could not observe migration as a result. In settings where no surface charge is present,
the Galvani potential is an effect of a asymmetry of charge at the fluid-fluid interface.
This asymmetry, together with the superposed electric field, is enough to induce motion
of the particle.

In the case of the actuator, earlier versions of the design suggested AC-potentials at
the electrodes (Barz & Class, 2007). At low Reynolds number, this excitation induces
vortices in the flow field. But pumping along the wall is not possible.

Beyond these examples, Squires and Bazant (2006) presented other ideas of AC-
electroosmotic pumping by breaking symmetries and delivering further proof to Purcell’s
hypothesis.

7.2 Development status of the Active-surface LOC and
outlook

The present study is concluded by summarizing its logical continuations. These cover the
modeling of electrokinetic problems, as well extensions and imrpovements of the numerical
prediction method.

7.2.1 Electrohydrodynamic models

Electrohydrodynamic models with effective boundary conditions representing the Debye-
layer physics have been derived for a number of different experimental settings. However,
our work, as well as studies by Mori and Young (2018) and Ma et al. (2022), can only
be derived assuming a relatively high surface tension. A study investigating under which
conditions the drop is stable is still missing.

It remains unclear if the interface is permeable to ions. Models featuring imperme-
able membranes (Mori & Young, 2018; Schnitzer & Yariv, 2015), including our study1,
predict electromigration. In contrast to that, the model by Ma et al. (2022) includes an
impermeable interface. They conclude the existence of surface charge convection and an
electrodeformation deviating from the classical result by Taylor (1966). An interrelation-
ship between interface permeability and electromigration is still to be investigated.

We have focused in our work on the effects on the droplet induced by an outer electric
field. Significantly different results are likely to be obtained with an outer concentration

1Note that this work is based on the original publication by Mori and Young (2018) and that critics
discussed in this work led to the corrigendum (Marthaler et al., 2023).
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gradient. With the effective boundary conditions presented here, the effects of electro-
chemical gradients can be investigated.

The presented model is only valid for drops. Vesicles, that are commonly used as
models for cells, feature more complex surface properties, like an interface capacitance or
porosity (Ma et al., 2022; Mori, Liu, & Eisenberg, 2011). A model extension would allow
for predictions on biochemical samples in the LOC system.

While this work explored the limits of strong and weak electrolytic solutions, a unified
model also covering moderately dissociated electrolytic solutions has, to the authors’
knowledge, not been derived. However, it is unclear if an analytical derivation is feasible.

7.2.2 Actuator and LOC simulation

The main deficiency of the developed code for the actuator simulation is its efficiency. As
a first study, a highly accurate solution ensures that all physical effects are captured. Yet,
the results show a relatively laminar flow field. For that reason, a faster solver, using a
Galerkin-finite-difference method is under development and part of a later publication.

Predictions of a two-dimensional simulation are always limited to the assumption that
gradients in third spatial direction vanish. However, this is not true for the presented chip
design. The carrier fluid is transported in circular patterns (cp. Figure D.9). This method
of transport can lead to eddies parallel to the chip surface complicating flow control and
deminishing the performance. A three-dimensional analysis is indispansible in order to
get a quantitative estimate of these effects and to explore solution strategies. Possible
ideas are the testing of different electrolyte materials, or active flow adaption by involving
more electrodes surrounding the streamchannels.

Arguably, the numerical simulation of two-phase flow in the actuator would allow for
predicting the behavior of an immiscible fluid sample which is pumped together with the
carrier fluid. The time-varying electric fields in the fluid domain are expected to affect
transport, deformation, and rotation of the immiscible sample. Vice versa, samples which
are of the size of the electrode distance affect the flow field, and indirectly also the charge
distribution and the electric field. The study of this complex interaction is a logical next
step of the presented work.

This study focused on the architecture and operational methods of the chip. However,
microfluidic sytsems necessitate the integration analysis methods allowing for identifi-
cation of sample parts. One analytical method to be performed on the chip is charge
spectrometry, i.e. the separation of sample components by their electric mobility. We
know that the diffusion coefficient and electric mobility of particles, and thus also the
respective Péclet number are linearly dependent. These inertia differences thus lead to a
distinct phase shift between different charges. In a numerical simulation, this phase shift
can be observed as stripes reaching from the charge cloud near the wall into the fluid.
In the LOC system, electric currents measured in the electrodes allow conclusions on the
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mentioned phase shift and the respective particles.

The effective mixing of samples is another process to be validated using a numerical
simulation. For that purpose, optimal phase shift between the top and bottom electrodes
is to be identified. We assume that a standing wave with a 180° phase shift would produce
eddies that can effectively mix two probes. This remains to be validated.

7.2.3 Product design

In the design of the LOC system, one essential piece missing is the control software.
Setting up a prototype would require the development of a code, which could control
electrode voltages. If the the actuator simulation could reach high enough efficiency to
predict the flow behavior simultaneously, flow control can become more reliable. Addi-
tionally, a wider range of analyses on the chip surface become feasible.

Process monitoring in microfluidics is often performed with optical methods measur-
ing the intensity of fluorescence from dye molecules. Our design makes optical access
difficult. Charge spectrometry, as discussed in the section above, can be an alternative.
Ion-sensitive field effect transistors (ISFETs) serve a similar purpose and are e.g. already
utilized in systems with limited optical accessibility. By measuring the pH inside the fluid
probes, chemical processes, such as a polymerase chain reaction (PCR) can be monitored.
Incorporating this technique into the chip surface is quite promising. Thus, the related
design capabilities are to be explored.

The system needs to be adapted to the samples investigated. While a large number
of different processes is possible, design limitations lie in the size, electric charge, and
vulnerability of the research objects. Measurements, carrier fluid, and electric excitation
have to be adapted to these conditions, ensuring precise control and non-destructive anal-
yses.

One major source of contamination, and thus technical problems in microfluidic sys-
tems, are the fluid interfaces. The presented design does neither include mechanisms to
reduce contamination, nor can be estimated to which extent this affects the functional
behavior.

An overall recommendation is the collaboration with possible users, in order to set
optimization constraints and to streamline development goals. Possibly, a simple setup
could be designed with quite large (and cheap) dimensions to transport only carrier fluid.
In further steps, solid, fluid, and biochemical samples can be added.
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7.3 Final remarks

Clearly, those questions in fundamental research and product design set the roadmap for
future investigations. Yet, the goals defined in the introduction have been met in this
study.

Analyzing existing EHD droplet models allowed us to investigate an electromigration
problem with strong electrolytes. The influence of electrolyte strength was confirmed
to be small, in the framework of droplet electromigration and -deformation. To the au-
thor’s knowledge, this is the first systematic study investigating the influence of electrolyte
strength on electrohydrodynamic problems in the tradition of the TM model. The results
indicate that, no matter what electrolyte strength is used for deriving the model, the
results remain valid – confirming an assumption which is widely used in the field. Ex-
periments showing electromigration of (uncharged) droplets in the electric field could be
confirmed. However, we note that it remains unclear what the correct interface proper-
ties in such a setting are. Future investigations shall give insights into the relationship
between interface properties and electromigration.

The pre-study of the electrokinetic actuator verified its functional principle and high-
lighted the importance of heat dissipation in strong-electrolyte microfluidic systems. This
effect is very similar to computer chips, especially for applications where miniaturization
plays an important role. Relatively homogeneous flow fields keep probes compact while
being transported. The relatively high pumping velocities predicted in this study are to
be handled with care. In a three-dimensional case, viscous effects in the third direction
are assumed to have a major impact. However, even a small precentage of the predicted
velocity seems sufficient to transport samples efficiently. Design limitations were defined
for the development and optimization of a first prototype. A systematic description of
the system achitecture was developed. As a result, the basis for reciprocal system im-
provement and design verification are established with the presented work.





List of symbols

□ here used as symbol for a general parameter -
□∗ parameter with unit -
□⋆ parameter appears with unit and dimensionless -
□± positive/negative ions in a binary electrolyte -
□⊥ normal (to the surface) -
□∥ parallel (to the surface) -
□equ reaction equilibrium -
□ref reference parameter -
□ex external phase -
□in internal phase -
J□K jump condition -
□̄ internal phase (chapter 4) -
□γ applied boundary conditions (chapter 5) -
□⃗ vector -
□i vector (contravariant) -
□i vector (covariant) -
⊗ tensor product -
⊙ elementwise matrix product -
∗ convolution operator -
∇⃗⋆ nabla operator / spatial gradient m−1

∇⃗· divergence operator m−1

∇⋆2 Laplacian m−2

∇⋆4 biharmonic operator m−4

⃗ P spectral nabla operator / spatial gradient -
⃗ P · spectral divergence operator -

P 2 spectral Laplacian -

P 4 spectral biharmonic operator -
α electrolyte strength -
bc± spectral boundary condition operator -
β dimensionless electric field strength -
c⋆ mean salt concentration m−3

c⋆i concentrations for each ion i m−3

c∗± ion concentrations in a binary electrolyte m−3
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C concentration in the Debye layer (chapter 4) -
C spectral concentration (chapter 5) -
γ apparent fluid-fluid interface -
Γ genuine fluid-fluid interface -
Γi
jk Christoffel symbols -
D⋆

± ion diffusivity m2 s−1

D⃗ displacement field A s m−2

Da Damköhler number -
D spectral differentiation operator -
δ dimensionless Debye length -
δ(x⃗− x⃗0) Dirac-delta sitribution -
∂⋆ partial derivative m−1

e∗0 elementary charge 1.6 · 10−19 A s

E⃗⋆ electric field V m−1

e∗ actuator efficiency m3 W−1 s−1

ϵ∗0 vacuum permittivity 8.9 · 10−12

ϵ∗ relative permittivity -
ε∗ dissipation rate Wm−2

ε∗η viscous dissipation rate Wm−2

ε∗ς Ohmic dissipation rate Wm−2

f⃗ (volume) force -
Fa∗ Faraday constant 9.6 · 104 A s mol−1

ζ⋆ ζ-potential V
g⃗∗ gravitational constant m2 s−1

gij metric tensor (covariant) -
gij metric tensor (contravariant) -√
g volume element -

η∗ dynamic viscosity Pa s
η∗fric friction coefficient kg s−1]
η∗mob mobility coefficient s kg−1

h⋆ actuator height m
Ha Hartmann number -
Hael Hartmann number (Saville model) -
H spectral Helmholtz operator -
ϑ polar coordinate -
θ⋆ Maxwell stress tensor Pa
Θ Maxwell stress tensor (Debye layer) -
I unity matrix -
ß imaginary unit -
j⃗⋆± ion flux Am−2

j⃗⋆conv convective ion flux Am−2

j⃗⋆diff diffusive ion flux Am−2

j⃗⋆elph electrophoretic ion flux Am−2

j⃗ ion flux (Debye layer) -
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κ surface curvature (dimensionless) -
κ adsorption coefficients -
kβα principal curvature at a surface point -
k∗B Boltzmann constant 1.4 · 10−23 kg m2 s−2 K−1

K∗
d/a,equ equilibrium constants [various units]

k∗d/a reaction rates [various units]
k∗d/a,equ reaction rates (equilibrium) [various units]
λ scalar parameter of the Helmholtz eq. -
ΛSA dimensionless number (Saville model) -
l± partition coefficients -
M viscosity ratio
µ∗ ion mobility m2 V−1 s−1

n⃗ surface normal vector
n∗ molarity mol l−1

ν∗ frequency Hz
N number of grid points -
ξ⋆ Newton stress tensor Pa
Ξ Newton stress tensor (Debye layer) -
O coordinate origin -
p⋆ hydrostatic (and osmotic pressure) Pa
P pressure in the Debye layer (chapter 4) -
P spectral pressure (chapter 5) -
P⃗ polarization density A s m−2

P generic surface point -
Pe Péclet number -
ϖ numerical threshold values -
ρ∗ fluid density kg m−3

ϱ characteristic constant of the C-BDF2 scheme
q⋆ charge density A s m−3

Q charge density in the Debye layer (chapter 4) -
Q spectral charge density (chapter 5) -
Re Reynolds number -
Reel electric Reynolds number -
R conductivity ratio -
R⋆

c/s reaction term Am−3

R∗ gas constant 8.31 J K−1 mol−1

S permittivity ratio
ς⋆ conductivity S m−1

σ⋆ total stress tensor Pa
σ⋆
Γ surface tension Nm−1

Σ total stress tensor (Debye layer) -
t⋆ time s
t∗C charge relaxation time s
t∗D diffusive time scale s
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t∗v convective time scale s
t∗η viscous time scale s
t∗Γ surface time scale s
T ∗
a ambient temperature 298 K
Tn Chebyshev polynomial of degree n -
T spectral transformation operator -
TF Fourier transformation operator -
TC Chebyshev transformation operator -
u⋆ surface velocity m s−1

v⋆ flow velocity m s−1

V flow velocity in the Debye layer (chapter 4) -
V spectral flow velocity (chapter 5) -
φ azimuthal coordinate -
ϕ⋆ el. potential V
ϕ⋆
G Galvani potential V

Φ el. potential (Debye layer) -
w∗ energy/weight function J
x⋆i coordinates (covariant) m
xi

⋆ coordinates (contravariant) m
X Debye layer coordinate (normal) -
ψ⋆ excess potential (chapter 2) m2 s−1

ψ⋆ streamfunction (chapters 4 & 5) V
Ψ el. potential in the Debye layer (chapter 4) -
Ψ spectral el. potential (chapter 5) -
Z valence -
ω bulk domain -
Ω Debye-layer domain -



Abbreviations

ACEO AC electroosmosis
ASIC application-specific integrated circuit
BDF backward differentiation formula
BDF2 backward differentiation formula of second order
BVP boundary value problem
C-BDF2 composite backward differentiation formula of second order
DL Debye layer
EDL electric double layer
EHD electrohydrodynamics
EK electrokinetics
EML electric mono layer
FPU fluid processing unit
FRAM fluid random access memory
IBVP initial boundary value problem
IRDS International Technology Roadmap for Devices and Systems
ITRS International Technology Roadmap for Semiconductors
LFA lateral flow assay
LOC lab-on-chip
MBSE model-based systems engineering
PDE partial differential equation
PGD product generation development
PNP Poisson-Nernst-Planck
POC point-of-care
TWEO traveling-wave electroosmosis
WRM weighted residuals methods
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APPENDIX A

The Stokes equation in curvilinear coordinates

A.1 The Stokes equation in general curvilinear coordi-
nates

The Stokes equation in general curvilinear coordinates reads

σij
,j = 0. (A.1)

The divergence of the total stress, i.e. the sum of Newton (hydrodynamic) stress ξij
and Maxwell (electrostatic) stress θij, vanishes. Applying the covariant derivative (..),j
delivers

∂jσ
ij + Γj

jkσ
ik + Γi

jkσ
jk = 0. (A.2)

With Aris (1989, p. 165), the second term symbol in the above relation can be replaced
as

Γj
jkσ

ik =

(
1√
g
∂k
√
g

)
σik =

(
1√
g
∂j
√
g

)
σij. (A.3)

Thus, eq. A.2 reads

∂jσ
ij +

(
1√
g
∂j
√
g

)
σij + Γi

jkσ
jk = 0. (A.4)

We further assume that the total-stress tensor can be split up into an isotropic part
(proportional to the metric gij) and a residual part as

σij = gijσ• + σ◀ij. (A.5)

We can rewrite the last term of eq. A.4 to find

∂jσ
ij +

(
1√
g
∂j
√
g

)
σij + Γi

jkg
jkσ• + Γi

jkσ
◀jk = 0. (A.6)

The forth term of this relation can be rewritten using Ricci’s lemma (Aris, 1989, p. 165)

Γi
jkg

jk =
−1√
g
∂l
(√

ggil
)
=

−1√
g
∂j
(√

ggij
)
, (A.7)
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such that eq. A.6 reads

∂jσ
ij +

(
1√
g
∂j
√
g

)
σij − 1√

g
∂j
(√

ggij
)
σ• + Γi

jkσ
◀jk = 0. (A.8)

A.2 Normal and tangential directions

As discussed in chapter 4, we choose the metric gij, such that g11 = 1 and g1α = 0 where
the Latin indices run through 1,2,3 and the Greek indices through 2,3. We use Ricci’s
lemma to find

0 = g11,j = ∂jg
11 + 2Γ1

jlg
1l = 2Γ1

1j ⇒ Γ1
1j = 0,

0 = g1α,1 = ∂1g
1α + Γ1

1lg
αl + Γα

1lg
1l = Γα

11 ⇒ Γα
11 = 0.

(A.9)

We also define the curvature for a surface defined by x1 as

κ :=
1√
g
∂1
√
g. (A.10)

The momentum equation A.8 can be rewritten to yield

∂1σ
i1 +

(
1√
g
∂1
√
g

)
σi1 +

1√
g
∂α
(√

gσiα
)
− 1√

g
∂j
(√

ggij
)
σ• + Γi

jkσ
◀jk = 0,

∂1σ
i1 + κσi1 +

1√
g
∂α
(√

gσiα
)
− 1√

g
∂j
(√

ggij
)
σ• + Γi

jkσ
◀jk = 0.

(A.11)

The normal direction of this equation is found by choosing i = 1. It yields

∂1σ
11 + κ

(
σ11 − σ•)+ 1√

g
∂α
(√

gσ1α
)
+ Γ1

αβσ
◀αβ = 0. (A.12)

Equivalently, by choosing i = β, eq. A.11 yields

∂1σ
1β + κσ1β +

1√
g
∂α
(√

gσαβ
)
− 1√

g
∂α
(√

ggαβ
)
σ• + Γβ

jkσ
◀jk = 0. (A.13)

Using the separation step A.5, the third term is modified and eq. A.13 reads

∂1σ
1β + κσ1β +

1√
g
∂α
(√

ggαβσ•)+ 1√
g
∂α
(√

gσ◀αβ
)
− 1√

g
∂α
(√

ggαβ
)
σ• + Γβ

jkσ
◀jk = 0,

∂1σ
1β + κσ1β + gαβ∂ασ

• +
1√
g
∂α
(√

gσ◀αβ
)
+ Γβ

jkσ
◀jk = 0,

∂1σ
1β + κσ1β + gαβ∂ασ

• +
1√
g
∂α
(√

gσ◀αβ
)
+ 2Γβ

1ασ
◀1α + Γβ

αγσ
◀αγ = 0.

(A.14)
With g1α = 0 and relation A.5, we know that σ◀1α = σ1α, and we find

∂1σ
1β + κσ1β + gαβ∂ασ

• + 2Γβ
1ασ

1α +
1√
g
∂α
(√

gσ◀αβ
)
+ Γβ

αγσ
◀αγ = 0. (A.15)

Finally, switching the indices α and β delivers

∂1σ
1α + κσ1α + gαβ∂βσ

• + 2Γα
1βσ

1β +
1√
g
∂β
(√

gσ◀αβ
)
+ Γα

βγσ
◀βγ = 0. (A.16)
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A.3 Hydrodynamic and electric stress tensors

In this section, the elements of the hydrodynamic (Newton) stress tensor ξij and the
electric (Maxwell) stress tensor θij are computed. We perform the analysis for the region
Ω and summarize the results for both regions and all relevant orders at the end of this
section. We start with the nondimensionalized Newton stress for an incompressible fluid

ξij = −gijp+ gik∂kv
j + gkj∂kv

i − vk∂kg
ij. (A.17)

Due to the shape of the metric with g11 = 1 and g1α = 0, we compute three elements of
the tensor separately and find

ξ11 = −p+ 2∂1v
1,

ξ1α = ∂1v
α + gαβ∂βv

1,

ξαβ = −gαβp+ gαγ∂γv
β + gβγ∂γv

α − vγ∂γg
αβ,

ξ• = −p,
ξ◀αβ = gαγ∂γv

β + gβγ∂γv
α − vγ∂γg

αβ.

(A.18)

The Maxwell stress for an electrostatic problem reads

θij = −1

2
gijgkl (∂kϕ) (∂lϕ) + gikgjl (∂kϕ) (∂lϕ) . (A.19)

The elements of this tensor are

θ11 =
1

2

(
(∂1ϕ)

2 − gαβ (∂αϕ) (∂βϕ)
)
,

θ1α = gαβ (∂1ϕ) (∂βϕ) ,

θαβ = −1

2
gαβ

(
(∂1ϕ)

2 + gγδ (∂γϕ) (∂δϕ)
)
+ gαγgβδ (∂γϕ) (∂δϕ)

θ• = −1

2

(
(∂1ϕ)

2 + gγδ (∂γϕ) (∂δϕ)
)
,

θ◀αβ = gαγgβδ (∂γϕ) (∂δϕ) .

(A.20)

An overview of all relevant stresses in the inner region can be found in table A.1. We
used the assumption that V 1 ∼ O(δ1), ϕ,Φ, vi, V α ∼ O(1), p ∼ O(δ−1), and P ∼ O(δ−2).
The coordinate stretch was also employed as ∂1 = δ−1∂X . We note that

Σαβ
(n) = gαβΣ•

(n), n ∈ {−2,−1} ,
Σ◀αβ

(n) = 0, n ∈ {−2,−1} .
(A.21)
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Newton stresses

Ξ11
(−2) = −P(−2) = Ξ•

(−2) Ξ1α
(−2) = 0 Ξαβ

(−2) = −gαβ(0)P(−2)

Ξ11
(−1) = −P(−1) = Ξ•

(−1) Ξ1α
(−1) = V α

(0)
′ Ξαβ

(−1) = −gαβ(0)P(−1) −Xgαβ(1)P(−2)

Maxwell stresses

Θ11
(−2) = 1

2
Φ′2

(0) = −Θ•
(−2) Θ1α

(−2) = 0 Θαβ
(−2) = −1

2
gαβ(0)Φ

′2
(0)

Θ11
(−1) = Φ′

(0)Φ
′
(1) = −Θ•

(−1) Θ1α
(−1) = gαβ(0)Φ

′
(0)∂βΦ(0) Θαβ

(−1) = −gαβ(0)Φ′
(0)Φ

′
(1) − 1

2
Xgαβ(1)Φ

′2
(0)

Table A.1: Newton and Maxwell stresses in the inner region of the external phase Ω

A.4 Relevant orders of the momentum equation

The relevant orders of the normal momentum equation A.12 read

δ−3 : 0 = Σ11
(−2)

′
,

δ−2 : 0 = Σ11
(−1)

′
+ κ(0)

(
Σ11

(−2) − Σ•
(−2)

)
,

δ−1 : 0 = Σ11
(0)

′
+ κ(0)

(
Σ11

(−1) − Σ•
(−1)

)
+Xκ(1)

(
Σ11

(−2) − Σ•
(−2)

)
+

1√
g
(0)

∂α

(√
g(0)Σ

1α
(−1)

)
.

(A.22)
Equivalently, from eq. A.16, we find for the tangential direction

δ−2 : 0 = Σ1α
(−1)

′
+ gαβ(0)∂βΣ

•
(−2),

δ−1 : 0 = Σ1α
(0)

′
+ gαβ(0)∂βΣ

•
(−1) +Xgαβ(1)∂βΣ

•
(−2) + κ(0)Σ

1α
(−1) + 2Γα

1β(0)Σ
1β
(−1).

(A.23)

A.5 Equations for weakly non-orthogonal coordinates

A coordinate system where the angle between the base vectors tangential to the surface
deviates from a right angle only by the order of the small parameter δ. This is a special
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case of the coordinate system used so far. The properties of this system are

ğ1α = 0 ∀α ∈ {2, 3} ,
ğ11 = 1, (equivalent to gij),
ğαβ ∼ O(δ), ∀α ̸= β,

Γ̆1
1j = Γ̆α

11 = 0, (equivalent to gij),

Γ̆i
jk ∼ O(δ) ∀ i ̸= j ̸= k,

Γ̆α
1α(0) = κ(0), (summation over α),

Γ̆α
1α(0) =

∂1ğαα(0)
2ğαα(0)

:=
1

2
k̆αα(0), (principal curvature, no summation over α),

κ(1) = 0.

(A.24)

The system of differential equations A.22 and A.41 simplifies for this geometry to (we are
here dropping the breve accents for the geometry parameters)

δ−3 : 0 = Σ11
(−2)

′
,

δ−2 : 0 = Σ11
(−1)

′
+ κ(0)

(
Σ11

(−2) − Σ•
(−2)

)
,

δ−1 : 0 = Σ11
(0)

′
+ κ(0)

(
Σ11

(−1) − Σ•
(−1)

)
+

1√
g
(0)

∂α

(√
g(0)Σ

1α
(−1)

)
,

(A.25)

and for the tangential direction

δ−2 : 0 = Σ1α
(−1)

′
+ gαα(0)∂αΣ

•
(−2),

δ−1 : 0 = Σ1α
(0)

′
+ gαα(0)∂αΣ

•
(−1) +Xgαβ(1)∂βΣ

•
(−2) +

(
κ(0) + kαα(0)

)
Σ1α

(−1).
(A.26)

A.6 Equations for spherical coordinates

These equations can further be simplified by introducing the spherical metric g̊ij which
is a special case of the weakly non-orthogonal metric that we used so far. The following
simplifications hold

g̊ij = 0 ∀i ̸= j,

g̊11 = 1, (equivalent to gij),
g̊22 = fun(x1),

g̊33 = fun(x1, x2),

Γ̊1
1j = Γ̊α

11 = 0, (equivalent to gij),

Γ̊i
jk = 0 ∀ i ̸= j ̸= k,

Γ̊α
1α(0) =

κ̊(0)
2

=
κ̊

2
, (no summation over α),

κ(n) = 0, ∀n ≥ 1.

(A.27)
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We note that for the spherical coordinates the two principal curvatures are equal and the
same as the mean curvature. Again, dropping the ring accents, the equations in normal
direction A.25 stay the same. For the tangential direction, the Christoffel symbol can be
replaced by a curvature formulation. Equations A.26 simplify to

δ−2 : 0 = Σ1α
(−1)

′
+ gαα(0)∂αΣ

•
(−2),

δ−1 : 0 = Σ1α
(0)

′
+ gαα(0)∂αΣ

•
(−1) +Xgαα(1)∂αΣ

•
(−2) + 2κ(0)Σ

1α
(−1).

(A.28)

A.7 Charge form

The stress form of the momentum equations A.22 and A.41 can be formulated with respect
to the charge density Q using the Poisson equation for the electric potential

δ2
1√
g
∂i
(√

ggij∂jϕ
)
+ q = 0. (A.29)

The two leading orders of this equation read

Φ′′
(0) +Q(0) = 0,

Φ′′
(1) + κ(0)Φ

′
(0) +Q(1) = 0.

(A.30)

As we are especially interested in theO(δ−1)-equation in tangential direction, we formulate
the stresses

Ξ1α
(0) = V α

(1)
′,

Θ1α
(0) = gαα(0)

(
Φ′

(0)∂αΦ(1) + Φ′
(1)∂αΦ(0)

)
+Xgαα(1)Φ

′
(0)∂αΦ(0).

(A.31)

We need the three derivatives for the Newton stresses

Ξ1α
(0)

′
= V α

(1)
′′,

∂αΞ
•
(−2) = −∂αP(−2),

∂αΞ
•
(−1) = −∂αP(−1),

(A.32)

and for the Maxwell stresses

Θ1α
(0)

′
= gαα(0)

(
Φ′′

(0)∂αΦ(1) + Φ′
(0)∂αΦ

′
(1) + Φ′′

(1)∂αΦ(0) + Φ′
(1)∂αΦ

′
(0)

)
+ gαα(1)Φ

′
(0)∂αΦ(0) +Xgαα(1)

(
Φ′′

(0)∂αΦ(0) + Φ′
(0)∂αΦ

′
(0)

)
,

∂αΘ
•
(−1) = −

(
Φ′

(1)∂αΦ
′
(0) + Φ′

(0)∂αΦ
′
(1)

)
,

∂αΘ
•
(−2) = −Φ′

(0)∂αΦ
′
(0).

(A.33)
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Thus, we find for eq. A.28

0 = Ξ1α
(0)

′
+ 2κ(0)Ξ

1α
(−1) + gαα(0)∂αΞ

•
(−1) +Xgαα(1)∂αΞ

•
(−2)

+Θ1α
(0)

′
+ 2κ(0)Θ

1α
(−1) + gαα(0)∂αΘ

•
(−1) +Xgαα(1)∂αΘ

•
(−2),

0 = V α
(1)

′′ + 2κ(0)V
α
(0)

′ − gαα(0)∂αP(−1) −Xgαα(1)∂αP(−2)

+ gαα(0)

(
Φ′′

(0)∂αΦ(1) +������:∗
Φ′

(0)∂αΦ
′
(1) + Φ′′

(1)∂αΦ(0) +������:∗∗
Φ′

(1)∂αΦ
′
(0)

)
+ gαα(1)Φ

′
(0)∂αΦ(0) +Xgαα(1)

(
Φ′′

(0)∂αΦ(0) +������:∗ ∗ ∗
Φ′

(0)∂αΦ
′
(0)

)
+ 2κ(0)g

αα
(0)Φ

′
(0)∂αΦ(0) − gαα(0)

(
������:∗∗
Φ′

(1)∂αΦ
′
(0) +������:∗

Φ′
(0)∂αΦ

′
(1)

)
−

���������:∗ ∗ ∗
Xgαα(1)Φ

′
(0)∂αΦ

′
(0) ,

0 = V α
(1)

′′ + 2κ(0)V
α
(0)

′ − gαα(0)∂αP(−1) −Xgαα(1)∂αP(−2)

+ gαα(0)
(
Φ′′

(0)∂αΦ(1) + Φ′′
(1)∂αΦ(0)

)
+ gαα(1)Φ

′
(0)∂αΦ(0) +Xgαα(1)Φ

′′
(0)∂αΦ(0) + 2κ(0)g

αα
(0)Φ

′
(0)∂αΦ(0).

(A.34)
We plug in the Poisson equation A.30 and find

0 = V α
(1)

′′ + 2κ(0)V
α
(0)

′ − gαα(0)∂αP(−1) −Xgαα(1)∂αP(−2)

− gαα(0)
(
Q(0)∂αΦ(1) +Q(1)∂αΦ(0)

)
+ gαα(1)Φ

′
(0)∂αΦ(0) −Xgαα(1)Q(0)∂αΦ(0) + κ(0)g

αα
(0)Φ

′
(0)∂αΦ(0).

(A.35)
For a sphere, we find that

∂1g
αα = −κgαα (A.36)

which reads at leading order

gαα(1) = −κ(0)gαα(0) . (A.37)

Thus, equation A.35 reads

0 = V α
(1)

′′ + 2κ(0)V
α
(0)

′ − gαα(0)∂αP(−1) −Xgαα(1)∂αP(−2)

− gαα(0)
(
Q(0)∂αΦ(1) +Q(1)∂αΦ(0)

)
−Xgαα(1)Q(0)∂αΦ(0).

(A.38)

A.8 Integration of the Maxwell shear stress at O(1)

We integrate the Maxwell shear stress∫ ∞

−∞
Θ1α

(0)
′
dX

=
[
gαα(0)

(
������Φ′

(0)∂αΦ(1) + Φ′
(1)∂αΦ(0)

)
+(((((((((
Xgαα(1)Φ

′
(0)∂αΦ(0)

]∞
−∞

.

(A.39)

The remaining term is equivalent to the J0-proportional term in equation 5.95 by Mori
and Young (2018).
We now integrate the term which is neglected in the momentum balance by Mori and
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Young (2018), equation 5.87∫ ∞

−∞
−Xgαα(1)Q(0)∂αΦ(0)dX

=gαα(1)∂αΦ(0)

∫ ∞

−∞
XΨ′′dX

=gαα(1)∂αΦ(0)

(
[XΨ′]

∞
−∞ −

∫ ∞

−∞
Ψ′dX

)
=− κ(0)g

αα
(0)∂αΦ(0)

[
���XΨ′ −Ψ

]∞
−∞

=κ(0)g
αα
(0)∂αΦ(0) [Ψ]∞−∞ .

(A.40)

This term cancels out with the term proportional to κ0 in equation 5.95 by Mori and
Young (2018). Note that the term −Xgαα(1)∂αP(−2) vanishes as ∂αP(−2) = 0.

A.9 Charge form before the asymptotic expansion

We start with equation A.16 and plug in the stresses from relations A.18 and A.20. After
that, we use the Poisson equation A.29 to find the charge form. Splitting up the total
stress into Newton and Maxwell stresses in A.16 delivers

∂1ξ
1α + κξ1α + gαβ∂βξ

• + 2Γα
1βξ

1β +
1√
g
∂β
(√

gξ◀αβ
)
+ Γα

βγσ
◀βγ

+∂1θ
1α + κθ1α + gαβ∂βθ

• + 2Γα
1βθ

1β +
1√
g
∂β
(√

gθ◀αβ
)
+ Γα

βγθ
◀βγ = 0.

(A.41)

We know that the ◀-terms do not contribute to the equations of O(δ−2) and O(δ−1) after
the expansion. Thus, we need the stresses

ξ1α = ∂1v
α + gαβ∂βv

1,

ξ• = −p,
θ1α = gαβ (∂1ϕ) (∂βϕ) ,

θ• = −1

2

(
(∂1ϕ)

2 + gγδ (∂γϕ) (∂δϕ)
)
.

(A.42)

The first four terms of the hydrodynamic part read

∂1ξ
1α + κξ1α + gαβ∂βξ

• + 2Γα
1βξ

1β

=∂11v
α + ∂1

(
gαβ∂βv

1
)
+ κ

(
∂1v

α + gαβ∂βv
1
)
− gαβ∂βp+ 2Γα

1β

(
∂1v

β + gβγ∂γv
1
)
.

(A.43)

For a spherical particle, this formulation simplifies to

∂11v
α + ∂1

(
gαα∂αv

1
)
+ κ

(
∂1v

α + gαα∂αv
1
)
− gαα∂αp+ 2Γα

1α

(
∂1v

α + gαα∂αv
1
)

=∂11v
α + ∂1

(
gαα∂αv

1
)
+ κ

(
∂1v

α + gαα∂αv
1
)
− gαα∂αp+ κ

(
∂1v

α + gαα∂αv
1
)

=∂11v
α + ∂1

(
gαα∂αv

1
)
+ 2κ

(
∂1v

α + gαα∂αv
1
)
− gαα∂αp.

(A.44)
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Equivalently, the first four terms of the electric part read

∂1θ
1α + κθ1α + gαβ∂βθ

• + 2Γα
1βθ

1β

=∂1
(
gαβ (∂1ϕ) (∂βϕ)

)
+ κgαβ (∂1ϕ) (∂βϕ)−

1

2
gαβ∂β

(
(∂1ϕ)

2 + gγδ (∂γϕ) (∂δϕ)
)

+ 2Γα
1βg

βγ (∂1ϕ) (∂γϕ) .

(A.45)

For a spherical particle, this formulation simplifies to

∂1 (g
αα (∂1ϕ) (∂αϕ)) + κgαα (∂1ϕ) (∂αϕ)−

1

2
gαα∂α

(
(∂1ϕ)

2 + gββ (∂βϕ) (∂βϕ)
)

+ 2Γα
1αg

αα (∂1ϕ) (∂αϕ)

=∂1 (g
αα (∂1ϕ) (∂αϕ)) + 2κgαα (∂1ϕ) (∂αϕ)−

1

2
gαα∂α

(
(∂1ϕ)

2 + gββ (∂βϕ) (∂βϕ)
)

=(∂11ϕ) (g
αα∂αϕ) + ∂1 (g

αα∂αϕ) (∂1ϕ) + 2κgαα (∂1ϕ) (∂αϕ)−
1

2
gαα∂α

(
(∂1ϕ)

2 + gββ (∂βϕ) (∂βϕ)
)
.

(A.46)
The Poisson equation A.29 can be rewritten as

δ2∂11ϕ+ κ∂1ϕ+ δ2
1√
g
∂α
(√

ggαβ∂βϕ
)
+ q, (A.47)

or for a sphere as

∂11ϕ = −δ−2q − δ−1κ∂1ϕ− 1√
g
∂α (

√
ggαα∂αϕ) . (A.48)

We can now replace the second x1-derivative in the first term of A.46 to find(
−δ−2q − κ∂1ϕ− 1√

g
∂α (

√
ggαα∂αϕ)

)
(gαα∂αϕ) + ∂1 (g

αα∂αϕ) (∂1ϕ)

+ 2κgαα (∂1ϕ) (∂αϕ)−
1

2
gαα∂α

(
(∂1ϕ)

2 + gββ (∂βϕ) (∂βϕ)
)

=− δ−2qgαα∂αϕ+ ∂1 (g
αα∂αϕ) (∂1ϕ)−

1

2
gαα∂α (∂1ϕ)

2

+ κgαα (∂1ϕ) (∂αϕ)

− 1√
g
∂α (

√
ggαα∂αϕ) (g

αα∂αϕ)−
1

2
gαα∂α

(
gββ (∂βϕ) (∂βϕ)

)
.

(A.49)

After the expansion of the parameters discussed above, the terms

−δ−2qgαα∂αϕ+ ∂1 (g
αα∂αϕ) (∂1ϕ)−

1

2
gαα∂α (∂1ϕ)

2 (A.50)

will appear at order O(δ−2), the term

κgαα (∂1ϕ) (∂αϕ) (A.51)

will appear at order O(δ−1), and the terms

− 1√
g
∂α (

√
ggαα∂αϕ) (g

αα∂αϕ)−
1

2
gαα∂α

(
gββ (∂βϕ) (∂βϕ)

)
(A.52)

will appear at order O(1).
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A.10 Equivalence of stress and charge form

We define the Maxwell stress using the electric field E⃗ with

Ei = ∂iϕ and Ei = gij∂jϕ (A.53)

as
θij = EiEj − 1

2
gijEkEk. (A.54)

The divergence reads

θij,j = Ei
,jE

j + EiEj
,j −

1

2
gij,jE

kEk −
1

2
gijEk

,jEk −
1

2
gijEkEk,j. (A.55)

We know that derivatives of the metric vanish

gij,j = gij,j = 0. (A.56)

Furthermore, the electric field is irrotational, i.e.

Ek,j = ∂jEk + Γl
kjEl = ∂jkϕ+ Γl

kjEl = Ej,k,

Ek
,j =

(
gklEl

)
,j
= gklEl,j = gklEj,l.

(A.57)

Now, we can rewrite equation A.55 and find

θij,j = Ei
,jE

j + EiEj
,j −

1

2
gijgklEj,lEk −

1

2
gijEkEj,k

= Ei
,jE

j + EiEj
,j −

1

2

(
gijEj

)
,l

(
gklEk

)
− 1

2
Ek
(
gijEj

)
,k

= Ei
,jE

j + EiEj
,j −

1

2
Ei

,lE
l − 1

2
EkEi

,k

= ��
��Ei

,jE
j + EiEj

,j
�����������

−1

2
Ei

,jE
j − 1

2
EjEi

,j

= EiEj
,j = −δ−2qEi

(A.58)

We compare this to equation A.2 by plugging in the electric field

θij,j

=∂jθ
ij + Γj

jkθ
ik + Γi

jkθ
jk

=∂j

(
EiEj − 1

2
gijEkEk

)
+ Γj

jk

(
EiEk − 1

2
gikElEl

)
+ Γi

jk

(
EjEk − 1

2
gjkElEl

)
=∂jE

iEj + Ei∂jE
j − 1

2
∂jg

ijEkEk −
1

2
gij∂jE

kEk −
1

2
gijEk∂jEk

+ Γj
jk

(
EiEk − 1

2
gikElEl

)
+ Γi

jk

(
EjEk − 1

2
gjkElEl

)
.

(A.59)
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We summarize the derivatives

∂jE
i = Ei

,j − Γi
jkE

k,

∂jE
j = Ej

,j − Γj
jkE

k,

∂jE
k = Ej

,k − Γk
jlE

l,

∂jEk = Ej,k + Γl
jkEl,

∂jg
ij = gij,j − Γj

jkg
ik − Γi

jkg
jk,

(A.60)

and find

=Ei
,jE

j + EiEj
,j −

1

2
gij,jE

kEk −
1

2
gijEk

,jEk −
1

2
gijEkEk,j

− Γi
jkE

kEj − Γj
jkE

kEi +
(
−Γj

jkg
ik − Γi

jkg
jk
)(

−1

2
ElEl

)
+

1

2
gijΓk

jlE
lEk −

1

2
gijΓl

jkElE
k

+ Γj
jk

(
EiEk − 1

2
gikElEl

)
+ Γi

jk

(
EjEk − 1

2
gjkElEl

)
=Ei

,jE
j + EiEj

,j −
1

2
gijEk

,jEk −
1

2
gijEkEk,j

�������:∗
−Γi

jkE
kEj −�����:∗∗

Γj
jkE

kEi +�������:∗ ∗ ∗1

2
Γj
jkg

ikElEl +��������:(4∗)
1

2
Γi
jkg

jkElEl

+�������:(5∗)1

2
gijΓk

jlE
lEk ��������:(5∗)

−1

2
gijΓl

jkElE
k

+�����:∗∗
Γj
jkE

iEk

��������:∗ ∗ ∗
−1

2
Γj
jkg

ikElEl +������:∗
Γi
jkE

jEk

��������:(4∗)
−1

2
Γi
jkg

jkElEl

=Ei
,jE

j + EiEj
,j −

1

2
gijEk

,jEk −
1

2
gijEkEk,j.

(A.61)





APPENDIX B

The strong vs. weak electrolyte limit for
moderate Péclet numbers

In the field of electrohydrodynamics, the explicit treatment of the reaction terms

R± =
Da

α
(kds− kac+c−) ,

Rs = −Da (kds− kac+c−)
(B.1)

in the charge and salt transport equations is avoided. The set of nondimensional equations
(cp. equations 4.10)

Pe±

(
∂tc± +

(
∇⃗ · v⃗

)
c±

)
+ ∇⃗ · j⃗± =

Da

α
(kds− kac+c−) ,

Pe
(
∂ts+

(
∇⃗ · v⃗

)
s
)
= −Da (kds− kac+c−) ,

−δ2∇2ϕ = q.

∇⃗ · σ = 0⃗,

∇⃗ · v⃗ = 0,

(B.2)

can be simplified with two fundamentally strategies, i.e. assuming weak or strong elec-
trolytic solutions. For weak electrolytes, the ratio of ion and salt concentrations is assumed
to be small α ≪ 1, and for strong electrolytes we assume α ≫ 1.

In this appendix, we compare these two approaches. For that purpose, we first take
one of the two above limits and use the assumption of small Debye layers δ ≪ 1 thereafter.
The Péclet number is in both cases assumed to be of order unity Pe ∼ O(1). The difference
of the charge transport equations delivers on both cases an equation for the charge density
q that is independent of the reaction term and reads (compare equation B.3)

Pe
(
∂tq +

(
∇⃗ · v⃗

)
q
)
+ ∇⃗ · j⃗q = 0. (B.3)
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We will also need the charge fluxes as derived in equations 4.12

j⃗± = D±

(
−∇⃗c± ∓ c±∇⃗ϕ

)
,

j⃗q = −∇⃗ (D+c+ −D−c−)− (D+c+ +D−c−) ∇⃗ϕ.
(B.4)

Finally, we only consider one phase with the reaction equilibrium constant K = 1. How-
ever, the following discussion can be easily copied for a two-phase problem. We also focus
on the equations governing the charge and distributions and the electric potential, as the
other equations transform equivalently.

The weak electrolyte limit α ≪ 1
The assumption on α delivers for the
charge transport in B.2 that

kds− kac+c− = 0, (B.5)

which is equivalent to

Ks− c+c− = 0. (B.6)

The salt transport then reads

∂ts+
(
∇⃗ · v⃗

)
s = 0. (B.7)

Together with the assumption on uniform
salt distribution far away from the surface,
we find that s = 1. Thus, the algebraic
equation B.6 simplifies to

c+c− = 1. (B.8)

The second equation for the charges is the
transport relation for the charge density
B.3.

The strong electrolyte limit α ≫ 1
The assumption that α is large delivers
from B.2

Pe±

(
∂tc± +

(
∇⃗ · v⃗

)
c±

)
+ ∇⃗ · j⃗± = 0.

(B.9)
We note that transport relation for the
charge density B.3 also holds in this case.

The thin-Debye-layer limit δ ≪ 1
With the assumption of a thin small Debye layer, the Poisson equation delivers in the
outer region q(0) = q(1) = 0. Thus, the ion distributions are equal at the two leading
orders c+(0,1) = c−(0,1) =: c(0,1). Equation B.3 reads

∇⃗ · j⃗q(0,1) = ∇⃗ ·
(
−∇⃗

(
D+c+(0,1) −D−c−(0,1)

)
−
(
D+c+(0,1) +D−c−(0,1)

)
∇⃗ϕ
)

= ∇⃗ ·
(
−D∆∇⃗c(0,1) − c(0,1)∇⃗ϕ

)
.

(B.10)

In the absence of charge sources / sinks and outer charge gradients, this transport equation
delivers c(0,1) = c±(0,1) = 1 for both weak, and strong electrolytes. In the next step, we
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consider the equations inside the Debye layer with the rescaled coordinate x1 = δX. The
equivalent of relation B.3 still holds for both electrolyte strengths and reads

Pe(0)

(
∂tQ+

(
∇⃗ · V⃗

)
Q
)
+ ∇⃗ · J⃗Q = 0, (B.11)

with
Q ∼ Q(0) + δQ(1) + . . . ,

C± ∼ C±(0) + δC±(1) + . . . ,

V ∼ V(0) + δV(1) + . . . ,

J⃗Q ∼ J⃗Q(−1) + δJ⃗Q(0) + . . . .

(B.12)

Thus, the two leading orders of this equation read

∂X J⃗Q(−1) = 0,

∂X J⃗Q(0) = 0.
(B.13)

The second equation for the charges is discussed separately

The weak electrolyte limit α ≪ 1
We find from equation B.8 that for the
leading two orders the relation

C+C− = 1 (B.14)

holds, which can be expanded in the or-
ders

C+(0)C−(0) = 1,

C+(1)C−(0) + C+(0)C−(1) = 0.
(B.15)

The strong electrolyte limit α ≫ 1
We find from equation B.9 that for the
leading two orders the relation

∂XJ
1
± = 0 (B.16)

holds. An integration with respect to X
and the boundary condition lim

X→∞
J1
± = j1γ

delivers

j1γ = J1
±,

j1γ = −∂XC± ∓ C±∂XΦ.
(B.17)

The solutions to the two leading orders
of this equation are discussed in sections
4.2.1 and 4.2.2. They read

C±(0) = e∓Ψ,

C±(1) = ∓
(
Φ(1) ± j1γ(0)E±

)
e∓Ψ.

(B.18)

We note that the solutions B.18 fulfill the leading order of B.15. However, when plugging
them into the next order, we find an estimate of the difference between both descriptions

residual = C+(1)C−(0) + C+(0)C−(1)

= −
(
Φ(1) + j1γ(0)E+

)
+
(
Φ(1) − j1γ(0)E−

)
= −j1γ(0) (E+ + E−) .

(B.19)

As a result, the solutions for the electric charges C±(1) and the potential Φ(1) of O(δ) differ
between the two models. The effective jump conditions of normal and shear stress are
also different.





APPENDIX C

UML diagram of the spectral solver

The algorithm illustrated in the diagram 5.2 is implemented in Python as displayed in the
UML diagram C.1. As discussed in section 5.3 in detail, it is split up in pre-processing,
the solution, and a post-processing step.

The pre-processing is performed in the "actuator" class. Parameter assignment, mesh-
ing, and inversion of time-independent system matrices are contained here.

The time integration is performed by the class "solution_methods" which is split up
in sub-classes for the solution of the electric PNP problem (Gummel’s iteration and influ-
ence matrix method as discussed in sections 5.3.5 and 5.3.4) and the flow problem for the
stream function (cp. sections 5.3.6). In another sub-class the nonlinear Coulomb-force
terms of the charge balances are computed.

The "analysis"-class contains all post-processing steps (cp. section 5.4), such as the
computation of dissipation and efficiency. Additionally, the termination mechanism is
contained in this class.
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Figure C.1: UML diagram of the solver displaying selected classes and sub-classes.



APPENDIX D

Patent graphics

This chapter delivers a collection of graphics that were already published in the patent
applications Marthaler and Class (2022a, 2022b). Those illustrate the physical and func-
tional structures of the lab system. They are sorted by their structural level (compare
Figure 6.2).
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Figure D.1: Working principle of the actuator (Marthaler & Class, 2022b).

Figure D.2: One-dimensional actuator of three electrodes with a 120° phase shift
(Marthaler & Class, 2022b).
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Figure D.3: Two-dimensional actuator consisting of 18 electrodes in the top level which
is in contact with the fluid. The bottom graphics illustrate the wiring of the electrodes in
the three sublevels (from sublevel 1 on the left to sublevel 3 on the right). At the third
sublevel, three different wires with separate voltages are connected. In sublevel 1 and 2,
these three phases are connected to six electrodes each (Marthaler & Class, 2022b).
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Figure D.4: Hexagonal actuator that allows three independent flow directions as an al-
ternative to the one way actuator in figures D.2 and D.3 (Marthaler & Class, 2022b).

Figure D.5: Clustering of single actuators to synchronized pixels. These pixels consist
of actuators that cannot be controlled individually but as a set. The wires at sublevel
3 (compare Figure D.3) form a serpentine pattern connecting all actuators in the pixel
(Marthaler & Class, 2022b).
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Figure D.6: Control unit for several pixels (synchronized actuators). Between the flow
areas, control units are arranged distributing the control information to the single pixels.
One control unit is typically connected to 8 pixels. The input information to the control
unit is provided by a data BUS (Marthaler & Class, 2022b).

Figure D.7: Chip structure consisting of several pixels arranged in a matrix array. Each
square box presents one element as displayed in Figure D.6, consisting of a control unit
and eight pixels. Attached to the chip are several reservoirs. Liquids can be exchanged
via channels between the reservoirs and the chip (Marthaler & Class, 2022b).
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Figure D.8: Lab with the chip surface in the center. A liquid channel en-circulating the
chip surface provides continuous availability of carrier fluid. The memory elements on the
right are used to store probes. the in- and outlets at the top and the bottom allow for
exchange of probes or waste fluids. On the right, add-on elements, such as centrifuges,
heaters etc. can be attached (Marthaler & Class, 2022b).
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Figure D.9: Sample transport on the chip surface. In order to avoid unwanted recirculation
zones on the chip surface, circular elements of carrier fluid are moved with constant speed.
Thus, mass continuity is fulfilled. The top row of three images shows the sample (black
dot) and the respective fluid flow along the dashed line. The image below shows the
respective path of the sample. The bottom four pictures illustrate the sample transport
near the boundary. The Y-form allows separate transport of sample and carrier fluid into
two channels (Marthaler & Class, 2022b).
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Graphics legend
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216 liquid machine
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