
J
H
E
P
0
6
(
2
0
2
3
)
0
6
3

Published for SISSA by Springer

Received: February 9, 2023
Revised: March 28, 2023

Accepted: April 20, 2023
Published: June 13, 2023

Analytic approximations of 2 → 2 processes with
massive internal particles

Joshua Davies,a Go Mishima,b Kay Schönwaldc and Matthias Steinhauserd
aDepartment of Physics and Astronomy, University of Sussex,
Brighton BN1 9QH, U.K.

bDepartment of Physics, Tohoku University,
Aobaku Aramaki Aza-aoba 6-3, 980-8578 Sendai, Japan

cPhysik-Institut, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland

dInstitut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede Straße 1, 76128 Karlsruhe, Germany
E-mail: J.O.Davies@sussex.ac.uk, go.mishima.d2@tohoku.ac.jp,
kay.schoenwald@physik.uzh.ch, matthias.steinhauser@kit.edu

Abstract: We consider two-loop corrections to 2 → 2 scattering processes with massive
particles in the final state and massive particles in the loop. We discuss the combination
of analytic expansions in the high-energy limit and for small Mandelstam variable t. For
the example of double Higgs boson production we show that the whole phase space can be
covered and time-consuming numerical integrations can be avoided.

Keywords: Higgs Production, Higgs Properties, Top Quark

ArXiv ePrint: 2302.01356

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2023)063

mailto:J.O.Davies@sussex.ac.uk
mailto:go.mishima.d2@tohoku.ac.jp
mailto:kay.schoenwald@physik.uzh.ch
mailto:matthias.steinhauser@kit.edu
https://arxiv.org/abs/2302.01356
https://doi.org/10.1007/JHEP06(2023)063


J
H
E
P
0
6
(
2
0
2
3
)
0
6
3

Contents

1 Introduction 1

2 Analytic expansions 3
2.1 High-energy expansion 4
2.2 Expansion for t→ 0 5

3 Application to Higgs boson pair production 8
3.1 Expansion of a one-loop master integral in mH 10
3.2 Expansion of a one-loop master integral in t 10
3.3 Expansion of the one-loop form factors 11
3.4 Two-loop form factors 15
3.5 Virtual NLO corrections 16

4 Conclusions 20

1 Introduction

In many higher-order calculations of cross sections the virtual corrections are the bot-
tleneck, particularly if they involve massive particles propagating in loops. A prominent
example of such a process is Higgs boson pair production, where the real-radiation contri-
bution with exact dependence on the top quark mass [1] was available long before the corre-
sponding virtual corrections [2–4]. One of the reasons is certainly the enormous expressions
which are present in intermediate stages of the calculation, and the complicated integrals
which in general depend on several invariants. Often a purely numerical approach for the
evaluation of the loop integrals is necessary, which comes with the well-known disadvan-
tages of long run-times and reduced flexibility in the choice of values for parameters. In this
paper we suggest an alternative approach for the computation of virtual loop integrals for
2→ 2 processes. It is based on the combination expansions in different kinematic regions.

We consider the scattering of two (massless) partons in the initial state with momenta
q1 and q2 into two massive particles in the final state with momenta q3 and q4. It is
convenient to introduce the Mandelstam variables as

s = (q1 + q2)2 , t = (q1 + q3)2 , u = (q1 + q4)2 , (1.1)

where all momenta are incoming. Furthermore we have

q2
1 = q2

2 = 0 , q2
3 = m2

X , q2
4 = m2

Y , (1.2)
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where in general mX and mY are allowed to be different and the transverse momentum of
the final-state particles is given by

p2
T = u t−m2

Xm
2
Y

s
. (1.3)

For definiteness we will denote the internal mass by mt, the top quark mass.
The computation of massive two-loop integrals with the kinematics described above

is a difficult problem. Purely numerical approaches have been developed and applied to
the processes gg → HH, gg → ZZ, gg → ZH, gg → W+W− (see, e.g., refs. [2–7]).
Usually these computations require a large amount of CPU time for a single phase space
point. Furthermore, it is often necessary to fix numerical values for the top quark and Higgs
boson masses at an early stage of the calculation. Thus a change of value or renormalization
scheme makes it necessary to repeat a large part of the calculation.

In order to avoid the disadvantages of a purely numerical calculation a number of ana-
lytic approximation methods have been developed. Initially they have usually been applied
to Higgs boson pair production and afterwards also to more complicated processes. Among
the approximations for gg → HH are large top quark mass expansions [8–10], high-energy
expansions [11, 12], small transverse-momentum expansions [13] and expansions around the
top quark threshold [14]. In refs. [15, 16] a method has been developed where the two-loop
amplitude is expanded for small Higgs boson mass with a subsequent numerical evaluation.

Since such approximations are only valid in a restricted phase space it is tempting to
combine different approaches. A first example of such a combination has been presented
in ref. [17] where the exact numerical results from refs. [2, 3] were combined with the high-
energy expansion of refs. [11, 12]. The CPU-time expensive calculations were only necessary
for relatively small values of the Higgs transverse momentum, say below pT ≈ 200GeV, and
the fast evaluation of the analytic high-energy expansions could be used for the remaining
phase space.

A similar approach to the one discussed in this paper has been discussed in refs. [18, 19]
where the analytic small pT and high-energy expansions are “merged”. For both expansions
Padé approximants are constructed, however, only to low order ([1/1] and [6/6], respec-
tively). The Padé approximants are constructed from the analytic expression and kept
fixed, thus there is no estimation of the uncertainty due to this approach. In our approach
high-order Padé approximants are constructed numerically in the high-energy region and
the approach of ref. [20] is used to determine an uncertainty estimate. Furthermore, in-
stead of an expansion in pT we perform an expansion first in the external Higgs boson
mass, followed by an expansion in the (massless) Mandelstam variable t. Although both
approaches are an expansion about the forward kinematics (where q3 = −q1), they differ
in the terms retained in the final result; whereas refs. [18, 19] contain terms proportional
to pT and mH in a homogenous manner, we keep all terms up to fixed maximum powers
of mH and t. Note that in [18, 19] only terms up to m2

H have been used in the high-energy
approximation. This introduces a systematic uncertainty of up to a few percent, as we
will discuss below. In this work we will include quartic corrections which reduces this
uncertainty below the percent level.
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In this paper we review the high-energy expansion method developed in refs. [12, 17,
20]. An improvement in the method allows us to obtain significantly deeper expansions in
m2
t /s, m2

t /t and m2
t /u which includes terms up to about m120

t (see also ref. [21]) (instead
of m32

t as in [12, 20]). The deeper expansions combined with the construction of Padé
approximants extends the range of validity to even smaller values of

√
s and pT . We will

provide details regarding this approach in section 2.1.
In section 2.2 we will describe our approach for the expansion around t → 0. It is

based on the observation that for this limit a simple Taylor expansion can be performed,
rather than a complicated asymptotic expansion. We can thus reduce the calculation
to integrals which only depend on m2

t /s. These integrals are obtained with the help of
differential equations using the “expand and match” approach developed in refs. [22, 23].
The boundary conditions are obtained from the large-mt limit, in which the integrals are
simple and can be computed analytically.

In section 3 we will use the process gg → HH to illustrate the methods of sections 2.1
and 2.2. However, the approach is more general and with straightforward modifications it
can also be applied to other processes as, e.g., gg → ZH. We will show that we can cover
the whole kinematic phase space which we parametrize in terms of

√
s and pT . A summary

of our findings together with a discussion of possible bottlenecks are discussed in section 4.

2 Analytic expansions

We begin by performing a Taylor expansion in the masses of the final-state particles. This
is always possible for diagrams where the final-state particles couple to massive internal
lines. This produces an amplitude in terms of four-point functions which depend on s, t
and mt, but not on mX or mY . We then proceed by considering analytic expansions of the
amplitude in the following limits:

A. high energy

B. t→ 0

In both cases we perform an exact reduction of the amplitude to master integrals,
which we then expand in the relevant limit. The reduction is the same for both cases,
leading to the same master integrals. For the process gg → HH this step was first done in
refs. [11, 12] and leads to 161 two-loop master integrals. In the following subsections we
briefly discuss the features of methods A and B in more detail.

It is also possible to perform an asymptotic expansion in the limit of a large top
quark mass. In this case it is not necessary to expand in the masses of the final state
particles. Such an expansion is automated in the program exp [24, 25] and the approach
is well established; results for the gg → HH form factors at three loops can be found
in refs. [9, 26]. In this work we use the results of this approach to provide boundary
conditions for the differential equations considered in method B described above. We
also show some numerical values for the form factors in this approximation in section 3.3,
however our proposed procedure to approximate the two-loop form factors requires only
the high-energy and small-t expansions.
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2.1 High-energy expansion

The method of high-energy expansion, including a subsequent Padé approximant–based
improvement, has been developed in refs. [11, 12, 17, 20, 27]. We improve this approach
by constructing a deeper expansion of the master integrals, which includes 120 terms in
the small-mt expansion. Such an expansion is obtained in the following way:

1. We insert an ansatz for the expansion of each master integral Mi, i = 1, . . . , 161

Mi(ε, s, t,mt) =
ai,max∑
a=−3

bmax∑
b=−3

4+a∑
c=0

c
(i)
abc(s, t) ε

a
(
mt√
s

)b
ln
(
m2
t

s

)c
, (2.1)

into the system of differential equations for the master integrals, with respect to
mt. ai,max is a master integral–specific value determined by the ε order required to
produce the amplitude to ε0 and we choose bmax = 120 for each master integral.
The planar master integrals depend only on even powers of mt, while the non-planar
integrals also have contributions from odd powers as was shown in ref. [12].

2. By comparing the coefficients of powers of ε, mt and ln(mt) we establish a sys-
tem of linear equations for the expansion coefficients c(i)

abc(s, t), which depend on the
Mandelstam variables s and t. We solve this system in terms of a small number of
boundary constants by making use of the reduce_user_defined_system feature of
Kira [28]. Solving over finite fields with subsequent rational reconstruction using
FireFly [29, 30] is much faster than solving symbolically using Fermat [31]. It is
this method of solving the system of equations which allows us to expand much more
deeply than ref. [12], which expands only up to bmax = 32.

3. The boundary constants can be fixed using the solutions from refs. [11, 12], where
these constants were computed using the method of regions and Mellin-Barnes tech-
niques, see also ref. [32] for more details.

The expansion coefficients of the master integrals are then exported to a FORM
Tablebase which is used to efficiently insert the expansions into the amplitude, which
is also expanded in ε and mt to the required depth.

The subsequent Padé approximation is performed numerically following refs. [17, 20].
For convenience we repeat the important steps in the following. The starting point is a form
factor as an expansion in mt, i.e., numerical values for all other kinematic variables and
masses are inserted. We then apply the replacements m2k

t → m2k
t x

k andm2k−1
t → m2k−1

t xk

to pair together the even and odd powers of mt, yielding a degree-N polynomial in the
variable x, with half the maximum degree of the mt expansion.

Next we construct Padé approximants in the variable x and write the form factor as a
rational function of the form

[n/m](x) = a0 + a1x+ . . .+ anx
n

1 + b1x+ . . .+ bmxm
, (2.2)

where the coefficients ai and bi are determined by comparing the coefficients of xk after
expanding the right-hand side of eq. (2.2) around the point x = 0. Evaluation of this
rational function at x = 1 yields the Padé approximated value for the form factor.
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The numerator and denominator degrees (n,m) in eq. (2.2) are free parameters; one
only must ensure that n + m ≤ N such that a sufficient number of expansion terms are
available to determine the coefficients ai and bi. We define Nlow and Nhigh and include
Padé approximations in our analysis which fulfil

Nlow ≤ n+m ≤ Nhigh and Nlow ≤ n+m− |n−m| . (2.3)

Our default choice is Nlow = 49 and Nhigh = 56 which leads to 28 different Padé approxi-
mants.1 They are combined using three different criteria:

• The rational function in eq. (2.2) develops poles at the roots of the denominator. We
give more weight to those Padé approximants which have poles further away from
the evaluation point x = 1 (“pole-distance re-weighted” Padé approximation).

• We give more weight to Padé approximants which are derived from a larger number
of expansion terms.

• We give more weight to “near-diagonal” Padé approximants.

We combine the weights from each criterion for each of the Padé approximants, and
use the combined weight to produce a central value and corresponding uncertainty for the
phase-space point under consideration. Explicit formulae for the individual steps of the
construction are given in section 4 of ref. [20]. In the supplementary material [33] to this
paper we provide Mathematica code which can be used to construct, for a given polynomial
in x, an approximation based on the procedure described above, including an uncertainty
estimate.

We have demonstrated this approach applied to a single planar master integral in
ref. [21] and the comparison to (exact) numerical results can be found in figure 7(a) of
that reference. In figure 2 we discuss results for the non-planar integral shown in figure 1.
We choose pT = 40GeV and vary

√
s between 300GeV and 1100GeV. In figure 2(a) we

compare Padé results constructed from expansions up to m32
t and m112

t , which are shown
by the green and orange bands, respectively. One observes a dramatic reduction of the
uncertainty. At the same time it is reassuring to see that the uncertainty estimate of
the Padé procedure is reliable, when comparing to the numerical values obtained using
FIESTA [34]. In figure 2(b) we focus on the comparison of the orange band with the
results from FIESTA; we observe good agreement within uncertainties in the whole plotted
range of

√
s, even very close to the threshold for the production of two top quarks.

2.2 Expansion for t → 0

In this subsection we aim for an expansion of the original 161 master integrals around t = 0
such that the amplitude can be expanded in this limit. This complements the high-energy
expansion, i.e. we aim for a good description in the region around the threshold where
s ≈ 4m2

t and the high-energy expansion breaks down. However, as we will see below, good
1While the master integrals are determined up to N = 60 (m120

t ), negative powers of mt in the amplitude
coefficients mean that the expansion of the form factors can be produced up to N = 56 (m112

t ).

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
3

q2 q4

q1 q3

Figure 1. The two-loop Feynman diagram G59(1, 1, 1, 1, 1, 1, 1,−1, 0) (see appendix A of ref. [12]
for more details). Solid and dashed lines correspond to massive and massless propagators. All
external momenta are massless.
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Figure 2. Comparison of Padé-based approximations constructed from different expansion depths
(Nlow, Nhigh) with numerical results obtained using FIESTA, for the non-planar master integral
shown in figure 1, with a numerator.

results are also obtained for larger values of
√
s, in particular for smaller values of pT . The

expansion is performed as follows.

• As for the high-energy expansion, we first expand in the masses of the final-state
particles. For gg → HH it is sufficient to expand up to m4

H to obtain a precision
below the percent level. We are left with integral families which depend on s, t and
mt. Here we note that the expansion in mH generates spurious 1/t terms which
cancel after inserting the t-expansion of the master integrals.

As discussed previously, this expansion is a simple Taylor expansion in cases where
the final-state particles couple to massive internal lines; otherwise, a more involved
asymptotic expansion must be performed.

• Establish differential equations, with respect to t, for the master integrals of the
2→ 2 problem where all external lines are massless. The master integrals, and thus
the resulting t-differential equations, are the same as in the high-energy case discussed
in section 2.1.

– 6 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
3

• We use the differential equations to obtain, for each master integral, a generic Taylor
expansion around t = 0. This is achieved by expanding the coefficients of the differ-
ential equations around t → 0 and for each master integral, inserting an ansatz of
the form

Mi(ε, s, t,mt) =
ai,max∑
a=−3

∑
b≥0

c
(i)
ab (s,m2

t ) εa
(
t

m2
t

)b
,

where the (unknown) coefficients c(i)
ab (s,m2

t ) are functions of s and m2
t .

Note that for t → 0 some of the propagators of the original integral families (see
appendix A of refs. [11] and [12]) become linearly dependent. After a partial fraction
decomposition we can define new integral families which contain fewer propagators. In
terms of these new families, the number of master integrals in the t → 0 limit reduces
from 161 to 48. One of the resulting topologies has been studied in ref. [35], where it was
shown that two master integrals are elliptic and cannot be expressed in terms of iterated
integrals. These master integrals depend on two different square roots.

We have calculated all 46 non-elliptic master integrals analytically by solving the
associated differential equations in the variable s/m2

t following the algorithms outlined
in ref. [36] implemented with the help of the packages Sigma [37, 38], OreSys [39] and
HarmonicSums [40–52]. The boundary conditions have been fixed in the large-mt limit,
where the integrals can be calculated by performing a large mass expansion, implemented in
q2e/exp [24, 25]. Our final result can be expressed in terms of iterated integrals over letters
which contain the three square roots

√
x
√

4− x,
√
x
√

4 + x,
√

4− x
√

4 + x. However, we
find that this representation is not well suited for numerical evaluation for several reasons:

1. Some of the iterated integrals depend on two square-root valued letters at the same
time, which cannot easily be rationalized simultaneously.

2. The iterated integrals have spurious poles at s/m2
t = 1 and s/m2

t = 4, which require
analytic continuation.

3. The analytic results for the two elliptic integrals are rather involved.

Therefore, we calculate all 48 master integrals using the semi-analytic approach developed
in refs. [53, 54]. For each master integral, we provide a deep expansion of 50 terms around
different values of s/m2

t , with high-precision numerical coefficients. In particular we
construct expansions around 18 values of s/m2

t to cover values of s between 0 and ∞. Our
starting point for the construction of the approximations is the expansion around s = 0
where all master integrals can be computed analytically. As a by-product we extend the
large-mt expansion of these master integrals (but only at t = 0).

This method has a number of advantages compared to purely numerical approaches.
Since the value of mt is only inserted into the final expression, it is possible to easily change
the value or renormalization scheme used for mt. It is straightforward to take derivatives
w.r.t. mt of the one-loop expressions in order to generate the corresponding counterterm
contributions.
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3 Application to Higgs boson pair production

In this section we apply the expansion methods discussed above to the particular case of the
gg → HH amplitude. We start by examining the mH and t expansions of one-loop master
integrals by comparing to numerical results obtained with FIESTA [34] and Package-X [55].
We show that the Taylor expansion in mH produces good agreement with the exact result,
even for smaller values of

√
s close to the Higgs pair production threshold at

√
s = 2mH .

Afterwards we discuss results for the one- and two-loop form factors. Finally we compare
the virtual corrections to the Higgs pair production cross section with the numerical results
obtained in ref. [17].

For the numerical evaluations we use input values for the top quark and Higgs boson
masses of mt = 173.21GeV and mH = 125.1GeV, respectively.

For completeness we provide in the following the definition of the form factors for Higgs
boson pair production. The amplitude for the process g(q1)g(q2) → H(q3)H(q4) can be
decomposed into two Lorentz structures (a and b are adjoint colour indices)

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
abX0s (F1A

µν
1 + F2A

µν
2 ) , (3.1)

where

Aµν1 = gµν − 1
q12

qν1q
µ
2 ,

Aµν2 = gµν + 1
p2
T q12

(q33q
ν
1q
µ
2 − 2q23q

ν
1q
µ
3 − 2q13q

ν
3q
µ
2 + 2q12q

µ
3 q

ν
3 ) . (3.2)

Here we have introduced the abbreviation qij = qi · qj and pT is given in eq. (1.3). The
prefactor X0 is given by

X0 = GF√
2
αs(µ)

2π TF , (3.3)

where TF = 1/2, GF is Fermi’s constant and αs(µ) is the strong coupling constant evaluated
at the renormalization scale µ.

We define the expansion in αs of the form factors as

F = F (0) + αs(µ)
π

F (1) + · · · , (3.4)

and decompose the functions F1 and F2 introduced in eq. (3.1) into “triangle” and “box”
form factors. We thus cast the one- and two-loop corrections in the form (k = 0, 1)

F
(k)
1 = 3m2

H

s−m2
H

F
(k)
tri + F

(k)
box1 + δk1F

(1)
dt1 ,

F
(k)
2 = F

(k)
box2 + δk1F

(1)
dt2 . (3.5)

F
(1)
dt1 and F (1)

dt2 denote the contribution from one-particle reducible double-triangle diagrams,
see, e.g. figure 1(f) of ref. [17]. The main focus in this paper is on F

(1)
box1 and F

(1)
box2.

Analytic results for the leading-order form factors are available from [56, 57] and the
two-loop triangle form factors have been computed in refs. [58–60]. The results for the
double-triangle contribution can be found in [10].
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q1

q2 q3

q4

Figure 3. The one-loop master integral G2(1, 1, 1, 1), where all internal lines are massive and for
the external lines we have q2

1 = q2
2 = 0 and q2

3 = q2
4 = m2

H .
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Figure 4. Real part of the master integral G2(1, 1, 1, 1) as a function of
√
s for pT = 40GeV (left)

and pT = 200GeV (right). The coloured lines include expansions in mH up to the indicated orders.
The exact result is shown in black. The lower panels show the relative error between the expansions
and the exact curve.
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3.1 Expansion of a one-loop master integral in mH

In figure 4 we show, as a function of
√
s, the real part of the one-loop box master integral

G2(1, 1, 1, 1) (see appendix A of ref. [11] for details on the notation), which is depicted
in figure 3. The left and right panels correspond to pT = 40GeV and pT = 200GeV,
respectively. The coloured lines show expansions in m2

H up to fourth order, and the black
line represents the exact result. After the Taylor expansion in mH a reduction to master
integrals is necessary. It has been performed with LiteRed [61] and for the numerical
evaluation of the resulting master integrals we have used Package-X [55].

The upper row shows the results for the master integral and the lower row shows the
relative error between the expansions and the exact curve. One observes that the m0

H curves
do not describe the exact result particularly well, with differences at the 15-20% level, how-
ever including the quadratic and quartic terms provide a description below the 5% level and
1% level, respectively; these observations are largely independent of the values of

√
s and pT .

3.2 Expansion of a one-loop master integral in t

Next we study the t→ 0 expansion of the same one-loop box master integral, G2(1, 1, 1, 1).
For this purpose we choose mH = 0, i.e., the leading term of the expansion discussed in

300 400 500 600 700 800 900 1000

0.0

0.1

0.2

0.3

0.4

600 800 1000 1200 1400 1600 1800 2000

-0.02

-0.01

0.00

0.01

0.02

300 400 500 600 700 800 900 1000

10
-14

10
-11

10
-8

10
-5

0.01

600 800 1000 1200 1400 1600 1800 2000

10
-14

10
-10

10
-6

0.01

Figure 5. Real part of the master integral G2(1, 1, 1, 1) as a function of
√
s for pT = 40GeV (left)

and pT = 200GeV (right). The coloured lines include expansions in t up to t10. The exact result is
shown in black. The lower panels show the relative error between the expansions and the exact curve.
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section 3.1. We perform the expansion in t using LiteRed [61] and then map the resulting
integrals to new integral families which have only three propagators and depend only on
s/m2

t . For these integrals we establish a system of differential equations which can be
solved analytically, incorporating boundary conditions from the s→ 0 limit. The resulting
coefficients of the polynomial in t can be written in terms of Harmonic Polylogarithms [62],
which we evaluate using the Mathematica package HPL.m [63, 64].

In figure 5 we show the convergence of the t expansion for the values pT = 40GeV and
pT = 200GeV in the left and right columns, respectively. The lower row shows the relative
error between the expansion and the exact curve. For the smaller value of pT = 40GeV,
we observe that the leading expansion term (t0) already reproduces the exact result at the
percent level. For pT = 200GeV the leading term does not perform so well, however by
including higher-order terms the expansion converges on the exact result very quickly.

3.3 Expansion of the one-loop form factors

We now discuss the high-energy and small-t expansions at the level of the one-loop form
factors F (0)

box1 and F (0)
box2, and compare them to the exact results.

In figures 6 and 7 we show, for various values of pT , the results for the form factors
F

(0)
box1 and F (0)

box2 as a function of
√
s. The high-energy and small-t expansions are shown

as coloured dashed lines; the solid black line (in the background) corresponds to the exact
result. For these plots we have incorporated quartic expansion terms in mH , the order
which is also available at the two-loop level. Furthermore, for the small-t expansion terms
up to t5 are taken into account and the high-energy expansion includes Padé approximations
which include terms up to at least (m2

t )49 and at most (m2
t )56.

Above the top quark pair threshold we observe that both expansions agree with the
exact result even for values of pT as small as 50GeV and as large as 200GeV. For larger
values of pT the small-t expansion starts to deviate from the black curve, as can be seen
in the panel for pT = 300GeV, whereas the high-energy approximation agrees very well,
as expected. On the other hand, for values of pT below 50GeV the small-t expansion
provides an excellent approximation. From the panels in figures 6 and 7 one observes that
for 100 GeV . pT . 200GeV both approximations work well for

√
s & 350GeV.

Below the top quark pair threshold we observe that the small-t expansion provides an
excellent description of the exact result, whereas the high-energy expansion deviates; this is
expected since it does not contain any information about the threshold. Values

√
s . 2mt

are kinematically only allowed for pT . 120GeV.
To quantify the quality of the approximations we show in tables 1, 2 and 3, for three

different values of pT , results for the real part of F (0)
box1 for various values of

√
s. We show

the exact results, the results for the small-t expansion for different expansion depths in
mH , the high-energy expansion including terms up to m4

H , and results for the large-mt

expansion (LME) up to 1/m12
t [26].

Let us start the discussion with table 1 (pT = 50GeV) where we observe the following:

• If we restrict ourselves to the approximation which includes quartic mH terms, in the
region above the top quark threshold we observe an agreement of at least 3 significant
digits between the small-t and high-energy expansions.
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Figure 6. One-loop form factor F (0)
box1 as a function of

√
s for various values of pT .
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Figure 7. One-loop form factor F (0)
box2 as a function of

√
s for various values of pT .

• The agreement between the exact result and the approximations based on an expan-
sion in mH up to quartic order is well below the percent level.

• Including expansion terms inmH , beyond the quartic terms, for the small-t expansion
improves the agreement with the exact result.

Similar conclusions also hold for pT = 200GeV, as can be seen in table 2. In practical
applications the high-energy expansion can be used for such values of pT .
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√
s (GeV) 270 300 350 400 610 990
exact −1.72013 −1.81435 −2.32246 −2.34773 −0.393996 0.0855054
small-t m0

H −1.44108 −1.52523 −1.92423 −2.01154 −0.420989 0.0626770
m2
H −1.67642 −1.77026 −2.25482 −2.30931 −0.404100 0.0837986

m4
H −1.71321 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

m6
H −1.71902 −1.81331 −2.32026 −2.34808 −0.394063 0.0855094

m8
H −1.71995 −1.81419 −2.32204 −2.34793 −0.393990 0.0855057

high-en. m4
H — — −2.31129 −2.34521 −0.395262 0.0854694

LME −1.71813 −1.80468 −2.08865 −2.76874 — —

Table 1. Real part of F (0)
box1 for pT = 50GeV.

In table 3 we show values for a smaller value of pT = 10GeV. While it is impressive that
for such small values of pT the high-energy expansion still provides good approximations
for
√
s values around 400GeV, which demonstrates the power of a deep expansion in mt

combined with a Padé improvement, for larger values of
√
s the high-energy approximation

does not reproduce the exact results. This behaviour is expected, since in this region of
phase space it is not the case that |t| � m2

t , so the high-energy expansion does not converge.
Indeed for a fixed value of pT , increasing values of

√
s imply decreasing values of |t|. The

small-t expansion performs very well in this region.
For F (0)

box2 the comparison is not so straightforward, as can be seen in the first two
panels of figure 7 and in table 4. We observe that the expansion in mH does not converge
sufficiently quickly for the quartic terms to provide a good description of the exact curve
for pT . 100GeV. While including terms to m8

H in the small-t expansion again provides
good agreement, such expansion terms are not available at two loops.

We show in table 4 that below the top quark pair production threshold, the large
top quark expansion of ref. [26] (including expansion terms to 1/m12

t ) provides a good
approximation of the exact result and can be used instead in this region. However, F (0)

box2 is
numerically much smaller than F (0)

box1; we have verified that the use of the large top quark
expansion in this region does not affect the results and conclusions of section 3.5.

From the considerations above, we propose the following selection criteria for the choice
of expansion in the different regions of the {

√
s, pT } plane:

• Below pT = 150GeV: use small-t expansion for all values of
√
s.

• For 150GeV. pT . 200GeV either approximation can be used.

• Above pT = 200GeV use the high-energy expansion for all values of
√
s.

As a consequence, below
√
s = 2mt the small-t expansion is always selected. The fact

that the high-energy and small-t expansions agree with each other (and with the exact
result) in the region 150GeV. pT . 200GeV increases our confidence in the accuracy of

– 13 –



J
H
E
P
0
6
(
2
0
2
3
)
0
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√
s (GeV) 610 990
exact −0.311182 0.110469
small-t m0

H −0.340443 0.089788
m2
H −0.319571 0.109173

m4
H −0.311692 0.110538

m6
H −0.310705 0.110570

m8
H −0.310651 0.110567

high-energy m4
H −0.312218 0.110440

Table 2. Real part of F (0)
box1 for pT = 200GeV.

√
s (GeV) 270 300 350 400 610 990
exact −1.72358 −1.81816 −2.32666 −2.35282 −0.400246 0.0835134
small-t m0

H −1.44780 −1.52956 −1.92815 −2.01570 −0.426920 0.0605334
m2
H −1.68133 −1.77444 −2.25910 −2.31430 −0.410425 0.0817808

m4
H −1.71707 −1.81151 −2.31474 −2.35027 −0.401533 0.0834753

m6
H −1.72257 −1.81714 −2.32446 −2.35317 −0.400314 0.0835175

m8
H −1.72342 −1.81800 −2.32624 −2.35302 −0.400239 0.0835137

high-en. m4
H — — −2.32046 −2.35382 −0.464921 −0.539285

LME −1.72158 −1.80854 −2.09373 −2.77895 — —

Table 3. Real part of F (0)
box1 for pT = 10GeV.

√
s (GeV) 270 300 350 400 610 990
exact −0.025050 −0.026046 −0.033323 −0.029569 −0.006633 −0.001207
small-t m0

H −0.111991 −0.072393 −0.064400 −0.050849 −0.009550 −0.001571
m2

H −0.069277 −0.058082 −0.061193 −0.048812 −0.008496 −0.001339
m4

H −0.033254 −0.031982 −0.039319 −0.032503 −0.006558 −0.001190
m6

H −0.026450 −0.027041 −0.034525 −0.029807 −0.006603 −0.001206
m8

H −0.025286 −0.026208 −0.033565 −0.029543 −0.006631 −0.001207
high-en. m4

H — — −0.039369 −0.032504 −0.006558 −0.001189
LME −0.024977 −0.025767 −0.028531 −0.034309 — —

Table 4. Real part of F (0)
box2 for pT = 50GeV.

the expansions; we will check for this agreement at two loops, where no exact analytic
result for the form factors is available.

Finally, in tables 5 and 6 we show the convergence properties of the small-t expan-
sion for F (0)

box1, expanded to m4
H . In table 5 we have chosen pT = 50GeV, as in table 1.
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√
s 270 300 350 400 610 990

exact −1.72013 −1.81435 −2.32246 −2.34773 −0.393996 0.0855054
small-t t0 −1.72233 −1.81614 −2.31848 −2.35377 −0.403541 0.0831798

t1 −1.70636 −1.80585 −2.30978 −2.34471 −0.395059 0.0855148
t2 −1.71349 −1.80764 −2.31052 −2.34519 −0.395270 0.0854672
t3 −1.71313 −1.80758 −2.31050 −2.34518 −0.395265 0.0854682
t4 −1.71322 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682
t5 −1.71321 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

Table 5. Real part of F (0)
box1 for pT = 50GeV. Note that the difference between the converged

small-t expansion and the exact result is due to the limited expansion depth in m2
H .

√
s 610 990

exact −0.271746 0.121508
small-t t0 −0.403541 0.083180

t1 −0.169798 0.140533
t2 −0.329867 0.111809
t3 −0.235303 0.126569
t4 −0.296885 0.118770
t5 −0.256537 0.122940

Table 6. Real part of F (0)
box1 for pT = 250GeV.

Here we observe a rapid convergence; in fact, the O(t2) terms already provide only a small
correction. For larger values of pT the higher-order expansion terms become more impor-
tant. For example, for pT = 250GeV (table 6) even the t4 and t5 terms provide important
contributions.

3.4 Two-loop form factors

In the following we present results for the two-loop box form factors where for the ultra-
violet renormalization and infra-red subtraction we follow ref. [12]. In particular, we renor-
malize the top quark mass in the on-shell scheme.

In figures 8, 9, 10 and 11 we show the results for the two colour factors of the two-
loop form factors, for various values of pT , as a function of

√
s. For the small-t expansion

terms up to t5 are taken into account and the high-energy expansion includes Padé ap-
proximations with at least (m2

t )49 and at most (m2
t )56 terms. In all cases quartic terms

in mH are included. Results for the high-energy form factors at the deeper expansion
depths considered here are provided in the supplementary material of this paper (and also
in ref. [33]).
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An exact result for the form factors is not at our disposal, however, we observe that
the approximations show a very similar behaviour as at one-loop order. In particular,
we observe that for 100GeV. pT . 200GeV there is a wide range in

√
s where we find

excellent agreement between the two approximations. We want to stress that for these pT
values the small-t expansion works well even for larger values of

√
s. This is demonstrated

by the black and gray curves which show the relative percentage difference between the
small-t and high-energy expansions for the real and imaginary parts of the form factors,
respectively. For each value of 100GeV. pT . 170GeV there is an overlap region in which
the relative difference is far below 1%, and mostly even below 0.1%. Note that the spikes
in the gray and black curves are related to zeros of the form factors.

For pT > 200GeV we can rely on the high-energy expansion. This is supported by
the fact that even for pT ≈ 100GeV the high-energy expansion agrees with the small-t
expansion even for

√
s ≈ 2mt. Note that for

√
s < 2mt the high-energy expansion is not

valid for any value of pT since no information about the top quark pair threshold is used for
the construction of the approximation. However, for

√
s < 2mt the small-t approximation

is always valid since pT is kinematically constrained to be less than about 120GeV.
For smaller values of pT the small-t expansion is even more reliable, as can been seen

from the one-loop comparison in table 3.
In summary, in sections 2.1 and 2.2 we demonstrate that the combination of the small-t

and high-energy expansions is sufficient to cover the whole phase space, and that the final
uncertainty is given only by the expansion in mH which we estimate to be below 1%.

Our expressions retain explicit dependence on all parameters, (mt,mH , s and t), al-
lowing for a straightforward change of parameter values or renormalization scheme. Our
reference implementation of the approximations in Mathematica requires a few seconds to
evaluate the small-t expansion and between 40 and 50 seconds to evaluate the (m2

t )56 Padé-
improved high-energy approximation. We have also implemented both the small-t and an
(m2

t )24 Padé-improved high-energy approximation in C++ which requires only O(10) ms per
phase-space point, which is comparable to the timings reported in ref. [19].

3.5 Virtual NLO corrections

As a final comparison, we construct the infra-red subtracted virtual corrections, following
ref. [65]. They are given by

Ṽfin = α2
s (µ)

16π2
G2
F s

2

64
[
C + 2

(
F̃

(0)∗
1 F̃

(1)
1 + F̃

(0)∗
2 F̃

(1)
2 + F̃

(0)
1 F̃

(1)∗
1 + F̃

(0)
2 F̃

(1)∗
2

)]
, (3.6)

with

C =
[∣∣∣F̃ (0)

1

∣∣∣2 +
∣∣∣F̃ (0)

2

∣∣∣2](CAπ2 − CA log2 µ
2

s

)
, (3.7)

where αs corresponds to the five-flavour strong coupling constant. It is convenient to
introduce the αs-independent quantity

Vfin = Ṽfin
α2
s(µ) . (3.8)
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Figure 8. CF contribution to the two-loop form factor F (1)
box1 as a function of

√
s for various values

of pT .
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s for various values
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Figure 10. CF contribution to the two-loop form factor F (1)
box2 as a function of

√
s for various

values of pT .
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Figure 11. CA contribution to the two-loop form factor F (1)
box2 as a function of
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s for various

values of pT .
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Figure 12. Vfin as a function of pT , normalized to the central values of the pySecDec-evaluated
points of hhgrid. We switch from the small-t to the high-energy expansion at pT = 175GeV.

We use the exact expressions for the one-loop form factors along with the approxi-
mations discussed in the previous section for the two-loop form factors, to compute Vfin.
The triangle and double-triangle diagrams are included in the form factors, as described in
eq. (3.5); we use exact expressions for the double-triangle diagrams, while for the triangle
diagrams we use the expansions discussed above.

In ref. [17] the high-energy expansions of refs. [11, 12, 32] have been combined with the
exact, numerical two-loop results of [65], such that Vfin can be evaluated at any phase-space
point and costly two-loop numerical integrations are only required in a restricted phase
space, namely for pT < 150GeV if

√
s ≥ 700GeV and for pT < 200GeV if

√
s < 700GeV.

The results of [17] are collected as data points in hhgrid [66]. The high-energy expansion
used in [17] only includes terms up to m32

t , in contrast to the much deeper expansions
which we consider in this work.

In figure 12 we compare our new results for Vfin to those obtained using pySecDec [67,
68] in ref. [17]. The grey data points and uncertainties correspond to the pySecDec data
points, normalized to their central values. In comparison the uncertainty of our approx-
imation is negligible.2 The blue and red data points are obtained from the small-t and
high-energy expansions, where we normalize to the central values of the hhgrid data. This
plot may be compared with figure 3 of ref. [17].

To quantify the agreement between our approximations and the pySecDec evaluations,
the following table describes the proportion of points which are contained within a number
of pySecDec error intervals.

2The systematic uncertainty of about 1% due to the expansion in mH up to quartic order is not shown.
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pySecDec err. intervals 1σ 2σ 3σ
small-t 0.57 0.85 0.92

high-energy 0.65 0.94 0.99

We observe that the high-energy expansion demonstrates a Gaussian behaviour, while the
small-t expansion shows a non-Gaussian disagreement, which we ascribe to the systematic
error due to the slower convergence of the m2

H expansion in the lower-pT region, as shown
in figure 4.

Let us finally compare to the findings of refs. [18, 19]. In these works the integration
over t has been performed and an uncertainty of 1% is claimed with respect to the exact
LO values. Here we present detailed results only at the level of the form factors, and
find a several-digit agreement between our small-t and high-energy approximations in the
overlap region for pT between 100GeV and 200GeV. On the other hand, the results for the
form factors in ref. [18] suggest a several-percent difference between the two Padé-improved
expansions in some cases, as shown in figures 1 and 3 of ref. [18]; the form factor with the
worse agreement (Fbox2) only has a small contribution to the cross section, however.

In refs. [18, 19] only 13 high-energy terms have been taken into account to construct
a [6/6] Padé approximant and thus the transition from the small-pT to the high-energy
approximation is made at relatively high values of pT (pT ≈ 312GeV and 340GeV for
the choices

√
s = 900GeV and

√
s = 2000GeV in figure 3 of ref. [18]). As we show in

figures 6 and 7 our small-t expansion does not perform very well in this region. However in
our approach, we are able to use the high-energy expansion at much smaller values of pT ,
so this region is well described. Let us also mention that in refs. [18, 19] only quadratic
mH terms are used in the high-energy expansion which leads to a few-percent systematic
uncertainty at the level of the form factors.

In the small-pT expansion in refs. [18, 19] only a [1/1] Padé approximant is constructed
which means that three expansion terms are available. In our analysis we use terms up
to t5, i.e. six expansion terms; no Padé improvement of the t → 0 expansion is necessary.
We have shown in table 6 that the deeper expansion terms are important to approximate
higher pT values without the use of Padé approximants.

4 Conclusions

In this paper we consider a 2 → 2 process with massive internal particles, which is a
multi-scale problem and thus notoriously difficult, both in an analytic and in a numerical
approach. We show that the combination of analytic expansions in two regions of phase
space provides a complete description of the two-loop virtual amplitude. On the one hand
we consider a deep expansion in the high-energy limit where the internal mass (in our
application, the top quark mass) is small compared to the Mandelstam variables s and t.
On the other hand we perform an expansion in t which again eliminates a scale from the
integrand. In both cases we expand in the mass of the final-state particles.

We discuss in detail the two-loop corrections for gg → HH and show that for this
process no numerical integration is necessary to obtain the differential virtual corrections.
Other processes such as gg → ZH or gg → ZZ can be treated in analogy.
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Using a similar approach to the one applied in this paper it might be possible to
extend the t → 0 expansion to three loops, yielding the NNLO virtual corrections to
this gluon fusion processes. Possible bottlenecks, which have to be studied in the future,
are huge intermediate expressions and the integration-by-parts reduction of the expanded
amplitudes to master integrals.
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