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We study a long topological Josephson junction with a ferromagnetic strip between two superconductors.
The low-energy theory exhibits a nonlocal in time and space interaction between chiral Majorana fermions,
mediated by the magnonic excitations in the ferromagnet. While short-ranged interactions turn out to be
irrelevant by power counting, we show that sufficiently strong and long-ranged interactions may induce a
Z2-symmetry breaking. This spontaneous breaking leads to a tilting of the magnetization perpendicular to the
Majorana propagation direction and the opening of a fermionic gap (Majorana mass). It is analogous to the
Peierls instability in the commensurate Fröhlich model and reflects the nontrivial interplay between Majorana
modes and magnetization dynamics. Within a Gaussian fluctuation analysis, we estimate critical values for
the temporal and spatial nonlocality of the interaction, beyond which the symmetry breaking is stable at zero
temperature—despite the effective one dimensionality of the model. We conclude that nonlocality, i.e., the
stiffness of the magnetization in space and time, stabilizes the symmetry breaking. In the stabilized regime,
we expect the current-phase relation to exhibit an experimentally accessible discontinuous jump. At nonzero
temperatures, as usual in the 1D Ising model, the long-range order is destroyed by solitonic excitations, which in
our case carry each a Majorana zero mode. In order to estimate the correlation length, we investigate the solitons
within a self-consistent mean-field approach.
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I. INTRODUCTION

The surface of a three-dimensional strong topological
insulator (TI) has been predicted to host zero- and one-
dimensional Majorana modes when gapped by a supercon-
ducting or magnetic covering [1,2]. A geometry of particular
significance in this context is the topological Josephson junc-
tion, comprising two superconductor-covered areas of the TI
surface, separated by an uncovered or ferromagnetic strip.

There exists a variety of papers revolving around such
systems, examining, for example, the role of the Majo-
rana and other bound states concerning the current-phase
relation of the Josephson current [3–6]. In the case of a
ferromagnet being deposited in the junction, possibilities to
manipulate the properties of the supercurrent and quasipar-
ticle states by means of the magnetization are of interest
as well [3,7–9].

When studying the magnetization’s effect on these elec-
tronic properties, one should keep in mind, however, that the
magnetization within a ferromagnet is not perfectly rigid but
exhibits space and time dynamics, which can be described by
the Landau-Lifshitz-Gilbert (LLG) equation [10–12]. In this
context it was predicted that due to the spin-orbit coupling a
significant torque can be exerted on the magnetization in both
ordinary [13] and topological Josephson junctions [14]. This
can lead to precession and reorientation of the magnetization
direction.

In particular, in Ref. [14] a strong dependence of the
Josephson coupling on the magnetization was obtained, which
leads to an additional effective field in the LLG equations.

This, in turn, allowed controlling the magnetization by the
Josephson current in the voltage driven regime.

Here, in contrast, we consider the zero-bias case and
focus on the coupling between the magnons and the one-
dimensional Majorana modes counterpropagating along the
junction. We consider both the fermionic picture, in which the
magnons are integrated out, and the complementary bosonic
picture, in which the fermions are integrated out.

In particular, we obtain a low-energy effective action de-
scribing the coupling between the Majorana fermionic modes
and the bosonic magnons, resembling a “Majorana variant”
of the Fröhlich model and exhibiting the characteristic Peierls
instability in the mean-field approximation [15]. In the present
case, this corresponds to a tilting of the magnetization and
the opening of a Majorana mass gap. An analogous broken
symmetry has recently been predicted for the relative phase in
a Josephson junction comprised of 2D time-reversal invariant
superconductors [16].

Following the fluctuation analysis of the BCS super-
conductivity [17,18], we employ a similar technique and
determine a parameter regime in which, within a Gaussian
approximation for the fluctuations, the mean-field result is sta-
ble at zero temperature. The relevant parameter stabilizing the
broken symmetry can be identified as the nonlocality of the
effective four-Majorana interaction, or, equivalently, the time-
or/and space rigidity of the magnons. The long-range order in
the system at T > 0 can then be expected to be destroyed by
solitonic excitations, for which the self-consistency problem
is examined.
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FIG. 1. Considered geometry of a superconductor-ferromagnet-
superconductor (SMS) junction of width W and length L on the
surface of a 3D strong topological insulator (TI) with a phase dif-
ference ϕ between the superconductors.

II. THE MODEL

Consider a topological superconductor-ferromagnet-
superconductor (SMS) junction as depicted in Fig. 1. The
s-wave superconductors introduce superconducting gaps in
the TI surface in the regions they cover due to the proximity
effect [19] and we suppose that the gaps are equal in
magnitude �0 on both sides of the junction but differ by
a relative phase ϕ. The ferromagnetic insulator causes an
effective exchange field �heff in the underlying surface of the
TI, which couples to the electrons’ spin and is proportional
to the ferromagnet’s magnetization �heff(r) = α �M(r) with a
proportionality constant α. Here, 3D vectors are denoted by
an arrow above the symbol, 2D vectors are written in bold.

The Hamiltonian describing this setup is given by H =
1
2

∫
dr �†h� where � = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T and the BdG

Hamiltonian reads

h = − ivFτzσ · ∇ − μτz + α �M(r) · �σ
+ �0(y)( cos ϕ(r)τx + sin ϕ(r)τy). (2.1)

As described above �0(y) = �0 	(|y| − W/2), ϕ(r) =
ϕ(x)/2 [	(y − W/2) − 	( − (y + W/2))], and �M(r) =
MS �m(r)	(W/2 − |y|) with vF being the Fermi velocity and
μ the chemical potential. The saturation magnetization is
denoted by MS and | �m| = 1.

The quasiparticle dispersion for the case of a ferro-
magnet with spatially homogeneous magnetization in z
direction �m(r) = �ez deposited on a 3D TI reads εTI-M(k) =√

v2
Fk2 + α2M2

S ± μ, which is gapped when αMS ≡ M > μ,
i.e., when the Fermi level lies within the mass gap of the Dirac
spectrum induced by the exchange field. As shown in Ref. [2],
a chiral 1D Majorana mode emerges at the interface between
the regions with superconducting and magnetic gaps. In the
geometry of Fig. 1 two counterpropagating chiral Majorana
modes would emerge near each interface. The latter hybridize
with an amplitude ∝ cos(ϕ/2) and, thus, decouple at ϕ = π .

Here we mostly focus on the opposite regime of M < μ. In
this case no gap is induced for |y| < W/2. For a narrow junc-
tion, W � vF/�0, and with the phase difference additionally
fixed to be ϕ = π , the situation considered by Fu and Kane
in their seminal paper [1] is obtained. The junction becomes a
nonchiral Majorana wire with two counter-propagating Majo-
rana modes spread across its whole width. A deviation of the

phase difference from a value of π , ε = π − ϕ hybridizes the
two Majorana modes, opening up a Majorana mass gap.

Allowing the magnetization direction to slightly deviate
from the z axis, we find that the my component plays the
same role as ε in hybridizing the two Majorana modes with
some coupling constant λ. In the Appendix, the corresponding
low-energy effective Hamiltonian is derived. Since we are
interested in the interplay between Majorana modes and the
magnetization, we fix from now on ε = 0. Below we also
consider what happens when we allow for small deviations
from ϕ = π .

We note that for �m = �ez, there is a symmetry present
described by the symmetry operator F = σzIyK, where Iy de-
notes y inversion and K complex conjugation. This symmetry
is broken as soon as �m deviates from the z axis.

For the micromagnetic description of the magnetization
dynamics, we introduce a large easy axis anisotropy B in
z-direction, such that the x and y components of the magneti-
zation can reasonably assumed to be small �m = (mx, my, 1 −
(m2

x + m2
y )/2)T . Furthermore, we take the junction’s width to

be small compared to the magnetic coherence length in order
for the magnetization direction to only depend on the x coor-
dinate. The magnetic energy shall also include an exchange
coupling A, such that the corresponding real-time Lagrangian
reads

L =MS

2γ
(ṁxmy − mxṁy)

− A((∂xmx )2 + (∂xmy)2) − B
(
m2

x + m2
y

)
, (2.2)

where the first term corresponds to a Berry phase, ensuring
| �m| = 1 at all times. The associated equation of motion is the
dissipationless LLG equation with gyromagnetic ratio γ . Note
that, due to the restriction of �m to the unit sphere, there is
only one independent degree of freedom in the dynamics of
the magnetization, leading to the equal-time commutator of
the free quantized bosonic fields mx and my being nonzero
[mα (x), mβ (x′)] = i γ

MS
εαβδ(x − x′) [20]. In the absence of

coupling to the fermions, the dispersion of the magnonic
excitations is given by ωq = 2γ

MS
(Aq2 + B).

Altogether, the effective Euclidean action reads

S =
∫

dτ dx

[
1

2

(
γR

γL

)T(
∂τ − iv∂x iλmy

−iλmy ∂τ + iv∂x

)(
γR

γL

)

+
(

mx

my

)T
(

−A∂2
x + B i MS

2γ
∂τ

−i MS
2γ

∂τ −A∂2
x + B

)(
mx

my

)]
. (2.3)

At λ = 0 the action of the magnetization dynamics corre-
sponds to a charged scalar with U (1) symmetry. This U (1)
invariance reflects the spin rotation invariance in the x −
y plane in spin space and prevents spontaneous symme-
try breaking. However, the coupling to the fermions, which
are governed by spin-orbit interaction, breaks this symmetry
down to Z2, where ±my describe degenerate configurations.
Hence, the coupling to fermions may give rise to spontaneous
symmetry breaking in the ground state.

Note that, although this action has been motivated by a
specific system, our considerations below are generalizable to
other instances of one-dimensional fermionic modes coupled
to a bosonic field, such as the behavior discussed in Ref. [16].
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III. ANALYSIS OF THE MAJORANA-MAGNON
INTERACTION

A. Fermionic picture

Since, in contrast to the free Majoranas, the spectrum of the
magnetic degrees of freedom is gapped, it seems most natural
to integrate out the bosons. The magnetic part of the action is
diagonalized by introducing the complex scalar field φ with

mx =
√

γ

2MS
(φ + φ∗) and my = −i

√
γ

2MS
(φ − φ∗). One then

straightforwardly obtains the effective four-fermion interac-
tion

Sint
eff = − λ2

4

×
∫

dXdX ′ γL(X )γR(X )Gm(X, X ′)γR(X ′)γL(X ′),

(3.1)

where X = (x, τ ) and G−1
m = MS

2γ
∂τ − A∂2

x + B. This interac-
tion is nonlocal in both space and time with correlation lengths
ξx,f ∼ √

A/B and ξτ,f ∼ MS/γ B respectively. For fixed B, the
correlation length in space is thus governed by the exchange
coupling or “stiffness” of the magnetization, while the cor-
relation length in time is proportional to the inverse of the
magnonic excitation gap 1/ωq=0. If the corresponding cor-
relation lengths are sufficiently small, a gradient expansion
of Gm in (3.1) is justified. There, it has to be noted that
the zeroth-order term, involving no derivatives of the four
Majorana fields taken at the same point in space and time,
vanishes due to Fermi statistics. The lowest-order nonvan-
ishing contributions to the interaction are therefore of the
form γR(∂XiγR)γL(∂Xj γL) (i, j = 1, 2) and can be shown to be
highly irrelevant in the RG sense [21], leaving the Majorana
modes gapless and the magnetic degrees of freedom in a
disordered phase with vanishingly small correlation length. It
is thus clear that in a parameter regime, where A and MS/γ

are small enough for a gradient expansion to be applicable, the
interaction has no qualitative effects on the system. Symmetry
breaking is a strong-coupling phenomenon, at least for any
finite-range interaction. In order to see whether increasing the
values of A and/or MS/γ leads to a cross over to a nontrivial
phase, it turns out to be advantageous to work in the bosonic
picture instead.

B. Peierls instability of the effective bosonic action

Let us assume for the moment that the systems breaks the
Z2 symmetry. Then fermions are gapped and can be integrated
out. Integrating out the fermionic degrees of freedom in (2.3)
leaves us with the effective bosonic action

Seff = Sm − 1
2 tr logG−1, (3.2)

where

G−1 =
(

∂τ − iv∂x iλmy

−iλmy ∂τ + iv∂x

)
(3.3)

and Sm is the purely magnetic part of (2.3). We assume for
the moment that it is permissible to perform this mean-field
analysis. Below we will analyze fluctuations that go beyond
the mean-field approach and discuss the stability of the as-

FIG. 2. The double well potential arising for my in mean-field
theory is shown in blue. The red arrows represent the two correspond-
ing symmetry-broken ground-state configurations of the magnetic
field, tilted away from the z axis with my acquiring a finite vacuum
expectation value 〈my〉 = ±m̃0.

sumption of long-range order. For constant my(x, τ ) = m̃0

and within mean-field theory, this action has a saddle point
δS/δmy = 0 at ±m̃0 �= 0 satisfying the BCS-like gap equation

2B

λ2
=
∫ �

0

dk

2π

tanh(
√

v2k2 + λ2m̃2
0/2T )√

v2k2 + λ2m̃2
0

, (3.4)

where we took the limit L → ∞ and introduced a UV mo-
mentum cut-off �.

Thus, at low temperatures,

λm̃0 ≡ �̃ = 2v�e−4πvB/λ2
(3.5)

and the corresponding ground-state energy in terms of my

exhibits the characteristic double-well shape EG/L = [B +
λ2

4πv
(log | λmy

2v�
| − 1

2 )]m2
y + E0/L (see Fig. 2), where E0 is the

contribution from my = 0. This spontaneous symmetry break-
ing at the mean-field level, signifying an instability of the
easy axis with my acquiring a finite ground-state expectation
value, can be understood as follows: a positive energy cost,
∝ Bm2

y , of magnetization deviating from the easy axis direc-

tion is balanced by the energy gain, ∝ λ2

4πv
(log | λmy

2v�
| − 1

2 ) m2
y ,

emerging due to the opening of the fermionic gap. It is the
Majorana fermion analog to the Peierls instability of the
one-dimensional Fröhlich model [15,22] in the commensu-
rate regime, where the order parameter is real. A real order
parameter furthermore means that the broken symmetry is dis-
crete, such that the Mermin-Wagner theorem does not apply.
Nevertheless, even if the mean-field solution turns out to be
stable, with the system being one dimensional any emerging
long-range order has to be expected to be prohibited by the
formation of domain walls at T > 0 in the thermodynamic
limit of large L. This is due to the fact that the energetic cost
of creating domain walls, with my switching sign along the
junction and interpolating between the two minima, is in 1D
always outweighed by the ensuing gain in entropy, as is well
known from the Ising model and Peierls’ argument [23,24].
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However, drawing the analogy between the Ising model and
our system further, at any finite size L the coherence length ξ ,
given by the average distance between two domain walls, can
be expected to be exponentially large at low temperatures ξ ∼
b eEDW/T , where b is the characteristic width of a domain wall
and EDW its energy, suggesting significantly large stretches of
an ordered magnetic phase with hybridization between γR and
γL to be realized. This is in contrast to the results we obtained
in the gradient expansion of the fermionic picture.

From this, one can suspect the existence of a crossover or a
phase transition from a phase with small A and MS/γ , where
the gradient expansion is valid and any mean-field considera-
tions in the bosonic picture are rendered unusable due to large
fluctuations, to a phase with large A or large MS/γ , where
the fluctuations are suppressed and the mean-field solution is
stabilized such that domain walls are a meaningful concept
with the interaction in the fermionic picture being very long
ranged.

Qualitative arguments for analogous mechanisms have al-
ready been given in earlier publications. In Refs. [25] and
[26] devoted to the Peierls instability, the validity of mean-
field theory is assumed based on slow response times of the
phononic modes. In Ref. [27], the authors expect a large
temporal stiffness of the bosons mediating the interaction
in a Tomonaga-Luttinger liquid to stabilize the symmetry-
broken phase (they call this regime “adiabatic limit”). In the
following, we aim to verify and quantify these qualitative
considerations on the level of a Gaussian approximation for
the fluctuations around the mean-field solution.

C. Fluctuation analysis

Next, we examine the conjectured transition when varying
A and MS/γ by analyzing the way in which Gaussian fluctu-
ations around a mean-field solution at zero-temperature affect
the gap equation, as was done for the BCS theory in Refs.
[17] and [18]. Our reasoning is motivated by the following
logic: Since symmetry breaking in the Ising universality class
is allowed in principle at T = 0, we assume a finite value of
the order parameter. Then, we study Gaussian fluctuations. If
they are small, the assumption of order is justified and con-
sistent. If fluctuations are large, they likely destroy long-range
order. Then, the above mean-field approach is not justified.
While formally this is an uncontrolled approximation to a
strong-coupling problem, it gives insights into the parameter
regime where canted Ising order is allowed. It gives the order
of magnitude of the more microscopic parameters where this
order prevails. We should add that performing a numerical
density matrix renormalization group calculation for a model
in the same universality class does indeed yield the discussed
symmetry breaking [28].

To this end, we expand the action (3.2) around some
assumed minimum my = m0, which is not necessarily the
mean-field minimum m̃0 from above, up to second order in the

fluctuations (δmx, δmy ) around it, my(x, τ ) = m0 + δmy(x, τ )
and mx(x, τ ) = δmx(x, τ ), to find

Seff = T

L

∑
q,ωm

(
δmx

δmy

)T

D−1
q,ωm

(
δmx

δmy

)

+ L

T
Bm2

0 − 1

2
tr logG−1

0 , (3.6)

where

D−1
q,ωm

=
(

Aq2 + B MS
2γ

ωm

−MS
2γ

ωm Aq2 + B + �(q, ωm)

)
, (3.7)

and

G−1
0 = G−1

∣∣
my (x,τ )=m0

. (3.8)

Further

�(q, ωm) = λ2

4

T

L

∑
k,εn

tr2×2[G0(k, εn)τ̂y

G0(k + q, εn + ωm)τ̂y] (3.9)

with ωm and εn being the bosonic and fermionic Matsubara
frequencies respectively. The linear terms in δmy only contain
δmy(q = 0, ωm = 0) contributions and can therefore safely be
omitted when determining m0.

From the partition function Z = ∫ D(δmx, δmy) e−Seff one
obtains the ground-state energy

EG

L
=
[

B + λ2

4πv

(
log

λm0

2v�
− 1

2

)]
m2

0

+ 1

2

T

L

∑
q,ωm

log det2×2
(
2D−1

q,ωm

)∣∣∣∣
T →0

+ E0

L
, (3.10)

and the corresponding gap equation reads

1

L

dEG

d (�2)
= 1

4πv
log

�

�̃
+ χ = 0, (3.11)

where � ≡ λm0 and χ denotes the contribution due to the
fluctuations

χ = 1

2

∫
dq dω

(2π )2

d
d (�2 ) det2×2D−1

q,ω

det2×2D−1
q,ω

∣∣∣∣∣
T →0

. (3.12)

Obviously, without fluctuations, the mean-field solution � =
�̃ is recovered. In order to take the fluctuations into account,
Eq. (3.12) and, thus, �(q, ω) need to be evaluated. Following
Ref. [29], it can be seen that

�(q, ω) = λ2

4πv

[
log

�

2v�
+

√
1 + r2

r
Arsinh(r)

]
, (3.13)

with r =
√

v2q2 + ω2/2� being the radial coordinate in the
( vq

2�
, ω

2�
) plane. It follows

χ = λ2

4πv

4

π

∫ ∞

0
dr
∫ π/2

0
dϕ

(
Ã �2

�̃2 r2 cos2 ϕ + 1
)

Arsinh(r)√
1+r2(

Ã �2

�̃2 r2 cos2 ϕ + 1
)(

4πvB
λ2 Ã �2

�̃2 r2 cos2 ϕ + log �

�̃
+

√
1+r2

r Arsinh(r)
)

+ M̃ �2

�̃2 r2 sin2 ϕ
(3.14)
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FIG. 3. (a) Regions of order (II) with broken Ising symmetry and magnetization canting, perpendicular to the propagation direction, and
disorder (I), where fluctuations destroy the ordered state. Shown by color are the solutions �/�̃ to the gap equation (3.11) for 4πvB/λ2 = 10.
� = 0 corresponds to no solution existing. If Ã = 0, a solution �/�̃ �= 0 is obtained for M̃ � 222 and conversely a value of Ã � 22 is needed
for a nonzero solution if M̃ = 0. (b) The excitation gap for fluctuations, i.e., the “Higgs gap”, in units of 2�̃ depending on M̃, where for
illustrative purposes we set � = �̃ and thus suppose we are deep in the ordered phase.

with the dimensionless parameters Ã = 4�̃2

v2B A and M̃ =
4πv�̃2

λ2B
M2

S
γ 2 . The solution to the gap equation relative to the

mean-field solution �/�̃, which corresponds to the minimum
of the ground-state energy, thus depends on the values of Ã,
M̃, and the “BCS parameter” 4πvB

λ2 . If no solution to Eq. (3.11)
exists, i.e., if χ , which is always positive, is too large to
be compensated by the logarithm in (3.11), the minimum of
the ground-state energy is shifted back to � = 0 due to the
fluctuations.

Note that for A = MS/γ = 0 the integral (3.14) is loga-
rithmically UV divergent, complying with the results in BCS
theory in Ref. [17]. This divergence is remedied as soon
as either A or MS/γ take on a finite value, in accordance
with our conjecture that either of these parameters allow the
fluctuations to be controlled. The numerical solutions to the
gap equation for different combinations of the dimensionless
parameters can be seen in Fig. 3(a). We find that indeed for
small values of Ã and M̃ the fluctuations do not allow for
any notion of spontaneous symmetry breaking and mean-
field theory fails completely, while above a certain threshold
(even if either of the parameters vanishes), the minima of the
ground-state energy persist and the only effect is a lowering
of the Majorana mass gap � to values as low as �/�̃ ∼ 0.6.

This threshold can be interpreted as the transition region,
separating the two regimes (I) without broken symmetry, with
short magnetic coherence length and free massless Majorana
modes and (II) with broken magnetic symmetry and spin
canting, leading to a finite ground-state expectation value
〈λmy〉 = �, establishing a finite Majorana mass gap and a
magnetic coherence length, which is exponentially large at
low temperatures.

In Fig. 3(a), the quantum phase transition between (I) and
(II) seems to be of first order with the order parameter dis-
continuously jumping to zero at the boundary. In Ref. [21],
an apparently related phase transition in Majorana chains
with minimally nonlocal interactions has been found to be

described by the tricritial Ising conformal field theory with
central charge c = 7/10. Most likely, the Gaussian approxi-
mation employed here cannot be trusted in the vicinity of the
phase transition, but only provides evidence for the existence
of the two distinct phases. In addition, it offers an estimate on
the parameter regime where the transition takes place.

An additional insight into the problem is provided by ana-
lyzing the relation between the Higgs frequency of the order
parameter and the fermionic gap. It is well known that in the
case of phonon-induced superconductivity, the Higgs mass,
which is the frequency of the Higgs mode at q = 0, is given
by ω(q = 0) = 2�̃ and thus lies exactly on the edge of the
quasiparticle continuum [30,31]. In contrast, in Peierls sys-
tems, ω(q = 0) � �̃. This result has been obtained in Refs.
[25] and [26] and was also discussed in detail in Ref. [27].
In our case, the Higgs mass is determined by detD−1

q=0,iω = 0.
For � = �̃, MS/γ = 0, it follows to be ω(q = 0) = 2�̃. A
nonzero value of MS/γ now reduces the Higgs mass, as illus-
trated in Fig. 3(b), in accordance with the above cited works
on Peierls systems. This departure from the continuum leads
to the Higgs mode being underdamped. Increasing the value
of A additionally shifts the spectral weight of the fluctuations
to lower energies.

IV. DISCONTINUITY IN THE CURRENT-PHASE
RELATION

Until now we have assumed the phase difference between
the superconductors to be fixed to ϕ = π . In the Appendix, it
is shown that allowing ε = π − ϕ to take on a small, nonzero
value leads to the following hybridization between the Majo-
rana modes,

Hhybr. = −iλ
∫

dx

(
my + vF

2MW
ε

)
γLγR. (4.1)
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FIG. 4. (a) Allowing for the phase difference ϕ between the superconductors to deviate from π by ε = π − ϕ lifts the ground-state
degeneracy. The mean-field value of my is positive (negative) for positive (negative) ε with a first order transition at ε = 0. (b) At mean-field
level, this leads to a discontinuity of magnitude �IJ = 8eBLm̃0 in the current-phase relation, which could be probed experimentally.

The ground-state energy then is given by

EG

L
= E0

L
+ Bm2

y (4.2)

+ λ2

4πv

(
log

∣∣∣∣∣λ
(
my + vF

2MW ε
)

2v�

∣∣∣∣∣− 1

2

)(
my + vF

2MW
ε

)2

.

As sketched in Fig. 4(a), a deviation of ϕ from π thus lifts
the degeneracy of the ground state and, in the mean-field
approximation, my takes on a value m̃0(ε > 0) > 0 and vice
versa. The transition at ε = 0 is of first order.

The Josephson current is given by IJ = 2e ∂F/∂ϕ, where F
is the free energy. At zero temperature, the current carried by
the Majorana modes near ϕ = π consequently reads

IMaj
J

L
= −2e

L

∂EG

∂ε
= 4eBm̃0(ε). (4.3)

In particular, it exhibits a discontinuity at ε = 0. In the param-
eter regime (II), this discontinuous jump persists when taking
Gaussian fluctuations of my around the mean-field value into
account. As it is an IR effect, the discontinuity will further-
more not be compensated by considering the higher-energy
scattering states in addition to the Majorana modes. A sketch
of the expected current-phase relation is provided in Fig. 4(b).

Measuring the Josephson current in the phase-biased junc-
tion and examining it for a discontinuous jump thus provides a
possibility to experimentally confirm the Ising-like properties
we predict.

In order to estimate the magnitude of the jump compared
to the critical Josephson current, let us for simplicity assume
that K ≈ 1, where K is the parameter defined in the Appendix.
This is the case if for example

√
μ2 − M2W/vF ≈ n · 2π, n ∈

N. The ratio between the jump �IJ = 8eBLm̃0(ε = 0) and
the characteristic current scale I0 = eL�2

0/v (as defined in
Ref. [6]) is then given by

�IJ

I0
= 4

π

λ

�0

4πvB

λ2
e−4πvB/λ2

, (4.4)

where λ/�0 = MW/vF and we took the cut-off to be v� =
�0. Now, suppose 4πvB/λ2 = 10, as we did above. The
Fermi velocity of the topological insulator Bi2Se3 has been
experimentally determined to be h̄vF ≈ 0.3 eV nm with a
Fermi energy of μ ≈ 0.3 eV [32,33]. Assuming the junction
to have a width of W ∼ 1 µm, it follows that a value of
�IJ/I0 ∼ 0.1 could be achieved with a magnetization energy
of M ≈ 0.1 eV, which seems experimentally feasible.

V. MAGNETIC SOLITONS

In the parameter regime (II) of Fig. 3 we argued, in analogy
with the Ising model, the magnetic coherence length to be
given by ξ ∼ b eEDW/T with EDW and b the energy and width of
a domain wall between regions with 〈my〉 = ±m0 respectively.
Such domain walls, which are responsible for the lack of
long-range order at T > 0, correspond in mean-field theory
to saddle points of the effective action (3.2) with nonconstant
my. For static but spatially varying configurations my = m0(x),
which extremize the effective action, it holds

(− A∂2
x + B

)
m0(x) = iλ

4

∑
j

u j (x)v∗
j (x) tanh(Ej/2T )

(5.1)

with (u j (x), v j (x)) being the solutions to the BdG equation in
(γR, γL) space with eigenenergies Ej ,( −iv∂x iλm0(x)

−iλm0(x) iv∂x

)(
u j (x)
v j (x)

)
= Ej

(
u j (x)
v j (x)

)
. (5.2)

A single domain wall, or soliton, in the system is then given
by the configuration m0(x) self-consistently solving these two
equations and asymptotically approaching the mean-field so-
lutions m0(x → ±∞) = ±m̃0 or m0(x → ±∞) = ∓m̃0 with
a single switch of the sign at some value of x, which we take
to be 0 without loss of generality.

In this case the BdG solutions generally consist of a con-
tinuous spectrum for energies |Ej | > λm̃0, one zero-energy
Majorana bound state (MBS) as well as other Andreev bound

245411-6



MAGNETIZATION DYNAMICS AND PEIERLS … PHYSICAL REVIEW B 107, 245411 (2023)

states (ABS) with discrete nonzero in-gap energies localized
near x = 0, where the number of ABS is dependent on the
width of the soliton, while the MBS is always present at a
zero crossing [34,35].

For the case A = 0, in the present model with the fluc-
tuations thus dampened by a sufficiently large M̃, there is
an extensive literature [36–40] on the exact one-soliton and
multi-soliton solutions to this and generalized problems. The
solutions are obtained by employing methods of inverse scat-
tering theory. The one-soliton solution is shown to read

m0(x) = ±m̃0 tanh(x/b) (5.3)

with the width of the domain wall given by b = v
λm̃0

. This
soliton only carries a single bound state, namely a MBS. The
energy EDW is given by the difference between the mean-field
energy in presence of a soliton EMF[m0(x)] and the ground-
state energy EG = EMF[m̃0] and follows to be [38]

EDW = EMF[m0(x)] − EMF[m̃0] = λm̃0

2π
, (5.4)

wherein the zero-energy state also contributes by lowering the
continuum density of states through its appearance.

It is to be expected that a small, nonzero value of A will in
a first approximation only alter the length scale of the transi-
tion, making it wider and at some point leading to additional
bound states to arise, while the overall shape of the soliton is
preserved.

Finding a uniformly moving soliton-solution is nontrivial
and cannot be achieved by a simple “boost” of the stationary
solution, as only the fermionic part of the action is Lorentz
invariant, while the magnetic action possesses Galilean in-
variance in the following sense: if (mx(x, t ), my(x, t ))T is a
solution to the (real-time) equations of motion of the free
magnetization field, so is(

cos φu(x, t ) − sin φu(x, t )
sin φu(x, t ) cos φu(x, t )

)(
mx(x − ut )
my(x − ut )

)
, (5.5)

where φu(x, t ) = uMS
4γ A (x − u

2 t ) (this is analogous to the
Galilean invariance of the 1D nonlinear Schrödinger equa-
tion). The coupling between mx and my, present due to MS/γ

if either of the magnetization field components is time de-
pendent, therefore necessitates a moving soliton to include
rotation of the magnetization around the z axis.

However, as is the case deep in the ordered phase of the
transverse-field Ising model, the dynamical soliton mass can
be expected to be very large and the inclusion of only station-
ary solutions to the statistical argument thus to provide a good
approximation.

We leave further analysis of the cases with nonzero A and
nonstationary solitons for possible future work.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the coupling of the dynamic
magnetization of a ferromagnet deposited in a topological
Josephson junction to the low-energy Majorana modes in the
surface states of such a structure. We saw that the component
of the magnetization field perpendicular to the junction acts
as a Majorana mass term, hybridizing the right- and left-
moving modes. In a mean-field treatment, this component of
the magnetization field takes on a finite ground-state value,
signifying an instability of the magnetic easy axis and an
ensuing opening of a Majorana mass gap. This is the Majorana
analog to the commensurate case of the Peierls instability in
the 1D Fröhlich model. A fluctuation analysis of the associ-
ated gap equation at zero temperature provides evidence for
the existence of a cross over from a parameter regime where
the instability does not persist and the interaction between
magnetic and fermionic degrees of freedom is irrelevant, to
a regime where the mean-field value is diminished but sta-
bilized due to either a large spatial or temporal stiffness of
the magnetization dynamics. A possible experimental signa-
ture of this broken symmetry is a discontinuous jump in the
corresponding current-phase relation. In analogy to the Ising
model at low but finite temperatures, we argued that there are
exponentially large stretches of ordered phase, which are sep-
arated by domain walls, each carrying a MBS. The energy and
width of these domain walls allow an estimate of the magnetic
coherence length. We furthermore provided the corresponding
self-consistency problem in the case of stationary solitons, for
which the solution is known if the exchange coupling can be
neglected.

These considerations are not exclusive to the suggested
system but generalizable to other models of coupled fermions
and bosons in one spatial dimension. For a more thorough
picture on the existence and nature of the phase transition,
however, more sophisticated methods than the here employed
fluctuation analysis will be needed.
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APPENDIX: DERIVING THE LOW-ENERGY BDG HAMILTONIAN FOR THE SMS JUNCTION

Starting from the Hamiltonian given in (2.1), by adopting a semiclassical description of the magnetization and labeling the
fermionic states by their momentum −i∂x → q, which is valid if �m and ϕ only vary slowly with x, a low-energy effective
Hamiltonian for the fermionic degrees of freedom in the considered SMS junction can be derived analogously to what was done
in Ref. [1]. To this end, we consider the limit where the width of the junction is much smaller than the superconducting coherence
length W � vF/�0, such that there exist only two branches of in-gap bound states (related by particle-hole symmetry). Splitting
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(2.1) into two parts, h = h(0) + h(1), with h(0) = h|q=mx=my=0,ϕ=π and treating h(1) as a small perturbation, one then finds zero-
energy solutions h(0)ζa=1,2 = 0, onto which h can be projected to define the effective BdG Hamiltonian. It is convenient to choose
them such that they obey Cζa = ζa with the charge conjugation operator C = τyσyK, where K denotes complex conjugation. They
can be written as

ζ±(y) ≡ ζ1 ± iζ2(y) ∝

⎡
⎢⎢⎢⎣−√

μ + M

⎛
⎜⎜⎜⎝

− cos μχ (y)
vF

sin μχ (y)
vF

sin μχ (y)
vF

cos μχ (y)
vF

⎞
⎟⎟⎟⎠± i

√
μ − M

⎛
⎜⎜⎜⎝

sin μχ (y)
vF

cos μχ (y)
vF

cos μχ (y)
vF

− sin μχ (y)
vF

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

× exp

[
±i
√

μ2 − M2(y − χ (y))/vF −
∫ |y|

0
dỹ �0(ỹ)/vF

]
. (A1)

The normalization is chosen such that 〈ζa|ζa〉 = ∫∞
−∞ dy |ζa(y)|2 = 1/L holds, from which |C1/2|2 � �0

2vFL
1

μ±MK follows. Addi-

tionally we defined χ (y) = (y − sgn(y)W
2 )	(|y| − W

2 ). Small values of q, mx, my, and π − ϕ are now included by calculating
the matrix elements

〈ζa|�0(π − ϕ)	(y − W/2)τy|ζb〉 =
√

μ2 − M2

μ2 − M2K2

�0(π − ϕ)

2L
τ̃ ab

y ,

〈ζa|vFqτzσx|ζb〉 = vq

L
τ̃ ab

x ,

〈ζa|M	(W/2 − |y|)mxσx|ζb〉 = 〈ζa|M	(W/2 − |y|)m2
x + m2

y

2
σz|ζb〉 = 0,

〈ζa|M	(W/2 − |y|)myσy|ζb〉 =
√

μ2 − M2

μ2 − M2K2

�0MW

vFL
myτ̃

ab
y , (A2)

where the Pauli matrices τ̃x,y,z act on (ζ1, ζ2), the effective velocity reads v =
√

μ2−M2

μ2−M2K2
�2

0

�2
0+μ2 KvF and the dimensionless

constant K = cos(
√

μ2 − M2W/vF) + �0√
μ2−M2

sin(
√

μ2 − M2W/vF) has been defined. With that, the low-energy effective BdG

Hamiltonian

hab
eff = 〈ζa|h|ζb〉 = −iv∂x τ̃

ab
x /L +

√
μ2 − M2

μ2 − M2K2
�0

(
π − ϕ

2
+ MW

vF
my

)
τ̃ ab

y /L (A3)

is obtained. We find the component of the magnetization perpendicular to the junction my to play a similar role as the deviation of
the phase difference from π . In contrast to my, the x component of the magnetization mx does not directly couple to the fermionic
degrees of freedom.

Finally, by fixing ϕ = π and introducing the right- and left-moving Majorana fields γR/L(x) = 1√
L

∑
q γ R/L

q eiqx = γ
†
R/L(x)

with γ R/L
q = ∫ dr (ξR/L

q (r))†�(r) = (γ R/L
−q )†, where ξR/L

q (r) = 1√
2
(ζ1(y) ± ζ2(y))eiqx, we obtain

Heff =
∫

dx

[
− iv

2
(γR∂xγR − γL∂xγL) − iλmyγLγR

]
(A4)

with the coupling constant λ = M
√

μ2−M2

μ2−M2K2
�0W
vF

.
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